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ABSTRACT

Hydrological processes regulate fish habitat, largely controlling availability and suitability of 

habitat for freshwater fishes. Seasonal fluctuations in surface water distribution and abundance 

on the Arctic Coastal Plain, Alaska, influence individual fish species occupancy in lentic 

habitats. On low-relief tundra, permafrost processes and climate are chiefly responsible for lake 

formation and surface water dynamics, such as the timing, duration, and availability of water that 

affects fish species distributions. However, it is unclear how these relationships scale up to 

influence fish community richness and composition, or food web structure. Further, each of these 

processes is also likely to change with rapid climate warming occurring in the Arctic. By 

observing patterns of fish species occupancy, we examined how fish species richness and 

composition in Arctic lakes varied with surface water connectivity at coarse and spatial fine 

scales. Through experiments and observation, we determined the structure of food webs as they 

related to surface water connectivity and foraging habits of associated fish species. We found 

surface water connectivity was a driver of fish species richness and assemblage patterns. 

Permanently connected lakes contained nearly twice as many species as disconnected lakes; and 

the most strongly connected lakes contained an average of four additional species compared to 

isolated lakes. Functional traits of fishes, like life history or body morphology, likely dictate their 

ability to colonize habitats. Given reduced colonization potential, isolated lakes either never 

supported or could not retain larger predatory fishes. In isolated systems only one fish predator 

occurred consistently, and this species showed strong top-down control of invertebrate prey in 

experimental systems. Yet, in natural environments single-predator systems have fewer trophic 

links than multi-predator systems, and therefore, less trophic redundancy across species. The loss
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of species due to isolation reduced the total number of trophic links and shortened food chains. 

However, I argue that the complexity and addition of top-predators in surface water connected 

lakes adds trophic redundancy, stabilizes energy flow, and potentially enhances persistence 

within in food webs and across the meta-community of food webs. Changes to fish species 

richness, composition, or food web structure from climate warming may be dampened by the 

resilience of food webs locally, but across the broader landscape it is likely that some food webs 

will be restructured due to changes in colonization potential regulated by surface water 

connectivity.
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GENERAL INTRODUCTION

Arctic ecosystems are experiencing dramatic changes due to the rapid rate of climate 

warming occurring at high latitudes (White et al. 2007). At a rate twice the global average, 

warming in the Arctic has already facilitated landscape changes including permafrost thawing, 

erosion, and increased shrub growth (Martin et al. 2009). Typically, Arctic freshwater system 

productivity tends to be low due to prolonged periods of ice cover, short growing seasons, low 

temperatures, and low nutrient levels. However, changes to climatic factors like temperature and 

precipitation may directly affect physical, chemical, and biological processes in freshwater 

habitats (Prowse et al. 2006). Rising temperatures may stimulate aquatic productivity through 

mobilization of nutrients and organic matter and lengthening of the growing season (Rautio et al. 

2011). Yet, simultaneously, some thermally limited species (e.g., Lake Trout Salvelinus 

namaycush) will likely experience limited or declining habitats and ability to forage (McDonald 

et al. 1996). Changes in the timing, duration, and magnitude of precipitation events will alter 

surface water hydrology and influence aquatic species’ abilities to access habitats or persist in 

them (Bowling et al. 2003; Prowse et al. 2006). The richness of fish species in lakes is influenced 

by surface water connectivity of lake habitats to a stream network (Hershey et al. 2006), and 

certain species may respond directly to water flow rates (i.e., stream discharge) as a cue for 

migration timing (Heim et al. 2016b). With changing climate, the anticipated changes in water 

temperatures and surface water availability/connectivity (Martin et al. 2009; Arp et al. 2012) will 

affect fish species distribution and habitat use or access (Reist et al. 2006).

Organisms adapted to the harsh, seasonally extreme environment of the Arctic use 

strategies that enable them to either tolerate conditions or migrate to preferable habitats (Prowse 

et al. 2006; Haynes et al. 2014). Flexibility and opportunistic behaviors found in Arctic species
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may provide them with the ability to respond to variability in their environment (e.g., Crawford 

1974; Heim et al. 2016a; Eloranta et al. 2015), but it is unknown whether the limits of a species’ 

plasticity will be exceeded under new climate patterns. Further, relatively little is known with 

respect to fish community composition and assemblage or food web structure in Arctic Alaska. 

Certain species are more well studied than others (e.g., Arctic Grayling Thymallus arcticus), yet 

those studies tend to focus on individual species or population level questions (e.g., Golden and 

Deegan 1998; Buzby and Deegan 2000; Heim et al. 2016b). Little information has been gathered 

on whole fish community assembly or food web structure in Arctic lakes (e.g., Hershey et al.

1999), and scarce information exists for fishes in the lake-dense Arctic Coastal Plain.

The low relief tundra of the Arctic Coastal Plain is a unique environment, where > 20% 

of the landscape is covered in lakes and streams (Martin et al. 2009). Permafrost processes are 

chiefly responsible for the creation of thermokarst water bodies on the landscape and provide an 

impenetrable barrier that contributes to surface flow of water during the spring freshet and 

summer months (Prowse et al. 2006; Martin et al. 2009). At the beginning of summer, snow 

melts and runs overland and through ephemeral channels, connecting permanent and temporary 

water bodies for a limited span of time. During this event, fish may colonize new or previously 

depopulated habitats (Haynes et al. 2014). Among fish species, certain functional traits (e.g., life 

history or body morphology) will foster opportunities for colonization of new habitats; for 

example, small body size may allow some fishes to move into new areas through shallow, 

marginal habitat. Other intolerant species or those with poor swimming abilities may not adapt 

readily to or have access to new habitats and may require relatively stable environments afforded 

by nearby refuge habitat (Hershey et al 2006, Haynes et al. 2014). However, disruptions to
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current hydrological dynamics and climate regimes will likely have profound effects on species 

abilities to access and persist in lake habitats.

The response from wildlife (fish, birds, and mammals) to a 30 year warming trend on the 

Arctic Coastal Plain remains largely unknown, but serves as the impetus for this work. The 

studies presented here were conducted as part of the U.S. Geological Survey’s Changing Arctic 

Ecosystems Initiative (for more information see: alaska.usgs.gov/science/interdisciplinary_ 

science/cae/index.php. Accessed: March 6, 2017), which aims to quantify wildlife and habitat 

response to ecosystem change in the Arctic. The focus of my dissertation was to understand the 

current dynamics between aquatic species, with particular focus on fish, and the physical 

environment while the Arctic warms. I focused on two primary areas -  community and food web 

structure in lentic (i.e. lake or pond) habitats -  because the fish community influences the flow of 

energy between aquatic and terrestrial habitats. Furthermore, fish and invertebrate prey are 

directly relevant to the potential success of an apex freshwater predator, the Yellow-billed Loon 

Gavia adamsii. At the outset of this study in 2011, Yellow-billed Loons were part of agency 

conservation efforts aimed at understanding the abundance and distribution of the species 

(USFWS 2014); and ongoing research that examines aquatic resource use (e.g., fish prey) by 

Yellow-billed Loons would assist in their assessment and conservation efforts (Uher-Koch et al. 

2014).

Lakes on the Arctic Coastal Plain contain summer foraging habitats for loons and 

resident or migratory fish species (Haynes et al. 2015; Heim et al. 2016b). A complete picture of 

aquatic food web function depends on the interaction of fish species’ colonization potential and 

feeding strategies (Beckerman et al. 2006; Pillai et al. 2011). In four chapters, I examined the 

importance of physical drivers on fish species composition and richness (Chapter 1) and the
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foraging roles of fishes (Chapters 2 and 3) -  fishes that ultimately lead to the formation and 

structure of aquatic food webs (Chapter 4). Considering the importance of surface water 

connectivity to individual species occupancy (Hershey et al. 1999; Hershey et al. 2006; Haynes 

et al. 2014), I was interested in examining its role, both locally and regionally, in driving patterns 

of species richness, assemblage composition, and food web patterns. Moving beyond single

species responses allowed me to explore relationships in metacommunities (collections of 

communities that are linked by migration between spatially subdivided habitats) and explore the 

role of colonization potential in local patch function. In lakes that are well connected to stream 

networks, colonization should occur readily and compensate for any extinction events (Hershey 

et al. 2006). In an environment as harsh as the Arctic Coastal Plain, where the average annual air 

temperature is -12°C, and winter occurs from October through May with aquatic habitats 

existing under >1.8 m of ice, the ability of fish species to access foraging habitat for the short 

summer growing season is critical.
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CHAPTER 1

SURFACE WATER CONNECTIVITY DRIVES RICHNESS AND COMPOSITION OF

ARCTIC LAKE FISH ASSEMBLAGES1

ABSTRACT

1. Surface water connectivity can influence the richness and composition of fish assemblages, 

particularly in harsh environments where colonisation factors and access to seasonal refugia are 

required for species persistence.

2. Studies regarding influence of connectivity on Arctic fish distributions are limited and are 

rarely applied to whole assemblage patterns. To increase our understanding of how surface water 

connectivity and related hydrologic variables influence fish assemblage patterns, we investigated 

species richness and composition of Arctic lake fishes over a large region, 8500 km2, of the 

central Arctic Coastal Plain, Alaska.

3. We collected fish presence/non-detection data from 102 lakes and used a hierarchical 

multispecies occupancy framework to derive species richness and inform species composition 

patterns. Our mean estimate of regional richness was 12.3 (SD 0.5) species. Presence of a 

permanent channel connection was an overriding factor affecting species richness (mean 3.6, 

95% CI 3.1-4.9), presumably driving lake colonisation potential. In lakes without a permanent 

channel connection, data suggest richness (mean 2.0, 95% CI 1.7-3.3) increased with the 

availability of in-lake winter refugia and with the potential of ephemeral connections during 

spring floods.

1 Laske, S. M., T. B. Haynes, A. E. Rosenberger, J. C. Koch, M. S. Wipfli, M. Whitman, and C. 
E. Zimmerman. 2016. Surface water connectivity drives richness and composition of Arctic lake 
fish assemblages. Freshwater Biology 61:1090-1104. doi:10.1111/fwb.12769
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4. Fish species functional traits and environmental faunal filters contributed to patterns of 

richness and assemblage composition. Composition corresponded with richness in a coherent 

manner, where each successive level of richness contained several discrete assemblages that 

showed similar responses to the environment. Lakes with permanent channel connections 

contained both widespread and restricted species, while the species-poor lakes that lacked a 

connection contained mainly widespread species.

5. This work provides useful baseline information on the processes that drive the relations 

between patch connectivity and fish species richness and assemblage composition. The 

environmental processes that organise fish assemblages in Arctic lakes are likely to change in a 

warming climate.

INTRODUCTION

An understanding of habitat patch connectivity is central to the field of landscape 

ecology. Connection among patches of suitable habitat facilitates movement of individuals and 

species across landscapes, and movement among patches depends on the arrangement, 

permeability and context of available patches and corridors (Wiens, 2002; Thomaz, Bini & 

Bozelli, 2007; Mehner, Emmrich & Hartwig, 2014). In freshwater ecosystems, fish distributions 

are controlled by surface water availability, with surface water connections facilitating fish 

movement and colonisation of unoccupied patches (e.g. Tonn & Magnuson, 1982; Jackson, 

Peres-Neto & Olden, 2001; Henriques-Silva, Lindo & Peres-Neto, 2013). When a patch is well 

connected, colonisation is rapid or continuous, compensating for local extinction events 

(Hershey et al., 2006). In particularly harsh environments, extinction rates may exceed 

colonisation permitted by ephemeral or permanent movement corridors (Schleuter et al., 2012); 

however, adaptation to these local conditions, or the presence of within-habitat refugia, may
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allow persistence in a given patch (Lesack & Marsh, 2010; Haynes et al., 2014). Thus, the 

interaction of surface water connectivity and patch characteristics contributes to landscape 

patterns of fish species richness and assemblage composition (Rathert et al., 1999; Sharma et al., 

2011; Miyazono & Taylor, 2013).

Further, environmental factors, such as surface water connectivity, act as a faunal filter 

(Tonn, 1990; Poff, 1997) and operate on fish assemblages differently depending on the life 

history of each species (Angermeier & Winston, 1998; Hershey et al., 2006; De Bie et al., 2012). 

Depending on its life-history characteristics (Winemiller & Rose, 1992), a species may or may 

not have the ability to pass through a series of multi-scale environmental filters to colonise a 

patch of aquatic habitat (Tonn, 1990; Poff, 1997; Jackson et al., 2001). At the regional scale, 

features of climate, geology and hydrology influence patterns of species richness or composition 

along environmental gradients, while at the local scale, physical isolation and patch-specific 

features (e.g. lake or stream size) influence species richness and composition within an 

individual patch (Tonn et al., 1990; Schleuter et al., 2012). Across broader landscapes, this 

creates a mosaic of local species pools, where species assemblage patterns arise from regional 

processes and local features, and the fish species response to them (Legendre, Borcard & Peres- 

Neto, 2005; Hershey et al., 2006).

