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Abstract

This report covers scaling neural networks for training Go artificial intelligence. The Go board is 

broken up into subsections, allowing for each subsection to be calculated independently, and 

then factored into an overall board evaluation. This modular approach allows for subsection 

networks to be translated to larger board evaluations, retaining knowledge gained. The 

methodology covered shows promise for significant reduction in training times required for 

unsupervised training of Go AI.

A brief history of artificial neural networks and an overview of Go and the specific rules that 

were used in this project are presented. Experiment design and results are presented, showing 

a promising proof of concept for reducing training time required for evolutionary Go AI.

The codebase for the project is Apache 2.0 licensed and is available on GitHub.

https://github.com/wduncanfraser/scalable go/
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Chapter 1: Introduction

Go has always been an exceptional game when examined mathematically, and has been a 

hotbed of artificial intelligence research for decades. Traditional approaches to classical game 

AI, such as those used in Checkers and Chess do not work well in Go, due to the large amount of 

possible moves and the complexity of the search tree. You can easily look 8-10 moves ahead 

with a checkers AI with a fairly basic heuristic such as piece count, but this is simply not feasible 

on a full sized 19x19 Go board. Each piece on a Go board has 3 possible states: black, white, or 

empty, which results in 319 (or 1.74x10172) possible board states. It is estimated that 

approximately 1.2% of board positions on a 19x19 board are legal, resulting in 2.08x10170 legal 

positions [1]. For comparison, the observable universe is estimated to contain approximately 

1080 atoms [2].

The computationally worst case move of any Go game is the first move. On a 19x19 board, 

there are 361 possible moves to examine. The first layer of a search tree examines 360 moves 

for each of the initial 361, or 129,960 total board positions. Even on a smaller 9x9 Go board, a 

search tree of 2 ply examines 81x80x79 or 511,920 total board positions. Ply is a measure of 

how many moves one looks ahead from the current move. A 0 ply search tree would directly 

evaluate the possible moves for a given player, with no look ahead. A search tree of any 

significant depth, similar to the depth possible in a checkers AI, is simply not possible. To look 

ahead 8 moves on a 19x19 board for the first move, an AI must evaluate 9.42x1022 board 

positions. As one is not able to feasibly build a deep search tree, one must rely on a powerful 

heuristic in order to produce an AI of any competent play skill.

One such approach to a heuristic would be an Artificial Neural Network (ANN). There are many 

different types of ANNs, with both supervised and unsupervised learning. Supervised learning 

typically involves teaching a network desired behavior by giving it expert knowledge and 

reinforcing the desired traits. Unsupervised learning typically involves randomly generating 

networks and using a fitness algorithm to determine the effectiveness of the networks. The top
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performing networks are then selected and are put through further iterations of mutations, 

evolving towards the desired performance vector.

One of the primary issues with evolutionary ANNs is that the more complex the network 

becomes, the more nodes there are to mutate. This results in very long training time 

requirements as the network grows (such as what would be required for a full 19x19 Go game). 

If Go AI could be trained similarly to how human Go players learn, one could begin by training 

on computationally less expensive smaller boards and translate that knowledge to larger 

boards once the AI had reached a desired performance level. This approach would allow 

reduction of the total training time required by reducing the training time required on more 

complex networks.

This project uses unsupervised, evolutionary ANNs to create a Go artificial intelligence, focusing 

on the ability to scale knowledge from smaller Go boards. This project shows that training times 

can be reduced by scaling knowledge.

1.1 Artificial Neural Networks

Artificial Network Networks (ANNs) are modeled after biological neural networks, attempting to 

mimic the way that a brain functions. They are widely used throughout the computer science 

discipline. They are most commonly used in machine learning and artificial intelligence.

The history of ANNs dates 

back to 1943 when Warren 

McCulloch and Walter Pitts 

first published an article 

outlining the creation of an 

artificial neuron [3]. They 

understood that a real 

neuron "fires" when a 

stimulus excited it beyond a 

certain threshold. They

Neuron Output 
Activity

Activity

FIGURE 1: M CCULLOCH-PITTS NEURON
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created a highly idealized artificial neuron that took on one of two states: resting, where the 

stimulus level had not been reached and there was no output, and active, where the input 

activity exceeded the set limit and the neuron "fires." This is, however, a very limited model, 

and there is not much that can be 

modeled with a single Neuron.

The next major advance in ANNs was 

in 1958 when Frank Rosenblatt 

created the perceptron [4]. The 

perceptron is a single layer network 

based on neurons, originally

ou t(t)

in (t) <

w„(t) = e

FIGURE 3: PERCEPTRON

intended to be trained for pattern s o u r c e :  h t tp s :/ / g ith u b .c o m / c d ip a o lo / g o m l/ tr e e / m a s te r / p e r c e p t r o n  

recognition. The perceptron took an arbitrary amount of weighted inputs and produced a single 

binary output. The output was determined by summing the inputs multiplied by their 

corresponding weights. If the resulting value was greater than the set threshold of 6, then the 

perceptron "fires," returning 1. Otherwise, the perceptron returns 0. Rosenblatt was the first

person to introduce the concept of weights, which 

allowed for the classification of inputs based on their 

importance to the output. The Perceptron initially 

showed a lot of promise and was able to map basic logic 

gates such as AND and OR.

output
6

w0Xj >  6

FIGURE 2: PERCEPTRON ACTIVATION

ANN research began to stagnate in 1969 when Marvin Minksy and Seymour Papert published a 

paper describing two keys issues with perceptrons [5]. The first was that perceptrons were 

incapable of modeling XOR logic gates. The second was that computers at the time did not have 

the processing power required to effectively compute large neural networks. These two 

findings contributed to what is known as the AI winter, where very little funding was put 

towards AI research for years to come.

In 1974 Paul Werbos developed the backpropagation algorithm which effectively solved the 

problem with ANNs not being able to properly model XOR logic gates [6]. Additionally, it
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provided a method for quickly performing 

supervised learning of multi-layer ANNs. The 

backpropagation algorithm was one of the key 

advances in ANNs that would eventually lead to 

interest and resurgence, and it is still a very 

popular method today for training large ANNs.

Significant resurgence and renewed interest in

ANNs began in the mid to late 2000s with the f ig u r e  4 - fe e d  f o r w a r d  n e t w o r k

advent of deep learning. One of the most common types of ANNs today is a fully connected

feedforward network. Typically, nodes in a feedforward network use a sigmoid activation

function. The output of a node is determined by summing the weights multiplied by their

respective inputs, and passing the summed value through the activation function. Between

2009 and 2012, the deep feedforward neural networks developed by

a research group at the Swiss AI Lab IDSIA have won eight _  1
1 + e -tinternational competitions in pattern recognition and machine

learning [7]. FIGURE 5 - SIGMOID ACTIVATION

On the front of unsupervised learning, genetic algorithms can be used to solve complex 

problems when the answer is not known. David Fogel developed a checkers AI program called 

Blondie 24 that learned to play purely through a genetic algorithm, with no knowledge of how 

to play other than the rules themselves [8]. This was accomplished by randomly generating 

neural networks, and mutating them through generations using a fitness heuristic that 

measured the performance of the networks playing against each other. Blondie24 was able to 

play competitively against expert checkers players and against the best checkers AI at the time, 

Chinook. The genetic algorithm used by David Fogel is the foundation on which this project's 

training algorithm is based.

1.2 The Game of Go

The game of Go is a perfect information, deterministic, zero-sum game of strategy between two 

players. In game theory, perfect information means that for any given move, the player has

4



complete knowledge of every move that has happened prior, and that they have no less 

knowledge than they would at the end of the game [9]. A zero-sum game is one in which each 

player's gain or loss is exactly balanced by the losses or gains of the other participants [10].

The game of Go originated somewhere in China between 3,000 -  4,000 years ago. While the 

exact origin of the game is unknown, it spread throughout Asia developing varying rulesets over 

the years. The two most significant rule variations center around the scoring methods, and 

whether scoring is based on area occupied or territory surrounded. For this project, territory 

scoring rules were used. Since there are so many variations in the rules of Go, the following rule 

descriptions describe the exact rules that were chosen for 

this project implementation. These rules are largely based 

on traditional Japanese territory scoring [11],

The game of Go starts with an empty board of a given 

size. Beginners typically play on 9x9 boards. Experienced 

players typically play short games on 13x13 boards, and 

full length games are played on a 19x19 board. Each 

player has a sufficient (in this case, unlimited) amount of 

stones to play the game to completion.

X 

X

— X

FIGURE 6 - STONE LIBERTIES
Black always takes the first move. Players take turns, 

placing one of their stones on a vacant intersection of the board's grid lines. The empty spaces 

adjacent to a stone are known as liberties. As seen in figure 6, the stone at the top has 4 

liberties, while the stone in the bottom left has 3 liberties, and the stone in the bottom right 

has 2 liberties. If a stone ever loses all of its liberties, it is removed from the board and given to

the other player as a prisoner.

In Go, adjacent stones of the same color form 

strings. Liberties for a string are calculated by 

summing all empty adjacent pieces to the string's 

member stones. Just like individual stones, a string is

FIGURE 7 - STRING CAPTURE
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captured when its last liberty is removed. An example of this can be found in Figure 7. The black 

string contains two members and has a single liberty. When white occupies the last empty 

intersection, the black string is captured and the pieces given to white as prisoners.

There are some stipulations to the legality of any given move. No move can be made which

recreates a prior board position. Additionally, no move may be made which leads to self

capture or suicide of stones.

A player may pass at any point during the game. If a player passes, they must give a single stone 

to the opponent as a prisoner. The game ends when both players pass in successive turns. Since 

black played first, the game must end with white passing.

In Go, strings have a concept of eyes. If a string has 

two eyes (two independent blank spaces within the 

string), it is impossible for the string to be

captured. In Figure 8, if black were to place a stone 

on position "o," the resultant string would have 

two eyes and would be impossible to capture.

Typically, hopeless or dead strings are removed 

from the board at the end of the game by

consensus. A dead string is one in which it is 

impossible to form two eyes. Again in Figure 8, if
FIGURE 8 - EYES AND DEAD STRINGS

black were to play a stone at position "p" or "q," it
. . . .  ^  ^ ^ SOURCE: http://W W W .B R ITG 0.0R G /IN TR 0/IN TR02.H TM Lwould be impossible for the string to form two 

eyes [12].

