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ABSTRACT

Landbird populations are undergoing concurrent changes in population size, spatial 

distribution, and phenology. The sensitivity of landbird monitoring programs to detect and 

distinguish these varied processes is of critical importance. Consequently, these efforts require 

inference methods that are efficient and fully leverage information about spatial, population, and 

phenological dynamics. The development of efficient inference methods can be addressed in part 

through a thorough understanding of how the data are actually generated, the application of 

sampling methods that attempt to maximize encounter probability, and the tailoring of sampling 

methods to maximize sensitivity to specific inference objectives.

Chapter one of this dissertation is concerned with accommodating temporary emigration 

in spatial distance sampling models. Model-based distance sampling is commonly used to 

understand spatial variation in the density of wildlife species. The standard approach is to 

assume that individuals are distributed uniformly in space and model spatial variation in 

abundance using plot-level effects. Thinned point process models for surveys of unmarked 

populations (spatial distance sampling) frame the sampling process in terms of the individual 

encounter in space and, consequently, are expected to offer greater sensitivity for understanding 

spatial processes. However, existing spatial distance sampling approaches are conditioned on the 

assumption that all individuals are present and available for sampling. Temporary emigration of 

individuals can therefore result in biased estimates of abundance. Herein, I extend spatial 

distance sampling models to accommodate temporary emigration. A simulation study indicated 

more precise and less biased estimation under the spatial distance sampling model compared to 

models that assume a uniform distribution of individuals and assess spatial variation in 

abundance using plot-level effects. An applied example involving two arctic-breeding passerines 

indicated considerably stronger inference under the spatial distance sampling model than 

standard distance sampling models.

Chapter two is concerned with the capacity of subarctic passerines to adjust their arrival 

timing to relatively extreme variation in spring conditions. I assessed interannual variation in 

passerine arrival timing in Denali National Park, Alaska from 1995-2015, a period that included 

both the warmest and coldest recorded mean spring temperatures for the park. Neotropical- 

Nearctic migrants varied in terms of the flexibility of their arrival timing, but generally showed

iii



plastic phenologies, suggesting resilience under extreme spring conditions. In comparison, 

Nearctic-Nearctic migrants showed similar or greater plasticity in arrival timing. A majority of 

species showed synchronous-asynchronous fluctuation in arrival (i.e., synchronous arrival in 

some years, asynchronous in others) in combination with various levels of the mean response 

(i.e., early, average, and late arrival), suggesting the presence of interactions between 

environmental conditions at multiple scales and inter-individual variation. Overall, these findings 

suggest that monitoring of the mean-variance relationship may lead to a deeper understanding of 

the factors shaping phenological responses.

Chapter three is concerned with developing efficient inference methods for inventorying 

and monitoring cliff-nesting raptor populations. In nest occupancy studies of cliff-nesting 

raptors, the standard approach is to allocate a level of survey effort that is assumed to ensure that 

the occupancy state is known with certainty. However, allocating effort in this manner is 

inefficient, particularly at landscape scales, constraining our capacity for effective management 

of these species. To increase survey efficiency and expand the spatial inference of these studies, I 

developed two versions of a multi-state, time-removal model, one for long-term monitoring 

studies and another for population inventories or single-season surveys in which there is no prior 

knowledge of nest locations. For long-term monitoring of species with alternative nests, I 

formulated a version of the model that accounts for state uncertainty at the territory-level caused 

by a failure to observe all nests within a territory. Simulation studies indicated generally low to 

moderate relative bias under the monitoring and inventory models. In addition, I applied the 

monitoring model to a long-term study of golden eagles (Aquila chrysaetos) in Alaska and 

demonstrate that the maximum effort spent on any nesting territory could be reduced by up to 

almost 90% of that recommended by standard protocols.
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INTRODUCTION

Ecological monitoring programs have been beset by a lack of clear inference objectives at 

their outset, a poor understanding of how the data are actually being generated, a failure to fully 

leverage spatial and temporal information, and inefficient sampling methods (Lindenmayer and 

Likens 2009, 2010, Reynolds et al. 2011, Thompson et al. 2011, Schmidt et al. 2013). Landbird 

monitoring has been particularly problematic because these efforts have historically relied on 

unadjusted count data for inference (Nichols et al. 2009). However, recent decades have seen a 

greater recognition that variation in detection probability, if  ignored, may confound estimates of 

variation in abundance (e.g., Farnsworth et al. 2002, Rosenstock et al. 2002, Alldredge et al. 

2007, Nichols et al. 2009). Emphasis has been placed on the development of survey 

methodologies and hierarchical modeling approaches that permit simultaneous estimation of 

state variables and detection probability (Royle and Dorazio 2008). Despite such advances 

towards a form of inference that accommodates the hierarchical nature of population sampling, 

there remains substantial room for increased efficiency in studies of avian population ecology.

We require efficient inference methods in order to have the sensitivity to detect and 

distinguish the varied processes underlying landbird population dynamics. Landbird populations 

are undergoing concurrent changes in population size, spatial distribution, and arrival phenology 

(Root et al. 2003, Mizel et al. 2016). In particular, changes in spatial distribution may complicate 

the understanding of apparent changes in population size (e.g., Mizel et al. 2016). For example, 

apparent population declines could potentially result from species shifting distributions outside 

of the sampling frame (Mizel et al. 2016). In addition, changes in population size may drive 

changes in phenology (see chapter two), or, conversely, the decoupling of arrival phenology and 

seasonal food availability may drive population declines (Both and Visser 2001, Visser et al. 

2004). The development of efficient inference methods is made all the more critical when 

sampling sparsely distributed species (e.g., cliff-nesting raptors) and for studies conducted in 

remote areas and/or at large spatial scales due to the logistical challenges involved in these 

efforts.

The development of efficient inference methods can be addressed in part through a 

thorough understanding of how the data are actually generated, the application of sampling 

methods that attempt to maximize encounter probability, and leveraging information during the 

sampling and the analysis phases (Royle and Dorazio 2008, Nichols et al. 2009). These ideas
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have their basis in the hierarchical modeling approach to conducting ecological inference (Royle 

and Dorazio 2008). Hierarchical modeling approaches conceive population sampling in terms of 

explicit, probability-based state and observation processes unified by their conditional 

relationship to one another (Royle and Dorazio 2008). This approach naturally motivates 

decomposition of the constituent parts of both of these processes, which often may be 

advantageous for optimizing inference methods (Royle and Dorazio 2008). Specifically, 

decomposing the observation process into its constituent probabilities may serve as a starting 

point for developing a survey design that accounts for potential biases and maximizes encounter 

probability. The observation process can be decomposed into four primary components: 1) the 

probability the individual’s home range overlaps the sampling unit,ps; 2) the probability the 

individual is present within the area that is exposed to sampling during the survey occasion, pp;

3) the probability the individual is available for detection during the survey occasion, pa; and 4) 

the probability that the individual is detected given that it is present and available, pd (see 

Nichols et al. 2009).

A variety of survey methods are available for accommodating imperfect detectability 

including repeat surveys (Royle 2004), distance sampling (Buckland et al. 2001, 2004), time of 

detection methods (Farnsworth et al. 2002, Alldredge et al. 2007), double observer methods 

(Nichols et al. 2000), and various combinations of the aforementioned (Chandler et al. 2011, 

Amundson et al. 2014). However, the various inference methods differ in the composite of 

detection probability that they estimate (Nichols et al. 2009). Consequently, they provide 

inference to different subsets of the ‘superpopulation’; i.e. all individuals having home ranges 

that overlap the area exposed to sampling (Kendall et al. 1997, Nichols et al. 2009). Each 

inference method carries with it the assumption that those components that are not estimated do 

not vary through space and time. Should this assumption prove untenable, then the sensitivity for 

monitoring programs to detect change may be reduced as variation in the unaddressed 

component(s) may be confounded to an unknown degree with that present in abundance. This is 

particularly relevant to studies of species that exhibit territorial movements and/or temporal 

variation in cue production where failure to accommodate these temporary emigration processes 

(pppa) may result in biased estimates of abundance (Chandler et al. 2011).

Understanding both the assumptions and population of inference that are implicit in the 

choice of estimation methods is necessary for proper interpretation of results and for designing
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studies with the sensitivity to detect changes in population size and distribution (Schmidt et al. 

2013). Hayes and Monfils (2015) recommended the disuse of occupancy modeling (MacKenzie 

et al. 2005) for populations subject to temporary emigration. Alternatively, it is not the 

occupancy model that is at issue here, but the fact that inference (or interpretation of the 

occupancy parameter) is to the proportion of the study area that is used when populations are 

subject to temporary emigration (Kery and Royle 2016). In such cases, the meaningfulness of the 

occupancy or abundance parameter is determined by the study design, specifically, its spatial and 

temporal resolution (Kery and Royle 2016). Thus, rather than focusing on the (occupancy or N- 

mixture) model in general terms, it may be more useful to accept the presence of temporary 

emigration processes and attempt to accommodate these processes in the sampling design and 

analysis phases. Throughout this dissertation, I emphasize that decomposing the observation 

process in relation to a species’ ecology motivates a clearer understanding of these processes, 

including temporary emigration, which in turn, provides the basis for developing efficient survey 

methods. I also emphasize that leveraging spatio-temporal information begins in the design 

phase through identification of inference objectives and tailoring sampling methods to maximize 

sensitivity to these objectives.

In chapter one, I use a spatial distance sampling approach for potentially stronger 

inference about spatial processes. Standard distance sampling methods do not fully leverage the 

spatial information underlying individual encounters for use in explaining variation in density. 

Standard approaches rely on plot-level effects for explaining spatial variation in density, 

inducing over-dispersion when density varies within plots. In contrast, spatial distance sampling 

describes the observed locations of individuals as arising from a spatial point process thinned 

through incomplete detection and, consequently, exploits the spatial information inherent in the 

location of encounter for potentially stronger inference about spatial processes (Hedley and 

Buckland 2004, Johnson et al. 2010, Kery and Royle 2016, Yuan et al. 2016).

However, existing spatial distance sampling approaches are conditioned on the 

assumption that all individuals are present and available for sampling. Temporary emigration of 

individuals can therefore result in biased estimates of abundance. Herein, I extend spatial 

distance sampling models to accommodate temporary emigration. Extending these methods to 

accommodate temporary emigration is expected to be particularly useful for species that show 

large variation in cue production over a survey season and highly mobile species, including birds
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(e.g., Nichols et al. 2009, Chandler et al. 2011, Schmidt et al. 2013), herpetofauna (e.g., 

O’Donnell et al. 2015), and insects (e.g., Kery et al. 2009).

Also in chapter one of this dissertation, I detail a sampling method for off-road surveys 

that diverges considerably from the standard point count protocol of Ralph et al. (1993, 1995). 

Recently, Matsuoka et al. (2014) advocated standardization of landbird sampling methods, 

specifically a return to the time and distance-binning approach to point counts of Ralph et al. 

(1993, 1995). They argued that use of a consistent protocol will strengthen inference across 

datasets. However, implementing this protocol in off-road study areas will often be inefficient as 

it may require 25-30 minutes of ‘off-effort’ (transit) time for every 10-minute survey. Thus, I 

used a method in which the encounter locations of individuals are recorded from a continuous, 

fixed survey route. By remaining ‘on-effort’ throughout the survey day, this approach would be 

expected to maximize the population that is exposed to sampling on a given site-visit.

In chapter two, I used the open-population occupancy model of Roth et al. (2014) to 

estimate arrival events in a subarctic-breeding passerine community. This model provides an 

explicit rendering of the observation process into the probability of initial presence (i.e., arrival) 

at a site and the composite detection probability pppapd. In doing so, it leverages information 

about arrival phenology from standard occupancy survey data. I apply this model to survey data 

for a community of subarctic-breeding passerines and document interannual variation in the 

mean and variance of the arrival distribution.

In chapter three, I develop a framework for inventorying and monitoring cliff-nesting 

raptor populations over landscape scales based upon an efficient combination of aerial and 

ground-based occupancy surveys. Surveys of cliff-nesting raptors present considerable 

challenges due to their sparse distribution across remote landscapes and the multiple occupancy 

states (e.g., unoccupied, non-breeding occupancy, and breeding occupancy) through which we 

observe their nesting territory dynamics. The standard approach in nesting territory surveys is to 

allocate a level of effort that is assumed to ensure that the occupancy state of each territory is 

known with certainty. However, this is logistically prohibitive at landscape scales, constraining 

our capacity for effective management of these species.

To develop a more efficient inference framework, I begin by detailing various aspects of 

cliff-nesting raptor breeding ecology which induce complexity in how we observe their 

population dynamics including: maintaining alternative nest sites, a tendency to exhibit
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numerical reproductive responses, and the presence of multiple nesting occupancy states 

(unoccupied, occupied without breeding, and occupied with breeding) that differ in their 

detectability. I then develop a multi-method, multi-state approach that leverages the fact that 

aerial surveys are optimal for detecting nests, breeding, and refurbishment of nests, but ground 

surveys provide a greater opportunity for observing behaviors indicative of non-breeding 

occupancy.
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CHAPTER ONE

ACCOMODATING TEMPORARY EMIGRATION IN SPATIAL DISTANCE SAMPLING

MODELS1

1.1 Abstract

The sensitivity of long-term monitoring programs to detect and distinguish population 

and spatial dynamics is of critical importance. Model-based distance sampling is commonly used 

to understand spatial variation in the density of wildlife species. The standard approach is to 

assume that individuals are distributed uniformly and model spatial variation in density using 

plot-level effects. Thinned point process models for surveys of unmarked populations (spatial 

distance sampling) more fully leverage the spatial information underlying individual encounters, 

and in the presence of within-plot variation in density, may explain a larger proportion of the 

spatial variation in density. However, existing spatial distance sampling approaches are 

conditioned on the assumption that all individuals are present and available for sampling. 

Temporary emigration of individuals can therefore result in biased estimates of abundance.

Herein, we extend spatial distance sampling models to accommodate temporary 

emigration (TPP model). Using simulations of a thinned inhomogeneous point process, we 

assessed the performance of the TPP model relative to the temporary emigration distance 

sampling (TEDS) model, which implies a uniform distribution of individuals. In addition, we 

compared inferences between TPP and TEDS models using data for two passerine species in 

Alaska.

Parameter estimates from the TPP model exhibited improved CI coverage and precision 

relative to the TEDS model including a 26% reduction in the CV of the population size estimate. 

In the applied example, the TEDS model indicated weak relationships between abundance and 

habitat covariates, whereas the TPP model indicated strong relationships for those same effects, 

suggesting that spatial distance sampling models can provide considerably stronger inference in

1 Mizel, J. D., J. H. Schmidt, and M. S. Lindberg (accepted). Accommodating temporary 

emigration in spatial distance sampling models. Journal of Applied Ecology.
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the presence of within-plot variation in density. In addition, the CV of the population size 

estimates for the two passerine species were 32% and 4% smaller under the TPP model.

We expect our extension accommodating temporary emigration will be a critical 

specification for spatial distance sampling models, particularly for studies confronted with large 

variation in the population available for sampling over multiple occasions. Our model will be of 

particular use for assessing changes in the distribution and abundance of highly mobile species 

including passerines.

1.2 Introduction

Conventional and model-based distance sampling are commonly used to estimate the 

density of wildlife species (Buckland et al. 2001; 2004). However, standard distance sampling 

methods do not fully leverage the spatial information underlying individual encounters for use in 

explaining variation in density. Standard model-based approaches rely on plot-level effects for 

explaining spatial variation in density, inducing over-dispersion when density varies within plots. 

In contrast, spatial distance sampling describes the observed locations of individuals as arising 

from a spatial point process thinned through incomplete detection and, consequently, exploits the 

spatial information inherent in the location of encounter for potentially stronger inference about 

spatial processes (Hedley & Buckland 2004; Johnson, Laake, & Ver Hoef 2010; Kery & Royle 

2016; Yuan et al. 2016).

However, existing spatial distance sampling approaches describe the observation process 

entirely in terms of the detection function (i.e., the decline in detectability as a function of 

individual distance from the transect) and, consequently, are conditioned on the assumption that 

all individuals are present and available for sampling. The limitations of this approach are best 

understood by decomposing the observation process into its four primary components: 1) the 

probability the individual’s home range overlaps the sampling unit, p^; 2) the probability the 

individual is present within the area that is exposed to sampling during the survey occasion, pp;

3) the probability the individual is available for detection during the survey occasion, pa; and 4) 

the probability that the individual is detected given that it is present and available, pd (see 

Nichols, Thomas & Conn 2009).

The various field methods used in wildlife surveys differ in the components of the 

detection process that they estimate and, consequently, provide inference to different subsets of 

the superpopulation; i.e., the population comprised of all individuals with a non-negligible
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probability of being present in the sample unit over the survey period (Kendall, Nichols & Hines 

1997). Single-visit distance sampling typically only addressesps (through the survey design) and 

pd (through the detection function). By failing to address pp and pa directly, single visit 

approaches make the implicit assumption that these components of the detection process are 

relatively constant through space and time. Should this assumption prove untenable, then 

inference is limited to some unknown proportion of the superpopulation and abundance estimates 

are negatively biased (Nichols, Thomas & Conn 2009; Chandler, Royle & King 2011; Schmidt, 

McIntyre & MacCluskie 2013). Thus, estimates of superpopulation abundance require fewer 

implicit assumptions and, therefore, should have greater sensitivity for assessing population and 

spatial dynamics.

Chandler, Royle & King (2011) developed a model framework for explicitly 

accommodating non-Markovian temporary emigration in unmarked populations. Their model is 

applicable to a number of protocols including the combination of repeat surveys and distance 

sampling which allows separate estimation of pd and the composite probability of availability 

pppa. However, the temporary emigration distance-sampling (TEDS) version of their model 

implies that individuals are distributed uniformly in space and models spatial variation in 

abundance at the plot-level. Models with plot-level effects (e.g., the TEDS model) will often be 

a good description of variation in abundance when sample units are small or habitat gradients are 

gradual (Miller et al. 2013; Kery & Royle 2016). However, an inhomogeneous distribution of 

individuals over a compressed habitat gradient would be expected to induce considerable within- 

plot variation in density. Under these conditions, properly specifying the distribution of 

individuals within plots as inhomogeneous may explain a larger proportion of the variation in 

density.

There have been several recent developments in spatial distance sampling inference. 

Using full likelihood approaches (i.e., the Nj as explicit parameters), Johnson, Laake, & Ver 

Hoef (2010) and Yuan et al. (2016) developed thinned point process models for continuous 

space. Kery & Royle (2016) formulated a thinned point process model for discrete space using a 

data augmentation approach. While these methods allow fine-scale assessment of spatial 

variation in abundance, they do not address the temporary emigration process and, consequently, 

may yield biased estimates of abundance.
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Herein, we unify the thinned point process formulation of the Kery & Royle (2016) 

model and the full likelihood description of the temporary emigration process developed for N- 

mixture models (Chandler, Royle & King 2011). The development of these inference methods 

was motivated by a need to efficiently and effectively monitor arctic passerine populations, 

which are expected to undergo rapid changes in abundance and distribution in association with 

shrub expansion into open habitats and higher elevations (Sturm, Racine & Tape 2001; Tape, 

Sturm & Racine 2006; Dial et al. 2015; Mizel et al. 2016). Thus, it was important that we 

develop inference methods with the sensitivity to efficiently detect and distinguish population 

and spatial dynamics while also addressing all components of the detection process. We viewed 

accommodating temporary emigration as critical given the characteristics of sampling arctic 

passerine populations including territorial movements of individuals across plot boundaries 

between survey visits (i.e., spatial temporary emigration) and large variation in cue production 

over a highly compressed breeding season (i.e., random temporary emigration) (Kery & Royle 

2016). While motivated by our particular case study, the resulting framework will be broadly 

applicable in other situations where temporary emigration occurs. Our specific objectives in this 

manuscript were to: 1) develop a framework for accommodating temporary emigration in a 

spatial distance sampling context; 2) assess the precision and bias of estimates from our model 

relative to the TEDS model through simulation; and 3) demonstrate the advantages of our unified 

model through an application to field data for two passerine species.

1.3 Methods

1.3.1 Model development

Herein, we develop the temporary emigration, thinned point process (hereafter, TPP) 

model for a hierarchical sampling design where multiple line or point transect plots each 

comprise a grid of pixel centroids from an underlying habitat raster, and each plot is surveyed 

multiple times (e.g., separated by a day or a few days). The survey yields the locations of the 

observed individuals in continuous space, but these are subsequently assigned to the nearest pixel 

centroid for the data structure used in the analysis. For simplicity of presentation, we develop the 

model in the context of a single season.

Following Kery & Royle (2016), plot-level abundance is a Poisson outcome of a point 

intensity function integrated over a grid of points. However, in order to accommodate a 

replicated count protocol and temporary emigration in the generalized N-mixture framework
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(i.e., Chandler, Royle & King 2011), we use a full likelihood formulation with a conditional 

multinomial observational model (Royle, Dawson & Bates 2004; Kery & Royle 2016). Data 

from the replicated count-spatial distance sampling protocol is organized as a series of counts of 

unmarked individuals within each pixel i = 1, 2, ..., I, in plot j  = 1, 2, ..., J, and visit k  = 1, 2, ..., 

K. This is amenable to formulating the observation model in terms of multinomial probabilities 

and leads to an implicit binning of distances (Kery & Royle 2016). The focus is on estimating the 

superpopulation point intensity function for a Poisson point process of the individual locations 

(Kery & Royle 2016):

log(Atj) =  p 0 + p lXij, (Eq. 1.1)

where Aij is the superpopulation intensity function for each pixel, x j is the pixel covariate value, 

and f 0 and ( 1  are parameters to be estimated. Integrating over the grid of points in each plot 

yields the expected plot-level superpopulation sizes Aj (Kery & Royle 2016). By the rectangular 

rule, this integral is approximated for the discretized region using summation (Kery & Royle 

2016):

Aj = 'Zi exp(£o +  PiX ij). (Eq. 1.2)

The local superpopulation sizes are specified as Poisson random variables:

M j~Poisson(Aj). (Eq. 1.3)

The populations available for detection on a given plot-visit are binomial outcomes of the 

superpopulation sizes and the probability of availability ^ (i.e., the product of pp and pa) which is 

the compliment of the temporary emigration probability (Chandler, Royle & King 2011):

Nj,k~  B inom ial (Mj, 0 ). Models for time- and plot-dependent 0  could also be considered 

including random effects parameterizations which account for over-dispersion and/or temporal 

correlation in repeated counts (Buckland, Oedekoven & Borchers 2016). Here we assume 0  is 

constant for simplicity of presentation.

