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A b s t r a c t

This project describes a m ethod for edge detection in images. We develop a Bayesian approach 
for edge detection, using a process convolution model. Our m ethod has some advantages over the 
classical edge detector, Sobel operator. In particular, our Bayesian spatial detector works well for 
rich, but noisy, photos. We first dem onstrate our approach w ith a small sim ulation study, then 
w ith a richer photograph. Finally, we show th a t the  Bayesian edge detector perform ance gives 
considerable improvement over the  Sobel operator perform ance for rich photos.

Key words: Bayesian statistics; spatial process convolution; image edge detection; image pro
cessing; M arkov chain M onte Carlo.
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S e c t i o n  1

I n t r o d u c t io n

Image edges are the  most basic feature of an image. They represent the  boundaries of objects 
w ithin images. Edges contain significant variation between regions. D etecting edges of objects 
in images is necessary for image processing, image segm entation, feature detection and feature 
extraction. An edge detection process for brightness or intensity detects the  location of edges, 
which occur where there are sharp changes of intensity. There are m any different edge detection 
m ethods, and different detectors work b e tte r under different circum stances. The perform ance of a 
detector is usually evaluated subjectively.

We m ention some specific edge detection m ethods here. The best-known classical algorithm  
is the  Sobel operator. The Sobel operator applies two 3 x 3 kernels to  an image, com puting an 
approxim ation of the  gradient of the  image intensity function [1]. Canny [3] proposed a “Laplacian 
of G aussian” function m ethod, which causes the  algorithm  to  be slightly more sensitive to  weak 
edges. A Bayesian approach to  edge detection was proposed by Santis [7], based on a linear 
stochastic signal model derived from a physical image description [2]. Research in this area has a 
lot of diversity; o ther algorithm s rely on m athem atical m ethods [3]-[6], statistical m ethods [7]-[9], 
and machine learning m ethods [10]-[11].

In most of these examples, there are two basic criteria relevant to  edge detection performance. 
O ne is th a t edges th a t occur in the  image should not be missed. If they are, this can be described 
as an edge detection error. The o ther is th a t the  detection should be well localized; th a t is, the 
distance between points marked by the  detector and the  center of the  true  edge should be minimized
[3]. In o ther words, if there is an edge in the  image, and the  detector creates a line th a t describes 
this edge, then  the  thickness of th is line should be minimized.

In th is project, we will develop a Bayesian spatial model th a t a ttem pts to  perform  well under 
these two criteria in the  image intensity space. The basic idea is to  apply the  Sobel operator to 
get an approxim ation of the  gradient, perform Bayesian sm oothing by using a Bayesian process 
convolution model, then  apply thresholding to  identify edges. A Bayesian process convolution 
model sm ooths a noisy image and reduces the  speckles produced by the  Sobel operator. We use
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M arkov chain M onte Carlo to  obtain  thresholded samples from the posterior d istribution, creating 
an edge detection image. Several examples of the  Bayesian spatial d e tec to r’s perform ance on real 
images will be given.

The rest of the  paper is organized as follows. In Section 2, the  image gradient, the  classical Sobel 
operator, the  d a ta  and the  concept of image intensity are introduced. In Section 3, a Bayesian 
spatial convolution model is introduced and examples in one-dimension and two-dimensions are 
used to  illustrate the  basic model concept. In Section 4, a Bayesian spatial process convolution 
model for predicting image edges is developed. A sim ulation study can be found in Section 5 to 
evaluate the  m odel’s performance. Exam ples of the  Bayesian spatial detector perform ance on rich 
images, comparisons w ith the  Sobel operator detector, and M arkov chain M onte Carlo results can 
be found in Section 6. Discussion and fu ture work can be found in Section 7.
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I m a g e  G r a d ie n t , S o b e l  O p e r a t o r , a n d  D ata

S e c t i o n  2

2.1 Im a g e  G ra d ie n t

An image gradient is a directional change in the  intensity or color in an image. At each image 
point ( “pixel” ), the  m agnitude of the  gradient vector corresponds to  the  m axim um  rate  of change 
in some direction. Pixels w ith large gradient values occur where significant variations occur; these 
become possible edge pixels. To get an image gradient, the  discretized first order derivative of the 
image in the  horizontal and vertical directions is com puted.