For the Go rules used in this project, there is no automatic removal of dead strings at the end of

the game. For example, the white piece in the upper left of figure eight would typically be

removed as a dead string as it has no hope of preventing capture. Typically, if there is a 

disagreement in the removal of strings, the game continues to resolve the disagreement. Since I 

am working with ANNs, all dead strings must be played out. If dead strings are left on the board 

they will affect the final score.
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1.3 Previous Work

Go has been the subject of mathematical and artificial intelligence research for decades. Brute 

force methodologies and simple heuristics (such as piece counts) simply do not work well due 

to the scale and complexity of Go. Early approaches to Go AI usually focused on specific 

features or functions of the game, which resulted in very weak performing Go AI [13] [14]. Early 

Go AI could typically be defeated by intermediate or beginner level players, even when the Go 

AI was given bigger handicaps than any human player would ever accept.

Successful Go AI has largely been dependent on domain knowledge of Go, using expert move 

sets to train the computer Go players. Even then, until very recently, no Go AI has ever been 

able to beat an expert level player without handicap.

The most recent and significant example of Go AI is Google's AlphaGo. AlphaGo is the first Go AI 

to beat a master level player with no handicap [15]. AlphaGo uses a combination of machine 

learning and tree search techniques. AlphaGo uses a Monte Carlo tree search, and was initially 

trained using supervised learning with a massive database of around 30 million moves from 

recorded historical games. AlphaGo was then trained against itself with unsupervised learning, 

further evolving the AI. Early versions of AlphaGo used large computer clusters, with up to 64 

search threads, 1,920 CPUs, and 280 GPUs [16]. AlphaGo varies greatly from my approach to Go 

AI. I am focusing on scaling knowledge using genetic algorithms, while AlphaGo was designed to 

become the best Go player possible, using high performance compute clusters and extensive 

human expert knowledge in supervised training.

In 2008, Lin Wu and Pierre Baldi published the paper "Learning to play Go using recursive 

neural networks," which covers attempting to write a Go artificial intelligence that can transfer 

knowledge from smaller board sizes to larger boards, such as from 9x9 to 19x19 [17]. They 

found encouraging results, however their research was largely dependent on human expert 

knowledge, using supervised training from move datasets.

In 2010, Jason Gauci and Kenneth O. Stanley published the paper "Indirect encoding of neural 

networks for scalable Go," which focuses on encoding Go boards indirectly [18]. They focused
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on allowing training to be conducted on smaller board sizes and scaled to larger boards, 

without relying on processing subsections of the board. This differs greatly from my approach, 

as I am focusing on transferring trained subsections of a board to larger network sizes, reducing 

the training time required for subsection weighting and evaluation. Additionally, they were 

focusing on using Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT). 

NEAT is different from the evolutionary approach that I took, as it mutates the structure and 

complexity of the network in addition to the weights and connections.

To reduce the computational time required for large Go board sizes, Gauci and Stanley chose to 

focus on building an action selector that evaluates current state and suggests where to move, 

rather than executing a board evaluation function against possible moves in a search tree. Their 

training consisted of training a 5x5 board for 500 generations against a fixed policy player. After 

training on a 5x5 Go board, the domain is switched to playing Go against the same policy on a 

7x7 board. This use of outside knowledge differs from my approach, as I am using a purely 

genetic algorithm that plays randomly generated networks against themselves. Gauci and 

Stanley then compared the scaled networks against networks that had only played on a 7x7 

board. They found that the scaled networks performed better, and concluded that scaling Go 

players is definitely a possibility.

1.4 Scaling Knowledge, Reducing Training Time

Go is a fairly uniform game, and concepts that apply to smaller boards usually hold true on 

larger boards. Additionally, human players typically look at subsections of the board, where 

specific territories are being formed. This is exemplified in the different sizes of Go boards used 

in training and short duration play.

It takes much longer to train neural networks for larger Go board sizes, so there would be 

significant benefit in being able to train on much less computationally expensive smaller 

boards, and transfer that knowledge to larger boards. While there has been some research 

done into scaling ANNs for Go, I wanted to focus on a purely genetic/evolutionary approach, 

with no domain knowledge of the game, to see if scaling boards using subsections could 

significantly reduce the overall training time.
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Chapter 2: Experim ent Setup and Im plem entation

2.1 Library Implementation

In order to properly carry out this experiment, four libraries were written that were used for 

training and testing the neural networks: NeuralNet, GoGame, GoGameNN, and GoGameAB. 

The entire codebase for this Go AI project was 

written in C++, to allow for low level performance 

gains and easy parallelization of training and 

gameplay via OpenMP and MPI. All benchmark values

CPU: Intel Core i7, Quad Core 2.5ghz 
RAM: 16GB 
OS: OS X 10.11.4 
Compiler: GCC 5.3
FIGURE 9 - BENCHMARK SPECIFICATIONS

in the following sections are run on a 2015 MacBook Pro.

N e u ra lN e t(c o n st  unsigned i n t  i_ la y e r _ c o u n t ,  const 
s t d : :ve c to r< u n s ig n e d  i n t >  i  neuron c o u n ts ) ;

FIGURE 10 - NEURALNET CONSTRUCTOR

2.1.1 NeuralNet

For the first library, NeuralNet, I began by examining previous work I had done with checkers AI, 

and generalizing the neural 

network code into general a 

purpose neural network 

library. This neural network library is the foundation of the Go ANN heuristic, allowing the 

creation of a feed forward neural network of arbitrary size. A bias node is added for each layer 

except the 

output layer 

of the neural 

network. This 

network can 

either be 

loaded from 

file or

initialized 

randomly.

The random generation of the weights is implemented using a uniform real distribution over 

the range of (-1.0, 1.0). Mutation is carried out in a very similar manner. A radius is specified as

v o id  N e u r a lN e t : : i n i t i a l i z e _ r a n d o m ( ) {
/ /  Setup random number ge n e ra to r  
s t d : : random_device rd ;
/ /  Generate random number as seed f o r  t w i s t e r  engine 
s td : :m t l9 9 3 7  g e n e r a t o r ( r d ( ) ) ;
/ /  Set bounds f o r  r e a l  d i s t r i b u t i o n
s t d : :  u n i f o r m _ r e a l_ d is t r ib u t io n < d o u b le >  d i s t r i b u t i o n a l .  0, 1 . 0 ) ;

/ /  A s s ig n  random v a lu e s  to each element in  each row o f w eight ta b le
f o r  ( s t d : : v e c t o r < s t d : : v e c t o r < d o u b le »  & la y e r  : 

f o r  ( s t d : : v e c t o r<double> &row : l a y e r )  {  
f o r  (double  &element : row) {

element = d i s t r i b u t i o n ( g e n e r a t o r ) ;
}

}

FIGURE 11 - NEURALNET INITIALIZATION

w e ig h ts )  {



a parameter to the mutate function, and all weights in the NeuralNet instance are modified 

randomly over a uniform real distribution with a range of (-radius, radius).

Currently, the NeuralNet library only supports feedforward operations. I chose not to 

implement any other functionality, as this project purely uses evolutionary neural networks. 

With the current implementation, it would not be possible to conduct supervised learning. 

Input layer values are passed as a parameter to the feedforward function. The feedforward 

function propagates through each layer calculating the value of each node by summing each 

input linked node multiplied by its associated weight. Once all input nodes have been summed 

into the node, the activation function is called against the node. The output layer can be 

retrieved by calling the get_output method.

Currently, the activation function x, , is used for all neural networks. Additional activation 
y  1 + 1 * 1

functions could be added easily, with a constructor parameter determining what activation 

function to use. This was outside the scope of what was required for this experiment.

The NeuralNet library allows for outputting and reading from file using ofstream and ifstream. 

The first value output is the layer count, 

followed by a newline. The next line 

contains the neuron counts for each layer, 

separated by commas. The third line is all 

of the weights, output as comma separated values. The first two lines inform the network how 

many weights there are, and what format to expect them in when importing. Weights are 

stored in ASCII when output to file, and floats/doubles 

are truncated on output. To prevent data loss from

truncation and rounding, a union of double and int64 t ' .,p r c m i n i ,
— FIGURE 12 - INTEGER DOUBLE CONVERSION

is used in order to output the exact value of the weight.

Unit testing is included with the project to ensure that there is no difference in networks that 

have been written to file and reimported, as different compilers and platforms treat unions of 

variable types differently.

union D o u b le ln t  {  
in t 6 4 _ t  i ;  
double d;

h ________________

9,12,3,1,
4598683231414027791,...,4604503844013429472,
FIGURE 13 - NEURALNET FILE OUTPUT
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Basic benchmarks of the NeuralNet class were performed against a model network from 

previous checkers AI work. The network had 4 layers with 32 input nodes, 40 nodes in the first 

hidden layer, 10 nodes in the second hidden layer, and a single output node. On my reference 

system, the network was able to perform approximately 2 million board operations per second.

2.1.2 GoGam e

The GoGame library consists of multiple class definitions in order to provide a complete 

interface for playing a game of Go. The Go board is stored as a two dimensional vector of 

unsigned 8 bit integers, with the bottom left of the board designated as the origin (0,0), and 

board elements can be accessed via board[y][x]. Each element of the board has three primary 

states, and a fourth used for scoring. A blank space is represented as a 0, with 0 bits set. The 

first bit of any given element is used to determine if a piece is present. The second bit is used to 

determine the team (0 for black, 1 for white). As such, a black piece has a mask of 1 and a white 

piece has a mask of 3. The third bit is used when scoring to determine if a given space has been 

scored yet.