The hierarchical distance sampling (HDS) model of Royle, Dawson & Bates (2004) and 

other standard model-based formulations (Buckland, Oedekoven & Borchers 2016) imply that 

the within-plot distribution of individuals is uniform. In the HDS model, the observed counts 

follow a multinomial distribution where the vector of cell probabilities are the product of
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detection probability and of occurring in a particular distance class, which is specified as uniform 

across distance classes (adjusted for annulus area in the point transect case). In the TPP model, 

the multinomial observation probabilities are the product of detection probability and the 

probability of occurring in a particular pixel d i j . The latter is derived using the point intensity 

function for each pixel, conditional on the plot-specific total (Kery & Royle 2016):

(Eq. 1.4)

Using a half-normal detection function as an example, the multinomial observation cell 

probabilities are:

n i,j = exP ( -  * e i,j, (Eq. 15)

where d  is the distance from the transect to the pixel centroid and o is the scale parameter of the 

detection function. The probability of not being detected at all is n 0j- = 1 — Z i and the 

conditional multinomial cell probabilities are (Royle, Dawson & Bates 2004; Kery & Royle 

2016):

n t i  = . (Eq. 16)lJ l-n 0,j

The model for the observations is decomposed into multinomial and binomial 

components in order to avoid specifying the multinomial index as a random variable (Royle, 

Dawson & Bates 2004; Kery & Royle 2016). Conditional on the observed count, the number of 

individuals observed in a pixel on each plot-visit follows a multinomial distribution. The 

observed counts nj,k are binomial outcomes of the latent Nj,k and the total probability of detection 

1 -  noj.

y ij,k \nj,k~M u ltin o m ial(n j,k ,n<[ij') (Eq. 1.7)

nj k~ B in o m ia l(N jk, 1 — n 0,j). (Eq. 1.8)

1.3.2 Simulation study

We designed our simulations in the context of passerine bird monitoring in an open arctic 

habitat. We began by simulating a spatially correlated covariate (i.e., a continuous measure of
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habitat) on a grid of 10 x 10 pixels, replicated over 150 plots under a line transect sampling 

design (Fig. 1.1). Each plot-specific vector of covariate values x was generated as a series of 

multivariate random variables using the Cholesky decompostion of the variance-covariance 

matrix V1/2 and its product with a compatible vector of iid  normal random variables e~N(0,1) 

(Kery & Royle 2016). We simulated point intensity for each discretized plot as log(A ij) = fi0 + 

P ix i j  where f  0 = -5.8 and f 1 = 2, corresponding to an inhomogeneous point process. The local 

superpopulation sizes were generated from a Poisson distribution with an expected value equal to 

Z i exp(fi0 + p lXiJ) (Kery & Royle 2016). We used the plot-specific, conditional intensity 

probabilities to allocate individuals to pixels for each plot-visit. A vertical line transect bisected 

the center of each plot resulting in a maximum distance of 4.5 to any pixel centroid (Fig. 1.1). 

Observations were simulated over four replicated counts using ^ = 0.6 and a half-normal 

detection function with o = 3.

We fit the TPP model to the simulated data to assess whether it could recover the data- 

generation parameter values. We also investigated model performance relative to the TEDS 

model (Chandler, Royle & King 2011; Kery & Royle 2016). Observations for the TEDS model 

were generated as above (i.e., the TPP model was the data generating model) except that data 

structure was reduced to the number of individuals for each plot-visit in distance class i = 1, 2, 

. 5  rather than pixel i = 1, 2, .1 0 0 .  We used five distance classes corresponding to the 

sequence of centroid distances in the discretized plots, paralleling the implicit binning of the TPP 

model. We used the conditional multinomial formulation of the TEDS model (Kery & Royle 

2016) making it structurally similar to the TPP model. However, the TEDS model assumes a 

uniform distribution of individuals across distance classes. The TEDS model is made spatially- 

explicit by a model for variation in local superpopulation abundance, which we specified as 

l o g ( j  = f  0 + ( 1* Xj, where Xj is the mean covariate value over all grid points in a plot. Because 

this represented a reduced information summary of the data generating process, we assumed that 

there was unexplained variation in the model. Thus, we included both Poisson and Poisson log

normal versions of the TEDS model in comparison to the TPP model.

We ran 500 simulations for each of the three models. To improve mixing of chains in the 

TPP and TEDS models, we removed the binomial model for the Nj,k and described the 

observations a binomial outcomes w ithMj sample size and probability ( l  — n 0j )  * ^  (Kery & 

Royle 2016). We fit all models in a Bayesian framework using JAGS version 4.0.0 (Plummer
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2003) via the jagsUI package (Kellner 2016) in program R 3.2.2 (R Core Team 2015). We 

specified vague normal priors for all regression coefficients, a uniform prior for o from 0 to the 

plot truncation distance, and a uniform (0,1) prior for ^. We used uniform (0,100) priors for the 

standard deviations of the random effects. Summaries of the posterior distribution were 

calculated from one Markov chain run for 21,500 iterations with a 6,500 iteration burn-in and 

thinning every five draws with the exception of the log-normal TEDS model, which we ran for 

58,000 iterations with a 28,000 iteration burn-in. We report the average parameter estimates, 

average relative bias, root mean squared error (RSME), and coverage (percentage of 95% 

Bayesian credible intervals for parameters that overlap the true values). See Appendices 1.1 and

1.2 for simulation and JAGS model code.

1.3.3 Application: Arctic passerines

We applied the TPP model to data collected in the Noatak National Preserve, Alaska 

between May 21 and June 19 2016 for two species of passerines, American tree sparrow 

(Spizella arborea) and savannah sparrow (Passerculus sandwichensis). Our study site represents 

one of three long-term, landbird monitoring sites in the U.S. National Park Service’s Arctic 

Inventory and Monitoring Network and covers an elevational gradient from lowland to alpine 

habitats with open and riparian shrublands, Dryas and/or mixed dwarf shrub tundra, and barren 

slopes. Habitat types are distributed non-uniformly, presumably influencing the distribution of 

bird territories. We adopted a route-based, continuous-effort survey design to maximize 

encounter rates (i.e., exposure to sampling) and study area coverage. We centered a 10.8 x 9.6 

km grid comprising 600 m x 600 m cells on the airstrip at which we located our basecamp. We 

used this grid to establish a series of fixed survey routes (Fig. 1.2). Routes were designed to be 

completed in a single day and were allowed to change direction (Hiby & Krisha 2001) in part to 

return observers close to their original starting point. In general, routes were located such that 

they intersected the centroid of each cell and then were deflected at an angle of 0 or 90 degrees 

(i.e., followed a parallel or perpendicular direction; Fig. 1.2). In some cases, we shifted routes off 

of the central axis of the cell due to the presence of terrain features (e.g., cliffs and high flow 

creeks).

We walked along the survey line using the image of the route displayed on our GPS units 

as an aid. We conducted the survey as if  it was one continuous line transect, recording one 

observation per individual bird during a given route-visit, but we restricted the analysis to
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detections of singing males because females are much more difficult to detect and singing males 

can be reasonably expected to represent the breeding population. Upon detecting a bird, we took 

a bearing and waypoint from our location along the line and used a laser range-finder to estimate 

the distance to the bird. The final plots used for analyses were created by buffering the route by 

a species-specific truncation distance (Buckland et al. 2001) and clipping the buffered area using 

the grid cell boundaries (Fig. 1.2). Following the field season, observations were associated with 

plots by projecting them over the plot polygons in ArcGIS. We established 17 routes and a total 

of 150 plots, each of which we surveyed three times on average.

We expected that normalized difference vegetation index (NDVI) would be a good 

predictor of bird distribution given the relatively distinct and simple structural characteristics of 

vegetation in our study area including barren slopes, low-shrub tundra, and tall shrub thickets. 

Using a Landsat 8 image of our study area, we discretized plots using the image’s original 30-m 

resolution and attributed each pixel with its underlying NDVI value. This resulted in an average 

of 328 pixels per plot. We also extracted the elevation at these grid points from a 5-m digital 

terrain model. Bird locations were subsequently assigned to the nearest pixel centroid based on 

the bearing, distance, and waypoint information recorded in the field.

Although data were collected for the entire bird community, we selected the American 

tree sparrow and savannah sparrow for use as examples because these they had sufficient data for 

analysis and represented contrasting patterns of distribution which could affect the strength of 

inference under the TPP model. American tree sparrow is associated with medium-tall shrub 

thickets and consequently has a clumped distribution, whereas savannah sparrow is associated 

with open, low shrub-tundra and is more widespread in our study area. For American tree 

sparrow, we discarded ~5% of the singing observations at the furthest distances, resulting in a 

250-m strip width and a total of 325 detections. For savannah sparrow, discarding ~5% of the 

furthest singing observations resulted in plots defined by a 200-m strip width and 1188 total 

detections.

For savannah sparrow, we specified the model for the superpopulation point intensity as: 

lo g ( h j )  = P0 + P 1 * ND VIij + fa *  N D Vllj + fa *  E lev ij + fa *  E lev2  + esubpiot, 

where eSubplot is a mean zero random effect for the 300 x 300-m quarter sections underlying each 

plot. We included the random effects term because unexplained variation in the point intensity 

function may lead to bias in spatial effect, abundance, and variance estimates (Cressie 1993;
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Yuan et al. 2016). Due to the comparatively sparse distribution of American tree sparrow, we fit 

a simplified model with the effect of NDVI, linear and quadratic effects of elevation, and a plot- 

level random effect.

For savannah sparrow, we described the probability of availability j  as a linear function 

of time after 02:00 AM, timej,k, linear and quadratic effects of date, a survey-level random effect 

Sj,k, and the duration of the plot-visit, effortj,k:

lo g i t ( $ jk) = a 0 + a 1 * tim ej k + a 2 * d a te jk + a 3 * date?k + a 3 * e f f o r t j k + Sj,k, 

assuming that as survey effort increases (e.g., time or route length), the population that is 

exposed to sampling during a survey occasion will approach the ‘true’ population size (Royle & 

Dorazio 2006). We used 02:00 AM to calculate the survey timing covariate because there is no 

sunrise/sunset in June for our study area and this hour corresponds to the initiation of singing for 

many species. We included the linear and quadratic effects of survey date to account for 

variation in the probability of availability over a survey period that began prior to the arrival of a 

subset of individuals and then extended past peak singing (Kery et al. 2009, Schmidt, McIntyre 

& MacCluskie 2013). Lastly, we included a survey-level random effect j ,  assuming that there 

was unexplained variation in the model (Oedekoven, Laake & Skaug 2015, Buckland,

Oedekoven & Borchers 2016), in part due to variation in weather and among plots in their degree 

of spatial overlap with territories. For the smaller American tree sparrow dataset, we fit a 

reduced model that included only the fixed effects of time and effort.

We also fit a similarly parameterized log-normal TEDS model (with 10 distance classes), 

except that the spatial effects were reduced to the plot mean and we included an offset (i.e., 

log(plot areaj)) in the model for variation in local abundance. We report estimates from both 

TPP and log-normal TEDS models as posterior means with 95% credible intervals. We also 

present predictive maps of point intensity from the TPP model.

We fit all models using JAGS (Plummer 2003). We specified vague priors for all 

parameters as described in the simulation study section. Summaries of the posterior distribution 

were calculated from two independent Markov chains run for 100,000 and 75,000 iterations 

(savannah and American tree sparrow, respectively) with a 25,000 iteration burn-in and thinning 

every five draws. We used the Gelman-Rubin diagnostic (Brooks & Gelman 1998) to assess 

convergence and scaled continuous covariates (mean = 0, SD = 1) to improve convergence 

properties. See Appendix 1.3 for JAGS model code.
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1.4 Results

Based on data generated under the TPP model, the Poisson TEDS model exhibited 

negative bias in population estimates and poor credible interval coverage for all parameters 

(Table 1.1). Bias in parameter and abundance estimates was relatively low for both the log

normal TEDS model (-3.5 -  5.6%) and the TPP model (-0.1 -  1.9%). In contrast to the log

normal TEDS model, credible interval coverage for all parameters estimated under the TPP 

model was approximately nominal (Table 1.1). Under the log-normal TEDS model, coverage for 

o was particularly poor (0.73). In addition, the RMSE of the o estimates (truth = 3) was larger for 

the log-normal TEDS model (0.30 vs. 0.17). Lastly, the average coefficient of variation (CV) of 

the total population estimate was 26% smaller for the TPP model compared to the log-normal 

TEDS model.

For the arctic passerine application, the log-normal TEDS model explained very little of 

the spatial variation in abundance for both savannah and American tree sparrow, in strong 

contrast to inferences from the TPP model. Between both species, all but one of the 95% CIs for 

the spatial effects from the log-normal TEDS model covered 0, whereas none of 95% CIs for the 

same effects from the TPP model covered 0 (Table 1.2). In addition, the CVs for the population 

estimates from the TPP were 32% and 4% smaller for savannah and American tree sparrow, 

respectively. For both species, population estimates from the TPP model were smaller than those 

from the log-normal TEDS model (Table 1.2). Lastly, there was considerable variation in the 

available population across survey occasions that was apparently well explained by temporal and 

search intensity covariates (Table 1.2). That is, the survey-specific expected j  ranged from 

0.20-0.89 and 0.17-0.95 for savannah and American tree sparrow, respectively.

The fine spatial grain of the TPP model revealed strong and contrasting habitat 

relationships between American tree sparrow and savannah sparrow (Fig. 1.3). As expected, 

American tree sparrow exhibited a clumped distribution, corresponding to the non-uniform 

distribution of their preferred habitat, medium to tall shrub thickets. In contrast, savannah 

sparrow was more uniformly distributed in a landscape largely composed of lower vegetative 

growth forms (Fig. 1.3). The TEDS model generally failed to identify patterns of habitat 

association in either species (Table 1.2), and permitted inference about variation in abundance at 

a much coarser spatial grain (i.e., the plot).
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1.5 Discussion

Ecological studies are inherently spatial, integrating spatial processes in sampling design, 

encounter probability, and population dynamics (Royle et al. 2013; Borchers & Marques 2017). 

However, the sensitivity of studies to spatial processes may be affected by choice of inference 

method including their assumptions about the observation process (Nichols, Thomas & Conn 

2009). Herein, we used an approach that frames the sampling design and analysis in terms of 

individual encounters in space rather than aggregating counts at the plot-level (Kery & Royle 

2016). While distance sampling models that incorporate plot-level spatial effects will often be a 

good description of variation in abundance (Miller et al. 2013), our application demonstrates that 

spatial distance sampling models that accommodate temporary emigration can provide 

considerably stronger inference in the presence of within-plot variation in density.

The lower precision (i.e., a 36% larger average CV for the population estimate) of the 

Poisson log-normal TEDS model relative to the TPP model in our simulation study was expected 

given that the model for variation in the local population sizes was a reduced information 

summary of the data generating process and there was greater uncertainty in explaining the 

remaining variation in abundance as random noise. The negative bias of population size 

estimates from the Poisson TEDS model lacking an overdispersion term was likely due to a 

failure to fit some local population sizes that were larger than would be expected under the 

estimated Poisson mean. In addition, our simulation study indicated that the improper 

assumption of a homogeneous point pattern may result in relatively poor estimation of o.

In the applied examples, TEDS and TPP models provided contrasting inference. For both 

species, the log-normal TEDS model indicated weak relationships between plot-level abundance 

and habitat, whereas the TPP model indicated strong relationships for those same effects on point 

intensity, suggesting the existence of relatively strong within-plot variation in density (i.e., 

inhomogeneous distribution of vegetation). In open landscapes like those in our Alaskan study 

area, within-plot variation in bird density may be considerable due to the need to establish plots 

that are sized appropriately relative to a large effective sampling area coupled with variation in 

vegetation that is compressed along steep elevational gradients. Under these situations, the TPP 

model would be expected to provide improved inference due to properly specifying an 

inhomogeneous distribution of individuals within plots and leveraging the spatial information 

inherent in the location of encounter.
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In addition to explicitly addressing spatial processes affecting the distribution of 

individuals, our approach also accommodates non-Markovian temporary emigration. In single

visit distance sampling surveys, abundance and detection probability are conditional on pp and 

p a. However, variation in the temporary emigration composite process, PpPa, may be confounded 

to an unknown degree with that present in abundance, negatively biasing abundance estimates 

(Chandler, Royle & King 2011; Schmidt, McIntyre & MacCluskie 2013). Temporary emigration 

processes are particularly problematic for surveys of species that show large variation in cue 

production over a survey season and highly mobile species, including: birds (e.g., Nichols, 

Thomas & Conn 2009; Chandler, Royle & King 2011; Schmidt, McIntyre & MacCluskie 2013), 

herpetofauna (e.g., O’Donnell, Thompson & Semlitsch 2015), and insects (e.g., Kery et al.

2009). For example, in our study, the proportion of American tree and savannah sparrows that 

were available for sampling on a given visit ranged from approximately 0.2 to nearly 1. Using 

repeat surveys with inference to the superpopulation allowed us to directly estimate pppa and, 

thereby, make minimal untested assumptions regarding the observation process. Theoretically, 

the thinned point process model described here could be combined with the distance sampling

time removal model of Amundson, Royle & Handel (2014) to explicitly estimate all of the 

primary components of detection. However, for our arctic passerine application, it is unlikely 

that the combined model could fully separate pp and pa. Much of the information about 

temporary emigration, particularly, seasonal variation in song frequency, comes from visits 

spaced several days apart (rather than the time intervals within a visit) in part due to the 

Markovian nature of birdsong (Collins 2004). Consequently, we would expect that the estimated 

pp under this combined model would still be some version of a compositepppa comprising some 

proportion of the seasonal variation in song frequency that cannot be fully explained by the time- 

removal model for pa. For our application, we would expect that directly accommodating 

individual heterogeneity in pp, in the form of variation in the proximity of home ranges to the 

survey transect, would be necessary for separate estimation of pa. This type of inference would 

be possible within the framework of the spatial count model (Chandler & Royle 2013) which 

extends the spatial point process underlying spatial capture-recapture models (Efford 2004; 

Borchers & Efford 2008; Royle & Young 2008) to unmarked and partially marked populations.

Studies of population dynamics in remote areas face considerable logistical challenges, 

making it critical to develop efficient survey designs for these landscapes. Particularly in rugged
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terrain, a completely randomized design, as required under the uniformity assumption of 

conventional distance sampling, will often lead to inefficiency (Marques, Buckland, Borchers, 

Tosh, & McDonald 2010) . Spatial distance sampling inference permits non-standard designs 

where the focus can be on maximizing the population that is exposed to sampling in an efficient 

manner. For our study, this consideration was particularly important given that many arctic 

passerines are sparsely distributed and the terrain is not amenable to a completely random and 

efficient transect configuration. Thus, configuring transects such that we limited our time spent 

“off-effort” greatly increased the amount of data we were able to collect within the limited 

breeding season.

Framing inference in terms of the individual encounter in space offers greater sensitivity 

for understanding spatial processes particularly in the presence of within-plot variation in density 

(Royle et al. 2013). However, in many ecological studies, investigators are confronted with large 

variation in the available population across survey occasions. Thus, we expect that accounting 

for temporary emigration in spatial distance sampling models may be a critical specification for 

many species. That is, to fully realize the spatial information inherent in the location of 

encounter, it may be necessary to directly estimate pkpa orpp, as in related spatial capture- 

recapture models (Efford 2004; Borchers & Efford 2008; Royle & Young 2008). We expect that 

the methods described here will be particularly applicable to monitoring of species undergoing 

concurrent changes in distribution and abundance, particularly the study of populations subject to 

changes in abundance that are being driven by changes in habitat distribution.
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Figure 1.1. A spatially correlated covariate simulated on a 10 x 10 pixel grid. Each plot in the 

simulation study was bisected by a line transect (dashed line).

26



Figure 1.2. The sampling design implemented at a study site in Noatak National Preserve, Alaska 

in 2016. Plots (solid borders) and routes (dashed lines) are shown for a species with a 250 m 

truncation distance.
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Figure 1.3. Posterior predictions of superpopulation point intensity (abundance per pixel) for 

American Tree Sparrow (top) and Savannah Sparrow (bottom).
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Table 1.1. Results from 500 simulations for Poisson TEDS, Poisson log-normal TEDS, and TPP 

models where o is the scale parameter of the half-normal detection function, ^ is the probability 

of availability, is a spatial effect on the point intensity, and Mtotai is the total superpopulation 

size (a derived parameter) which varied between simulation runs due to randomly drawing the 

local population sizes.

Parameter Model True value Mean RMSE Bias CI coverage

o TEDS 3 3.11 0.31 0.04 0.72

Log-normal TEDS 3 3.11 0.30 0.04 0.73

TPP 3 3.06 0.17 0.02 0.95

$ TEDS 0.6 0.66 0.08 0.10 0.70

Log-normal TEDS 0.6 0.58 0.06 -0.04 0.89

TPP 0.6 0.60 0.04 0.00 0.96

Pi TEDS - 2.03 - - -

Log-normal TEDS - 2.11 - - -

TPP 2 2.00 0.04 0.00 0.95

Mtotai TEDS - 303.84 30.55 -0.08 0.66

Log-normal TEDS - 354.74 32.58 0.06 0.93

TPP - 337.73 20.29 0.01 0.95
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Table 1.2. Parameter estimates and 95% credible intervals for Poisson log-normal TEDS and 

TPP models. Estimates for a  parameters correspond to effects on ^ and are on the logit-scale. 

Estimates for (  parameters correspond to effects on the point intensity and are on the log-linear 

scale. Mtotal is the total superpopulation and o is the scale parameter of a half-normal detection

function. Bold numbers indicate estimates with 95% credible intervals that do not include 0.

Log-normal TEDS TPP

Species Parameter Mean 95% CI Mean 95% CI

American Tree

Sparrow o 135.93 (119.75, 157.44) 156.89 (132.54, 192.43)

ao 0.22 (-0.48, 1.02) -0.01 (-0.61, 0.55)

ai *time 0.26 (-0.03, 0.59) 0.21 (-0.03, 0.46)

a2 *effort 0.80 (0.41, 1.35) 0.64 (0.34, 1.01)

(o -1.93 (-5.23, 1.32) -6.24 (-6.65, -5.81)

( i*NDVI 1.38 (0.73, 2.08) 1.93 (1.64, 2.22)

( 2 *elev 0.12 (-0.17, 0.41) -0.33 (-0.62, -0.06)

( 3 *elev2 -0.88 (-2.70, 0.92) -0.488 (-0.79, -0.22)

M total 252.55 (202, 336) 243.826 (199, 321)

Savannah

Sparrow o 113.20 (105.24, 122.24) 116.003 (107.52, 126.09)

ao -0.49 (-1.07, 0.02) -0.347 (-0.78, 0.07)

ai *time -0.20 (-0.34, -0.08) -0.22 (-0.36, -0.09)

a2 *date 0.14 (0.00, 0.30) 0.225 (0.07, 0.40)

a3 *date2 0.19 (0.06, 0.33) 0.224 (0.09, 0.37)

a4 *effort 0.50 (0.32, 0.73) 0.515 (0.33, 0.73)

(o -2.68 (-5.34, -0.02) -4.186 (-4.44, -3.90)

( i*NDVI -0.05 (-0.40, 0.29) 1.193 (1.00, 1.40)

( 2*NDVI2 -0.03 (-0.69, 0.62) -0.497 (-0.69, -0.31)

( 3 *elev 0.11 (-0.07, 0.30) -0.683 (-0.80, -0.57)

( 4 *elev2 1.06 (-0.92, 3.05) 0.141 (0.02, 0.26)

M total 1368.80 (1045, 1947) 1233.76 (1018, 1558)
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Appendix 1.1. Simulation and JAGS code for the TPP model.

