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Abstract

Sedimentological and palynological analyses of lacustrine cores from Baker Island, located in Southeast 

Alaska's Alexander Archipelago, indicate that glaciers persisted on the island until ~14,500 cal yr. BP. 

However, the appearance of tree pollen, including Pinus cf. contorta ssp. contorta (shore pine) and 

Tsuga mertensiana (mountain hemlock) immediately following deglaciation suggests that a forest 

refugium may have been present on ice-free portions of neighboring islands or the adjacent continental 

shelf. Sedimentological and palynological analyses indicate a variable climate during the Younger Dryas 

interval between ~13,000 and ~11,500 cal yr. BP, with a cold and dry onset followed by ameliorating 

conditions during the latter half of the interval. An eight cm-thick black tephra dated to 13,500 ± 250 cal 

yr. BP is geochemically distinct from the Mt. Edgecumbe tephra and thus derived from a different 

volcano. Based on overall thickness, multiple normally graded beds, and grain size, I infer that the black 

tephra was emplaced by a large strombolian-style paroxysm. Because the dominant wind direction 

along this coast is from the west, the Addington Volcanic Field on the continental shelf, which would 

have been subaerially exposed during the eruption, is a potential source. The similarity in timing 

between this eruption and the Mt. Edgecumbe eruption suggests a shared trigger, possibly a response 

to unloading as the Cordilleran Ice Sheet retreated. To complement the Baker Island lacustrine record, a 

speleothem paleoclimate record based on 513C and 518O values spanning the interval from ~60,000 yr. 

BP to ~11,150 yr. BP was recovered from El Capitan Cave on neighboring Prince of Wales Island. More 

negative 513C values are attributed to predominance of angiosperms in the vegetation above the cave at 

~22,000 yr. BP and between ~53,000 and ~46,000 yr. BP while more positive 513C values in speleothem 

EC-16-5-F indicate the presence of gymnosperms. These data suggest limited or no ice cover above El 

Capitan Cave for the duration of the record, possibly indicating that this region was a nunatak during 

glacial periods.
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Chapter 1: Introduction

There has been much debate over the past 50 years regarding the timing and magnitude of climate 

events following the last glacial maximum (LGM) and the deterioration of the Cordilleran Ice Sheet 

~20,000 yr. BP in Southeast Alaska (e.g. Klein, 1965; Rausch, 1969; Warner et al., 1982; Heaton et al., 

1996; Hansen and Engstrom, 1996; Kaufman and Manley, 2004; Lacourse and Mathewes, 2005). The 

nature of these debates often stems from the possible presence of ice free refugia in the region as well 

as climate fluctuations during the Younger Dryas (YD) interval. Klein (1965) states that the coastal 

regions of Alaska were virtually completely overridden by ice during the LGM and the modern flora and 

fauna became established after the recession of ice. A study of Kodiak Island mammals also discounted 

Ice Age refugia in favor of postglacial colonization (Rausch, 1969). In addition, a glacial geologic map 

compiled from numerous reports of statewide glacier extents shows Southeast Alaska completely 

covered in ice during the LGM (Kaufman and Manley, 2004). However, others suggest that ice free areas 

existed in the region and supported refugia (Warner et al., 1982; Heaton et al., 1996; Hansen and 

Engstrom, 1996; Lacourse and Mathewes, 2005).

Refugia in Southeast Alaska would have allowed a habitat suitable for animals and plants to survive the

encroachment of the vast Cordillera Ice Sheet during the height of the ice age, possibly including

migrating humans (Fagundes, 2008). Ancient bones from bears with genetically distinct DNA from

mainland bears have been dated to ~30,000 years BP and to ~13,000 years BP, which hints that a

refugium existed (Heaton et al., 1996). In addition, pollen evidence collected from Southeast Alaska's

Pleasant Island, which was covered under the Cordillera Ice Sheet during the LGM, indicate that pine

woodland was present immediately after deglaciation, which suggests survival within a nearby refugium

(Hanson and Enstrom, 1996). Furthermore, a palynological record from sea-cliff exposures of late

Pleistocene sediment and peat from the Queen Charlotte Islands spans the last ~18 ka and indicates that

at least a portion of Queen Charlotte Island was ice free throughout the late Wisconsin (Warner et al.,
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1982; Mathewes et al. 1993; Mandryk et al. 2001). Beyond these hints, there is no definitive evidence 

that such a refugia existed in the region.

The Younger Dryas (YD) is a cold interval between ~12,800 and ~11,500 cal yr. BP (Alley, 2000) linked to 

breakdown of thermohaline circulation in the North Atlantic (Broecker et al., 1989). This resulted in 

severe cooling of the North Atlantic region (Bohncke, 1993; Clark et al., 1999; Isarin and Renssen, 1999). 

Modeling experiments (Mikolajewicz et al., 1997; Okumura et al., 2009) and foraminiferal oxygen 

isotope records from the Gulf of Alaska (Praetorius and Mix, 2014) indicate cooling of the North Pacific 

as well, both by oceanic and atmospheric pathways. Paleovegetation records from coastal Alaska record 

a subtle change during the YD (Cwynar, 1990; Ager and Rosenbaum, 2007; Ager et al., 2010), while 

records from central and northern Alaska may record little or no change at all (Kokorowski et al., 2008). 

Consequently, there is no clear consensus regarding the impact of the YD on the climate or vegetation of 

Alaska.

To test if refugia existed in the region and develop a consensus on climate during the YD, I employ a 

suite of proxies including palynology, sedimentology, and speleology. From the present to 13,500 yr. BP, 

my reconstruction is based on palynological and sedimentological analyses of a sediment core collected 

from a lake on Baker Island (N 55.281232°, W 133.637559°, 107 m above sea level). Multiple analyses 

including 513C values, carbon/nitrogen ratios, loss-on-ignition, magnetic susceptibility, and grain size 

were used for the reconstruction. This resulted in the first palynological evidence for a variable climate 

throughout the YD in Southeast Alaska, beginning cold and dry but becoming warmer and more humid 

during the latter half. Results also suggest the possible presence of local refugium based on first arrivals 

of plant taxa.

From 11,100 to 60,000 yr. BP, the reconstruction is based on a speleothem record from El Capitan Cave 

on Prince of Wales Island (N 56.162°, W 133.319°, 74 m a.s.l.). 513C and 518O values from the speleothem
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were used to determine past climate and vegetation. Because the El Capitan speleothem record 

overlapped with the Baker Island sediment core record between 11,100 and 13,500 yr. BP, the Baker 

Island sediment core provided evidence regarding the nature of vegetation changes that drive changes 

in the speleothem 513C record. The results provide a rare glimpse into climate and vegetation of 

Southeast Alaska during and prior to the LGM and suggest that areas above the cave may have served as 

a refugium based on isotope values which indicate that ice above the cave was minimal or absent and 

vegetation was present throughout the record.

A tephra identified in the Baker Island sediment core was determined to be distinct from other 

eruptions in the region, such as Mt. Edgecumbe, and therefore unique. The submerged Addington 

Volcanic Field, which may have been subaerially exposed during the eruption, is consistent with the 

available data and may have produced the black tephra found in the Baker Island sediment core. 

Geochemical analyses, grain size, bedding thickness, tephra grain texture, and wind direction were used 

to determine the likelihood of an Addington Volcanic Field eruption. The age of the tephra, which was 

deposited during interglacial warming ~13,500 cal yr. BP, can be used to help calibrate radiocarbon ages 

among other sites in the region, which can subsequently assist in determining arrival times of key plant 

taxa.

In this dissertation, I organized logistics for field work, conducted the field research, completed all lab 

work (except for grain size analyses in Chapter 2), interpreted the data, and developed the main 

conclusions. Raphael Dreier completed the grain size analyses, seen in chapter 2, as part of an 

undergraduate research project.
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Chapter 2: Variable Younger Dryas Based on Palynological and Sedimentological Analyses of Lacustrine

Cores from Baker Island, Southeast Alaska1

2.1 Abstract

Sedimentological and palynological analyses of lacustrine cores from Baker Island, located in southeast 

Alaska's Alexander Archipelago, indicate that glaciers persisted on the island until ~14,500 cal yr. BP. 

However, the appearance of tree pollen, including Pinus cf. contorta ssp. contorta (shore pine) and 

Tsuga mertensiana (mountain hemlock) immediately following deglaciation suggests that forested 

refugia may have been present on ice-free portions of neighboring islands or the adjacent continental 

shelf. Influx of Pinus and Tsuga mertensiana at ~13,500 cal yr. BP suggest establishment of pine parkland 

following ice retreat. A subsequent decline in the percentages of Pinus and Tsuga mertensiana 

accompanied by an increase in Alnus pollen and fern spores suggests lowered treeline at the onset of 

the Younger Dryas (YD), at ~13,000 cal yr. BP. Increasing percentages of Pinus at ~12,400 cal yr. BP 

suggest an increase in temperature and humidity. Conditions continued to ameliorate during the latter 

half of the YD, between ~12,200 cal yr. BP and ~11,500 cal yr. BP, when percentages of Pinus pollen 

decrease, percentages of Picea (spruce) increase, and Abies (fir) appears. At ~6,000 cal yr. BP an increase 

in pollen of the forest taxa Pinus and Abies, the bog taxon Lysichiton americanus (skunk cabbage), and 

spores of Sphagnum  indicate cooler temperatures and paludification. Increasing abundances of 

Cupressaceae (cf. Juniperus) pollen accompanied by a decrease in Lysichiton americanus, Ericaceae 

(heath), fern and Sphagnum  spores at ~5,400 cal yr. BP may be driven by Neoglacial cooling.

1 W ilc o x , P.S., F o w e ll, S.J., B ig e lo w , N .H ., B a ich ta l, J.F., R aphae l D re ie r. 2 01 7 . V a ria b le  Y o u n g e r D ryas Based o n  P a lyn o lo g ica l an d  

S e d im e n to lo g ic a l A n a lyses  o f  L a cu s tr in e  C ores f ro m  B a ker Is land , S o u th e a s t A laska . P re p a re d  fo r  s u b m is s io n  in  th e  Jo u rn a l o f  P a la e o g e o g ra p h y , 

P a la e o c lim a to lo g y , P a la e o e co lo g y .
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2.2 Introduction

The Younger Dryas (YD) is a cold interval between ~12,800 and ~11,500 cal yr. BP (Alley, 2000) linked to 

breakdown of thermohaline circulation in the North Atlantic (Broecker et al., 1989). This resulted in 

severe cooling of the North Atlantic region (Bohncke, 1993; Clark et al., 1999; Isarin and Renssen, 1999). 

Modeling experiments (Mikolajewicz et al., 1997; Okumura et al., 2009) and foraminiferal oxygen 

isotope records from the Gulf of Alaska (Praetorius and Mix, 2014) indicate cooling of the North Pacific 

as well, both by oceanic and atmospheric pathways.

Paleovegetation records of the YD from the North Atlantic region, in the vicinity of northwest and

central Europe, show a sharp transition from a forested landscape during the preceding Late-Glacial

interstadial to more open vegetation with tundra and steppe elements (Bohnche, 1993; Madeyska and

Kozlowski, 1995; Walker, 1995). Paleovegetation records from coastal Alaska record a more subtle

change during the YD (Cwynar, 1990; Ager and Rosenbaum, 2007; Ager et al., 2010), while records from

central and northern Alaska may record little or no change at all (Kokorowski et al., 2008). Consequently,

there is no clear consensus regarding the impact of the YD on the climate or vegetation of Alaska. For

example, in coastal regions of Alaska and British Columbia, Peteet and Mann (1994) identify a fern gap

between ~12,700 and ~11,400 cal yr. BP on Kodiak Island, which they interpret as a result of cold, dry YD

conditions. Reconstruction of similar conditions on Pleasant Island and Queen Charlotte Island are based

on a shift from forest to open, herb-rich vegetation (Mathewes, 1993; Hansen and Engstrom, 1996).

Conversely, on Vancouver Island, pre-YD vegetation of Pinus contorta and Alnus, is replaced by Tsuga

mertensiana and Tsuga heterophylla at ~13,200 cal yr. BP. This is interpreted as a change from relatively

cool and dry conditions prior to the YD to cool and humid conditions during the YD (Hebda, 1983). Either

there are considerable regional differences in the impact of the YD across the northern Pacific or these

studies record different phases of a variable YD. High-resolution palynological and sedimentological

analyses of cores from an unnamed lake on Baker Island (Fig. 2.1), in the western Alexander Archipelago
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(N 55.281232°, W 133.637559°, 107 m a.s.l.), indicate that climate was cool and dry at the onset of the 

YD, followed by an increase in both temperature and humidity during the latter half of the interval.

2.3 Study Area

The informally named 'Bonsai' lake (Fig. 2.1) is located in a granitic glacial valley (Ayuso et al., 2005) with 

steep slopes on the northwest and southeast sides where there is evidence of recent landslides. The 

lake is in a closed catchment and is bedrock dammed, with a maximum depth of 27 m.

Regionally, common tree species are western hemlock (Tsuga heterophylla) and Sitka spruce (Picea 

sitchensis). Mountain hemlock (Tsuga mertensiana) is more common in upland forests. Also present are 

shore pine (Pinus contorta ssp. contorta), yellow cedar (Chamaecyparis nootkatensis), and occasional 

red cedar (Thuja plicata). Red alder trees (Alnus rubra) are common in lowlands, while Sitka alder shrubs 

(Alnus crispa ssp. sinuata) often form dense thickets along rocky coastlines and stream banks, in 

avalanche scars, at forest edges, and in the subalpine zone (Pawuk and Kissinger, 1989).

2.4 Methods

A preliminary bathymetric survey was conducted using a Humminbird Matrix 47 3D sonar/GPS unit to 

map the lakebed and identify optimal coring sites (Fig. 2.2). Cores were collected from a modular raft 

using a Livingstone piston corer. A 5.3 m core was extracted from 10.19 m of water at site BBL4, near 

the northeastern end of the lake, and a 3.6 m core was extracted from 7.4 m of water at site BBL6, on 

the southwestern side of the lake (Fig. 2.2). Both cores terminate in blue-grey clay (Fig. 2.3). A Bolivia 

corer was used to recover the sediment-water interface at a third site, BBL1, located three meters from 

site BBL4. Given their proximity, the surface core from BBL1 is combined with the core from BBL4 to 

create a composite record (Fig. 2.3).
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Whole cores were encased in PVC tubing and transported to the National Lacustrine Core Facility 

(LacCore) in Minneapolis, MN where detailed imaging was performed on a digital line scanner, 

producing a ~50 MB single image per 1.5 m core section at a resolution of 10 pixels per millimeter. 

Magnetic susceptibility analyses were conducted with a Geotek MSCL-XYZ core scanner at a resolution 

of 0.5 cm (Fig. 2.3). Half of the core is archived at LacCore, while the other half was transported to the 

University of Alaska for further sampling and analyses.

