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Abstract

S T A R  (Liu et al. 2009) is a m ethod o f com puting species trees from gene trees. Later, ST A R  was 
generalized and proven to be statistically consistent given a few conditions (Allman, Degnan, and Rhodes 
2013). Using these conditions, it is possible to investigate robustness in the species tree inference process, 
the lack of which will produce instabilities in the tree resulting from STAR. We have developed a software 
package that estimates support for inferred trees called SunStar.
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1 Introduction

SunStar 1 is a program designed to investigate the support for a species tree that has been inferred from gene 
trees via the STAR method.

1.1 Background

The problem of phylogenetics is an old one, going back as far as Darwin, and is a central question in the field 
of biology. In the following sections, we will lay out the problem at hand (Incomplete Lineage Sorting), and 
the attempts so far to solve the problem.

1.1.1 P ro b le m  D escr ip tion

Modern phylogenetics is primarily concerned with the inference of species trees. Unfortunately, we can not 
directly infer species trees (defined in 1.2). Instead, phylogenetic methods are limited to traits we can observe. 
Historically, these traits were features like morphology of bones and limbs. W ith the advent of molecular 
sequencing, observation of traits using DNA and other molecular sequences became common, and with whose 
observations came the early mathematical methods of phylogenetics.

These methods were primarily using gene trees as proxies for species trees. Due to incomplete lineage sorting 
(ILS) (Pamilo and Nei 1988) this is not sufficient for inferring species trees. Informally, this means that genes 
might diverge differently than the species diverge. Therefore, just using a single gene tree as a proxy for 
species can be misleading. More advanced methods of inferring species trees get around the ILS difficulties 
by using information from multiple genes.

An example of this is the multispecies coalescent model (Maddison 1997), which is a probabilistic model of 
the ILS process. Using this model we can describe the way gene trees form from species trees. The methods 
that are discussed in this paper have been shown to be statistically consistent under this model. In this 
context, statistically consistent means that we can make the probability of inferring the correct species tree 
as close as we like to 1 if we make the sample large enough. Informally, given enough perfect data, we always 
get the right tree.

1.1.2 P r io r  W ork

Previous software that infers species trees from from gene tree summaries includes A STRAL (Mirarab and 
Warnow 2015), NJst (Liu and Yu 2011), STAR (Liu et al. 2009) and ASTRID (Vachaspati and Warnow 
2015). All of these programs will compute species trees from existing gene trees. ASTRAL is the exception in 
this group, in that it does not compute a distance table from the set of gene trees passed to it. For the rest 
of the software, they all compute a version of a distance table.

In particular, STAR and ASTRID use a very similar method to the method used in SunStar, with one 
important difference: they do not attempt to infer the support for the tree reported. SunStar does, using the 
results from generalized STAR (Allman, Degnan, and Rhodes 2013).

1.2 Notation, Conventions and Definitions

A tree is a set of vertices (or nodes) and a set of edges that connect them with no cycles. A vertex with only 
one edge incident is called a leaf, plural leaves (we often call these taxa as well).

1 The name is a slight pun on G-STAR, the original name for this project. The sun that earth orbits is a g-class star, therefore 
SunStar.
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A rooted tree is a tree with a special node designated the root. The root of a tree is often labeled as p. A 
node is called an interior node if it is not a leaf.

Edges can have have tags which are numbers. These are typically called weights or lengths, and are often a 
measure of a notion of distance. The distance between two taxa, written d(a, b), is the sum of edge weights 
on the path between a and b.

A tree is trivalent when all vertices of the tree have degree 3 or 1. A rooted trivalent tree is a rooted tree that 
is allowed to have a single vertex, the root, with degree 2. All trees discussed here will be trivalent unless 
otherwise noted.

A  gene tree is a (rooted or unrooted) tree that and relates how a gene has diverged over time. Gene trees 
are usually inferred from sequences of genes, which have some mutations which differentiate them from each 
other. In contrast a species tree is a tree that relates the divergence of species. An unrooted tree is often 
made rooted by using an outgroup. This is a taxa that is intentionally distant from the other taxa, ensuring 
that the root is connected directly to the outgroup.

A useful bit of notation for a pair of taxa with the same parent is a cherry. Its called that because its a looks 
like a pair of cherries hanging of the stem cherry off a common stem. There is an example of a cherry in 
figure 1

Figure 1: Example of a cherry

An ultrametric tree is a tree where all the distances from the root vertex to the leaves are the same.

