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A bstract

We compare three models for their ability to perform binary spatial 
classification. A geospatial data set consisting of observations that are 
either permafrost or not is used for this comparison. All three use an 
underlying Gaussian process. The first model considers this process to 
represent the log-odds of a positive classification (i.e. as permafrost). 
The second model uses a cutoff. Any locations where the process 
is positive are classified positively, while those that are negative are 
classified negatively. A probability of misclassification then gives the 
likelihood. The third model depends on two separate processes. The 
first represents a positive classification, while the second a negative 
classification. Of these two, the process with greater value at a location 
provides the classification. A probability of misclassification is also 
used to formulate the likelihood for this model. In all three cases, 
realizations of the underlying Gaussian processes were generated using 
a process convolution. A grid of knots (whose values were sampled 
using Markov Chain Monte Carlo) were convolved using an anisotropic 
Gaussian kernel. All three models provided adequate classifications, 
but the single and two-process models showed much tighter bounds on 
the border between the two states.
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1 Introduction
Subsurface conditions are always im portan t when planning and building in­
frastructure. There are additional challenges a t high latitudes, where per­
m afrost and massive ice can greatly  complicate or even rule out construction 
a t a site. The standard  m ethod for evaluating po ten tial sites is to  drill a se­
ries of boreholes and then  have an expert reconstruct subsurface conditions 
based on the inform ation they  provide. However, this is expensive and tim e 
consuming.

Reducing the num ber of boreholes required for a construction project is 
one goal of the Cold Regions Research and Engineering (C R R E L ) Perm afrost 
Decision Support System  project. One aspect of this entails using borehole 
inform ation as efficiently as possible. Classifying regions of a transect into 
different categories is one aspect of this. We focus on classifying areas by 
perm afrost sta te  (a binary classification), bu t also consider a m ethod th a t 
could be extended to  classify locations into three or more categories.

G eostatistical models can also aid integration of o ther available inform a­
tion. Surface features can provide im portan t initial indications of subsur­
face conditions. Geophysical d a ta  such as resistivity can also be acquired, 
typically much less expensively th an  boreholes. Bringing these inform ation 
sources together will result in a more complete p icture of subsurface condi­
tions, and may help in planning borehole placem ent.

B inary spatial classification is typically accomplished by considering an
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underlying G aussian process and using a link function such as the inverse logit 
to  provide a probabilistic classification a t any point. A G aussian process 
is a model where any finite collection of points has a m ultivariate norm al 
d istribution. The covariance m atrix  of this m ultivariate norm al d istribution  
results from the spatial correlation of the various locations w ithin the region 
of interest.

If we have p  observations of the process and m  locations to  be predicted, 
then  the covariance m atrix  of this m ultivariate G aussian d istribution  has di­
mension p  +  m. W ith  m any locations to  predict, as when m aking a m ap, 
this quickly becomes very large. F inding the  probability  density of this m ul­
tivariate  norm al d istribution  requires inverting this (p +  m) x (p +  m ) co­
variance m atrix . This is com putationally  expensive, typically increasing as 
O  ((p +  m )3).

One stra tegy  to  lower the  dim ensionality of the m odel is to  use a set of 
knot locations w ith norm ally-distributed  knot values. These can be convolved 
w ith a kernel to  find a value a t any point in the region. Any points in the 
region are then  linear com binations of G aussian random  variables, and thus 
G aussian themselves. This then  m eets our definition of a G aussian process. 
This was explored in detail by Higdon (2001) and Lee et al. (2002).

Spatial correlation structu re  is induced by the convolution kernel. In our 
case, we expect observations to  be more highly correlated horizontally th an  
vertically due to  the underlying geological processes. This is captured  as 
anisotropy in the  convolution kernel.
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The 2 x 2 m atrix  describing the  distance scale and anisotropy of the con­
volution kernel is the only m atrix  inversion required for this m ethod. Besides 
this, the  num ber of knots is chosen to  reduce the  num ber of param eters th a t 
m ust be sampled. These combine to  make full Bayesian inference of spatial 
prediction com putationally  feasible.

The G aussian process accounts for dependence in the d a ta  through a 
covariance function. Covariance determ ines the  effect of nearby points on 
a p o in t’s predicted value. The specific param eterization  of the  covariance 
function determ ines how much a fitted surface will change on different length 
scales, and how sm ooth those changes will be. The param eterization  of 
these covariance functions is where variogram  m ethods are typically used. 
A variogram  is a function describing the correlation of m easurem ents w ith 
nearby d a ta  as a function of distance; it is based on the  idea th a t  nearby 
d a ta  will be more similar th a t more d istan t data.