The cores from sites BBL4 and BBL6 cover correlative intervals (Fig. 2.3), but the core from site BBL4 is

1.7 m longer. Therefore this higher-resolution record was selected for detailed palynological and 

sedimentological analyses. Pollen processing at the University of Alaska Fairbanks followed a modified 

version of the standard methods described in Traverse (1988). 1 cc of sediment was collected every 2 

cm from 475 cm to 425 cm, every 4 cm from 425 cm to 260 cm, and every 8 cm from 260 cm to 0 cm. A 

tablet containing ~9,660 Lycopodium  spores was added to each 1cc sample in order to estimate 

palynomorph concentrations. Assemblage data are based on identification of at least 300 terrestrial 

pollen grains per sample. Spores were not included in this total. Therefore, the total number of pollen 

and spores exceeds 300 grains. Percentages of pollen taxa (Fig. 2.4) were calculated based on the sum of 

all pollen types, excluding spores. Percentages of spores were calculated using the sum of pollen and 

spores. Pollen and spore influx for each taxon (Fig. 2.5) is calculated by the equation: ((number of grains 

counted * 9,660 /exotic Lycopodium  counted)/sample vol.) * (sedimentation rate)), to determine 

grains/cm2/year (Faegri et al., 1989). Influx data are used to assess changes in the abundance of each 

taxon independent of increases or decreases in the other taxa (Faegri et al., 1989). Percentages and 

concentrations were calculated by means of Tilia software, version 1.7.16 (Grimm, 2011).

The vast majority of fern spores in the Baker Island cores are monolete and psilate. The absence of the

perine precludes identification of genera or families (Moore et al., 1991). Pollen grains placed within the

Cupressaceae family typically lacked diagnostic gemmae, but the gemmae of Juniperus are known to be
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deciduous (Faegri et al., 1989). Identifications of cf. Juniperus are based on the presence of faint 

reticulate sculpturing visible on type specimens of Juniperus that have lost the gemmae. Reference type 

slides that were used for identification were created from specimens curated by the University of Alaska 

Museum of the North herbarium. These slides are available in the paleoecology laboratory at the 

University of Alaska Fairbanks.

Loss-on-ignition (% organics) was performed at the Arctic Coastal Geoscience Lab (ACGL) at the 

University of Alaska Fairbanks following standard lab procedures. LOI is calculated using the equation: 

LOI5 5 0  = ((DW 100  -  DW5 5 q )/DW 1 q q ) *100, where LOI50 0  represents LOI at 550 °C (as a percentage), DW 100 

represents the dry weight of the sample before combustion, and DW5 5 0  represents the dry weight of the 

sample after heating to 550 °C (Heiri et al., 2001). 1 cc of sediment was sampled every 1 cm from 475 cm 

to 425 cm, every 2 cm from 425 cm to 310 cm, and every 4 cm from 310 cm to 0 cm. The influx of 

inorganic sediment (clastic influx) was calculated by multiplying sedimentation rate (cm/yr) by the mass 

of sample remaining after heating at 550° C for 90 minutes.

Grain size analysis was performed at the ACGL using a Beckman Coulter Counter LS 320. Samples of 

sediment were collected every 1 cm from 510 cm to 425 cm and every 2 cm from 425 cm to 0 cm. A 

gravel unit at 430 cm was too large to analyze in the Coulter Counter.

Carbon and nitrogen stable isotopes were processed using a ThermoFinnigan Continuous Flow Isotope 

Ratio Mass Spectrometer at the Alaska Stable Isotope Facility at the University of Alaska Fairbanks. 2 to 

15 mg of bulk sediment, untreated with acid fumigation/acid washing, was sampled every 4 cm from 

470 cm to 430 cm, every 10 cm from 430 to 400 cm, and every 25 cm from 400 to 0 cm. Mass of bulk 

sediment varied depending on organic content, with smaller masses collected at organic-rich depths 

determined by loss-on-ignition.
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The chronology is based on radiocarbon dates of nine wood fragments and one pollen separate (Table 

2.1). One wood fragment was extracted from the center of core BBL6 at 307 cm and eight additional 

wood fragments were collected from core BBL4 at depths of 55 cm, 120 cm, 180 cm, 227 cm, 320 cm, 

380 cm, 422 cm, and 455 cm. Extraction of palynomorphs from a sediment sample at 455 cm provides a 

duplicate date for this horizon. Due to the location of the lake in a granite basin, macrofossils and pollen 

collected for Accelerator Mass Spectrometry (AMS) dating have little chance of contamination by old, 

bedrock-derived carbon.

In preparation for dating, pollen collected at 455 cm in core BBL 4 was separated from 1cc of bulk 

sediment. Processing followed a procedure modified from Brown et al., (1989): Sieving through 250 ^m 

mesh, treating with 10% HCL, 10% KOH, 48% HF, and 12M H2SO4 , and sieving again at 20 ^m, resulting in 

an organic residue consisting primarily of Picea pollen .

Samples were cleaned with de-ionized water and sent to Livermore National Laboratory for AMS dating 

on an HVEC 10 MV Model FN Tandem Van de Graaff Accelerator. AMS ages were calibrated using CALIB

7.0 software with 2a range (Stuiver et al., 2013). Median ages were calculated from CALIB 7.0 software. 

Ages of layers between dated horizons are estimated via linear interpolation (Fig. 2.3).

2.5 Results

2.5.1 Core Lithology and Chronology

The basal sediment in cores BBL4 and BBL6 consists of blue-grey clay with a median grain size of ~8 ^m 

and high magnetic susceptibility (~500 SI 10- 5 ) (Fig. 2.3). This is overlain by a black tephra with a median 

grain size ranging from 25 ^m to 120 ^m (Fig. 2.3), arranged in multiple fining upward units. Within this 

unit, magnetic susceptibility spikes to 670 SI 10-5  in BBL4 and 500 SI 10-5  in BBL6 (Fig. 2.3). Assuming a 

constant rate of sedimentation between dated horizons at 455 cm and 420 cm, the black tephra was 

deposited ~13,500 cal yr. BP. In core BBL 4 the black tephra is overlain by 35 cm of silt with a layer of

12



gravel towards the top of the unit, at 430 cm. A similar gravel layer is found in BBL6 at 322 cm (Fig. 2.3). 

Above the silt, the remaining 4.05 m of core BBL4 is primarily comprised of organic-rich silt. The organic 

silt is interrupted at 350 cm by a series of small silt layers extending to 300 cm, distinguished by a lighter 

color than the surrounding organic silt, with each silt layer no more than 4 cm thick.

513C and Carbon/Nitrogen (C/N) ratios

513C is more positive (-25.4% ) early in the record at ~13,500 cal yr. BP (Fig. 2.3). It becomes more 

negative at ~13,000 cal yr. BP, decreasing to -27.3% . At ~12,400 cal yr. BP, 513C increases to -25.8%  and 

then decreases to -26.8%  by ~12,200 cal yr. BP. It then gradually increases through the remainder of 

the record to -25.9% . The C/N ratio is 14.1 at ~13,500 cal yr BP and increases to 15.0 by ~13,000 cal yr. 

BP (Fig. 2.3). Ratios decrease to 14.0 at ~12,500 cal yr. BP, increase sharply to 20.7 by ~11,500 cal yr. BP, 

and fluctuate between 17.9 and 23.0 for the remainder of the record.

Loss-on-ignition (% Organics)

Loss-on-ignition (LOI) is a measure of % organic matter (Heiri et al., 2001). Organic matter percentages 

are low (~5 %) early in the record at ~13,500 cal yr. BP (Fig. 2.3). They increase to 23% by ~13,000 cal yr. 

BP and then decrease to ~6% by ~12,500 cal yr. BP. At ~11,800 cal yr. BP, the percentage rises to 32%, 

gradually drops to 18% at ~9,000 cal yr. BP, rises slightly to ~25% by ~5,500 and remains near this level 

for the remainder of the record.

Grain size

Median grain sizes are predominantly silt-sized (~8 ^m) early in the record at ~14,000 cal yr. BP (Fig.

2.3). They rise to ~98 ^m at ~13,500 cal yr. BP and then decline to ~38 ^m at ~13,200 cal yr. BP. 

Afterwards, grain size increases to ~115 ^m at ~12,900 cal yr. BP and then decrease to ~40 ^m at 

~12,500 cal yr. BP. Grain size increases sharply to ~160 ^m at ~11,900 cal yr. BP and stays at ~160 ^m for
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the remainder of the record, except for a small decrease to ~110 ^m between ~8,000 cal yr. BP and 

~5,600 cal yr. BP. Because no hydrogen peroxide or a deflocculant were used in the analyses, organic 

matter was not removed and there was clumping of finer grains, resulting in a grain size increase to 

sand-sized particles (~160 ^m), even though no sand grains are evident.
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2.5.2 Pollen

Pollen and spore assemblages from the Baker Island core are divided into five zones initially identified by 

Tilia software, version 1.7.16, and modified based on visual inspection (Fig. 2.4). These zones are 

described from oldest to youngest.

Zone 5, Pinus-Alnus (475 -  456 cm, ~13,500 -  12,900 cal yr. BP).

Pinus initially dominates assemblages in this zone, with 75% of total pollen grains (~8,000 

grains/cm2/year) (Fig. 2.4, 2.5). Throughout the zone, Pinus decreases to 10% (~300 grains/cm2/year) 

while Alnus increases from 15% to 70% (~1,000 to ~5,000 grains/cm2/year). Fern spores also increase 

from an initial 20% to 65% (~3,000 to ~12,000 grains/cm2/year). Picea first appears in the pollen record 

at ~13,000 cal yr. BP (455 cm) with 10% of total pollen grains (~100 grains/cm2/year). This zone 

represents the only period during the record where Tsuga mertensiana is consistently present, 

comprising ~10-15% of total pollen grains (~200-800 grains/cm2/year).

Zone 4, Pinus-Picea-Alnus (454 -  412 cm, ~12,800 -  11,500 cal yr. BP). Pinus constitutes only 10% of the 

total pollen at the beginning of this zone (~300 grains/cm2/year) but increases to 20% (~2,000 

grains/cm2/year) at ~12,400 cal yr. BP (436 cm). Afterwards, Pinus decreases to minor amounts (5%,

<300 grains/cm2/year). Picea comprises 10% of the basal assemblages (~400 grains/cm2/year) and 

increases to a zone maximum of 40% (~6,000 grains/cm2/year) at ~12,000 cal yr. BP (430 cm). Alnus 

reaches its peak frequency early in the zone at ~12,700 cal yr. BP (450 cm) with 75% total pollen grains 

(10,000 grains/cm2/year) and decreases to 55% by the end of the zone (~2,500 grains/cm2/year). Ferns 

are initially abundant (70%, ~22,500 grains/cm2/year), but decline to 35% (~10,000 grains/cm2/year) by 

~11,900 cal yr. BP. (420 cm) and then increase to 65%. However, the increase in the percentage of ferns 

at the end of this zone is not reflected in the influx data, which decreases to ~9,000 grains/cm2/year.
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Fungal spores increase from 10% to 20% throughout the zone (~100 to ~300 grains/cm2/year). Abies and 

Sphagnum  first appear in very low frequencies at the end of this zone at ~11,700 cal yr. BP (413 cm).

Zone 3, Picea-Tsuga heterophylla-Alnus (410 -  352 cm, ~11,400 -  8,300 cal yr. BP). Picea remains 

abundant, with 35% total pollen grains, but influx decreases significantly (between ~10,00 and ~1,500 

grains/cm2/year) relative to the previous zone. Tsuga heterophylla first appears in small amounts (5%) at 

~10,800 cal yr. BP (390 cm), increasing to 15% by the end of the zone. Tsuga heterophylla influx is 

relatively constant at ~500 grains/cm2/year. Alnus frequencies vary between 50% and 65% (~500 and 

~2,500 grains/cm2/year). Fern spores have consistently high percentages of ~65%, and fungal spores are 

most abundant during this zone with values ranging from 15% to 20%. Influx estimates reveal decreasing 

values for both fern and fungal spores throughout the zone, from ~9,000 to ~2,000 grains/cm2/year and 

~800 to ~200 grains/cm2/year, respectively.

Zone 2, Pinus-Picea-Tsuga heterophylla-Alnus (350 -  255 cm, ~8,200 -  5,500 cal yr. BP). Pinus 

frequencies are low (<5%) except for a small increase to 10% (~1,000 grains/cm2/year) at ~6,000 cal yr. 

BP (320 cm). Picea percentages drop from 35% at the end of zone 3 to 20% at ~8,200 cal yr. BP (350 cm), 

the beginning of zone 2. Picea remains at ~20% for the duration of zone 2; however, influx records an 

increase from ~1,000 to ~4,000 grains/cm2/year. Tsuga heterophylla is most successful during this zone 

with percentages rising from 15% to 30% at ~8,200 cal yr. BP. The influx of Tsuga heterophylla also 

increases throughout this zone from ~500 to ~5,700 grains/cm2/year. Alnus frequencies range from 40

60%, while influx rises from ~500 to ~12,000 grains/cm2/year. Abies initially constitutes 10% of total 

pollen at ~8,200 cal yr. BP but declines to <5% by ~6,000 cal yr. BP. Conversely, the influx of Abies rises 

from ~100 to ~500 grains/cm2/year. Lysichiton americanus first appears in the pollen record at ~8,200 

cal yr. BP with frequencies of ~5%. Betula appears at ~8,200 cal yr. BP and is represented throughout 

this zone, but with minimal percentages (<5%). Cyperaceae increases in frequency to ~10% beginning at

~5,700 cal yr. BP (270 cm). Saxifraga and Botrychium first appear in the pollen record at ~8,200 cal yr. BP
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and ~6,500 cal yr. BP (325 cm), respectively, with frequencies less than 5%. Lysichiton americanus, 

Ericaceae, and Sphagnum  are most successful in this zone with frequencies of ~5%. Fern spores drop 

from 55% to 45% at the onset of the zone, followed by a return to 55% at ~7,500 cal yr. BP (340 cm). 

Fungal spore percentages drop from 20% to 10% at ~8,200 cal yr. BP.

Zone 1, Picea-Tsuga heterophylla-Alnus-Cupressaceae (cf. Juniperus) (250 -  0 cm, ~5,400 cal yr. BP -  

present). Picea frequencies range from 10% to 20% throughout the zone, but influx values decrease 

from ~5,000 to <200 grains/cm2/year. Tsuga heterophylla is the dominant arboreal taxon, ranging from 

30% to 40% (~1,000 to ~5,000 grains/cm2/year). Alnus gradually decreases from an initial frequency of 

50% to 20% (~10,000 to ~2,000 grains/cm2/year), its lowest frequency in the record. Cupressaceae first 

appears in the pollen record at ~5,400 cal yr. BP (250 cm) with low frequencies (3%) but eventually 

increases to 15% (~200 to ~800 grains/cm2/year). Fern spores show an opposite trend, decreasing from 

50% to 15% (~50,000 to <5,000 grains/cm2/year) at ~5,400 cal yr. BP.

17



2.6 Discussion

2.6.1 Vegetation History Immediately After Deglaciation and Evidence for Refugia

In order to determine arrival times of key taxa during the late Pleistocene, we compiled first post-glacial 

appearances of three forest taxa, Pinus, Picea, and Tsuga mertensiana, recorded in palynological records 

from southeast Alaska (Fig. 2.6). As tree taxa typically appear immediately above a glacial clay unit, it 

seems likely that their arrival is controlled largely by the timing of regional glacial retreat. Initial arrival 

dates in Fig. 2.6 are based on radiocarbon ages as reported in the literature. All 14C ages were converted 

to calibrated ages using CALIB 7.0 software (Stuiver et al., 2013).

Because no attempt was made to reassess or revise published dates, large uncertainties in the 

chronologies are reflected in large uncertainties in arrival times. For example, Hansen and Engstrom 

(1996) applied an 850-year correction to bulk dates from Pleasant Island because they are older than 

adjacent AMS dates on conifer needles by 800 to 1000 years. They attribute this error to inputs of 14C- 

depleted carbon derived from carbonate-rich tills in the catchment. In addition, dates reported by 

Cwynar (1990) and Peteet (1991) have large uncertainties ranging from ±210 to ±450 years, respectively, 

for 14C basal ages. AMS dates from Queen Charlotte Island (Lacourse et al., 2005), Prince of Wales Island 

(Ager and Rosenbaum, 2007), and Mitkof Island (Ager et al., 2010) used in Fig. 2.6 have relatively small 

uncertainties with no mention of a reservoir effect.