A distance table for a species or gene tree is a table relating the distances between the taxa on a tree. The 
distance is calculated by summing the edge weights on the path between the two taxa.

We will use the notation F(n)  =  O ( f  (n)) to denote the order of a function F . Normally, F  is not reported, 
but instead referred to by this notation. By convention, the f  reported will be close to as small as possible.

The term stability will be used to refer to the sensitivity of algorithms like STAR and GSTAR to inputs with 
equivalent topology, but different weight schedules. In general STAR should output the same tree regardless 
of weight schedule, (See section 1.6). Furthermore, we refer to the lack of this property as instability.

1.3 Newick Notation

Newick Notation is a format for specifying trees. An example of a Newick tree is as follows, with the associated 
tree shown in figure 2.

( ( a : . 1 , b : . 3 ) : 1 . 0 ,  ( c : . 4 3 , d : . 5 ) : 1 . 0 ) ;

a b c d

Figure 2: The associated tree

ba
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The ‘ : ’ denotes a weight on an edge leading up from the node towards the root, and is optional2.

One advantage of Newick notation is that the grammar for this language is quite simple, and requires only a 
few productions. This makes it easy to write a parser to recognize a Newick string. Unfortunately there are 
quite a few disadvantages, one of which is the non-uniqueness of the string for a tree. Specifically, there are 
many strings which represent the same tree, due largely to the ordering of subtrees. Note that these two 
trees are the same

( a , b ) ;  == ( b , a ) ;

This causes problems when attempting to compare trees, which is already a hard task. Fortunately, we can 
side step these issues by

• Enforcing an outgroup to insure a consistent root, and
• Enforcing an order on the taxa and subtrees.

By doing this, we can compare trees by comparing their Newick strings.

One additional problem is the lack of standardized grammar. Some implementations allow for taxa labels to 
start with a number. Some implementations require the semicolon at the end, others do not. It is difficult to 
deal with this issue, so instead I documented the grammar I used in section 3.2.

1.4 Neighbor Joining

Neighbor Joining (Saitou and Nei 1987) is a tree construction algorithm that proceeds by iteratively joining 
pairs together that have been selected by the four-point condition. Consider the tree in figure 3. Note that if 
the edges have non-negative edge weights, it must be true that

d(a, b) +  d(c, d) <  d(a, d) +  d(b, c) =  d(a, c) +  d(b, d).

Specifically, the weight on the middle edge joining the two cherries matters. Also note that this relationship 
involves only distances between the leaves, and not distances between interior nodes. This is important, 
because we generally don’t have distances from taxa to ancestor species.

a c

Figure 3: A  4 taxon unrooted tree

This fact informs the Neighbor Joining algorithm. By using the four point criterion, we can select pairs to 
join. At a high level the algorithm proceeds like so:

• Initialize the tree by creating nodes for all the N  taxa, and connect them to a central node t.
• Select a pair of nodes that satisfy the above criterion the “best”.
• Join the pair of nodes to a new parent node, and connect the new parent back to the central node.
• Calculate distances for the three new nodes.
• Repeat until there are 3 nodes left connected to the central node.

2In particular, SunStar only cares about the topology of the trees that it is fed, so information about edge weights is usually
discarded. The exception is in the testing suite, where setting weights in this way is convenient.
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Selecting the “best” pair to join is done by calculating a matrix Q, whose entries are the following

Q a,b =  (N  — 2)d(a, b) — R a — R b ,

where a and b are indexes associated with nodes waiting to be joined, N  is the number of nodes connected to 
the central node, d(a, b) is the distance between a and b, and the quantity R k is the sum of the distances 
from k to all other nodes. By calculating this matrix, and finding the smallest value in it, we can find the 
pair to join. Specifically, the row and column indices of the lowest entry, (a, b) correspond to the pair to join.

Using this pair (a, b), the implementation joins the pair by removing these elements from the central node c , 
making them the children of a new node, and then putting that new node back into the central node. We 
calculate the distance from the new node to the pair by the three point formula. The three point formula 
is for a 3 node tree, leaves x, y and z and central node r, and known distances between the leaves, we can 
calculate the distance between the leaves like so:

d(r, x) =  —[d(x, y) +  d(x, z) — d(y, z)],

d(r, y ) =  —ld(y ,x )  +  d(y ,z)  — d(x ,z ) },

d(r, z) =  —[d(z, x)  +  d(z, y) — d(y, x,)\.

