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Abstract

We compare three models for their ability to perform binary spatial
classification. A geospatial data set consisting of observations that are
either permafrost or not is used for this comparison. All three use an
underlying Gaussian process. The first model considers this process to
represent the log-odds of a positive classification (i.e. as permafrost).
The second model uses a cutoff. Any locations where the process
is positive are classified positively, while those that are negative are
classified negatively. A probability of misclassification then gives the
likelihood. The third model depends on two separate processes. The
first represents a positive classification, while the second a negative
classification. Of these two, the process with greater value at a location
provides the classification. A probability of misclassification is also
used to formulate the likelihood for this model. In all three cases,
realizations of the underlying Gaussian processes were generated using
a process convolution. A grid of knots (whose values were sampled
using Markov Chain Monte Carlo) were convolved using an anisotropic
Gaussian kernel. All three models provided adequate classifications,
but the single and two-process models showed much tighter bounds on

the border between the two states.



1 Introduction

Subsurface conditions are always important when planning and building in-
frastructure. There are additional challenges at high latitudes, where per-
mafrost and massive ice can greatly complicate or even rule out construction
at a site. The standard method for evaluating potential sites is to drill a se-
ries of boreholes and then have an expert reconstruct subsurface conditions
based on the information they provide. However, this is expensive and time
consuming.

Reducing the number of boreholes required for a construction project is
one goal of the Cold Regions Research and Engineering (CRREL) Permafrost
Decision Support System project. One aspect of this entails using borehole
information as efficiently as possible. Classifying regions of a transect into
different categories is one aspect of this. We focus on classifying areas by
permafrost state (a binary classification), but also consider a method that
could be extended to classify locations into three or more categories.

Geostatistical models can also aid integration of other available informa-
tion. Surface features can provide important initial indications of subsur-
face conditions. Geophysical data such as resistivity can also be acquired,
typically much less expensively than boreholes. Bringing these information
sources together will result in a more complete picture of subsurface condi-
tions, and may help in planning borehole placement.

Binary spatial classification is typically accomplished by considering an



underlying Gaussian process and using a link function such as the inverse logit
to provide a probabilistic classification at any point. A Gaussian process
is a model where any finite collection of points has a multivariate normal
distribution. The covariance matrix of this multivariate normal distribution
results from the spatial correlation of the various locations within the region
of interest.

If we have p observations of the process and m locations to be predicted,
then the covariance matrix of this multivariate Gaussian distribution has di-
mension p + m. With many locations to predict, as when making a map,
this quickly becomes very large. Finding the probability density of this mul-
tivariate normal distribution requires inverting this (p + m) x (p + m) co-
variance matrix. This is computationally expensive, typically increasing as
O ((p+ m)?’).

One strategy to lower the dimensionality of the model is to use a set of
knot locations with normally-distributed knot values. These can be convolved
with a kernel to find a value at any point in the region. Any points in the
region are then linear combinations of Gaussian random variables, and thus
Gaussian themselves. This then meets our definition of a Gaussian process.
This was explored in detail by Higdon (2001) and Lee et al. (2002).

Spatial correlation structure is induced by the convolution kernel. In our
case, we expect observations to be more highly correlated horizontally than
vertically due to the underlying geological processes. This is captured as

anisotropy in the convolution kernel.



The 2 x 2 matrix describing the distance scale and anisotropy of the con-
volution kernel is the only matrix inversion required for this method. Besides
this, the number of knots is chosen to reduce the number of parameters that
must be sampled. These combine to make full Bayesian inference of spatial
prediction computationally feasible.

The Gaussian process accounts for dependence in the data through a
covariance function. Covariance determines the effect of nearby points on
a point’s predicted value. The specific parameterization of the covariance
function determines how much a fitted surface will change on different length
scales, and how smooth those changes will be. The parameterization of
these covariance functions is where variogram methods are typically used.
A variogram is a function describing the correlation of measurements with
nearby data as a function of distance; it is based on the idea that nearby
data will be more similar that more distant data.

The standard approach to binary prediction like this is a logistic regres-
sion model, where a log-odds surface is fit to the data. The value of this
surface at a prediction location indicates the probability of a “success” at
that location. However, this model implicitly allows state changes at small
lags. If two locations separated by a short distance both have an 80% prob-
ability of “success”, then they also have a 20% chance of failure, and thus the
state could plausibly change multiple times over short distances under this
model. The processes we are considering tend to be much smoother with

contiguous areas of each state.



The other two models we consider use a simple classification criterion to
generate a binary classification map. These predictions can then be compared
to the observations we have to formulate our likelihood. Allowing for some
misclassification, a simple Markov Chain Monte Carlo sampler can explore
the space of knot values.