Define f  (x, y) as the  intensity of image a t location ( x , y ) , x  2 R , y  2  R. The gradient function of 
f  is given by

V f =  ✓@ f, @ f)V  v d y )
where d f / d x  and d f / d y  are the  partial derivatives in the x and y directions, respectively. In our 
image, (x, y) will be the  center of the  pixel in column x, row y. These center locations are discrete, 
so we m ust approxim ate the  gradient, as follows,

@f  @f~  F x  * A  and — —  ~  G y  * A,@x  @y

where F x 1 0 - 1 and G y 1 0 - 1
T are two 1-dimensional filters, and A  is an n  x  m  

m atrix  whose entries provide d a ta  observations. Here * denotes the  signal processing convolution 
operation. We provide examples below to  illustrate these concepts.

Note th a t F x * A  and G y * A  are also n  x m  matrices, whose ( i , j ) entries are given by

(F x * A ) ij =  ( — 1)A i j - 1  +  (0)A i j  +  (1)A ij+1

and
(G y * A )ij =  ( - 1 ) A i-1,j +  (0)A i,j +  (1)A i+1,j 

At each point, the  image gradient approxim ations can be combined to  give the  gradient m agnitude,

II V  f  llij =  q [ (F x  * A )ij]2 +  [(Gy * A )ij]2



Also, the  gradient direction a t the  ( i , j ) pixel is given by

ta n -1 (G  * A )ij(F x * A )ij
The image gradient has directionality. However, no m a tte r which direction it has, a large gradient 
value still corresponds to  a location where significant variation occurs. As a result, we will only 
consider the  gradient length or m agnitude in edge detection.

To illustrate  the  concepts, we calculate the  image gradient for a 4 x 4 m atrix  A ,

1 1 2  4 
4 6 0 2 
2 1 3  1 
0 2 1 1

A

For the entry  (2, 2) as an example,

(Fx * A ) 22 1 0 - 1 4 6 0 =  ( - 1 ) 4 +  (0 )6 +  (1)0 =  - 4 ,

1 1
(G y * A )22 = 0 * 6

- 1 1
=  ( - 1 ) 1 +  (0)6 + (1 )1  =  0,

therefore
11 V  f  1122 =  ^ / [(Fx * A )22]2 +  [(Gy * A )22]2 =  P (-4 )2  +  02 =  4  

Its gradient m atrix  is then

-  4.00 4.12 -
-  4.12 1.00 -

We note th a t values for the  edge entries of th is gradient m atrix  can be generated by allowing 
the image to  wrap around, bu t we simply restrict ourselves to  the  inner entries and work w ith a 
( m  -  2) x ( n  -  2) gradient m atrix.

4
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5

2.2 S o b e l O p e r a to r  D e te c t io n

The Sobel operator [1] is another classical algorithm  for image edge detection, which is widely 
used w ithin edge detection algorithm s. Instead of using 3 x 1 filters for horizontal and vertical 
directions, two 3 x 3 filters are applied:

@f @f—  «  M x * A  and —@x @y M y * A ,

where
1 0 - 1 1 2 1

M x = 2 0 - 2 and M y = 0 0 0
1 0 - 1 - 1 - 2 - 1

B oth  M x * A  and M y * A  are n  x m  m atrices w ith  (i, j ) entries given by

(M x * A )ij =  (—1)A i- 1 , j - 1 +  (0)A i_ 1j  +  (1)A i - 1j + 1

+  (—2) A i,j_ 1 +  (0)A i,j +  (2)A i,j+1 
+  ( - 1 ) A i+1,j_1 +  (0)A i+1,j +  (1)A i+1,j+1

(M y * A )ij =  ( —1)A i_1,j_1 +  ( - 2 ) A i_ 1 j +  ( —1)A i_1,j+1

+  (0)A i,j_1 +  (0)A i,j +  (0)A i,j+1
+  (1)A i+1,j_1 +  (2) A i+1,j +  (1)A i+1,j+1

The same procedure as in Section 2.1 is followed to  calculate the  gradients:

II V  f  llij =  q [(M x  * A )ij]2 +  [(My * A )ij]2

Applying the  filters on three rows (columns) instead of one row (columns) gives us an average 
gradient for these three rows (columns), which will make the  gradient image less sensitive to  noisy 
data . We will use Sobel operator in our Bayesian spatial edge detection model.

Following is the calculation of the  Sobel operator for the  4 x 4 m atrix  A  defined earlier. For the 
(2, 2) element of A  as an example,
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1 1 2 1 0 - 1
4 6 0 * 2 0 - 2
2 1 3 1 0 - 1

(M x * A)22 =

(-1 )1  +  (0)1 +  (1)2 +  ( -2 )4  +  (0)6 +  (2)0 +  ( -1 )2  +  (0)1 +  (1)3 =  - 6 ,

(M y * A)22 =

(-1 )1  +  (-2 )1  +  (1)2 +  (0)4 +  (0)6 +  (0)0 +  ( -1 )2  +  ( -2 )1  +  (1)3 =  - 2 ,

1 1 2 1 2 1
4 6 0 * 0 0 0
2 1 3 - 1 - 2 - 1

therefore

II V  f  II22 =  0 ( M *  * A)22]2 +  [(My * A)22]2 =  P ( - 6 ) 2 +  ( - 2 ) 2 =  6.32. 