The GoGame instance keeps track of the current Go board, a list of all possible moves for the 

current board state (as well as Booleans for determining which team the moves were 

generated for, and whether the move list is dirty and needs to be regenerated), a history of all 

moves that have been made (used for preventing recreation of prior board states), prisoner 

counts, and pieces placed count. No direct access to the board is allowed. All moves are 

validated by generating a list of all possible moves, and verifying that the submitted move is a 

member of the move list.
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v o id  GoGame: : make_move(co nst GoMove &i_move, const bool c o lo r )  {
/ /  Not v a l i d a t i n g  s i z e  as th a t  i s  handled i m p l i c i t l y  by comparing a g a in s t  the move l i s t  
/ /  Check i f  move i s  a p ass .  I f  i t  i s ,  handle and e x i t ,  
i f  ( i_ m o v e .c h e c k _ p a s s ( ) )  {

m o v e _ h is to ry . p ush_back( i_m ove);
/ /  No change in  board. Add p r is o n e r  to o th er  team. And append p ie c e s _ p la c e s  
p r is o n e r _ c o u n t [ !c o lo r ]  += 1; 
p ie ce s_ p la c e d  [c o lo r ]  += 1;

/ /  Set m o v e _ l is t  to d i r t y  
m o v e _ l is t _ d ir t y  = t r u e ;  
r e t u r n ;

/ /  Generate moves 
th is -> g e n e ra te _ m o v e s (c o l o r ) ;

/ /  Check i f  move i s  in  move l i s t
i f  ( s t d : : f in d ( m o v e _ l i s t . b e g in ( ) , m o v e _ l i s t . e n d ( ) , i_move) != m o v e _ l i s t . e n d ( ) )  {  

/ /  GoMove i s  v a l i d ,  update board 
m o v e _ h is to ry . p ush_back( i_m ove); 
goboard = i_m ove.goboard;

/ /  Add p r is o n e r s  from move
p r is o n e r _ c o u n t [ c o l o r] += i_ m o v e .g e t _ p r is o n e r s _ c a p tu r e d ( );

/ /  Add count to p ie c e s  p laced ; 
p ie c e s _ p la c e d [c o lo r ]  += 1;

/ /  Set m o v e _ l is t  to d i r t y  
m o v e _ l is t _ d ir t y  = t r u e ;

}  e l s e  {
/ /  Not a v a l i d  move, throw 
throw GoBoardBadMove() ;

}

FIGURE 14 - GOGAME MAKE_MOVE

The move generation for Go is fairly involved, as you must examine all empty spaces on the

board and determine if it is legal to place a 

piece. For any given move to be valid, you 

must ensure that the move does not cause 

a suicide (create a string with a liberty of 0) 

and that you are not creating a previous 

board state. The move generation 

algorithm can be found in Figure 15.

As part of the move generation algorithm, 

each potential empty space is passed to an 

instance of GoMove. GoMove tracks the

• Retrieves the board size and loops through 
all grid elements.

• For each element, check if the space is 
occupied. If occupied, continue to next 
element, otherwise:

o Create a potential GoMove instance
with the placed piece, 

o Determine the impact of the move
on the board by calling GoMove 
member function check_move. 

o Ensure the move is not a suicide,
o Ensure the board state hasn't

existed before, 
o If all criteria has been met, append

to the move list.
FIGURE 15 - GENERATE MOVES PSEUDOCODE
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resultant game board, coordinates for the 

piece placed, as well as a count of the 

prisoners captured, and a Boolean to

determine if the move is a pass. Once a

potential GoMove instance is created, the 

check_move function is called to determine 

the impact of the placed piece on the board. 

The check_move function first checks the 

impact of the move on enemy strings. If any 

enemy strings' liberties are reduced to 0, 

they are removed from the board. Once the

impact on the enemy player's strings has been calculated, the impact on the player's string is

determined and the liberty of the player's string is returned. The check_move pseudocode can

be found in Figure 16.

Next, all the partial strings created by the 

check_move function must be completed 

to determine their impact. The 

construct_string method takes a partially 

completed string and finds all string 

members and liberties. The 

construct_string pseudocode can be 

found in Figure 17.

The combination of the generate_moves 

and make_move functions allow for any 

arbitrary Go game to be played on any 

size board. The GoGame implementation was made as modular and generic as possible to allow 

for the library to be reused for any future work with Go.

• Maintains a list of elements to check (elements 
already in string list).

• For each element in check list, looks at all 
adjacent pieces.

o If friendly and not already in the string, 
add to string and check list, 

o If empty and not already in liberties, 
add to liberties, 

o Otherwise, skip.
• Once checked, remove element from check 

list.
• When no more elements are left to check, 

return completed string.

FIGURE 17 - CONSTRUCT STRING PSEUDOCODE

• Place the specified piece on the board.
• Treat all pieces as potential strings.
• Looks at adjacent pieces.

o If adjacent piece is the same team,
append it to the string, 

o If adjacent piece is unoccupied, add
it as a liberty to the string, 

o If adjacent piece is an enemy,
create a new enemy string for it.

• Check impact on adjacent enemy strings 
(call construct_string on each: if liberty = 
0, remove string from board).

• Check impact on own string.
• Return liberty count of own string.
FIGURE 16 -C H EC K  MOVE PSEUDOCODE

13



• Retrieves the board size and loops through all grid 
elements.

• For each element, check if it is a blank space, and if it 
hasn't been scored yet.

o Construct a string of all blank spaces 
adjacently connected to the initial space, 

o Check if the string is bordered by one or both 
players.

o If bordered by 1 player, append string space 
count to that players score. If not, neutral 
territory, 

o Mark the string as scored.
• Once bored has been checked. Append prisoner 

counts to each player score.

FIGURE 18 - CALCULATE SCORES PSEUDOCODE

The final step for any Go game is to calculate the score. As I am using territory scoring with

prisoner counts, each blank string 

on the board must be examined. 

If the blank string is bordered by a 

single color, the string piece count 

is added to that team's score. If 

the string is bordered by both 

teams, it is neutral territory and 

counts for neither team. After all 

territory has been calculated, 

prisoner counts are added to each 

team's score. Full pseudocode for 

the calculate_scores function can 

be found in Figure 18.

The current iteration of the GoGame library was written to ensure correct operation, and there 

are many areas in which efficiency can be improved. However, this implementation is for a 

proof of concept, and none of the efficiencies to be gained would increase the performance of 

the Al by orders of magnitude.

2.1.3 GoGam eNN

The GoGameNN library acts as a wrapper around the NeuralNet library, specializing it for Go Al 

with subsection boards for this specific project. The GoGameNN constructor takes two 

arguments: the board size and a Boolean specifying whether the neural network is using a 

uniform configuration. On 

creation, the GoGameNN 

constructor generates 2 layers of neural networks. The first layer is a vector of NeuralNet 

instances, one for each subsection of the Go board. Using 5x5 board as an example, there 

would be 9 3x3 subsection networks and 1 5x5 subsection network. If the Boolean for uniform 

is true, there is only one subsection network for each subsection size. The input node count

GoGameNN(c o n st  u in t 8 _ t  i_ b o a r d _ s iz e ,  const bool i_ u n ifo r m ) ;
FIGURE 19 - GOGAMENN CONSTRUCTOR

14



equals the total board coordinates for any given subsection. The 

board coordinates for any given subsection are serialized and fed 

(0,0) into the input nodes of any given subsection. The layer 1 network

dimensions were based on my previous checkers AI, which in turn
FIGURE 20 - SUBSECTION BOARD

was based on David Fogel's Blondie24 [8], With checkers, there are 

32 input nodes: one for each playable 

position on the board. The first hidden 

layer was assigned 40 nodes, the second 

hidden layer 10 nodes, and a single output 

node. These node counts were chosen 

fairly arbitrarily as a proof of concept, and I 

have continued that trend. I generalized 

and rounded the counts for the layer 1 

networks to the first hidden layer being 4/3 

the count of the input nodes, rounded 

down. The second hidden layer is 1/4 the 

first hidden layer, rounded down. Similar to 

the checkers network, there is a single output node for each subsection network.

The layer 2 network takes the outputs from each 

of the layer 1 networks and 3 additional values: 

pieces played count, player prisoner count, and 

opponent prisoner count as inputs. The 3 

additional inputs are normalized against 

boareunze , which equates to half the potential

board positions. This normalization is done to 

keep all inputs between -1 and 1, preventing 

saturation of the node activation functions. The 

layer 2 network has a single hidden layer, and one

Input

FIGURE 22 - LAYER 2 NETW ORK

Input

Output

FIGURE 21 - LAYER 1 NETW ORKS
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output node. The hidden layer contains 2/3 the input nodes, rounded down. This value is based 

loosely on an ANN rule of thumb, that a good starting point for hidden layer node counts is 

{in p u t node count +  output node count) x  n  The single output node is used as a heuristic 

for determining the desirability of any given board state.

The GoGameNN class contains wrappers for the NeuralNet methods initialize_random, mutate, 

feedforw ard, import and export from file, and get_output.

Additionally, the GoGameNN class has a method for scaling networks from a smaller board size 

to the next board size called scale_network. Scale_network takes a single parameter: another 

instance of GoGameNN. The specified network must be exactly 1 size smaller than the new 

GoGameNN. The layer 1 subsection networks are taken from the existing network and used to 

seed the subsections of the new network. A new network for the largest subsection is randomly 

generated. Additionally, a new layer 2 network is generated to accommodate the larger layer 1 

network vector. A current limitation of the GoGameNN implementation is that when scaling up 

larger board sizes where there are multiple subsections of a given size in the existing network 

(for example, 3x3 subsections when scaling from a 5x5 board to a 7x7 board), the subsections 

are chosen at random to seed the new network. A side or corner subsection in Go is vastly 

different from center subsections, with different desired piece configurations. A future task 

would be to rewrite this logic to identify side and corner subsections, differentiating them from 

central subsections, and seeding the new network appropriately. This was largely out of scope 

for this specific implementation, as it does not affect the 3x3 to 5x5 scaling.

The GoGameNN library on my reference system is capable of calculating approximately 36,000 

9x9 Go boards per second.

2.1.4 GoGam eAB

The GoGameAB library implements a single function, scalable_go_ab_prune. 

Scalable_go_ab_prune implements an alpha beta pruning algorithm for use with GoGameNN 

and GoGame libraries. Alpha beta is used to look ahead multiple moves, and minimize potential 

enemy positions while maximizing your own position. Alpha Beta eliminates subtrees that are
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not promising, reducing total calculations compared to a naive minmax tree. The alpha beta 

implementation is recursive, taking the GoGameNN and GoGame instances, depth remaining, 

alpha and beta values, and Booleans for determining current move color, whether the current 

level is for the max player, and the player color.

double scalable_go_ab_prune(GoGameNN &network, GoGame &i_gogame, const i n t  
depth , double a lp h a , double b e ta , const bool m ove_color, co nst  bool 
m ax_p layer, co nst  bool p la y e r _ c o l o r ) ;___________________________________________
FIGURE 23 - ALPHA BETA PRUNING

The alpha beta implementation uses the GoGameNN feed_forward output as the heuristic for 

the alpha beta search tree. Scalable_go_ab_prune is meant to be called against each potential 

move in a given move list. The move given the highest value is considered to be the best move.

2.2 Experiment Setup

The main purpose of this project is to show whether training times could be improved by 

scaling knowledge gained on smaller Go boards up to larger sizes. As a proof of concept, 

training times are compared scaling from a 3x3 board up to a 5x5 board. Additional training sets 

were performed at 7x7 to determine the training time required, with extrapolation showing the 

feasibility of scaling up to full 19x19 boards.