To use the three point formula on a tree with more than three points to join, we compute the average distance 
between a, b and the rest of the nodes in consideration. This way, we have the 6 distances needed for the 
three point formula.

This process of selecting, joining, and re-inserting leaves a N  — 1 taxa connected to the central node. We 
repeat the process by calculating Q again, but this time only treating the nodes connected to the central 
node as taxa. In this way, we shrink the problem size down by 1 each iteration

When the number of nodes connected to the central node reaches 3, we skip calculating Q and just apply the 
three-point formulas to the remaining nodes. Importantly, this leaves us with an unrooted tree, which is the 
result of Neighbor Joining.

To calculate the complexity informally, we can note that each step requires O ( N 2) work, in the form of 
calculating the entries of a matrix. The algorithm runs for O ( N ) steps. Therefore, the overall complexity is
O ( N  3).

1.5 STAR (estimating Species Trees using Average Ranks)

STAR infers a species tree by calculating a distance table of ranks, and then using a tree building algorithm 
to generate a new tree (Liu et al. 2009). Here, the term rank is used to mean edge length, and will be referred 
to as edge length in the future. We use the term here once to be consistent with Liu et al. The algorithm is 
as follows: Given a set of gene rooted trees, do the following for each tree.

• Set all the edge weights
— If the edge is not connected to a leaf, set the weight to 1.
— If the edge is connected to a leaf, set it so that the tree will be ultrametric. Practically this means 

that we can take the number of taxa and subtract the depth, then use that for the edge weight.
• Calculate pairwise distances, put them into a table.

Once all the tables have been calculated, do an entry-wise sum, and divide each entry by the number of 
gene trees. Informally, think of this as taking the average of the distance table. Once we have the “average” 
distance table, run a tree building algorithm on it, such as Neighbor Joining.
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1.6 Generalized STAR

Generalized STAR (Allman, Degnan, and Rhodes 2013) is version of STAR where the edge weight schedule 
is allowed to vary. In this version, edge weights at an equal distance from the root (using graph-theoretic 
distance of counting edges in a path) are given the same weight. All weights must be non-negative, and all 
but one of the weights can be 0. Additionally, the edges connected to leaves are adjusted to make the tree 
ultrametric, as in STAR. Other than weight assignment, the algorithm proceeds the same.

Additionally, we can attempt to infer the stability o f the species tree produced by STAR by varying the 
weights and reporting the different trees that come out of the tree creation step. This is the primary goal of 
SunStar.

1.7 SunStar

SunStar is a software package primarily intended to be used on a *nix command line, and is invoked with 
the command sunstar [o p t io n s ] . Currently SunStar has only a few options. Here they are:

• - f  — filenam e: Filename for a set of Newick trees. These trees must all be rooted or all be unrooted. 
If they are all unrooted trees, then the -o  is required.

• - t  — t r ia ls :  The number of trials using randomly generated schedule o f weights (Section 2.4.2). If
this flag is not present, then a default schedule (Section 2.4.1) will be used.

• - r  — re q u ire d -ra t io : The minimum ratio required for a tree to ouput. Trees below this threshold 
will silenced.

• - l  — l o g f i l e :  Filename to log the sequences that are generated by the - t  option. Defaults to 
s ch e d u le .lo g  if not specified.

• -o  --ou tgrou p : The name of the outgroup taxa. This taxa must be present on all of the trees.
• - s  - - s i l e n t :  Silence the progress bar, only output results.

1.7.1 R u n n in g  SunStar

To run SunStar with default parameters, enter the following command 

sunstar - f  exam ple.tree

Where exam ple.tree is a list of Newick strings, separated by newlines. A  file looks like the following for 
example.

( ( a , c ) , ( d , e ) ) ;
( ( a , c ) , ( d , e ) ) ;
( ( a , c ) , ( d , e ) ) ;
( a , ( c , ( d , e ) ) ) ;
( a , ( c , ( d , e ) ) ) ;

Weights may be included, and do not need to be stripped. Each of the trees needs to have the same set of 
taxa or the program will quit.