############################################################################## 
#### Mizel, J.D., Schmidt, J.H. and Lindberg, M.S.
#### Accommodating temporary emigration in spatial distance sampling models
##############################################################################

############################################################################## 
#### Simulation code adapted from Kery and Royle (2016)
##############################################################################

library(jagsUI)

e2dist<- 
function (x, y)
{
i <- sort(rep(1:nrow(y), nrow(x)))
dvec <- sqrt((x[, 1] - y[i, 1])A2 + (x[, 2] - y[i, 2])A2)
matrix(dvec, nrow = nrow(x), ncol = nrow(y), byrow = F)
}

sim.spatialHDS.TE <-
function(nsites=100,dim=10,delta=1,b1=1,int.lam=2.5,T=4,adj.sigma=.6,phi=.6){

n.pixels<-dim*dim
B<-dim/2

sigma<-adj.sigma*B # Default adj.sigma is .75 x radius B

# Create coordinates for n.pixels x n.pixels grid
grx <- seq(delta/2, 2*B - delta/2, delta) # mid-point coordinates 
gr <- expand.grid(grx,grx) # Create grid coordinates 
center<-matrix(B,nrow=1,ncol=2)

tr<-cbind(rep(B,length(grx)),grx)
d1<-e2dist(tr,gr)
d<-apply(d1,2,min)

V <- exp(-e2dist(gr,gr)/1)

# Create spatially correlated covariate x and plot it 
b0<-log(int.lam/n.pixels) 
x<-probs<-array(NA,dim=c(n.pixels,nsites))
M<-rep(NA,nsites)

for (j in 1:nsites){
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z<- t(chol(V))% *%rnorm(n.pixels) 
x[,j]<- z

M[j]<- rpois(1, sum(exp(b0 + b1*x[,j])))
}

for (i in 1:n.pixels){ 
for (j in 1:nsites){
probs[i,j ]<- exp(b1*x[i,j ])/sum(exp(b1*x[,j ]))
}}

Mind<-max(M)

superpop<-array(0,c(Mind,nsites)) 
for (j in 1:nsites){
ifelse(M[j]>0,superpop[1:M[j],j]<-1,superpop[,j]<-0)
}

# Simulate individual locations
pixel.id <-array(NA,dim=c(Mind,nsites,T)) 
for (i in 1:Mind){ 
for (j in 1:nsites){ 
for (k in 1:T){
pixel.id[i,j,k] <- sample(1:n.pixels, 1, replace=TRUE, prob=probs[,j])
}}}

y1<-p<-array(NA,dim=c(Mind,nsites, T))
# Simulate observations
# p = real member of superpop x availability x detection function (half-normal) 
for (i in 1:Mind){
for (j in 1:nsites){ 
for(k in 1:T){

p[i,j,k]<-superpop[i,j] * phi * exp(-d[pixel.id[i,j,k]]*d[pixel.id[i,j,k]]/(2*(sigmaA2))) 
y1[ij,k]<-rbinom(1, 1, p[i^.j,k])

}}}
Counts<-apply(y 1,2:3,sum,na.rm=TRUE) 

pixel.id[y1==0]<-0 #not detected or not real individual

# Re-shape individual data structure into counts in site x pixel x visit array 
y <- array(NA, dim = c(nsites, n.pixels,T),

dimnames = list(NULL, c(1:n.pixels))) 
for(i in 1:nsites){ 
for (k in 1:T){ 

y[i,,k] <- table(factor(paste(pixel.id[,i,k], sep = ""), 
levels = c(1:n.pixels)))

}}
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return(list(M=M,B=B,d=d,Habitat=x,B=B,T=T,n.pixels=n.pixels,nsites=nsites,y=y,Counts=Cou
nts))
}

str(tmp <- sim.spatialHDS.TE(nsites=150,int.lam=.3,b1=2,phi=.6,T=4))

y<- tmp$y
d <- tmp$d
B<-tmp$B
nobs<- tmp$Counts
Habitat <- tmp$Habitat
Habitat <- Habitat - mean(Habitat)
Habgrid <- tmp$grid 
M<- tmp$M 
nsites<-tmp$nsites 
n.pixels<-tmp$n.pixels 
T<-tmp$T
nind <- sum(M) #total superpop size

############################################

sink(Mmodel.jagsM)
cat("
model {
sigma ~ dunif(0,5) 
phi~dunif(0,1) 
b1~dnorm(0,.01) 
b0~dnorm(0,.01)

for (i in 1:n.pixels){ 
log(g[i])<--d[i]*d[i]/(2*sigma*sigma) 

for (j in 1:nsites){ 
log(lam[i,j]) <- b0+b1*Habitat[i,j] 
pix.probs[i,j]<-lam[i,j]/sum(lam[,j]) 
cellprobs[i,j]<-g[i]*pix.probs[i,j]
cellprobs.cond[i,j] <- cellprobs[i,j]/sum(cellprobs[1:n.pixels,j])

}}
for (j in 1:nsites) { 

cellprobs[n.pixels+1,j]<- 1-sum(cellprobs[1:n.pixels,j])
M.lam[j]<-sum(lam[,j])
M[j] ~ dpois(M.lam[j]) 
pdet[j] <- sum(cellprobs[1:n.pixels,j]) 
pmarg[j] <- pdet[j]*phi # Marginal probability 

for (k in 1:T) {

dim(y)<-c(nsites, n.pixels,T)
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#N[j,k] ~ dbin(phi, M[j])
#nobs[j,k] ~ dbin(pdet[j,k], N[j,k]) 
nobs[j,k] ~ dbin(pmarg[j], M[j])
y[j,1:n.pixels,k]~dmulti(cellprobs.cond[1:n.pixels,j], nobs[j,k])

}}

total.M<-sum(M[])

} # end model

",fill = TRUE) 
sink()

data <- list(y = y, d=d, nsites=nsites,Habitat=Habitat,nobs=nobs,n.pixels=n.pixels,T=T) 

inits <- function(){ list (sigma=3,M=M,b1=2,phi=.6,b0=-5.8)} 

params <- c("sigma","b0","b1","phi","total.M") 

ni <-21500 ; nb <- 6500 ; nt <-5 ; nc <- 1

out <- jags(data, inits, params, "model.jags", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, 
parallel = TRUE)

34



Appendix 1.2. Simulation and JAGS code for the log-normal TEDS model.

############################################################################## 
#### Mizel, J.D., Schmidt, J.H. and Lindberg, M.S.
#### Accommodating temporary emigration in spatial distance sampling models
##############################################################################

############################################################################## 
#### Simulation code adapted from Kery and Royle (2016)
##############################################################################

library(jagsUI)

e2dist<- 
function (x, y)
{
i <- sort(rep(1:nrow(y), nrow(x)))
dvec <- sqrt((x[, 1] - y[i, 1])A2 + (x[, 2] - y[i, 2])A2)
matrix(dvec, nrow = nrow(x), ncol = nrow(y), byrow = F)
}

sim.spatialHDS.TE <-
function(nsites=100,dim=10,b1=1,int.lam=2.5,T=3,adj.sigma=.6,phi=.6){

n.pixels<-dim*dim
B<-dim/2
sigma<-adj.sigma*B #default is .6 x radius B

# Create coordinates for n.pixels x n.pixels grid 
delta <- (2*B-0)/dim # '2D bin width'
grx <- seq(delta/2, 2*B - delta/2, delta) # mid-point coordinates 
gr <- expand.grid(grx,grx) # Create grid coordinates 
center<-matrix(B,nrow=1,ncol=2)

tr<-cbind(rep(B,length(grx)),grx)
d1<-e2dist(tr,gr)
d<-apply(d1,2,min)

M<-rep(NA,nsites)
V <- exp(-e2dist(gr,gr)/1)
# Create spatially correlated covariate x and plot it 
x<-array(NA,dim=c(n.pixels,nsites))
for (j in 1:nsites){ 
z<- t(chol(V))% *%rnorm(n.pixels)
x[,j]<- z

}
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# If true, keep only pixels within B and simulate as spatially-closed population

midpt <- seq(delta/2, B, delta) # 
nD <- length(midpt)

b0<-log(int.lam/n.pixels)
probs<-array(NA,dim=c(n.pixels,nsites))

for (j in 1:nsites){
# Note Poisson assumption which means in each pixel is also Poisson 
M[j]<- rpois(1, sum(exp( b0 + b1*x[,j])))

}
for (i in 1:n.pixels){ 
for (j in 1:nsites){
probs[i,j ]<- exp(b1*x[i,j ])/sum(exp(b1*x[,j ]))
}}

Mind<-max(M)

superpop<-array(0,c(Mind,nsites)) 
for (j in 1:nsites){
ifelse(M[j]>0,superpop[1:M[j],j]<-1,superpop[,j]<-0) #rbinom(1,1,psi.M[j])
}

pixel.id <-array(NA,dim=c(Mind,nsites,T)) 
for (i in 1:Mind){ 
for (j in 1:nsites){ 
for (k in 1:T){
pixel.id[i,j,k] <- sample(1:n.pixels, 1, replace=TRUE, prob=probs[,j]) ##simulate individual 
locations
}}}

y 1 <-p<-array(NA,dim=c(Mind,nsites, T)) 
for (i in 1:Mind){ #simulate observations 
for (j in 1:nsites){ 
for(k in 1:T){

p[i,j,k]<-superpop[i,j] * phi * exp(-d[pixel.id[i,j,k]]*d[pixel.id[i,j,k]]/(2*(sigmaA2))) 
#half-normal function #prob of avail x cond prob of detection
(perceptibility) 

y1[i,j ,k]<-rbinom(1, 1, p[i^.j,k])
}}}
Counts<-apply(y1,2:3,sum,na.rm=TRUE) #these are the site-visit counts 

cutpoints<-seq(0,B,delta)
dclass<-as.numeric(cut(d[pixel.id],cutpoints, include.lowest=TRUE)) 
dclass[y1==0]<-0
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y <- array(NA, dim = c(nsites, nD,T), 
dimnames = list(NULL, c(1:nD))) 

for(i in 1:nsites){ 
for (k in 1:T){ 

y[i,,k] <- table(factor(paste(dclass[,i,k], sep = ""), 
levels = c(1:nD)))

}}
dim(y)<-c(nsites, nD,T)

return(list(M=M,B=B,d=d,Habitat=x,B=B,T=T,n.pixels=n.pixels,nD=nD,midpt=midpt,delta=del
ta,nsites=nsites,y=y,Counts=Counts))
}

str(tmp <- sim.spatialHDS.TE(nsites=150,int.lam=.3,b1=2,phi=.6,T=4))

y<- tmp$y
nD<- tmp$nD
midpt<- tmp$midpt
B <- tmp$B
delta<-tmp$delta
d <- tmp$d
nobs<- tmp$Counts
Habitat <- tmp$Habitat
Habitat <- Habitat - mean(Habitat)
Habgrid <- tmp$grid 
M<- tmp$M 
nsites<-tmp$nsites 
T<-tmp$T
nind <- sum(M) #total superpop size 

habitat<-apply(Habitat,2,mean)

############################################

sink("model.jags")
cat("
model {
# Prior distributions
beta0 ~ dnorm(0, 0.01) # Intercept for log(lambda) 
mean.lam <- exp(beta0)
beta1 ~ dnorm(0, 0.01) # Coefficient of log transform of lambda on habitat
sigma ~ dunif(0,5) # Distance function parameter
phi~dunif(0,1)
tau.eps<-pow(sigma.eps,-2)

dim(dclass)<-c(M ind,nsites,T)
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sigma.eps~dunif(0,100)
# Detection probs for each distance interval and related things 
for(b in 1:nD){

log(g[b]) <- -midpt[b]*midpt[b]/(2*sigma*sigma) # half-normal 
cellprobs[b] <- g[b]/nD
cellprobs.cond[b] <- cellprobs[b]/sum(cellprobs[1:nD])

}
cellprobs[nD+1]<- 1-sum(cellprobs[1:nD])

for (s in 1:nsites) { 
for (k in 1:T) {

pdet[s,k] <- sum(cellprobs[1:nD]) # Distance class probabilities 
pmarg[s,k] <- pdet[s,k]*phi # Marginal probability
# Model part 4: distance class frequencies 
y[s,1:nD,k] ~ dmulti(cellprobs.cond[1:nD], nobs[s,k])
# Model part 3: total number of detections: 
nobs[s,k] ~ dbin(pmarg[s,k], M[s])
# nobs[s,k] ~ dbin(pdet[s,k], Navail[s,k]) # Alternative formulation
# Model part 2: Availability. Not used in this model but simulated.
#avail[s,k] ~ dbin(phi, M[s])

} # end k loop
# Model part 1: Abundance model 
M[s] ~ dpois(lambda[s])
log(lambda[s]) <- beta0 + beta1*habitat[s]+eps[s] 
eps[s]~dnorm(0,tau.eps)

} # End s loop

# Derived quantities 
Mtot <- sum(M[])

} # End model

",fill = TRUE) 
sink()

data <- list(y = y, nsites=nsites,habitat=habitat,nobs=nobs,T=T,nD=nD, 
midpt=midpt)

inits <- function(){ list (sigma=3,M=M,phi=.6)}

params <- c("sigma", "phi","beta0", "beta1", "Mtot","sigma.eps")

ni <-58000 ; nb <- 28000 ; nt <-10 ; nc <- 1

out <- jags(data, inits, params, "model.jags", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, 
parallel = TRUE)
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Appendix 1.3. JAGS code for Savannah and American Tree Sparrow analyses using the TPP 

model.

############################################################################## 
#### Mizel, J.D., Schmidt, J.H. and Lindberg, M.S.
#### Accommodating temporary emigration in spatial distance sampling models
##############################################################################

############################################################################## 
####As written, runs the model for SAVS.
####To run the analysis for American Tree Sparrow (ATSP), 1) replace "SAVS" with "ATSP"; 
####2) replace "200" with "250"; and 3) reduce the model as done in the paper.
####The data from the arctic passerine application is available at the Dryad Digital Repository 
####https://doi.org/10.5061/dryad.90kp2 (Mizel, Schmidt, & Lindberg 2017).
##############################################################################

T<-5
nsites<-150
nsurveys<-466

NDVIdf<-read.csv("NDVI_200.csv") #covariate grid 
SAVS<-read.csv("SAVS.csv") #individual encounter data 
pcov<-read.csv("pcovariates.csv") #survey-level covariates 
data<-read.csv("Counts2sp.csv") #Survey counts 
C<-data$SAVScounts 
dim(C)<-c(nsites,T)

site<-NDVIdf$newsite
sitepix<-as.vector(table(site))
max.pix<-max(sitepix)
d<-round(NDVIdf$NEAR_DIST,2)
pixID<-NDVIdf$PointID2
elev<-round(as.vector(scale(NDVIdf$elev)),5)
elev2<-elev*elev
elev2<-round(elev2,5)
NDVI<-round(as.vector(scale(NDVIdf$NDVI)),5)
subgrid<-NDVIdf$subplot
nsubgrids<-max(subgrid)
n.pixels<-length(NDVI)
effort<-scale(pcov$effort)
julian<-scale(pcov$juldate)
julian2<-julian*julian
time<-scale(pcov$reltime)
effort<-effort[ !is.na(as.vector(effort))]
julian<-julian[!is.na(as.vector(julian))]
julian2<-julian2[!is.na(as.vector(julian2))]
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time<-time[ !is.na(as.vector(time))]
ind.site<-SAVS$Site
pixel.cap<-SAVS$Pixel
ind.visit<-SAVS$Visit
Mind<-max(C,na.rm=T)*2

site2<-C
for (j in 1:nsites){ 
for(k in 1:T){ 

ifelse(is.na(C[j,k]),site2[j,k]<-NA,site2[j,k]<-j)
}}
site2<-site2[ !is.na(as.vector(site2))]

nobs<-C [ !is.na(as.vector(C))] 
y2<-array(0,dim=c(Mind,nsurveys)) 
for (j in 1:nsurveys){ 

ifelse(nobs[j]>0,y2[1:nobs[j],j]<-1,y2[,j]<-0)
}
y.indi ces<-which(y2== 1, arr.ind=TRUE) 
ind<-y.indices[,1]

survey1<-C
survey 1[ !is.na(survey 1)]<-1 
survey2<-as.vector(survey 1) 
survey3 <- survey2
survey3[!is.na(survey2)] <- cumsum(survey3[!is.na(survey2)])
dim(survey3)<-c(nsites,T)
survey<-survey3

pixel<-array(0,dim=c(Mind,nsurveys)) 
for (i in 1:length(pixel.cap)){ 

pixel[ind[i],survey[ind.site[i],ind.visit[i]]]<-pixel.cap[i]
}

y <- array(0, dim = c(nsurveys,max.pix), 
dimnames = list(c(1:nsurveys),c(1:max.pix))) 

for(j in 1:nsurveys){ 
y[j,] <- table(factor(paste(pixel[,j], sep = ""), 
levels = c(1:max.pix)))

}
dim(y)<-c(nsurveys,max.pix)

M<-apply(C,1,max,na.rm=T)+1

############################################ 
####Model code ####
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############################################

library(jagsUI)

sink("model.jags")
cat("
model {
sigma ~ dunif(0,200) 
a0~dnorm(0,.01) 
a1~dnorm(0,.01) 
a2~dnorm(0,.01) 
a3~dnorm(0,.01) 
a4~dnorm(0,.01) 
tau.eps<-pow(sigma.eps,-2) 
sigma.eps~dunif(0,100) 
tau.avail<-pow(sigma.avail,-2) 
sigma.avail~dunif(0,100) 
b0~dnorm(0,.01) 
b1~dnorm(0,.01) 
b2~dnorm(0,.01) 
b3~dnorm(0,.01) 
b4~dnorm(0,.01) 
for (j in 1:nsubgrids) { 

eps[j]~dnorm(0,tau.eps)
}
for (i in 1:n.pixels){

log(g[i])<--d[i]*d[i]/(2*sigma*sigma)
log(lam[pixID[i],site[i]]) <b0 + b1*NDVI[i] + b2*NDVI2[i] + b3*elev[i] + b4*elev2[i] + 

eps[subgrid[i]]
pix.probs[pixID[i],site[i]]<-lam[pixID[i],site[i]]/sum(lam[1:sitepix[site[i]],site[i]]) 
cellprobs[pixID[i],site[i]]<-g[i]*pix.probs[pixID[i],site[i]] 
cellprobs.cond[pixID[i],site[i]] <- 

cellprobs[pixID[i],site[i]]/sum(cellprobs[1:sitepix[site[i]],site[i]])
}
for (j in 1:nsites) {

cellprobs[sitepix[j]+1,j]<- 1-sum(cellprobs[1:sitepix[j],j]) # 
M.lam[j]<-sum(lam[1:sitepix[j],j])
M[j] ~ dpois(M.lam[j])

}
for (i in 1:nsurveys) {

logit(phi[i]) <-a0+a1*time[i]+a2*julian[i]+a3*julian2[i]+a4*effort[i]+e.avail[i]
e.avail[i]~dnorm(0,tau.avail)
pdet[i] <- sum(cellprobs[1:sitepix[site2[i]],site2[i]])
pmarg[i] <- pdet[i]*phi[i] # Marginal probability
nobs[i] ~ dbin(pmarg[i], M[site2[i]])
y[i,1:sitepix[site2[i]]]~dmulti(cellprobs.cond[1:sitepix[site2[i]],site2[i]], nobs[i])
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#N[i] ~ dbin(phi[i], M[site2[i]])
#nobs[i] ~ dbin(pdet[i], N[i])

}
total.M<-sum(M[])

} # end model

",fill = TRUE) 
sink()

data <- list(y = y, d=d, nsites=nsites, NDVI=NDVI, nobs=nobs, n.pixels=n.pixels, plot=site, 
nsubgrids=nsubgrids, pixID=pixID, julian=julian, subgrid=subgrid, NDVI2=NDVI2, 
julian2=julian2, time=time, effort=effort, plot2=site2, nsurveys=nsurveys, plotpix=sitepix, 
elev=elev,elev2=elev2)

inits <- function(){ list (sigma=114,M=M+1,b1=1)}

params <- c("sigma", "b0", "b1", "b2"," b3", "b4", 
"a0","a1","a2","a3","a4","sigma.avail","total.M","sigma.eps")

ni <-100000 ; nb <- 25000 ; nt <-5 ; nc <- 2

out <- jags(data, inits, params, "model.jags", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, 
parallel = TRUE)
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CHAPTER 2

SUBARCTIC-BREEDING PASSERINES EXHIBIT PHENOLOGICAL RESILIENCE TO

EXTREME SPRING CONDITIONS1

2.1 Abstract

There has been relatively little study of the capacity of subarctic passerines to adjust their 

phenologies to rapid changes on their breeding grounds. Here we assess variation in passerine 

arrival timing in Denali National Park, Alaska from 1995-2015, a period that included both the 

warmest and coldest recorded mean spring temperatures for the park. Using an open-population 

occupancy modeling approach in which arrival events are random variables, we investigated 

interannual variation in the arrival distribution for 10 Nearctic-Nearctic migrants, three Nearctic- 

Neotropical migrants, and one Palearctic migrant. Neotropical-Nearctic migrants varied in terms 

of the flexibility of their arrival timing, but generally showed plastic phenologies, suggesting 

resilience under extreme spring conditions. In comparison, Nearctic-Nearctic migrants showed 

similar or greater plasticity in arrival timing. A majority of species showed synchronous- 

asynchronous fluctuation in arrival (i.e., synchronous arrival in some years, asynchronous in 

others) in combination with various levels of the mean response (i.e., early, average, and late 

arrival), suggesting the presence of interactions between environmental conditions at multiple 

scales and inter-individual variation. The presence of synchronous-asynchronous fluctuation in 

arrival suggests that weakening of the north-south temperature gradient under continued Arctic 

amplification may strongly affect arrival variances. Our results also suggest that complex 

interactions between distributional and phenological changes may be possible. For example, the 

arrival distribution of Fox Sparrow (Passerella iliaca) became more synchronized over time, a 

pattern that coincided with a dramatic increase in occupancy probability through expansion of its 

elevational distribution. Overall, our findings suggest that monitoring of the mean-variance 

relationship may lead to a deeper understanding of the factors shaping phenological responses.