Low-gradient Arctic landscapes are composed of a complex array of landforms largely 

shaped by permafrost dynamics (Bowling et al., 2003; Grosse, Jones & Arp, 2013). Repeated 

freezing and thawing of the active layer results in creation of hydrologic complexes of lakes, 

ponds, streams and wetlands that provide fish habitat. Arctic fish have adapted to extreme 

seasonal fluctuations in water availability, light and temperature through evolved strategies of 

avoidance or tolerance of extreme cold and seasonal loss of aquatic habitat (West et al., 1992).
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To avoid negative effects of winter, some species migrate to suitable overwintering refugia like 

deep lakes, springs or estuaries (Craig, 1984; West et al., 1992; Heim et al., 2016), while others 

stay in place and tolerate harsh local conditions (e.g. Ostdiek & Nardone, 1959; Lewis, Walkey 

& Dartnall, 1972). At the end of the Arctic winter, the spring freshet inundates the landscape 

with water, maximising surface water connectivity in the hydrologic network of lakes, ponds and 

wetlands (Bowling et al., 2003). These floods allow fish to move through ephemeral channels 

and redistribute themselves in otherwise unconnected systems as the growing season begins 

(Haynes et al., 2014). Species capable of passing through the same faunal filters may gain access 

to the same local patch, thereby comprising the local fish assemblage.

A limited number of studies have examined the influence of regional and local scales on 

Arctic fish distributions (Hershey et al., 1999, 2006; Haynes et al., 2014), and rarely have they 

focused on whole assemblage patterns (e.g. Hershey et al., 1999). This paucity of knowledge 

limits our understanding regarding the processes that influence fish species richness and 

assemblage composition in the Arctic. Extreme seasonality and flow regimes, and the array of 

fish species morphological and life-history adaptations for coping with harsh winters and short 

growing seasons, result in species-specific responses to variation in environmental conditions 

(Haynes et al., 2014). Hydrologic connectivity plays a primary role in determining individual 

fish species occupancy in lakes (Haynes et al. 2014). Recognizing this, we took the next step to 

examine how connectivity affects fish species richness and composition patterns, yielding a more 

comprehensive view of fish ecology for management of communities across landscapes rather 

than for individual species. This information will help elucidate current patterns of richness and 

assemblages in anticipation of the physical and biological changes that will arise from rapid 

climate warming (Prowse et al., 2006). Because of the strong response of Arctic freshwater
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ecosystems to climate-induced change in hydro-ecological processes, it is crucial to understand 

how lake fish assemblages change along a gradient of surface water connectivity.

We expected that surface water connectivity would be a primary driver of species 

richness in Arctic lakes, anticipating that lake connections would provide greater accessibility 

and colonisation potential for more species (Tonn & Magnuson, 1982; Olden, Jackson & Peres- 

Neto, 2001; Haynes et al., 2014). Further, we investigated the importance of hydrologically 

related landscape characteristics on fish species richness and assemblage composition (Table 

1.1). We predicted that variables that increased the amount of, or accessibility to, habitat 

(connection, surface area, maximum depth, total stream length, and total pond and lake area) 

would have positive effects on species richness and that variables that decreased the amount of 

or accessibility to habitat (bedfast ice, distance to nearest lake, distance between lakes and 

distance from coast) would have negative effects. Additionally, variables with the potential to 

support different species pools (catchment or ecological landscape) would maintain differences 

in richness. We aimed to determine whether the processes that organise species richness also 

operate on assemblages in a predictable fashion. We anticipated that the responses of individual 

species to variables of lake connectivity lead to an association among species such that species 

richness corresponds to a distinctive fish assemblage.

METHODS 

Study area

We sampled fish from freshwater lakes (surface area 0.13-14.89 km2; National 

Hydrography Dataset, U.S. Geological Survey, 2013) in an 8500-km2 section of the central 

Arctic Coastal Plain (ACP) within three catchments: Meade River, Admiralty Bay and Ikpikpuk 

River (Fig. 1.1). Lakes are an important feature in this region, covering over 40% of the
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landscape, and permafrost processes are chiefly responsible for both lake formation and 

distribution (Grosse et al., 2013). Permanent streams originate in the foothills of the Brooks 

Range and flow generally south to north until they reach the Beaufort Sea (Martin et al., 2009). 

Climate and permafrost dynamics regulate hydrology and the natural flow regime across the 

ACP, where surface water is available only for a short time, typically from mid-May to 

September. Flooding is common during the spring freshet in June, when high volumes of water 

from ice and snowmelt move over the landscape, temporarily increasing waterbody volume and 

connectivity. The numerous ephemeral connections created by this flooding may temporarily 

connect otherwise isolated lakes, ponds and wetlands to the hydrologic network.

Field methods

In summer 2009-10, we visited 86 lakes once each for 2-3 days (for lake selection 

information, see Haynes et al., 2013). We set two fyke nets constructed from 6-mm stretched 

mesh with 15.2 m x 1.2 m wings, a 30.5 m x 1.2 m centreline and a 1.1 m square opening (for 

additional details, see Haynes et al., 2014). We checked fyke nets every 12 h over a 24-h time 

period (2 spatial replicates + 2 temporal replicates = 4 replicates). We deployed two 

multifilament gill nets measuring 38 m x 1.8 m, with five panels ranging in mesh size from 13 to 

65 mm. Each gill net was checked for fish three times with 3 h of soak time between checks (2 

spatial replicates + 3 temporal replicates = 6 replicates). In summer 2011-13, we selected 23 

lakes for sampling at two locations in the Admiralty Bay catchment based on their sub-basin 

location and surface water characteristics (connected versus not connected). We used fyke nets 

with a 1 m diameter opening, wings 9 m x 1 m, with 6-mm stretched mesh. Fyke nets in 2009-10 

and 2011-13 differed only slightly in design, were deployed using similar methods and captured 

fish of the same size (based on mesh size). We found agreement in fish species detections and
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preliminary analysis of detection probabilities for six lakes sampled with both fyke net designs. 

For those six lakes that we sampled on more than one occasion (2009-10 and 2011-13), only 

data from the first sampling event were included in the analysis. In 2011, we sampled each lake 

for two consecutive days using two fyke nets that were soaked overnight for 12 h (2 spatial 

replicates + 2 temporal replicates = 4 replicates). In 2012 and 2013, we deployed three fyke nets 

and soaked them for 4 h over four nights (total soak time of 12 h for three spatial replicates, over 

4 nights = 4 replicates). We deployed two multifilament gill nets (North American standard; 

Lester, Bailey & Hubert, 2009) measuring 24.8 m x 1.8 m, with eight panels ranging in mesh 

size from 19 to 64 mm over 2-3 days and soaked gill nets for 3 h, checking for fish every hour 

(sum of two spatial locations over two to three nights = 4-6 replicates).

Data analysis

We estimated species richness using a hierarchical multi-species occupancy model that 

joins single-species occupancy models (MacKenzie et al., 2006) at the community level (Dorazio 

et al., 2006; Zipkin et al., 2010; Zipkin et al., 2012). This modelling framework allowed us to 

produce richness estimates for the entire study region and for individual freshwater lakes while 

accounting for imperfect detection of both observed and unobserved species (Dorazio et al.,

2006; Zipkin et al., 2010). Without accounting for species-specific detection, estimates of both 

species richness and composition would be biased (Zipkin et al., 2010). Given the paucity of fish 

species in the Alaskan Arctic, it is critical to account for imperfect detection -  missing one 

elusive species could have a dramatic effect on richness and on the inferences made regarding 

community patterns (MacKenzie et al., 2006; Zipkin et al., 2010).

For all lakes sampled, we assumed that each lake was closed to changes in fish species 

occupancy during the sampling period (MacKenzie, 2005). We constructed a matrix of species
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occurrence for observed species (i = 12 species), at each location (j = 102 lakes; one brackish 

lake was excluded from analysis) and sampling event (k = 10 replicates; 4 fyke net + 6 gill net). 

We allowed missing occupancy data to remain in the matrix for the subset of lakes with fewer 

than 10 replicate nets sets. We then augmented the model with potential but unobserved species 

by creating a matrix of non-detection encounter histories (Dorazio et al., 2006; Zipkin et al., 

2010) limited to three additional species known to occur on the ACP (Alaska Department of Fish 

and Game, Fish Resource Monitor, accessed Sept. 2014). This addition of unobserved species 

was meant to improve our estimates of richness in the region by accounting for those species that 

are exceptionally rare or not detected at any sample locations.

We accounted for differences in detection among species by including a covariate for 

gear type and for lake surface area, both of which strongly influence detection (Haynes et al.,

2013). We did not include time of net set as a covariate; Haynes et al. (2013) found no difference 

in fish species detection probabilities for nets set at different time periods (morning-evening and 

evening-morning), likely because diel signals are muted in the Arctic summer that receives 24 h 

of sunlight (Kahilainen et al., 2004). The use of two gear types, fyke and gill nets, improved 

overall detection of species at the assemblage level, given differences in capture likelihood of 

small- and large-bodied species to each gear type (for more information on method-based 

detection probabilities, see Haynes et al., 2013). Including lake size as a covariate for detection 

was important, given that larger lakes require more effort to adequately sample, and as time and 

number of nets were limiting, we accounted for size differences by including surface area as a 

covariate of detection.

To account for the uneven distribution of species across the range of environmental 

conditions, we examined covariates for species occurrence. For each potential covariate, we
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determined the range of values at each sample lake (Table 1.2). We classified surface water 

connectivity of a lake as either permanently connected or disconnected based on whether we 

detected a channel joining the lake to the hydrologic network during field sampling, or from 

digital maps (National Hydrography Dataset, NHD) or aerial photographs. Along an east to west 

gradient, lakes belonged to one of three catchments at the eighth-level Hydrologic Unit Code, 

which we determined from the NHD. Lakes existed within one of three ecological landscapes 

that differed in climate, physiography and geology: Arctic sandy lowland, Arctic peaty (silty or 

sandy) lowland and Arctic sandy riverine (Jorgenson & Grunblatt, 2013). We obtained lake 

surface area from the NHD. The proportion of bedfast ice was calculated from the proportion of 

the lake area that did not freeze to the bottom based on Synthetic Aperture Radar data (from 

Grunblatt & Atwood, 2014). Maximum depth was determined in the field in 78 of the 102 lakes 

by sounding the lake bottom with either an integrated GPS depth sounder (GPSmap 430s; 

Garmin International Inc., Olathe) or a portable depth sounder (SM-5; Speedtech Instruments, 

Great Falls).

We determined the distance to coast by manually measuring the shortest distance from a 

lake’s surface water outlet to the coast via the hydrologic network on an orthophotograph in 

Geographic Information Systems (ArcGIS Version 10.1; Esri, Redlands). If the lake was 

disconnected and possessed no surface water outlet, we measured from the lake’s edge overland 

to the nearest connected surface water before measuring along the network. We calculated 

distance to the nearest lake, average distance between lakes, total stream length, and total pond 

and lake area for each sample lake through analysis of the NHD in GIS, and we classified the 

spatial scale of all variables as either local or regional based on their extent (based on Tonn, 

1990; local 10-2-102 km; regional, 103-1 0 5 km). We measured the distance to the nearest lake as
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the overland Euclidian distance from the edge of the sample lake to nearest edge of an adjacent 

lake and calculated average distance between lakes as the mean of the distance to nearest lake 

within a 5-km radius (local scale). We calculated total stream length and total pond and lake area 

by summing the area or length within a 5-km radius (local scale) and within 50-km radius 

(regional scale), with the sample lake at the centre.

Given the 13 variables of interest, we selected five covariates for our model based on the 

findings of Haynes et al. (2014): presence/absence of a permanent surface water connection 

(Connect), the distance to nearest lake (Nearlake), average distance between lakes (Avedist), 

distance to the coast (Distcoast) and the proportion of lake area covered with bedfast ice in 

winter (Ice). We modelled occupancy probability for species i in lake j  with the logit 

function, where the intercept term depended on whether the lake was connected:

logit (¥j,j) = a 1 iConnect. + a2iNea.rla.kej + a S ^ v e d is t j  + a4iD istcoastj + aSJcej  .

We assumed that all species-specific parameters came from a normal community-level 

uninformed, diffuse, prior distribution [Normal (0, 1000), Uniform (0,1); Zipkin et al., 2010], 

and estimated parameters through a Bayesian approach using Markov chain Monte Carlo 

simulation in R package R2WinBUGS (Sturtz, Ligges & Gelman, 2005) and WinBUGS (Lunn et 

al., 2000). We ran three chains of 60,000 iterations with a burn-in of 30,000 and thinned 

posterior chains by 10. We evaluated model convergence using the Gelman-Rubin diagnostic 

(Brooks & Gelman, 1998) and visually by examining the Markov chains to ensure adequate 

mixing (Gelman & Hill, 2007).

Estimates of species richness come from the posterior distribution and can be used to 

examine relations between species richness estimates and the covariates included in the
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hierarchical model. We reported the mean as the estimate of richness (scaled up to account for 

unsampled species) for both the region and individual lakes and compared model estimates to 

naive richness (observed number of species). We determined the proportion of lakes where 

estimates of richness were greater than naive richness. Further, we summarised richness 

estimates for connected and disconnected lakes independently because of the strong influence of 

surface water connectivity on fish life history and lake access (Tonn & Magnuson, 1982; Olden 

et al., 2001; Haynes et al., 2014). For lakes where estimated richness was greater than naive 

richness, we determined the proportion of connected and disconnected lakes where richness 

estimates exceeded richness observations. We also determined the number of lakes at each level 

of richness, S , in terms of estimated richness, naive richness and the number of lakes where 

estimated richness equalled naive richness.