All networks were trained with 1 ply (looking 1 move ahead from the current move). This was 

chosen because it allowed for some look ahead, while avoiding prohibitively long training times.

2.2.1 Training Method

This project uses an evolutionary approach to training ANNs. A genetic algorithm was chosen in 

order to focus on a computer teaching itself how to play Go, with no prior knowledge of the 

game other than the rules. This allows for easy comparison of scaled networks that are trained 

with the exact same rulesets. Additionally, there is not much data for doing supervised learning 

on boards of size 3x3 and 5x5.

The training algorithm maintains a population of 30 networks, which are initially randomly 

seeded. Each network in the population plays every other team round robin, playing as both 

white and black. A single point is awarded to a network for a win. Zero points are awarded for a
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draw. A network loses 1 point for a loss. While playing as each color doubles the amount of 

games required, it also forces the networks to be proficient at playing both colors, and exposes 

them to board states they would otherwise not see (black always goes first, and that offset can 

significantly change of the game states that a given player would see).

After all games have been played, the top 1/3 of the population is kept to seed the next

generation. The other 2/3 of the networks are discarded. One third of the new generation is

mutated from the top 1/3 from the previous generation. The final third of the new generation is 

randomly seeded. The randomly seeded networks serve the purpose of preventing the initially 

seeded networks from mutating into a local optimum. Additionally, the top 1/3 are maintained 

completely unaltered as a control set. If the mutated networks perform worse than the top 1/3, 

then they can be discarded and replaced with new mutations.

This loop is then repeated until the desired generation count is reached.

2.2.2 Scaling Training 

In order to scale the training, a 

population of networks is 

trained on a certain board size 

for a specified number of 

generations. Once the 

generations are complete, the 

top 1/3 of the last generation 

is taken to seed the networks 

for the next size board 

training. The imported 

networks are randomly 

selected to seed and scale up for the new board size. The same training loop described earlier is 

then repeated with the new networks with one exception: once a network has been scaled up, 

the randomly generated networks are no longer completely random. In order to retain the

1. Take a 3x3 Board.
• 3x3 Board has a single 3x3 subsection.
• Layer 1 would contain one 9 input network.
• Layer 2 would take single output from 3x3 subsection, and 

then piece count and prisoner counts.
2. Train networks for X generations.
3. Take the top 1/3 of networks from the last generation.
4. Take a 5x5 Board.

• 5x5 board has nine 3x3 subsections and one 5x5 subsection.
• Seed all 3x3 subsections from a random imported network.
• Generate random 5x5 subsection network.
• Regenerate Layer 2 network to account for additional inputs.

5. Train networks for X generations.
FIGURE 24 - SCALED TRAINING W ALKTHROUGH
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knowledge gained from the previous training sets, all randomly generated networks are scaled 

up from the import set, just like all networks in the first generation.

2.2.3 Training Sets for Com parison

For this project, three different types of training sets were used. The first, the control set, is a 

network purely trained on a certain size. The next set is a population of networks trained on 

smaller boards and then scaled up. The subsection boards are divergent once scaled. The final 

training set is identical to the second, except that the subsection networks are kept uniform: 

only a single subsection network is maintained for each subsection size and is used to calculate 

all subsections of that size.

Specifically, the training sets are as follows:

• Control -  Networks trained on a 5x5 board for 500 generations.

• Scaling with Divergent Subsections -  Networks trained on a 3x3 board for 500 

generations, scaled and then trained on a 5x5 board for 300 generations.

• Scaling with Uniform Subsection - Networks trained on a 3x3 board for 500 generations, 

scaled and then trained on a 5x5 board for 300 generations.

• Only 1 subsection board for each size.

Four sets of each type were performed in order to take an average of the performance 

difference between the different methodologies.

The generation counts for each training method were chosen fairly arbitrarily, estimating how 

many generations would be required to get networks that are no longer playing randomly, 

while significantly reducing the total training time for the scaled sets. Further analysis could be 

done to determine the exact training time gains; however, the scope of this project is to 

present these methods as a proof of concept.
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2.2.4 Com paring M ethodologies

To compare the different training methods, the final top 1/3 networks from each training set 

are taken and compared against all other training sets of different types. For each comparison, 

all networks from one set play 

against all networks from another 

set as both black and white.

Similarly to how training is scored,

1 point is awarded for a win, 1 

point subtracted for a loss, and a 

draw results in no points awarded 

to either team. An example of the 

output from these comparisons can 

be found in Figure 25. The 

maximum score that any given 

network can obtain in a comparison is 20 (20 games played for each network), with a maximum 

average score difference of 40 between two sets.

All comparisons from one type to another can then be aggregated and averaged to determine 

which method came out ahead, as well as the average score difference.

Comparing set 1: size5setl against set 2: size5setl0
Final scores are as follows.
Set 1 Network 0: 20. Set 2 Network 0 -11.
Set 1 Network 1: -7. Set 2 Network 1: -19.
Set 1 Network 2: 20. Set 2 Network 2 -16.
Set 1 Network 3: 20. Set 2 Network 3 -7.
Set 1 Network 4: 20. Set 2 Network 4 -15.
Set 1 Network 5:10. Set 2 Network 5 -12.
Set 1 Network 6: -9. Set 2 Network 6: -8.
Set 1 Network 7:10. Set 2 Network 7 -9.
Set 1 Network 8: 20. Set 2 Network 8 -8.
Set 1 Network 9:11. Set 2 Network 9 -10.
Set 1 Network Average: 11. Set 2 Network Average: -11.

FIGURE 25 - COMPARISON OUTPUT
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Chapter 3: Results

3.1 Training Results

Four sets of each training method described in section 2.2.3 were completed and compared. 

The exact details of all comparisons can be found in Appendix B. Training was primarily 

performed on 2x Google Cloud Engine 16 core compute nodes.

Total training time for the scaled network methods was 154.2 CPU hours per set. Total training 

time for the control sets was 244.4 CPU hours per set.

Scaled Uniform 

Scaled Divergent 

Control

0

FIGURE 26 - TRAINING TIM ES

Both scaled training methods outperformed the control training sets. On average, the divergent 

scaled networks scored 8.75 points against control, with an average score difference of 17.5. 

The uniform scaled networks scored 6.375 points on average against control, with an average 

score difference of 12.75.

The uniform scaled networks outperformed the divergent scaled networks with an average 

score of 2.0625 and an average score difference of 4.125.

Total Training Time

50 100 150 200 250 300

■  TrainingTim e in CPU Hours
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To test training times, additional control sets were trained for 500 generations on a 7x7 board. 

The required training time increased to 3,795 CPU hours per set.

To perform basic real world analysis and determine if the trained networks had any reasonable 

ability to play Go, I wrote a client and played against it myself, and had it play against the Go Al 

available at http://www.cosumi.net/en/. I selected the top performing network from the 

divergent scaled sets. The networks were able to play competitively against me, and defeat me 

one game each (I am a beginner player). When playing against the Cosumi Al, the top networks 

tied twice and lost twice. I then played a network that had been trained for 1,000 generations 

at 3x3 and 1,000 generations at 5x5, and it beat the Cosumi Al by two points.

The Al demonstrated basic Go strategy, such as capturing corners, attempting to control 

territory, and blocking the opponent from capturing capturing territory.

3.2 Scaling to 19x19

In order to test the feasibility of a 19x19 board using this scaling method, I created a 19x19 

instance of GoGameNN and GoGameAB to benchmark them. To give a sense of scale, the 

dimensions of a 19x19 

GoGameNN can be found in 

Figure 26.

A GoGameNN instance at 19x19 

can perform approximately 190 

board evaluations per second on 

my reference system.

Taking the worst case move (first 

move of a game), the GoGameAB can evaluate moves with 0 ply (no look ahead) in 

approximately 2 seconds. Evaluating the first move with 1 ply takes approximately 10 minutes. 

Performing a 2 move look ahead or 2 ply evaluation would take approximately 3 days.

Total subsections: 968 
Layer 1

• Input nodes: 52,616
• HL1 nodes: 70,154
• HL2 nodes: 17,538
• Output: 968 

Layer 2
• Input: 971
• HL: 647
• Output: 1

FIGURE 27- 19X19 BOARD DIMENSIONS
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Chapter 4: Conclusions and Future W ork

4.1 Scaling Performance

Training comparison results show that there is definitely promise in scaling neural networks for 

Go AI. For this proof of concept, the average score differences show that the scaled training 

sets significantly outperformed the control sets, with a 37% reduction in training time required. 

Training times could likely be reduced even further, due to the significant performance 

advantage that the scaled networks had over the control sets.

Additionally, the uniform scaled networks slightly outperformed the divergent scaled networks. 

This is most likely due to the limited amount of generations performed on the 5x5 board, as the 

uniform networks have fewer nodes to mutate, allowing for a faster convergence. I would 

hypothesize that this would not hold true as the generation count increases, since the uniform 

networks would not be able to learn behaviors of the differing subsections, such as edges or 

corners versus positions closer to the middle of the board. I would like to further examine this 

behavior in future experiments.

This reduction in overall training times is very promising, considering that the resultant trained 

networks played competitively against myself and another Go AI. The networks showed basic 

awareness of the goal of Go with limited training time, looking ahead only a single move. If the 

training time were increased with deeper look ahead, the AI has potential to be even more 

competitive.

4.2 Scaling to 19x19

Benchmarks of the 19x19 GoGameAB search tree show that without significant parallelization, 

it would not be possible to look ahead any moves when playing on a 19x19 board with this 

subsection design. This loss of look ahead and the ability to build a search tree would be a 

significant handicap to the overall performance of the Go AI. However, if such a network had 

hardware backing similar to AlphaGo, it would be feasible to look ahead at least two moves. 

This would incrase performance beyond the 1 ply look ahead used in this project.
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Additionally, the training time required for scaling from a 3x3 board up to 19x19 would be 

astronomical. Simply moving from a 5x5 board to 7x7 increased required CPU hours for 500 

generations from 244.4 CPU hours to 3,795 CPU hours.

A basic estimate for 0 ply training on a 19x19 board would be that on average, it takes 1.5 

seconds to evaluate potential moves for any given board position. We will assume that there 

are 200 moves made in an average game of Go. With a population of 30 networks, there are 

900 games in a single generation. It would take approximately 1.5 x 200 x 900 seconds or 75 

CPU hours to complete a single generation at 19x19, making training a 19x19 network very 

impractical without extensive parallelization.