Its Sobel operator m atrix  is then:

-  6.32 5.09 -
-  11.05 5.83 -

An example of the  Sobel operator applied to  a sample intensity image is shown in Figure 1. R 
code for applying the  Sobel operator to  an image is given in A ppendix I.

F igure  1. Monarch butterfly image 621 by 391 pixels (left). The Sobel operator applied 
to this image (right).
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This project focuses on the  intensity d a ta  calculated from images. To obtain  these data , we 
download jpeg files from a Public-D om ain Test Images website, and the  intensity can be calculated 
using,

m ax(red,green,blue)intensity = -----------------------------J 255
where red, green, and blue are from 0 to  255. The intensity is ranging from pure black (intensity 
=  0) to  pure white (intensity =  1). The image is then  trea ted  as an intensity m atrix, which is 
the  two-dimensional d a ta  used in this project. The original jpeg images are usually 1000 by 1000 
pixels. We cannot work w ith such big images, so we ex tract small portions of these images, usually 
40 by 50 pixels. The R  code for calculating an intensity m atrix  from a raw jpeg file is given in 
A ppendix II.

2.3 D a ta  D e scr ip tio n
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B a y e s ia n  S p a t ia l  P r o c e s s  C o n v o l u t io n  M o d e l s

S e c t i o n  3

Since the  goal of th is study is to  construct Bayesian spatial models th a t can detect edges, the 
noise in images may affect the  correctness of detection. In th is section, we describe a spatial model 
th a t uses process convolutions to  sm ooth an image, w hether i t ’s a raw image or a m atrix  of gradient 
values th a t we tre a t as our image. We will describe these models first for 1-dimensional da ta , then 
for 2-dimensional data.

3.1 B a y e s ia n  S p a tia l  P r o c e s s  C o n v o lu tio n  M o d e l

A spatial process convolution model is a continuous spatial model constructed by convolving 
knot values w ith a kernel. A continuous spatial G aussian process z(s)  can be defined using kernel 
convolutions.

To define our model, we s ta r t w ith evenly spaced spatial locations (knot locations) [ w i , w 2, . . . , w j }. 
We specify knot values { x i ,x 2, . . . , x j } associated w ith these knot locations. The knot values { x j } 
are independent random  variables d istribu ted  as Norm al(0, <j %); and k(d; A) is a sm oothing kernel 
function. The kernel function k(d; A) is a nonnegative function. We will use a G aussian kernel, 
which can be w ritten  as,

z(s) =  ^ x j k ( I I s  -  WjII; A ) , s  2  R 2 
j= i

where s is an a rb itra ry  spatial location, as in the original paper by Higdon et al. (1998) [12]. Since 
the  x j ’s are norm ally distributed , z(s)  is a Gaussian process.

where A >  0, and c is y /A/2-r for one-dimensional da ta , or A/2-r for two-dimensional data .
The process convolution z(s)  a t spatial locations is defined by the  convolution of the  knot values 

{ x j} and the kernel function k(d; A):
j



We link observations {Y} a t spatial locations { s i , i  =  1, 2 ,.. .,n }  w ith the  underlying spatial 
process z(s) th rough a likelihood function,

YY x  ^  a 2y ~  N (z (siY

where x  =  ( x i ,x 2 , . . . ,x j )  and z(si) =  X J= i xjk(IIsi -  WjII; A).
We assign prior distributions to  the  rem aining param eters, aX and a^. P rior distributions can 

be denoted as ^(aX), ^ (a^ ), and the  prior distributions are independent.
To choose a reasonable value of A, a rule of thum b is,

sd(kernel) >  1.6IIwj -  wj + 1 II

Then
A =  ✓ 1 V\sd (kernel) J

A fter selecting A in th is way, the  posterior d istribu tion  then  becomes, 

p (a x , a y, x  I data) /  L (ax, a y, x ) n ( a X, a y, x)

oc Y  r ----- ex^ -  9"2 (yi -  z (s i))^  X^ 1 ^ 2 ^ 0 2  V 2a2 J

j d y ^ exp ( - 2 a | j  X X < a b

The R  code and Stan  code to  fit th is model is given in Appendices III and IV. Stan  obtains 
samples from the joint posterior d istribu tion  using MCMC (Specifically, H am iltonian M onte Carlo). 
Finally, the  posterior m ean of z(s*) a t the  g th  MCMC iteration  can be calculated a t spatial locations 
s* using, j

z(g)(s*) =  X  x(g)k(IIs* -  wj II; A ) , /  = 1 2 , ..-, L

where x jg) is the  value of the  j t h  knot on the  g th  iteration.
We use £(s*) a t each pixel location to  represent the  sm oothed image, calculated using,