The standard  approach to  binary prediction like this is a logistic regres­
sion model, where a log-odds surface is fit to  the data. The value of this 
surface at a prediction location indicates the probability  of a “success” at 
th a t location. However, this model im plicitly allows sta te  changes a t small 
lags. If two locations separated  by a short distance b o th  have an 80% prob­
ability of “success”, then  they  also have a 20% chance of failure, and thus the 
sta te  could plausibly change m ultiple tim es over short distances under this 
model. The processes we are considering tend  to  be much sm oother w ith 
contiguous areas of each state.
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The other two models we consider use a simple classification criterion to  
generate a binary classification map. These predictions can then  be com pared 
to  the observations we have to  form ulate our likelihood. Allowing for some 
misclassification, a simple M arkov Chain M onte Carlo sam pler can explore 
the  space of knot values.

Each MCMC iteration  represents a plausible m ap of the subsurface con­
ditions. A well-mixed chain of knot value samples can then  be considered 
to  represent a sample from the posterior d istribution  of classification maps. 
Taking a point-wise m ean across these m aps then  gives an uncertainty-based 
probability  of perm afrost a t th a t point.

Section 2 will describe the d a ta  used in this study, the three likelihoods 
th a t are com pared, and how the models were fit. Also described is a sim­
ulation  study, used to  verify th a t the models can classify more com plicated 
structu re  th an  appears in the  observed data . Section 3 presents the results of 
the  model fits. Next, in section 4, is a discussion of the relative effectiveness 
of the different models. Finally, section 5 presents our conclusions and notes 
areas for future work.

2 M ethods
2.1 D ata  D escription
Between A ugust 19 and Septem ber 5 2014, the CRREL team  drilled a series of 
34 boreholes along a 100m transect near the Cold C lim ate Housing Research
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Center (CCHRC) in College, AK. The boreholes were drilled every 3m from 
50m along a transect to  149m. Every 10cm along each borehole presence of 
perm afrost, am ount of visible ice, and soil type were recorded. Every 30cm 
a sample was taken and the gravim etric m oisture content of the soil was 
m easured.

The location of the transect can be seen in Figure 1. Figure 2 shows the 
extent of the  transect. This was the 3rd transect in this area, so boreholes 
were recorded as “T3-xxx”. The three digit num ber denotes the  distance 
along the  transect where the borehole was taken. Note th a t  the  transect 
distance increases from right to  left, so all subsequent images of the transect 
are orientated  so th a t the  viewer is facing generally South.

This work concentrates specifically on classifying areas of the transect as 
perm afrost or not, and so makes exclusive use of those data . F urther work 
incorporating the o ther d a ta  is ongoing. The spatial region addressed in this 
study  extends horizontally along the transect, and vertically from ground 
level down approxim ately  8m. The perm afrost/no  perm afrost observations 
from the boreholes can be seen in Figure 3.

2.2 Process convolutions
A grid of knot values was overlayed on the transect every 5m horizontally 
and 1m vertically. The locations of the knots can be seen in Figure 3. Hori­
zontally, the  grid extended from 45m on the transect to  155m, so th a t there 
was a t least 5m to  either side of the  boreholes. Vertically, the grid extended
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Figure 1: M ap showing the general location of the  borehole transect in rela­
tion  to  the  University of Alaska Fairbanks cam pus and surrounding area.
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Figure 2: M ap showing the positions of individual boreholes.

from 125m to  135m above sea level. This includes 1m below the deepest 
borehole and 2-3m  above ground level.

Then for n  knot values x \ , . . .  , x n a t locations s* ,. . . ,  s^, the  value of the 
spatial process Z  a t location s is given by

Z (s) =  ^  Xik(s, s*; V ),
i= 1

where k is the  convolution kernel and V  is a m atrix  th a t  determ ines the 
shape of the kernel.

For a given location (s0), we define the  vector w  e  R n as

w  =  (k(s0, s*, V ) : i = 1 , . . . ,  n )
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136 Borehole observations and knot locations. CCHRC transect

Transect distance (m)
124

40 60 90 100 120 160

Figure 3: P erm afrost/no  perm afrost observations from the borehole transect 
and knot locations. Red points represent observations of no perm afrost. Blue 
points represent observations of perm afrost. Black points are knot locations. 
The black line is the ground surface elevation.