4.3 Future Work and Lessons Learned

The biggest issue with this implementation is that it was built purely to conduct a statistical 

analysis of scaling Neural Networks. All initialization and mutation of the networks is conducted 

with completely random, unrecorded seeds. This makes it impossible to recreate the exact 

populations that were created during this experiment. If I had run into bugs during 

implementation, it would have been impossible to recreate the exact network configurations 

that caused the issue. I will be refactoring the NeuralNet library to seed the random devices 

with identifying values, which will allow for recreation of the training sets if required.

There are many optimizations to be had in the current implementation of this scaling Go AI. 

One of the most obvious areas would be examining the usefulness of having every single odd 

numbered board subsection from 3x3, 5x5, 7x7, up the 19x19 in a final 19x19 network. It would 

definitely speed up training and overall performance if certain subsections were found to be 

less useful and could be removed from the layer 1 neural networks. Additionally, there are a 

few cases where lists of moves are searched linearly during move generation and evaluation. I 

would like to refactor these sections of the code to use a standard map, or abstract the moves 

into another more efficient data structure. One idea for such a data structure would be to store 

the move list in a static two dimensional array that matches the board size. Each move would 

be stored at the coordinates of the piece placed. This would allow for constant time lookups of 

any given move.
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The final item that I would like to implement would be to train a scaled 9x9 network with 2 ply 

and examine how it performs in real world situations, comparing it against experienced humans 

and other AI players. This experiment shows there is promise in scaling networks trained with 

the genetic algorithm used in this project with some basic real world analysis; however, there is 

no measure of how it performs on board sizes commonly used by real players.
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Appendix A -  Experim ent Set Details

A.1 Scaled Divergent Sets

Size 3 Set 1 Specs: dc-nerv01, 500 Generations, Elapsed: 1771.33s 

Size 5 Set 1 Specs: dc-nerv01, 300 Generations, Elapsed: 54546.5s

Size 3 Set 2 Specs: dc-nerv01, 500 Generations, Elapsed: 1648.72s 

Size 5 Set 2 Specs: compute-1, 300 Generations, Elapsed: 32575.3s

Size 3 Set 3 Specs: dc-nerv01, 500 Generations, Elapsed: 1798.21s 

Size 5 Set 3 Specs: compute-1, 300 Generations, Elapsed: 30196.2s

Size 3 Set 4 Specs: dc-nerv01, 500 Generations, Elapsed: 1601.6s 

Size 5 Set 4 Specs: compute-1, 300 Generations, Elapsed: 33586.3s

A.2 Scaled Uniform Sets

Size 3 Set 5 Specs: duplicate of set 1, uniform

Size 5 Set 5 Specs: dc-nerv01, 300 generations, uniform, Elapsed: 58605.8s 

Size 3 Set 6 Specs: duplicate of set 2, uniform

Size 5 Set 6 Specs: compute-2, 300 generations, uniform, Elapsed: 34590.6s 

Size 3 Set 7 Specs: duplicate of set 3, uniform

Size 5 Set 7 Specs: compute-2, 300 generations, uniform, Elapsed: 31546.5s 

Size 3 Set 8 Specs: duplicate of set 4, uniform
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Size 5 Set 8 Specs: compute-2, 300 generations, uniform, Elapsed: 29684.2s

A.3 Control Sets

Size 5 Set 9 Specs: compute-1, 500 generations, Elapsed: 54940.1s 

Size 5 Set 10 Specs: compute-2, 500 generations, Elapsed: 55321.9s 

Size 5 Set 11 Specs: compute-1, 500 generations, Elapsed: 54568.8s 

Size 5 Set 12 Specs: compute-2, 500 generations, Elapsed: 49466.7s
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Appendix B -  Experim ent Results

B.1 Scaled Divergent vs Control 

Comparing set 1: size5set1 against set 2: size5set9 

Final scores are as follows.

Set 1 Network 0: 2. Set 2 Network 0: 12.

Set 1 Network 1: -6. Set 2 Network 1: 3.

Set 1 Network 2: -4. Set 2 Network 2: -14.

Set 1 Network 3: 2. Set 2 Network 3: -7.

Set 1 Network 4: 2. Set 2 Network 4: -7.

Set 1 Network 5: 4. Set 2 Network 5: -9.

Set 1 Network 6: -3. Set 2 Network 6: 0.

Set 1 Network 7: 2. Set 2 Network 7: 7.

Set 1 Network 8: 4. Set 2 Network 8: -3.

Set 1 Network 9: 11. Set 2 Network 9: 4.

Set 1 Network Average: 1. Set 2 Network Average: -1.

Comparing set 1: size5set1 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: 20. Set 2 Network 0: -11.

Set 1 Network 1: -7. Set 2 Network 1: -19.

Set 1 Network 2: 20. Set 2 Network 2: -16.

Set 1 Network 3: 20. Set 2 Network 3: -7.

Set 1 Network 4: 20. Set 2 Network 4: -15.

Set 1 Network 5: 10. Set 2 Network 5: -12.

Set 1 Network 6: -9. Set 2 Network 6: -8.

Set 1 Network 7: 10. Set 2 Network 7: -9.

Set 1 Network 8: 20. Set 2 Network 8: -8.

Set 1 Network 9: 11. Set 2 Network 9: -10.
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Comparing set 1: size5set1 against set 2: size5set11 

Final scores are as follows.

Set 1 Network 0: 12. Set 2 Network 0: -16.

Set 1 Network 1: 6. Set 2 Network 1: -2.

Set 1 Network 2: 13. Set 2 Network 2: -18.

Set 1 Network 3: 12. Set 2 Network 3: -12.

Set 1 Network 4: 12. Set 2 Network 4: -17.

Set 1 Network 5: 12. Set 2 Network 5: -18.

Set 1 Network 6: 7. Set 2 Network 6: -15.

Set 1 Network 7: 11. Set 2 Network 7: -8.

Set 1 Network 8: 14. Set 2 Network 8: -6.

Set 1 Network 9: 15. Set 2 Network 9: -2.

Set 1 Network Average: 11. Set 2 Network Average: -11.

Comparing set 1: size5set1 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: 16. Set 2 Network 0: -14.

Set 1 Network 1: -8. Set 2 Network 1: 0.

Set 1 Network 2: 14. Set 2 Network 2: -12.

Set 1 Network 3: 18. Set 2 Network 3: -12.

Set 1 Network 4: 14. Set 2 Network 4: -14.

Set 1 Network 5: 18. Set 2 Network 5: -4.

Set 1 Network 6: -10. Set 2 Network 6: -12.

Set 1 Network 7: 16. Set 2 Network 7: -14.

Set 1 Network 8: 18. Set 2 Network 8: -14.

Set 1 Network 9: 12. Set 2 Network 9: -12.

Set 1 Network Average: 10. Set 2 Network Average: -10.

Set 1 Network Average: 11. Set 2 Network Average: -11.

31



Comparing set 1: size5set2 against set 2: size5set9 

Final scores are as follows.

Set 1 Network 0: 8. Set 2 Network 0: -10.

Set 1 Network 1: 20. Set 2 Network 1: -10.

Set 1 Network 2: 5. Set 2 Network 2: -14.

Set 1 Network 3: 6. Set 2 Network 3: -10.

Set 1 Network 4: -2. Set 2 Network 4: -2.

Set 1 Network 5: 8. Set 2 Network 5: -12.

Set 1 Network 6: 12. Set 2 Network 6: -12.

Set 1 Network 7: 6. Set 2 Network 7: -6.

Set 1 Network 8: 16. Set 2 Network 8: -18.

Set 1 Network 9: 20. Set 2 Network 9: -5.

Set 1 Network Average: 9. Set 2 Network Average: -9.

Comparing set 1: size5set2 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: 16. Set 2 Network 0: -12.

Set 1 Network 1: 12. Set 2 Network 1: -14.

Set 1 Network 2: 20. Set 2 Network 2: -10.

Set 1 Network 3: 14. Set 2 Network 3: -18.

Set 1 Network 4: 20. Set 2 Network 4: -10.

Set 1 Network 5: 20. Set 2 Network 5: -18.

Set 1 Network 6: 12. Set 2 Network 6: -18.

Set 1 Network 7: 8. Set 2 Network 7: -18.

Set 1 Network 8: 20. Set 2 Network 8: -18.

Set 1 Network 9: 12. Set 2 Network 9: -18.

Set 1 Network Average: 15. Set 2 Network Average: -15.
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Comparing set 1: size5set2 against set 2: size5set11 

Final scores are as follows.

Set 1 Network 0: 3. Set 2 Network 0: -18.

Set 1 Network 1: 16. Set 2 Network 1: -18.

Set 1 Network 2: 18. Set 2 Network 2: -18.

Set 1 Network 3: 13. Set 2 Network 3: -6.

Set 1 Network 4: 14. Set 2 Network 4: -14.

Set 1 Network 5: 12. Set 2 Network 5: -6.

Set 1 Network 6: 12. Set 2 Network 6: -6.

Set 1 Network 7: 11. Set 2 Network 7: -16.

Set 1 Network 8: 12. Set 2 Network 8: -17.

Set 1 Network 9: 16. Set 2 Network 9: -8.

Set 1 Network Average: 12. Set 2 Network Average: -12.

Comparing set 1: size5set2 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: 18. Set 2 Network 0: -20.

Set 1 Network 1: 18. Set 2 Network 1: -20.

Set 1 Network 2: 16. Set 2 Network 2: -20.

Set 1 Network 3: 18. Set 2 Network 3: -6.

Set 1 Network 4: 20. Set 2 Network 4: -20.

Set 1 Network 5: 18. Set 2 Network 5: -20.

Set 1 Network 6: 18. Set 2 Network 6: -18.

Set 1 Network 7: 20. Set 2 Network 7: -20.

Set 1 Network 8: 18. Set 2 Network 8: -18.

Set 1 Network 9: 18. Set 2 Network 9: -20.

Set 1 Network Average: 18. Set 2 Network Average: -18.

Comparing set 1: size5set3 against set 2: size5set9

33



Final scores are as follows.

Set 1 Network 0: 2. Set 2 Network 0: 4.

Set 1 Network 1: -14. Set 2 Network 1: 0.

Set 1 Network 2: -10. Set 2 Network 2: 6.

Set 1 Network 3: -6. Set 2 Network 3: -2.

Set 1 Network 4: 7. Set 2 Network 4: 0.

Set 1 Network 5: -6. Set 2 Network 5: 11.

Set 1 Network 6: 5. Set 2 Network 6: -4.

Set 1 Network 7: -2. Set 2 Network 7: 11.

Set 1 Network 8: -20. Set 2 Network 8: 4.

Set 1 Network 9: 0. Set 2 Network 9: 14.