For each lake where estimated richness matched naive richness, we examined the 

composition of fish assemblages. This conservative approach allowed us to assess patterns of 

composition without assuming species identities for those lakes where detection of species was 

imperfect. At each richness level, we examined the composition of species to determine whether 

richness corresponded to a distinctive fish assemblage. We calculated elements of 

metacommunity structure to describe patterns of species distributions among lakes using R 

package metacom (Leibold & Mikkelson, 2002; Dallas, 2014). We considered the three metrics 

of coherence, turnover and boundary clumping. Coherence relates to the level that species 

respond to the same environmental gradient, turnover relates to changes in species composition 

across local patches, and boundary clumping measures the distinctiveness of assemblages 

(Henriques-Silva et al., 2013). Each of these elements provides clarity to the organisational 

patterns of known assemblages across the ACP landscape. We also discussed the potential
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relationship between known assemblages and surface water connectivity and environmental 

variables not included in the hierarchical model. We limited the examination to environmental 

variables that showed potential to influence naive richness in a post hoc analysis.

We performed a post hoc analysis to explore the relationship between naive species 

richness and covariates not included in the hierarchical model and assess covariates’ potential 

influences on fish assemblages in Arctic ecosystems. We examined scatterplots of naive richness 

across the range of conditions for each environmental variable separately for connected and 

disconnected lakes and considered variables to be potentially influential if they showed a 

positive or negative trend when viewing the raw data. The examination of these data was not 

intended to be conclusive, but to act as a guide in hypothesis development for future studies on 

the drivers of Arctic fish distributions or assemblages.

RESULTS

Multispecies occupancy model -  richness estimation

Our final model contained only the presence or absence of permanent channel connection 

term, suggesting the importance of this variable in determining species richness in ACP lakes. 

Our results showed little support for models containing covariates in addition to connectivity. 

Lack of convergence of models, which included Nearlake, Avedist, Distcoast and Ice, indicated 

the lack of signal in the data for those variables to inform richness. Put simply, of the variables 

we investigated and across our sample of lakes, surface water connectivity was the primary 

factor influencing species richness. Relationships between richness and other variables were too 

weak (see section on post hoc analysis for more details) given our sample size and the 

depauperate ACP fish fauna. This was due, in part, to low numbers of detections of most 

observed species (Table 1.3), with the exception of ninespine stickleback Pungitiuspungitius and
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least cisco Coregonus sardinella that we encountered more frequently.

We estimated a regional richness of 12 species (mean 12.3, SD 0.5), corresponding with 

our observation over the course of the study. Our augmentation of the model with three 

unobserved species did not elevate the mean richness estimates, but capped the 95% posterior 

distribution at a maximum of 14 species. The naive mean richness across all lakes was 2.6 

species (range 0-9), while the estimated mean richness across all lakes was 3.0 species (95% CI 

2.6-4.3). Of all lakes, 30% had an estimated mean richness greater than naive richness by one 

fish, and in 1% of lakes, the mean richness estimate was greater than naive richness by two fish. 

For a richness level of zero, S = 0, we observed seven lakes, but estimated only four fishless 

lakes. For all other richness categories, we found the following: S  = 1, 20 observed, 14 estimated; 

S  = 2, 30 observed, 29 estimated; S  = 3, 14 observed, 15 estimated; S  = 4, 20 observed, 28 

estimated; and S  > 5, 11 observed, 12 estimated. When we compared estimated versus observed 

richness in connected and disconnected lakes, estimates of richness were higher than observed 

for 48% of connected lakes and for 3% of disconnected lakes. Our estimated mean richness in 

connected lakes was 3.6 species (95% CI 3.1-4.9) com- pared with estimated mean richness in 

disconnected lakes at 2.0 species (95% CI 1.7-3.3; Fig. 1.2).

Species composition -  patterns between richness, assemblages and the environment

We examined the composition of species only in lakes where naive richness matched 

mean richness estimates (i.e. no evidence of imperfect detection; 70 of the 102 lakes, for S  = 0, 4 

lakes; for S  = 1,11 lakes; for S  = 2, 20 lakes; for S  = 3, 6 lakes; for S  = 4,18 lakes and for S  > 5,

11 lakes; Table 1.4). Our examination of metacommunity structure revealed that these Arctic 

lake assemblages (excluding fishless lakes) fit a Clementsian gradient, where metacommunities 

have multiple assemblages at the same richness level. Coherence was significantly positive (z =
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3.06, P  = 0.002) and contained fewer species absences in ordinated matrices than expected. 

Turnover, or the number of species replacements, was non-significant (z = 0.56, P  = 0.57), 

indicating that there were no more or less replacements of species than expected, and boundaries 

were clumped (Morisita’s index = 3.23, P  < 0.001), forming discrete assemblages, which 

respond similarly along environmental gradients and replace each other as a group.

Each of the four fishless lakes lacked a channel connection and were, on average, farther 

from the coast compared to lakes with fish (Table 1.4). All single-species lakes likely contained 

only ninespine stickleback; we saw no evidence for other species occurring alone (Fig. 1.3). The 

environmental characteristic common among most single-species lakes was the lack of a sur

face water connection (12 of the 14 lakes). In two-species lakes, ninespine stickleback generally 

co-occurred with Alaska blackfish Dalliapectoralis or least cisco (Table 1.4, S  = 2). The 

ninespine stickleback-Alaska blackfish assemblage was the dominant assemblage type out of all 

species combinations (16 of 70 lakes, 23%) and dominant among two-species assemblages (16 of 

20 known assemblages, 80%). This assemblage occurred in five connected and 11 disconnected 

lakes. However, all lakes that contained the ninespine stickleback-least cisco assemblage lacked 

a permanent surface water connection, which suggests that these lakes likely provided adequate 

overwintering habitat for the large-bodied species, although we have no depth information for 

these three lakes (Table 1.4; S  = 2).

The greatest number of three-species lakes contained an assemblage of ninespine 

stickleback, Alaska blackfish, and least cisco (50% of three-species lakes; Table 1.4). Two of the 

three lakes where this assemblage occurred were connected, as were the lakes containing 

ninespine stickleback, Alaska blackfish and Arctic grayling Thymallus arcticus. The addition of 

a fourth species was either broad whitefish Coregonus nasus or char (either Salvelinus malma or
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S. alpinus; Fig. 1.3). Ninespine stickleback, Alaska blackfish, least cisco and broad whitefish 

dominated the four-species assemblage type (Table 1.4, S  = 4), and this was the second most 

abundant assemblage type in the study area (72% of four-species lakes and 19% of all known 

assemblages). All but two lakes with this assemblage had a permanent surface water connection 

Among the four-species assemblages, lakes that contained slimy sculpin Cottus cognatus were, 

on average, closer to the coast and deeper than lakes with four-species assemblages without 

slimy sculpin (Table 1.4; S  = 4). Lakes with five or more species contained the common species 

found in lakes with four or less species, but also sporadically contained some rare species: pike 

Esox lucius, rainbow smelt Osmerus mordax, burbot Lota lota, humpback whitefish Coregonus 

pidschian and threespine stickleback Gasterosteus aculeatus (Fig. 1.3). Because the majority of 

assemblages with five or more species occurred only once in our study, we can say little with 

respect to specific environmental patterns between them (Table 1.4; S > 5). However, for all 

lakes with five or more species, a permanent channel connection was always present (Fig. 1.3).

Post hoc analysis -  trends between environmental variables and naive richness

We could not assess relations between estimated species richness and variables not 

included in the hierarchical model; therefore, we examined each variable though a post hoc 

analysis of naive richness. Post hoc trends of the four proposed variables (Nearlake, Avedist, 

Distcoast and Ice) and the remaining eight variables for which we hypothesised relationships 

(Table 1) showed five local and regional variables with potential to influence species richness 

(Fig. 1.4). We found positive trends for two variables that increased the availability or 

accessibility of habitat: maximum depth (Fig. 1.4a) and total local stream length (Fig.1.4b). The 

number of observed species increased with maximum depth in connected and disconnected 

lakes. Four additional metres of maximum depth (from 2 to 6 m) resulted in an increase of 1.5
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species in connected lakes and 2.0 species in disconnected lakes. The number of observed 

species also increased with increasing total local stream length. An increase of 50 stream 

kilometres (from 25 to 75 km) was accompanied by an increase in naive richness of 1.5 species 

in connected lakes and 0.5 species in disconnected lakes.

Two variables were negatively related to availability or accessibility of habitat: 

proportion of bedfast ice (Fig. 1.4c) and distance from coast (Fig. 1.4d). Proportion of bedfast ice 

in winter showed no trend with naive species richness in connected lakes but a negative trend in 

disconnected lakes. In disconnected lakes, where the availability of in situ overwintering habitat 

is likely of greater importance, naive richness approached zero when bedfast ice cover 

approached 100%. The response of naive species richness to distance from coast was similar for 

lakes connected and disconnected to the hydrologic network. At a distance of 200 km from the 

coast, naive richness was reduced ca. 1.5 species compared with naive richness at 50 km from 

the coast. We also found that the arrangement of catchment was influential to naive richness, 

suggesting possible differences in the species pool (Fig. 1.4e). The most western catchment, 

Meade River, averaged two or less species observed per lake, and naive richness did not exceed 

three species. In lakes of the Admiralty Bay and Ikpikpuk catchments, we observed more 

species, with an average of two or more species per lake and naive richness as high as nine 

species.

DISCUSSION

Presence of a permanent channel connection was an influential variable affecting species 

richness in lakes across the ACP region. In addition to its known effect on individual species 

distributions (Hershey et al., 2006; Haynes et al., 2014), we found surface water connectivity 

also influenced fish assemblage composition. Connected lakes contained both spatially
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widespread (e.g. ninespine stickleback) and restricted (e.g. humpback whitefish) species, while 

isolated, species-poor lakes contained mainly widespread species (Snodgrass et al., 1996; 

Henriques-Silva et al., 2013). With increasing richness, species were generally added to 

assemblages in a sequential manner, a pattern common to harsh and homogenous environments 

(Kodric-Brown & Brown, 1993; Henriques-Silva et al., 2013). Yet, these additions are not 

perfectly predictable given species richness. The Clementsian gradient of assemblages describes 

metacommunities that have multiple assemblages at the same richness level, and that those 

assemblages may replace one another along a similar environmental gradient (Henriques-Silva et 

al., 2013). We see this in comparisons of assemblages at each richness level >1 (S = 2); the wide 

variation in environmental variables contributed little to distinctions between assemblages, even 

though each environmental variable we examined was potentially influential to richness. Likely, 

fish species occupancy in any lake patch resulted, in part, from particular species functional traits 

(e.g. life history and body morphology; Poff, 1997; Haynes et al., 2014).

By examining the common assemblages, we see patterns that support the interaction 

between faunal filters and species functional traits (Tonn, 1990; Winemiller & Rose, 1992; Poff, 

1997). Organisation of assemblage composition began with one of the most tolerant and the most 

widespread species, ninespine stickleback (Lewis et al., 1972; Haynes et al., 2014). This fish was 

consistently found in connected and disconnected lakes and was the sole fish resident in single

species lakes. This species showed little dispersal limitation, which allowed it to gain access 

even to isolated lakes (Henriques-Silva et al., 2013). Alaska blackfish was the next species to 

appear. Also highly tolerant, this species was widely distributed but does not have the same 

dispersal behaviours as the ninespine stickleback and may not access the same ephemerally 

connected waterbodies (Ostdiek & Nardone, 1959; Cameron, Kostoris & Penhale, 1973; Haynes
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et al., 2014). Next, least cisco appeared in lakes with and without permanent channel 

connections. However, unlike its tolerant counterparts, least cisco may require more in-lake 

overwintering habitat and, when no channel connection is present, are better suited to deeper 

lakes that provide ample winter refugia compared to shallow lakes with limited refuge 

(Henriques-Silva et al., 2013; Haynes et al., 2014). Broad whitefish were found most often in 

connected systems, likely due to the migratory nature of this species (Craig, 1984) that 

necessitates the availability of nearby stream networks and coastal areas that provide habitat and 

lake access (Haynes et al., 2014). This agrees with our post hoc findings of increased richness 

nearer to the coastline and with increasing local stream length (Olden et al., 2001). At richness of 

five or more species, we were unable to discern compositional patterns, but expect that the 

patchy presence of these rare species arose from a combination of extinction and colonisation 

events taking place within a specific local habitat patch (Olden et al., 2001; Hershey et al., 2006).

As we anticipated, surface water connectivity was the primary driver of fish species 

richness and associated assemblages in Arctic lakes. Fish species partitioned themselves along a 

connectivity gradient or filter (Tonn, 1990). With nearly half of all species occupying only 

connected lakes, we can speculate that their dispersal was limited to permanent migratory 

pathways and that these species are less opportunistic than others (De Bie et al., 2012). Other 

species, like Arctic grayling, may use surface water flows as a cue to move among habitats 

(Heim et al., 2015) and often show fidelity to summer feeding sites, which reduces the risks 

associated with foraging in risky or ephemerally connected habitats (Buzby & Deegan, 2000; 

Heim et al., 2016). Further, species may occupy both connected and disconnected lakes, but be 

constrained by factors such as water depth. Slimy sculpin, for example, occur in deep lakes 

(Hershey et al., 2006; Haynes et al., 2014). Their limited dispersal abilities and potential need for
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large amounts of overwintering habitat may ultimately restrict their distribution (Haynes et al.,

2014). In contrast, ubiquitous species, like ninespine stickleback, exhibit few specific 

environmental requirements and are tolerant to extreme thermal and dissolved oxygen regimes 

(Lewis et al., 1972; Cameron et al., 1973). Not only can they persist in disconnected lakes but 

their ability to move through shallow, temporary corridors gives this species a colonising 

advantage for ephemerally connected habitats (Cameron et al., 1973). Given differences in 

species ecology, assemblages in connected lakes are likely structured primarily by species 

dispersal abilities and colonisation factors, while assemblages in disconnected lakes are likely 

structured by local extinction factors (Taylor, 1997).