8



These are the convolution weights for s0. If the  corresponding knot values 
are in a vector x  e  R n , then  the  value of Z  a t s is

Z  (s0) =  w 'x .

Extending this to  a set of p  locations s (1), . . . ,  s (p), we can precalculate 
the  convolution weights for each of these as w (1), . . . ,  w (p). T hen if we let
W w (1 ) w (2) w (P) (thus W  e  R nxp), the value of Z  at these
locations is the vector

Z (s(1), . . . ,  s (p)) =  W 'x .

C om putationally  this is very efficient, as it can take advantage of highly 
optim ized m atrix  m ultiplication in libraries such as OpenBLAS or MKL.

2.3 C onvolution kernel
The spatial process is a moving average of the knot values, w ith  weights de­
term ined by a convolution kernel. In this case, we use a G aussian convolution 
kernel. This induces a G aussian spatial covariance in the represented surface 
(Higdon, 2001). Because we are dealing w ith  geological processes, we expect 
th a t horizontal correlations will occur a t longer distances th an  vertical corre­
lations. In order to  account for th is anisotropy, we use a diagonal m atrix  to  
shape the  convolution kernel appropriately. For knot location s*, location to  
be predicted s0 , and anisotropy m atrix  V , the weight assigned to  th a t  knot
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value is given by

k (so, s*; V ) — exp ( — ̂  (sq — s*); V  1 (sq — s*)

In this case, we let

V af 0
0 af

where a f — 14 and a f — 1, indicating correlation between points separated  
by horizontally was the same as correlation between points separated
by 1m vertically. An early exploratory model fit these length param eters as 
p art of the  model. These values were the  m ean of the fitted values, and we 
have carried them  through the present analysis.

2.4 Log-odds m odel
Three likelihoods were used and com pared in this study. For each of them  
we consider different relationships between the value of Z  and the presence 
of perm afrost a t a given location along the transect. As such, while fitting 
the  model we only need to  calculate the value of Z  at the locations where we 
have observations. Each of these observation locations is classified as either 
perm afrost or not, so for convenience we define

{
1 if perm afrost is present a t s,

0 if perm afrost is not present a t s.
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The first, which we will call the  “log-odds” (LO) model, considered the 
surface represented by Z  to  be the  log-odds of a particular point being p er­
m afrost. It uses the  standard  inverse logit link function, so th a t for a spatial 
process value of Z (s), the  probability  of perm afrost a t s is

P r [PF(s) — 1] — logit-1 [Z(s)]
— exp [Z(s)]

1 +  exp [Z (s)].

Thus, the likelihood is

l lo  (x) — ^  {logit-1 [Z  (s(i)) ] } PF(s ) x
i= 1

{1 -  logit-1 [Z (S(i)) ] } 1-PF<‘“’> .

This likelihood has some advantages. It is differentiable, and so can be 
sampled more efficiently using H am iltonian M onte-Carlo and other gradient- 
based samplers. These characteristics were not taken advantage of in this 
study, bu t could be an area of exploration going forward.

2.5 Single-process m odel
The log-odds model gives only a probability  of perm afrost a t a given location. 
These probabilities are assum ed spatially  correlated, bu t there is still room
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for a “nugget” effect, where moving a small distance could result in a changed 
sta te  even if the probability  does not change. This does not m atch our 
expectation; the states will probably be patchy, w ith  large contiguous areas 
of the same state . In some respect, our real concern is locating the  border 
between the  two states. Thus, it makes more sense to  assign a discrete sta te  
to  each point, and then  calculate the  likelihood from those. This is the 
approach th a t the  o ther two likelihoods take.

The first of these uses a simple cutoff value, in this case zero. At location 
s, if Z (s) >  0, th a t  point is predicted to  be perm afrost. If Z (s) <  0, then  
perm afrost is not predicted for th a t location. We call this the single-process 
(1P) model.

By com paring these predictions to  the  observations from the boreholes, we 
can form ulate a likelihood based on a probability  th a t a borehole observation 
was misclassified. This misclassification is not necessarily because we expect 
incorrect observations. However, it is required if we expect to  be able to  
sample from the model.