Set 1 Network Average: -4. Set 2 Network Average: 4.

Comparing set 1: size5set3 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: 13. Set 2 Network 0: 0.

Set 1 Network 1: -9. Set 2 Network 1: 4.

Set 1 Network 2: -1. Set 2 Network 2: -1.

Set 1 Network 3: 10. Set 2 Network 3: -4.

Set 1 Network 4: -7. Set 2 Network 4: -2.

Set 1 Network 5: 15. Set 2 Network 5: -6.

Set 1 Network 6: -2. Set 2 Network 6: 2.

Set 1 Network 7: -2. Set 2 Network 7: 6.

Set 1 Network 8: -8. Set 2 Network 8: -3.

Set 1 Network 9: -6. Set 2 Network 9: 1.

Set 1 Network Average: 0. Set 2 Network Average: 0.

Comparing set 1: size5set3 against set 2: size5set11 

Final scores are as follows.
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Set 1 Network 1: 7. Set 2 Network 1: -3.

Set 1 Network 2: -7. Set 2 Network 2: 6.

Set 1 Network 3: 2. Set 2 Network 3: 2.

Set 1 Network 4: -10. Set 2 Network 4: -6.

Set 1 Network 5: 2. Set 2 Network 5: 6.

Set 1 Network 6: -11. Set 2 Network 6: 2.

Set 1 Network 7: -13. Set 2 Network 7: 9.

Set 1 Network 8: 2. Set 2 Network 8: 0.

Set 1 Network 9: -8. Set 2 Network 9: 3.

Set 1 Network Average: -3. Set 2 Network Average: 3.

Comparing set 1: size5set3 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: -9. Set 2 Network 0: 5.

Set 1 Network 1: -10. Set 2 Network 1: 2.

Set 1 Network 2: 6. Set 2 Network 2: 0.

Set 1 Network 3: -9. Set 2 Network 3: 5.

Set 1 Network 4: 5. Set 2 Network 4: 6.

Set 1 Network 5: -9. Set 2 Network 5: 1.

Set 1 Network 6: 3. Set 2 Network 6: 8.

Set 1 Network 7: 5. Set 2 Network 7: -7.

Set 1 Network 8: -14. Set 2 Network 8: 10.

Set 1 Network 9: 5. Set 2 Network 9: -3.

Set 1 Network Average: -2. Set 2 Network Average: 2.

Comparing set 1: size5set4 against set 2: size5set9 

Final scores are as follows.

Set 1 Network 0: 20. Set 2 Network 0: -20.

Set 1 Network 0: 2. Set 2 Network 0: 15.
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Set 1 Network 2: 20. Set 2 Network 2: -20.

Set 1 Network 3: 20. Set 2 Network 3: -20.

Set 1 Network 4: 20. Set 2 Network 4: -20.

Set 1 Network 5: 20. Set 2 Network 5: -20.

Set 1 Network 6: 20. Set 2 Network 6: -20.

Set 1 Network 7: 20. Set 2 Network 7: -20.

Set 1 Network 8: 20. Set 2 Network 8: -20.

Set 1 Network 9: 20. Set 2 Network 9: -20.

Set 1 Network Average: 20. Set 2 Network Average: -20.

Comparing set 1: size5set4 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: 10. Set 2 Network 0: -20.

Set 1 Network 1: 10. Set 2 Network 1: -20.

Set 1 Network 2: 20. Set 2 Network 2: -20.

Set 1 Network 3: 10. Set 2 Network 3: -4.

Set 1 Network 4: 10. Set 2 Network 4: -20.

Set 1 Network 5: 10. Set 2 Network 5: -4.

Set 1 Network 6: 20. Set 2 Network 6: -4.

Set 1 Network 7: 10. Set 2 Network 7: -20.

Set 1 Network 8: 10. Set 2 Network 8: -4.

Set 1 Network 9: 10. Set 2 Network 9: -4.

Set 1 Network Average: 12. Set 2 Network Average: -12.

Comparing set 1: size5set4 against set 2: size5set11 

Final scores are as follows.

Set 1 Network 0: 11. Set 2 Network 0: -18.

Set 1 Network 1: 16. Set 2 Network 1: -20.

Set 1 Network 1: 20. Set 2 Network 1: -20.
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Set 1 Network 3: 14. Set 2 Network 3: -20.

Set 1 Network 4: 20. Set 2 Network 4: -6.

Set 1 Network 5: 15. Set 2 Network 5: -10.

Set 1 Network 6: 11. Set 2 Network 6: -10.

Set 1 Network 7: 13. Set 2 Network 7: -20.

Set 1 Network 8: 11. Set 2 Network 8: -12.

Set 1 Network 9: 17. Set 2 Network 9: -14.

Set 1 Network Average: 14. Set 2 Network Average: -14.

Comparing set 1: size5set4 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: 16. Set 2 Network 0: -18.

Set 1 Network 1: 14. Set 2 Network 1: -20.

Set 1 Network 2: 18. Set 2 Network 2: -17.

Set 1 Network 3: 18. Set 2 Network 3: -20.

Set 1 Network 4: 16. Set 2 Network 4: 0.

Set 1 Network 5: 18. Set 2 Network 5: -18.

Set 1 Network 6: 18. Set 2 Network 6: -14.

Set 1 Network 7: 18. Set 2 Network 7: -20.

Set 1 Network 8: 18. Set 2 Network 8: -18.

Set 1 Network 9: 8. Set 2 Network 9: -17.

Set 1 Network Average: 16. Set 2 Network Average: -16.

Set 1 Network 2: 16. Set 2 Network 2: -14.

B.2 Scaled Uniform vs Control

Comparing set 1: size5set5 against set 2: size5set9

Final scores are as follows.

Set 1 Network 0: 2. Set 2 Network 0: -4.
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Set 1 Network 2: 1. Set 2 Network 2: -4.

Set 1 Network 3: 0. Set 2 Network 3: -4.

Set 1 Network 4: 4. Set 2 Network 4: -4.

Set 1 Network 5: 2. Set 2 Network 5: -4.

Set 1 Network 6: 4. Set 2 Network 6: -4.

Set 1 Network 7: 2. Set 2 Network 7: -9.

Set 1 Network 8: 16. Set 2 Network 8: -17.

Set 1 Network 9: 4. Set 2 Network 9: -1.

Set 1 Network Average: 5. Set 2 Network Average: -5.

Comparing set 1: size5set5 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: -3. Set 2 Network 0: -13.

Set 1 Network 1: 12. Set 2 Network 1: -13.

Set 1 Network 2: 10. Set 2 Network 2: -20.

Set 1 Network 3: 7. Set 2 Network 3: 4.

Set 1 Network 4: 9. Set 2 Network 4: -13.

Set 1 Network 5: -1. Set 2 Network 5: 6.

Set 1 Network 6: 12. Set 2 Network 6: 2.

Set 1 Network 7: 6. Set 2 Network 7: -16.

Set 1 Network 8: 12. Set 2 Network 8: 4.

Set 1 Network 9: 13. Set 2 Network 9: -18.

Set 1 Network Average: 7. Set 2 Network Average: -7.

Comparing set 1: size5set5 against set 2: size5set11 

Final scores are as follows.

Set 1 Network 0: 12. Set 2 Network 0: 0.

Set 1 Network 1: 12. Set 2 Network 1: -20.

Set 1 Network 1: 20. Set 2 Network 1: -4.
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Set 1 Network 3: 10. Set 2 Network 3: 0.

Set 1 Network 4: 9. Set 2 Network 4: -20.

Set 1 Network 5: 12. Set 2 Network 5: 0.

Set 1 Network 6: 12. Set 2 Network 6: -20.

Set 1 Network 7: 12. Set 2 Network 7: 0.

Set 1 Network 8: 10. Set 2 Network 8: -13.

Set 1 Network 9: 12. Set 2 Network 9: -20.

Set 1 Network Average: 11. Set 2 Network Average: -11.

Comparing set 1: size5set5 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: 20. Set 2 Network 0: -18.

Set 1 Network 1: 20. Set 2 Network 1: -20.

Set 1 Network 2: 17. Set 2 Network 2: -20.

Set 1 Network 3: 20. Set 2 Network 3: -15.

Set 1 Network 4: 14. Set 2 Network 4: -20.

Set 1 Network 5: 20. Set 2 Network 5: -15.

Set 1 Network 6: 18. Set 2 Network 6: -20.

Set 1 Network 7: 20. Set 2 Network 7: -20.

Set 1 Network 8: 20. Set 2 Network 8: -20.

Set 1 Network 9: 14. Set 2 Network 9: -15.

Set 1 Network Average: 18. Set 2 Network Average: -18.

Comparing set 1: size5set6 against set 2: size5set9 

Final scores are as follows.

Set 1 Network 0: 10. Set 2 Network 0: -12.

Set 1 Network 1: 11. Set 2 Network 1: -20.

Set 1 Network 2: 11. Set 2 Network 2: -14.

Set 1 Network 2: 12. Set 2 Network 2: -20.
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Set 1 Network 4: 14. Set 2 Network 4: -20.

Set 1 Network 5: 14. Set 2 Network 5: -15.

Set 1 Network 6: 14. Set 2 Network 6: -20.

Set 1 Network 7: 11. Set 2 Network 7: -2.

Set 1 Network 8: 18. Set 2 Network 8: 10.

Set 1 Network 9: 18. Set 2 Network 9: -20.

Set 1 Network Average: 13. Set 2 Network Average: -13.

Comparing set 1: size5set6 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: 14. Set 2 Network 0: -20.

Set 1 Network 1: 6. Set 2 Network 1: -20.

Set 1 Network 2: 18. Set 2 Network 2: -20.

Set 1 Network 3: 18. Set 2 Network 3: -16.

Set 1 Network 4: 14. Set 2 Network 4: -20.

Set 1 Network 5: 18. Set 2 Network 5: -16.

Set 1 Network 6: 18. Set 2 Network 6: -12.

Set 1 Network 7: 10. Set 2 Network 7: 0.

Set 1 Network 8: 14. Set 2 Network 8: -16.

Set 1 Network 9: 20. Set 2 Network 9: -10.

Set 1 Network Average: 15. Set 2 Network Average: -15.

Comparing set 1: size5set6 against set 2: size5set11 

Final scores are as follows.

Set 1 Network 0: 12. Set 2 Network 0: -14.

Set 1 Network 1: 15. Set 2 Network 1: -13.

Set 1 Network 2: 12. Set 2 Network 2: -8.

Set 1 Network 3: 13. Set 2 Network 3: -4.