We found that colonising factors -  primarily a permanent channel connection -  increased 

access to wetted habitats and provided migratory corridors important for increasing richness and 

adding new species. Proximity to coastal habitats also plays a role in colonisation of lakes 

because of the importance of sources such as refuge habitats -  deep lakes, stream channels and 

estuaries (Olden et al., 2001; Beisner et al., 2006; Haynes et al., 2014). For example, downstream 

locations tend to support greater species richness, because they are closer to colonising sources 

than upstream habitats (Olden et al., 2001). On the ACP, downstream locations are nearer to the 

coastline and may be more environmentally stable and have greater refuge potential than inland 

locations (Miyazono & Taylor, 2013). Additionally, coastal areas are stream dense. The vast 

network of connected channels and lakes potentially operates as a metacommunity that promotes 

colonisation of species (Mehner et al., 2014) and stabilises richness or saturates local 

assemblages (Schleuter et al., 2012).

Increased species richness near the coast may be driven, in part, by migratory species, 

which are confined to habitats made available via permanent migratory pathways. For example,
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whitefish use the narrow band of brackish water along the Beaufort Sea coast as a dispersal 

corridor (Craig, 1984). This band of water allows fish to move parallel to the coast from species 

pools in large rivers of Canada and eastern Alaska towards Admiralty Bay and into the Ikpikpuk, 

Admiralty Bay and Meade catchments (Craig, 1984). Following this pathway, we observed a 

reduction in species richness further west, particularly for disconnected lakes of the Meade River 

catchment. Reduced richness in lakes of the Meade River catchment should be accompanied by 

reduction in the pool of available species, because five of the 12 known species only occur in 

lakes with local richness greater than five.

Extinction factors, which limit local habitat availability and local persistence of 

vulnerable species, are also likely important for species richness and composition (Hershey et al., 

2006; Haynes et al., 2014). Compared with shallow lakes, deep lakes supply more habitat and 

stable environments for pelagic and benthic species (e.g. char or burbot; Hershey et al., 2006; 

Dembkowski & Miranda, 2014). Deep lakes also act as refuge habitat in the winter, because they 

contain adequate volumes of oxygenated water for overwintering fish (Hershey et al., 2006). 

Adequate deep-water habitat in disconnected lakes supports the overwintering populations of 

large-bodied salmonids like least cisco, Arctic grayling, broad whitefish and char. Reduced 

richness in disconnected lakes was likely tied to effects of isolation and harsh, hypoxic winter 

conditions (Tonn, 1990; Schleuter et al., 2012). Ice-rich, disconnected lakes likely experience 

frequent winterkill events and were, therefore, dominated by small-bodied, tolerant species like 

ninespine stickleback and Alaska blackfish (Danylchuk & Tonn, 2003; Haynes et al., 2014).

Permanent and ephemeral connections provided environmental stability to assemblages 

in connected and disconnected lakes. For example, after local extirpation from a harsh winter, 

fish species can return to lakes from refuge habitats as conditions improve. In permanently
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connected lakes, where colonisation potential is high, richness readily returns to its former level 

(Tonn & Magnuson, 1982; Hershey et al., 2006), and, in disconnected lakes, the spring freshet 

may provide a brief opportunity for fish to colonise otherwise isolated lake ecosystems (Heim et 

al., 2015). With greater flood frequency or duration comes greater colonisation opportunity 

(Baber et al., 2002; Haynes et al., 2014). Without an ephemeral pulse of water, colonisation to 

disconnected lakes is unlikely. Our work suggests that these ephemeral connections may be 

particularly important to otherwise disconnected lakes and to opportunistic dispersers that 

overwinter locally and readily seek out vacant habitats.

Implications of future climate change

Our study on the relation between surface water connectivity and fish species richness 

and assemblage composition provides an informative baseline, as the environmental processes 

that organise fish assemblages in Arctic lakes are likely to shift with warming climate (Wrona et 

al., 2006). In this region, rates of warming are approximately twice the global average, exposing 

tundra ecosystems to immediate consequences (Prowse et al., 2006). Apart from increasing water 

temperatures, new climate patterns are predicted to lengthen the ice-free season, degrade 

permafrost and increase evapotranspiration, processes that structure surface water hydrology 

(Prowse et al., 2006; Reist et al., 2006; White et al., 2007). To predict future changes in the 

Arctic, it is crucial to understand mechanisms that give rise to the distribution of Arctic species 

and how the physical and biotic processes important to species will change. The empirical data 

we present provide insights into the potential for future changes in Arctic fish communities.

Our results support the notion that alterations to surface water hydrology and dynamics 

could lead to profound changes in lake fish assemblages across the landscape (Reist et al., 2006). 

The projected change to surface water connectivity of habitats may reduce colonisation
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opportunities for fish (Thomaz et al., 2007). Species that rely on permanent channel corridors or 

have specific requirements under the current flow regime may shift in distribution and 

dominance in the landscape, leading to changes in local species richness or assemblage 

composition (Hershey et al., 2006; Haynes et al., 2014). Alterations to lake water budgets 

through increased evapotranspiration may dry ponds, lakes and formerly permanent channel 

connections (Tejerina-Garro, Fortin & Rodriguez, 1998; Bowling et al., 2003). Drying would 

effectively isolate lakes from the hydrologic network, preventing access or trapping fish in a 

system at the end of the ice-free season (Prowse et al., 2006; Haynes et al., 2014) or limit 

dispersal pathways on which fish rely for movement between habitats (Beisner et al., 2006; 

Sharma et al., 2011). Given that fish are important ecosystem components -  playing key roles in 

energy flows as predators of aquatic invertebrates and as prey of top avian predators -  an 

understanding of natural patterns and processes will help to manage these landscapes for 

ecosystem resilience in a changing climate.
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Figure 1.1. Study area on the Arctic Coastal Plain of Alaska within three major catchments. 
Standing surface water is shaded grey, whereas lakes sampled for fish are shaded black.
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Figure 1.2. Estimated species richness for connected and disconnected lakes; gray points 
represent mean estimates with standard deviations for each of the individual sample lakes (points 
are staggered for viewing) and the large black points represent the mean and 95% credible 
interval for connected and disconnected lakes.
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Figure 1.3. Line plots demonstrating the organisation of individual species across fish species 
richness levels for connected lakes (solid lines) and disconnected lakes (dashed lines). Lines 
correspond to the range of richness levels over which each fish species was observed. Only lakes 
where richness estimates equalled naive richness were included in this plot.
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Figure 1.4. Trends of naive species richness in connected lakes (filled -  solid line) and 
disconnected lakes (open -  dashed line; points staggered for viewing) for (a) maximum depth, 
(b) total local stream length, (c) proportion of lake area with bedfast ice, (d) distance from coast 
and (e) catchment. For the catchment plot, (e) the upper and lower box edges correspond to the 
first and third quartiles, points beyond the whiskers are outliers.
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Table 1.1. The predicted influence of environmental covariates on fish species richness in lakes of the Arctic Coastal Plain. 
Covariates, grouped here by landscape scale (local or regional) and category, can have a positive (+) or negative (-) effect on richness 
or alter the species pool (A).

Scale Category Variable Predicted
response

Justification Reference

Local Connectivity Connection + Direct lake access provided to Tonn & Magnuson, 1982; Olden
more species et al,. 2001; Haynes et al., 2014

Morphology Surface area + Find more species in larger area Tonn & Magnuson, 1982;
Amarasinghe & Welcomme,
2002; Haynes et al, 2014

Bedfast ice - Reduction in winter refuge, strong Tonn et al., 1990; Hershey et al,
extinction factor 2006; Haynes et al., 2014

Maximum depth + Increased habitat diversity, provide Tonn et al., 1990; Baber et al,
winter refuge 2002; Hershey et al., 2006

Landscape Context Total stream length + Increase access to stream/lake Rathert et al., 1999;
habitat, more wetted habitat Kirsch & Peterson, 2014

Total pond & lake area + More wetted habitat Baber et al., 2002

Distance to near lake - Lake access is restricted when Haynes et al., 2014
water bodies are distant

Distance between lakes - Lake access is restricted when Haynes et al., 2014
water bodies are distant

Regional Landscape Context Total stream length + Increase access to stream/lake Rathert et al, 1999;
habitat, more wetted habitat Kirsch & Peterson, 2014

Total pond & lake area + More wetted habitat Baber et al., 2002

Distance from coast - Movement corridor and Beisner et al., 2006; Uchida &
overwintering habitat provided Inoue, 2010; Haynes et al., 2014
near coastline

Watershed A Species pool differs by watershed Angermeier & Winston, 1998

Ecological landscape A Species pool differs by ecosystem Angermeier & Winston, 1998;
features Argent et al., 2003



Table 1.2. Covariate attributes for the Arctic lakes used to model fish species richness.

Variable Mean Range Classification
Connection - - present/absent
Watershed - - Meade/Admiralty/Ikpikpuk
Ecological landscape - - sandy/peaty/riverine
Surface area (km2) 1.3 0.2 - 14.9 -

Bedfast ice (%) 36 4 - 100 -

Maximum depth (m) 3.6 1.4 - 8.3 -

Distance to coast (km) 86.8 9.6 - 291.9 -

Distance to near lake (m) 312 16.5 - 1,991 -

Distance between lakes (m) 202 105 - 340 -

Local stream length (km) 53.4 4.1 - 98.3 -

Local pond & lake Area (km2) 23.5 13.2 - 33.9 -

Regional stream length (km) 4,402 3,674 - 5,064 -

Regional pond & lake area (km2) 1,869 1,257 - 2,321 -
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Table 1.3. Capture characteristics, including the number of lakes (of 102) with fish species present, the number of detections (of 910) 
for each species, and the total number captured in sampled lakes of the central Arctic Coastal Plain, Alaska. Family, scientific name 
and common name are given for all species. Number of detections was determined from 408 fyke net sets and 502 gill net sets.

Family Scientific name Common name No. lakes No. detections n captured
Cottidae Cottus cognatus Slimy sculpin 9 20 29
Esocidae Esox lucius Pike 4 4 6
Gadidae Lota lota Burbot 4 5 7
Gasterosteidae Gasterosteus aculeatus Threespine stickleback 1 2 2

Pungitius pungitius Ninespine stickleback 94 327 76,397
Osmeridae Osmerus mordax Rainbow smelt 2 5 51
Salmonidae Coregonus nasus Broad whitefish 32 76 163

Coregonus pidschian Humpback whitefish 2 6 13
Coregonus sardinella Least cisco 54 272 2189
Salvelinus spp. Char 3 10 22
Thymallus arcticus Arctic Grayling 15 27 57

Umbridae Dallia pectoralis Alaska blackfish 48 83 182
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Table 1.4. Descriptive statistics of known fish assemblages, for each richness level (S), found on the central Arctic Coastal Plain, 
Alaska. The number of lakes (n) and number of connected or disconnected lakes (C,D) with each known assemblage are accompanied 
by the mean and standard deviation (SD) for the total local stream length (m), distance from coast (km), the proportion of bedfast ice 
in winter (%), maximum depth (m), and the number of lakes with a particular assemblage in each of the three watersheds (MR, Meade 
River; AB, Admiralty Bay; IR, Ikpikpuk River). Species codes for fish species are: AB, Alaska blackfish; AG, Arctic grayling; BW, 
broad whitefish; BB, burbot; CH, char; LC, least cisco; HW, humpback whitefish; NS, ninespine stickleback; PK, pike; RS, rainbow 
smelt; SS, slimy sculpin; and TS, threespine stickleback.
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S Assemblage n C,D Stream 
Length (m)

Distance from 
Coast (km)

Bedfast 
Ice (%)

Maximum 
Depth (m) Watershed

Mean SD Mean SD Mean SD Mean (n*) SD MR AB IR
0 Fishless 4 0,4 27.4 11.4 171 17.9 51 19 2.4 (4) 0.5 3 1 0

1 NS 11 1,10 49.7 24.1 110.8 64.2 44 23 3 (8) 1.8 3 7 1

2 NS AB 16 5,11 53.2 18.3 104.7 43.9 39 10 3.7 (13) 1.1 1 13 2

NS LC 3 0,3 66.6 20.2 55.4 22.2 46 47 - - 0 1 2

NS AG 1 0,1 21.7 - 45.1 - 17 - 2.7 (1) - 0 1 0

3 NS AB LC 3 2,1 54 41 88.5 51.7 28 18 2.6 (1) - 0 3 0

NS AB AG 2 2,0 33.8 14.3 169.2 120.2 16 6 2.7 (1) - 1 1 0

NS LC SS 1 0,1 79.2 - 48.7 - 10 - - - 0 1 0

4 NS AB LC BW 13 11,2 62.7 13.8 65.6 36.2 35 20 3.7 (10) 1.2 0 6 7

NS AB LC AG 2 1,1 40.6 7.6 63.5 2.7 22 13 4.6 (1) - 0 0 2

NS AB LC SS 2 2,0 78.2 15.6 35.1 0.6 12 5 5.5 (2) 1.2 0 2 0

NS LC SS CH 1 0,1 62.3 - 31.3 - 24 - 6.8 (1) - 0 1 0

> 5 NS AB LC AG BW 2 2,0 70.1 2.9 72.2 36.2 25 27 3.4 (2) 0.8 0 2 0

NS AB LC SS BW 2 2,0 66.8 5.4 40 10.5 18 7 4.4 (2) 0.4 0 2 0

NS AB LC AG SS 1 1,0 55.9 - 51.4 - 14 - 3.8 (1) - 0 0 1

NS AB LC BW NP 1 1,0 79.6 - 42.1 - 34 - 4.5 (1) - 0 0 1

NS AB LC AG NP RS 1 1,0 69.6 - 95.7 - 48 - 8.3 (1) - 0 1 0

NS AB LC AG BW BB 1 1,0 55 - 31.5 - 32 - - - 0 1 0

NS LC AG SS BW CH 1 1,0 41.2 - 119.6 - 35 - - - 0 1 0

NS LC AG BW RS BB HW TS 1 1,0 73.2 - 11.8 - 100 - 2.7 (1) - 0 1 0

NS AB LC AG BW NP RS BB HW 1 1,0 47.3 - 27.4 - 48 - 3.6 (1) - 0 1 0

*The number of lakes included in the mean, only a subset of lakes were measured for maximum depth
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CHAPTER 2