1 Mizel, J. D., J. H. Schmidt, C. L. McIntyre, and M. S. Lindberg. 2017. Subarctic-breeding 
passerines exhibit phenological resilience to extreme spring conditions. Ecosphere 8: e01680.
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2.2 Introduction

Advances in the breeding and migratory phenology of birds due to climate change are 

well documented (Parmesan and Yohe 2003, Root et al. 2003, Dunn 2004). The observed shifts 

are generally thought to be plastic phenotypic responses rather than micro-evolutionary 

responses to selection on heritable traits (Gienapp et al. 2007, Gienapp et al. 2008, Charmantier 

and Gienapp 2014). Trends towards earlier arrival appear to be more widespread and of greater 

magnitude in short-distance migrants (e.g., Butler 2003, Mills 2005, Travers et al. 2015) 

compared to long-distance migrants (but see; Huppop and Huppop 2003, Stervander et al. 2005, 

Zalakevicius et al. 2006, Jonzen et al. 2006). Long-distance migrants are thought to show 

relatively limited plasticity in migratory timing (e.g., Pulido and Widmer 2005, Miller-Rushing 

et al. 2008, Both et al. 2009), in part due to strong control of migratory onset by endogenous 

mechanisms (Berthold 1984, Gwinner 1996). On northern breeding grounds experiencing rapid 

warming, some long-distance migrants show insufficient adaptation of arrival timing relative to 

changes in the phenology of their invertebrate prey (Both and Visser 2001, Visser et al. 2004). 

The decoupling of arrival phenology and seasonal food availability has been linked to population 

declines in long-distance migrants (Both and Visser 2001, Visser et al. 2004).

While there appear to be constraints on the development of plastic migratory traits in 

long-distance migrants, many of these species fine-tune their migration speed in response to 

conditions encountered en route (Marra et al. 2005, Both 2010, T0ttrup et al. 2010) and some 

show variation in departure timing related to conditions on wintering grounds (Gordo et al. 2005, 

Saino et al. 2007, Studds and Marra 2007). Short-distance migrants, by virtue of wintering in 

seasonal climates, often show comparatively close tracking of spring phenology during migration 

and, consequently, tend to have more plastic phenologies (Alerstam and Hogstedt 1980, Butler

2003). Our understanding of these relationships in passerines comes largely from studies of 

Palearctic migrants and from studies at North American mid-latitudes. There has been relatively 

little study of the potential capacity (or resilience) of passerines breeding in the subarctic to 

adjust their arrival phenologies to large variation in spring conditions (but see: Eeva et al. 2000, 

Gunnarsson and Tomasson 2011, Grabowski et al. 2013, Liebezeit et al. 2014, Ward et al. 2015). 

In addition, studies of avian arrival phenology have focused extensively on temporal trends in 

first or mean arrival dates, but have largely ignored temporal patterns in the variance of the 

arrival distribution (but see: M0ller 1994b, Ptaszyk et al. 2003, M0ller 2008, M 0ller et al. 2010).
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Intraspecific phenotypic variation plays an integral role in ecological and evolutionary 

dynamics, and sole reliance on the mean trait for inference may underestimate the capacity of 

species to cope with environmental change (Bolnick et al. 2011, Violle et al. 2012). Assessments 

of the relationship between the mean and variance of the arrival distribution may lead to a deeper 

understanding of the factors shaping phenological responses and the capacity of species to adapt 

their phenologies in response to environmental change.

The costs and benefits of early arrival are phenotype-dependent, and optimization of 

individual arrival timing is thought to depend on individual condition, the individual-specific 

costs of early arrival, and the arrival timing of competing males that helps set the value of 

arriving on a given date (M0ller 1994a, Kokko 1999). Carry-over effects often provide a 

mechanism for inter-individual variation in migratory and breeding timing (reviewed in Harrison 

et al. 2011). For example, individuals occupying poorer and/or more distant wintering habitat 

may arrive later on breeding grounds (e.g., Marra et al. 1998, Bearhop et al. 2004, Norris et al.

2004). Age- and sex-related differences in migration timing and stopover behavior are also well 

documented (Yong et al. 1998, Stewart et al. 2002, Vardanis et al. 2011, McKinnon et al. 2014). 

In addition to differing in their average arrival date, individuals may also differ in the capacity 

for phenotypic plasticity. Some individuals may show the capacity for adjustments beyond their 

optimal arrival date that are disproportionate to those exhibited by others. The presence of inter

individual variation in plasticity or an individual-by-environment interaction (Nussey et al. 2007) 

may be important factors underlying interannual variation in the spread of the arrival distribution 

(i.e., variance heterogeneity through time).

Previous studies have documented multiscale influences on arrival timing (e.g., Gordo et 

al. 2005, MacMynowski and Root 2007, T0ttrup et al. 2010) and the interactive effects of 

individual variation and environmental conditions on the arrival variance (e.g., M0ller 1994b, 

Ptasyzk et al. 2003, M0ller 2008). Interactions between environmental conditions at high- and 

mid-latitudes may affect the arrival distributions of subarctic migrants. Over recent decades, 

Arctic near-surface temperatures have increased at a rate almost twice that of the global average, 

and zonal-mean temperature anomalies show larger increases with increasing latitude (Serreze 

and Francis 2006, Serreze et al. 2009, Screen and Simmonds 2010). Given this weakening of the 

north-south temperature gradient or Arctic amplification, understanding the underlying
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interactions between high- and mid-latitude environments within migration systems is critical for 

predicting the possible effects on passerine communities.

Migratory birds are under strong directional selection for earlier breeding (Both and 

Visser 2001, Visser et al. 2004, Dingemanse et al. 2004, Verhulst and Nilsson 2008). 

Competition for territories (e.g., Kokko 1999), seasonal variation in food availability (e.g., Both 

and Visser 2001), predation (e.g., Lank and Ydenberg 2003), and mortality risk during the early 

spring transition period (Newton 2007), all exert strong selective pressure on arrival and 

breeding timing. These pressures are likely to be particularly acute in Arctic and subarctic 

breeders due to heightened mortality risk during the spring arrival period and to the time 

demands of producing a brood, molting, and preparing for fall migration within a highly 

compressed breeding season (Eeva et al. 2000). Thus, understanding the potential capacity of 

passerines breeding in the subarctic to adjust their arrival timing in response to large interannual 

variation in spring conditions is of critical importance.

In this study, we investigated interannual variation in passerine arrival timing in Denali 

National Park, Alaska (hereafter, Denali) from 1995-2015. Our sampling period included both 

the warmest (1995) and coldest (2013) mean spring (April-May) temperatures recorded in Denali 

(1926-2015) (Fig. 2.2.1), providing the opportunity to assess the effects of a range of spring 

conditions on the arrival process. We used an open-occupancy modeling approach in which 

arrival events are random variables. Our objectives were to: 1) assess patterns of interannual 

variation in the mean and variance of the arrival distribution of individual species; and 2) 

compare and contrast the observed patterns between short- and long-distance migrants. We 

predicted that long-distance migrants would show limited variation in mean arrival, relatively 

homogenous variance across time, and compressed arrival distributions overall, because long

distance migrants generally exhibit smaller passage variances than short-distance migrants (Mills 

2005, Van Buskirk et al. 2009, La Sorte et al. 2013) and high repeatability in arrival (e.g., 

Vardanis et al. 2011, Conklin and Battley 2011, Stanley et al. 2012). In contrast, we expected 

that short-distance migrants would show greater variation in the mean response and pronounced 

variance heterogeneity across time.
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2.3 Methods

2.3.1 Data collection

We conducted passerine surveys along the easternmost 118 km of the 144 km Denali 

Park Road (DPR), a narrow, unpaved road transecting upland forest, treeline, shrubline, and open 

alpine habitats in the northeastern portion of Denali (63° 35.8’N, 149° 38.2’W) (Fig. 2.2) . We 

established 3 roadside survey routes each comprising 50 points with 0.8 km spacing. Trained 

observers conducted repeated surveys from mid-April to early-July during twelve years (1995

1998, 2006, and 2009-2015), and routes were surveyed 2-18 times in each year (mean = 6.5 

visits/year). Standard 3-minute point count surveys were conducted during favorable weather 

from 0.5 hours before sunrise to approximately 6 hours thereafter (Bystrack 1981). All birds seen 

or heard within ~400 m during the count period were recorded (Bystrack 1981), but only 

detections of singing males were used for our analyses. The same routes were generally surveyed 

by multiple observers in each year and some observers conducted surveys in multiple years 

(Schmidt et al. 2013, Mizel et al. 2016). For additional detailed descriptions of the study area 

and sampling scheme, see Schmidt et al. (2013) and Mizel et al. (2016).

2.3.2 Analyses

We restricted analysis to species detected at >10% of sites in most years to provide 

sufficient data to adequately model arrival, observation, and occupancy processes. We also 

excluded Lincoln’s Sparrow (Melospiza lincolnii), which had detection probability <0.2 in all 

years, making it difficult to separate the arrival and observation processes. Our final data set 

included 14 species including: 10 Nearctic-Nearctic migrants, three Nearctic-Neotropical 

migrants, and one Palearctic migrant (Appendix 2.1). We classified species as short- or long

distance migrants if  their wintering grounds lie primarily north or south of the Tropic of Cancer, 

respectively (Rappole et al. 1983).

We used the open-population occupancy modeling approach of Roth et al. (2014) to 

estimate arrival events. In this approach, arrival dates are random variables conditional on 

detection probability and the true occupancy state. In our data structure, the yijt observations 

corresponded to detection/non-detection of a given species at each point i = 1, 2, ..., I, during 

each repeat survey j  = 1, 2, . ,  J, in each year t = 1, 2, . ,  T. The true occupancy states zit were 

Bernoulli random variables with occupancy probability yu:
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z it~ B e rn o u lli(^ i t ) (Eq. 2.1)

Based on the results of Mizel et al. (2016), we assumed yit was a linear function of year, 

elevation (linear and quadratic), two interaction terms, and random site-level adjustments ai 

around p:

lo g it(^ it) = q + a t + a 1yeart + a 2elevt + a 3elev2 + a4yeart * elevt + a 5yeart * elev2

Roth et al. (2014) treated arrival dates as overdispersed Poisson random variables. Given severe 

time constraints on breeding in the subarctic, we did not expect a need for accommodating 

additional variation in the right tail of the arrival distribution. In addition, given the relatively 

extreme interannual variation in spring conditions that occurred during our study period, we 

thought it necessary to account for variance heterogeneity across time. Therefore, we described 

arrival dates ait as normal random variables with a year-specific variance and a random mean that 

varied by year:

ait~ N o rm a l(p t, a l ) (Eq. 2.2)

We specified an arrival indicator variable Iijt as an outcome of the relation of ait to the survey 

date (i.e., datejt):

1 w hen ait < d a te tj t

The ytjt observations were considered to be Bernoulli random variables with success probability 

specified such that detection probability pijt was conditional on the true occupancy state zit and 

the arrival indicator Iijt:

Based on the findings of Mizel et al. (2016), we assumed detection probability was a linear 

function of datejt and time after sunrise, timejt:

variation in the probability of availability or diurnal patterns of singing frequency. We included
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0 w hen ait > d a te tj t (Eq. 2.3)

y ijt~ B ern o u lli(z it * p ijt * Iijt) (Eq. 2.4)

logit(Pijt) = Po+ P idatei]t + fc&atejj,. + p 3tim e i]t + f34tim e2ijt (Eq. 2.5)

We included the linear and quadratic effects of survey timing (relative to sunrise) to account for



the linear and quadratic effects of survey date to account for variation in availability due to 

seasonal variation in singing frequency (Schmidt et al. 2013). See Roth et al. (2014) for 

additional details on model structure.

We were unable to estimate arrival in the years 1997 and 1998 because each of the three 

survey routes received <2 visits. However, we did not exclude data from these years as they 

contained detection and occupancy information. Instead, the arrival variance term for these years 

was fixed at 25, which corresponded to a mean standard deviation of 5 days in many species, and 

the year-specific random mean was set equal to the overall mean of this distribution. The surveys 

that did occur in these years were conducted in early June (between Julian dates 154-160), that 

is, after all arrival events were expected to occur for all short-distance migrants and most long

distance migrants. Thus, fixing arrival at reasonable values would be expected to have minimal 

effect on estimates of other parameters. However, we performed a series of sensitivity analyses 

on all long-distance migrants in which the arrival variance was set equal to 100 instead of 25.

The effect was negligible in all cases.

We fit models using OpenBugs (Lunn et al. 2009) via the R2OpenBUGS package (Sturtz 

et al. 2005) in program R 3.2.2 (R Core Team 2015). We used diffuse priors on all occupancy 

and detection parameters (i.e., uniform distributions from 0 to 100 for the standard deviations of 

the random effects; uniform distributions -10 to 10 for all fixed occupancy and detection 

covariates). We used diffuse priors for all arrival parameters including uniform distributions 

from 0 to 30 for all standard deviations and normal distributions with mean 0 and precision 0.01 

for the overall mean. Summaries of the posterior distribution were calculated from two 

independent Markov chains run for 60,000 iterations with a 10,000 iteration burn-in and thinning 

every four draws. We used the Gelman-Rubin diagnostic (Brooks and Gelman 1998) to assess 

convergence and scaled continuous covariates (mean = 0, SD = 1) to improve convergence 

properties. From posterior distributions for arrival dates at occupied sites, we calculated posterior 

distributions for the proportion of sites with an arrival event on or prior to each date within the 

survey season (i.e., cumulative arrival proportions). We also calculated the dates at which 5%, 

50%, and 95% of occupied sites first showed an arrival event. This allowed us to assess the 

synchronicity of the arrival process (i.e., the interval between the arrival of the first and last 5% 

of individuals), as well as the timing of the bulk of the arrivals (i.e., arrival of 50% of the 

individuals). Estimates for the year-specific mean arrival dates pt were nearly equivalent to the

49



50 percentile estimates (i.e., the median) for all species. For clarity, we refer to the 50 percentile 

estimates as mean arrival. All estimates are presented as posterior means with 95% Bayesian 

credible intervals. We considered arrival to be synchronous in a particular year if  the ratio of its 

standard deviation to the mean standard deviation for that species was <0.5. Arrival was 

considered asynchronous if this ratio was >2.0.

Lastly, we did not include weather covariates on arrival because our approach was to 

estimate the latent arrival events for each site in each year and a weather covariate would be 

expected to affect parts of this distribution differently, often with minimal effect on later arrival 

events. However, we accounted for interannual variation in weather by describing arrival in 

terms of a random mean and variance that varied by year. We also conducted a post-hoc linear 

regression of the annual arrival shift as a function of the average April-May temperature. The 

annual arrival shift for species i in year j  was the mean arrival date for species i in year j  minus 

the multiyear median for species j .  We excluded Arctic Warbler (Phylloscopus borealis), a 

Palearctic migrant, from this analysis because this species did not appear to respond to spring 

temperatures (see Results).

2.4 Results

Long-distance migrants varied in terms of flexibility in arrival timing. Among 

Neotropical-Nearctic migrants, Orange-crowned (Oreothlypis celata) and Wilson’s Warblers 

(Wilsonia pusilla) showed interannual variation in mean arrival that was comparable to that 

exhibited by short-distance migrants. i.e., estimates for their year-specific mean arrival dates 

spanned 13 and 17 days, respectively (Fig. 2.3a). The remaining Neotropical-Nearctic migrant, 

Swainson’s Thrush (Catharus ustulatus) showed limited variation in mean arrival except for a 

relatively large advance in 2011 (Fig. 2.3a). However, contrary to theoretical predictions, all 

Neotropical-Nearctic migrants exhibited large interannual variation in arrival of the 5 percentile 

cohort, with year-specific estimates spanning 19-27 days for the three species (Fig. 2.3b). In 

addition, all Neotropical-Nearctic migrants showed unexpected and pronounced variance 

heterogeneity across time (Fig. 2.4), the result of synchronous-asynchronous fluctuation in 

arrival (i.e., synchronous arrival in some years, asynchronous in others) (Fig. 2.5a-c). Across 

these species, we observed asynchronous arrival and synchronous arrival in combination with all 

levels of the mean response (i.e., early, average, and late arrival) (Fig. 2.5a-c). In contrast, Arctic
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Warbler, a Palearctic migrant, showed almost no interannual and intrapopulation variation in its 

arrival timing (Fig. 2.5d).

As predicted, short-distance migrants exhibited modest to large interannual variation in 

mean arrival and arrival of the 5 percentile cohort. Across the 10 short-distance migrants that we 

considered, interannual variations in mean arrival and arrival of the 5 percentile cohort spanned 

13-26 and 14-32 days, respectively (Fig. 2.3). Short-distance migrants exhibited individualistic 

patterns of interannual variation in the dispersion of arrival dates (Fig. 2.4). Some species had 

small variances that were relatively homogenous across time and others showed pronounced 

variance heterogeneity across time (Fig. 2.4), the result of synchronous-asynchronous fluctuation 

in arrival (Fig. 2.6c-d and 2.7b, e). The arrival of Fox Sparrow (Passerella iliaca) became more 

synchronized over time (Fig. 2.7a) in concert with dramatic expansion of its elevational 

distribution at both low and high elevations (Mizel et al. 2016).

Arrival timing of Nearctic-Nearctic and Neotropical-Nearctic migrants showed an 

apparent relationship with local temperature (Appendix 2.2). Correspondingly, the extremely 

late spring of 2013 synchronized the arrival of the entire community. With the exception of 

Savannah Sparrow (Passerculus sandwichensis) and Arctic Warbler, mean arrival dates spanned 

only 3 and 5 days for long- and short-distance migrants, respectively (Fig. 2.3a). During the early 

spring of 1995, most species had advanced mean arrival, but the effect tended to be greatest in 

the 5 percentile cohort with advances (relative to each species’ multiyear median) of 15, 18 and 

20 days in Orange-crowned Warbler, Fox Sparrow, and Wilson’s Warbler, respectively (Fig. 

2.3b).

2.5 Discussion

Long-distance migrants are expected to have relatively inflexible phenologies, making 

them susceptible to trophic mismatches and corresponding population declines under climate 

change (e.g., Both and Visser 2001, Both et al. 2009). However, we found two Neotropical- 

Nearctic migrants, Orange-crowned and Wilson’s Warblers, showed unexpectedly plastic 

phenologies, suggesting resilience under extreme spring conditions. Swainson’s Thrush, the 

remaining Neotropical-Nearctic migrant, showed limited interannual variation in mean arrival, 

but greater variation in the arrival of the 5-percentile cohort, suggesting the capacity for plastic 

adjustments in arrival timing. Short-distance migrants showed similar or greater plasticity in 

arrival timing, indicating an ability to closely track the emergence of spring along their migration
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routes. Overall, our findings suggest that both Neotropical-Nearctic and Nearctic-Nearctic 

migrants breeding in interior Alaska are able to adjust arrival in response to relatively large inter

annual variation in spring conditions.

The onset of spring in Denali is rapid and unpredictable in its timing. Further, it 

comprises large temperature variation and is often interrupted by periods of cold weather and 

snow, thereby representing substantial risk for early arriving individuals. Thus, all but the latest 

arriving species in our study area may have undergone selection for plasticity in arrival.

All Neotropical-Neararctic and several Nearctic-Nearctic migrants showed variance 

heterogeneity across time, the result of synchronous-asynchronous fluctuation in arrival. With 

the notable exception of Fox Sparrow, the degree of synchronicity in arrival did not appear to be 

strongly associated with annual occupancy, suggesting little support for interannual variation in 

density-dependent competition driving fluctuation in arrival variances. Instead, many species 

exhibited temporal trends in occupancy (Mizel et al. 2016) indicating the presence of temporal 

correlation in annual density amidst random interannual fluctuations in the arrival variance.

Thus, the fact that we observed synchronous and asynchronous arrival in combination with 

various levels of the mean response (i.e., early, average, and late arrival) suggests the presence of 

interactions between environmental conditions at multiple scales and inter-individual variation in 

average arrival, and potentially, in phenotypic plasticity. That is, these interactions were likely 

involved in order for the variance to be large or small, irrespective of the mean response.

This may be conceptualized by decomposing the migration systems of high-latitude 

breeders into three basic environments: the wintering ground environment (Ew ), the migration 

route or mid-latitude environment (Er ), and the near-breeding ground environment (Eb ). Given 

its potential severity, the high-latitude environment (EB) often mediates the conflated effect of 

the wintering ground-migration route environment (EWER) on arrival timing. Early-asynchronous 

arrival may result when conditions on the EWER are near average, but an unusually favorable EB 

releases the vanguard cohort to show a disproportionately large advance relative to the rest of the 

population. For example, in 1995, Wilson’s and Orange-crowned warblers showed early arrival 

overall, but the shift in the 5-percentile cohort was disproportionate to that exhibited by the rest 

of their respective populations, resulting in early-asynchronous arrival.

Early-synchronous arrival may arise when a favorable Ew E r  (e.g., mid-latitude 

conditions) relaxes the costs of early arrival sufficiently to induce early passage of most
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individuals and Eb  conditions also align favorably. In 2010 and 2015, Wilson’s and Orange- 

crowned warblers exhibited early arrival overall, but the 5 percentile cohort did not realize a 

disproportionate response, resulting in early-synchronous arrival. The frequency dependence of 

migratory timing may also underlie early-synchronous arrival (Kokko 1999). Arrival timing is 

thought to be optimized on the basis of individual-specific costs and benefits, which themselves 

are a function of individual condition and the arrival timing of other males in the population 

(M0ller 1994a, Kokko 1999). Thus, when spring conditions are ameliorated and risk is reduced 

to a certain degree, average and lower quality males may anticipate the early arrival of 

competing males, possibly through assessment along the migration route, triggering them to 

advance their arrival beyond their particular ‘cost-minimizing date’ (Kokko 1999) or optimal 

migratory timing, leading to early-synchronous arrival.

Because we lack data on individuals, our understanding of inter-individual variation in 

phenotypic plasticity in these populations is limited and further complicated by multiscale 

environmental interactions, the role of stochastic influences (e.g., wind patterns), and potential 

non-linear responses to environmental variation. However, the fact that we observed interannual 

changes in the mean-variance relationship including instances of early-synchronous and early- 

asynchronous arrival suggests the presence of an individual by environment interaction (I x 

Ew Er  x Eb ), or inter-individual variation in phenotypic plasticity (Nussey et al. 2007). That is, in 

response to environmental variation, some males may make adjustments from their average 

arrival timing that are disproportionate to those made by other males. The shape of the arrival 

distribution may then depend on which individuals (e.g., high or average quality) make these 

adjustments and in which environment(s) they are made, Ew E r  and/or Eb . At a minimum, the 

observed pattern suggests a population-level capacity in these species to adjust their arrival 

timing to large variation in spring conditions. If, hypothetically, the potential for a phenological 

mismatch exists in these species, then the affected segment of the migrant population could vary 

considerably on an annual basis given the observed variation in the mean-variance relationship.