G
Gz(s*) =  Y £ * (s)W )g=1

This procedure produces a sm oothed version of w hatever d a ta  it s ta rts  w ith - a raw image, or, 
in our eventual setting, an “image” of m agnitudes of the  gradient.

9
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3.2 S im p le  O n e -D im e n s io n a l E x a m p le

We first illustrate  the  basic concept in a 1-dimensional setting. To sim ulate these data , we 
first pick J  evenly spaced knot locations {w1, . . . ,w j }; we sim ulate {x1, . . . ,x J } associated with 
these knot locations, x j innd N (0 ,12); then  we calculate {z(si) , i  =  1 ,2 ,.. .,n }  where z (s i) =  
X X  x jk ( IIsi -  wjII; A =  0.4). In this example, we sim ulate n  =  200 locations, {si }, using a 
Uniform(0,50) distribution, and each d a ta  yi can be sim ulated as,

YiIx1 , . . . . x j  i™d N (z(s i), 0.12)

These sim ulated d a ta  {(si ,y i)} are shown in Figure 2. The vertical lines here represent the  knot 
values we used to  generate data . We will use these d a ta  to  predict the  posterior d istribution  of z(s) 
and com pare it w ith the  original z(s).

F ig u re  2. A one-dimensional simulated spatial dataset.

F it model using these d a ta  (using flat priors for ax and ay) and calculate posterior m ean using 
z(s*) where {s1 =  w 1, s 2  =  w2,..., s j  =  wj }.

The posterior mean, z(s*), can be calculated a t spatial locations s* using ,

x * ) =  X  xj k(IIs* -  wj II; A ) , /  = 1 2 , . - , Lj=1
Figure 3 displays a com parison between the prediction using posterior means, £(s*), and z(s*) 

(the true  values of z in our sim ulated dataset). Note th a t the  two curves alm ost coincide, which 
means our Bayesian model sm ooths the  noisy d a ta  well, and reconstructs the  true  underlying spatial 
realization.
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F ig u r e  3. Posterior means of predicted values z(s)) (solid line) and of z (s)) (dashed line). 

3.3 P r o c e s s  C o n v o lu tio n  M o d e l in  2D

We used 1-dimensional d a ta  to  illustrate  the  concept of Bayesian process convolution model. 
Now we extend our model to  2-dimensions.

We will use Bayesian process convolution to  sm ooth a raw image, as a precursor to  edge detec
tion. For two-dimensional spatial da ta , we can obtain  the  intensity d a ta  by processing an image as 
described earlier. For our model, we will use knot locations th a t are the  same as the  pixel locations. 
The model is alm ost the  same as in the  1D process convolution model; the  only th ing th a t changes 
is the  distance m atrix  calculation.

F igure  4. Intensity image (left). Posterior mean image (right).

In order to  illustrate  the  process convolutions in 2D, we sm ooth a small image, 40 by 60 pixels, 
in the  left panel of Figure 4. We used Stan  to  fit model w ith 2 chains, 500 MCMC iterations. 
The posterior m ean is in the  right panel of Figure 4. Com paring the  MCMC result w ith original 
intensity of this image, our Bayesian model sm ooths the  image well, while leaving out most of the



noise. So far we are ju s t illustrating  how we can sm ooth a raw image. In the  next section, we will 
discuss the  edge detection.

12
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B a y e s ia n  S p a t ia l  P r o c e s s  C o n v o l u t io n  M o d e l  f o r  E d g e  D e t e c t io n

S e c t i o n  4

Edges occur where there is locally a big change in intensity, so we are tem pted  to  look for big 
changes in the  derivative of the  intensity. B ut we are working w ith 2-dimentional spatial data , so we 
will look at the  m agnitudes of the  (discretized) gradients of the  intensity image. If the m agnitude 
is large, we will conclude there is an edge.

We sim ulated an image w ith some noise as an example to  illustrate  the  concept of our edge 
detection algorithm , as shown in Figure 5, discussed in following paragraphs.

F igure 5. Applying Bayesian edge detection algorithm. Original image (left), after apply
ing the Sobel operator (middle), and posterior probability (right).