1 .7.2 O u tpu t

The output of SunStar is a list of trees with normalized frequencies associated with them. Using the example 
file from above, SunStar produces the output

sunstar - f  exam ple.tree
[========================================================================][7/7]
' ( a , ( c , ( d , e ) ) ) ; ' : 1
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Note that this is a rooted tree. The root is determined by picking an outgroup arbitrarily, and is consistent 
across trees for a run of SunStar. By using the outgroup flag - o / — outgroup the specific outgroup can be 
specified. For example if we decide to root by c instead

sunstar - f  dem o.tree -o  c
[========================================================================][7/7]
' ( ( a , ( d , e ) ) , c ) ; ' : 1

When the -o  flag is specified, two things happen. First, all the trees in the input are rerooted, using the taxa 
as an outgroup. The second thing is that when trees are output, they are also rooted by the specified taxa.

So far only the default schedule has been used. To use the randomized schedule, the - t  or - - t r i a l s  flag is 
specified. For example

sunstar - f  dem o.tree - t  1000 
[==================================================================][1000/1000]
' ( a , ( c , ( d , e ) ) ) ; ' : 1

The random numbers that are used for weighting, and the tree that is produced from that sequence, are 
logged to a file. By default this is s ch e d u le .lo g , which contains a series of JSON objects. An truncated 
example from the above run is

{ " t r e e " " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .713856 ,0 .711066 ,0 .411698]}
{ " t r e e " " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .0 549974 ,0 .13108 ,0 .473839]}
{ " t r e e " " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .6 20 5 42 ,0 .52 47 16 ,0 .9 44 7 ]}
{ " t r e e " " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .068759 ,0 .0251013 ,0 .694658 ]}
{ " t r e e " : " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .1 82 3 71 ,0 .31 70 7 ,0 .8 3 60 6 ]}
{ " t r e e " : " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .701719 ,0 .260946 ,0 .639861]}
{ " t r e e " : " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .648678 ,0 .970904 ,0 .509442]}
{ " t r e e " : " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .533012 ,0 .101569 ,0 .370654]}
{ " t r e e " : " ( a , ( c , ( d , e ) ) ) " / 'w e ig h ts " [0 .567502 ,0 .274677 ,0 .371589]}

The log file name can be specified using the - l  or - - l o g f i l e  switches.

In the case that there are many trees of low probability, the output can be trimmed using - r  or 
— r e q u ir e -r a t io . This will silence trees that are lower frequency than specified.

Finally, the progress bar that is output for each run is written to stdout. If stdout is redirected to a file, 
most of the file will be this progress bar output. To prevent this, we can silence the progress bar using - s  or 
- - s i l e n t ,  which will suppress the progress bar.

2 Algorithms

2.1 Basic Operations

In the following sections about complexity, we count the following as basic operations:

• Node accesses, and
• Basic Arithmetic.

Also of note is what is not counted. Specifically, we do not count the basic operations of most of the data 
structures used in computation. Counting the operations of these data structures would not change the 
complexity class of the problem, as the operations used on relevant data structures, mainly create and update, 
are constant time.
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2.2 Finding the distance between two taxa

2.2.1 S pecifica tion

In order to calculate the distance table, we have to calculate the distance between any two taxa. Fortunately 
we are working with trees, so the path between any two nodes is unique. Therefore, if we find a path, we have 
found the only path. So, the strategy to find a path between two nodes is to calculate the list of ancestors for 
each node. Once we have this list, we walk the list, starting from the root, until we find a difference. Then, 
the remaining nodes in the list, plus the node right before the divergence, form the path between the two 
nodes.

For example, suppose we have the tree in figure 4 . Then the sequences of parents associated with that tree are

S1 P,n1,t1

S2 P,n1,t2

S3 P,n2,t3
S4 P,n2,t4

Notice that for taxa ti and t2, the sequences differ only at ti and t2. So backing up a step, we have the 
path t 1 , n 1 , t2. For the taxa t 1 and t4, the node before the difference is p. So, the path between t 1 and t4 is 
ti, n i, p, n2, t4.

P

11 t2 t3 t4

Figure 4: An example tree

2.2.2  C om p lex ity

The complexity of finding the distance between two nodes is O(n),  where n is the number of taxa on the tree. 
First, consider the steps involved with this algorithm. They are

• Make a list from taxa to root,
• Walk along that list,
• Create new path,
• Sum edge weights over path.