In general, the arrival variances of short-distance migrants were not larger than those of 

Neotropical-Nearctic migrants. This was in contrast to studies conducted at North American 

mid-latitudes showing larger passage variances for short-distance migrants compared to 

Neotropical-Nearctic migrants (Mills 2005, Van Buskirk et al. 2009, La Sorte et al. 2013), 

potentially indicating that interactions between high and mid-latitude environments may alter the
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shape of arrival distributions (M0ller 2008). However, the arrival distributions of short-distance 

migrants were also individualistic. Several short-distance migrants showed pronounced variance 

heterogeneity across time or synchronous-asynchronous fluctuation. In contrast, a subset of 

short-distance migrants showed weak variance heterogeneity and relatively compressed arrival 

distributions. The latter pattern could be indicative of limited inter-individual variation in 

plasticity that would synchronize arrival (Kokko 1999). However, many other factors likely 

underlie interspecific variation in the behavior of the arrival variance including; the intensity of 

competition for territories (Kokko 1999, Jonzen et al. 2007), the breadth of a species’ foraging 

niche, the temporal variance of resource availability (Jonzen et al. 2007), variation between 

migration routes in spatio-temporal patterns of vegetation phenology (La Sorte et al. 2013), the 

distance of the migratory journey, and species-specific flight strategies including the degree of 

selectivity for favorable winds in timing migration flights (Karlsson et al. 2011, Nilsson et al. 

2014).

Fox Sparrow, a short-distance migrant, was unique in that its arrival distribution became 

more synchronized over time. This pattern coincided with a 250% increase in its abundance 

within the study area (Schmidt et al. 2013) and dramatic expansion of its elevational distribution 

(Mizel et al. 2016). Synchronization of its arrival phenology could have been driven by density- 

dependent intensification of competition for territories (Kokko 1999) although other explanations 

are possible. This unique pattern emphasizes the importance of considering other factors, such as 

changes in population size, when assessing variation in phenology to avoid possibly erroneous 

conclusions (Tryjanowski and Sparks 2001, Miller-Rushing et al. 2008).

In contrast to the rest of the species that we considered, Arctic Warbler, a Palearctic long

distance migrant, showed little plasticity in arrival timing. The entire local population arrived 

within a few days of June 6 each year, thereby circumventing variation in spring onset entirely 

but creating a highly compressed breeding season. Such inflexibility in their phenology would 

theoretically make them susceptible to tropic mismatches. However, the degree of specialization 

in their diet and the temporal breadth of peak prey availability are unknown in our study area, 

limiting our ability to make predictions about the potential for a phenological mismatch.

With the exception of Arctic Warbler, the arrival phenologies of the subarctic migrants 

that we considered appear to be relatively flexible. However, they were subject to synchronous- 

asynchronous fluctuation suggesting that arrival variances may respond strongly to weakening of
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the north-south temperature gradient. We found that extremes in local spring temperatures have 

the potential to synchronize arrival across the bird community (as in the late spring of 2013) and 

to induce substantial advances in arrival among both long- and short-distance migrants (as in the 

early spring of 1995). Although the ultimate effects of climate warming on bird populations are 

unknown, our findings suggest that some Neotropical migrants breeding in the subarctic may 

have greater capacity for plastic arrival timing than was previously expected.
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Figure 2.1. Average April-May temperature (degrees C) from a weather station at Denali 

National Park Headquarters, 1926-2015. The fitted (loess) curve is shown as a solid line. The 

dotted vertical line indicates the first year of our study.

62



Figure 2.2. Survey routes 1-3 along the park road in Denali National Park and Preserve (Denali), 

Alaska (modified from Mizel et al. 2016).
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Figure 2.3. Year-specific, posterior means for the Julian date on which a) 50% and b) 5% of 

occupied sites had shown an arrival event. Thick black lines separate short-distance migrants 

(top), Neotropical-Nearctic migrants (middle), and a Palearctic migrant (bottom). Within 

migration groups, species were ordered according to their average arrival date. The symbols for 

1995 (open squares) and 2013 (filled squares) were enlarged for emphasis. See Appendix 2.1 for 

species names and codes.
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Figure 2.4. Boxplot of year-specific standard deviations for migrants breeding in in Denali 

National Park, Alaska (1995-2015). The thick black line separates short-distance from long

distance migrants (bottom). Within migration groups, species were ordered according to the 

standard deviation of the year-specific standard deviations. Arctic Warbler is not shown because 

of a lack of variability in arrival dates.
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Figure 2.5. Arrival distributions of long-distance migrants in Denali National Park, Alaska 

(1995-2015). Only years in which sampling occurred and arrival was estimable are shown. Right 

panels show cumulative arrival curves and left panels show species-specific posterior means for 

the Julian dates in which 5% (open circles), 50% (gray squares), and 95% of occupied sites had 

shown an arrival event. Bayesian 95% credible intervals are also shown. Species include: a) 

Wilson’s Warbler; b) Orange-crowned Warbler; c) Swainson’s Thrush; and d) Arctic Warbler. 

We considered arrival to be synchronous (dashed red lines) if  the ratio of the standard deviation 

of that year to the average standard deviation was <0.5. Arrival was considered asynchronous 

(blue lines) if  this ratio was >2.0.
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Figure 2.6. Arrival distributions of short-distance migrants in Denali National Park, Alaska 

(1995-2015). Only years in which sampling occurred and arrival was estimable are shown. Right 

panels show cumulative arrival curves and left panels show species-specific posterior means for 

the Julian dates in which 5% (open circles), 50% (gray squares), and 95% of occupied sites had 

shown an arrival event. Bayesian 95% credible intervals are also shown. Species include: a) 

Dark-eyed Junco; b) Varied Thrush; c) Ruby-crowned Kinglet; d) American Tree Sparrow; and 

e) American Robin. We considered arrival to be synchronous (dashed red lines) if  the ratio of the 

standard deviation of that year to the average standard deviation was <0.5. Arrival was 

considered asynchronous (blue lines) if  this ratio was >2.0.
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Figure 2.7. Arrival distributions of short-distance migrants in Denali National Park, Alaska 

(1995-2015). Only years in which sampling occurred and arrival was estimable are shown. Right 

panels show cumulative arrival curves and left panels show species-specific posterior means for 

the Julian dates in which 5% (open circles), 50% (gray squares), and 95% of occupied sites had 

shown an arrival event. Bayesian 95% credible intervals are also shown. Species include: a) Fox 

Sparrow; b) Yellow-rumped (Myrtle) Warbler; c) White-crowned Sparrow; d) Golden-crowned 

Sparrow; and e) Savannah Sparrow. We considered arrival to be synchronous (dashed red lines) 

if  the ratio of the standard deviation of that year to the average standard deviation was <0.5. 

Arrival was considered asynchronous (blue lines) if  this ratio was >2.0.
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Appendix 2.1. Passerine species considered in analyses of arrival timing in Denali National Park, 

Alaska from 1995-2015.

Species AOU code Migration group

Dark-eyed Junco (Junco hyemalis) DEJU Nearcti c-N earcti c

Varied Thrush (Ixoreus naevius) VATH Nearcti c-N earcti c

Ruby-crowned Kinglet (Regulus calendula) RCKI Nearcti c-N earcti c

American Tree Sparrow (Spizella arborea) ATSP N earcti c-N earcti c

American Robin (Ixoreus naevius) AMRO Nearcti c-N earcti c

Fox Sparrow (Passerella iliaca) FOSP Nearcti c-N earcti c

White-crowned Sparrow (Zonotrichia leucophrys) WCSP Nearcti c-N earcti c

Yellow-rumped (Myrtle) Warbler (Setophaga

coronata coronate) MYWA Nearcti c-N earcti c

Golden-crowned Sparrow (Zonotrichia atricapilla) GCSP Nearcti c-N earcti c

Savannah Sparrow (Passerculus sandwichensis) SAVS Nearcti c-N earcti c

Wilson's Warbler (Wilsonia pusilla) WIWA Nearctic-Neotropical

Orange-crowned Warbler (Oreothlypis celata) OCWA Nearctic-Neotropical

Swainson's Thrush (Catharus ustulatus) SWTH Nearctic-Neotropical

Arctic Warbler (Phylloscopus borealis) ARWA Palearctic
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Appendix 2.2. Shift in annual mean arrival for species i in year j relative to the average April- 

May temperature (degrees C) from a weather station at Denali National Park Headquarters. The 

y-axis corresponds to the mean arrival date for species i in year j minus the multi-year median 

for species j. Positive values indicate a delay and negative values indicate an advance. We 

conducted a post-hoc linear regression of the annual arrival shift as a function of the average 

April-May temperature. We combined Nearctic-Nearctic and Neotropical-Nearctic species in this 

regression and excluded Arctic Warbler, a Palearctic migrant. The fitted line indicates the 

significant relationship between annual arrival shift and the average April-May temperature (R2 

= 0.35, P<0.0001). The following years are indicated: 1995 (the warmest April-May temperature 

on record for Denali from 1926-2015) and 2013 (the coldest).
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CHAPTER 3

A MULTI-STATE, TIME-REMOVAL MODEL FOR INCREASING EFFICIENCY IN 

SURVEYS OF CLIFF-NESTING RAPTORS1

3.1 Abstract

Surveys of cliff-nesting raptors present considerable challenges due to their sparse distribution 

across remote landscapes and the multiple occupancy states (e.g., unoccupied, occupancy 

without breeding, and breeding occupancy) through which we observe their nesting territory 

dynamics. The standard approach in nesting territory surveys is to allocate an intensive level of 

effort that is assumed to ensure that the occupancy state of each territory is known with certainty. 

However, allocating effort in this manner is inefficient, particularly at landscape scales, 

constraining our capacity for effective management of these species. To increase survey 

efficiency and expand the spatial inference of these studies, we develop two versions of a multi

state, time-removal model, one for long-term monitoring studies and another for population 

inventories or single-season surveys in which there is no prior knowledge of nest locations. We 

focus our development of these methods in the context of a combined aerial and ground-based 

survey approach which permits efficient surveying at landscape scales. However, the approach is 

also applicable to designs restricted to ground surveys. For long-term monitoring of species with 

alternative nests, we formulate a version of the model that accounts for state uncertainty at the 

territory-level caused by a failure to observe all nests within a territory. Simulations based on the 

long-term monitoring model indicated adequate (near nominal) coverage and low relative bias 

(<0.05) for nearly all parameters. In the simulation study for the inventory model, all parameters 

showed low to moderate relative bias (<0.07) for a survey duration of 90 minutes. We apply our 

approach to a long-term study of golden eagles (Aquila chrysaetos) in Alaska and demonstrate

1 Mizel, J.D., C.L. McIntyre, S.B. Lewis, M.S. Lindberg, and J.H. Schmidt. (under review). A 

Multi-state, time-removal model for increasing efficiency in surveys of cliff-nesting raptors. 

Journal of Wildlife Management.
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that the maximum effort spent on any nesting territory could be reduced by up to almost 90% of 

that recommended by standard protocols.

3.2 Introduction

Landscape-scale monitoring is necessary for effective conservation of wildlife species. However, 

sampling at large spatial scales for sparsely distributed species presents considerable challenges. 

In such cases, the development of cost-effective approaches can be addressed in part through a 

thorough understanding of how the data are actually generated (i.e., ecological and observation 

processes) and the application of sampling methods that attempt to maximize detection 

(Thompson 2004, Royle and Dorazio 2008, Nichols et al. 2009). When these populations are 

comprosed of multiple states, multiple survey methods may be used to increase the probability of 

correct classification of individuals in each state.

Developing efficient sampling methods for cliff-nesting raptors is particularly 

challenging due to the large space usage by these species, their sparse distribution across remote 

landscapes, and the multiple occupancy states (e.g., unoccupied, occupancy without breeding, 

occupied with breeding) through which we observe their population dynamics. In most studies of 

the dynamics of cliff-nesting raptor populations, territories or historical nests are visited with an 

intensive level of effort that is assumed to ensure that the occupancy state is known with 

certainty (e.g., Hardey et al. 2006). For example, the U.S. Fish and Wildlife Service (USFWS) 

recommends >2, 4-hour ground observation occasions for monitoring peregrine falcons (Falco 

peregrinus) (USFWS 2003) and golden eagles (Aquila chrysaetos) (Pagel et al. 2010). In a 

landscape-scale survey, allocating survey effort in this manner is impractical and inefficient, 

particularly in the Arctic and subarctic.

Consequently, most studies have focused on intensively monitoring 30-100 nesting 

territories within a single survey area (e.g., Steenhof et al. 1997, Pokrovsky et al. 2014).

However, the spatial scale of inference from these studies is limited, leaving large gaps in our 

understanding of cliff-nesting raptor population dynamics and distribution at the landscape-scale. 

The development of cost-effective methods that would permit sampling at larger spatial scales 

has received little study (but see Booms et al. 2010). Here, we take the approach that the 

compromise for survey efficiency involves abandoning the assumption of state certainty for a 

modeling framework in which state and observation processes are considered simultaneously.
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3.2.1 Breeding ecology characteristics that influence how we observe raptor population 

dynamics

On breeding grounds, raptor populations are generally composed of non-territorial individuals 

(i.e., floaters), breeders, and territorial, non-breeders (Newton 2003). Studies of nesting territory 

occupancy typically make inference to the territorial population corresponding to the latter two 

groups of individuals. The process by which we observe dynamics in the territorial population is 

complicated by several aspects of raptor breeding ecology. For example, prey availability and/or 

weather may limit the proportion of the population attempting breeding in a given year (Newton 

1979, Steenhof et al. 1997) (Fig. 1, box 3). Numerical reproductive responses have been 

observed in a number of cliff-nesting raptor species including gyrfalcon (Falco rusticolus) (e.g., 

Nielsen 1999), rough-legged hawk (Buteo lagopus) (e.g., Pokrovsky et al. 2014), and golden 

eagle (e.g., Steenhof et al. 1997, McIntyre and Schmidt 2012). In a 23-year study of the golden 

eagle population in Denali National Park, Alaska (hereafter, Denali), breeding rates were highly 

variable, ranging from 0.14-0.88, and were strongly related to cyclical fluctuation in prey 

availability (McIntyre and Schmidt 2012). In contrast, the composite territorial occupancy 

(occupancy with or without breeding) has remained consistently high (range = 0.81-0.93) 

(McIntyre and Schmidt 2012). Thus, for some raptor species, the breeding component on its own 

is likely to be a poor predictor of population size particularly in years when prey densities are 

low. In such cases, estimates of the subset of the population composed of territorial individuals 

that are not breeding (i.e., occupancy without breeding) are needed in order to make reliable 

inferences about population dynamics.

There have been relatively few studies of cliff-nesting raptor breeding dynamics that 

account for state uncertainty, and those that have were generally done in a single-state 

framework under the assumption that detectability does not differ between states (Booms et al. 

2010; but see Martin et al. 2009). Given that a nest contained eggs at the time of the survey and 

is surveyed (i.e., its contents are observed), the probability of detecting occupancy with breeding 

is ~1. In contrast, territorial individuals that are not breeding may move in an out of proximity to 

the nesting territory (i.e., spatial temporary emigration), which leads to the probability of 

detecting occupancy without breeding being <1. Consequently, in the framework of a single state 

occupancy model in which a composite detection probability, p , is estimated, a decrease in the 

nesting rate could lead to negative bias in occupancy; i.e.,p  could be confounded with changes
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in the nesting rate. This confounding would be exacerbated by fluctuations in drivers such as 

prey abundance or weather conditions, resulting in a subset of years in which breeding is either 

pervasive or extremely uncommon.

The tendency of longer-lived, cliff-nesting raptors to maintain nesting territories 

comprised of multiple, ‘alternative’ nests results in additional complexity in how we observe 

their population dynamics (Fig. 1, box 2b). For example, in studies conducted in the Canadian 

High Arctic, rough-legged hawks maintained nesting territories composed of an average of 1.6 

nests (range = 1-4) (Beardsell et al. 2016). Golden eagle nesting territories were composed of 6.9 

nests (range = 1-18) in southwestern Idaho (Kochert and Steenhof 2012) and an average of ~3 

nests (range = 1-9) in Denali. In a long-term monitoring study, knowledge of the locations of 

nests is accumulated over many years until all nest locations within a territory are eventually 

known, although new nests are occasionally constructed. However, for species in which nesting 

territories may be composed of alternative nests located 1-2 km apart, we would expect that 

incomplete knowledge of nests in the initial years of the study would result in failure to survey 

some nests that contained eggs. This could lead to negative bias in the estimate of the breeding 

component of the population.

3.2.2 A multi-state, time-removal model for expanding spatial inference

3.2.2.1 Long-term monitoring using aerial and ground-based surveys

Herein, we develop a multi-state, time-removal model for long-term monitoring studies of cliff- 

nesting raptors that permits increased survey efficiency and, consequently, larger spatial 

inference (i.e., monitoring more territories). We focus our development of these methods in the 

context of a combined aerial and ground-based survey approach which permits efficient 

surveying at landscape scales. We investigate the performance of this model through simulation 

and a case study involving long-term monitoring of a golden eagle nesting population. The 

complex breeding ecology of golden eagles, including the potential for extreme fluctuation in 

nesting rate and use of alternative nests, presents a suitable basis for generalizing inference 

methods to other cliff-nesting raptor species. While there are numerous differences in the 

breeding ecology of these species (e.g., nesting substrates), we expect that the methods described 

here will have strong relevance to those species in which a proportion of the population is 

composed of territorial individuals that do not breed some in some years.
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3.2.2.2 Long-term monitoring with ground-based surveys

While our focus is on applying the aerial-ground survey protocol at large spatial scales, the 

development of these methods can be viewed as part of a broader, more efficient framework that 

permits larger spatial inference for a variety of designs. Towards this objective, we provide an 

extension of our multi-state, time-removal model to studies restricted to ground surveys. We do 

not consider designs that only include an aerial survey component based on a pilot study that 

found that the probability of detecting occupancy without breeding was poorly estimated in the 

absence of ground surveys (mean = 0.438, 95% CI: 0.192, 0.721). However, aerial survey (only) 

designs may be efficient when the breeding component alone is a reliable indicator of the 

territorial population size.

3.2.2.3 Population inventories with aerial and ground-based surveys

Long-term studies are necessary to understand the population dynamics of cliff-nesting raptors. 

However, such efforts are often not feasible over the vast, roadless areas that comprise much of 

these species’ ranges. Consequently, single-season (or intermittent) surveys (i.e., population 

inventories) may be necessary to fill gaps in our knowledge of the distribution of these species. 

In addition, as lands are opened for energy development or are subject to other forms of 

disturbance, land managers must assess the potential effects on cliff-nesting raptors and their 

alternative nests. These assessments will often be restricted to single-season surveys of 

landscapes for which little or no prior knowledge of nest locations exists. Herein, we develop a 

modified version of the aerial-ground survey methods and multi-state, time-removal model used 

for long-term monitoring that can be used to inventory populations over landscapes in which the 

number of nesting territories is unknown. Through simulation, we investigate the sampling 

design conditions (i.e., sample size and ground survey duration) under which the inventory 

model is applicable.

3.3 Methods

3.3.1 Long-term monitoring with aerial and ground-based surveys

3.3.1.1 Survey methods

We based our development of inference methods on a long-term monitoring study of golden 

eagles in Denali National Park and Preserve, Alaska (hereafter, Denali). The study area lies
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within the northern foothills of the Alaska Range primarily above treeline (>800 m) and is 

characterized by broad glacially carved valleys of shrub-tundra bordered by steep, disturbed 

slopes and barren rock outcrops (McIntyre et al. 2006).

We monitored 104 golden eagle territories in Denali annually from 2007-2016 using a 

combination of aerial and ground-based surveys. The locations of all nests within each territory 

were assumed to be known although occasionally newly constructed and previously unobserved 

nests were located. Via helicopter, an observer (C. McIntyre), surveyed nests within all nesting 

territories in late April or early May and recorded the presence or absence of an incubating eagle, 

eggs, or eggshells. The observer also made observations that, in the absence of egg laying 

evidence, were considered indicative of occupancy without breeding including: a recently 

refurbished nest, a mated pair of eagles, or some other territorial behavior. If no evidence of 

occupancy with or without breeding was detected, the helicopter landed at a vantage point and 

the observer conducted a ground survey. The ground survey included visually searching the area 

for eagles engaged in territorial behavior such as nest building, territorial defense, or courtship.

It generally lasted up to four hours or until a behavior indicative of occupancy was observed. A 

subset of surveys was also conducted entirely on foot and occasionally included multiple 

observers.

Because the Denali monitoring program is focused on inference at the park level and not 

larger spatial scales, an intensive level of effort is used to ensure that the occupancy state is 

known with certainty. Ground surveys occasionally lasted >4 hours and sometimes additional 

aerial and ground visits were made. However, our primary objective was to expand spatial 

inference through a more efficient application of this protocol; i.e., reduce the maximum effort 

spent on any nesting territory to a single aerial visit followed by a 1-2 hour ground survey. 

Therefore, in our case study, we used only a single aerial visit to nesting territories and censored 

(post-hoc) all ground surveys at 2 hours in order to specify a time-removal model for this 

component of the observation process. Because golden eagle breeding is related to prey 

abundance, we also compiled an index of two primary prey species, snowshoe hare (Lepus 

americanus) and willow ptarmigan (Lagopus lagopus) based on counts of made during routine 

field work from mid-April through late June (see McIntyre and Adams 1999 for further details).
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3.3.1.2 Model development

We developed a dynamic multi-state, time-removal occupancy model in a state-space 

framework, describing the probability of each nesting territory existing in one of three mutually 

exclusive states: 1) unoccupied; 2) occupied without breeding; and 3) occupied with breeding 

(Fig. 1). We specified the observations yi,t, for territory i = 1, 2 ,...I  and year t = 1, 2 ,...T  as 

multinomial random variables conditional on the true states zirt with cell probabilities ni,t,k for cell 

k  = 1, 2, ...K:

y it- (Eq. 3.1)

We described our observations as arising from a state-dependent, removal sampling 

process. The rows of the state detection matrix were dependent on the true state m with 

probabilities that summed to 1 (MacKenzie et al. 2009). The columns corresponded to the cell- 

specific probabilities of observing state l  (i.e., k[l]) where the first two corresponded to the aerial 

survey;

1 [3] 2[2] (Eq. 3.2)

P
0

NB,A

Si,t (1 - s lX) * p NB,A

k  = 3, 4 ,.K -1  were the individual intervals of the time-removal survey;

k [2]

(1 — pNB,A) * pNB,G * (1 — pNB,G)k 3

( 1  — Sl t) * ( 1 — p NB,A) * pNB,A  ̂ * yNB,G * (1  spNB,G)k- 3

and K  was the cell containing the probability of failing to observe occupancy at the end of the 

combined aerial-ground survey:

K[1]

(1 _  pNB,A) * (1 _  pNB,G)K-1

(1 — S l t) * ( 1 _  p NB,A) * ( 1 _  pNB,G)K- l

0
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The parameters of the state detection matrix were: p NB,A (the probability of detecting 

occupancy without breeding during the aerial survey), p NB,G (the probability of detecting 

occupancy without breeding during the ground survey for some time interval), and Si t (a binary 

indicator of whether the nest in which eggs were laid was surveyed).