Instead of pu tting  raw d a ta  (in tensity ) into the  Bayesian model, we s ta rt w ith the  gradient 
values of a raw image. We s ta rt by applying the Sobel operater to get the  gradient m agnitude for 
each d a ta  location, as shown in the  middle panel of Figure 5. T he edges between black and white 
in the  raw image become a single white line, which indicates edges. Recall th a t w ith our color 
scheme, large values correspond to lighter colors. So w hite represents the highest possible gradient 
m agnitude. However, after applying the  Sobel operator, the noisy d a ta  in the raw image changes 
into some speckles. In order to  dim inish these speckles, we fit a Bayesian process convolution model 
using the  value of ( i , j ) pixel in the  gradient image, so th a t they are less likely to be designated as 
edges.

Recall th a t in the  earlier model in Section 3, Y  and zi represented intensity values. Now, Y  
and zi are m agnitudes of the  gradient for our edge detection model. We fit a Bayesian process 
convolution model using these gradient values.



T he likelihood function of our model is now given by

Yiix, ^y ~  n  (z( s i ) , ^ 2)

where x  =  (xi ,  X2 , , x j )  and z(si) =  J2J=1 x j k (||s i -  Wj ||; A).
P rio r d istributions are assumed for all model param eters,

x / ~  N (0, al ) ,  j  =  1,2, . . . . J

~  Uniform(0, 2) 
ay ~  Uniform(0, 2)

As before, the  knot locations are the  same as the  image locations, which are the  centers of the 
pixels. Define the  posterior prediction values z(s), and set up a cutoff, c, for z*(s), so th a t

*( ) J 1 if z(s) > c, z (s) =  :
I 0 o.w.

In th is way, we transform  all posterior prediction values into either 0 or 1 for each location 
for each iteration: z*(s)  =  1 represents an edge occurring when the gradient is greater th an  the 
threshold, and z*(s) =  0 represents the  absence of an edge when the gradient is less th an  the 
threshold. T hen we calculate the  posterior probability of an edge a t each spatial location,

V G_ z * (s )pr({edge a t location s}) ^  — 9=1 g—G
Here, G  is the  num ber of MCMC iterations.

We display these posterior probabilities in the  right panel of Figure 5. Probabilities a t or near 1 
are close to  white. W hen we apply our Bayesian edge detection algorithm , the  speckles th a t were 
in the  Sobel operator-generated image are gone. In our resulting image, the  brighter the  color, the 
more likely there is an edge.
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S e c t i o n  5

S im u l a t io n  S t u d y

To evaluate the  perform ance of the edge detection algorithm s, it is im portan t th a t the  detector 
has few edge detection errors. The edges occurring in the  image should not be missed. We will 
perform  a sim ulation study  in this section, applying our edge detection algorithm  to  several test 
images: one w ithout edges, one w ith sharp edges and one w ith weak edges. We will then  com pare 
the  results from our model to  those produced by the  Sobel operator.

5.1 A n  Im a g e  w i th o u t  E d g e s

We construct an 30 x 40 image w ith pure white (a value of 255) at the  left edge, pure black 
(a value of 0) at the  right edge, and which transitions sm oothly in intensity as the  pixels go from 
left to  right. Such an image is shown in the  left panel of Figure 6. There is a linear relationship 
between the horizontal locations and the intensity values, as shown in right panel of Figure 6. In 
this case, there are no edges in the  image.

F ig u re  6. Image from pure white to  pure black (left). Its intensity values change linearly 
with horizontal locations (right).



Since the  distance m atrix  d is a large 1200 x 1200 m atrix, and large m atrix  calculations are quite 
time-consuming, we only use 500 iterations w ith 2 chains for the MCMC. It took 2 hours on a 
M acbook pro (2.7GHz dual-core Intel Core i5 processor) machine.

As before, we set A =  0.4. Figure 7 shows the trace plots for two param eters ax and ay, for the 
resulting MCMC ou tpu t. Note th a t the  traceplots do not show convergence of the MCMC because 
of the  small num ber of MCMC iterations. However, these plots are acceptable for our purposes.

sigmax sigmay
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F igure 7. Trace plots for MCMC from a sim ulation image with a sm ooth intensity change.

F ig u re  8. Sobel operator (left) and Bayesian m ethod (right) edge detection results from a 
sim ulation image with sm oothly varying intensity.