Pinus appears on Baker Island at ~13,500 ± 100 cal yr. BP, approximately coeval with its appearance on 

nearby Prince of Wales Island at ~13,700 ± 100 cal yr. BP (Ager and Rosenbaum, 2007) and two millennia 

after its ~15,600 ± 740 cal yr. BP arrival on the Queen Charlotte Islands to the south (Lacourse et al., 

2005) (Fig. 2.6). North of Baker Island, Pinus arrived more recently. For example, Pinus appeared on 

Mitkof Island near Petersburg at ~12,900 ± 90 cal yr. BP (Ager et al., 2010), on the Chilkat Peninsula 

~12,800 ± 410 cal yr. BP (Cwynar, 1990), and in the Yakutat region ~11,800 ± 590 cal yr. BP (Peteet,
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1991). Younger arrivals to the north support the hypothesis of a northward migration along the coast. 

However, Pinus first appeared on Pleasant Island, approximately 3° of latitude north of Baker Island, at 

~14,500 ± 500 cal yr. BP (Hansen and Engstrom, 1996), at least four centuries earlier than Baker Island. If 

this date is correct, it seems that pine trees expanded outward from multiple locations following 

deglaciation, rather than merely migrating northward. This would require the presence of glacial refugia 

north of Baker Island and/or on the emergent continental shelf.

Picea appeared on Baker Island at ~13,000 ± 100 cal yr. BP after arriving on Queen Charlotte Island at 

~13,400 ± 175 cal yr. BP (Lacourse et al., 2005). Dates of first appearances on islands to the north do not 

support northward migration, as first arrivals show no clear trend in a north-south direction. Picea 

colonized the region around Pass Lake, on adjacent Prince of Wales Island at ~11,900 ± 90 cal yr. BP 

(Ager and Rosenbaum, 2007), following a slightly earlier appearance further north, on Mitkof Island, at 

~12,200 ± 180 cal yr. BP (Ager et al., 2010). Picea arrived even earlier, 13,106 ± 91 cal yr. BP, on Kruzof 

Island, where a tree trunk was found in-situ among volcanic flows (Baichtal, 2014). Later arrivals are 

reported further north. On Pleasant Island and the Chilkat Peninsula, the first arrivals of Picea are 

reported at ~10,850 ± 290 cal yr. BP (Hansen and Engstrom, 1996) and ~10,800 ± 400 cal yr. BP (Cwynar, 

1990), respectively. In the Yakutat region, Picea arrives at ~11,800 ± 590 cal yr. BP (Peteet, 1991). This 

irregular spatiotemporal pattern suggests dispersal from multiple locations.

The first appearance of Tsuga mertensiana on Baker Island occurs at ~13,500 ± 100 cal yr. BP. The

relative abundance (10 -15%) of this taxon, which is underrepresented in the pollen rain (Hebda, 1983),

is strong evidence for local presence as opposed to long-distance transport. Nevertheless, Tsuga

mertensiana does not appear at Pass Lake, on adjacent Prince of Wales Island until ~11,920 ± 90 cal yr.

BP (Ager and Rosenbaum, 2007). Tsuga mertensiana arrived on Queen Charlotte Island to the south at

~13,200 ± 175 cal yr. BP (Lacourse and Mathewes, 2005), a few centuries after it colonized Baker Island.

To the North, sites on Mitkof Island do not record Tsuga mertensiana until ~11,200 ± 70 cal yr. BP (Ager
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et al., 2010). Earlier arrival times on Pleasant Island interrupt the apparent northward migration trend. 

Tsuga mertensiana appears on Pleasant Island at ~15,260 ± 500 cal yr. BP, the oldest recorded arrival in 

southeast Alaska (Hansen and Engstrom, 1996). The early arrival and relative abundance of Tsuga 

mertensiana on Baker Island and Pleasant Island may be indicative of glacial refugia west of the islands 

on the emergent continental shelf. Alternatively, the ages reported by Hansen and Engstrom (1996) may 

be too old due to a reservoir effect on Pleasant Island.

Carrara et al. (2007) attempted to use geomorphology to map the extent of ice cover in southeast 

Alaska during the LGM. Whereas this map indicates that western Baker Island was ice free (Carrara et 

al., 2007), the presence of blue-gray clay at the base of the cores from 'Bonsai' Lake indicates that 

glaciers were present in the drainage until ~14,500 cal yr. BP. Nevertheless, unglaciated areas on the 

continental shelf to the west, which would have been subaerially exposed during the late Pleistocene 

(Carrara et al., 2003, 2007; Hetherington et al., 2004; Lacourse et al., 2005; Lacourse and Mathewes, 

2005), may have supported refugia. The presence of forested ice age refugia on the emergent 

continental shelf is supported by a high degree of faunal endemism (Heusser, 1989); 24 mammalian 

species or subspecies are considered endemic to the Alexander Archipelago (Cook et al., 2001). Early 

postglacial appearance of Tsuga mertensiana on Baker Island, prior to its arrival further south, further 

supports this hypothesis.
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2.6.2 Climate History

Climate histories are based on vegetation reconstruction from pollen analysis as well as geochemical 

and sedimentological aspects of the core, such as 513C values and the percentage of sedimentary organic 

matter determined by loss-on-ignition (LOI) (Fig. 2.7). Due to variable sedimentation rates, influx values 

were calculated for both pollen and clastic material in order to facilitate interpretation. We divide the 

core into three primary climate zones: Pre-Younger Dryas, Younger Dryas, and Post-Younger Dryas.

2.6.2.1 Pre-Younger Dryas (13,500 -  13,000 cal yr. BP)

In order to better constrain paleoclimate parameters, we assume that Pinus pollen in our record was 

produced primarily by Pinus contorta ssp. contorta and base our reconstructions on the modern 

limitations of this taxon (Hulten, 1968). This assumption is supported by the fact that Pinus contorta ssp. 

contorta is the only subspecies of the genus found in SE Alaska today (Viereck and Little, 2007; Ager and 

Rosenbaum, 2007). In addition, Pinus pollen appears immediately following glacier retreat on Baker 

Island, and Pinus contorta ssp. contorta is an early successional taxon on modern outwash sand and 

gravel (Viereck and Little, 2007).

Today, Pinus contorta ssp. contorta occupies cool, wet maritime environments in southeast Alaska with 

a mean annual temperature range of ~0.8 °C to 6.6 °C (Thompson et al., 2006). Therefore the abundance 

(75 %) of Pinus contorta ssp. contorta early in the Baker Island record at ~13,500 cal yr. BP may be 

indicative of cool and wet conditions. Dominance of this taxon could also indicate the presence of sand 

and gravel in the substrate (Viereck and Little, 2007; Benn and Evans, 2014) immediately following 

glacial retreat. The abundance (15%) of Tsuga mertensiana also suggests that humid conditions 

prevailed at ~13,500 cal yr BP as this taxon is characteristic of humid subalpine environments (Hebda, 

1983).
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An increase in the influx of clastic sediment (17 mg/cm2/yr) at ~13,500 cal yr. BP could be indicative of 

increased precipitation and sediment run-off or sediment input from retreating glaciers. It could also be 

attributed to sparse vegetation, resulting in decreased slope stabilization and allowing more sediment to 

enter the lake. Magnetic susceptibility is positively correlative with in-washed, inorganic allochthonous 

material in lake cores (Thompson et al., 1975). Therefore, the increase in magnetic susceptibility (200 

MS 10-5) at ~13,500 cal yr. BP is further evidence for an increase in the influx of clastic sediment at this 

time.

Sparse vegetation following deglaciation may account for the relatively low organic fraction, with the 

region covered in a pine parkland setting similar to that described by Engstrom et al. (1990) for Pleasant 

Island. The reduced organic fraction may also be the result of decreased primary productivity within the 

lake, due to cold temperatures or increased clastic influx resulting in limited light penetration (Guildford 

et al., 1987). Relatively low C/N ratios indicate minor contributions of terrestrial organic matter to the 

lake (Meyers and Ishiwatari,1993), further supporting a sparsely vegetated landscape. More positive 

513C values suggest conifers were present on the landscape, as they have significantly enriched 513Cleaf 

values compared to co-occurring angiosperms and aquatic material (DeLucia et al. 1988; DeLucia and 

Schlesinger 1991; Lajtha and Barnes 1991; Marshall and Zhang 1994; Van de Water et al., 2002; 

McCallister and Giorgio, 2008).

2.6.2.2 Younger Dryas (13,000 -  11,500 cal yr. BP)

The decrease in Pinus at ~13,000 cal yr. BP is attributed to cooling associated with the onset of the YD, 

as it represents a major change in the vegetation in this and numerous other coeval records from 

southeast Alaska (Engstrom et al., 1990; Hansen and Engstrom, 1996; Ager and Rosenbaum, 2007) and 

coastal British Columbia (Mathewes, 1993; Lacourse et al., 2005).
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Rapid vegetation changes can also be a result of succession and soil development (Chapin et al., 1994). If 

the decrease in Pinus pollen at sites throughout southeast Alaska and coastal British Columbia is due to 

primary succession, then this change should by asynchronous due to differences in arrival times (Fig.

2.6). On the other hand, if the decrease of Pinus is climate driven, it should be synchronous throughout 

the region. A comparison of published records reveals a decrease in Pinus contorta at 12,600 ± 290 cal 

yr. BP on Pleasant Island (Hansen and Engstrom, 1996), at 12,800 ± 100 cal yr. BP on Prince of Wales 

Island (Ager and Rosenbaum, 2007), at 13,000 ± 175 cal yr. BP on Queen Charlotte Island (Lacourse et 

al., 2005), and at 13,000 ± 100 cal yr. BP on Baker Island (this study). Therefore, Pinus declined 

synchronously across the region ~12,900 cal yr. BP. We therefore suggest that the vegetation change at 

~13,000 cal yr. BP on Baker Island is driven by cooler temperatures associated with the onset of the YD.

At ~13,000 cal yr. BP, Pinus is replaced by an assemblage of Alnus pollen and fern spores comparable to 

the modern pollen rain at treeline in the Malaspina Glacier District near Yakutat, southeast Alaska 

(Peteet, 1986). This transition provides further support for the onset of YD. In response to cooler 

temperatures, the elevation of tree line decreased and the pine parkland disappeared. The modern 

treeline vegetation of the Malaspina Glacier District is comprised of thick stands of Alnus crispa 

ssp. sinuata with ferns of the genus Dryopteris in the understory (Peteet, 2017, pers. comm.). An 

increase in Alnus pollen and fern spores follows a decrease in Pinus pollen at other sites in southeast 

Alaska (Cwynar, 1990; Hansen and Engstrom, 1996; Ager and Rosenbaum, 2007), which suggests a 

regional decrease in the elevation of tree line associated with the YD.

Decreases in the influx of clastic sediment (7 mg/cm2/yr) and magnetic susceptibility (20 MS 10-5) at 

~13,0000 cal yr. BP may indicate limited sediment runoff due to arid conditions or colder temperatures. 

However, as glacial flour is not evident in the lake core after ~13,500 cal yr. BP, we infer that glaciers 

were small or altogether absent from the watershed during the YD.
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More negative 513C values at the onset of the YD indicate that the organic matter in the lake was derived 

from algal or angiosperm sources, as lacustrine algae and Alnus have similarly depleted 513C values (algal 

= -28.4 to -32.5%  (McCallister and Giorgio, 2008), Alnus = -29.2 to -3 1 %  (Simenstad and Wissmar,

1985) with respect to conifers (-26%  to -2 7 %  (Kloeppel et al., 1998; Choi et al., 2005). It is difficult to 

constrain the 513C values of the ferns in this record, as the psilate, monolete spores were probably 

contributed by multiple genera. However, a shade tolerant fern species growing beneath the Alnus 

canopy would be expected to have depleted 513C values due to decreased light intensity (Ehleringer et 

al., 1986; Medina et al., 1991). Regardless, low C/N ratios indicate minor terrestrial organic input. 

Therefore, the increase in sedimentary organic matter is attributed to an increase in lacustrine primary 

productivity, possibly driven by increased light penetration as a result of limited clastic input (Guildford 

et al., 1987).

Whereas ferns increase during this apparently cold and dry interval, the opposite trend is recorded on 

Kodiak Island, where a decrease in ferns is thought to represent the onset of cold, dry conditions 

associated with the YD (Peteet and Mann, 1994). These seemingly contradictory interpretations are a 

result of the stark difference in pre-YD vegetation at these two sites. On Kodiak Island, the post-glacial 

vegetation includes ferns but does not include any trees, and the only shrubs consistently present are 

Ericales (Peteet and Mann, 1994). Because of these preceding vegetation differences, ferns responded 

differently to the cooler and drier YD climate at these two sites.

A 13% increase in Pinus pollen during the middle of the YD at ~12,400 cal yr. BP and a coincident decline

in Alnus pollen and fern spores indicate warmer and more humid conditions. Because Pinus is

characteristically overrepresented in the pollen record, the low percentages (~20%) suggest that it may

not have been locally present (MacDonald and Cwynar, 1985). However, 513C values are nearly identical

to those for the pre-YD pine parkland, supporting the presence of conifers in the drainage (Fig. 2.7).

Furthermore, the increase in Pinus to frequencies of 20% to 30% at ~12,400 cal yr. BP is present in other
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records from southeast Alaska and coastal British Columbia (Cwynar, 1990; Hansen and Engstrom, 1996; 

Lacourse et al., 2005; Ager and Rosenbaum, 2007; Ager et al., 2010) and may be indicative of regional 

climate amelioration. Rising humidity is supported by increased clastic influx and magnetic susceptibility 

during this time, possibly due to increased precipitation and sediment runoff. Alternatively, increased 

clastic influx could be the result of sparse vegetation and increased erosion. Relatively low C/N ratios 

indicate minor contributions of terrestrial organic matter to the lake (Meyers and Ishiwatari,1993), 

further supporting a sparsely vegetated landscape.

The simultaneous decrease in Pinus contorta ssp. contorta and increase in Picea sitchensis pollen at 

~12,200 cal yr. BP is indicative of an increase in temperature and/or humidity as Picea sitchensis 

occupies modern-day temperate rainforests in southeast Alaska (Viereck and Little, 2007). Hansen and 

Engstrom (1996) suggest that an increase in Picea sitchensis pollen on Pleasant Island at 11,400 cal yr.

BP indicates both rising temperatures and the presence of mineral-rich soils, since Picea sitchensis is an 

edaphically demanding tree that does not prosper on water-saturated, peaty soils. The simultaneous 

transition to more negative 513C values suggests either a shift to a more closed canopy (Ehleringer et al., 

1986; Medina et al., 1991), or a change in the dominant vegetation. We favor development of a more 

closed canopy at this time, since Picea sitchensis has similar 513C values to Pinus contorta ssp. contorta; 

They belong to the same family and have 513C values between approximately -2 6 %  and -2 7 %  (Kloeppel 

et al., 1998; Choi et al., 2005). C/N ratios increase drastically during this period and remain high for the 

duration of the record, indicating a predominantly terrestrial signal and limited lacustrine primary 

productivity in the lake (Meyers and Ishiwatari,1993).