Each MCMC iteration represents a plausible map of the subsurface con-
ditions. A well-mixed chain of knot value samples can then be considered
to represent a sample from the posterior distribution of classification maps.
Taking a point-wise mean across these maps then gives an uncertainty-based
probability of permafrost at that point.

Section 2 will describe the data used in this study, the three likelihoods
that are compared, and how the models were fit. Also described is a sim-
ulation study, used to verify that the models can classify more complicated
structure than appears in the observed data. Section 3 presents the results of
the model fits. Next, in section 4, is a discussion of the relative effectiveness
of the different models. Finally, section 5 presents our conclusions and notes

areas for future work.

2 Methods

2.1 Data Description

Between August 19 and September 5 2014, the CRREL team drilled a series of

34 boreholes along a 100m transect near the Cold Climate Housing Research
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Center (CCHRC) in College, AK. The boreholes were drilled every 3m from
50m along a transect to 149m. Every 10cm along each borehole presence of
permafrost, amount of visible ice, and soil type were recorded. Every 30cm
a sample was taken and the gravimetric moisture content of the soil was
measured.

The location of the transect can be seen in Figure 1. Figure 2 shows the
extent of the transect. This was the 3rd transect in this area, so boreholes
were recorded as “T3-xxx”. The three digit number denotes the distance
along the transect where the borehole was taken. Note that the transect
distance increases from right to left, so all subsequent images of the transect
are orientated so that the viewer is facing generally South.

This work concentrates specifically on classifying areas of the transect as
permafrost or not, and so makes exclusive use of those data. Further work
incorporating the other data is ongoing. The spatial region addressed in this
study extends horizontally along the transect, and vertically from ground
level down approximately 8m. The permafrost/no permafrost observations

from the boreholes can be seen in Figure 3.

2.2 Process convolutions

A grid of knot values was overlayed on the transect every 5m horizontally
and 1m vertically. The locations of the knots can be seen in Figure 3. Hori-
zontally, the grid extended from 45m on the transect to 155m, so that there

was at least bm to either side of the boreholes. Vertically, the grid extended



Figure 1: Map showing the general location of the borehole transect in rela-
tion to the University of Alaska Fairbanks campus and surrounding area.
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Figure 2: Map showing the positions of individual boreholes.

from 125m to 13bm above sea level. This includes 1m below the deepest

borehole and 2-3m above ground level.

s*_ the value of the

Then for n knot values zy,...,x, at locations s},..., s},

spatial process Z at location s is given by

E xik(s,s;; V),

where k 1s the convolution kernel and V is a matrix that determines the
shape of the kernel.

For a given location (sy), we define the vector w € R” as

w = (k(so,s;,V):i=1,...,n)



Borehole observations and knot locations, CCHRC transect
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Figure 3: Permafrost/no permafrost observations from the borehole transect
and knot locations. Red points represent observations of no permafrost. Blue
points represent observations of permafrost. Black points are knot locations.
The black line is the ground surface elevation.




These are the convolution weights for sy. If the corresponding knot values

are in a vector x € R”, then the value of 7 at s is

Z(so) = w'x.

Extending this to a set of p locations s, ... s® we can precalculate
the convolution weights for each of these as w, ..., w®_ Then if we let

W = |wl) w®@ ... w®| (thus W € R™P) the value of 7 at these

locations is the vector

Z(sW, . .. sP) = W'k

Computationally this is very efficient, as it can take advantage of highly

optimized matrix multiplication in libraries such as OpenBLAS or MKL.

2.3 Convolution kernel

The spatial process is a moving average of the knot values, with weights de-
termined by a convolution kernel. In this case, we use a Gaussian convolution
kernel. This induces a Gaussian spatial covariance in the represented surface
(Higdon, 2001). Because we are dealing with geological processes, we expect
that horizontal correlations will occur at longer distances than vertical corre-
lations. In order to account for this anisotropy, we use a diagonal matrix to

X

shape the convolution kernel appropriately. For knot location s, location to

be predicted sg, and anisotropy matrix V, the weight assigned to that knot



value is given by
1
k(sg,s;; V) =exp <—§ (so —s5) V7 (sy — sf)) )

In this case, we let

where 02 = 14 and o2 = 1, indicating correlation between points separated
by v/14m horizontally was the same as correlation between points separated
by 1m vertically. An early exploratory model fit these length parameters as
part of the model. These values were the mean of the fitted values, and we

have carried them through the present analysis.