Figure 8 presents the  edge detection results from the Sobel operator and our Bayesian edge 
detection model. B oth  results show th a t there are no edges in the  image, as expected. We note 
th a t there is some ghosting (faint speckles) in the  corners of the  image generated by the  Bayesian 
edge detection m ethod. (This may be edge effects, or simply due to  the  small num ber of MCMC 
iterations.)
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5.2 Im a g e s  w ith  E d g e s

5 .2 .1  A n  Im a g e  w ith  A  S h a rp  E d g e  a lo n g  T h e  D ia g o n a l

An image w ith an edge along the diagonal can be constructed using pure white (a value of 255) 
in the  upper left and pure black (a value of 0) in the  lower right. A single sharp edge cuts across 
the  image along the diagonal, as shown in the  left panel of Figure 9. The image size is 40 by 40 
pixels.

F ig u re  9. An image with a sharp edge along the diagonal (left). Sobel operator detection 
results (middle) and Bayesian edge detection results (right) are shown.

We again used 500 iterations w ith 2 chains for the  MCMC. Here, we set a cutoff value of c =  0.95. 
Figure 10 shows the trace plots for two param eters ax and ay for the Bayesian edge dection m ethod. 
The overlapping trajectories indicate the  convergence of each chain this time.

sigmax sigmay
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F ig u re  10. Trace plots for Bayesian m ethod from an image with a sharp edge along the 
diagonal.

R esults are shown in the  middle and right panels of Figure 9; bo th  plots indicate th a t an edge exist 
on the  diagonal of the  original image. The gray in the  Sobel operator detection results represent 
the  m agnitude of the  gradient; while the  gray in the  Bayesian edge detection results represent the 
probability  of an edge a t th a t spatial location.



5 .2 .2  A n  Im a g e  w ith  A  W e a k  E d g e  a lo n g  T h e  D ia g o n a l

An image w ith a weak edge along the diagonal was constructed using pure white (a value of 255) 
in the  upper left and light gray (a value of 190) in the  lower right. A single weak edge cuts across 
the  image along the diagonal, as shown in the  left panel of Figure 11. T he image size is 40 by 40 
pixels.
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F ig u re  11. An image with a weak edge along the diagonal (left). Sobel operator detection 
results (middle) and Bayesian edge detection results (right) are shown.

We again use 500 iterations w ith 2 chains for the  MCMC, and we again use a 0.95 cutoff value. 
Each of the  edge detection m ethods does a satisfactory job and detects the  edge on the  diagonal 

from the original image, as shown in the  middle and right panels of Figure 11. T he Bayesian edge 
detection m ethod gives a brighter edge.
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S e c t io n  6 

R ic h  P h o t o s

In th is section, we explore the  perform ance of the edge detection algorithm s using some richer 
photos containing more details. We chose a rich photo w ith sharp edges, one w ith  weak edges in a 
bright image, and one w ith narrowly spaced edges.

6 .1  A  R ic h  P h o to  w i th  S h a rp  E d g e s

As an example, we select a portion  of an image th a t is 40 by 50 pixels from the image Frymire 
[17], and calculate its intensity. The original intensity image is shown in the left panel of Figure 12. 
T he edges look sharp; and the  images are quite clean, bu t they are not as clean as the sim ulation 
images; there is some noise in the white area.

F ig u re  12. A rich photo w ith sharp edges (left). Sobel operator detection results (middle) 
and Bayesian edge detection results (right) are shown.

We ran  2 chains using 500 iterations for the MCMC. The traceplots for ox and o y are somewhat 
problem atic, bu t still deemed satisfactory for our purposes. Here, we set a 0.80 cutoff value.

B oth  models detect edges well, as shown in the middle and right panels of Figure 12. The 
speckling in the  original image is completely gone in the Sobel operator image and the Bayesian 
model ou tput. However, the Sobel operator gives us a b lurry edge image w ith unusual artifacts 
along the diagonal line segments. The Bayesian model gives clean edges w ithout any artifacts. 
As we compare these rich photo results w ith the  Sobel operator results from clean images in the



Section 5, the  noise from the rich photos affect the Sobel operator detector greatly. In this case, 
the Bayesian model detects the edges really well, and it gives us an accurate depiction of the edges.

6 .2  A  B r ig h t  P h o to  w i th  W e a k  E d g e s

We select a portion  of a bright image th a t is 40 by 50 pixels from the image Arctichare [17], and 
calculate its intensity  m atrix. The original intensity image is shown in the left panel of Figure 13. 
T he image is bright; faint edges occur between the light gray and the white.
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F ig u re  13. A bright image with edges (left). Sobel operator detection results (middle) 
and Bayesian edge detection results (right) are shown.

We ran  2 chains using 500 iterations for the M CM C. Trace plots (om itted ) indicate convergence 
nicely this time. We set a 0.95 cutoff value.