If we allowed no misclassification, the likelihood would be equal to  zero 
if a single observations was misclassified, jum ping to  one when they  are all 
correctly classified. In a m odel w ith  hundreds of knots (and an equally large­
dim ensional param eter space), the volume of the param eter space w ith zero 
likelihood is so much larger th an  th a t  w ith  likelihood one th a t it would be 
v irtually  impossible to  find a set of param eter values th a t  correctly predicts 
every observation. Allowing for some misclassification allows for incremen-
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ta l improvements; a set of param eter values where 90% of observations are 
classified correctly should be more likely th an  one th a t  correctly classifies
only 80% of observations. The m agnitude of allowed misclassification is only
im portan t in term s of the M CM C iterations. The misclassification ra te  deter­
mines how often a proposed param eter value th a t  “loses” a correctly classified 
observation would be accepted. Besides, allowing for a 0.001 chance of m is­
classification translates to  an expectation  of one observation in 1,000 being 
misidentified, which seems not unreasonable.

Then if we let m  be the misclassification rate, and define

{
1 if Z (s) >  0,

0 if Z (s) <  0,

then  the likelihood is

A p  (x) — f t  (1 -  m ) 'iZ''p(s ,“ )=PF(s ," ) l x
i=1

m l[Zp(s (i))=PF(s (i))].

2.6 Two-process m odel
The th ird  model uses two separate processes, one for perm afrost and one for 
absence of perm afrost. This “two-process” (2P) model doubles the num ber 
of param eters, bu t provides a useful jum ping-off point for prediction of cate­
gorical responses w ith  more th an  two states. For the  same reasons as above,
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this likelihood also allows for some misclassification. The process w ith  the 
m axim um  value at a spatial location provides the prediction for th a t location.

So if we let Z PF be the process representing the presence of perm afrost 
and ZN be the process representing the absence of perm afrost, then

I 1 if Z p f (s) >  Z n (s),
Z2*p (s ) — ^

I 0 if Z p f (s) <  Z n  (s), 

and the likelihood is the same as above, so

L p  (x) — (1 -  m )l[z2p(s (i) )=PF(s (*))] x
i=1

m l[Z*p(s (i))=pF(s (i))].

2.7 Priors
In all cases, the  param eters to  be sam pled were the  knot values. These were 
given the same prior, so th a t

x / -  N orm al(0 ,1).

This was done specifically to  regularize the knot values. Because the 
likelihood does not change based on the  m agnitude of the  underlying process 
for the single- and two-process models, there is little  to  prevent the  knot 
values from increasing or decreasing to  a rb itra ry  m agnitudes.
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2.8 Im plem entation
All models were fitted using a M etropolis sam pler w ith  an independent 
Norm al proposal function, as described in Gelm an et al. (2014, p. 278). 
The first 5000 iterations were used to  adap t the variance of the  proposal 
d istribution. D uring this stage, every 200 iterations the acceptance ra te  was 
calculated for each knot value. If the acceptance rate  was less th an  30%, the 
proposal w idth for th a t  knot value was halved. If the acceptance ra te  was 
greater th an  60%, the  proposal w idth was doubled. P roposal w idths were 
held constant for the subsequent 1,000,000 samples.

A t the  beginning of each M CM C iteration , the  order of knot value up­
dates was random ly perm uted. This was done so th a t knot values were not 
consistently upd ated  early or late in the  process. As each knot value was 
updated , the  unnorm alized log-posterior was calculated, and the  knot value 
accepted or rejected according to  its M etropolis ratio.

All of the  models and the M etropolis random  walk sam pler were coded 
in the Ju lia  program m ing language (Bezanson et al., 2014, 2012). The Dis- 
tribu tions.jl package was used to  find log densities. The P yP lo t.jl package 
was used to  access the  M atplotlib  library (H unter, 2007) for plotting. Un­
norm alized posterior densities were calculated on the log scale in order to 
avoid underflows and other num erical issues.

A single chain of 1 million samples was run for each of the three models. 
This was then  thinned, keeping every 100 in order to  make storage and 
processing of the samples reasonable. All predictions are based on these
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10,000 samples.

2.9 P ost-processing
Each set of knot values represents a realization of the underlying spatial 
G aussian processes. These were interpolated  on a 1025 x 94 grid w ithin  the 
bounds of the knot locations. Thus, the  surface was interpolated  roughly 
every 10cm. The sum m ary sta tistics used to  create the final m aps were 
different depending on the model used.

The log-odds model requires some choice in how to  sum m arize the repre­
sented surfaces. The value of the  process was calculated a t the interpolation  
locations. The m ean and the m edian values of th is surface was found, and 
these were then  transform ed using the  inverse logit function to  get a proba­
bility of perm afrost. The m ean and m edian values were very similar, so only 
the  m ean values are considered.