Set 1 Network 3: 12. Set 2 Network 3: -20.
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Set 1 Network 5: 13. Set 2 Network 5: -17.

Set 1 Network 6: 12. Set 2 Network 6: -18.

Set 1 Network 7: 14. Set 2 Network 7: -18.

Set 1 Network 8: 18. Set 2 Network 8: -20.

Set 1 Network 9: 18. Set 2 Network 9: -6.

Set 1 Network Average: 13. Set 2 Network Average: -13.

Comparing set 1: size5set6 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: 20. Set 2 Network 0: -20.

Set 1 Network 1: 20. Set 2 Network 1: -16.

Set 1 Network 2: 20. Set 2 Network 2: -20.

Set 1 Network 3: 20. Set 2 Network 3: -20.

Set 1 Network 4: 20. Set 2 Network 4: -20.

Set 1 Network 5: 20. Set 2 Network 5: -20.

Set 1 Network 6: 20. Set 2 Network 6: -20.

Set 1 Network 7: 20. Set 2 Network 7: -20.

Set 1 Network 8: 18. Set 2 Network 8: -20.

Set 1 Network 9: 18. Set 2 Network 9: -20.

Set 1 Network Average: 19. Set 2 Network Average: -19.

Comparing set 1: size5set7 against set 2: size5set9 

Final scores are as follows.

Set 1 Network 0: -19. Set 2 Network 0: 8.

Set 1 Network 1: -14. Set 2 Network 1: 13.

Set 1 Network 2: -17. Set 2 Network 2: 16.

Set 1 Network 3: -14. Set 2 Network 3: 13.

Set 1 Network 4: 12. Set 2 Network 4: 13.

Set 1 Network 4: 11. Set 2 Network 4: -20.
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Set 1 Network 6: -19. Set 2 Network 6: 13.

Set 1 Network 7: -19. Set 2 Network 7: 18.

Set 1 Network 8: -15. Set 2 Network 8: -7.

Set 1 Network 9: -17. Set 2 Network 9: 16.

Set 1 Network Average: -11. Set 2 Network Average: 11.

Comparing set 1: size5set7 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: 12. Set 2 Network 0: -11.

Set 1 Network 1: 5. Set 2 Network 1: -11.

Set 1 Network 2: 9. Set 2 Network 2: -11.

Set 1 Network 3: -13. Set 2 Network 3: 4.

Set 1 Network 4: -13. Set 2 Network 4: -5.

Set 1 Network 5: -6. Set 2 Network 5: 4.

Set 1 Network 6: 12. Set 2 Network 6: -5.

Set 1 Network 7: 12. Set 2 Network 7: -6.

Set 1 Network 8: 12. Set 2 Network 8: -1.

Set 1 Network 9: 12. Set 2 Network 9: 0.

Set 1 Network Average: 4. Set 2 Network Average: -4.

Comparing set 1: size5set7 against set 2: size5set11 

Final scores are as follows.

Set 1 Network 0: -4. Set 2 Network 0: -5.

Set 1 Network 1: 8. Set 2 Network 1: 2.

Set 1 Network 2: -2. Set 2 Network 2: -2.

Set 1 Network 3: -4. Set 2 Network 3: -2.

Set 1 Network 4: 8. Set 2 Network 4: -3.

Set 1 Network 5: 6. Set 2 Network 5: 7.

Set 1 Network 5: 6. Set 2 Network 5: 13.
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Set 1 Network 7: -5. Set 2 Network 7: -8.

Set 1 Network 8: 6. Set 2 Network 8: 0.

Set 1 Network 9: 5. Set 2 Network 9: 1.

Set 1 Network Average: 1. Set 2 Network Average: -1.

Comparing set 1: size5set7 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: -11. Set 2 Network 0: -6.

Set 1 Network 1: -9. Set 2 Network 1: 7.

Set 1 Network 2: -12. Set 2 Network 2: 8.

Set 1 Network 3: 7. Set 2 Network 3: -2.

Set 1 Network 4: 14. Set 2 Network 4: 8.

Set 1 Network 5: 14. Set 2 Network 5: 7.

Set 1 Network 6: -14. Set 2 Network 6: 5.

Set 1 Network 7: -13. Set 2 Network 7: -3.

Set 1 Network 8: -5. Set 2 Network 8: 8.

Set 1 Network 9: -8. Set 2 Network 9: 5.

Set 1 Network Average: -3. Set 2 Network Average: 3.

Comparing set 1: size5set8 against set 2: size5set9 

Final scores are as follows.

Set 1 Network 0: -16. Set 2 Network 0: 13.

Set 1 Network 1: -13. Set 2 Network 1: 13.

Set 1 Network 2: -16. Set 2 Network 2: 10.

Set 1 Network 3: 3. Set 2 Network 3: 11.

Set 1 Network 4: -12. Set 2 Network 4: 13.

Set 1 Network 5: 7. Set 2 Network 5: 11.

Set 1 Network 6: -13. Set 2 Network 6: 12.

Set 1 Network 6: -4. Set 2 Network 6: -4.
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Set 1 Network 8: -2. Set 2 Network 8: -4.

Set 1 Network 9: -13. Set 2 Network 9: 7.

Set 1 Network Average: -8. Set 2 Network Average: 8.

Comparing set 1: size5set8 against set 2: size5set10 

Final scores are as follows.

Set 1 Network 0: 17. Set 2 Network 0: -7.

Set 1 Network 1: 6. Set 2 Network 1: -7.

Set 1 Network 2: 19. Set 2 Network 2: -8.

Set 1 Network 3: 16. Set 2 Network 3: -16.

Set 1 Network 4: 14. Set 2 Network 4: -4.

Set 1 Network 5: 17. Set 2 Network 5: -20.

Set 1 Network 6: 9. Set 2 Network 6: -18.

Set 1 Network 7: 11. Set 2 Network 7: -18.

Set 1 Network 8: 11. Set 2 Network 8: -14.

Set 1 Network 9: 7. Set 2 Network 9: -15.

Set 1 Network Average: 12. Set 2 Network Average: -12.

Comparing set 1: size5set8 against set 2: size5set11 

Final scores are as follows.

Set 1 Network 0: 0. Set 2 Network 0: -12.

Set 1 Network 1: -8. Set 2 Network 1: 2.

Set 1 Network 2: 2. Set 2 Network 2: 2.

Set 1 Network 3: 4. Set 2 Network 3: 4.

Set 1 Network 4: 6. Set 2 Network 4: 11.

Set 1 Network 5: 2. Set 2 Network 5: -6.

Set 1 Network 6: -2. Set 2 Network 6: 11.

Set 1 Network 7: 0. Set 2 Network 7: -12.

Set 1 Network 7: -13. Set 2 Network 7: 2.

44



Set 1 Network 9: 0. Set 2 Network 9: 2.

Set 1 Network Average: 0. Set 2 Network Average: 0.

Comparing set 1: size5set8 against set 2: size5set12 

Final scores are as follows.

Set 1 Network 0: 6. Set 2 Network 0: -2.

Set 1 Network 1: 2. Set 2 Network 1: -16.

Set 1 Network 2: 14. Set 2 Network 2: -6.

Set 1 Network 3: 20. Set 2 Network 3: -4.

Set 1 Network 4: 19. Set 2 Network 4: -6.

Set 1 Network 5: 8. Set 2 Network 5: -9.

Set 1 Network 6: -6. Set 2 Network 6: -6.

Set 1 Network 7: -2. Set 2 Network 7: -6.

Set 1 Network 8: 19. Set 2 Network 8: -5.

Set 1 Network 9: -14. Set 2 Network 9: -6.

Set 1 Network Average: 6. Set 2 Network Average: -6.

Set 1 Network 8: 5. Set 2 Network 8: -11.

B.3 Scaled Uniform vs Scaled Divergent 

Comparing set 1: size5set5 against set 2: size5set1 

Final scores are as follows.

Set 1 Network 0: 2. Set 2 Network 0: -2.

Set 1 Network 1: 5. Set 2 Network 1: -20.

Set 1 Network 2: 2. Set 2 Network 2: 0.

Set 1 Network 3: 10. Set 2 Network 3: 2.

Set 1 Network 4: 12. Set 2 Network 4: -4.

Set 1 Network 5: 4. Set 2 Network 5: -6.

Set 1 Network 6: 6. Set 2 Network 6: -20.
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Set 1 Network 8: 6. Set 2 Network 8: 4.

Set 1 Network 9: 12. Set 2 Network 9: -13.

Set 1 Network Average: 6. Set 2 Network Average: -6.

Comparing set 1: size5set5 against set 2: size5set2 

Final scores are as follows.

Set 1 Network 0: 4. Set 2 Network 0: -14.

Set 1 Network 1: -4. Set 2 Network 1: -12.

Set 1 Network 2: 4. Set 2 Network 2: 0.

Set 1 Network 3: -2. Set 2 Network 3: 14.

Set 1 Network 4: -4. Set 2 Network 4: 14.

Set 1 Network 5: -4. Set 2 Network 5: -2.

Set 1 Network 6: -4. Set 2 Network 6: 10.

Set 1 Network 7: -6. Set 2 Network 7: 12.

Set 1 Network 8: 0. Set 2 Network 8: 14.

Set 1 Network 9: -4. Set 2 Network 9: -16.

Set 1 Network Average: -2. Set 2 Network Average: 2.

Comparing set 1: size5set5 against set 2: size5set3 

Final scores are as follows.

Set 1 Network 0: 18. Set 2 Network 0: -18.

Set 1 Network 1: 16. Set 2 Network 1: -20.

Set 1 Network 2: 20. Set 2 Network 2: -20.

Set 1 Network 3: 20. Set 2 Network 3: -20.

Set 1 Network 4: 16. Set 2 Network 4: -20.

Set 1 Network 5: 20. Set 2 Network 5: -18.

Set 1 Network 6: 20. Set 2 Network 6: -20.

Set 1 Network 7: 20. Set 2 Network 7: -18.

Set 1 Network 7: 8. Set 2 Network 7: -8.
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Set 1 Network 9: 20. Set 2 Network 9: -16.

Set 1 Network Average: 19. Set 2 Network Average: -19.

Comparing set 1: size5set5 against set 2: size5set4 

Final scores are as follows.

Set 1 Network 0: 20. Set 2 Network 0: -2.

Set 1 Network 1: 20. Set 2 Network 1: -8.

Set 1 Network 2: 20. Set 2 Network 2: -10.

Set 1 Network 3: 6. Set 2 Network 3: -2.

Set 1 Network 4: -13. Set 2 Network 4: -10.