Results from two m ethods are shown in the middle and right panels of Figure 13, the  result from 
the Sobel operator detection can barely be considered as an edge. The Bayesian m ethod detected 
the faint edge b e tte r in th is case. The locations are accurate, bu t the  Bayesian m ethod makes the 
edge appear thicker th an  the  actual edge.

6 .3  A  R ic h  P h o to  w i th  N a r ro w ly  S p a c e d  E d g e s

We select another piece of a high-contrast image w ith 40 by 50 pixels from the image Frymire 
[17] again, and calculate its intensity m atrix , as shown in the left panel of Figure 14. The edges in 
the image are narrowly spaced. Edges occur between the gray and the black.

We fit our Bayesian model w ith  500 iterations w ith 2 chains for the MCMC. Trace plots (om itted) 
indicate the M CM C has converged. Since there are m any edges in a same image, we choose a smaller 
threshold value 0.65 for this image.
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F ig u re  14. An image w ith narrow band of brightness (left). Sobel operator detection 
results (middle) and Bayesian edge detection results (right) are shown.

Results from b o th  m ethods are shown in the middle and right panels of Figure 14. The locations 
of the edges in the Sobel operator image are not correct. The Bayesian m ethod can detect edges 
well, bu t it gives us a very b lurry image.
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D is c u s s io n  a n d  F u t u r e  W o r k

S e c t i o n  7

7.1 D isc u ss io n

We have described a Bayesian process convolution m ethod for edge detection. O ne advantage of 
the  Bayesian approach include ease of in terpretation . The Bayesian edge detection results represent 
the  probability  of an edge a t th a t spatial location; while the  Sobel operator detection results 
represent the  m agnitude of the  gradient. The Bayesian process convolution model gives us a 
reliable in terpretation .

We have considered two models: a Bayesian process convolution model and a Sobel operator 
model. It is necessary to  discuss the  two criteria mentioned in the  introductory  section: few edge 
detection errors and the  localized edges, in order to  cap ture the intuition of good edge detection.

Different detectors work b e tte r under different circum stances. Specifically, the  Sobel operator 
works b e tte r when the image is to ta lly  clean. Even though the Sobel operator usually satisfies both  
of the  two criteria, the  noise in actual photos affects the  perform ance of the  Sobel operator greatly. 
In addition, the  Sobel operator does not work well if the  intensity changes quickly, as when there 
are edges occurring every few pixels. Thus, the  Sobel operator detector does not always work well 
for rich photos w ith very fine details.

The Bayesian process convolution model can work well for noisy images. The location of edges is 
usually accurate, bu t the  result edges look thick and blurry m ost of the  tim e. This m ethod satisfies 
the  first criterion; it has few edge detection errors. However, it does not satisfy the  second criterion, 
the  localized edges, because of the  thick edges.

7.2 F u tu r e  W o rk

The Sobel operator is one of the  classical detectors. However, it is sensitive to  noise, so we 
can use some less sensitive edge detectors to  perform  the gradient calculation w ithin our Bayesian 
spatial model. We can apply 1 x 3 and 3 x 1 filters, or we can apply an improved Sobel operator 
w ith two 5 5 filters.



Moreover, we only worked on the  intensity of images, which are grayscale images. We can 
consider the  o ther two com ponents, hue and saturation , from the HSB (hue/satu ration /b righ tness) 
color model in order to  work on color images.

Last but not least, because fitting the  Bayesian spatial model is extrem ely time-consuming, we 
used a small num ber of MCMC iterations, and sometimes the  MCMC did not converge (although it 
was still m arginally acceptable). We tried  our best to  improve the  code efficiency, and avoid loops 
as much as possible. B ut, for a small portion of an image, 40 x 50 pixels, our improved coding 
still takes a t least two hours to  run only 2 chains and 500 iterations in Stan.  If we can improve 
the  coding efficiency more and give the  M CMC more tim e to  run, or if we try  to  use fewer knot 
locations (although th is will make the  edges thicker), we can use more MCMC iterations to  improve 
our results.
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A p p e n d ix

Below is a part of R  code and Stan  code th a t produces the  results in the  project.