TOP-DOWN CONTROL OF INVERTEBRATES BY NINESPINE STICKLEBACK IN

ARCTIC PONDS1

ABSTRACT

Despite their widespread presence in northern latitude ecosystems, the ecological role of 

Ninespine Stickleback Pungitius pungitius is not well understood. Ninespine Stickleback can 

occupy both top and intermediate trophic levels in freshwater ecosystems, so it is likely that their 

role in food webs as a predator on invertebrates and as a forage fish for upper level consumers is 

substantial. We introduced Ninespine Sticklebacks to fishless ponds to elucidate their potential 

effects as a predator on invertebrate communities in Arctic lentic freshwaters. We hypothesized 

that Ninespine Stickleback would affect freshwater invertebrate communities in a top-down 

manner. We predicted that the addition of Ninespine Sticklebacks to fishless ponds would: 1) 

reduce invertebrate taxonomic richness, 2) decrease overall invertebrate abundance, 3) reduce 

invertebrate biomass, and 4) decrease average invertebrate body size. We tested our hypothesis 

at two locations by adding Ninespine Stickleback to isolated ponds and compared invertebrate 

communities over time between fish-addition and fishless control ponds. Ninespine Sticklebacks 

exerted strong top-down pressure on invertebrate communities mainly by changing invertebrate 

taxonomic richness and biomass and, to a lesser extent, abundance and average invertebrate size. 

Our results supported the hypothesis that Ninespine Stickleback may help shape lentic food webs 

in the Arctic.

1 Laske, S. M., A. E. Rosenberger, W. J. Kane, M. S. Wipfli, and C. E. Zimmerman. 2017. Top- 
down control of invertebrates by Ninespine Stickleback in Arctic ponds. Freshwater Science 
36:124-137. doi: 10.1086/690675
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INTRODUCTION

Fish can shape the structure and composition of aquatic communities through top-down 

control on their invertebrate prey (Power 1990, Carpenter and Kitchell 1993). Despite the clear 

capacity for fishes to drive top-down effects, isolating the role of individual fish species or 

trophic levels is difficult given the complexity of aquatic food webs (e.g., Winkelmann et al. 

2011, Helenius et al. 2015). Direct effects of predation may be masked or modified by other 

members of the food web, confusing specific trophic relationships (Polis 1994, Batzer et al.

2000). Also, the relative position of fish predators in a food web may affect predator-prey 

interactions at lower trophic levels or alter interspecific interactions (Jonsson et al. 2007). The 

indirect effects of predators on invertebrate communities (e.g., shifts in invertebrate behavior) 

may dilute the effect of direct consumption, masking important interactions (Batzer et al. 2000, 

Jonsson et al. 2007). Furthermore, predator effects are often reduced or altered by the spatial 

complexity of habitat (e.g., macrophytes), which can provide refuge for invertebrate prey 

(Gilinsky 1984, Zimmer et al. 2000, Hornung and Foote 2006). We are better able to describe 

specific interactions and the nature and pattern of the effect of specific fish species within their 

food webs via the use of experiments and studies comparing fishless to fish-inhabited systems 

(Power 1992, Polis 1994, Batzer et al. 2000, Lepori et al. 2012).

The presence of fish may change the composition, richness, abundance, biomass, or size 

of taxa in the invertebrate community relative to fishless systems (e.g., Gilinsky 1984, Knapp et 

al. 2001, Parker et al. 2001, Hornung and Foote 2006, Winkelmann et al. 2011). Consumption of 

a nonrandom subset of prey taxa by newly introduced fish can change richness or composition of 

invertebrate taxa (Gilinsky 1984, Winkelmann et al. 2011, Helenius et al. 2015). Often, within 

gape limitations, fish predators preferentially consume large-bodied prey, leading to a decrease 

in the overall size of invertebrates or to a community composed of
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smaller-bodied species (Brooks and Dodson 1965, Carlisle and Hawkins 1998, Knapp et al.

2001). This preference may alter the abundance or standing crop of invertebrates as fish 

predators consume invertebrate prey.

Small-bodied fish species are often a link in food webs that allows energy to flow 

laterally across habitat boundaries before it flows up the food chain (Schindler and Scheuerell 

2002, Vander Zanden and Vadeboncoeur 2002, Solomon et al. 2011). For example, Vander 

Zanden and Vadeboncoeur (2002) found that benthic production indirectly supported >35% of 

the diet of three piscivorous fishes because their small-bodied fish prey relied on benthic food 

sources. One such group of small-bodied fishes are the sticklebacks, Family Gasterosteidae, 

which, by virtue of their omnivorous dietary habits, often serve this intermediate role in aquatic 

food webs (Morrow 1980, Delbeek and Williams 1988, Hornung and Foote 2006). McFarland 

(2015) found that Ninespine Stickleback Pungitius pungitius are a valuable food resource for 

Arctic Grayling Thymallus arcticus and accounted for 88% of prey biomass consumed in a study 

on the Arctic Coastal Plain of Alaska. However, to date, no investigators have published studies 

on the influence of Ninespine Stickleback predation on invertebrate communities. The few 

related studies are limited to observation or comparisons with other sticklebacks or Arctic Char 

Salvelinus alpinus (Delbeek and Williams 1988, Gallagher and Dick 2011, McFarland 2015).

This paucity of information on the ecological role of Ninespine Stickleback is surprising 

given their circumpolar distribution and dominance in Arctic lakes (Morrow 1980, Haynes et al. 

2014, Laske et al. 2016). In terms of catch-per-unit-effort, the average numerical ratio of 

Ninespine Stickleback to other sympatric fish species in lakes of the central Arctic Coastal Plain 

of Alaska is ~800: 1 (SML, unpublished data), indicating they make up a large proportion of fish 

biomass and probably play a substantial role in food webs. Considering the rapid metabolism and
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dietary flexibility of Ninespine Stickleback (Cameron et al. 1973) and the associated high 

demand for food resources, they are likely to affect their invertebrate prey. In experiments on 

related species, total invertebrate abundance increased in the presence of Threespine Stickleback 

Gasterosteus aculeatus because predation pressure on large crustaceans released small-bodied 

microzooplankton from predation or competition and caused their numbers to rise (Helenius et 

al. 2015). Brook Stickleback Culaea inconstans competed with large-bodied predatory 

invertebrates for food, which led to depletions of predatory and noninsectivorous invertebrate 

biomass and functional replacement of invertebrate predators by Brook Stickleback (Hornung 

and Foote 2006).

Ninespine Stickleback have the potential to transfer energy along multiple trophic 

pathways (Gallagher and Dick 2011) because of their relative position in local food webs as 

either the top fish predator (when found as the sole predatory fish) or as an intermediate predator 

(when found with additional predatory fishes). They can mediate the transfer of energy from 

littoral habitats to predatory fish in the pelagic zone or indicate changes in the primary source of 

energy production (phytoplankton vs periphyton; Gallagher and Dick 2011). However, their 

precise role in Arctic food webs may be difficult to describe in natural habitats where ecosystem 

interactions are complex. The ponds and lakes that routinely contain populations of Ninespine 

Stickleback are structurally diverse, with open water, shallow weed margins, submerged 

vegetation, and areas of flooded tundra (Cameron et al. 1973), all of which may provide different 

cover and habitats for invertebrate prey. Furthermore, limnology differs between ponds and lakes 

(surface area [SA] > 0.1 km2). Lakes tend to be deeper, cooler, and less productive than ponds 

(Rautio et al. 2011) and the presence of predatory fishes in lakes may confound or mute the 

direct effects of Ninespine Stickleback on the invertebrate community. Zooplankton are larger
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and more abundant in fishless systems than in lakes or ponds with fish (Rautio and Vincent 

2006), but discerning the role of individuals in a multiple-predator environment is complex (Sih 

et al. 1998). Therefore, attributing influence solely to Ninespine Stickleback would be difficult. 

Thus, initial explorations of their ecosystem role may be best examined in simple, isolated pond 

systems.

The goal of our study was to investigate the role of Ninespine Stickleback as a predator in 

lentic freshwater food webs in Arctic Alaska via an addition-control experiment to detect top- 

down effects on invertebrate community structure. This experimental approach provided 

information on the direction and breadth of effects while controlling for external factors (e.g., 

waterbody type, invertebrate composition, and fish density). Essentially, we took the first step in 

establishing food web patterns that could be driven by the presence of Ninespine Stickleback in 

Arctic ponds and lakes. We predicted that the addition of Ninespine Stickleback to previously 

fishless ponds would have the following top-down effects: 1) reduce invertebrate taxonomic 

richness, 2) lower overall invertebrate abundance, 3) reduce invertebrate biomass, and 4) 

decrease average invertebrate body size. We repeated our experiment in small, isolated ponds 

over sequential years at 2 locations with differing environmental conditions, physiography, and 

geology (Jorgenson and Grunblatt 2013) to investigate the potential effect of local conditions on 

the role of Ninespine Stickleback in aquatic food webs.

METHODS

We selected trough ponds from two locations (hereafter, North and South) on the Arctic 

Coastal Plain, Alaska, in which to conduct our experiment (Fig. 2.1A-C). The low-relief tundra 

is underlain by thick, continuous permafrost, which inhibits subsurface drainage and leads to 

formation of various thermokarst water bodies. Troughs form in the cracks between polygonal
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ground formations and deepen as the ice beneath melts. These ponds measured ~1-2 m wide and 

0.5 m deep, with an average pond surface area of 25 m2 (Table 2.1). Trough ponds have limited 

submerged vegetative cover for invertebrates or fish to use, and most cover consists of 

overhanging grasses or flooded grass margins. Water in the ponds comes from snowmelt in June 

and is maintained through subsurface flows and precipitation events until refreezing by October 

(Koch et al. 2014). North is underlain with peat and has more standing surface water than South, 

which is underlain by sand. The location of ponds in upland areas and lack of surface water 

connections provided aquatic habitats naive to fish prior to our experiment.

At each location, we collected Ninespine Stickleback from one lake adjacent to the ponds 

(<1 km from the pond site). We set fyke nets with 6.4-mm mesh overnight to capture fish for 

transport to ponds. We moved fish in 19-L buckets, and supplied them with air with the aid of 

battery- operated aquarium pumps (Penn Plax Silent-Air B10, Hauppauge, New York). Fish 

ranged in size from ~30-60 mm total length. We did not keep any fish considered less than age-1 

and assumed that no size-based diet differences would exist based on published diet data for 

adults (Cameron et al. 1973, Delbeek and Williams 1988). We added Ninespine Stickleback to 

ponds based on a previously reported mean value of 11 g/m2 (Cameron et al. 1973), adjusting the 

number of fish added to attain the correct biomass given pond area. We counted the fish once we 

attained the desired biomass (Table 2.1). We added fish to 5 ponds at North (2013) and 6 ponds 

at South (2012). We selected an equal number of control ponds at each location.

One to 2 d prior to adding Ninespine Stickleback, we used a 243-qm-mesh D-frame dip- 

net with an opening of 604 cm2 to sample nektonic and benthic invertebrates in all ponds. We 

moved the net in a J-shaped motion that began with the net grazing the bottom, then passed the 

net horizontally along the bottom and up through the water column. We collected two replicate
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dip-net samples from each pond and noted the depth of the water at each sweep location. 

Replicate net samples increased the opportunity to capture rare taxa, and we did not compare 

within-pond variation based on these two samples. We examined taxa rarefaction curves before 

adding fish to assess whether collection was adequate (Appendix 2-A Figure 2-A1; Gotelli and 

Colwell 2001). At North, we sampled invertebrates in the same way 1, 3, and 6 wk post

introduction. At South, we sampled invertebrates 1, 2, and 8 wk post-introduction. We stored 

invertebrate samples in 95% ethanol for later processing. On post-introduction sampling days, 

we recaptured Ninespine Stickleback with unbaited minnow traps (23-cm diameter 44.5-cm 

length, two 2.5-cm openings, 6-mm steel mesh) and sampled the stomach contents by gastric 

lavage with a 22-gage intravenous catheter attached to a syringe. We flushed stomachs with 3 to 

5 mL of filtered pond water and stored stomach contents in 95% ethanol. We sampled 6 (North) 

or 5 (South) individuals at each fish-addition pond (total 5 30 fish/location on each sampling 

date). We then released fish back to the pond. At North, we also sampled stomach contents 1 d 

post-introduction.

In the laboratory, we identified all invertebrates from dip-net collections and stomach 

contents to the lowest practical taxonomic level and assigned a life stage (larva, pupa, or adult). 