In our single-visit approach, we assume the territorial population is closed, but condition 

on the territory’s state at the time of the survey (Fig. 1, box 5). Given that a nest contains eggs at 

the time of the survey and its contents are observed during the aerial survey, we assume that the 

(conditional) probability of detection is 1 (Fig. 1, box 3). We make the distinction between 

surveying an individual nest (i.e., directly observing its contents) and surveying a nesting 

territory. For example, one could visit a known nesting territory and unknowingly fly past a 

particular nest in one year and then find and observe the contents of the nest in a subsequent 

year, in which case, the nest is recorded as surveyed only in the latter visit while the territory is 

surveyed in both. Although we assume the conditional probability of detecting breeding is 1, we 

allow for incomplete surveying of individual nests in a territory. In long-term studies of species 

with territories composed of alternative nests, the probability of detecting breeding that ignores 

incomplete surveying of nests increases over time until all nest locations are known (although 

new nests are occasionally constructed). This process can induce negative bias in estimates of 

occupancy for the initial part of the study while also potentially confounding temporal effects on 

occupancy. While we did not apply the nest-level version of the model in the Denali long-term 

monitoring case study, we develop it here because we expect it could be used to improve 

inferences from other monitoring efforts.

In the nest-level formulation of the long-term monitoring model, we specified a Poisson 

process model for the expected frequency of use Xgi for nest g  = 1, 2, ...Gi in territory i:

log(^g,i)=  51 *Xgii (Eq. 3.3)

where Gi is the known number of nests in territory i, xgi is a covariate for each nest (e.g., nest 

condition, distance to some disturbance, etc.), and Si is a parameter to be estimated (Royle and 

Converse 2014). We did not include an intercept in this model because it would be confounded 

with the probability of breeding (Royle and Converse 2014); i.e., ^  is the effect on nest use 

frequency conditional on the territory existing in the breeding state. The model for nest use
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frequency serves a dual purpose, accounting for incomplete surveying of nests within territories 

and permitting ecological inferences about the use of individual nests for breeding.

The identity of the nest used for breeding in territory i and year t is a latent multinomial 

random variable:

n e s ti t~ M u ltin o m ia l(n 1i,n 2 i, . n ^  i, 1) (Eq. 3.4)

with cell probabilities ngji conditional on the territory-specific sum of nest use intensities:

ng, i = - c r r -  (Eq. 35)Lg=1Ag,l

We specified an indicator variable wg,t,t that is an outcome of the relation of the nest identity to 

the array index j  = 1, 2,..G, where G includes Gi (the real number of nests in territory i) padded 

with structural (i.e., non-existent) nests to the maximum number of nests known to exist in any 

territory. In doing so, we describe nest use in each territory as binary and also account for the 

fact that the number of real nests in a territory Gi:

(1 w hen n e s ti t  = g
wg,i,t = {o w hen n e s ti t ^  g  (Eq. 3 6)

We described breeding detection at the nest-level as the outcome whether the nest was 

used for breeding and whether its contents were observed in year t :

sg,i,t = wg,i,t * su rveyed gU  (Eq. 3.7)

Re-use of nests by cliff-nesting raptors is thought to extend over generations or centuries 

(Newton 1979), with some evidence from radiocarbon-dating guano that nests may be re-used 

over periods of several thousand years (Burnham et al. 2009) (Fig. 1, box 3). Thus, we assumed 

that any nest recorded as unsurveyed in prior years was available for breeding and may have 

been used in prior years. Over the <10 year period in which knowledge of nests in the study area 

is incomplete, we expect that relatively few nests enter the population at locations where there is 

no prior evidence of use; i.e., that most of these nests have been in use for timescales much 

longer than our study period. However, if  a nest is newly constructed, collapses, is absorbed by a 

different territory, or uncertainty exists about whether it was available for breeding in a prior 

year, it can be recorded as surveyed, precluding its potential imputation as used for breeding.
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Finally, the probability of detecting breeding within the territory is the binary outcome of 

summing the nest-level exposure variables:

The latent true states z ^  were specified as the outcome of conditional binomial 

probabilities using the parameterization of Nichols et al. (2007). The true states for the first year 

were multinomial random variables:

where y  is the first-year probability of occupancy and R  is the first-year probability of breeding 

(MacKenzie et al. 2009). The true states for subsequent years were multinomial random 

variables:

given m, the state in year t (MacKenzie et al. 2009). Thus, each row corresponds to a vector of 

probabilities that sum to 1 and are conditional on m. See Appendix 3.1 for a list of estimated 

parameters in the long-term monitoring model.

3.3.1.3 Case study

In the monitoring case study in Denali, we did not use nest-level data and assumed that all nests 

had been located in the 20 years prior to the period we used to illustrate our model. Thus, we 

applied the model described above under the assumption Sit  = 1 for all territories and years. We

(Eq. 3.8)

(Eq. 3.9)

with the probability vector:

= [1 — ip ^  * (1 — R) ^  * R] (Eq. 3.10)

Zi,tlziit - i - M u l t i n ( ^ t- 1[ziit- 1, ...], 1) 

with cell probabilities $t defined in the transition probability matrix as follows:

(Eq. 3.11)

(Eq. 3.12)

where ^t+ l and R[™\ are the probabilities of occupancy and breeding, respectively, in year t +1

80



censored all surveys at 2 hours, corresponding with the minimum duration for a survey in which 

occupancy was not detected (with the exception of three surveys which we treated as missing 

data). We used 12, 10-minute removal intervals for the ground survey component of the state 

detection matrix, although finer intervals could be used. Because a subset of surveys was 

conducted entirely on foot and, consequently, did not include an aerial survey, it was necessary 

to specify two different detection matrices.

Previous work in Denali indicated that both hare and ptarmigan abundance are important 

drivers of golden eagle reproductive dynamics (McIntyre and Adams 1999, McIntyre and 

Schmidt 2012). Therefore, we specified the following logit-linear models for the probabilities of 

occupancy and reproduction in year t+1 conditional on the state in year t (m):

where harest+1 and ptarmigant+1 were indices of the annual abundance of adult hares and 

ptarmigan. In other populations, appropriate drivers of reproductive dynamics, such as winter 

weather conditions (Steenhof et al. 1997), could be substituted for the prey indices we used here.

3.3.2 Long-term monitoring with ground-based surveys

Often monitoring studies are restricted to ground surveys, but the desire for increasing survey 

efficiency and expanding the spatial scale of the inference may exist. Extending the multi-state, 

time-removal model described above to these sampling designs is straightforward (see JAGS 

code in Appendix 3.5).

3.3.3 Population inventories with aerial and ground-based surveys

3.3.3.1 Survey methods

Population inventories differ from long-term monitoring designs in terms of three key 

considerations (Fig. 1, boxes 2a and 4a):

1) Knowledge of nest locations is incomplete;

2) Nests are most efficiently located using area search methods, unconstrained by any 

predetermined search path, making incomplete study area coverage highly likely;

lo g it  ( ^ t[+1) =  a l™] + a [™] * yea rt+1 

lo g it  (« [+ !) =  + P l™] * p re y t+!

(Eq. 3.13)

(Eq. 3.14)
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3) Multiple years of surveys are necessary for the spatial structure of the nesting territories 

to become evident, making it difficult in a single-season survey to determine the territory 

identity of individual nests without error.

We developed a population inventory approach that addresses the above considerations in 

the framework of combining the aerial-ground survey protocol from the long-term monitoring 

application with area search methods to locate nests. Under this protocol, the area is overlain 

with a grid and the observer crew conducts an initial area search of a series of grid-blocks (e.g.,

17 km x 17 km) via helicopter. If a nest cluster (i.e., >1 nests located closely together) is located, 

it would be assessed for evidence of occupancy with or without breeding using previously 

described criteria. If no such evidence is found, the helicopter would land and the observer(s) 

would conduct a ground survey, remaining at that location until behavior indicative of occupancy 

without breeding is observed or the pre-determined maximum survey duration is reached (e.g.,

90 minutes). Following the initial survey, the observer crew would identify areas of the block in 

which habitat exists but no nests were located. They would then return to the block to conduct a 

targeted search of the identified areas (i.e., a 2-pass area search removal survey). Locating a new 

nest cluster in the second pass would trigger the aerial and ground assessments of its occupancy 

state. In a pilot inventory study that we conducted adjacent to Denali, the estimated probability 

of detecting an occupied (with or without breeding) golden eagle nest cluster after two 

independent surveys was 0.98, indicating that two area search surveys are sufficient for 

inventorying a golden eagle population. However, additional pilot studies would likely be needed 

to determine the optimal number of surveys necessary for other species that do not restrict 

nesting to stick nests (e.g., gyrfalcon).

After the survey is completed, we would group nests into clusters such that all nests 

within a cluster were within a specified distance from its centroid (e.g., <350 m). The choice of 

this distance threshold would ensure that detection of nests at that particular level of clustering 

would be highly correlated (Martin et al. 2011), but that individual nest clusters would be 

detected independently of one another. In addition, in a population inventory for a species with 

alternative nests, basing inference on nest clusters avoids the potential for misclassification of the 

territory identity of an individual nest. For species in which alternative nests are generally 

clustered on a single cliff face, the estimated population of occupied nest clusters may closely 

correspond to the number of occupied territories. However, for species in which alternative nests
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may be located on multiple cliff faces, the estimated population of occupied nest clusters 

technically corresponds to the number of nest clusters used in the study area because an actual 

nesting territory may overlap multiple nest clusters, each of which could show evidence of use in 

a given year (e.g., refurbishment).

The area searches for nests would not be constrained by a predetermined search path, 

which would result in incomplete coverage of the study area. Failure to account for incomplete 

survey coverage could result in positive bias in population estimates. Therefore, we would adopt 

a spatial sampling approach by gridding the study area at a resolution at which topographic 

variation is predictive of the distribution of nest clusters (e.g., a grid composed of 250 x 250 m 

cells) and that precludes the overlap of multiple nest clusters in a single grid cell. Nest cluster 

presence would be determined by the intersection of its centroid with the grid cell. We would 

determine whether a cell was surveyed if the survey track approached within a specified distance 

(e.g., the furthest allowed distance from any two nests in a cluster). While our accounting of 

incomplete survey coverage is admittedly coarse, we expect it will capture much of the variation 

in the probability of detecting a nest cluster by specifically identifying those areas where the 

probability of detecting a nest cluster is 0. If a cell is not surveyed, then observations for these 

cell visits are treated as missing data. In addition, gridding of the study area allows incorporation 

of spatial covariates related to nest cluster distribution.

3.3.3.2 Model development

We developed a single-season, multi-state occupancy model for a combined aerial and ground 

survey conducted over a gridded study area for which we have limited or no prior knowledge of 

nest locations. We formulated the model in a state-space framework, describing the probability 

of each grid cell existing in one of four mutually exclusive states: 1) nest cluster absent; 2) nest 

cluster present but unoccupied; 3) nest cluster present and occupied without breeding; and 4) nest 

cluster present and occupied with breeding. We described the observations as arising from a 

removal sampling process and used an expanded version of the state detection matrix from the 

long-term monitoring model. This version of the matrix includes the additional probabilities of 

detecting unoccupied and occupied nest clusters, pNU and pNO, respectively. We included both 

of these parameters because we expected that nest cluster detection could differ due to the 

availability of stronger cues around occupied nest clusters (e.g., fresh whitewash, the presence of 

birds within the nesting territory, refurbishment materials, etc.). In addition, this version differs
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from its long-term monitoring counterpart in that we assume complete sampling of all nests 

within a cluster. We make this assumption because we are making inference at the level of the 

nest cluster, not the nesting territory that may contain multiple nest clusters located >1 km apart. 

Presumably, we have delineated the nest clusters in a manner that ensures that detections of 

individual nests within nest clusters are highly correlated. In a few cases, we may detect a nest 

cluster, but not detect the one nest in which eggs were laid. However, these territories may be 

still classified as members of the population, albeit in the non-breeding state. For population 

inventories, we lack a temporal context in which to place the estimated nesting rate, making 

estimation of the composite population (nest clusters occupied with and without breeding) the 

overriding objective. In Appendix B, we provide further details of model structure and of a 

simulation study used to assess model performance at different survey durations and sample 

sizes.

3.3.4 Impl ementati on

We fit all models in a Bayesian framework using JAGS version 4.0.0 (Plummer 2003) via the 

jagsUI package (Kellner 2016) in program R 3.2.2 (R Core Team 2015). We specified vague 

normal priors for all regression coefficients and uniform (0, 1) priors for all parameters on the 

real scale. For the long-term monitoring case study, summaries of the posterior distribution were 

calculated from two Markov chains run for 85,000 iterations with a 10,000 iteration burn-in and 

thinning every 3 draws. For the simulation study, summaries of the posterior distribution were 

calculated from one Markov chain run for 14,000 iterations with a 4,000 burn-in and thinning 

every 2 draws. We used the Gelman-Rubin diagnostic (Brooks and Gelman 1998) to assess 

convergence and scaled continuous covariates (mean = 0, SD = 1) to improve convergence 

properties. We ran 500 simulations and report the average parameter estimates, average relative 

bias, root mean squared error (RSME), and coverage (percentage of 95% Bayesian credible 

intervals for parameters that overlap the true values). See Appendices 3.4 and 3.5 for data 

generation and JAGS code from the monitoring and inventory simulation studies.
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3.4 Results

3.4.1 Simulation study: long-term monitoring model with aerial and ground-based methods 

Simulations indicated adequate (near nominal) coverage and low relative bias (<0.05) for all 

parameters except the covariate effects on the transition probabilities for the unoccupied state 

(Table 3.3.1). The latter group of effects showed moderate relative bias between 0.06-0.08, 

likely due to relatively few territories transitioning from the unoccupied state (Table 3.3.1).

3.4.2 Case study: long-term monitoring with aerial and ground-based methods in Denali

In the long-term monitoring case study, ptarmigan and hare abundance strongly affected the 

probability of breeding, as expected (Table 3.3.2). Consequently, fluctuation in prey availability 

resulted in highly variable nesting rates ranging from 0.11 (95% CI: 0.06, 0.16) in 2013 to 0.72 

(95% CI: 0.68, 0.76) in 2009. However, composite occupancy was stable over the study period 

ranging from 0.88 to 0.92. During the ground survey, the probability of detecting occupancy 

without breeding after two hours of observation was 0.79 (95% CI: 0.73, 0.84), suggesting that 

2-hours of observation from the ground would be adequate for long-term monitoring studies of 

golden eagles lacking an aerial survey component. After the combined aerial-ground survey, the 

probability of detecting occupancy without breeding was 0.91 (95% CI: 0.88, 0.93), suggesting 

that monitoring studies of golden eagles using the combined method approach could reduce the 

ground observation period to 60-90 minutes.

3.5 Discussion

We developed a framework for expanding spatial inference in inventory and monitoring studies 

of cliff-nesting raptor populations based upon a more efficient allocation of effort and the 

application of a multi-state, time-removal model. While our model can be applied to designs 

restricted to ground surveys, the combination of aerial and ground-based occupancy surveys are 

optimal for surveying at large spatial scales. Specifically, our multi-method approach leverages 

the fact that aerial surveys are optimal for detecting nests, breeding, and refurbishment of nests, 

but ground surveys provide a greater opportunity for observing behaviors indicative of 

occupancy without breeding. Under our combined aerial-ground survey protocol, the maximum 

effort spent on any known nesting territory or cluster could be reduced by up to almost 90% of
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that recommended by standard protocols; i.e., a single, 60-90 minute ground survey compared to 

>2, 4-hour surveys (USFWS 2003, Pagel et al. 2010).

Given our focus on population estimation, we expect that our instantaneous view of the 

occupancy state will be more efficient. While standard approaches estimate the probability of 

breeding in a given year, we assume the territorial population is closed, but condition on the 

territory’s state at the time of the survey. If surveys are conducted after clutches are initiated in 

most territories, we would expect minimal loss of sensitivity for understanding temporal 

variation in nesting rates in long-term monitoring applications. For population inventories, we 

lack a temporal context in which to place the estimated nesting rate, making estimation of the 

composite population (occupancy with or without breeding) the overriding objective.

Established long-term monitoring programs for cliff-nesting raptors, including the one in 

Denali, optimize effort over time through the accumulation of knowledge about individual nest 

locations. In such scenarios, using repeated surveys to estimate the probability of detecting an 

individual nest would be inefficient. Instead, we developed a model that accommodates 

incomplete nest surveying based on the fact that nests are often reused over long timescales 

(Newton 1979, Burnham et al. 2009) and that the probability of detecting breeding is ~1 given 

that a nest contains eggs at the time of the survey and its contents are observed. This approach 

serves a dual purpose, accounting for imperfect observation of the breeding state and allowing 

inferences about variation in the frequency of nest use which may be of interest for predicting 

potential impacts on individual nests.

We extended our multi-method approach to population inventories while also 

accommodating incomplete knowledge of nest locations. Our simulation results indicated that a 

90-minute ground survey was sufficient to yield relatively unbiased estimates of the probability 

of detecting occupancy without breeding for golden eagles (see Appendix 3.2). However, the 

sample sizes necessary for unbiased estimation of occupancy without breeding may prove 

challenging for some inventory applications (see Appendix 3.2), primarily due to parsing of this 

sample size from multiple survey platforms and states. In our long-term monitoring case study, 

monitoring of 104 territories over a 10-year period yielded only 241 ground surveys. The 

problem of an insufficient sample size for estimating the probability of detecting occupancy 

without breeding during the ground survey in a population inventory could be resolved by 

committing to multiple seasons of surveys and/or the use of an informative prior that reflects our
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knowledge about this parameter (McCarthy and Masters 2005). Based on our estimates for 

golden eagle and an experienced observer, a suitable prior for the logit-scale intercept of the 

probability of detecting occupancy without breeding during a 10-minute interval of the ground 

survey would be Normal(mean = -1.98 , SD = 0.09), or, less informatively, Uniform(0.10, 0.14) 

on the real scale. For other species, existing monitoring studies could be reanalyzed to derive a 

suitable informative prior for new inventory surveys.

Interspecific differences in distribution and detectability of nests and the occupancy states 

will necessitate adjustments of the sampling protocol when applied to species other than golden 

eagle. For example, Kery and Royle (2016) assessed occupancy of peregrine falcon breeding 

cliffs using a continuous-time observation model and found that detection probability 

approached 1 after ~20 minutes. We also expect that the nest-level component of our model may 

be unnecessary for species in which alternative nests are generally clustered on a single cliff face 

(e.g., falcons). In addition, we expect that some species may be poorly suited for inventorying in 

a single season. For example, in suitable habitat in Alaska, gyrfalcons are found at densities of 1 

pair per 200-1000 km2 (Swem et al. 1994). In addition, gyrfalcons and peregrine falcons do not 

build or refurbish nests, but instead use nests constructed by other species or simply lay their 

eggs in a bowl-shaped depression on a cliff ledge (i.e., a scrape) (Burnham et al. 2009). Scrapes 

may be less detectable than the stick nests constructed by some cliff-nesting raptor species. The 

sparse distribution and presumably lower detectability of gyrfalcon nests may necessitate 

accumulating the sample of nests over time. Despite these challenges, the sparse distribution of 

gyrfalcon is emblematic of the need to apply efficient designs for landscape-scale surveys of 

cliff-nesting raptors that by necessity must assume the presence of state uncertainty. Lastly, we 

reiterate that our approach has the strongest relevance for species and populations in which the 

breeding component, alone, is not a reliable predictor of the territorial population size.

3.6 Management implications

Existing methods for cliff-nesting raptors are often inefficient and provide limited spatial 

inference. Consequently, limited trend and distributional data exists for many cliff-nesting raptor 

species particularly over the vast, remote sections of their ranges. This lack of information 

constrains our capacity for effective management of these species (Kochert and Steenhof 2002). 

We expect that our inference framework for population inventories and long-term monitoring 

will be broadly applicable across breeding assemblages of cliff-nesting raptor species and has the
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capacity to expand the scale of spatial inference of these efforts. However, there exists additional 

room for increasing the efficiency of these surveys. For example, in population inventory studies, 

integrating fixed-wing aircraft (roughly a quarter the cost of a helicopter) into the design may 

greatly reduce costs. We could envision a hybrid approach in which fixed-wing aircraft locate 

nests in an area search-removal design, followed by a combined aerial-ground survey 

accomplished via helicopter to assess the occupancy state of the observed nest clusters. 

Additional studies are needed to assess the effectiveness of using fixed-wing aircraft to 

determine the occupancy state (but see Booms et al. 2010). We expect that the first step in 

optimizing these surveys involves abandoning the intensive level of effort necessary to assume 

state certainty. Additional steps will often be study-area specific decisions about how best to 

integrate the various survey platforms.
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Figure 3.1. Conceptual diagram of inference framework for population inventories and long-term 

monitoring of cliff-nesting raptors.
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Figure 3.2. Scenario implemented in the simulation study for the long-term monitoring model 

involving a declining population with a nesting rate that is synchronized with fluctuation in prey 

abundance (top panel). The bottom panel shows the confounding that would arise under single

state inference between a constant, composite p  (the probability of detecting non-breeding or 

breeding occupancy for the aerial survey; flat line) and the breeding rate. The true p  (dashed line 

with unfilled triangles) accounts for the actual proportion of breeding and non-breeding 

territories in each year and their corresponding detection probabilities. The data generating 

values for detecting occupancy without breeding and detecting occupancy with breeding (given 

observation of the nest contents) were 0.56 and 1, respectively. The probability of detecting 

breeding p R was simulated <1 in the initial years (dashed line with filled triangles) to reflect the 

accumulation of known nest locations.
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Table 3.1. Estimates from the long-term monitoring simulation study used to assess the 

performance of the nest-level, multi-state model. The bracketed superscript corresponds to the 

state in the previous year. Estimates are based on 500 simulations.