For the  single-process model, the value of the spatial process was cal­
culated at each interpolation  location. Anywhere the spatial process was 
greater th an  0 represented a classification of perm afrost was present a t th a t 
location. The proportion  of M CMC samples th a t  classified a location as 
perm afrost was then  used as the probability  of perm afrost a t th a t location.

The classification was similar for the two-process model. The values of 
the  perm afrost and non-perm afrost spatial processeses were interpolated  at 
each location. These were then  com pared, and the process w ith greater value 
provided the classification. Again, the  proportion  of processes th a t  classified
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a location as perm afrost was used as the probability  of perm afrost a t th a t 
location.

2.10 Synthetic data  study
The original d a ta  has a fairly simple structure . There is a layer of non­
perm afrost, and everything below this is perm afrost. We altered a num ber 
of observations to  test the m odel's ability  to  fit more com plicated structure.

Observations of perm afrost were modified in two areas. The first was 
an ellipse centered at 75.5m along the transect and an elevation of 129.5. 
The horizontal semiaxis length was 14m and the vertical semiaxis length was 
1.25m. All the  observations w ithin this ellipse were perm afrost. These were 
changed to  no perm afrost.

The second ellipse was centered a t 130m along the transect and 129m 
elevation. Its horizontal semiaxis was 9.5m and its vertical semiaxis was 2m. 
Again, all observations inside this ellipse were changed from perm afrost to  
no perm afrost.

These “holes” introduce some large-scale com plexity to  the observations. 
The same three models were fit using these modified data . Again, 1 million 
iterations of the  M etropolis sam pler were run, and every 100th sample was 
taken for final inferences and prediction.
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3 R esults
3.1 Original data
Figure 4 shows the m aps of probability  of perm afrost a t a given location 
along the transect using all three models. At the  top  is the m ean of the log- 
odds surface, then  the  single-process prediction, and finally the two-process 
prediction.

F igure 5 shows m aps of the Bernoulli variance of the  predictions. This 
is one way to  represent the uncertain ty  a t a location, as predicting th a t 
perm afrost will be present w ith 50% probability  essentially states th a t  we 
have m axim um  uncertainty. Thus, if the  predicted probability  of perm afrost 
is p, then  the  Bernoulli variance of th a t  prediction is p(1 — p), which takes 
values between 0 and 0.25.

3.2 Synthetic data  study
Figure 6 uses the  same models as the used in F igure 4, bu t w ith  observations 
modified as described in section 2.10. The two ellipses w ith  altered obser­
vations are clearly visible. The modified observations do not seem to  have 
changed the classifications in the unm odified area.

Again, the log-odds m odel shows the  greatest uncertain ty  as to  the loca­
tions of borders between states. This is visible in Figure 6, and strikingly 
clear in F igure 7, w ith a thick band of high variance around each modified 
oval. The o ther two models again provide very similar maps. Notably, they
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Figure 4: P robability  of finding perm afrost along the  CCHRC transect under 
the  log-odds, single process, and two-process models. Red points represent 
observations of no perm afrost, while blue points are locations where per­
m afrost was observed.
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b oth  show some uncertain ty  as to  the location of the edge of perm afrost 
a t the edge of the  oval around transect distance 120m. This uncertain ty  is 
appropriate given the observations.

4 D iscussion
All three of the  likelihood models dem onstrate an ability to  classify transect 
areas as perm afrost or not consistent w ith  observations. The modified set of 
observations used in the sim ulation study  dem onstrate this even w ith more 
com plicated subsurface structure. The m ain difference between the models 
is th a t  the log-odds model provides much less well-defined borders between 
types.

This is visible in the rapid transition  between low and high probabilities of 
perm afrost where observations change in figures 4 and 6. It is also apparent 
when looking at the  Bernoulli variance of the predictions in figures 5 and 7.

The log-odds m odel does have some advantages over the  o ther two models 
however. The likelihood is sm ooth and differentiable, and so more efficient 
M CM C algorithm s could be used. It is also easier to  form ulate interpretable 
priors for additional effects. For example, if one believes th a t a specific 
surface condition is associated w ith  perm afrost a t a given depth, a prior 
can be form ulated by considering how much the additional inform ation is 
expected to  change the  log-odds of the state . In the single-process model, one 
m ust form ulate a prior by considering how frequently the inform ation should
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Figure 6: P robability  of perm afrost predictions for modified observations in 
the  sim ulation study.
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move the surface above or below the cutoff. The two-process model then  
requires setting  a prior for bo th  processes, again considering how frequently 
it should be positive or negative and w ith  w hat m agnitude.