For example, macroinvertebrates were identified to family, but Ostracoda were identified no 

lower than to class. From the dip-net samples, for each pond and sampling period, we captured 

images of up to 20 individuals of each taxon with a Leica DFC425 (Leica Microsystems, Buffalo 

Grove, Illinois) camera mounted on a dissection microscope. We digitally measured invertebrate 

lengths with ImageJ (version 1.48; imagej.nih.gov). We used length-mass regression equations 

from the literature to estimate biomass of invertebrates (Dumont et al. 1975, Pace and Orcutt
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1981, Culver et al. 1985, Benke et al. 1999, Sabo et al. 2002, Gruner 2003, Miyasaka et al. 2008, 

Rennie and Evans 2012).

Statistical analyses 

Invertebrates

We compared number of invertebrate taxa, abundance, biomass, and size of invertebrates 

in control and fish-addition ponds at each sampling time to assess whether invertebrate 

assemblage characteristics changed in the presence of Ninespine Stickleback. Number of 

invertebrate taxa was the number of unique invertebrate taxa found in each pond. Rarefaction 

was not possible because drastic differences in invertebrate abundance among addition 

treatments (e.g., post-addition at South: average count in control ponds = 4713 individuals, 

average count in fish-addition ponds = 118 individuals) rendered standardized measures of 

richness incomparable. At each pond and sampling time, we divided the number of invertebrates 

by the sweep depth of the two samples to calculate abundance (number of invertebrates/cm depth 

swept). To obtain biomass, we multiplied the number of invertebrates by the average biomass on 

a taxon-specific basis from length-mass equations (referenced above), and divided by the depth 

of the sweep to obtain biomass/cm of depth swept. We used mean weighted length calculations 

(following methods by Helenius et al. 2015) to estimate differences in overall invertebrate size 

between control and fish-addition ponds at each sampling time. We tested for effects of addition 

treatment and time while accounting for location (fixed effect) and pond (random effect) based 

on linear mixed-effects models in R package nlme (version 3.1-126; R Project for Statistical 

Computing, Vienna, Austria) and accounted for temporal autocorrelation with a 1st-order 

autoregressive structure for all models except our model for number of invertebrate taxa, which 

was based on compound symmetry (model selection based on lowest Akaike Information
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Criterion for small samples [AICc] score; R package AICcmodavg, version 2.0-4). Log(x)- 

transforming abundance and biomass values prior to analysis improved normality.

We used multivariate approaches to examine changes in invertebrate community 

composition caused by the addition treatment, time, and addition-treatment time interaction. We 

standardized abundances of individual taxa to species maxima and omitted taxa captured only 

once during the course of the study. We visually examined a non-metric multidimensional 

scaling (NMDS) plot (R package vegan., version 2.3-4) at 2 and 3 dimensions to assess which 

yielded the lowest stress. We then used repeated-measures multivariate analysis of variance 

(PERMANOVA) based on dissimilarities using Bray-Curtis distances (function adonis; R 

package vegan, version 2.3-4) to estimate the proportion of variation explained by location 

(North vs South), addition treatment, time, and the addition-treatment x time interaction in 

permutation tests (1000 iterations). We repeated these analyses on the mass of invertebrates to 

assess predation effects on invertebrate biomass.

Stomach contents

For each invertebrate taxon at all post-addition sampling times, we calculated frequency 

of occurrence as the number of fish in which the taxon occurred divided by the total number of 

fish with food in their stomachs. To calculate the mean proportion of diet items by number, we 

summed the invertebrates in the stomach contents of the 5 or 6 sampled fish (fish were 

pseudoreplicates within ponds) at each sampling time and calculated the numerical proportions 

for all taxa standardized to the total. We assessed the influence of time since introduction on the 

mean proportion of diet items by number in Ninespine Stickleback stomach contents with 

PERMANOVA on commonly consumed items (frequency of occurrence > 20%). This function 

allowed us to partition sources of variation and account for the pond effect in the permutation
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tests (1000 iterations). We then calculated similarity percentage (SIMPER; vegan) between diets, 

by numeric proportion, at the beginning and end of the experiment using dissimilarity matrices. 

At South, we compared diets at week 1 to week 8, and at North, we compared diets at day 1 to 

week 6 and diets at week 1 to week 6. Furthermore, we estimated the contributions of potentially 

influential taxa (mean contribution to dissimilarity > 10%) to dietary differences.

RESULTS

Invertebrates

Our prediction that introducing Ninespine Stickleback to ponds would decrease 

invertebrate richness was supported. Addition of Ninespine Stickleback reduced the number of 

invertebrate taxa in fish-addition ponds at both locations by an average of 21.7% compared to 

control ponds (North: t = -2.60, df = 45, p  = 0.01; South: t = -3.11, df = 45, p  = 0.003; Fig. 2.2A, 

B). Richness attenuated over the season at all ponds, but the reduction was greatest in fish- 

addition ponds. Compared to control ponds, richness in fish-addition ponds was reduced by an 

average of 4 taxa (31.2%) at North and 1 taxon (10.5%) at South. After the initial decrease, 

number of taxa did not differ detectably over time (post-addition; North: t = 0.20, df = 45, p  = 

0.84; South: t = -0.77, df = 45, p  = 0.44) or by location (t = -1.95, df = 45, p  = 0.06).

Support for our prediction that introducing Ninespine Stickleback would decrease invertebrate 

abundance was limited (Fig. 2.2C, D). Abundance initially decreased but then increased at North 

(addition treatment time interaction: t = 3.61, df = 40, p  < 0.001) but remained lower at South 

(addition treatment: t = -8.88, df = 18, p  < 0.001). After an immediate decrease (week 1), 

abundance stayed low throughout all sampling periods at South (time: t = 1.05, df = 40, p  =

0.30). Fish-addition ponds at South contained 98% fewer invertebrates/cm depth swept than their 

control-pond counterparts, but at North, fish addition interacted with time to confound the
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influence of fish introduction on invertebrate abundance. Abundance rebounded after an initial 

84% decrease (compared to control ponds). By the 6th wk post-addition, abundance of 

invertebrates in fish-addition ponds exceeded control-pond values by 23%. This increase in 

abundance was not accompanied by an increase in biomass (Fig. 2.2C, E).

At both locations, fish addition decreased invertebrate biomass (North: t = -3.06, df = 18, 

p  = 0.007; South: t = -5.13, df = 18, p  < 0.001; Fig. 2.2E, F), providing support for our 

hypothesis. As with abundance at South, after an initial decrease in biomass, invertebrate losses 

stabilized and did not continue through time. At all post-addition sampling times, invertebrate 

biomass was ~90% lower in fish-addition than in control ponds.

Our prediction that introduction of Ninespine Stickleback would decrease the overall size 

of invertebrates in the ponds was not supported. At both locations, fish addition did not affect 

mean weighted size of invertebrates (North: t = -1.36, df = 45, p  5 0.18; South: t = -1.13, df =

45, p  = 0.26; Fig. 2.2G, H). At North, length tended to diverge over time between addition 

treatments (addition-treatment x time interaction: t = -1.90, df = 45, p  = 0.06), but sampling time 

and the addition-treatment sampling time interaction were not significant at South, though the 

pattern of mean weighted lengths over time was similar for North and South ponds (Fig. 2.2G,

H).

NMDS plots showed the relative similarity of samples (centroids of all ponds in the 

addition-treatment-time group) for location, addition treatment, and time (Fig. 2.3A- F). Three 

dimensions reduced stress (0.16) and provided better fit for the data than 2 dimensions. Plots 

based on the first 2 dimensions (NMDS1 vs NMDS2; Fig. 2.3A, D) showed strong separation of 

samples by addition treatment and location and showed that pre-addition communities were more 

similar to communities in control than in fish-addition ponds. Proximity among samples
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suggested that fish addition had a greater influence than time on community structure. Plots 

based on the 1st and 3rd dimensions (NMDS1 vs NMDS3; Fig. 2.3B, E) showed separation by 

addition treatment along the 1st axis. Evaluation of the 2nd and 3rd dimensions (NMDS2 vs 

NMDS3; Fig. 2.3C, F) showed separation by location.

PERMANOVA supported the trends visible in the NMDS plot. Fish addition was an 

important factor in shaping invertebrate communities at North and South regardless of whether 

dissimilarities were based on abundance (R2 = 0.38, p  < 0.001) or biomass (R2 = 0.35, p  < 0.001). 

Time accounted for little of the variation in biomass among communities (R2 = 0.02, p  = 0.02). 

Time and the addition-treatment x time interaction accounted for little of the variation in 

abundances among communities (time: R2 = 0.02, p  = 0.02; addition-treatment x time 

interaction: R2 = 0.01, p  = 0.05). The amounts of variation in biomass or abundance among 

communities explained by sampling time (the repeated-measure) were <2%. Location, which 

appeared distinctly in our NMDS plots, was a secondary source of variation in abundance (R2 = 

0.20, p  < 0.001) and biomass (R2 = 0.22, p  < 0.001) among communities.

Stomach contents

Based on frequency of occurrence, the diets of Ninespine Stickleback were more diverse 

at North than South (Tables 2.2, 2.3). Three taxa occurred regularly in the diets of Ninespine 

Stickleback at both North and South. At South, Chironomidae (larva and pupa), Cyclopoida, and 

Harpacticoida had a frequency of occurrence >30% at each sampling time. At North, 

Chironomidae (larvae and pupae) and Cyclopoida had a frequency of occurrence >30% at all 

time periods and Harpacticoida had a frequency of occurrence >30% at wk 3 and wk 6. 

Harpacticoida, Chydoridae, and Ostracoda increased in frequency of occurrence (Tables 2.2, 2.3) 

and numeric proportion in fish stomach contents (Fig. 2.4) after the abundance of large-bodied
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prey declined. Chironomidae frequency of occurrence was consistent throughout the experiment 

(Tables 2.2, 2.3), and the numeric proportion of all Diptera (larvae and pupae), including 

Chironomidae, in the diets was relatively consistent (Fig. 2.4). We saw a shift from larger prey 

(e.g., Daphniidae) to small-bodied prey (e.g., Harpacticoida) at both locations (Fig. 2.4). 

Consumption of Daphniidae and Baetidae occurred only within the 1st wk after introduction, and 

differences in abundance indicated that these taxa were removed from the invertebrate 

communities of fish-addition ponds (Fig. 2.5A, B).

Given the differences in invertebrate communities by location, we analyzed the numeric 

proportion of diet contents separately for North and South. At both locations, we observed a 

change in stomach contents over time (PERMANOVA, North: R2 = 0.16, p  = 0.005; South: R2 = 

0.24, p  < 0.001). The dissimilarity matrix indicated changes in both proportion of diet items and 

identity of prey. Diets differed by 82% from week 1 to week 8 at South (SIMPER), primarily 

because of changes in Harpacticoida, Daphniidae, and Cyclopoida, with mean contributions to 

diet dissimilarity of 23 ± 16 (SD), 17 ± 19, and 15 ±14%, respectively. At North, diets differed 

by 81% from day 1 to week 6 and by 68% from week 1 to week 6. From day 1, Daphniidae and 

Harpacticoida drove these differences, with mean contributions to diet dissimilarity of 26 ± 15 

and 13 ± 11%, respectively. From week 1, Ostracoda and Harpacticoida supported these 

differences, with mean contributions to diet dissimilarity of 17 ± 19 and 12 ± 12%, respectively.

DISCUSSION

We found support for our hypothesis that Ninespine Stickleback exert top-down controls 

on invertebrate communities of small Arctic ponds common across the Alaskan Arctic 

landscape. The effects of fish on the invertebrate community occurred rapidly and persisted 

throughout the short growing season, and communities quickly shifted from pre-addition and
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control values. Selective feeding by Ninespine Stickleback (e.g., Ingram et al. 2011, Helenius et 

al. 2015) targeted specific taxa. This preferential feeding resulted in complete losses of large

bodied, nektonic taxa like Daphniidae and Baetidae, providing evidence that top-down effects 

can be strong enough to drive local extinctions. By the end of the experiment, Ninespine 

Stickleback consumption had shifted toward benthic prey like harpacticoid copepods. Behavioral 

differences between nektonic and benthic taxa probably contributed to the order in which these 

prey were consumed. Active prey or those swimming in the water column, like Baetidae and 

Daphniidae, may have a higher risk of encounter with fish predators (Wellborn et al. 1996) and 

might have been more likely to be consumed than taxa that use cover (e.g., tuft-weaving or tube- 

building midges; Gilinsky 1984, Power et al. 1992). By selecting specific taxa from the available 

pool (Delbeek and Williams 1988), Ninespine Stickleback effectively altered the community of 

invertebrates. Our experimental approach was useful for discerning the potential effects of fish 

on lower trophic levels because it controlled for confounding factors, including differences 

arising from location, shifts in diet composition over time, and changes in invertebrate 

communities unrelated to fish predation (e.g., emergence).

Location of the experimental ponds was a secondary source of variation for invertebrate 

abundance and biomass, but experimental outcomes demonstrated the importance of Ninespine 

Stickleback presence across spatial gradients of climate or physiography. Initial invertebrate 

communities at North and South varied before introducing Ninespine Stickleback into ponds. We 

found a greater number of taxa at North, which was reflected in the diets of fish, and two taxa 

(Chydoridae and Baetidae) appeared consistently at North but not at South. Fish consumed both 

of these taxa— Baetidae early on and Chydoridae later. However, when we excluded these 

items, diets of fish at North and South appeared similar. Fish consumed six primary taxa:
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Daphniidae, cyclopoid copepods, harpacticoid copepods, ostracods, copepod nauplii, and 

assorted Diptera. In North ponds, replacement of larger invertebrates by smaller ones (e.g., 

Daphniidae for copepods) damped losses in overall abundance but resulted in a loss of biomass. 