I. S o b e l O p e r a to r

> img.bri.gradient = matrix(NA,nrow=knot.y,ncol=knot.x)
> temp.img = img.bri
> img.row = nrow(temp.img)-1
> img.col = ncol(temp.img)-1
> for (i in 2:img.row) {
+ for (j in 2:img.col) {
+ matrix_x = matrix(c(-1,-2,-1,0,0,0,1,2,1), nrow=3, ncol=3)
+ matrix_y = matrix(c(-1,0,1,-2,0,2,-1,0,1), nrow=3, ncol=3)
+ matrix_a = matrix(c(temp.img[i-1,j-1],temp.img[i,j-1],temp.img[i+1,j-1],

temp.img[i-1,j],temp.img[i,j],temp.img[i+1,j],temp.img[i-1,j+1], 
temp.img[i,j+1],temp.img[i+1,j+1]), nrow=3, ncol=3)

+ gx = matrix_x[1,1]*matrix_a[3,3]+matrix_x[1,2]*matrix_a[3,2]+ 
matrix_x[1,3]*matrix_a[3,1]+matrix_x[2,1]*matrix_a[2,3]+ 
matrix_x[2,2]*matrix_a[2,2]+matrix_x[2,3]*matrix_a[2,1]+ 
matrix_x[3,1]*matrix_a[1,3]+matrix_x[3,2]*matrix_a[1,2]+ 
matrix_x[3,3]*matrix_a[1,1]

+ gy = matrix_y[1,1]*matrix_a[3,3]+matrix_y[1,2]*matrix_a[3,2]+
matrix_y[1,3]*matrix_a[3,1]+matrix_y[2,1]*matrix_a[2,3]+ 
matrix_y[2,2]*matrix_a[2,2]+matrix_y[2,3]*matrix_a[2,1]+ 
matrix_y[3,1]*matrix_a[1,3]+matrix_y[3,2]*matrix_a[1,2]+
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matrix_y[3,3]*matrix_a[1,1]
+ mag = sqrt(gx"2+gy"2)
+ img.bri.gradient[i,j] = mag
+ }
+ }

I I .  Im a g e  I n te n s i ty
> imgbri = function(x){
+ img255 = 255*x 
+ n = length(img255[,1,1])
+ m = length(img255[1,,1])
+ bri.x = matrix(NA, nrow=n, ncol=m)
+ for (i in 1:m) {
+ bri.x[,i] = RGB2HSV(img255[,i,])[,3]
+ }
+ return(bri.x)
+ }

I I I .  S ta n  C o d e l fo r B a y e s ia n  P ro c e s s  C o n v o lu tio n  

data{
int<lower=1> N; 
int<lower=1> J; 
real y[N]; 
matrix[N,J] K;

}

parameters{
real<lower=0> sigmax; 
real<lower=0> sigmay; 
vector[J] x;

}



model{
vector[N] kx; 
matrix[N,J] K; 
sigmax ~ uniform(0,2); 
x ~ normal(0,sigmax); 
sigmay ~ uniform(0,2); 
kx = K * x;
y ~ normal(kx,sigmay);

}

IV . R  C o d e l fo r B a y e s ia n  P ro c e s s  C o n v o lu tio n

> knot.x = ncol(img.bri.gradient)
> knot.y = nrow(img.bri.gradient)
> J = knot.x*knot.y
> N = J
> y = c(img.bri.gradient)
> d = matrix(NA,nrow=N,ncol=J)
> for(i in 1:nrow(knot.location)){
+ dt = knot.location[i,]
+ d[i,] = apply(data.location, 1, function(x){dist(rbind(as.numeric(x),as.numeric(dt)))})
+ }
> distsq = d"2
> K = 0.4/6.2832*exp(-0.4*distsq/2)
> iter.times = 500
> output = "mcmc_bri"
> iter.times = 500
> myfit.bri = stan(file="2-D convolution.stan",data=c("N","J","y","K"), 

iter=iter.times,chains=2,sample_file=output,cores=4)

V . P r e d ic te d  V a lu e s

> chain1.bri = read.csv("mcmc_bri_chain1.csv")
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> chain2.bri = read.csv("mcmc_bri_chain2.csv")
> post.bri.x = rbind(chain1.bri,chain2.bri)
> rr = iter.times*2
> post.bri.mu = matrix(NA,nrow=rr,ncol=N)
> for(i in 1:rr){
+ post.bri.mu[i,] = t(K%*%t(post.bri.x[i,]))
+ }

V I. B a y e s ia n  E d g e  D e te c t io n

> cutoff = quantile(post.bri.mu,0.95)
> post.bri.zstar = (post.bri.mu>cutoff)*1
> post.prob.bri.vector = matrix(NA,nrow=1,ncol=N)
> for(i in 1:N){
+ post.prob.bri.vector[,i] = sum(post.bri.zstar[,i])/(2*iter.times)
+ }
> post.prob.bri = matrix(post.prob.bri.vector,nrow=knot.y,ncol=knot.x)
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