2.4 Log-odds model

Three likelihoods were used and compared in this study. For each of them
we consider different relationships between the value of Z and the presence
of permafrost at a given location along the transect. As such, while fitting
the model we only need to calculate the value of Z at the locations where we
have observations. Each of these observation locations is classified as either

permafrost or not, so for convenience we define

1 if permafrost is present at s,
PF(s) =

0 if permafrost is not present at s.
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The first, which we will call the “log-odds” (LLO) model, considered the
surface represented by Z to be the log-odds of a particular point being per-
mafrost. It uses the standard inverse logit link function, so that for a spatial

process value of Z(s), the probability of permafrost at s is

Pr [PF(s) = 1] = logit™ [Z

Thus, the likelihood is

P

Lo ()= [ [ {losit! [7 ()] VP

{1 — logit™ [Z (Su))} }1—PF(s(i)) |

This likelihood has some advantages. It is differentiable, and so can be
sampled more efficiently using Hamiltonian Monte-Carlo and other gradient-
based samplers. These characteristics were not taken advantage of in this

study, but could be an area of exploration going forward.

2.5 Single-process model

The log-odds model gives only a probability of permafrost at a given location.

These probabilities are assumed spatially correlated, but there is still room

11



for a “nugget” effect, where moving a small distance could result in a changed
state even if the probability does not change. This does not match our
expectation; the states will probably be patchy, with large contiguous areas
of the same state. In some respect, our real concern is locating the border
between the two states. Thus, it makes more sense to assign a discrete state
to each point, and then calculate the likelihood from those. This is the
approach that the other two likelihoods take.

The first of these uses a simple cutoff value, in this case zero. At location
s, if Z(s) > 0, that point is predicted to be permafrost. If Z(s) < 0, then
permafrost is not predicted for that location. We call this the single-process
(1P) model.

By comparing these predictions to the observations from the boreholes, we
can formulate a likelihood based on a probability that a borehole observation
was misclassified. This misclassification is not necessarily because we expect
incorrect observations. However, it is required if we expect to be able to
sample from the model.

If we allowed no misclassification, the likelihood would be equal to zero
if a single observations was misclassified, jumping to one when they are all
correctly classified. In a model with hundreds of knots (and an equally large-
dimensional parameter space), the volume of the parameter space with zero
likelihood is so much larger than that with likelihood one that it would be
virtually impossible to find a set of parameter values that correctly predicts

every observation. Allowing for some misclassification allows for incremen-
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tal improvements; a set of parameter values where 90% of observations are
classified correctly should be more likely than one that correctly classifies
only 80% of observations. The magnitude of allowed misclassification is only
important in terms of the MCMC iterations. The misclassification rate deter-
mines how often a proposed parameter value that “loses” a correctly classified
observation would be accepted. Besides, allowing for a 0.001 chance of mis-
classification translates to an expectation of one observation in 1,000 being
misidentified, which seems not unreasonable.

Then if we let m be the misclassification rate, and define

1 if Z(s) > 0,
ip(s) =

0 if Z(s) <0,

then the likelihood is

Lip (x) = ﬁ (1 - m)H[ZIP(S(i)):PF(S(i))] X

=1
i (50) 2P ()]

2.6 Two-process model

The third model uses two separate processes, one for permafrost and one for
absence of permafrost. This “two-process” (2P) model doubles the number
of parameters, but provides a useful jumping-off point for prediction of cate-

gorical responses with more than two states. For the same reasons as above,
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this likelihood also allows for some misclassification. The process with the
maximum value at a spatial location provides the prediction for that location.
So if we let Zpp be the process representing the presence of permafrost

and Zy be the process representing the absence of permafrost, then

1 if ZPF(S) Z ZN(S),

0 if ZpF(S) < ZN(S),

and the likelihood is the same as above, so

Lop (x) = ﬁ (1 - m)H[Z§P(S(i)):PF(S(i))] X

i=1

ml [Z3p (s9)#PF (s@) |

2.7 Priors

In all cases, the parameters to be sampled were the knot values. These were

given the same prior, so that

2 Normal(0, 1).

This was done specifically to regularize the knot values. Because the
likelihood does not change based on the magnitude of the underlying process
for the single- and two-process models, there is little to prevent the knot

values from increasing or decreasing to arbitrary magnitudes.
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2.8 Implementation

All models were fitted using a Metropolis sampler with an independent
Normal proposal function, as described in Gelman et al. (2014, p. 278).
The first 5000 iterations were used to adapt the variance of the proposal
distribution. During this stage, every 200 iterations the acceptance rate was
calculated for each knot value. If the acceptance rate was less than 30%, the
proposal width for that knot value was halved. If the acceptance rate was
greater than 60%, the proposal width was doubled. Proposal widths were
held constant for the subsequent 1,000,000 samples.