Because the  value of the spatial process in the  log-odds m odel has a 
one-to-one correspondence w ith the probability  of finding perm afrost, the 
log-odds m odel m ay also be more sensitive to  the prior. The lower certainty  
dem onstrated  in this model may have been a result of the N orm al(0 ,1) prior 
on the  knot values. This m ay have reduced the m agnitude of the  log-odds 
surface near the border of the two states.

In  this case, the  classification m aps resulting from the single- and two- 
process models appear very similar. They also appear equally effective. 
P redictions follow observations very closely, and uncertain ty  increases far­
ther from the observations. The border between the perm afrost and non­
perm afrost regions are well-defined, and much sharper th an  th a t  given by 
the  log-odds model.

The sim ulation study  shows a similar effect. The log-odds model shows 
a band of uncertain ty  as to  which points are or are not perm afrost (c.f. 
figure 7). This does not appear in either of the  o ther two models. There is 
uncertain ty  around 120m. This is to  be expected, as the observations support 
a border between the two states anywhere between the two boreholes.

In  this case, the two-process model appears to  be alm ost identical to  the 
single-process model. This provides some evidence th a t th is model could be 
extended from predicting a binary response to  a categorical response w ith
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three or more categories by modeling a corresponding num ber of spatial pro­
cesses and tak ing  the processes w ith m axim um  value at a location as the 
classification a t th a t location.

5 Conclusion
Process convolutions can represent G aussian processes in a very com puta­
tionally efficient m anner. They reduce the  dim ension of the  param eter space, 
and allow for easy interpolation  w ithout refitting the  model. The single and 
two-process models provided more effective classifications th an  the  log-odds 
model.

All of these models provide a basis for further work on transect profiles 
for infrastructure  planning. They can be used to  determ ine the  num ber 
of boreholes needed, and can serve as the basis for in tegrating  additional 
sources of inform ation. Some version of these models may be integrated  into 
a Decision S upport System  in the  future, where users can receive interactive 
guidance about building in areas where there is concern abou t perm afrost.

It appears th a t  the  two-process m odel could be extended to  an k-process 
model for observations w ith  k categories. This m ay be useful for th is project 
if m apping soil types becomes im portan t. O therwise, it m ay be have appli­
cations in o ther classification tasks. We expect th a t  when it is appropriate, 
the  k-process model will outperform  an analogous m ulti-logit model.

25



5.1 Future work
There are m any p aths forward in this work. Using a k-fold cross-validation 
scheme, it will be interesting to  quantify the  difference in predictive ability 
between the models presented here. This could be done using a Brier score 
(Brier, 1950) or an area under ROC curve.

Because the  calculations were fast, it was reasonable to  run the  MCMC 
chain for a large num ber of iterations and then  th in  it heavily. I t  would be 
useful to  find a more efficient sam pler so th a t fewer samples are necessary. 
The log-odds model can be im plem ented in M CMC software (e.g. Stan) 
th a t im plem ent more efficient samplers because they  take advantage of the 
differentiability of the posterior in order to  more efficiently sample from the 
param eter space. This m ay be difficult for the single- and two-process models 
because they  are not differentiable everywhere.

F ittin g  the  length param eters for the  convolution kernel ra ther th an  just 
setting  them  as constant would allow for some inferences abou t the under­
lying processes, bu t m ay not improve prediction much. This would likely 
require m any more M CMC iterations, and so m ay be predicated on a more 
efficient sampler.

One goal of the project is to  integrate surface features and resistivity 
data . These have always provided im portan t inform ation when form ulating 
a subsurface reconstruction, and so inform ative priors should be uesd as as 
initial guesses a t subsurface structure.

E xtending the  two-process model to  m any processes in order to  predict
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a categorical state . These models could be very effective for th is type of 
predictions given how flexible they  are. It m ay be possible th a t  each process 
representing a particular category could have different spatial struc tu re  (i.e. a 
different convolution kernel). This could allow for the prediction of things like 
massive ice wedges intruding vertically into horizontally-bedded soil layers. 
This d a ta  set has soil type data , which could be approached this way.

There are also questions about how the knot density relates to  the level 
of detail th a t  can be captured  by these models. This could guide future 
modeling efforts, especially because knots do not have to  be placed regularly. 
Thus more knots could be placed in areas w ith  more detailed structure.
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