Set 1 Network 5: -8. Set 2 Network 5: -4.

Set 1 Network 6: 0. Set 2 Network 6: -6.

Set 1 Network 7: 8. Set 2 Network 7: 0.

Set 1 Network 8: 0. Set 2 Network 8: -8.

Set 1 Network 9: 0. Set 2 Network 9: -3.

Set 1 Network Average: 5. Set 2 Network Average: -5.

Comparing set 1: size5set6 against set 2: size5set1 

Final scores are as follows.

Set 1 Network 0: 10. Set 2 Network 0: -16.

Set 1 Network 1: 10. Set 2 Network 1: -12.

Set 1 Network 2: 18. Set 2 Network 2: -12.

Set 1 Network 3: 18. Set 2 Network 3: -16.

Set 1 Network 4: 4. Set 2 Network 4: -10.

Set 1 Network 5: 4. Set 2 Network 5: -10.

Set 1 Network 6: 12. Set 2 Network 6: -8.

Set 1 Network 7: 20. Set 2 Network 7: -10.

Set 1 Network 8: 14. Set 2 Network 8: -14.

Set 1 Network 8: 20. Set 2 Network 8: -20.
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Set 1 Network Average: 12. Set 2 Network Average: -12.

Set 1 Network 9: 14. Set 2 Network 9: -16.

Comparing set 1: size5set6 against set 2: size5set2 

Final scores are as follows.

Set 1 Network 0: 5. Set 2 Network 0: -12.

Set 1 Network 1: 2. Set 2 Network 1: 15.

Set 1 Network 2: 4. Set 2 Network 2: 2.

Set 1 Network 3: 6. Set 2 Network 3: -1.

Set 1 Network 4: -3. Set 2 Network 4: -12.

Set 1 Network 5: 10. Set 2 Network 5: -12.

Set 1 Network 6: -3. Set 2 Network 6: -1.

Set 1 Network 7: 4. Set 2 Network 7: -14.

Set 1 Network 8: 1. Set 2 Network 8: 1.

Set 1 Network 9: 1. Set 2 Network 9: 7.

Set 1 Network Average: 2. Set 2 Network Average: -2.

Comparing set 1: size5set6 against set 2: size5set3 

Final scores are as follows.

Set 1 Network 0: 18. Set 2 Network 0: -18.

Set 1 Network 1: 19. Set 2 Network 1: -16.

Set 1 Network 2: 20. Set 2 Network 2: -20.

Set 1 Network 3: 18. Set 2 Network 3: -20.

Set 1 Network 4: 12. Set 2 Network 4: -16.

Set 1 Network 5: 18. Set 2 Network 5: -20.

Set 1 Network 6: 12. Set 2 Network 6: -18.

Set 1 Network 7: 20. Set 2 Network 7: -16.

Set 1 Network 8: 20. Set 2 Network 8: -17.

Set 1 Network 9: 20. Set 2 Network 9: -16.
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Comparing set 1: size5set6 against set 2: size5set4 

Final scores are as follows.

Set 1 Network 0: 0. Set 2 Network 0: -2.

Set 1 Network 1: 0. Set 2 Network 1: -2.

Set 1 Network 2: 12. Set 2 Network 2: 4.

Set 1 Network 3: -4. Set 2 Network 3: 2.

Set 1 Network 4: 0. Set 2 Network 4: -2.

Set 1 Network 5: -4. Set 2 Network 5: 0.

Set 1 Network 6: 0. Set 2 Network 6: 2.

Set 1 Network 7: -4. Set 2 Network 7: -2.

Set 1 Network 8: 0. Set 2 Network 8: -2.

Set 1 Network 9: 0. Set 2 Network 9: 2.

Set 1 Network Average: 0. Set 2 Network Average: 0.

Comparing set 1: size5set7 against set 2: size5set1 

Final scores are as follows.

Set 1 Network 0: -7. Set 2 Network 0: 2.

Set 1 Network 1: -6. Set 2 Network 1: 4.

Set 1 Network 2: -2. Set 2 Network 2: 10.

Set 1 Network 3: 8. Set 2 Network 3: 6.

Set 1 Network 4: -10. Set 2 Network 4: 4.

Set 1 Network 5: -10. Set 2 Network 5: 8.

Set 1 Network 6: 1. Set 2 Network 6: 13.

Set 1 Network 7: 2. Set 2 Network 7: 8.

Set 1 Network 8: -20. Set 2 Network 8: 2.

Set 1 Network 9: -7. Set 2 Network 9: -6.

Set 1 Network Average: -5. Set 2 Network Average: 5.

Set 1 Network Average: 17. Set 2 Network Average: -17.

49



Comparing set 1: size5set7 against set 2: size5set2 

Final scores are as follows.

Set 1 Network 0: -17. Set 2 Network 0: 2.

Set 1 Network 1: -1. Set 2 Network 1: 12.

Set 1 Network 2: -20. Set 2 Network 2: 5.

Set 1 Network 3: -19. Set 2 Network 3: 15.

Set 1 Network 4: -15. Set 2 Network 4: 19.

Set 1 Network 5: -13. Set 2 Network 5: 15.

Set 1 Network 6: -18. Set 2 Network 6: 11.

Set 1 Network 7: -19. Set 2 Network 7: 14.

Set 1 Network 8: -5. Set 2 Network 8: 19.

Set 1 Network 9: 4. Set 2 Network 9: 11.

Set 1 Network Average: -12. Set 2 Network Average: 12.

Comparing set 1: size5set7 against set 2: size5set3 

Final scores are as follows.

Set 1 Network 0: 12. Set 2 Network 0: -4.

Set 1 Network 1: 15. Set 2 Network 1: -14.

Set 1 Network 2: 2. Set 2 Network 2: 4.

Set 1 Network 3: 2. Set 2 Network 3: -10.

Set 1 Network 4: 1. Set 2 Network 4: -11.

Set 1 Network 5: -4. Set 2 Network 5: -8.

Set 1 Network 6: 10. Set 2 Network 6: -12.

Set 1 Network 7: 8. Set 2 Network 7: -9.

Set 1 Network 8: 14. Set 2 Network 8: 6.

Set 1 Network 9: 12. Set 2 Network 9: -14.

Set 1 Network Average: 7. Set 2 Network Average: -7.
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Comparing set 1: size5set7 against set 2: size5set4 

Final scores are as follows.

Set 1 Network 0: -8. Set 2 Network 0: 10.

Set 1 Network 1: -8. Set 2 Network 1: 6.

Set 1 Network 2: -18. Set 2 Network 2: 10.

Set 1 Network 3: -18. Set 2 Network 3: 14.

Set 1 Network 4: -18. Set 2 Network 4: 10.

Set 1 Network 5: -20. Set 2 Network 5: 6.

Set 1 Network 6: 6. Set 2 Network 6: 12.

Set 1 Network 7: -2. Set 2 Network 7: 12.

Set 1 Network 8: -8. Set 2 Network 8: 10.

Set 1 Network 9: -2. Set 2 Network 9: 6.

Set 1 Network Average: -9. Set 2 Network Average: 9.

Comparing set 1: size5set8 against set 2: size5set1 

Final scores are as follows.

Set 1 Network 0: 2. Set 2 Network 0: 5.

Set 1 Network 1: -6. Set 2 Network 1: -8.

Set 1 Network 2: 5. Set 2 Network 2: 19.

Set 1 Network 3: -3. Set 2 Network 3: 8.

Set 1 Network 4: 0. Set 2 Network 4: 2.

Set 1 Network 5: 5. Set 2 Network 5: 16.

Set 1 Network 6: -18. Set 2 Network 6: -2.

Set 1 Network 7: -16. Set 2 Network 7: 2.

Set 1 Network 8: -12. Set 2 Network 8: 7.

Set 1 Network 9: -4. Set 2 Network 9: -2.

Set 1 Network Average: -4. Set 2 Network Average: 4.

Comparing set 1: size5set8 against set 2: size5set2
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Final scores are as follows.

Set 1 Network 0: 0. Set 2 Network 0: -1.

Set 1 Network 1: -4. Set 2 Network 1: 2.

Set 1 Network 2: -2. Set 2 Network 2: 8.

Set 1 Network 3: 2. Set 2 Network 3: 0.

Set 1 Network 4: -2. Set 2 Network 4: 8.

Set 1 Network 5: -4. Set 2 Network 5: 2.

Set 1 Network 6: -13. Set 2 Network 6: 0.

Set 1 Network 7: -4. Set 2 Network 7: 12.

Set 1 Network 8: -2. Set 2 Network 8: 0.

Set 1 Network 9: -4. Set 2 Network 9: 2.

Set 1 Network Average: -3. Set 2 Network Average: 3.

Comparing set 1: size5set8 against set 2: size5set3 

Final scores are as follows.

Set 1 Network 0: 20. Set 2 Network 0: -10.

Set 1 Network 1: 4. Set 2 Network 1: -13.

Set 1 Network 2: 20. Set 2 Network 2: -8.

Set 1 Network 3: 19. Set 2 Network 3: -7.

Set 1 Network 4: 20. Set 2 Network 4: -16.

Set 1 Network 5: 14. Set 2 Network 5: -12.

Set 1 Network 6: -2. Set 2 Network 6: -12.

Set 1 Network 7: -5. Set 2 Network 7: -16.

Set 1 Network 8: 20. Set 2 Network 8: -7.

Set 1 Network 9: 6. Set 2 Network 9: -15.

Set 1 Network Average: 11. Set 2 Network Average: -11.

Comparing set 1: size5set8 against set 2: size5set4 

Final scores are as follows.
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Set 1 Network 1: -12. Set 2 Network 1: 12.

Set 1 Network 2: -20. Set 2 Network 2: 12.

Set 1 Network 3: 0. Set 2 Network 3: 12.

Set 1 Network 4: -20. Set 2 Network 4: 10.

Set 1 Network 5: -20. Set 2 Network 5: 10.

Set 1 Network 6: -4. Set 2 Network 6: 13.

Set 1 Network 7: -12. Set 2 Network 7: 10.

Set 1 Network 8: -12. Set 2 Network 8: 12.

Set 1 Network 9: 2. Set 2 Network 9: 12.

Set 1 Network Average: -11. Set 2 Network Average: 11.

Set 1 Network 0: -19. Set 2 Network 0: 14.
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Appendix C -  Code Repository

All code for this project at the time of completion can be found at the following permalink: 

https://github.com/wduncanfraser/scalable go/tree/MP. While this codebase will continue to 

evolve as I continue to develop Go AI, this tag will remain as a static record for this project 

documentation.
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