At the beginning of each MCMC iteration, the order of knot value up-
dates was randomly permuted. This was done so that knot values were not
consistently updated early or late in the process. As each knot value was
updated, the unnormalized log-posterior was calculated, and the knot value
accepted or rejected according to its Metropolis ratio.

All of the models and the Metropolis random walk sampler were coded
in the Julia programming language (Bezanson et al., 2014, 2012). The Dis-
tributions.jl package was used to find log densities. The PyPlot.jl package
was used to access the Matplotlib library (Hunter, 2007) for plotting. Un-
normalized posterior densities were calculated on the log scale in order to
avoid underflows and other numerical issues.

A single chain of 1 million samples was run for each of the three models.
This was then thinned, keeping every 100 in order to make storage and

processing of the samples reasonable. All predictions are based on these
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10,000 samples.

2.9 Post-processing

Each set of knot values represents a realization of the underlying spatial
Gaussian processes. These were interpolated on a 1025 x 94 grid within the
bounds of the knot locations. Thus, the surface was interpolated roughly
every 10cm. The summary statistics used to create the final maps were
different depending on the model used.

The log-odds model requires some choice in how to summarize the repre-
sented surfaces. The value of the process was calculated at the interpolation
locations. The mean and the median values of this surface was found, and
these were then transformed using the inverse logit function to get a proba-
bility of permafrost. The mean and median values were very similar, so only
the mean values are considered.

For the single-process model, the value of the spatial process was cal-
culated at each interpolation location. Anywhere the spatial process was
greater than 0 represented a classification of permafrost was present at that
location. The proportion of MCMC samples that classified a location as
permafrost was then used as the probability of permafrost at that location.

The classification was similar for the two-process model. The values of
the permafrost and non-permafrost spatial processeses were interpolated at
each location. These were then compared, and the process with greater value

provided the classification. Again, the proportion of processes that classified
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a location as permafrost was used as the probability of permafrost at that

location.

2.10 Synthetic data study

The original data has a fairly simple structure. There is a layer of non-
permafrost, and everything below this is permafrost. We altered a number
of observations to test the model’s ability to fit more complicated structure.

Observations of permafrost were modified in two areas. The first was
an ellipse centered at 75.5m along the transect and an elevation of 129.5.
The horizontal semiaxis length was 14m and the vertical semiaxis length was
1.25m. All the observations within this ellipse were permafrost. These were
changed to no permafrost.

The second ellipse was centered at 130m along the transect and 129m
elevation. Its horizontal semiaxis was 9.5m and its vertical semiaxis was 2m.
Again, all observations inside this ellipse were changed from permafrost to
no permafrost.

These “holes” introduce some large-scale complexity to the observations.
The same three models were fit using these modified data. Again, 1 million
iterations of the Metropolis sampler were run, and every 100th sample was

taken for final inferences and prediction.
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3 Results

3.1 Original data

Figure 4 shows the maps of probability of permafrost at a given location
along the transect using all three models. At the top is the mean of the log-
odds surface, then the single-process prediction, and finally the two-process
prediction.

Figure 5 shows maps of the Bernoulli variance of the predictions. This
is one way to represent the uncertainty at a location, as predicting that
permafrost will be present with 50% probability essentially states that we
have maximum uncertainty. Thus, if the predicted probability of permafrost
is p, then the Bernoulli variance of that prediction is p(1 — p), which takes

values between 0 and 0.25.

3.2 Synthetic data study

Figure 6 uses the same models as the used in Figure 4, but with observations
modified as described in section 2.10. The two ellipses with altered obser-
vations are clearly visible. The modified observations do not seem to have
changed the classifications in the unmodified area.

Again, the log-odds model shows the greatest uncertainty as to the loca-
tions of borders between states. This is visible in Figure 6, and strikingly
clear in Figure 7, with a thick band of high variance around each modified

oval. The other two models again provide very similar maps. Notably, they
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Figure 4: Probability of finding permafrost along the CCHRC transect under
the log-odds, single process, and two-process models. Red points represent
observations of no permafrost, while blue points are locations where per-
mafrost was observed.
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both show some uncertainty as to the location of the edge of permafrost
at the edge of the oval around transect distance 120m. This uncertainty is

appropriate given the observations.

4 Discussion

All three of the likelihood models demonstrate an ability to classify transect
areas as permafrost or not consistent with observations. The modified set of
observations used in the simulation study demonstrate this even with more
complicated subsurface structure. The main difference between the models
is that the log-odds model provides much less well-defined borders between
types.