Note that the number of nodes on a rooted tree with n taxa is 2n — 1. Since a tree is acyclic, each node in 
the path is visited at most once. Therefore the size of the lists from taxa to root is at most O(n ). Since the 
list sizes are bounded by n, walking along them is also bounded by n. Creating a new path can only be as 
bad as concatenating two lists together. Since the two lists are of size O(n),  concatenating them is only as
bad as 2O(n) =  O(n).  Finally, summing over the final list of nodes requires iterating through the final path.
Since the final path is O(n),  this step is also O(n),  and therefore this method is as well.
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2.3 STAR

2.3.1 S pecifica tion

The algorithm requires a set of m rooted trees. STAR involves three major steps:

• Calculate the distance table for each tree in the set
• Average the distance tables
• Run Neighbor Joining on the new table.

Calculating the distance table requires finding the pairwise distance between all the taxa. To do this, we 
create a matrix with the taxa labeling the rows and columns. For each entry in the matrix, we find the 
distance between two taxa using the algorithm specified above. We need to do this for each tree in T .

We now have a distance matrix that records the pairwise distance for each taxa in the tree, for each tree in T . 
To average, we simply add each matrix, and then divide by m. Once we have this new distance matrix, we 
pass it to Neighbor Joining and get a new tree.

2 .3 .1 .1  E xam ple

Consider the trees in figure 5. If we were to run the STAR algorithm by hand on these trees, we would first 
produce total table in figure 6, by computing the distance between each taxa, and then adding them together.

Figure 5: A  set of example trees

a b c d e
a 0 4 +  4 +  6 6 +  6 +  6 6 + 6 + 4 6 + 6 + 4
b 0 6 +  6 +  4 6 + 6 + 6 6 + 6 + 6
c 0 4 + 4 + 6 4 + 4 + 6
d 0 2 + 2 + 2
e 0

Figure 6: Total distance table associated with the trees in figure 5

The next step is to average the entries in the table, by dividing through by the number of trees. The result of 
this computation can be seen in figure 7.

a b c d e
a 0 14/3 6 16/3 1(6/ 3
b 0 16/3 6 6
c 0 14/  3 14/3
d 0 2
e 0

Figure 7: Average distance table associated with the trees in figure 5
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After computing the average, the distance table in figure 7 is passed to Neighbor Joining, and a tree is built 
out of that distance table.

2 .3.2  C om p lex ity

The complexity of STAR is O (m n3), where m is the number of trees, and n is the number of taxa on each 
tree. Calculating a single entry in the distance matrix requires a call to an O(n)  algorithm, and there are 
n2 elements in the matrix. Therefore the complexity of computing each table is n2O(n) =  O(n3). We need 
compute this distance matrix for each of the m trees in T , so mO(n3) =  O (m n3).

Computing the average of the distance matrices involves a series of matrix additions (mn2) and a scalar 
matrix operation (n2). These are less than the time required to simply compute a single distance matrix, and 
so they don’t change the overall O(mn3). Similarly with Neighbor Joining, which has a complexity of O (n3), 
but only needs to be performed once.

2.4 Generalized STAR

As discussed above, Generalized STAR works by varying the schedule of weights on a set of trees. To 
implement this algorithm, we simply produce different schedules and then run STAR on the tree sets with 
the different weights. There are two strategies by which weight schedules are generated: the default schedule 
and the randomized schedule. These are discussed in the two following sections.

2.4.1 D efau lt S chedule

This schedule starts by assigning a weight of 1 to every edge, and then adjusts leaf edges to be ultrametric. 
Then, all possible combinations o f weights with at least one weight being 1 and all others being 0 are 
computed3. By the results from generalized STAR, if we have a very large sample o f gene trees without 
inference error then the tree should come out the same, despite the 0 weights on the edges.

Intuitively, this is like canceling out parts of the tree which carry information about the differences between 
taxa. By setting edge weights to 0 in key places, we can possibly find that the trees output by STAR are 
significantly different, compared to the regular schedule. It is our belief that this strategy is effective, and 
early results agree.

2 .4.2  R a n d om ized  Schedule

The other strategy to generate weight schedules is to generate them randomly. This strategy works by 
generating a list of numbers from a uniform distribution from 0 to 1. After a schedule generated and assigned, 
the leaf edges need to be adjusted to make the tree ultrametric. These numbers are then used as the schedule 
for a run of STAR.