However, at South, the presence of Ninespine Stickleback led to dramatic losses of invertebrate 

abundance in fish-addition ponds, whereas invertebrate abundance nearly doubled in control 

ponds. Continued invertebrate population growth in control ponds would lead to greater 

abundance, but in all ponds at South, the water level fell by up to 0.25 m in the last week of July 

(SML, unpublished data) because of dry conditions in 2012 (Koch et al. 2014). This loss of 

volume concentrated invertebrates in open water, away from grassy pond margins, enhanced our 

ability to capture most taxa, and increased the availability of invertebrates to fish in fish-addition 

ponds (Gilinsky 1984, Hornung and Foote 2006), which could have increased the difference 

between addition treatments at South ponds.

Predation pressure on specific taxa led to shifts in invertebrate community structure 

(similar to findings by Bendell and McNicol 1987, Herbst et al. 2009, Winkelmann et al. 2011). 

Fish diet breadth is hypothesized to be narrower and selection of larger prey to be stronger when 

prey exist at high densities (Werner and Hall 1974, Maszczyk and Gliwicz 2014). Ninespine 

Stickleback exhibited this type of prey selectivity early in the experiment, when 50 to 70% of 

their diet consisted of one or two relatively abundant taxa, Daphniidae and Baetidae. Selective 

feeding exerted top-down control on invertebrate communities (Herbst et al. 2009, Helenius et al.

2015), so Ninespine Stickleback predation shaped the community over time as they sequentially 

consumed prey in accordance with availability (Delbeek and Williams 1988).

The shift to small-bodied taxa was more prominent in ponds at North than South. At 

North, abundance of small-bodied cyclopoid and harpacticoid copepods increased in fish-
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addition ponds relative to control ponds, but we did not see this pattern at South. At North, these 

two taxa became so abundant relative to other taxa that they made up nearly the total invertebrate 

composition in fish-addition ponds in contrast to the declines in abundance of all taxa observed 

at South. Increased abundance of small taxa is common in the presence of selective foragers like 

Ninespine Stickleback (Helenius et al. 2015). Increase in small-bodied taxa could result by 

predator release if  Ninespine Stickleback reduced the abundance of large-bodied insectivorous or 

planktivorous taxa that feed upon smaller individuals without consuming the small-bodied pond 

residents themselves (Batzer et al. 2000). Another explanation is that, under intense predation, 

size selection for Daphniidae by Ninespine Stickleback could ease competition between 

Daphniidae and small copepods, thereby allowing small-bodied zooplankton to dominate 

(Brooks and Dodson 1965). Furthermore, small taxa, like Harpacticoida and Ostracoda, 

generally are associated with the bottom, whereas cladocerans are in the water column. The 

cover of benthic sediments may allow these taxa to avoid predators, especially when other large

bodied prey are available (Bendell and McNicol 1987).

However, no significant reduction of invertebrate size was evident over time. Size 

selection by Ninespine Stickleback might have been less apparent because overall variation in 

the sizes of invertebrates present in the ponds was small. In other words, size selection might 

have been less apparent than taxonomic selection (i.e., Daphniidae consumed first). However, 

Ninespine Stickleback have gape limitations (largest reported taxa from diets studied by 

Cameron et al. 1973 was 10 mm). Some resident pond taxa (e.g., Gastropoda or Trichoptera) that 

were physically too large to be consumed (SML, personal observation) persisted over time and 

could have maintained the average size of invertebrates during the experiment. Our inability to 

capture all large-bodied taxa (e.g., Dytiscidae) efficiently prevented us from including them in
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our analyses and reduced our ability to discern size-based trends.

Data collected prior to introduction of Ninespine Stickleback provided important baseline 

information for understanding the shift in invertebrate community taxonomic richness, 

abundance, biomass, and invertebrate size in the presence of fish. For example, pre-addition 

communities were more similar to those in control than in fish-addition ponds at all sampling 

times. Some taxa, like Culicidae and Chaoboridae, underwent metamorphosis to their adult 

stages early in the experiment (week 1). This emergence probably led to a drop in abundance of 

these taxa in control and fish-addition ponds. Sampling for emergent adults could provide more 

detail for understanding predation effects in the aquatic and terrestrial environment and would be 

an excellent future step in assessing Ninespine Stickleback effects on community structure. How 

many of these emergent taxa were lost from fish-addition ponds because of ingestion by 

Ninespine Stickleback vs natural phenology is unknown because losses occurred over the same 

time period. Examination of the diets of Ninespine Stickleback at North on day 1 suggested that 

they consumed some of these invertebrates (Chaoboridae and Baetidae), but these items were not 

found in stomach contents 1 wk post-addition. Rapid consumption of these taxa probably 

reduced their numbers, but Baetidae abundance did not differ between fish-addition and control 

ponds by week 3 despite combined losses from both ingestion and emergence from fish-addition 

ponds and only emergence from control ponds.

The potential of Ninespine Stickleback to influence the structure of simple aquatic 

communities must be understood before results can be scaled to larger, more complex systems 

where effects could be obscured (Gilinsky 1984, Zimmer et al. 2001). The trough ponds to which 

we introduced Ninespine Stickleback would not have naturally occurring populations of these 

fish because of their isolated locations. However, other troughs that connect and form a
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hydrologic network (similar to a stream) or that are in proximity to larger thermokarst ponds may 

occasionally support Ninespine Stickleback. By examining the effects of Ninespine Stickleback 

introduction on invertebrate communities at small, fish-naive ponds with simple morphometry, 

we tried to control for bottom-up factors that may confound top-down effects so that we could 

isolate potential effects on the invertebrate community.

Changes in nutrient, light, and thermal regimes that occur as water bodies increase in size 

cause the emergence of different physical habitats, which support different invertebrate 

communities (Hobbie 1984, Rautio et al. 2011, Koch et al. 2014). Relatively complex ponds with 

diverse substrates may contain a heterogeneous assemblage of invertebrates (Power 1994, 

Zimmer et al. 2001) that respond differently to fish predators. The effect of fish on invertebrate 

communities can vary with spatial complexity, habitat heterogeneity, or connectivity (Gilinsky 

1984, Power 1994, Shurin 2001). For example, submerged vegetation in larger, thermokarst 

ponds adds complexity to habitats and supplies cover for invertebrate taxa (Zimmer et al. 2000, 

Hornung and Foote 2006). In lakes and ponds with complex shorelines, terrestrial invertebrates 

may be more available as prey items, thereby potentially releasing pressure on aquatic 

invertebrates (Nakano et al. 1999, Mehner et al. 2005). Connection to adjacent habitats or 

regional surface-water networks provides dispersal pathways for certain colonizing invertebrates 

(Shurin 2001). Together these factors, along with indirect effects, confound trophic relationships 

or mitigate the role of predators (Winkelmann et al. 2011), leading to premature conclusions on 

the effects of fish, especially in larger systems (Batzer et al. 2000).

The heterogeneous landscape of ponds, lakes, and streams of the central Arctic Coastal 

Plain in Alaska presents a variety of potential habitats for occupancy of Ninespine Stickleback. 

Local- and regional-scale differences in water-body characteristics, such as surface area, depth,

64



watershed connectivity, location, and habitat complexity, affect presence and abundance of 

Ninespine Stickleback, but also influence the presence and abundance of sympatric fishes and 

the invertebrate prey base (Cameron et al. 1973, Shurin 2001, Haynes et al. 2014, Laske et al.

2016). We were able to demonstrate consistent top-down effects resulting from the presence of 

Ninespine Stickleback on invertebrate community structure because our study design accounted 

for potential variation caused by physiographic locations and pond phenology. By first studying 

these simplistic food webs, we gained knowledge on trophic effects of ubiquitous Ninespine 

Stickleback. This study provides needed baseline information on a regionally common fish 

species, and is a first step in discerning food web patterns in the central Arctic Coastal Plain.

Ninespine Stickleback have a wide-ranging, global distribution that includes Asia,

Siberia, Europe, Greenland, and North America (Morrow 1980). Thus, they probably exert top- 

down pressures in other biomes. The Arctic Coastal Plain of Alaska is a unique ecosystem where 

this species is an extremely successful opportunist (Haynes et al. 2014). However, its 

adaptability and tolerance suit it well for any number of habitats with a range of physical 

characteristics and associated biota (e.g., high Arctic: Gallagher and Dick 2011, brackish waters: 

Arai and Goto 2005, deep temperate lakes: Nelson 1968). In these settings, this relatively small 

species might play an important role in the transfer of energy via an array of aquatic food webs.
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Figure 2.1. Aerial view of trough ponds (A), an on-site view of one experimental pond (B), and 
maps showing the two study locations (North and South; indicated by stars) and the site location 
in Alaska (C).
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Figure 2.2. Box-and-whisker plots for the number of taxa (A, B), abundance (C, D), biomass (E, 
F), and size (G, H) of invertebrates before and after Ninespine Stickleback addition to ponds in 
the North (A, C, E, and G) and South (B, D, F, and H) locations. Lines in boxes are medians, 
box-ends are quartiles, whiskers are 1.5 inter-quartile range, and dots show outliers. The vertical 
dashed line separates pre-addition and post-addition sampling dates. No. = number, Wk = week, 
pre = pre-addition.
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Figure 2.3. Nonmetric multidimensional scaling (NMDS) plots for invertebrate communities 
based on abundance (A-C) and biomass (D-F). Individual points represent the centroids of 
invertebrate communities for North (N) and South (S) pre-addition, control, and stickleback 
addition ponds at each sampling time. Proximity indicates similarity among communities.
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Figure 2.4. Diet proportions, by number, of common prey items found in Ninespine Stickleback 
stomach contents at each sampling time. At North (A), we collected contents 1 day (d1), 1 wk 
(wk1), 3 wk (wk3), and 6 wk (wk6) post-addition, and at South (B) we collected contents 1 wk 
(wk1), 2 wk (wk2), and 8 wk (wk8) post-addition. Diptera includes larvae and pupae of 
Chironomidae, Chaoboridae, Ceratopogonidae, Dixidae, Empididae, Tipulidae, and digested 
(unknown) Diptera. Nauplii are the larval stage of all copeopod taxa.

69



A. North

C L
CD

CO

C L
CD

T3

_ o

Oc
CDOc
CCS

T3C
-Q
CCS

0Oc0
£  H—

b

B. South

Taxon
Daphniidae Diptera \ 7  Ostracoda 0  Chydoridae

Baetidae X  Cyclopoida ♦  Nauplii A  Harpacticoida

Figure 2.5. Mean (95% CI) difference in abundance between control and fish-addition ponds of 
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pupae of Chironomidae, Chaoboridae, Ceratopogonidae, Dixidae, Empididae, Tipulidae, and 
digested (unknown) Diptera. No. = number, Wk = week, pre = pre-addition. Nauplii are the 
larval stage of all copeopod taxa.
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Table 2.1. Pond location, addition treatment, and surface area (SA). The biomass (g) and number 
(n) of fish stocked are given for fish-addition ponds. ID = identifier.

Location Addition treatment Pond ID SA (m2) Fish added (g) Fish added (n)

North Control N2 19.0 - -

N4 45.0 - -

N5 36.0 - -

N6 70.0 - -

N9 20.8 - -

Fish-addition N1 10.5 116 103

N3 58.0 396 393

N7 35.0 385 344

N8 54.6 601 551

N10 38.0 418 353

South Control 3 26.0 - -

4 19.6 - -

7 7.2 - -

8 5.3 - -

9 18.9 - -

11 18.1 - -

Fish-addition 1 15.2 167 153

2 6.5 70 60

5 11.1 122 101

6 8.7 96 93

10 4.3 47 34

12 22.3 245 303
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Table 2.2. Frequency of occurrence (% of Ninespine Stickleback with a given taxon in stomach
contents) at North 1 d (d1), 1 wk (wk1), 3 wk (wk3), and 6 wk (wk6) post-addition.

Frequency of occurrence (%)

Taxon d1 wk1 wk3 wk6
Chironomidae 77 40 80 77
Daphniidae 63 7 0 0
Chaoboridae 43 0 0 0
Cyclopoida 43 67 47 77
Baetidae 37 0 0 0
Unknown Diptera 33 93 37 40
Dytiscidae 20 20 3 0
Harpacticoida 10 23 30 73
Ostracoda 10 23 23 20
Hydrachnidia 10 7 0 3
Calanoida 10 0 3 3
Terrestrial 7 23 60 13
Chydoridae 7 3 23 50
Ceratopogonidae 7 0 3 7
Dixidae 3 7 0 3
Unknown Trichoptera 3 7 0 0
Tipulidae 3 3 0 0
Copepod nauplii 3 0 0 17
Collembola 0 13 23 13
Physidae 0 13 3 0
Nematoda 0 7 0 7
Unknown Cladocera 0 3 0 0
Unknown Ephemeroptera 0 3 0 0
Unknown Copepoda 0 0 3 0
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Table 2.3. Frequency of occurrence (% of Ninespine Stickleback with a given taxon in stomach
contents) at South 1 wk (wk1), 2 wk (wk2), and 8 wk (wk8) post-addition.