This is visible in the rapid transition between low and high probabilities of
permafrost where observations change in figures 4 and 6. It is also apparent
when looking at the Bernoulli variance of the predictions in figures 5 and 7.

The log-odds model does have some advantages over the other two models
however. The likelihood is smooth and differentiable, and so more efficient
MCMC algorithms could be used. It is also easier to formulate interpretable
priors for additional effects. For example, if one believes that a specific
surface condition is associated with permafrost at a given depth, a prior
can be formulated by considering how much the additional information is
expected to change the log-odds of the state. In the single-process model, one

must formulate a prior by considering how frequently the information should
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Figure 6: Probability of permafrost predictions for modified observations in
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move the surface above or below the cutoff. The two-process model then
requires setting a prior for both processes, again considering how frequently
it should be positive or negative and with what magnitude.

Because the value of the spatial process in the log-odds model has a
one-to-one correspondence with the probability of finding permafrost, the
log-odds model may also be more sensitive to the prior. The lower certainty
demonstrated in this model may have been a result of the Normal(0, 1) prior
on the knot values. This may have reduced the magnitude of the log-odds
surface near the border of the two states.

In this case, the classification maps resulting from the single- and two-
process models appear very similar. They also appear equally effective.
Predictions follow observations very closely, and uncertainty increases far-
ther from the observations. The border between the permafrost and non-
permafrost regions are well-defined, and much sharper than that given by
the log-odds model.

The simulation study shows a similar effect. The log-odds model shows
a band of uncertainty as to which points are or are not permafrost (c.f.
figure 7). This does not appear in either of the other two models. There is
uncertainty around 120m. This is to be expected, as the observations support
a border between the two states anywhere between the two boreholes.

In this case, the two-process model appears to be almost identical to the
single-process model. This provides some evidence that this model could be

extended from predicting a binary response to a categorical response with
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three or more categories by modeling a corresponding number of spatial pro-
cesses and taking the processes with maximum value at a location as the

classification at that location.

5 Conclusion

Process convolutions can represent Gaussian processes in a very computa-
tionally efficient manner. They reduce the dimension of the parameter space,
and allow for easy interpolation without refitting the model. The single and
two-process models provided more effective classifications than the log-odds
model.

All of these models provide a basis for further work on transect profiles
for infrastructure planning. They can be used to determine the number
of boreholes needed, and can serve as the basis for integrating additional
sources of information. Some version of these models may be integrated into
a Decision Support System in the future, where users can receive interactive
guidance about building in areas where there is concern about permafrost.

It appears that the two-process model could be extended to an k-process
model for observations with & categories. This may be useful for this project
if mapping soil types becomes important. Otherwise, it may be have appli-
cations in other classification tasks. We expect that when it is appropriate,

the k-process model will outperform an analogous multi-logit model.
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5.1 Future work

There are many paths forward in this work. Using a k-fold cross-validation
scheme, it will be interesting to quantify the difference in predictive ability
between the models presented here. This could be done using a Brier score
(Brier, 1950) or an area under ROC curve.

Because the calculations were fast, it was reasonable to run the MCMC
chain for a large number of iterations and then thin it heavily. It would be
useful to find a more efficient sampler so that fewer samples are necessary.
The log-odds model can be implemented in MCMC software (e.g. Stan)
that implement more efficient samplers because they take advantage of the
differentiability of the posterior in order to more efficiently sample from the
parameter space. This may be difficult for the single- and two-process models
because they are not differentiable everywhere.

Fitting the length parameters for the convolution kernel rather than just
setting them as constant would allow for some inferences about the under-
lying processes, but may not improve prediction much. This would likely
require many more MCMC iterations, and so may be predicated on a more
efficient sampler.

One goal of the project is to integrate surface features and resistivity
data. These have always provided important information when formulating
a subsurface reconstruction, and so informative priors should be uesd as as
initial guesses at subsurface structure.

Extending the two-process model to many processes in order to predict
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a categorical state. These models could bhe very effective for this type of
predictions given how flexible they are. It may be possible that each process
representing a particular category could have different spatial structure (i.e. a
different convolution kernel). This could allow for the prediction of things like
massive ice wedges intruding vertically into horizontally-bedded soil layers.
This data set has soil type data, which could be approached this way.
There are also questions about how the knot density relates to the level
of detail that can be captured by these models. This could guide future
modeling efforts, especially because knots do not have to be placed regularly.

Thus more knots could be placed in areas with more detailed structure.
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