Parameter True value Mean RMSE Bias CI coverage

0.56 0.56 0.06 -0.01 0.93
pNB,G 0.12 0.12 0.03 -0.01 0.93

R 0.60 0.57 0.15 -0.05 0.94

W 0.70 0.70 0.10 0.00 0.94

[1] a [0 ] 0.61 0.65 0.31 0.07 0.93

[2] a [0 ] -0.58 -0.59 0.21 0.02 0.96

[3] a l0 ] 0.26 0.25 0.20 -0.04 0.94
[1]a x *preyt 1.71 1.85 0.39 0.08 0.96

[2]* a x *preyt 0.68 0.69 0.20 0.00 0.95
[3]*preyt 0.61 0.63 0.16 0.02 0.94

-0.25 -0.26 0.18 0.04 0.95

1.00 1.04 0.24 0.04 0.96

t f ] 1.25 1.29 0.21 0.06 0.94

*yeart -0.40 -0.40 0.17 0.00 0.95

*yeart -0.40 -0.42 0.27 0.04 0.95

*yeart -0.40 -0.41 0.24 0.04 0.95

Si 1.00 1.00 0.20 0.00 0.95
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Table 3.2. Estimates from long-term monitoring of golden eagles in Denali National Park, 

Alaska (2007-2016). The bracketed superscript corresponds to the state in the previous year. 

Bold numbers indicate estimates with 95% credible intervals that do not include 0.

Parameter Mean SD 95% CI
pNB,A 0.56 0.03 (0.51, 0.61)
pNB,G 0.12 0.01 (0.10, 0.14)

R 0.74 0.05 (0.64, 0.83)

W 0.89 0.04 (0.81, 0.95)

[1] a [0 ] 0.61 0.84 (-0.92, 2.39)

[2]
a o -0.58 0.13 (-0.84, -0.32)

u 0 0.26 0.13 (0.01, 0.51)

*harest 0.12 1.25 (-2.51, 2.46)

*harest 0.34 0.16 (0.03, 0.66)

*harest 0.40 0.16 (0.09, 0.71)

*ptarmigant 1.71 1.33 (-0.48, 4.80)

*ptarmigant 0.68 0.14 (0.41, 0.96)

a 2  ̂*ptarmigant 0.61 0.17 (0.29, 0.95)

-1.03 0.33 (-1.69, -0.39)

8.21 1.32 (5.22, 9.93)

P f 8.43 1.18 (5.70, 9.94)

*harest 0.10 0.44 (-0.77, 1.00)

P ^  *harest -0.29 2.42 (-4.91 , 4.86)

P ^  *harest 0.39 2.35 (-3.93, 5.22)

P ^  *ptarmigant -0.22 0.49 (-1.24 , 0.68)

P ^  *ptarmigant 0.03 2.67 (-4.25, 5.91)

P * p ta rm ig a n t 0.74 2.05 (-2.80 , 5.22)
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Appendix 3.1. List of estimated parameters in the long-term monitoring (LTM) and population 

inventory (INV) models.

Model Parameter Description

LTM p NBA Probability of detecting occupancy without breeding during the aerial survey.

pNBG
Probability of detecting occupancy without breeding during a time-removal 
interval of the ground survey.

s ut A binary indicator of whether the nest in which eggs were laid was surveyed.

W The first-year probability of occupancy.

R The first-year probability of breeding.

Si A covariate on the frequency of use (7&I) for nest g in territory i.

ng,i The probability that eggs were laid in nest g in territory i.

\b[m]rt+ i Probability of occupancy in year t +1 given m, the state in year t.

n [m]
Kt+1 Probability of breeding in year t +1 given m, the state in year t.

INV p NU Probability of detecting an unoccupied nest cluster.

pNO Probability of detecting an occupied nest cluster (with or without breeding).
p NBA Probability of detecting occupancy without breeding during the aerial survey.

pNBG
Probability of detecting occupancy without breeding during a time-removal 
interval of the ground survey.

W Probability of nest cluster presence in a cell.

U Probability of occupancy.

R Probability of breeding.
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Appendix 3.2. Model development for population inventories of cliff-nesting raptors and a 

simulation study to assess model performance at different sample sizes and survey durations.

Model development

We developed a single-season, multi-state occupancy model for a combined aerial and 

ground (time-removal) survey conducted over a gridded study area for which we have limited or 

no prior knowledge of nest locations. We formulated the model in a state-space framework, 

describing the probability of each grid cell existing in one of four mutually exclusive states: 1) 

nest cluster absent; 2) nest cluster present but unoccupied; 3) nest cluster present and occupied 

without breeding; and 4) nest cluster present and occupied with breeding.

We described the observations as arising from a state-dependent, removal sampling 

process and used an expanded version of the state detection matrix from the long-term 

monitoring model. The observationsyt for grid  cell i = 1, 2,.. .I were multinomial random 

variables with probabilities nk for cell k = 1, 2, ...K  conditional on the true states zt,:

y i~ M u ltin o m ia l(n k [Zi, ...],1) Eq. 16

The rows of the state detection matrix were dependent on the true state m with 

probabilities that summed to 1 (MacKenzie et al. 2009). The columns corresponded to the cell- 

specific probabilities of observing of state l (i.e., k[l]). For a 9-interval time-removal survey and 

2-pass aerial removal survey, the state detection matrix is:

1[4] 2[3] k[3] = 3, 4,...11 Eq. 17
1 ' 0 0 0
2 0 0 0
3 0 pNO * pNB,A pNO * (1 — pNB,A) * pNB,G * (1 — pNB,G)k- 3
4 pNO 0 0

12[2] 13[4] 14[3]
0 
0

pNO * (1 — pNO) * pNB,G 
0

pNU
pNO * (1 — pNB,A) * (1 — pNB,G)9 0

0 p N0 * (1 — p N0)

0
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k[3] = 15, 16,.. .23

(1 — pNO) * pNO * (1 — pNB,A) * pNB,G * (1 — pNB,G)k-1S

0
0

0

24[2]

(1 — p N0) * p
p

-.NO
NU

0
* (1 — p NU)

* (1 — p NB,A) * (1 
0

p
( 1 — p

25[1]
1

-n u ) * (1 p NU)
NB,G)9 (1 — p N0) * (1 — p N0) 

(1 — p N0) * (1 — p N0)

wherep NU is the probability of detecting a nest cluster given it is unoccupied, p NO is the 

probability of detecting a nest cluster given that it is occupied, p nbA is the probability of 

detecting occupancy without breeding during the aerial survey (given detection of the nest 

cluster), andp NB’G is the probability of detecting occupancy without breeding during a time 

interval of the ground survey (given detection of the nest cluster). We included the probabilities 

of detecting unoccupied and occupied nest clusters, p NU andp NO, respectively, because we 

expected that nest cluster detection could differ due to the availability of stronger cues around 

occupied nest clusters (e.g., recent whitewash, the birds themselves, etc.).

Unlike the long-term monitoring model, we assume complete surveying of nests within a 

cluster. In a few cases, we may detect a nest cluster, but not detect the one nest in which eggs 

were laid. However, these territories may be still classified as members of the population, albeit 

in the non-breeding state. For population inventories, we lack a temporal context in which to 

place the estimated nesting rate, making estimation of the composite population (nest clusters 

occupied with and without breeding) the overriding objective.

The true states zi are multinomial random variables with state probabilities 0:

Z i~ M u ltin ($ ,1 )  Eq. 18

The vector of state probabilities are:

0  =  [1 — Tp ^  * (1 — U) ^  * U * (1 — R) ^  * U * R] Eq. 19
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where w is the probability of nest cluster presence in a cell, U  is the probability of occupancy, 

and R  is the probability of breeding. The probability of nest cluster presence w could also be 

modeled as a function of covariates indicative of cliff-nesting habitat (e.g., slope and elevation).

Simulation study

To test the conditions under which our inventory methods would be applicable, we 

conducted a simulation study in which we varied the number of cells (300 or 400) in state three 

(nest cluster present with occupancy without breeding) and the duration of the time-removal 

survey (60 or 90 minutes). We setp NU, p NO, andp NB,A equal to their respective estimates from a 

pilot inventory study that we conducted for golden eagle in the central Alaska Range. We set 

p NBG equal to its estimate from the long-term monitoring case study.

Implementation

We fit models in a Bayesian framework using JAGS version 4.0.0 (Plummer 2003) via 

the jagsUI package (Kellner 2016) in program R 3.2.2 (R Core Development Team 2015). We 

specified vague normal priors for all regression coefficients and uniform (0, 1) priors for all 

parameters on the real scale. Summaries of the posterior distribution were calculated from one 

Markov chain run for 18,000 iterations with a 6,000 burn-in and thinning every 2 draws. We 

used the Gelman-Rubin diagnostic (Brooks and Gelman 1998) to assess convergence and scaled 

continuous covariates (mean = 0, SD = 1) to improve convergence properties. We ran 500 

simulations for each scenario and report the average parameter estimates, average relative bias, 

root mean squared error (RSME), and coverage (percentage of 95% Bayesian credible intervals 

for parameters that overlap the true values).

Results

Estimates of the probability of detecting non-breeding occupancy during the time- 

removal survey (pNB'G) showed high relative bias (>0.16) under scenarios with 60-minute ground 

surveys, regardless of the sample size of nonbreeding nest clusters (Table 3.2-1). Under 

scenarios with 90-minute ground surveys, estimates forp NBG showed moderate relative bias 

(<0.07) and near nominal coverage (Table 3.2-1). Estimates for the probability of detecting an 

occupied nest cluster (pNO) were unbiased under all scenarios. In contrast, the probability of 

detecting an unoccupied nest cluster (pNU) showed high relative bias (>0.09) under all scenarios.
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However, the estimated number of unoccupied nest clusters is not part of the estimate for the 

territorial population. Under all scenarios, estimates for the territorial population size (breeding 

and nonbreeding nest clusters) showed negligible relative bias (<0.01), but the RMSE for these 

estimates was lower under scenarios with 90-minute ground surveys (Table 3.2-1).
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Table 3.2-1. Estimates from the population inventory simulation study using the single-season, 

multi-state removal model. The derived parameter Noccupted is the sum of the grid cells containing 

an occupied nest cluster (with or without breeding). Estimates are based on 500 simulations.

Nonbreeding Duration True CI

clusters (minutes) Parameter value Mean RMSE Bias coverage

300 60 pNO 0.55 0.61 0.06 0.10 0.93
pNU 0.86 0.85 0.02 0.00 0.94
pNB,A 0.44 0.45 0.04 0.03 0.97
pNB,G 0.12 0.15 0.03 0.19 0.96

N occupted 500 494.15 22.19 -0.01 0.97

400 60 p NO 0.55 0.62 0.07 0.12 0.94
p NU 0.86 0.85 0.01 0.00 0.97
pNB,A 0.44 0.46 0.04 0.04 0.97
pNB,G 0.12 0.14 0.03 0.16 0.97

N occupted 600 591.59 25.10 -0.01 0.96

300 90 p NO 0.55 0.60 0.05 0.09 0.91
p NU 0.86 0.85 0.02 0.00 0.94
pNB,A 0.44 0.44 0.03 0.01 0.96
pNB,G 0.12 0.13 0.02 0.07 0.96

N occupted 500 500.73 17.06 0.00 0.96

400 90 p NO 0.55 0.61 0.06 0.10 0.93
p NU 0.86 0.85 0.01 0.00 0.96
pNB,A 0.44 0.44 0.03 0.00 0.96
pNB,G 0.12 0.13 0.02 0.06 0.96

N occupted 600 601.96 19.19 0.00 0.96
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Appendix 3.3. Data generation and JAGS model code used in the simulation study for the multi

state, time-removal model for long-term monitoring studies using aerial and ground-based 

surveys. Includes the nest-level model.

# zero-truncated Poisson 
rtpois <-

function(N, lambda=NA)
{

if (is.na(lambda) == TRUE) return(NA) 
qpois(runif(N, dpois(0, lambda), 1), lambda)

}

#Ptarmigan annual abundance index data
prey<-c(5.00, 4.25, 6.50, 6.25, 12.00, 15.00, 22.00, 18.10, 9.20, 3.75, 4.36, 6.54, 8.60, 12.60, 
10.70, 9.25, 12.87, 16.00, 10.70) 
prey<- scale(prey)

nyears<-20
T<-2

nterr<- 150 #number of territories
lam.nests<-3 #mean number of alternative nests in a territory 
max.nests<-8 #max number of nests in a territory (use in padded matrix) 
n.states<-3 #[1] not occupied [2] non-breeding occupancy [3] breeding occupancy

PSI.STATE1<- c(.3,.3,.4) #year one state probabilities

# Generation of simulated data
# Define mean survival, transitions, recapture, as well as number of occasions, states, 
observations and released individuals
alpha2.T<-alpha1.T<-alpha0.T<-alpha2.R<-alpha1.R<-alpha0.R<-rep(NA,n.states)

alpha0.R[1]<-0.606 #intercept for reprod
alpha0.R[2]<--.581
alpha0.Rp]<-.261

alpha1.R[1]<-1.71 #prey effect on reprod
alpha1.R[2]<-0.684
alpha1.R[3]<-0.614

alpha0.T[1]<--.25 #int occ
alpha0.T[2]<-1
alpha0.T[3]<-1.25

alpha1.T[1]<--.4 #trend on occ
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alpha1.T[2]<--.4
alpha1.T[3]<--.4
year0<-1:19
year1<-as.vector(scale(year0[1:nyears])) 
psiT0<-psiT1<-psiT2<-psiR0<-psiR1<-psiR2<-rep(NA,nyears-1) 
for (t in 1:(nyears-1)){
psiT0[t]<-1/(1+exp(-(alpha0.T[1]+alpha1.T[1]*year1[t]))) 
psiT1[t]<-1/(1+exp(-(alpha0.T[2]+alpha1.T[2]*year1[t]))) 
psiT2[t]<-1/(1+exp(-(alpha0.T[3]+alpha1.T[3]*year1[t]))) 
psiR0[t]<-1/(1+exp(-(alpha0.R[ 1]+alpha1.R[ 1 ] *prey[t]))) 
psiR1[t]<-1/(1+exp(-(alpha0.R[2]+alpha1.R[2]*prey[t]))) 
psiR2[t]<-1/(1+exp(-(alpha0.R[3]+alpha1.R[3] *prey[t])))
}
PSI.STATE <- array(NA, dim=c(n.states, n.states, nterr, nyears-1)) 
for (i in 1:nterr){ 

for (t in 1:(nyears-1)){
PSI.STATE[,,i,t] <- matrix(c(
1-psiT0[t],psiT0[t]*(1-psiR0[t]),psiT0[t]*psiR0[t], 
1-psiT1[t],psiT1[t]*(1-psiR1[t]),psiT1[t] *psiR1[t],

1-psiT2[t],psiT2[t]*(1-psiR2[t]),psiT2[t]*psiR2[t]), nrow = n.states, byrow = TRUE)
} #t 

} #i

#simulate number of nests in each territory as zero-truncated Poisson 
n.nests<-rtpoi s(nterr,lam.nests) 
n.nests[n.nests>max.nests]<-max.nests #left truncate

#entry probs is the proportion of nests found in each year 
entry.probs<-c(.75,.07,.06,.05,.04,0.03,0,0,0,0,0,0,0,0,0,
0,0,0,0,0)
#entry.probs<-c(1,rep(0,nyears-1)) #if found all nests in 1st year

found<-w.nest<-array(0,c(max.nests,nterr)) 
surveyed.nest<-array(0,c(max.nests,nterr,nyears)) 
for (j in 1:nterr){ 

w.nest[1:n.nests[j],j]<-1 #w.nest is structural indicator if  real nest 
found[1:n.nests[j],j]<-sample(1:nyears, n.nests[j], replace=TRUE, prob=entry.probs)

}
found[found==0]<-nyears+1 #if never found this nest

#create surveyed.nest array with trailing 0s until found nest 
for (i in 1:max.nests){ 
for (j in 1:nterr){ 
for (t in 1:nyears){ 

ifelse(found[i,j ]<=t,surveyed.nest[i,j ,t]<- 1,surveyed.nest[i,j ,t]<-0)
}}}
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terr.surveyed<-apply(surveyed.nest,c(2,3),max,na.rm=T) #some territories may have 0 nests 
found in a year(s)

lam<-x<-nest.probs<-matrix(0,nrow=max.nests,ncol=nterr)
znest<-array(0,dim=c(max.nests,nterr,nyears))

#create binary covariate for nest use intensity (e.g., poor or good condition nest, assumed 
#constant across time for simplicity) 
for (i in 1:max.nests){ 
for (j in 1:nterr){ 

x[,j ]<-rbinom(max.nests,1,.6)
}}
b1<-1

#expected nest use intensity 
for (i in 1:max.nests){ 
for (j in 1:nterr){ 

lam[i,j]<-(exp(b1*x[i,j]))*w.nest[i,j]
}}
n.lam<-rep(NA,nterr) 
for (j in 1:nterr){ 
n.lam[j]<-sum(lam[,j])

#conditional nest use intensity 
for (i in 1:max.nests){ 

nest.probs[i,j]<-lam[i,j]/n.lam[j]
}}

#simulate 1 nest used in each territory 
for (j in 1:nterr){ 
for (k in 1:nyears){ 

znest[,j,k]<-rmultinom(1,1,nest.probs[,j])
}}
R.nest<-which(znest == 1, arr.ind=T)
R.nest2<-array(NA,dim=c(nterr,nyears))

for (i in 1:nrow(R.nest)){
R.nest2[R.nest[i,2],R.nest[i,3]]<-R.nest[i,1]

}

# Multinomial trials for state transitions 
CH.TRUE <- matrix(nrow=nterr,ncol=nyears) 

for (i in 1:nterr){
CH.TRUE[i,1] <- which(rmultinom(1, 1, PSI.STATE1)==1) 

for (t in 2:nyears){ 
state <- which(rmultinom(1, 1, PSI.STATE[CH.TRUE[i,t-1],,i,t-1])==1)
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CH.TRUE[i,t] <- state
}}
CH.TRUE.2<-CH.TRUE.2_3<-CH.TRUE.3<-CH.TRUE
CH.TRUE.3[CH.TRUE!=3]<-0
CH.TRUE.3[c H.TRUE.3==3]<-1
Nbreed<-colSums(CH.TRUE.3)

CH.TRUE.2_3[CH.TRUE==1]<-0
CH.TRUE.2_3[cH.TRUE==2]<-3
N23<-colSums(CH.TRUE.2_3)/3

CH.TRUE.2[CH.TRUE==1]<-0
CH.TRUE.2[cH.TRUE==3]<-0
CH.TRUE.2[cH.TRUE==2]<-1

#detection of breeding occupancy dependent on if you surveyed the 1 nest used for breeding
mu.pR<-array(NA,dim=c(max.nests,nterr,nyears))
for (i in 1:max.nests){
for (j in 1:nterr){
for (t in 1:nyears){

mu.pR[i,j,t]<-CH.TRUE.3[j,t]*znest[i,j,t]*surveyed.nest[i,j,t] #breeding=1 * which nest 
w/eggs * surveyed that nest
}}}
mu.pR2<-apply(mu.pR,2:3,sum) #detection prob 
nest.missed<-CH.TRUE. 3 -mu.pR2

#create multinomial probs for time-removal process for state 2 (occupancy with no breeding) 
C<-6 #6, 10 minute periods
pNB<-c(.563,.122) #pNB[1] (aerial survey), pNB[2] (ground survey; for a 10 min interval) 
occprobs<-rep(0,C+2)
occprobs[1]<-pNB[1] #detected in aerial survey
occprobs[C+2]<-(1-pNB[1])*((1-pNB[2])AC) # 1...1 not detected in aerial survey or any ground 
survey time interval 
for (i in 2:(C+1)){

occprobs[i]<-(1-pNB[1])*pNB[2]*((1-pNB[2])A(i-2)) #1..2..not detected in aerial survey, but 
detected on ground in time interval i-1
}
y.occ<-array(0,dim=c(nterr,nyears,C+2))

#simulate observations of occupancy with no breeding
#if missed breeding in aerial survey, can still detect occupancy with no breeding on ground 
survey
for (i in 1:nterr){ 
for (t in 1:nyears){

if(CH.TRUE.2[i,t]==1){y.occ[i,t,]<-rmultinom(n=1, size=1, prob = occprobs)} 
if(cH.TRUE.2[i,t]==0 & CH.TRUE.3[i,t]==0){y.occ[i,t,C+2]<-1}
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if(CH.TRUE.3[i,t]==1 & nest.missed[i,t]==1){y.occ[i,t,]<-rmultinom(n=1, size=1, prob = 
occprobs)} #if missed nest, can still detect occ
}}

#determine if missed any breeding nests 
y.B<-array(0,dim=c(nterr,nyears)) 
for (i in 1:nterr){ 
for (t in 1:nyears){ 

if(CH.TRUE.3[i,t]==1 & nest.missed[i,t]==0){y.B[i,t]<-mu.pR2[i,t]} 
if(CH.TRUE.3[i,t]==0){y.B[i,t]<-0}

}}

zst<-CH.TRUE #inits for latent states

#create matrix for observed nests(within territory ID) used for breeding - NAs for no nest
observed either b/c missed or not breeding
R.nest3<-R.nest2
R.nest3[y.B==0]<-0
nest<-R.nest3
nest[nest==0]<-NA

####create cumulative offset relating territory ID to vector of nests 
terr2<-w.nest 
for (i in 1:max.nests){ 
for (j in 1:nterr){ 

ifelse(w.nest[i,j ]== 1,terr2[i,j ]<-j,terr2[i,j ]<-NA)
}}
x[is.na(terr2)] <-NA
x<-x[!is.na(as.vector(x))]
terr2<-terr2[!is.na(as.vector(terr2))]
nest.offset1<-nest.offset<-cumsum(n.nests)
nest.offset<-c(1,nest.offset1+1)
M.nests<-sum(n.nests)

#create final multinomial observation data structure with C+3 cells 
#cell 1 is all observations of breeding territories (state3)
#cell 2 is obs of occupancy w/out breeding (state2) from aerial survey.
#cell 3:C+2 is obs of occupancy w/out breeding (state2) from ground survey.
#cell C+3 is no occupancy detected in any survey

y<-array(0,dim=c(nterr,nyears,C+3))
y[,,1]<-y.B
y[,,2:(C+3)]<-y.occ

y[terr.surveyed==0]<-NA
zst[nest.missed==1]<-3
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#Must specify initial values for nest latent variable that are compatible with inital values for 
territory occupancy
#if zst == 3 and y == 1, then nestst is the true nest used (and the one you missed) 
nestst <- nest 
I<-which(is.na(nest)) 
for (i in 1:nterr){ 
for (t in 1:nyears){ 

if(is.na(nest[i,t])){nestst[i,t]<-R.nest2[i,t]}
}}
nestst[-I] <- NA

##############################################################
## Model code ################################################## 
##############################################################

library(jagsUI) 
sink("model.jags") 
cat(" 
model {
b1~dnorm(0,0.01) 
pNB [ 1]~dunif(0,1) 
pNB [2]~dunif(0,1)
pTTD<-1-(1-pNB[2])AC #There are C time intervals in the ground survey
psiR.1~dunif(0,1)
psiT.1~dunif(0,1)

for (s in 1:3){
alpha0.R[s]~dnorm(0,0.01)T(-10,10)
alpha1.R[s]~dnorm(0,0.01)T(-10,10)
alpha0.T[s]~dnorm(0,0.01)T(-10,10)
alpha1.T[s]~dnorm(0,0.01)T(-10,10)
}

for (i in 1:M.nests){
log(lam[i])<-b1*x[i] #x is a covariate on the log-transform of nest use frequency 
nest.probs[i]<-lam[i]/sum(lam[nest.offset[terr2[i]]:(nest.offset[terr2[i]+1]-1)]) #conditional 

intensity probs
}
for (i in 1:nterr){

ps.1[i,1]<-1-psiT.1
ps.1[i,2]<-psiT.1*(1-psiR.1)
ps.1[i,3]<-psiT.1*psiR.1
z[i,1]~dcat(ps.1[i,])