A layer of gravel that accumulated at ~12,000 cal yr. BP provides further evidence of increased

precipitation during the latter part of the YD. Gravel was found in sediment cores extracted from

opposite ends of the lake, 4 km apart, indicating a regional increase in landslide or snow avalanche

activity or a large single event. Whereas this may have been a stochastic event, it is also possible that
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increased landslide activity was a result of greater precipitation. An increase in precipitation would also 

explain the increase in the influx of predominantly terrestrial organic material between ~12,200 cal yr.

BP and ~11,800 cal yr. BP.

Today, southeast Alaska represents the northernmost range limit of Abies (Thompson et al., 2006). An 

increase in this taxon's pollen at ~11,700 cal yr. BP suggests that temperatures approached modern 

levels near the end of the YD. Conditions during the latter part of the YD thus appear to have been 

somewhat similar to modern based on the abundance of Picea sitchensis, the arrival of Abies, minor 

amounts of Pinus contorta ssp. contorta pollen, relatively low percentages of fern spores, high 

percentages of organic matter, and high C/N ratios.

The climate during the YD on Baker Island can thus be divided into three stages. Stage one represents 

the onset of the YD, when conditions were cool and dry with low percentages of Pinus, a predominance 

of Alnus and ferns, high C/N ratios, and low 513C values. Stage 2 represents warmer and more humid 

conditions during the middle of the YD, when percentages of Pinus contorta ssp. contorta pollen 

increase temporarily as percentages of Alnus pollen and fern spores decrease, and both clastic influx and 

513C values increase. Stage three indicates that the end of the YD was warmer and more humid. Pinus 

contorta ssp. contorta was replaced by Picea sitchensis and Abies and clastic influx suggests an increase 

in landslide activity.

2.6.2.3 Post Younger Dryas (11,500 cal yr. BP -  modern)

Immediately after the YD, between ~11,500 cal yr. BP and ~11,000 cal yr. BP, percentages of Picea 

sitchensis pollen are high, percentages of Pinus contorta ssp. contorta are low, and there are minimal 

amounts of bog taxa such as Ericaceae and Sphagnum. A gradual replacement of Picea sitchensis by 

Tsuga heterophylla that takes place between ~11,000 cal yr. BP and ~6,000 cal yr. BP may indicate rising 

temperatures as Tsuga heterophylla has a slightly higher mean temperature threshold than Picea
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sitchensis (Thompson et al., 2006). However, primary succession may also be contributing to the 

replacement of Picea sitchensis by Tsuga heterophylla in Southeast Alaska (Mann and Hamilton, 1995).

Substantial decrease in clastic sediment influx to 2 mg/cm2/yr after the YD interval may indicate drier 

conditions resulting in less sediment runoff. However, the decrease in clastic sediment influx may also 

be due to increased vegetation and slope stabilization.

Warm and dry conditions are seen in other records in southeast Alaska during this period. Hebda (1983) 

reports warmer and drier conditions at Bear Cove Bog on Vancouver Island between 10,000 cal yr. BP 

and 7,000 cal yr. BP based on the increase in Pseudotsuga, which does not extend that far north today. 

Heusser et al. (1985) reports similar dry and warm conditions on the North Pacific coast around 8,700 

cal yr. BP. Based on pollen-climate transfer functions that relate modern pollen assemblages to 

temperature and precipitation records from sites between the Aleutian Islands and California, Heusser 

et al. (1985) estimates an increase in mean July temperature to 3°C above modern and a decrease in 

mean annual precipitation of 200 mm. On Pleasant Island, initial peat accumulation and the 

replacement of Picea sitchensis by Tsuga heterophylla between ~9,500 cal yr. BP and ~8,800 cal yr. BP is 

considered evidence of increased temperatures (Hansen and Enstrom, 1996). On Queen Charlotte 

Island, local presence of Tsuga heterophylla between ~10,800 cal yr. BP and ~9,900 cal yr. BP suggests a 

climate warmer than today. However, climate deterioration is indicated shortly afterwards, between 

~9,800 cal yr. BP and ~8,150 cal yr. BP, based on a decrease in Tsuga heterophylla and increasing 

percentages of Tsuga mertensiana (Pellatt and Mathewes, 1997).

From ~6,000 cal yr. BP to ~4,500 cal yr. BP, there are significant increases in bog taxa such as Ericaceae, 

Sphagnum, and Lysichiton americanus, suggesting increased precipitation and paludification (Neiland, 

1971). Humid conditions are also indicated by an increase in Abies (Thompson et al., 2006). An increase 

in percentages of Pinus contorta ssp. contorta at ~6,000 cal yr. BP, from <5 to 10%, may also suggest
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increased humidity and possibly cooler temperatures, as small amounts of Pinus contorta ssp. contorta 

are only found above 300 m on Baker Island today (Robinson, 1946).

A significant decrease in fern spore percentages at ~5,400 cal yr. BP in the Baker Island record is 

associated with a 15% rise in Cupressaceae and decreases in percentages of Lysichiton americanus, 

Ericaceae, and Sphagnum. Modern representatives of the Cupressaceae in Southeast Alaska include 

Thula plicata (Red Cedar), Chamaecyparis nootkatensis (Yellow Cedar), and Juniperus communis 

(Common Juniper) (Viereck and Little, 2007). Adams (2008) noted that specimens of Juniperus communis 

from southeast Alaska and British Columbia are molecularly and physically distinct from other Juniperus 

species. In these regions, Juniperus is confined to low-lying muskeg bogs near the ocean in areas that 

were glaciated during the LGM (Adams, 2008). Cupressaceae pollen from Baker Island shows 

characteristics consistent with type specimens of Juniperous communis that have lost their gemmae, 

such as size (~28 ^m) and low-relief, reticulate sculpture with narrow muri. As Juniperus communis can 

tolerate the lowest mean temperature range of all other conifers in this region (Thompson et al., 2006), 

increased abundance may be a result of Neoglacial cooling.

Because of the deciduous gemmae, fossil Juniperus pollen is difficult to identify, possibly resulting in

undercounting of this taxon (Faegri et al., 1989). Nevertheless, Late Holocene increases in Cupressaceae

percentages are reported from other pollen records in southeast Alaska and northern British Columbia

(Pellatt and Mathewes, 1997; Ager and Rosenbaum, 2007; McLaren, 2008; Ager et al., 2010). In

southeast Alaska, small increases (<5%) are reported at ~2,300 cal yr. BP on Mitkof Island (Ager et al.,

2010) and at ~6,000 cal yr. BP at Pass Lake (Ager and Rosenbaum, 2007). On Queen Charlotte Island,

Pellatt and Mathewes (1997) report percentages of Cupressaceae similar to those in the Baker Island

record (~15%) following its first appearance at ~7,400 cal yr. BP. Higher percentages of Cupressaceae are

reported from Dundes Island, ~75 km northeast of Queen Charlotte Island, where values reach ~40% at

~5,000 cal yr. BP (McLaren, 2008). These authors attribute the rise in Cupressaceae to the spread of
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cedar, indicating decreasing temperature and/or increasing precipitation. Based on subtle sculptural 

features and overall size, shape, and exine thickness, we attribute the increase in Cupressaceae 

primarily to the spread of Juniperus communis, which is also indicative of cooler temperatures.

Evidence for wetter and/or cooler conditions have been cited by various authors as a result of Neoglacial 

cooling sometime after ~6,000 cal yr. BP. Wetter conditions between ~6,300 cal yr. BP and ~4,500 cal yr. 

BP are represented on Queen Charlotte Island by the initiation and expansion of bog taxa (Hebda, 1995). 

Increased paludification and abrupt Pinus expansion (from 1 to 30%) is reported on Pleasant Island 

between ~7,700 cal yr. BP and ~4,100 cal yr. BP, possibly as a result of a change in climate (Hansen and 

Engstrom, 1996). However, Hansen and Engstrom (1996) suggest that the increase in bog taxa could also 

be due to changing edaphic conditions as soils stabilized. On Mitkof Island and the Chilkat Peninsula, 

Pinus percentages increase at ~7,100 cal yr. BP and ~7,600 cal yr. BP, respectively (Ager et al., 2010; 

Cwynar, 1990). Coeval increases in the percentages of Cyperaceae and Sphagnum  on Mitkof Island are 

interpreted to reflect a shift to wetter conditions (Ager et al., 2010). Along the North Pacific coast, mean 

July temperatures fell by ~4° C and mean annual precipitation increased by ~1,200 mm at ~5,700 cal yr. 

BP based on pollen-climate transfer functions (Heusser et al., 1985). On Queen Charlotte Island, the 

minor percentages of Tsuga heterophylla and Picea at ~3,400 cal yr. BP suggest cooling and associated 

lowering of tree line (Pellatt and Mathewes, 1994). In the Malaspina Glacier District, wet conditions are 

cited at ~3,400 cal yr. BP, evidenced by increases in percentages of Tsuga heterophylla and Pinus 

(Peteet, 1986).

2.6.3 Broader Younger Dryas Connections: European/Alaska/British Columbia Records

The subdivision of the YD described from Baker Island, starting cold but becoming warmer and more 

humid during the latter half of the interval, is observed in several European records that show an initial 

phase of maximum cold followed by a warmer phase (Atkinson et al., 1987; Berglund et al., 1994;
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Vandenberghe, 1995). A cold maximum early in the YD is also suggested by 518O values from Greenland 

ice cores (Stuiver et al., 1995). Bohncke (1993) indicates that this cold maximum in Europe may have 

taken place between ~12,800 cal yr. BP and ~12,400 cal yr. BP, roughly correlative with the coldest 

period from the Baker Island record between ~13,000 cal yr. BP and ~12,400 cal yr. BP. In Alaska, 

Evidence of increased moisture midway through the YD is observed at Discovery Pond in south-central 

Alaska based on increases in Pediastrum boryanum var. longicorne and Pediastrum boryanum var. 

boryanum, known to respond positively to higher precipitation (Kaufman et al., 2010). In addition, 

Kaufman et al. (2010) interpret an increase in the minerogenic component of the lake sediment during 

the latter half of the YD as evidence of increased moisture.

The difference in YD signals in Alaska, with central and northern Alaska showing limited or no vegetation 

change during the YD and southern Alaska exhibiting more variability in the magnitude and nature of 

vegetation changes (Kokorowski et al., 2008), is due in part to regional differences in the interstadial 

vegetation prior to the YD. In order for the YD to be expressed in pollen records, taxa intolerant to YD 

cooling must have been established during the preceding warm interstadial. For example, Pinus is 

abundant in southern Alaska during interstadial warmth but declines throughout the region at the onset 

of the YD. Pinus was not present in central and northern Alaska. Vegetation in these regions had wider 

temperature and/or precipitation tolerances, allowing the interstadial taxa to persist during the onset of 

the YD. Persistence of interstadial vegetation during the YD in portions of northern Europe such as 

Ireland, England, and Sweden (Isarin and Bohnche, 1999) results in a similarly subtle change in the 

pollen record.

Sampling resolution may explain differences between records from coastal Alaska and British Columbia 

that characterize the YD as either dry (Mathewes, 1993; Hansen and Engstrom, 1996) or humid (Hebda, 

1983), in that lower resolution sampling may have captured only one phase of the YD.
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Pollen and sediment records from Baker Island largely support a synchronization of the North Pacific and 

North Atlantic climates during the YD based on the similar timing of the event. Praetorius and Mix 

(2014) also found evidence for synchronization of North Pacific and North Atlantic climates in 

foraminiferal oxygen isotope records from the Gulf of Alaska. However, based on the decline of Pinus at 

~13,000 cal yr BP, the onset of the YD occurs ~200 years earlier on Baker and Queen Charlotte Islands 

(Lacourse et al., 2005) than it does in North Atlantic records (Alley, 2000), suggesting an earlier onset in 

the North Pacific. Additional sites with well-constrained ages and high resolution pollen reconstructions 

are needed to confirm this result.

2.7 Conclusions

1. Glaciers remained on Baker Island until ~14,500 cal yr. BP, but the early presence and irregular 

migration patterns of Pinus, Picea, and Tsuga mertensiana suggest adjacent refugia, possibly on the 

continental shelf.

2. The decrease in Pinus is a key indicator of YD climate cooling in Southeast Alaska. The decline at 

~13,000 on Baker Island indicates a slightly (~200 year) earlier onset of the YD than in the North Atlantic.

3. Climate during the YD in Southeast Alaska begins cold and dry based on increases in Alnus and ferns 

and a decrease in clastic influx (~13,000 to ~12,400 cal yr. BP), but becomes warmer and more humid 

based on increases in Pinus, Picea, and Abies and an increase in clastic influx and landslide activity 

(~12,400 to ~11,500 cal yr. BP).
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2.9 Figures

134“  133“  132“  131”

Figure 2.1: Map showing location of Baker Island Map showing location of Baker Island in Southeast 

Alaska's Alexander Archipelago.
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Figure 2.2: Bathymetry of Bonsai Lake. Bathymetry of 'Bonsai' Lake with core site locations. Due to 

close proximity of sites BBL1 and BBL4, only site BBL4 is shown. BBL2, BBL3, and BBL5 are not shown or 

mentioned in the text.
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Figure 2.3: Baker Island sediment core analyses. Sediment core from Baker Island showing dated horizons, sediment units, magnetic 

susceptibility (MS), organic %, 613C, C/N ratios, sedimentation rate, clastic Influx, and median grain size. Note that at 455 cm, there are both
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Figure 2.4: Pollen and spore percentage diagram from Baker Island. Red lines indicate zone boundaries. Gray shaded area highlights the 

Younger Dryas interval with respect to dates defined by Alley (2000). Lake core stratigraphy, magnetic susceptibility (black line), and percent 

sedimentary organic matter determined by loss-on-ignition (green line) are shown to the right of the diagram. Horizons sampled for radiocarbon

dating are indicated by red and purple stars.
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Figure 2.6: Map showing initial pollen arrival patterns. Map showing initial arrival patterns of Pinus, 

Picea, and Tsuga mertensiana pollen at sites in Southeast Alaska and British Columbia. Median ages 

were taken from CALIB 7.0 software using the median value of the relative area distribution curve. The 

Pleasant Island chronology (Hansen and Engstrom, 1996) is questionable due to large uncertainties in 

the ages of bulk samples.
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Table 2.1: List of radiocarbon dates used for chronology on Baker Island. Calibrated ages and median ages were calculated using 2a range from 

CALIB 7.0 software. Macrofossils are composed of unidentified wood material.

2.10 Tables

Sample Location M a te ria l d13C Fraction

M odern

+ d 14c + 1 4 „C age + C a lib ra ted age M edian age (cal yr. BP)

BBL4 55 cm M acro foss il -25 0.9072 0.0032 -92.8 3.2 780 30 669-740 703

BBL4 12D cm M acro foss il -25 0.7290 0.0026 -2 7 1 .D 2.6 2540 30 2496-2747 2630

B B L4180 cm M acro foss il -25 0.5852 0.0024 -414.8 2.4 4305 35 4831-4961 4864

BBL4 227 cm M acro foss il -25 0.5730 0.0020 -427 .0 2.0 4475 30 4977-5288 5173

BBL4 320 cm M acro foss il -25 0.5214 0.0028 -478.6 2.8 5230 45 5911-6177 5985

BBL4 380 cm M acro foss il -25 0.3152 0.0032 -684.8 3.2 9270 90 10244-10688 10451

BBL4 422 cm M acro foss il -25 0.2856 0.0016 -714 .4 1.6 10065 50 11332-11929 11609

BBL6 307 cm M acro foss il -25 0.2766 0.0059 -723 .4 5.9 10320 180 11404-12627 12099

BBL4 455 cm Pollen -25 0.2563 0.0010 -743.7 1.0 10935 35 12706-12862 12776

BBL4 455 cm M acro foss il -25 0.2558 0.0010 -744.2 1.0 10955 35 12712-12916 12789
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Figure A -l: Baker Island Pollen Concentration. Pollen and spore concentration (grains/cm3) for key taxa from Baker Island. Red lines indicate 

zone boundaries. Gray shaded area highlights the Younger Dryas interval with respect to ranges defined by Alley (2000).
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Chapter 3: 13,500 cal yr. BP Black Tephra from Baker Island, Southeast Alaska2

3.1 Abstract

An eight cm-thick black tephra with nine discrete normally graded beds is present in cores from a lake 

on Baker Island in Southeast Alaska (N 55.281232° N, W 133.637559° W, 107 m above sea level). Based 

on interpolation of AMS dates on macrofossils and pollen separates, the age of the tephra is 13,500 ± 

250 cal yr. BP (calibrated years before present). Although similar in age to the Mt. Edgecumbe tephra, 

which was deposited between 13,050 and 13,250 cal yr. BP, this black tephra is geochemically distinct. 