3 Implementation

3.1 tree.h

3.1.1 P u rp ose

This file implements the class tr e e _ t  (read “tree type” ), which is intended to store both the topology 
and metric information about a tree. In particular, this class needs to support the ability to store metric

3This should be thought o f as counting in binary from 1 to the height o f the tree.
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information, and calculate distances between taxa.

A  major complication of t r e e _ t  is the need to support both rooted and unrooted trees. There are two 
reasons for this: Neighbor Joining produces unrooted trees, and input might be in the form of unrooted trees. 
It might be possible to side step the Neighbor Joining issue, but the requirement to take in unrooted trees 
from the user is something we need to support regardless.

The support for unrooted trees also informs another requirement for tre e _ t : the ability to make minor 
modifications to the topology of a tree. Specifically, we need to be able to root a tree by a specified taxa 
called an outgroup. Therefore, there is “reroot” functionality implemented.

3 .1.2  Im p lem en tation

At a high level, phylogenetic trees are implemented as doubly linked binary trees. This is to say, each node 
on the tree has a reference to a parent (if it exists), and references to two children (if they exist). Note that 
due to the nature of phylogenetic trees, nodes either have two children, or none. This also means that there 
is a sense of directionality towards the root. This makes finding paths between nodes easy, as we can begin at 
leaf nodes and proceed towards the root.

A  concept that is central to the tree class the unroot. Traditional binary trees typically have a root node 
that contains pointers to the two subtrees. This works for rooted trees, but some trees we need to represent 
are unrooted. This leads to the concept of an unroot. In figure 8, there is an example of the “central” node, 
an unroot, connected to to three subtrees.

In this case u is the central node that we wish to represent. We can’t do this with a typical node, because 
concepts of children an parent don’t apply here. Instead, we do this by making an adjacency list for just the 
node u, with pointers to the nodes (representing the subtrees) a, b and c.

c

Figure 8: An example unroot

The node class contains the information relating to each individual node in the tree. This includes data 
including the label of the node, the weight of the edge towards the parent, and pointers to the children and 
parent.

The tr e e _ t  class is the main workhorse of the tree implementation. It contains the tree and the unroot. 
Since these trees do not have the normal CRUD operations, we can predetermine the size of the tree. This 
allows us to preallocate a contiguous section of memory to store the nodes that make up the tree, as opposed 
to each node being potentially distant in memory from other nodes. By doing this, we can take advantage 
of cache locality, which can be a potentially large speed up on some systems. This technique I “ call tree 
packing” ; it is discussed in section 3.1.3.

The tr e e _ t  class is also responsible for setting the weights of the tree. This can be done in three ways. The 
first is to pass the set_w eight function a function that takes a s iz e _ t  or equivalent, and returns a double. 
Another is to pass a vector of weights which is indexed by depth. Yet another way is to pass a constant to 
the function, which will set the weights to be the constant, with the exception of the leaves. In all these 
cases, the tree remains ultrametric, i.e., the leaf edges are adjusted to ensure it.
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3.1.3  T ree P ack in g

Tree packing is the name for producing a tree topology in a contiguous section of memory. At a high level 
this algorithm performs a preorder traversal of the tree, and pushes nodes onto a queue. After the traversal 
is complete, the queue contains the packed tree. The final step is to update the references inside the tree via 
a map of old references to new references.

A lg orith m  1: Tree Packing
D ata: List of pointers to tree roots r
R esu lt: A  packed representation of a tree in memory

1 stack s;
2 queue q;
3 for n in r do
4 push n onto s;
5 push n onto q;
6 w hile  s is not empty do
7
8 
9

10 
l l

n ^  top of s; 
pop top of s ; 
if  n has children th en

push children of n onto s ; 
push children of n onto q;

12 tree  ^  array the size of q;
13 for n in q do
14 push n onto tree;
15 update pointers of n;

3 .1 .4  Set R o o t

The final major role of the tree is to set and reset the root. Sometimes, unrooted trees might be passed to 
this function, but the algorithms only work on rooted trees. So we must be able to root a tree. To do this, 
the algorithm 2 is used.

3.2 newick.h

3.2.1 P u rp ose

In order to work with gene trees, I need to be able to parse Newick Notation, as specified in section 1.3. In 
this implementation, we expose a function nj which given a string returns a parsed tree. This is done via a 
recursive descent parser.