}
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for (t in 1:(nyears-1)){
logit(psiT1[t])<-alpha0.T[1]+ alpha1.T[1]*year1[t] 
logit(psiT2[t])<-alpha0.T[2]+ alpha1.T[2]*year1[t] 
logit(psiT3[t])<-alpha0.T[3]+ alpha1.T[3]*year1[t] 
logit(psiR1[t])<-alpha0.R[1] + alpha1.R[1]*prey[t] 
logit(psiR2[t])<-alpha0.R[2] + alpha1.R[2]*prey[t] 
logit(psiR3[t])<-alpha0.R[3] + alpha1.R[3]*prey[t]

phi[1,t,1] <- 1-psiT1[t] 
phi[1,t,2] <- psiT1[t]*(1-psiR1[t]) 
phi[1,t,3] <- psiT1[t]*psiR1[t] 
phi[2,t,1] <- 1-psiT2[t] 
phi[2,t,2] <- psiT2[t]*(1-psiR2[t]) 
phi[2,t,3] <- psiT2[t]*psiR2[t] 
phi[3,t,1] <- 1-psiT3[t] 
phi[3,t,2] <- psiT3[t]*(1-psiR3[t]) 
phi[3,t,3] <- psiT3[t]*psiR3[t]

}

for (i in 1:max.nests){ 
for (j in 1:nterr){ 
for (t in 1:nyears){

mu.pRn[i,j,t]<-equals(i,nest[j,t])*surveyed.nest[i,j,t]
}}}
for (i in 1:nterr){ 
for (t in 1:nyears){

nest[i,t]~dcat(nest.probs[nest.offset[i]:(nest.offset[i+1]-1)])
mu.pRt[i,t]<-state3[i,t]*sum(mu.pRn[1:max.nests,i,t]) #will be 0 or 1 if surveyed the

actual nest used for breeding

mu[1,i,t,1]<-0
mu[2,i,t,1]<-0
mu[3,i,t,1]<-mu.pRt[i,t] #surveyed nest used for breeding 0 or 1

mu[1,i,t,2]<-0
mu[2,i,t,2]<-pNB[1] #detect occupancy w/out breeding in aerial survey
mu[3,i,t,2]<-(1-mu.pRt[i,t])*pNB[1] #miss breeding nest, but detect occupancy w/out 

breeding in aerial survey

mu[1,i,t,(C+3)]<-1
mu[2,i,t,(C+3)]<-(1-pNB[1])*((1-pNB[2])AC) #occupancy not detected
mu[3,i,t,(C+3)]<-(1-mu.pRt[i,t])*(1-pNB[1])*((1-pNB[2])AC) #occupancy not detected

for (k in 3:(C+2)){ 
mu[1,i,t,k]<-0
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mu[2,i,t,k]<-(1-pNB[1])*pNB[2]*((1-pNB[2])A(k-3)) #detect occupancy w/out
breeding in interval k-2 time-removal survey

mu[3,i,t,k]<-(1-mu.pRt[i,t])*(1-pNB[1])*pNB[2]*((1-pNB[2])A(k-3)) #missed breeding nest, 
but detect occupancy w/out breeding in interval k-2 time-removal survey 
}

y[i,t,1:(C+3)]~dmulti(mu[z[i,t],i,t,],1)
}}
for (i in 1:nterr){ 
for (t in 2:nyears){ 

z[i,t] ~ dcat(phi[z[i,t-1],t-1,])#
}}

for (i in 1:nterr){ 
for(t in 1:nyears){ 

state1[i,t] <- equals(z[i,t], 1) 
state2[i,t] <- equals(z[i,t], 2) 
state3[i,t] <- equals(z[i,t], 3)

}}

for(t in 1:nyears){ 
sum.state1[t]<-sum(state1[,t]) 
sum.state2[t]<-sum(state2[,t]) 
sum.state3[t]<-sum(state3[,t])
N.occupied[t]<- sum.state2[t]+sum.state3[t]

}

} # end model 
",fill = TRUE) 
sink()
# Bundle data
data <- list(y = y,surveyed.nest=surveyed.nest,C=C,nest=nest,prey=prey,x=x,year1=year1,
max.nests=max.nests,nterr=nterr,nyears=nyears,M.nests=M.nests,terr2=terr2,
nest.offset=nest.offset)

inits <- function(){ list(z=zst,nest=nestst)}

params <- c("N.occupied","pNB","psiR.1","psiT.1","alpha0.R","alpha0.T","b1", 
"alpha1.R","alpha1.T","sum.state2","sum.state3","alpha2.T""alpha2.R")

ni <-14000 ; nb <- 4000 ; nt <-2 ; nc <- 1

out <- jags(data, inits, params, "model.jags", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, 
parallel = TRUE)
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Appendix 3.4. Data generation and JAGS model code for the multi-state, time-removal model 

used for the population inventory simulation study with a 9-interval time-removal survey and 2- 

pass aerial removal survey.

ncells<-700 #number of grid cells in study area
nstates<-4 #[1] nest cluster not present in grid cell [2] unoccupied nest cluster present in cell 
#[3] nest cluster present with non-breeding occupancy [4] nest cluster present with breeding

CH.TRUE <- c(rep(1,0),rep(2,200),rep(3,300),rep(4,200))

C<-9 #number of time intervals in ground survey

#pN [1] prob of detecting unoccupied nest cluster, pN [2] prob of detecting occupied nest cluster 
pN<-c(.554,.856)
#pNB[1] (aerial survey) = .45, pNB[2] (ground survey 10 min interval) = .14 
pNB<-c(.438,.122)
probs<-array(0,dim=c(nstates,(2*C)+7))

#columns - 1

#given grid cell nest cluster absent 
probs[1,1:(2*C)+6]<-0
probs[1,(2*C)+7]<-1 #no misclassification

#given grid cell w/nest cluster present and unoccupied
probs[2,1]<-0
probs[2,2]<-0
probs[2,C+3]<-pN[1] #found nest first pass
probs[2,C+4]<-0
probs[2,C+5]<-0
probs[2,(2*C)+6]<-pN[1]*(1-pN[1]) #found nest 2nd pass 
probs[2,(2*C)+7]<-(1-pN[1])*(1-pN[1]) #did not find nest after both passes

#given grid cell with nest cluster present with occupancy w/out breeding 
#see model code below for further annotation of cell probabilities

probs[3,1]<-0
probs[3,2]<-pN[2]*pNB[1]
probs[3,C+3]<-pN[2]*(1-pNB[1])*((1-pNB[2])AC)
probs[3,C+4]<-0
probs[3,C+5]<-pN[2]*(1-pN[2])*pNB[1]
probs[3,(2*C)+6]<-pN[2]*(1-pN[2])*(1-pNB[1])*((1-pNB[2])AC)
probs[3,(2*C)+7]<-(1-pN[2])*(1-pN[2])
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#given grid cell with nest cluster present with occupancy with breeding
probs[4,1]<-pN[2]
probs[4,2]<-0
probs[4,C+3]<-0
probs[4,C+4]<-pN[2]*(1-pN[2])
probs[4,C+5]<-0
probs[4,(2*C)+6]<-0
probs[4,(2*c)+7]<-(1-pN[2])*(1-pN[2])

#time removal probs after finding nest on 1st pass and not detecting occupancy w/out breeding 
during the aerial survey 
for (k in 3:(C+2)){ 

probs[1,k]<-0 
probs[2,k]<-0
probs[3,k]<-pN[2]*(1-pNB[1])*pNB[2]*((1-pNB[2])A(k-3))
probs[4,k]<-0

}
#time removal probs after finding nest on 2nd pass and not detecting occupancy w/out breeding 
during the aerial survey 
for (k in (C+6):((2*C)+5)){ 

probs[1,k]<-0 
probs[2,k]<-0
probs[3,k]<-pN[2]*(1-pN[2])*(1-pNB[1])*pNB[2]*((1-pNB[2])A(k-(C+6)))
probs[4,k]<-0

}

CH<-rep(0,ncells) 
y<-array(0,dim=c(ncells,(2*C)+7)) 
for (i in 1:ncells){

# Multinomial trials for observation process
event <- which(rmultinom(1, 1, probs[CH.TRUE[i],])==1)
CH[i] <- event 
}

for (i in 1:ncells){ 
y[i,CH[i]]<-1

}
zst <- CH.TRUE

####################################
Model code##########################
####################################
require(jagsUI)
sink("model.jags")
cat("
model {
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psiR~dunif(0,1)
psiU~dunif(0,1)
psiT~dunif(0,1)

pN[1]~dunif(0,1) 
pN[2]~dunif(0,1) 
pNB [ 1]~dunif(0,1) 
pNB[2]~dunif(0,1)

phi[1]<-1-psiT
phi[2]<-psiT*(1-psiU)
phi[3]<-psiT*psiU*(1-psiR)
phi[4]<-psiT*psiU*psiR

for (i in 1:ncells){ 
z[i]~ dcat(phi[]) 
mu[1,i,1]<-0 
mu[2,i,1]<-0 
mu[3,i,1]<-0
mu[4,i,1]<-pN[2] #find breeding nest cluster, 1st pass

mu[1,i,2]<-0
mu[2,i,2]<-0
mu[3,i,2]<-pN[2]*pNB[1] #find nest cluster 1st search and detect occupancy

w/out breeding during aerial survey 
mu[4,i,2]<-0

mu[1,i,12]<-0
mu[2,i,12]<-pN[1]
mu[3,i,12]<-pN[2]*(1-pNB[1])*((1-pNB[2])AC) #found nest cluster, but don't detect 

occupancy in aerial or time-removal survey; C is the number of intervals in the time-removal 
(ground) survey 

mu[4,i,12]<-0

mu[1,i,13]<-0
mu[2,i,13]<-0
mu[3,i,13]<-0
mu[4,i,13]<-pN[2]*(1-pN[2]) #miss breeding nest cluster 1st aerial pass and find it

during 2nd aerial pass

mu[1,i,14]<-0
mu[2,i,14]<-0
mu[3,i,14]<-pN[2]*(1-pN[2])*pNB[1] #miss nest cluster 1st aerial pass, find it during

2nd pass, detect occupancy w/out breeding during aerial survey 
mu[4,i,14]<-0
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mu[1,i,24]<-0
mu[2,i,24]<-pN[1]*(1-pN[1]) #miss nest cluster on 1st pass, find it on 2nd pass
mu[3,i,24]<-pN[2]*(1-pN[2])*(1-pNB[1])*((1-pNB[2])AC) #miss nest cluster on 1st pass, 

but don't detect occupancy without breeding during ground survey 
mu[4,i,24]<-0

mu[1,i,25]<-1
mu[2,i,25]<-(1-pN[1])*(1-pN[1])
mu[3,i,25]<-(1-pN[2])*(1-pN[2]) #don't find the nest cluster in either aerial pass
mu[4,i,25]<-(1-pN[2])*(1-pN[2])

for (k in 3:11){ 
mu[1,i,k]<-0 
mu[2,i,k]<-0
mu[3,i,k]<-pN[2]*(1-pNB[1])*pNB[2]*((1-pNB[2])A(k-3)) #find nest cluster on 1st pass, 

detect occupancy w/out breeding during the ground survey 
mu[4,i,k]<-0

}
for (k in 15:23){ 

mu[1,i,k]<-0 
mu[2,i,k]<-0
mu[3,i,k]<-pN[2]*(1-pN[2])*(1-pNB[1])*pNB[2]*((1-pNB[2])A(k-15)) #miss nest cluster 1st 

aerial pass, find during 2nd aerial pass, detect occupancy w/breeding during the ground survey 
mu[4,i,k]<-0

}
y[i,1:25]~dmulti(mu[z[i],i,],1)

}

for(i in 1:ncells){ 
state1[i] <- equals(z[i], 1) 
state2[i] <- equals(z[i], 2) 
state3[i] <- equals(z[i], 3) 
state4[i] <- equals(z[i], 4)

}
sum.state2<-sum(state2[])
sum.state3<-sum(state3[])
sum.state4<-sum(state4[])

N.occupied<- sum.state3+sum.state4

} # end model 
",fill = TRUE) 
sink()

win.data <- list(y = y,ncells=ncells,C=C)

113



inits <- function() list(z= zst)

params <- c("pNB","pN","sum.state2","sum.state3","sum.state4", 
"N.occupied","psiT","psiR","psiU")

ni <- 18000 ; nb <- 6000 ; nt <-2 ; nc <- 1

out <- jags(win.data, inits, params, "model.jags", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = 
nb, parallel = TRUE)
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Appendix 3.5. JAGS model code for the multi-state, time-removal model for long-term 

monitoring designs restricted to ground surveys. Includes the nest-level model.

##############################################################
## Model code ################################################## 
##############################################################

model {
b1~dnorm(0,0.01)
pNB~dunif(0,1)
pTTD<-1-(1-pNB)AC #There are C time intervals in the ground survey
psiR.1~dunif(0,1)
psiT.1~dunif(0,1)

for (s in 1:3){
alpha0.R[s]~dnorm(0,0.01)T(-10,10)
alpha1.R[s]~dnorm(0,0.01)T(-10,10)
alpha0.T[s]~dnorm(0,0.01)T(-10,10)
alpha1.T[s]~dnorm(0,0.01)T(-10,10)

}

for (i in 1:M.nests){
log(lam[i])<-b1*x[i] #x is a covariate on the log-transform of nest use frequency 
nest.probs[i]<-lam[i]/sum(lam[nest.offset[terr2[i]]:(nest.offset[terr2[i]+1]-1)]) #conditional 

intensity probs
}
for (i in 1:nterr){

ps.1[i,1]<-1-psiT.1
ps.1[i,2]<-psiT.1*(1-psiR.1)
ps.1[i,3]<-psiT.1*psiR.1
z[i,1]~dcat(ps.1[i,])

}
for (t in 1:(nyears-1)){

logit(psiT1[t])<-alpha0.T[1]+ alpha1.T[1]*year1[t] 
logit(psiT2[t])<-alpha0.T[2]+ alpha1.T[2]*year1[t] 
logit(psiT3[t])<-alpha0.T[3]+ alpha1.T[3]*year1[t] 
logit(psiR1[t])<-alpha0.R[1] + alpha1.R[1]*prey[t] 
logit(psiR2[t])<-alpha0.R[2] + alpha1.R[2]*prey[t] 
logit(psiR3[t])<-alpha0.R[3] + alpha1.R[3]*prey[t]

phi[1,t,1] <- 1-psiT1[t] 
phi[1,t,2] <- psiT1[t]*(1-psiR1[t]) 
phi[1,t,3] <- psiT1[t]*psiR1[t] 
phi[2,t,1] <- 1-psiT2[t] 
phi[2,t,2] <- psiT2[t]*(1-psiR2[t])
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phi[2,t,3] <- psiT2[t]*psiR2[t] 
phi[3,t,1] <- 1-psiT3[t] 
phi[3,t,2] <- psiT3[t]*(1-psiR3[t]) 
phi[3,t,3] <- psiT3[t]*psiR3[t]

}

for (i in 1:max.nests){ 
for (j in 1:nterr){ 
for (t in 1:nyears){

mu.pRn[i,j,t]<-equals(i,nest[j,t])*surveyed.nest[i,j,t]
}}}
for (i in 1:nterr){ 
for (t in 1:nyears){

nest[i,t]~dcat(nest.probs[nest.offset[i]:(nest.offset[i+1]-1)])
mu.pRt[i,t]<-state3[i,t]*sum(mu.pRn[1:max.nests,i,t]) #will be 0 or 1 if surveyed the 

actual nest used for breeding

mu[1,i,t,1]<-0
mu[2,i,t,1]<-0
mu[3,i,t,1]<-mu.pRt[i,t] #surveyed nest used for breeding 0 or 1

mu[1,i,t,(C+2)]<-1 #no misclassification
mu[2,i,t,(C+2)]<-(1-pNB)AC #occupancy not detected
mu[3,i,t,(C+2)]<-(1-mu.pRt[i,t])*((1-pNB)AC) #occupancy not detected

for (k in 2:(C+1)){ 
mu[1,i,t,k]<-0
mu[2,i,t,k]<-pNB*((1-pNB)A(k-2)) #detect occupancy in interval k-1 of time-

removal survey
mu[3,i,t,k]<-(1-mu.pRt[i,t])*pNB*((1-pNB)A(k-2)) #missed breeding nest, but detect 

occupancy w/out breeding in interval k-1 of time-removal survey 
}

y[i,t,1:(C+2)]~dmulti(mu[z[i,t],i,t,],1)
}}
for (i in 1:nterr){ 
for (t in 2:nyears){

z[i,t] ~ dcat(phi[z[i,t-1],t-1,])
}}

for (i in 1:nterr){ 
for(t in 1:nyears){

state1[i,t] <- equals(z[i,t], 1) 
state2[i,t] <- equals(z[i,t], 2) 
state3[i,t] <- equals(z[i,t], 3)

}}
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for(t in 1:nyears){
sum.state1[t]<-sum(state1[,t]) 
sum.state2[t]<-sum(state2[,t]) 
sum.state3[t]<-sum(state3[,t]) 
N.occupied[t]<- sum.state2[t]+sum.state3 [t]

}

} # end model
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CONCLUSIONS

Arctic- and subarctic-breeding passerines are undergoing concurrent changes in 

population size and elevational distribution due in part to the rapid expansion of woody 

vegetation (e.g., erect shrubs) across open landscapes (Sturm et al. 2001, 2005, Tape et al. 2006) 

and into higher elevations (Stueve et al. 2011, Mizel et al. 2016). The work described in this 

dissertation was motivated by a need to efficiently detect and distinguish population and spatial 

dynamics in these populations.

I developed inference methods for these sampling landbirds in the context of 

understanding how the data are actually generated (Royle and Dorazio 2008). This led to a more 

efficient allocation of effort and the capacity to more fully leverage the underlying spatial and 

temporal information. In chapter one, I used a spatial distance sampling approach which frames 

the sampling process in terms of the individual encounter in space and, consequently, leverages 

the underlying spatial information to a greater extent than standard distance sampling approaches 

(Kery and Royle 2016). In addition, I developed a formulation of the spatial distance sampling 

model that accommodates temporary emigration permitting greater sensitivity to the underlying 

spatial processes compared to single-visit approaches, which are conditioned on the assumption 

that all individuals are present and available for sampling. I expect that my extension 

accommodating temporary emigration will be a critical specification for spatial distance 

sampling models, particularly for studies confronted with large variation in the population 

available for sampling over multiple occasions. This extension may be particularly useful for 

highly mobile species such as birds and insects (e.g., Kery et al. 2009, Nichols et al 2009, 

Chandler et al. 2011, Schmidt et al. 2013) and species that exhibit random temporary emigration 

including within-season variation in cue production (e.g., singing) or burrowing and hiding 

behaviors (e.g., herpetofauna; O’Donnell et al. 2015).

In chapter two, I used the open-population occupancy model of Roth et al. (2014) to 

estimate arrival patterns in Denali’s passerine community. This model provides an explicit 

rendering of the observation process into the probability of initial presence (i.e., arrival) at a site 

and detection probability. In doing so, it leverages information about arrival phenology from 

standard occupancy survey data. In addition, inclusion of the arrival date as a random variable 

allowed me to make inferences about the relationship between the mean and variance of the 

arrival distribution. Studies of avian arrival phenology have focused extensively on temporal
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trends in first or mean arrival dates, but have largely ignored temporal patterns in the variance of 

the arrival distribution (but see: M0ller 1994, Ptaszyk et al. 2003, M0ller 2008, M0ller et al. 

2010). Assessments of the relationship between the mean and variance of the arrival distribution 

may lead to a deeper understanding of the factors shaping phenological responses and the 

capacity for species to adapt their phenologies in response to environmental change.

In chapter three, I developed an efficient framework for inventorying and monitoring 

cliff-nesting raptor populations over landscape scales. Surveys of cliff-nesting raptors present 

considerable challenges due to their sparse distribution across remote landscapes and the 

multiple occupancy states (e.g., unoccupied, occupied without breeding, and occupied with 

breeding) through which we observe their nesting territory dynamics. The standard approach in 

nesting territory surveys is to allocate a level of effort that is assumed to ensure that the 

occupancy state of each territory is known with certainty. However, this is logistically 

prohibitive at landscape scales, constraining our capacity for effective management of these 

species.

To increase survey efficiency and expand the spatial inference of these studies, I 

developed two versions of a multi-state, time-removal model, one for long-term monitoring 

studies and another for population inventories or single-season surveys in which there is no prior 

knowledge of nest locations. I focused my development of these methods in the context of a 

combined aerial and ground-based survey approach which permits efficient surveying at 

landscape scales.

In addition, established long-term monitoring programs for cliff-nesting raptors optimize 

effort over time through the accumulation of knowledge about individual nest locations. In such 

scenarios, using repeated surveys to estimate the probability of detecting an individual nest site 

would be inefficient. However, the standard approach does not accommodate incomplete 

surveying of alternative nests within a territory. Therefore, I formulated a version of the long

term monitoring model that accounts for state uncertainty at the territory-level caused by a 

failure to observe all nests within a territory. The nest-level formulation also provides inference 

about the mechanisms of variation in the frequency of nest use.

I demonstrated that the maximum effort spent on any nesting territory could be reduced 

by up to almost 90% of that recommended by standard protocols. I expect the inference 

framework developed here will have the capacity to greatly extend the spatial inference in
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studies of cliff-nesting raptors. Interspecific differences in distribution and detectability of nests 

and the occupancy states will necessitate adjustments of the sampling methods when applied to 

species other than golden eagle. Regardless, the approach has strong relevance for species and 

populations in which the breeding component, alone, is not a reliable predictor of the territorial 

population size.

The development of efficient inference methods is critical when sampling over large, 

roadless landscapes and/or for sparsely distributed species. The need for efficiency may become 

all the more important when making inferences about the mechanisms of change in populations 

that are subject to interacting population, spatial, and phenological dynamics over multiple scales 

(e.g., arctic- and subarctic breeding populations of migratory birds; Mizel et al. 2016). In such 

cases, understanding how the data are actually generated may help provide a path towards 

optimizing survey methods (Royle and Dorazio 2008). Specifically, decomposing the 

observation process into its constituent probabilities may serve as a starting point for developing 

a survey design that accounts for potential biases and maximizes encounter probability.
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