In addition, it is located 200 km outside of the southernmost limit of deposits from Mt. Edgecumbe. The 

evidence thus indicates that the black tephra is derived from a different volcanic source. Based on the 

thickness and the presence of multiple graded beds with median grain size ranging from 25 pm to 120 

pm, we infer that the black tephra was emplaced by a large strombolian-style paroxysm. Because the 

dominant wind direction along this coast is from the west, the submerged Addington Volcanic Field on 

the continental shelf, which may have been subaerially exposed during the eruption, is a possible 

source. Consistent with this idea is the presence of a prominent maar feature within the Addington 

Volcanic Field. If the black tephra on Baker Island was derived from this source, the eruption that 

produced it may have been a strombolian phase of a maar eruption. The similarity in timing between 

this eruption and the Mt. Edgecumbe eruption suggests a shared trigger, possibly a response to crustal 

unloading caused by the retreat of the Cordilleran Ice Sheet.

2 Wilcox, P.S., Fowell, S.J., Baichtal, J.F., Mann, D.H., Severin, K. 2017. 13,500 cal yr. BP Black Tephra from Baker 
Island, Southeast Alaska. Submitted to the Journal of Quaternary Research.
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The Late Glacial eruption of Mt. Edgecumbe has proven to be a useful trephrochronologic marker 

between sites in northern Southeastern Alaska, with deposits correlated from Lituya Bay (Mann and 

Ugolini, 1985), Juneau (Heusser, 1960), Glacier Bay (McKenzie, 1970) and Sitka (Yehle, 1974) based on 

tephra composition and decreasing thickness away from eruption site on Kruzof Island (Riehle et al., 

1992). However, the fallout area from Mt. Edgecumbe does not extend to southern southeast Alaska 

(Beget and Motyka, 1998).

The Late Glacial is a period of drastic climate changes (Petit et al., 1999) when an interval of interstadial 

warming was followed by abrupt Younger Dryas cooling (Alley et al., 1993). As temperatures rose during 

the Bplling-Allerpd interstadial, pollen of forest plants appeared in Southeast Alaska (Cwynar, 1990; 

Hansen and Engstrom, 1996; Ager and Rosenbaum, 2007; Ager et al., 2010). These early Late Glacial 

appearances are variously attributed to long distance transport along western Canada (Ritchie and 

MacDonald, 1986) or dispersal from multiple local refugia (Hansen and Engstrom, 1996; Wilcox et al., 

2017, in prep). If a plant species survived in local refugium, its postglacial arrival should be nearly 

contemporaneous with the onset of favorable climate conditions (Brubaker et al., 2005). Simultaneous 

northward and southward migration patterns extending from a central location also suggest the 

presence of refugia (Hansen and Engstrom, 1996; Brubaker et al., 2005; Wilcox et al., 2017, in prep), but 

documentation of such patterns requires precise dating of first arrivals.

Dating of pollen records from Southeast Alaska relies primarily on radiocarbon dates of macrofossils and 

bulk samples from lake sediment cores (Cwynar, 1990; Hansen and Engstrom, 1996; Ager and 

Rosenbaum, 2007). However, certain sites in Southeast Alaska, such as Pleasant Island (Hansen and 

Engstrom, 1996) and Heceta Island (Ager, 2007), have questionable radiocarbon chronologies due to

3.2 Introduction
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possible reservoir effects from limestone bedrock. For example, Hanson and Engstrom (1996) attribute 

differences of 800 to 1,000 years between bulk dates and from ages of adjacent conifer needles to 

inputs of 14C-depleted carbon from carbonate-rich tills in the Pleasant Island catchment. Correlation of 

dated tephra layers provides an additional calibration tool for radiocarbon chronologies, which can help 

to determine the relative timing of arrivals of plant taxa throughout the region.

A previously undescribed tephra found in a lake sediment core on Baker Island in southern Southeast 

Alaska was deposited during Late Glacial warming. Identification of this tephra in other records will 

facilitate accurate dating and clarify migration patterns of forest taxa in southern Southeast Alaska. 

Compilation of accurate dates of first arrivals will, in turn, provide a reliable test for the existence and 

relative locations of ice age refugia.

3.3 Material and Methods

Lake sediment cores were obtained from two sites (BBL4 and BBL6) in an unnamed lake (informally 

named 'Bonsai' Lake) on Baker Island (N 55.281232°, W 133.637559°, 107 m above sea level) (Fig. 3.1). 

Cores were collected from a modular raft using a Livingstone piston corer. The lake is in a granitic basin 

with no potential for a reservoir effect. The two cores have a basal age of ~14,500 cal yr. BP (Wilcox et 

al., 2017, in prep), and the black tephra occurs near the base of both cores immediately above a blue- 

grey clay interpreted as glacial flour (Fig. 3.2).

3.3.1 Chronology

Samples selected for radiocarbon dating were cleaned with de-ionized water and sent to Lawrence 

Livermore National Laboratory for Accelerator Mass Spectrometry (AMS) dating. The AMS dating was 

conducted on an HVEC 10 MV Model FN Tandem Van de Graaff Accelerator. AMS ages were calibrated
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using CALIB 7.0 software with 2o range (Stuiver et al., 2013). Median calibrated ages were calculated 

from CALIB 7.0 software.

The chronology is based on radiocarbon dates (Table 3.1) of eight wood macrofossils and one pollen 

separate from BBL4 (55 cm, 120 cm, 180 cm, 227 cm, 320 cm, 380 cm, 422 cm, and 455 cm) and one 

macrofossil from BBL6 (307 cm). The age of the tephra was determined by assuming a constant 

sedimentation rate between the median calibrated ages of the lowest two dated horizons (Fig. 3.3), and 

applying this rate to the 20 cm of sediment between the lowest dated horizon and the top of the tephra. 

Errors were determined by graphically extrapolating the maximum error range produced by Clam, 

version 2.2, between the lowest two dated horizons and the top of the tephra (see Fig. 3.3).

3.3.2 Analytical Methods

Tephra compositional analyses were acquired on a JEOL JXA-8530F Electron Microprobe. The beam 

energy was set to 15 keV, the beam current was set to 10 nA, and the beam diameter was set to ten 

microns. The standards were Basaltic Glass (BG-3), USNM 113716 for Si ka, Ilmenite, USNM 96189 for Fe 

ka, Scapolite (Meionite), USNM R6600-1 for Cl ka, KE12 for Na ka, OR10 CT for K ka, and Al ka, 

Wollastonite (CaSiO3) for Ca ka, MgO for Mg ka, and ilmenite (68ILM) for Ti ka. Analyses were 

performed on Probe for EPMA version 5.1 (probesoftware.com). This work was conducted at the 

University of Alaska Fairbanks Advanced Instrumentation Laboratory (AIL).

We analyzed ten tephra grains from three different depths (475 cm, 480 cm, and 481 cm) for elemental 

composition (Table 3.2). The working standard was the Old Crow Tephra (provided by Dr. James Beget) 

because this was the standard used for the Mt. Edgecumbe tephra geochemistry (Addison et al., 2010). 

The Mt. Edgecumbe geochemistry was conducted on a Cameca microprobe (Addison et al., 2010).
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Therefore, five Old Crow tephra grains were analyzed on the JEOL microprobe for comparison with the 

Old Crow tephra results analyzed on the Cameca microprobe, with each grain being probed once.

Grain size analyses were conducted on samples from 475 cm and 476 cm using a Beckman Coulter 

Counter LS 320. Tephra grains at 480 cm were imaged on a FEI Quanta 200 Environmental Scanning 

Electron Microscope.

3.4 Results

In cores from site BBL4, the black tephra is found at 475 cm and has a thickness of eight cm. In cores 

from site BBL6 the tephra is found at 320 cm and has a thickness of four cm (Fig. 3.2). The eight cm-thick 

tephra in BBL4 is composed of nine distinct, normally graded beds that range from 0.4 cm to 1.2 cm 

thick (Fig. 3.4). Median grain sizes within these beds range from medium silt to very fine sand (25 pm to 

120 pm) based on the Wentworth grain size scale (Wentworth, 1922). A calculated sedimentation rate 

of 0.03 cm/yr between the lowest two dated horizons and the black tephra produces a date of ~13,500 ± 

250 cal yr. BP (Fig. 3.3) for the black tephra.

Geochemical analyses of the Old Crow standard are consistent between the JEOL microprobe and the 

Cameca microprobe (Table 3.2), meaning that analyses of the black tephra and the Mt. Edgecumbe 

tephra (Addison et al., 2010) can be compared with a high degree of confidence. Geochemical results 

indicate that the black tephra on Baker Island is composed of tephrite or trachybasalt (Fig. 3.5). Analysis 

with the scanning electron microscope reveals angular, vesicular fragments (Fig. 3.6).
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A chronology based on accelerator mass spectrometer (AMS) dates on plant macrofossils and pollen 

separates places the tephra at 13,500 ± 250 cal yr. BP, similar in timing to the eruption of Mt.

Edgecumbe at 13,050 - 13,250 cal yr. BP, 200 km to the north (Beget and Motyka, 1998). However, 

differences in the silica content between the two tephras indicate that they are the product of separate 

eruptive events.

Multiple late Pleistocene and Holocene tephra deposits in Southeast Alaska can be attributed to 

eruptions from Mt. Edgecumbe (Riehle et al., 1992; Beget and Motyka, 1998; Addison et al., 2010). The 

black tephra from Baker Island is similar to the Mt. Edgecumbe tephra with respect to age and grain size. 

Both tephras are composed of glass shards typically less than <100 pm (Addison et al., 2010). The 

composition of tephra deposits from Mt. Edgecumbe ranges from basaltic to rhyolitic; however, the late 

Pleistocene (~13,250 cal yr. BP) eruptions generally have high silica content and are rhyolitic (Addison et 

al., 2010). The black tephra from Baker Island consists of tephrite or trachybasalt (Fig. 3.5), both of 

which have ~30% less silica than rhyolite, distinguishing it from the Mt. Edgecumbe tephra. The 

hypothesis that these two tephras are the products of separate volcanic events is supported by their 

locations. The black tephra lies 200 km south of the documented limit of fallout from the 13,050 -  

13,250 cal yr. BP Mt. Edgecumbe eruption (Fig. 3.7) (Beget and Motyka, 1998).

Other well-studied tephra deposits such as the White River, Bridge River, St. Helens, Redoubt, Spurr, 

Augustine, and Mazama tephras are also considered unlikely to be related to the black tephra as the 

fallout areas do not include Baker Island (Clague et al., 1995; Riehle et al., 1992; and Fierstein and 

Hildreth, 2000) (Fig. 3.7). Novarupta has the only volcanic plume that covers the study area (Fierstein

3.5 Discussion
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and Hildreth, 2000). However, this eruption occurred in 1912 (Fierstein and Hildreth, 2000), so it is far 

too young to be the source of the black tephra.

Dated lava flows from volcanic vents near Baker Island are not correlative with the black tephra. On 

Suemez Island, 10 km east of Baker Island, two rhyolitic domes yield ages of 842 ± 11 ka and 851 ± 17 ka 

(Karl et al., 2013). These are unlikely to be the source of the black tephra due to large differences in both 

silica content and age. On western Prince of Wales Island, 20 km east of Baker Island, a basalt flow 

overlies till and yields an age of 21.5 ± 3.8 ka (Karl et al., 2013). Both the black tephra and the western 

Prince of Wales flow have low silica content, but the difference in age suggests that these are products 

of separate eruptions. 32 km south of Baker Island, on northern Dall Island, a pahoehoe lava dates to 6.7 

± 3.3 ka (Karl et al., 2013), too young to be correlative with the black tephra. Middle Tertiary basaltic 

rocks of the Kuiu-Etolin volcanic belt on Kupreanof Island (Wood and Kienle 1990), 145 km to the north, 

are too old to be related to the black tephra. Near Ketchikan, 122 km to the east, a basalt flow yielding 

an age of 42 - 44 ka (Karl et al., 2013) is also too old.

Four sites near Baker Island may contain tephra from the same volcanic event that produced the black 

tephra. A three cm-thick black tephra bed with a graded top and sharp basal contact was identified in a 

marine core from the Gulf of Esquibel, 38 km North of Baker Island (Barron et al., 2009). Another tephra, 

similar to the Gulf of Esquibel tephra, was recovered in a core from Leech Lake on Heceta Island, 15 km 

to the northwest of the Gulf of Esquibel (Barron et al., 2009). Barron et al. (2009) indicate that the 

tephras from the Gulf of Esquibel and Leech Lake are geochemically similar and potentially correlative. 

Geochemical analyses indicate that the tephras from Leech Lake and the Gulf of Esquibel have a tephrite 

composition (unpublished analysis, Addison, 2010, pers. comm.) similar to the black tephra from Baker 

Island. A second tephra in the Gulf of Esquibel, immediately below the tephrite, has a Hawaiite 

composition (unpublished analysis, Addison, 2010, pers. comm.), possibly from an earlier phase of the
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eruption. Using a linear age model assuming constant sedimentation between 14C samples, the tephra 

from Leech Lake is estimated to be 16,042 ± 343 cal yr. BP (Addison, 2010, pers. comm.). Because of the 

similar composition of the tephra between Leech Lake and Gulf of Esquibel, the age of 16,042 ± 343 cal 

yr. BP was also applied to the Gulf of Esquibel tephra. A basaltic sandy tephra recovered from a peat 

core on Heceta Island's Bald Mountain, near Leech Lake, has an age of 15,689 ± 214 cal yr. BP (Ager, 

2010, pers. comm.) and may be correlative to the Leech Lake and Gulf of Esquibel tephras.

The ages of the Gulf of Esquibel/Leech Lake/Bald Mountain tephras are well outside the age of the black 

tephra from Baker Island (~13,500 ± 250 cal yr. BP). The age difference may be attributable to Heceta 

Island's limestone geology (Soja, 1990), such that the older ages are the product of a reservoir effect. 

Alternatively, these older tephras may be the product of an earlier eruption from the same volcanic 

field.

It is difficult to decipher eruption style based on tephra alone. The tephritic/trachybasalt composition 

suggests that the black tephra could be the result of a Strombolian, Hawaiian, Subplinian, or Plinian 

eruption (Houghton and Gonnermann, 2008). However, the multiple distinct graded beds in the black 

tephra (Fig. 3.4) record discrete, short-lived events more typical of Strombolian explosivity (Houghton 

and Gonnermann, 2008), with sequences of explosions lasting a few seconds to tens of seconds (Barberi 

et al., 1993). Further evidence of Strombolian explosivity is provided by the grain size of the black 

tephra, which plots largely within the Strombolian eruption range (Fig. 3.8).