3 .2.2  Im p lem en ta tion

3.2 .2 .1  G ram m ar

The grammar used has two 3 productions and 2 terminal lexemes. The terminal lexemes are labels and 
weights. The regular expression for labels and weight are

weight = [ 0 - 9 ] + ( ' . ' [ 0 - 9 ] * ) ? ( ' e ' [ 0 - 9 ] + )  
la b e l  = [A -z ][A -z0 -9 _ ]

In other words, floating point numbers with possible exponential notation, and c identifiers. Every other 
literal is punctuation, and is there for structure only. Below is the grammar that is in the parser
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A lg orith m  2: Set Root
D ata : List of pointers to roots of subtrees r representing the unroot of an unrooted tree, outgroup pointer o 
R esu lt: New root of a rooted tree, with o as an outgroup

1 i f  o in r th en  / /  Unroot i s  where i t  should be, ju s t  need to  ro o t  the tre e
2
3
4
5
6

make new node nr;
set n r ’s children to be the two other nodes in r; 
clear r ; 
add o to r ; 
add nr to r ;

7 else
8
9

10
11
12
13
14
15
16
17
18

make new node n ;
assign n ’ s parents and children to the three nodes of r ; 
clear r ; 
add o to r ;
for child, parent c of n do  

set c ’s parent to n

p ^  o ’s parent;
if  o is not the left child of p th en  

swap p ’s left child and right child;
set p's left child to n u ll;
SwapParent(p, nu l l )  / /  See algorithm  3 below

A lg orith m  3: SwapParent(node n, node p)
1 if  p is n ’s left child th en
2 swap n 's parent and left child;
3 SwapParent (left child, n);

4 else if  p is n ’s left child th en
5 swap n 's parent and right child;
6 SwapParent (right child, n);

tr e e  = ' ( '  subtree ' , '  subtree [ ' , '  subtree] ' ) '  [ ' ; ' ]  
subtree = la b e l  [ ' : '  weight]

| ' ( '  subtree ' , ' subtree ' ) ' [ '  : ' weight]

3 .2 .2 .2  P a rse r /L e x e r

Since the language is so small, we have made the parser and lexer tightly integrated. Thus, there is no 
separate lexer module. Instead, characters are read and dealt with immediately. I read floats with the stod  
function in the standard c++ library.

The parser itself is simple top down recursive descent parser. The parser returns a list of node pointers 
representing the subtrees that make up the tree. This list is intended to be the unroot.

3.3 nj.h

This header contains my implementation of the Neighbor Joining(Saitou and Nei 1987) algorithm. Neighbor 
Joining has been implemented previously. However efficient implementations are not generic, as they are 
specific to the tree structure being used. Therefore it was necessary to reimplement the algorithm here. A 
full specification of the algorithm can be found in section 1.4.
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Some optimizations have been performed over the naive implementation. The first, and largest, is that the 
matrix Q, which is calculated in each iteration of the algorithm, is not stored. Instead, we just store the 
lowest value of Q so far, and the pair associated with it. When we have finished iterating through the matrix, 
we simply return the pair with the lowest associated value of Q .

3.4 star.h

3.4.1 P u rp ose

The STAR algorithm is straightforward. Most of the complexity of the code comes from the tree itself, but 
once that is implemented, the algorithm is simple. Please refer to algorithm 4 for the details.

A lg orith m  4: STAR
D ata: A  set of trees T , with the same set of taxa X  where |X| =  n, with weights set.
R esu lt: A  single tree s

1 D ^  0 "x";
2 for t in T  do

d ^  distance table of t; 
D D +  d;

5 D ^  l/n ■ D;
6 s ^  tree from neighbor joining with D;
7 retu rn  s

3.5 gstar.h

As stated before, there are two schedules for SunStar. The first is the default schedule, which is run when 
the — t r ia l s  option is not specified. The other is the randomized schedule, which is run when — t r ia l s  is 
specified.

The default schedule is an attempt to find an error by brute force. We treat each level of edges as either 
having a weight of 0 or 1. We then try every possible assignment of 0s and 1s.

A lg orith m  5: GSTAR-default
D ata : A  set of n trees, T , which all have the same set of taxa.
R esu lt: A  set of trees and associated frequencies.