The broadly similar ages of the Mt. Edgecumbe tephra, Gulf of Esquibel/Heceta Island tephras, and black 

tephra may indicate a shared eruptive trigger. One possibility is that ice sheet retreat promoted 

volcanism through decompression melting in the shallow mantle or a reduction in crustal magma 

storage time (Praetorius et al., 2016). Based on the coeval onset of B0lling-Aller0d interstadial warmth,
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disappearance of ice-rafted detritus and rapid vertical land motion associated with regional isostatic 

rebound, Praetorius et al. (2016) hypothesize that ice sheet deterioration is responsible for volcanic 

activity at Mt. Edgecumbe. Because the black tephra overlies the blue clay interpreted as glacial flour 

(Fig. 3.4), we also infer a causal relationship between ice sheet deterioration and the onset of volcanism. 

Evidence of rapid warming is provided by high concentrations of Pinus and Tsuga mertensiana pollen 

that appear in the silt unit immediately above the tephra but are not present in the blue clay below 

(Wilcox et al., 2017, in prep). Rapid unloading of the crust may have resulted in isostatic rebound and 

increased volcanic activity (Praetorius et al., 2016).

Today, prevailing wind directions from the Cape Edgecumbe buoy (N 55.600, W 136.101), 220 km 

northwest of Baker Island, are from the south and west (National Data Buoy Center, 2017). Thus it is 

likely that the source of the black tephra also lay to the south or west, on the continental shelf. High 

resolution multibeam seafloor surveys of the continental shelf west of Baker Island reveal a well-defined 

hole or crater at a depth of ~74 m, surrounded by a low tephra ring and subtle volcanic cones. These 

features are collectively known as the Addington Volcanic Field (Greene et al., 2011) (Fig. 3.9).

A prominent crater surrounded by ejecta rings suggests that this may be a maar volcanic feature (White 

and Ross, 2011) and it is interpreted as a maar feature by Karl et al. (2012). Maar style eruptions are 

known to have variable eruptive phases, including strombolian (White and Ross, 2011). For example, 

during the 1977 eruption of the Ukinkrek Maar on the Alaska Peninsula, a strombolian phase of the 

maar eruption deposited 35 scoria fall layers (Kienle et al., 1980). At ~38 km from the Addington 

Volcanic Field, Baker Island is well within the known limits of strombolian-style paroxysm fallout, which 

deposits tephra with grain sizes of ~100 pm up to ~50 km from the source (Scasso et al., 1994). These 

paroxysms consist of violent cannon-like gas bursts typically lasting seconds to minutes and produce
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fallout of coarse material over relatively large dispersal areas (Aiuppa et al., 2010). We therefore suggest 

that the black tephra was deposited by a maar eruption with a strombolian paroxysm phase.

Evidence for a regional glacial forebulge, with minimum uplift of 45 -  60 m between 16,700 and 11,100 

cal yr. BP based on shell-bearing raised marine deposits, (Baichtal and Carlson, 2010; Carlson and 

Baichtal, 2015; Baichtal et al., 2017) led Karl et al. (2012) to suggest that volcanic features associated 

with the Addington Volcanic Field may have formed during the forebulge.

As no dates or geochemical analyses are available from the Addington Volcanic Field, a direct correlation 

with the black tephra cannot yet be tested. However, a rock sample of mugearite collected from the 

crater confirms a basalt-like composition (Greene et al., 2011) with low silica content, broadly similar to 

the black tephra.

If the Addington Volcanic Field is the source of the black tephra, then the eruption at ~13,500 cal yr. BP 

would have been subaerial, as regional sea level was up to 150 meters below present due to a 

combination of extensive inland glaciation (Hetherington et al., 2003) and the presence of a regional 

forebulge, with maximum uplift at ~13,700 cal yr. BP (Baichtal et al., 2017). Further evidence of a 

subaerial explosion is provided by tephra grain morphology. Scanning electron microscopy reveals 

angular, vesicular fragments (Fig. 3.6), typical of high-viscosity magmatic eruptions formed when 

expanding gases in the magma approach the ground surface (Heiken, 1972). If the black tephra layers 

from Heceta Island and the Gulf of Esquibel can be attributed to the same event, then the tephra fallout 

may have covered a limited regional area of southern Southeast Alaska (Fig. 3.10). However, we will not 

be able to confirm the Addington Volcanic Field as the source of the black tephra until samples from 

that field are available for geochemical and age analyses.
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The Baker Island black tephra is a new tephro-chronological marker in Late Glacial deposits in southern 

Southeast Alaska. It is geochemically distinct from the Mt. Edgecumbe tephra in that it is silica poor, 

with a tephritic/trachybasalt composition, while the Mt. Edgecumbe tephra has a highly siliceous, 

rhyolitic composition. Further evidence of an alternate source for the black tephra is the fact that it 

appears to be too far south to be derived from Mt. Edgecumbe (Beget and Motyka, 1998). Based on 

thickness, presence of multiple distinct graded beds, and grain size, the black tephra is interpreted as 

the product of a large Strombolian eruption, possibly a paroxysm. Regardless of eruption style, the 

similarity in timing with the Mt. Edgecumbe eruption at ~13,500 cal yr. BP suggests that the two 

eruptions may share a trigger. Based on the Baker Island stratigraphy, deglaciation immediately 

preceded and may have triggered eruptions, as described by Praetorius et al. (2016). Prevailing westerly 

winds suggest that the source of the eruption may be on the continental shelf. Based on its location less 

than 50 km west of Baker Island and potential eruptive style, Addington Volcanic field, which contains a 

prominent maar feature (Greene et al., 2011), is considered a potential source for the black tephra. If 

the black tephra on Baker Island was derived from this source, the eruption may have been in a 

strombolian phase of a maar eruption. However, confirmation requires geochemical analyses of samples 

from the crater in the Addington Volcanic Field.

3.6 Conclusions
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3.8 Figures

Fig. 3.1: Map showing location of Baker Island/Bathymetry A.) Location of Baker Island in Southeast 

Alaska's Alexander Archipelago. B.) Bathymetry of 'Bonsai' Lake with core site locations. Due to close 

proximity of sites BBL1 and BBL4, only site BBL4 is shown. BBL2, BBL3, and BBL5 are not shown or 

mentioned in the text.
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Fig. 3.2: Baker Island core stratigraphy. Baker Island core stratigraphy with tephra unit highlighted in 

red. Note that at 455 cm, there are both pollen and macrofossil AMS ages.
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Fig. 3.3: Age-depth diagram of cores from Baker Island. Red highlighted area is depth of tephra and the 

extrapolated age. Diagram constructed using Clam, version 2.2 (Blaauw, 2010).
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Fig. 3.4: Sediment core with tephra unit magnified and highlighted. High resolution photo of sediment 

core BBL4 from Baker Island at selected depth to highlight abrupt shift from blue clay to tephra and 

abrupt termination of tephra deposition. Tephra thickness on photo of core illustrates the multiple 

graded beds observed in the tephra. Note that at 455 cm, there are both pollen and macrofossil AMS

ages.
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Fig. 3.5: NazO + K2O vs. SIO2 of black tephra. Na2O + K2O vs. SIO2 of black tephra (Blue) and Mt. 

Edgecumbe Tephra (Red) from Addison et al. (2010). Only geochemical analyses from Mt. Edgecumbe 

tephras deposited during the last 13,500 cal yr. BP are plotted.
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Fig. 3.6. Scanning electron image of black tephra. Scanning electron microscope image of black tephra 

revealing angular, vesicular fragments.
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Figure 3.7: Distribution map of tephras in western Canada and Alaska. Distribution of tephras in 

western Canada and Alaska (modified from Clague et al., 1995; Riehle et al., 1992; and Fierstein and

Hildreth, 2000).
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Fig. 3.8. Plot of median diameter versus sorting coefficient. Plot of median diameter versus sorting 

coefficient for fall deposits from basaltic explosive eruptions (modified from Houghton Gonnermann, 

2008). Results from the black tephra fall within the red dashed circle.
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Fig. 3.9. Location of Addington volcanic field/artificial sun-illuminated seafloor map A.) Location of Addington volcanic field (modified from 

Greene et al., 2011). B.) Artificial sun-illuminated seafloor of the offshore Cape Addington area showing the volcanic lava field with maar crater, 

volcanic cones, lava flows, and 2005 Delta submersible dive transects (from Greene et al., 2011). CSF=Chatham Strait Fault, QC-FW=Queen

Charlotte-Fairweather fault system.



Fig. 3.10: Map of proposed tephra limits. Southern limit of fallout area from Mt. Edgecumbe tephra and

proposed fallout area of black tephra. 1. Addington Volcanic Field 2. Mt. Edgecumbe 3. Baker Island 4.

Gulf of Esquibel 5. Bald Mountain 6. Leech Lake.
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Table 3.1: List of radiocarbon dates used for chronology on Baker Island. Calibrated ages and median ages were calculated using 2o range from 

CALIB 7.0 software. Macrofossils are composed of unidentified wood material.

3.9 Tables

Sample Location M a te ria l d13C Fraction

M odern

± d 14c ± I V
C age ± C a lib ra ted age M edian age (cal yr. BP)

BBL4 55 cm M acro foss il -25 0.9072 0.0032 -92.8 3.2 780 30 669-740 703

BBL4 120 cm M acro foss il -25 0.7290 0.0026 -271 .0 2.6 2540 30 2496-2747 2630

B B L4180 cm M acro foss il -25 0.5852 0.0024 -414.8 2.4 4305 35 4831-4961 4864

BBL4 227 cm M acro foss il -25 0.5730 0.0020 -4 2 7 .D 2.0 4475 30 4977-5288 5173

BBL4 320 cm M acro foss il -25 0.5214 0.0028 -478.6 2.8 5230 45 5911-6177 5985

BBL4 380 cm M acro foss il -25 0.3152 0.0032 -684.8 3.2 9270 90 10244-10688 10451

BBL4 422 cm M acro foss il -25 0.2856 0.0016 -714 .4 1.6 10065 50 11332-11929 11609

BBL6 307 cm M acro foss il -25 0.2766 0.0059 -723 .4 5.9 10320 180 11404-12627 12099

BBL4 455 cm Pollen -25 0.2563 0.0010 -743.7 1.0 10935 35 12706-12862 12776

BBL4 455 cm M acro foss il -25 0.2558 0.0010 -744.2 1.0 10955 35 12712-12916 12789



Table 3.2: Geochemical results from tephra from Baker Island. Geochemical results (weight percent) of tephra from Baker Island analyzed on a 

JEOL microprobe (Blue) and the Old Crow standard analyzed on Cameca microprobe (Green).

Sample Na20 MgO AI203 Si02 Cl K 20 CaO 7102 Fe203 N a20+K20
BBL4-D5 475 cm 4 81 4 63 14.70 45 37 0 09 1 62 9 73 4 35 14.55 6 43
BBL4-D5 480 cm 4.17 4 74 15 10 46 37 0 08 1 50 10.32 4 48 14.64 5 67
BBL4-D5 481 cm 5.04 4.50 15.22 46.32 0.08 1 59 9.95 4.48 14.48 6 62
Old Crow Working Standard 0 2 7 1.46 1 20 0 24 2.91 0 2 6 11.76 67 30 2 15 0 53
Old Crow Standard 0 28 1.73 1.35 0.29 3 65 0 28 12.50 72 40 3 65 0 2 8

Ln
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Chapter 4: A Speleothem Paleoclimate Record of Southeast Alaska from 60 to 11 ka3

4.1 Abstract

A paleoclimate record, based on 513C and 518O stable isotope values, from ~60,000 yr. BP to ~11,150 yr. 

BP, is reconstructed from a speleothem from El Capitan Cave in Southeast Alaska. The data show 

multiple oscillations in 513C probably related to vegetation changes on the landscape above the cave. 

Positive 513C values in EC-16-5-F are interpreted to indicate the presence of gymnosperms above the 

cave, while more negative 513C values indicate a predominance of angiosperms. The data suggest 

limited or no ice cover above El Capitan Cave, indicating that the area around the cave was a nunatak 

during glacial periods.

4.2 Introduction

Paleoclimate records containing and/or pre-dating the Last Glacial Maximum (LGM) from coastal 

terrestrial locations in Washington, British Columbia and Southeast Alaska are rare. The LGM took place 

during the latest part of marine isotope stage (MIS) 2, ~20,000 cal yr. BP (Hughes et al., 2013). Besides 

peat beds exposed in a seacliff near Kalaloch, Washington with a basal age of ~55,000 yr. BP (Heusser, 

1985), there are few other records that penetrate the LGM in this region. However, records that 

incorporate MIS 2 and MIS 3 are vital as they represent the largest temperature swings in recent 

geologic history (Petit et al., 1999); During MIS 2, mean annual temperature reductions of at least ~3 °C 

are reconstructed from beetle assemblages from the Kalaloch sea cliffs (Cong and Ashworth, 1996). 

Obtaining a climate record that extends further back in time will elucidate the magnitude and timing of 

climate perturbations during and prior to the LGM. This is important for regional and worldwide

3 Wilcox, P.S., Dorale, J.A., Fowell, S.J., Baichtal, J.F., Kovarik, J., Shakun, J., Mix, A., Cheng, H., Edwards, L. 2017. 
Prepared for submission in the Journal of Quaternary Research.
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comparison and for constraining climate parameters for model simulation used to predict future climate 

scenarios.

The presence of biologica refugia in Southeast Alaska and northern British Columbia has been proposed 

by various authors (Warner et al., 1982; Hansen and Engstrom, 1996; Heaton et al., 1996). Such refugia 

would have allowed a habitat suitable for animals and plants to survive the encroachment of the vast 

Cordilleran Ice Sheet during the height of the ice age and possibly facilitate human migration through 

the region (Fagundes et al., 2008). Ancient bones from bears found on Prince of Wales Island with 

genetically distinct DNA from mainland bears have been dated to ~30,000 years BP and to ~13,000 years 

BP, which hints that refugia existed (Heaton et al., 1996). In addition, pollen evidence collected from 

Pleasant Island, which was covered under the Cordilleran Ice Sheet during the LGM, indicates that pine 

woodland was present immediately after deglaciation. This suggests that pine trees survived the ice age 

within a refugium (Hansen and Enstrom, 1996). Furthermore, a palynological record from sea-cliff 

exposures of late Pleistocene sediment and peat from the Queen Charlotte Islands spans the last ~18 ka 

and indicates that at least a portion of Queen Charlotte Island was ice free throughout the late 

Wisconsin (Warner et al., 1982; Mathewes et al. 1993). Beyond these hints, there is no definitive 

evidence that such a refugium existed in the region.

Caves are well suited for paleoclimate and paleovegetation reconstructions because climatic signals can 

be captured in speleothems due to variations in 518O and 513C isotopes, which are driven by changes in 

temperature/precipitation and vegetation cover, respectively (Hudson, 1977; Dorale et al., 1992). As 

speleothem studies are rare in the cave-rich region of Southeast Alaska, this speleothem record provides 

a unique climate and vegetation record during a time interval unattainable by other methods.
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4.3 Site Location

Speleothems were collected from El Capitan Cave (N 56.162°, W 133.319°, 74 m above sea level) in 

southern Southeast Alaska on Prince of Wales Island (Fig. 4.1). Land above the cave reaches an elevation 

of ~700 meters a.s.l. The cave is found in Silurian Heceta limestone, a unit that contains locally thick 

lenses of polymictic conglomerate, limestone breccia, sandstone, and argillaceous rocks (Ovenshine and 

Webster, 1970). Present day mean annual temperature in El Capitan Cave is 5 °C (Baichtal, 2017, pers. 

comm.). Speleothem EC-16-5-F, used in this study, was found broken on the cave floor just beyond a 

formation known as Hot Fudge Sundae, approximately 90 meters inside the cave entrance (Fig. 4.1b). 

There is no evidence of active speleothem formation in the passageway where the speleothem was 

collected. A younger speleothem sample, collected in 2008, from Goliath's Wake Cave (N 56.029°, W 

133.530°) on nearby Kosciusko Island, was used to assist interpretations of the record from El Capitan. 

The Goliath's Wake speleothem is also found in Heceta limestone and the speleothem ranges in age 

from modern to 1,200 yr. Old growth forest grows on the landscape above both caves.

4.4 Climate and Vegetation

Today, Prince of Wales Island has a maritime climate characterized by cool, generally wet conditions. 

Mean annual temperature and precipitation from Craig, Alaska, 33 km South of El Capitan Cave, are 

7.2°C and 2500 mm, respectively (Western Regional Climate Center, 2017). Storms associated with the 

Aleutian low-pressure system are especially common in autumn and winter. Most annual precipitation 

falls as rain at low altitudes, but snowfall is heavy at higher elevations, and snow can accumulate 

intermittently even at sea level during the winter (Ager et al., 2010).

Most of Prince of Wales Island is covered by Pacific coastal rainforest interspersed with muskeg (Ager et 

al., 2010), containing only C3 vegetation (Thompson et al., 2006). Modern tree taxa in the region include
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Picea sitchensis (Sitka Spruce), Tsuga (Fir), Alnus (alder), Sphagnum  (moss), and Pinus contorta ssp. 

contorta (Shore Pine). Among these vegetation types, 513C values range from -2 6 %  to -3 1 %  (DeLucia et 

al., 1988; DeLucia and Schlesinger 1991; Lajtha and Barnes 1991; Marshall and Zhang 1994; Van de 

Water et al., 2002; McCallister and Giorgio, 2008).

Cool maritime temperatures of the region result in slow biotic activity and the thick accumulation of an 

organic mat from 15 to 25 cm thick on the forest floor (Stephens, 1969), with muskegs containing up to 

12 meters of peat (Stephens et al., 1970). This results in high CO2 concentrations in the soils with acidic 

pH values as low as 3.2 (Fellman et al., 2008).

4.5 Methods

Speleothem EC-16-5-F was cut in half, polished, cleaned with an alcohol solution, and drilled for U-Th 

dates and carbon/oxygen stable isotopes at the University of Iowa. Four U-Th samples were collected at 

4mm, 63 mm, 67 mm, and 123 mm. Subsamples weighing 150 to 300 mg were analyzed for U-Th 

content and dated at the University of Minnesota Trace Metal Isotope Geochemistry Laboratory. We 

collected 103 stable isotope samples at 2 mm increments along the central growth axis of the 

stalagmite. Stable isotope samples were analyzed at the University of Missouri-Columbia Stable Isotope 

Laboratory using a Finnigan Delta-V mass spectrometer and a Kiel III device. Carbon and oxygen isotopes 

are reported in per mil relative to VPDB with an analytical precision better than 0.1 per mil. Ages of 

Isotopes between dated horizons are estimated via linear interpolation (Fig. 4.3).
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4.6.1 Uranium-Series Dating

U-Th dating of speleothem EC-16-5-F produced dates of 11,146 ± 258 (4 mm depth), 43,045 ± 183 (63 

mm depth), 46,236 ± 209 (67 mm depth), and 59,523 ± 427 (123 mm depth) yr BP (Fig. 4.2 and Fig. 4.3). 

Six unconformities are tentatively identified based on visual identification of abrupt changes in color and 

growth direction (Fig. 4.2). To test if these visual features represent gaps in age, U-Th samples were 

collected below and above a possible unconformity at 65 mm. The resulting dates of 43,045 ± 183 and 

46,236 ± 209 suggest that a possible unconformity exists because the growth rate between these sites is 

half the average growth rate between 11,146 ± 258 (4 mm) and 59,523 ± 427 (123 mm). Further dates 

are needed to determine whether other visual features are unconformities.

4.6.2 Stable Isotopes

513C values in speleothem EC-16-5-F range from -1 .42%  to -8 .74%  (Fig. 4.3). 513C is at -3 .83%  early in 

the record at ~62,000 yr. BP. It decreases to -5 .47%  by ~60,000 yr. BP, followed by an increase to 

-3 .89%  at ~58,000 yr. BP. 513C remains at approximately -4 %  until ~53,000 yr. BP where it decreases to 

approximately -8% . More negative 513C values of approximately -8%  persist until ~46,000 yr. BP where 

values increase to -2.81% . 513C values remain at approximately -3 %  until ~22,000 yr. BP where they 

decrease to -6.57% , followed by an increase to -2 .49%  at ~20,000 yr. BP. Afterword, 513C values level 

off at approximately -3 %  and then increase to -1 .42%  at ~13,000 yr. BP. 513C values decrease to 

-3 .60%  at ~11,800 yr. BP, followed by an increase to -2 .37%  at ~11,400 yr. BP.

To help interpret speleothem 513C values, the parent host rock was analyzed for 513C. Two samples 

contain 513C values of 1 .04%  and 1.54% .

4.6 Results
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518O values in speleothem EC-16-5-F range from -8 .01%  to -10.01%  (Fig. 4.3). 518O is at -9 .26%  early in 

the record at ~62,000 yr. BP. It increases to -8 .01%  at ~58,000 yr. BP, followed by a decrease to 

-9 .52%  at ~57,000 yr. BP. 518O remains at approximately -9 .1%  until ~45,000 yr. BP where it increases 

to -8.63% . Between ~46,000 yr. BP and ~31,000 yr. BP, there are fluctuations in 518O from -9 .54%  to 

-8.59% . At ~30,000 yr. BP, 518O values begin to decrease, reaching the most negative value in the 

record, 10.01% , at ~22,000 yr. BP. 518O values increase to -8 .76%  at ~20,000 yr. BP. Values further 

increase to -8 .16%  by ~13,000 yr. BP, followed by a decrease to -9 .58%  at ~11,800 yr. BP. 518O values 

then rise to -8 .04%  at ~11,400 yr. BP.

4.7 Discussion

Speleothem EC-16-5-F has bounding ages of ~11,150 and ~60,000 yr. BP, spanning parts of MIS 1 

through MIS 3. Additional dates are needed to determine whether unconformities formed during glacial 

periods, when ice cover may have inhibited water movement and halted speleothem precipitation.

Much of the Holocene is not present in the speleothem, which appears to have been broken by activity 

in the main passageway of the cave. Therefore the speleothem cannot be directly calibrated by modern 

records. Instead, a record previously obtained from nearby Goliath's Wake Cave is used to facilitate 

interpretation by providing isotope results during a time interval when modern climate and vegetation 

exists.

In addition, a pollen and 513C record from Baker Island (100 km southwest) has ages ranging from

modern to ~13,500 cal yr. BP, overlapping with the record of speleothem EC-16-5-F between ~11,150 cal

yr. BP and ~13,500 cal yr. BP. This core provides additional evidence of regional vegetation and climate

changes during that interval. The overlapping interval includes the Younger Dryas (YD) cold event

between 12,8000 cal yr. BP and 11,500 cal yr. BP, and part of the warm B0lling-Aller0d (BA) interstadial

between 14,700 cal yr. BP and 13,000 cal yr. BP (Alley et al., 1993).
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4.7.1 513C Record

Our data show multiple large oscillations in speleothem 513C values of up to 4 % . These changes in 513C 

are derived from cave seepage waters. The waters contain the 513C signature of soil CO2 which is related 

to the type of vegetation occupying the land surface and the composition of the bedrock (Hudson, 1977; 

Dorale et al., 1992). Bedrock 513C values are not expected to change on timescales of thousands of 

years. Therefore, the changes in 5 13C in this record are interpreted as the result of transitions in 

dominant vegetation type between gymnosperms and angiosperms. Gymnosperms have 513C values 

between -2 6 %  and -2 7 %  (Kloeppel et al., 1998; Choi et al., 2005) while angiosperms 513C values range 

between -29.2 and -3 1 %  (Simenstad and Wissmar, 1985). Therefore, a change from gymnosperms to 

angiosperms would drive 5 13C toward more negative values.

When the host rock contains sulfides, speleothems could continue to grow during glacial intervals from 

sulfide oxidation (Spotl and Mangini, 2007). However, because the host rock at this site contains no 

sulfides, speleothem growth is probably due to a biogenic carbon source, which requires a moderately 

well-developed soil above the cave (Spotl and Mangini, 2007). Values approaching or exceeding the 

parent host rock (due to lack of soil-derived biogenic carbon), could indicate overlying glaciers (Spotl and 

Mangini, 2007). However, as 5 13C values in speleothem EC-16-5-F do not approach or exceed values of 

the parent host rock, it seems unlikely that glaciers overrode El Capitan Cave.

4.7.2 518O Record

Whereas speleothem 513C is sensitive to vegetation, soil, and related climatic conditions, 518O is linked 

to meteoric water (Lachniet, 2009). The 518O value of mean annual precipitation (MAP) is observed to be 

largely a function of mean annual atmospheric temperature (MAT), and it tends to decrease with 

decreasing ambient temperature and increasing latitude (Dansgaard, 1964). Cave temperatures, and
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hence mean annual temperature at the ground surface, may also affect 518O values, with colder cave 

temperatures resulting in greater fractionation and more positive 5 18O values, and warmer 

temperatures resulting in less fractionation (O'Neil et al., 1969).

We note a general trend in speleothem EC-16-5-F where negative 518O values correspond to cold 

conditions while positive 518O values correspond to warm conditions, agreeing with the MAP-MAT 

relationship. For example, most negative 518O values occur at ~22,000 cal yr. B.P., consistent with cold 

conditions during the LGM described by Blaise et al. (1990) along the west coast of Canada sometime 

after 24,500 cal yr. BP. Negative 518O values are also found at ~12,000 yr. BP, consistent with the 

Younger Dryas cold interval (Alley et al., 1993). Positive 518O values are found at ~13,000 yr. BP, 

consistent with warming during the BA interstadial (Alley et al., 1993).

Other factors may obscure the MAP 18O -  MAT relationship. For example, precipitation derived from 

different air masses typically contains distinct 5 18O signatures, and the 518O value of precipitation varies 

seasonally (Gat, 1996; Dorale et al., 1998). Additionally, glacial/interglacial cycles may also obscure this 

signal as moisture sources may be different than modern and/or ocean 518O values may be variable due 

to ice sheet decay and growth (Gat, 1996). Therefore, paleotemperature reconstruction assumes that 

neither the moisture source, the seasonality of precipitation, nor the 5 18O of seawater has varied 

significantly through time.

4.7.3 Overlapping records of EC-16-5-F and Baker Island lake core

Throughout the speleothem EC-16-5-F record, negative 5 13C values correspond to more negative 518O 

values. This suggests that vegetation with more negative 5 13C values occur during periods with cooler 

temperatures. Conversely, intervals with more positive 513C and 518O occur during periods with warmer 

temperatures.
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Palynological data from the Baker Island lake sediment core (Wilcox et al., 2017, in prep) indicates that 

the BA interval between 13,500 cal yr. BP and 13,000 cal yr. BP was warmer and wetter than the 

previous glacial period based on increases in Pinus, which occupies modern humid maritime climate in 

Southeast Alaska (Hebda, 1983; Thompson et al., 2006). High clastic influx is interpreted to be from 

increased precipitation. The corresponding 513C values is the most positive in the record (Wilcox et al., 

2017, in prep).

The beginning of the YD period, between 13,000 cal yr. BP and 12,500 cal yr. BP, is dryer and cooler than 

the BA based on the decline of Pinus and Tsuga mertensiana pollen, increases in Alnus pollen and fern 

spores, and a decrease in clastic influx. Because Alnus and ferns dominate modern tree line vegetation 

in the Malaspina Glacier District near Yakutat (Peteet, 1986), it is suggested that YD cooling lowered tree 

line and allowed Alnus and ferns to replace Pinus and Tsuga mertensiana. The corresponding 513C values 

are the most negative in the record.

The middle segment of the YD, between 12,400 cal yr. BP and 11,800 cal yr. BP, appears to be warmer 

and wetter than the first half based on increasing Pinus pollen, decreasing percentages of Alnus pollen 

and fern spores, and increasing clastic influx. We infer that warming temperatures resulted in an 

increase in the elevation of tree line and reestablishment of Pinus. Corresponding 513C values are more 

positive, approaching BA levels. Pollen fluctuations from Baker Island during the period between 13,500 

cal yr. BP and ~11,000 cal yr. BP are in good agreement with vegetation cover interpreted from pollen 

fluctuations from nearby Pass Lake on Prince of Wales Island ~ 60 km east of Baker Island and ~100 km 

southeast of El Capitan Cave (Ager and Rosenbaum, 2007), indicating that the changes seen on Baker 

Island are consistent with the regional vegetation history.

More typical coniferous vegetation of modern coastal Alaska, such as Sitka spruce (Picea sitchensis) and

western hemlock (Tsuga heterophylla), do not appear in the region until after ~11,000 cal yr. BP, and
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therefore are not expected to contribute to the 513C values captured in speleothem EC-16-5-F. The only 

tree/shrub species present during the interval in which the Baker Island record and speleothem EC-16-5- 

F record overlap are Pinus, Alnus, and small amounts of Tsuga mertensiana.

The interpretations from the Baker Island sediment core suggests that the sharp decline in 518O values 

from speleothem EC-16-5-F, around ~13,000 yr. BP, reflect cooling associated with the first part of the 

YD (Fig. 4.4). In turn, the corresponding decline in 513C in speleothem EC-16-5-F may indicate the 

presence of alder shrubland (Fig. 4.4). Conversely, increases in 518O in at ~13,500 yr. BP and ~12,400 yr. 

BP in speleothem EC-16-5-F may be warming associated with the BA and middle segment of the YD, 

respectively. Corresponding increases in 513C (Fig. 4.4) suggest dominance of conifers and may indicate 

establishment of pine parkland vegetation during these warmer intervals.

4.7.4 EC-16-5-F 513C Extrapolation

Based on the correlative intervals of the Baker Island and speleothem records, we can interpret the 513C 

signal for remainder of the EC-16-5-F (Fig. 4.5) record. More negative 513C values record dominance of 

angiosperms above the cave. Conversely, more positive values correspond to an increase in 

gymnosperms. The more negative 513C values found in the modern Goliath's Wake record is puzzling, as 

conifers in the coastal rainforest would be expected to have more positive 513C values. The differences 

may be due to a more scattered, pine parkland setting being represented in EC-16-5-F, resulting in more 

positive 513C values than modern, closed canopy coniferous forests. This trend is observed in studies by 

Ehleringer et al. (1986) and Medina et al. (1991), which show that closed-canopy forests have increased 

recycling of plant-respired CO2 and reduced light intensity, shifting plant tissues toward more negative 

513C values compared to a more open setting.
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Alternately, changes in bedrock between caves may have altered the 513C signal. However, as both sites 

are located in Heceta limestone with very similar geochemistry (Mass et al., 1995), we suggest changes 

in 513C values are more likely a result of vegetation changes above the cave.

4.7.5 Evidence for Refugia

If speleothem formation was continuous, it seems that there was limited or no ice cover throughout the 

entire record and persistent vegetation during stadials. However, possible unconformities in the record 

could represent time intervals where glacial conditions were present, inhibiting water movement and 

halting speleothem growth. Because 5 13C values never approach or exceed host bedrock 513C values, it is 

possible that ice age forest refugia existed along the coast of Southeast Alaska. As the entrance to El 

Capitan is 74 m above sea level, and the land above it reaches over 700 m a.s.l., it is possible that this 

region was a nunatak, allowing vegetation to persist during periods when glaciers were flowing nearby. 