1 R ^  map of trees to integers;
2 h ^  maxteT (height of t);
3 S ^  list of 1’s of length h;
4 for i in 1 : 2n  do
5 for t in T  do
6 |_ set weights of t by schedule S;
7 t s ^  STAR on T ;
8 if  t s ^ R  th en
9 |_ R (ts ) ^  0;

10 R (ts ) ^  R (ts ) +  l;
/ *  Here we tr e a t  S as a b inary number, and decrement i t * /

11 decrement S ;
/ *  Normalize the counts in to  p rop ortion s * /

12 for r in R  do
13 R(r) ^  l/2n ■ R(r);

14 retu rn  R

15



The random schedule proceeds by randomly generating weights, and assigning them to the trees in the set.

A lg orith m  6: GSTAR-random
D ata: A  set of n trees, T , which all have the same set of taxa. A  number of trials t.
R esu lt: A  set of trees and associated frequencies.

1 R  ^  map of trees to integers;
2 h ^  maxteT (height of t);
3 S ^  a list of h random numbers, uniformly distributed on [0,1];
4 for i in t do
5 for t in T  do
6 |_ set weights of t by schedule S;
7 t s ^  STAR on T ;
8 if  t s ^ R  th en
9 |_ R(t s ) ^  0;

10 R(t s ) ^  R(t s ) +  1;
11 S ^  a list of h random numbers, uniformly distributed on [0,1];

/ *  Normalize the counts in to  p rop ortion s * /
12 for r in R  do
13 R(r) ^  ! /2n • R(r);

14 retu rn  R

Early tests have shown that the default and random schedules are about equivalent in detecting error, though 
the representation of resulting trees differ.

4 Results

The results that are currently available are empirical investigations of the complexity of GSTAR, implemented 
in SunStar.

SunStar was built using clang++ using the -O3 and -m arch=native flags. Tests were performed on a 4.0 
GHz processor. The command used to obtain these times was

time ./su n s ta r  - f  TESTFILE.tre - t  TRIALS

The number reported is the user mode cpu time.

Number of Trees Number of Taxa Trials CPU Time (Seconds)

10 6 1000 0.06
10 6 10000 0.54
100 6 1000 0.33
100 6 10000 3.23
10 37 1000 3.2
10 37 10000 33.5
100 37 1000 26.5
100 37 10000 266.3
424 37 1000 110.5
424 37 10000 1116.2

As it can be seen, these times fall in line with the predicted complexity of the program. Specifically, the 
program is linear in the number of trees and the number of trials, while being non-linear in the number of 
taxa. It is important to note that if we perform the calculation, the 37 taxa trials should be approximately 
216 times slower than the equivalent 6 taxa trials. In these trials, they are faster than 216 times slower,
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on average only 66.43 times slower. Further investigation is required to determine why we see better than 
expected performance in the number of taxa.

5 Conclusion

We have created a software package, SunStar, that uses Generalized STAR to infer the stability of a species 
tree produced by STAR. Furthermore, we have found early results that suggest that this technique might be 
useful.

6 Future Work

There are many optimizations, enhancements, and investigations we would like to do with SunStar. Like 
many software projects, SunStar could be developed forever, given sufficient resources. What follows is a
short list of priority items that should be done before other options.

6.1 Optimizations

There are many optimizations that we would like to implement. They are in no particular order:

• Refactor distance table data structure, so that we can take advantage of symmetry.
• Refactor the node class; investigate making the class smaller in memory.
• Implement OpenMP routines on the GSTAR level of computation (Give each STAR inference a thread).
• Optimize the default schedule, find unnecessary steps.

6.2 Enhancements

There are a few enhancements that are possible for SunStar. Some of these are only necessary if the technique 
turns out to be very successful, but are included as a roadmap nonetheless.

• More distributions/schedules for weights in GSTAR.
• Add MPI support.
• Add “Full Pipeline” inference. Specifically, take in gene sequences and return a set of trees with support.

6.3 Investigations

To really investigate this method of detecting errors, we would like a study that

1. Models gene trees from a species tree using the multispecies coalescent model,
2. Generate gene sequences from those gene trees,
3. Infer new gene trees with error from the generated sequences,
4. Run SunStar and examine the error rate.

Most of these computations are relatively fast, except for step 3. Inferring gene trees from sequences can take 
quite a while. Therefore, this investigation will likely take several months of work.

7 Code

The entire code base, including this write up, is located on GitHub4:

4 https: / /github.com /com putations/SunStar.
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