Previous attempts to acquire records of the LGM from lake sediment may have been unsuccessful 

because most lakes in the region lie in geographically low areas which were probably overridden by 

glaciers during the LGM. Even in areas that were not under ice, local alpine glaciers may have deposited 

glacial flour, inhibiting the extraction of long sediment records. Additional speleothems from the region 

are needed for comparison with this speleothem record to further validate these interpretations.
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513C and 518O stable isotope values from a speleothem recovered from El Capitan Cave in Southeast 

Alaska, spanning from ~60,000 to ~11,150 yr. BP, are used to reconstruct the vegetation and climate 

history of the region. More positive 513C values in EC-16-5-F may indicate gymnosperms, and correspond 

to interstadials. More negative 513C values may indicate more angiosperms, and correspond to stadials.

This record provides a rare glimpse of climate and vegetation during and prior to the LGM. The data 

obtained can, in turn, be used as parameters for climate modeling. Furthermore, 513C values may 

suggest continual vegetation above El Capitan Cave, possibly indicating that the region above the cave 

acted as a nunatak during glacial periods. These results, therefore, suggest a new location for regional 

refugia, as previous work focuses on areas along the outer coast and continental shelf (Warner et al., 

1982; Hansen and Engstrom, 1996; Wilcox et al., 2017, in prep).

Because speleothems extend further back in time than other proxies in the region, these records 

provide crucial constraints on the timing and magnitude of events for regional and worldwide 

comparison. By collecting and correlating additional speleothem records, applying different techniques 

for paleotemperature and paleovegetation interpretations (such as clumped isotope sampling and 

speleothem pollen extraction), and implementing long term cave monitoring, a more robust 

temperature and vegetation reconstructions can be obtained.

4.8 Conclusions

88



4.9 References:

Ager, T.A., Rosenbaum, J.G., 2007. Late glacial-Holocene pollen-based vegetation history from Pass 
Lake, Prince of Wales Island, southeastern Alaska. US Geological Survey Professional Paper 
1760-G. US Dept. of the Interior, US Geological Survey.

Ager TA, Carrara PE, Smith JL, Anne V, Johnson J. 2010. Postglacial vegetation history of Mitkof Island, 
Alexander Archipelago, southeastern Alaska. Quaternary Research 73(2) : 259-268.

Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes, PM, White JWC, Ram M, Waddington ED, 
Mayewski PA, Zielinski GA. 1993. Abrupt increase in Greenland snow accumulation at the end of 
the Younger Dryas event. Nature 362(6420) : 527-529.

Blaise B, Clague JJ, Mathewes RW. 1990. Time of maximum Late Wisconsin glaciation, west coast of 
Canada. Quaternary Research 34 : 282-295.

Choi WJ, Chang SX, Curran MP, Ro HM, Kamaluddin M, Zwiazek JJ. 2005. Foliar 513C and 51SN response 
of lodgepole pine and Douglas-fir seedlings to soil compaction and forest floor removal. Forest 
Science 516 : 546-555.

Cong S, Ashworth AC. 1996. Palaeoenvironmental interpretation of middle and late Wisconsinan
fossil coleopteran assemblages from western Olympic Peninsula, Washington, USA. Journal of 
Quaternary Science 11(5) : 345-356.

Dansgaard W. 1964. Stable isotopes in precipitation. Tellus 16(4) : 436-468.

DeLucia EH, Schlesinger WH, Billings WD. 1988. Water relations and the maintenance of Sierran conifers 
on hydrothermally altered rock. Ecology 69 : 303-311.

DeLucia EH, Schlesinger WH. 1991. Resource-use efficiency and drought tolerance in adjacent Great 
Basin and Sierran plants. Ecology 72 : 51-58.

Dorale JA, Gonzalez LA, Reagan MK, Pickett DA, Murrell MT, Baker RG. 1992. A high-resolution record of 
Holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa. Science 
258 : 1626-1630.

Dorale JA, Edwards RL, Gonzalez L, Ito E. 1998. Climate and vegetation history of the midcontinent from 
75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science 282 : 1871-1874.

Ehleringer JR, Field CB, Lin ZF, Kuo CY. 1986. Leaf carbon isotope and mineral composition in 
subtropical plants along an irradiance cline. Oecologia 70(4) : 520-526.

Fagundes NJ, Kanitz R, Bonatto SL. 2008. A reevaluation of the Native American mtDNA genome
diversity and its bearing on the models of early colonization of Beringia. PLoS One 3(9) : 3157.

89



Fellman JB, D'Amore DV, Hood E, Boone RD. 2008. Fluorescence characteristics and
biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate 
watersheds in southeast Alaska. Biogeochemistry 88(2) : 169-184.

Gat JR. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review o f Earth and 
Planetary Sciences 24(1) : 225-262.

Hansen BCS, Engstrom DR. 1996. Vegetation history of Pleasant Island, southeastern Alaska, since
13,000 yr B.P. Quaternary Research 46 : 161-175.

Heaton TH, Talbot SL, Shields GF. 1996. An ice age refugium for large mammals in
the Alexander Archipelago, southeastern Alaska. Quaternary Research 46 : 186-192.

Hebda RJ. 1983. Late-glacial and postglacial vegetation history at Bear Cove Bog, northeast Vancouver 
Island, British Columbia. Canadian Journal o f Botany 61 : 3172-3192.

Heusser CJ. 1985. Quaternary pollen records from the Pacific Northwest coast-Aleutians to the
Oregon-California boundary, in Bryant, V.M., Jr., and Holloway, R.G., eds., Pollen records of Late- 
Quaternary North American sediments: Dallas, American Association of Stratigraphic 
Palynologists Foundation, 141-165.

Hudson JD. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society 133(6) : 
637-660.

Hughes PD, Gibbard PL, Ehlers J. 2013. Timing of glaciation during the last glacial cycle: evaluating the 
concept of a global 'Last Glacial Maximum'(LGM). Earth-Science Reviews 125 : 171-198.

Kloeppel BD, Gower ST, Treichel IW, Kharuk S. 1998. Foliar carbon isotope discrimination in Larix species 
and sympatric evergreen conifers: a global comparison. Oecologia 1142 : 153-159.

Lachniet MS. 2009. Climatic and environmental controls on speleothem oxygen-isotope 
values. Quaternary Science Reviews 28(5) : 412-432.

Lajtha K, Barnes FJ, 1991. Carbon gain and water use in pinyon pine-juniper woodlands of northern 
New Mexico: field versus phytotron chamber measurements. Tree Physiology 9 : 59- 67.

Marshall JD, Zhang J. 1994. Carbon isotope discrimination and water-use efficiency in native plants of 
the north-central Rockies. Ecology 75 : 1887-1895.

Mass KM, Bittenbender PE, Still JC. 1995. Mineral Investigations in the Ketchikan Mining District,
Southeasten Alaska. U.S. Department of the Interior, Bureau of Mines, Open file Report 11-95.

Mathewes RW, Heusser LE, Patterson RT. 1993. Evidence for a Younger Dryas-like cooling event on the 
British Columbia coast. Geology 21 : 101-104.

90



McCallister SL, Giorgio PAD. 2008. Direct measurement of the 513C signature of carbon respired by 
bacteria in lakes: Linkages to potential carbon sources, ecosystem baseline metabolism, and 
CO2 fluxes. Limnology and oceanography 53(4) : 1204.

Medina E, Sternberg L, Cuevas E. 1991. Vertical stratification of 513C values in closed natural and 
plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87(3) : 369-372.

O'Neil JR, Clayton RN, Mayeda TK. 1969. Oxygen isotope fractionation in divalent metal carbonates. The 
Journal o f Chemical Physics 51(12) : 5547-5558.

Ovenshine AT, Webster GD. 1970. Age and stratigraphy of the Heceta Limestone in northern Sea
Otter Sound, southeastern Alaska. US Geological Survey Professional Paper 700, 170-174. US 
Dept. of the Interior, US Geological Survey.

Peteet DM. 1986. Modern pollen rain and vegetational history of the Malaspina Glacier District,
Alaska. Quaternary Research 25(1) : 100-120.

Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis, M, Delaygue, 
G, Delmotte M. 1999. Climate and atmospheric history of the past 420,000 years from the 
Vostok ice core, Antarctica. Nature 399(6735) : 429-436.

Simenstad CA, Wissmar RC. 1985. 5 13C evidence of the origins and fates of organic carbon in 
estuarine and nearshore food webs. Marine Ecology Progress Series 22 : 141-152.

Spotl C, Mangini A. 2007. Speleothems and paleoglaciers. Earth and Planetary Science Letters 254(3) : 
323-331.

Stephens FR. 1969. Source of cation exchange capacity and water retention in southeast Alaskan 
spodosols. Soil Science 108(6) : 429-431.

Stephens FR, Gass CR, Billings RF. 1970. Muskegs of southeast Alaska and their diminished 
extent. Northwest science 44 : 123-130.

Thompson RS, Anderson KH, Strickland LE, Shafer SL, Pelltier RT, Bartlein PJ. 2006. Atlas of relations
between climatic parameters and distributions of important trees and shrubs in North America: 
Alaska species and ecoregions. US Geological Survey Professional Paper 1650-D. US Dept. of the 
Interior, US Geological Survey.

Van de Water PK, Leavitt SW, Betancourt JL. 2002. Leaf 513C variability with elevation, slope aspect, and 
precipitation in the southwest United States. Oecologia 132(3) : 332-343.

Warner BG, Mathewes RW, Clague JJ. 1982. Ice-free conditions on the Queen Charlotte Islands, British 
Columbia, at the height of late Wisconsin glaciation. Science 218(4573) : 675-677.

Western Regional Climate Center, 2017. Craig Alaska Climate Summary. Retrieved from 
http://www.wrcc.dri.edu/cgi-bin/cliMAIN.plPak2227 [4 March 2016].

91

http://www.wrcc.dri.edu/cgi-bin/cliMAIN.plPak2227


Wilcox, P.S., Fowell, S.J., Bigelow, N.H., Baichtal, J.F., Raphael Dreier. 2017. Variable Younger Dryas 
Based on Palynological and Sedimentological Analyses of Lacustrine Cores from Baker Island, 
Southeast Alaska. Prepared for submission in the Journal of Palaeogeography, 
Palaeoclimatology, Palaeoecology.

92



4.10 Figures

Figure 4.1: Site Location of El Capitan Cave and Goliath's Wake Cave/map of El Capitan Cave. a.) Site 

Location of El Capitan Cave on Prince of Wales Island and Goliath's Wake Cave on Kosciusko Island in 

Southeast Alaska. b.) Map of El Capitan Cave with speleothem sample location.
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Fig. 4.2: Photo of speleothem with U/Th sampling sites and possible unconformities. Photo of 

speleothem EC-16-5-F with U/Th sampling sites (red ovals). Dashed lines indicate possible 

unconformities based on color and growth direction changes. Unedited photo of speleothem EC-16-5-F 

also shown.
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Fig. 4.3: Age and depth of 613C and 618O samples.
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Fig. 4.4. Overlapping records of EC-16-5-F and Baker Island lake core. 513C and 518O from speleothem 

EC-16-5-F plotted next to 513C and vegetation interpretations from Baker Island lake core. EC-16-5 is 

cropped at 20,000 yr. BP to focus on the interval where the two records overlap. Gray shaded area 

represents YD interval.
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Fig. 4.5: Vegetation interpreted from S13C in EC-16-5-F and Goliath's Wake Cave.

97



This work was funded by the University of Alaska Global Change Grant, The University of Alaska Geist 

Fund, the Alaska Geological Society, and the Alaska Space Grant. I thank Dr. Jeff Dorale for allowing me 

to use his lab at the University of Iowa for isotope and uranium/thorium sampling.

4.11 Acknowledgments

98



This research provides new insights on past climate and vegetation in Alaska over the past ~60,000 

years. Palynological and sedimentological results from sediment cores retrieved from Baker Island 

extend to ~13,500 cal yr. BP. The palynological record hints at nearby refugia, as pollen of Pinus and 

Tsuga mertensiana appeared immediately after glacial retreat at ~13,500 cal yr. BP. The palynological 

and sedimentological results also indicate a variable Younger Dryas (YD) interval, beginning cool and dry, 

but becoming warmer and more humid during the latter half.

Future work should focus on higher resolution palynology/sedimentology of the Late Glacial in 

Southeast Alaska to better constrain the timing of YD and quantify climate fluctuations within the YD. 

This is important for calibration of climate models, which can then be used to help predict future climate 

scenarios in the region.

Speleothems collected from El Capitan Cave on Prince of Wales Island span the interval from ~11,100 yr. 

BP to ~60,000 yr. BP and show multiple glacial/interglacial periods defined by 513C and 518O isotopes. 

Changes in 513C values are thought to be driven by fluctuations in the abundance of angiosperms and 

gymnosperms in the local vegetation. Palynological records from Baker Island are used to help interpret 

vegetation changes in the speleothem 513C record. If the speleothem record is continuous, it indicates 

limited to no glaciation above the cave and the presence of continuous vegetation. In this case, the 

speleothem supports the palynological/sedimentological interpretation from Baker Island for glacial 

refugia in the region.

Much more future work needs to focus on speleothem reconnaissance and reconstruction because 

results from this research have shown that speleothems are a very powerful tool for climate 

reconstructions in the region. A quantitative approach for paleoclimate reconstruction should be used in

Chapter 5: Conclusion

99



future studies. Typically, 518O of dripwater must be identified to determine paleotemperatures. This is 

achieved by either knowing the groundwater age and isotopic composition near the studied cave, or 

using fluid inclusions within the speleothem calcite. Carbonate clumped isotope thermometry can also 

be used to calculate paleotemperatures and does not require the 518O of precipitating fluid.

For more detailed paleovegetation and temperature reconstructions, a speleothem extending 

throughout the entire Holocene and into the Pleistocene must be attained. Pollen from lake cores can 

then be used to compare and interpret 513C values from the speleothem, and the youngest portion of 

the record can be compared to modern climate data.

In addition to climate/vegetation interpretations, a ~13,500 cal yr. BP tephra was identified and 

examined from the Baker Island sediment core. Geochemical analyses indicates that it has a 

tephritic/trachybasalt composition and erupted from a large strombolian style eruption, possibly a 

paroxysm. It is distinct from other eruptions in the region, such as Mt. Edgecumbe with respect to both 

composition and location. The Addington Volcanic Field, 38 km West of Baker Island, is a potential 

source area. Coeval eruptions in the region may have been caused by ice sheet retreat (Praetorius et al., 

2016). The tephra can be used to help calibrate radiocarbon chronologies in the region and, thereby, 

help establish migration patterns of postglacial vegetation.

Additional work needs to be done to confirm if the Addington Volcano Field is the source for the black 

tephra on Baker Island and surrounding islands by sampling tephra at the Addington Volcano Field for 

geochemical analyses. Additionally, the age of the Addington Volcano Field would need to be 

determined to confirm if it was the source of the tephra from Baker Island. A sea core would need to be 

collected from the Addington Volcano Field to determine its geochemical composition and age.

100



Praetorius, S., Mix, A., Jensen, B., Froese, D., Milne, G., Wolhowe, M., Addison, J., Prahl, F., 2016.
Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the 
last deglaciation. Earth and Planetary Science Letters 452, 79-89.

5.1 References

101