Frequency of occurrence (%)

Taxon wk1 wk2 wk8
Cyclopoida 59 85 70
Daphniidae 52 4 0
Harpacticoida 48 44 93
Chironomidae 33 67 57
Copepod nauplii 30 15 0
Empididae 11 15 0
Hydrachnidiae 11 4 7
Ostracoda 7 22 47
Dytiscidae 7 0 0
Collembola 0 11 7
Dixidae 0 7 0
Limnephilidae 0 4 0
Oligochaeta 0 4 0
Tardigrade 0 0 3
Terrestrial 0 4 3
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Appendix 2-A 

Rarefaction Curves
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Figure 2-A1. Taxa rarefaction curves for North and South prior to the addition of Ninespine 
Stickleback. Curves approached an asymptote indicating adequate sampling of pond 
invertebrates. All curves were truncated at 728 individuals, the minimum number of individuals 
captured from a single pond.
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CHAPTER 3

GENERALIST FEEDING STRATEGIES IN ARCTIC FRESHWATER FISH: A 

MECHANISM FOR DEALING WITH HARSH ENVIRONMENTS1

ABSTRACT

Variation in food resource availability is common in cold climate regions. Fluctuation in 

resource density favors generalist species that can feed across multiple habitat types and trophic 

levels. Further, consumption of prey from multiple carbon sources imparts stability on food webs 

through the use of readily available, alternative energy pools. In lakes, generalist fish species 

take advantage of fluctuating prey availability by switching from benthic to pelagic prey to meet 

their energy demands. Using stomach content and stable isotope analyses, we examined the 

feeding habits of fish species in lakes of the central Arctic Coastal Plain (ACP), Alaska, to 

determine the prevalence of generalist feeding strategies as a mechanism for persistence in harsh 

environments with short growing seasons. Generalist feeding strategies were evident in adults of 

five common fish species. Analysis of diet composition suggested fish switch food items and 

feed on benthic and pelagic prey and across trophic levels. Diptera and Cladocera consistently 

appeared in the diets of all fish, and 70% of the variation in diets between fish could be 

demonstrated with 12 prey taxa, yet all pairwise comparisons between fish species showed 

dietary differences exceeded 65%. ACP fishes had similarly sized dietary niches with apparent 

overlap in 513C signatures. The accumulation of energy from diverse sources by Arctic fishes 

creates redundancy in food webs, making them more resistant to perturbations or stochastic

1 Prepared for submission to Ecology of Freshwater Fish as Laske, S. M., A. E. Rosenberger, M. 
S. Wipfli, C. E. Zimmerman. Generalist feeding strategies in Arctic freshwater fish: a 
mechanism for dealing with harsh environments.
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events. Therefore, the generalist and omnivorous feeding strategies employed by ACP fish 

maintain energy flow and food web stability in harsh or variable environments.

INTRODUCTION

Within aquatic food webs, generalist fish species often link benthic and pelagic energy 

sources, transferring energy to higher trophic levels (Schindler & Scheurell, 2002; Vander 

Zanden & Vadeboncoeur, 2002). Adaptive foraging strategies not only allow fish to rapidly 

respond to changes in food abundance or availability, but insure food availability in fluctuating 

environments (Hayden, Harrod, & Kahilainen, 2014; Rooney, McCann, Gellner, & Moore,

2006). Further, alternative energy pathways and prey switching imparts stability on food webs by 

dampening oscillations in food resources brought about by predation (Beckerman, Petchey, & 

Warren, 2006; Rooney, McCann, Gellner, & Moore, 2006) and maintaining energy flow when 

prey species are lost (Dunne, Williams, & Martinez, 2002; Gravel, Canard, Guichard, & 

Mouquet, 2011). Generalist fishes couple food web compartments (e.g., benthic and pelagic) and 

provide energy subsidies across habitat boundaries that could profoundly affect community 

interactions, nutrient cycling, and top-down regulation of the food web (Schindler & Scheurell, 

2002; Vander Zanden & Vadeboncoeur, 2002).

Fluctuating availability of food resources is common in cold-climate regions (Hayden, 

Harrod, & Kahilainen, 2013; Rautio, Sorvari, & Korhola, 2000), and seasonal variation in prey 

abundance can affect the trophic ecology of predators (Hayden, Harrod, & Kahilainen, 2014). 

Fish often respond to food limitations with high rates of consumption when food becomes 

available in space or time (Craig, 1984; Prowse et al., 2006). Further, some species migrate to 

seasonal feeding sites to access food resources (Buzby & Deegan, 2000; Heim, Wipfli, Whitman, 

& Seitz, 2016). Arctic grayling (Thymallus arcticus) exhibit site fidelity to stream habitats in the
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Alaskan Arctic, migrating long distances between summer foraging habitats and winter refuges 

(Buzby & Deegan, 2000). At summer feeding sites, grayling take advantage of seasonally 

abundant food resources that provide energy for rapid growth and accumulation of energy 

reserves (Heim, Wipfli, Whitman, & Seitz, 2016; McFarland, Wipfli, & Whitman, 2017). 

Accumulation of mass and lipid reserves during summer provides fish with energy needed for 

winter survival (Biro, Morton, Post, & Parkinson, 2004). These reserves are particularly 

important for species that reside in harsh environments like the Arctic, where organisms are 

vulnerable to environmental extremes (Rautio et al., 2011).

Food webs with generalist feeders will be more resilient to climatic variability and 

harshness (Beaudoin, Prepas, Tonn, Wassenaar, & Kotak, 2001). In lentic habitats of the Arctic, 

temporal and spatial variation in pelagic zooplankton and benthic macroinvertebrate abundance 

may require fish predators to adapt their feeding strategies or alter their trophic niche to access 

sufficient resources (Amundsen, 1995; Eloranta, Knudsen, & Amundsen, 2013). Also, the 

importance of generalist fishes in coupling energy sources may be prominent in oligotrophic, 

high-latitude lakes, where only simple communities persist (Christoffersen, Jeppesen, Moorhead, 

& Tranvik, 2008; Eloranta, Knudsen, & Amundsen, 2013). European whitefish (Coregonus 

lavaretus) switch from benthic macroinvertebrates to zooplankton when zooplankton abundance 

peaks in late summer, a switch that coincides with increased body condition and somatic growth 

important for overwinter survival (Biro, Morton, Post, & Parkinson, 2004; Hayden, Harrod, & 

Kahilainen, 2013; Hayden, Harrod, & Kahilainen, 2014). Arctic charr (Salvelinus alpinus) also 

shift from littoral to pelagic foods with increasing lake size (decreased littoral area) and in the 

presence of sympatric fish species (Eloranta et al., 2015), demonstrating potential for trophic 

niche plasticity. For example, if  littoral resources are dominated by co-occurring brown trout
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(Salmo trutta), Arctic charr will shift away from littoral macroinvertebrates to pelagic 

zooplankton, which facilitates coexistence with sympatric species by reducing competitive 

interactions and consumer-resource oscillations (Eloranta et al., 2015; Eloranta, Kahilainen, & 

Amundsen, 2013; Rooney, McCann, Gellner, & Moore, 2006).

The Arctic Coastal Plain (ACP) of Alaska is a 50,000 km2 area of low relief tundra that 

spans from the foothills of the Brooks Range to the Arctic coast. The region is underlain by thick 

permafrost, which is primarily responsible for the formation of related surface features, including 

ice wedges and associated thermokarst water bodies (Martin et al., 2009). Streams and lakes 

form a heterogeneous hydrologic network that fish use for migratory routes, feeding areas, and 

seasonal refuge (Craig 1984; Hershey et al., 2006; Heim, Wipfli, Whitman, & Seitz, 2016). 

Extreme seasonal fluctuation in photoperiod (0-24 hours between winter and summer) 

influences air and water temperature, primary production, and ecological cues used by species 

for migration or physical development (Kittel, Baker, Higgins, & Haney, 2011; Reist et al.,

2006). Ice dynamics play an important part in the survival and success of fish by restricting 

access to habitat and creating a physically harmful environment (Reist et al., 2006). The severe 

winter makes the short growing season critical for fish to grow and accumulate sufficient energy 

stores (Biro, Morton, Post, & Parkinson, 2004; McDonald, Hershey, & Miller, 1996;).

The extreme seasonality of the Alaskan Arctic with its long, cold winters and short, 

relatively warm summers limit biota by physiological thresholds (Prowse et al., 2006). Only 

fifteen species of fish are known to occupy habitats on the ACP (Alaska Freshwater Fish 

Inventory, Alaska Department of Fish and Game, accessed October 2016); but little is known 

regarding their dietary habits, trophic niches, or associated food webs in this region. A handful of 

studies in the central ACP offer information regarding individual species’ diets, but fall short of
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cross-species comparisons or community analyses (e.g., Alaska blackfish [Dalliapectoralis] in 

Ostdiek & Nardone, 1959; ninespine stickleback [Pungitiuspungitius] in Cameron, Kostoris, & 

Penhale, 1973). Additional studies in the neighboring foothills region, near Toolik Lake, provide 

information regarding trophic ecology for several of these species (e.g., lake trout [Salvelinus 

namaycush], round whitefish [Prosopium cylindraceum], and Arctic grayling in Merrick, 

Hershey, & McDonald, 1992; slimy sculpin [Cottus cognatus] in Cuker, McDonald, & Mozley, 

1992) that could than provide useful comparison across physiographic regions of the Arctic 

(Jorgenson & Grunblatt, 2013).

Determining the current trophic ecology of fishes in the ACP is important for 

understanding energy flow and mechanisms that may be disrupted due to climate change. The 

region’s climate has warmed rapidly in recent decades, with temperature increases at twice the 

global average. Future climate projections for the region indicate an annual temperature increase 

of 7.3 °C by the end of the century (Martin et al., 2009). These changes coincide with milder 

winters, warmer summers, and longer ice free seasons that will likely enhance planktonic 

primary production (Rautio et al., 2011; Wrona et al., 2006). Warmer temperatures will also 

increase fish metabolic needs and their associated food requirements; the balance between 

available food and metabolic need will ultimately determine future fish production (Carey & 

Zimmerman, 2014; McDonald, Hershey, & Miller, 1996; Reist et al., 2006). Under changing 

conditions, a generalist feeding strategy may allow fish to shift to readily available resources, 

imparting food web resilience to new climatic patterns (Eloranta et al., 2015; Hayden, Harrod, & 

Kahilainen, 2014).

We aim to describe the diets of fishes residing in lakes of the ACP, Alaska, where little 

information is currently available. We then describe the dietary strategies of these fishes by
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examining stomach contents and isotopic niches. At the level of species (or size class), we 

anticipate that fishes of the ACP will exhibit generalist or flexible feeding patterns and trophic 

omnivory -  either consuming prey across compartment boundaries (i.e., benthic and pelagic) or 

on different trophic levels. A suite of generalist characteristics describing resource use by Arctic 

fishes should represent an overall strategy for persistence in a harsh Arctic environment. At the 

community level, we anticipate trophic redundancy among fish species and overlapping trophic 

niches, which may contribute to overall stability and resilience in food web structure.

METHODS

We sampled fish from 16 lakes (mean surface area 0.7 km2, mean depth 2 m) at two 

locations on the Arctic Coastal Plain of Alaska (Figure 3.1). Lakes in the region are shallow, 

underlain by permafrost, and ice free from late June or early July through September. Over three 

summer seasons (2011-13), we collected fishes using unbaited minnow traps (6 mm steel mesh, 

23 cm diameter, and 44.5 cm length with two 2.5 cm openings), fyke nets (0.6 cm mesh, 15.2 x 

1.2 m wings, and a 1.1 m square opening; or 0.6 cm mesh, 9 x 1 m wings, and a 1 m diameter 

opening), and gill nets (24.8 x 1.8 m, eight panels with mesh size from 19 to 64 mm [North 

American standard, Lester, Bailey, & Hubert, 2009]). Each lake was sampled a minimum of four 

times over the span of the study, with a minimum of 6 h of fishing per sampling event. We 

deployed gear over short time intervals (3-4 h) to reduce losses due to digestion and to limit the 

potential for net feeding. Additional overnight net sets were employed during 2013 to capture 

more fish for stable isotope samples.

At each lake, we sampled stomach contents up to approximately 30 individuals of each 

species, depending on availability. All sample collection was performed under a University of 

Alaska Fairbanks Institutional Animal Care and Use Committee protocol (#233290), by sedating
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fish with a 20-30 mg/L clove oil solution (non-lethal sampling) or by severing the head from the 

spinal cord (lethal sampling). We sampled diets with gastric lavage using a 60 ml syringe filled 

with filtered water and a 5 Fr catheter tube, or through direct collection of the stomach. We 

preserved contents from all stomachs with 95% ETOH. To determine feeding positions relative 

to one another and species dietary niches (Layman, Arrington, Montana, & Post, 2007; Post, 

2002), we collected muscle tissue for stable isotopes for each species at eight lakes (northern site 

only) -  up to 11 individuals per species per lake. With a scalpel, we extracted a small plug of 

dorsal muscle from the left side of the fish, anterior to the dorsal fin, and preserved muscle plugs 

in 95% ETOH. Small fishes (< 45 mm length) were preserved and ground whole for stable 

isotope analysis (Swanson, Kidd, & Reist, 2010).

We identified stomach contents to the lowest practical taxonomic level. For example, for 

items in good condition, we identified to the family level for macroinvertebrates and cladoceran 

zooplankton and to order for copepods. When digestion interfered, we identified organisms as 

low as possible, typically to the order level, or classified them as well digested material. We also 

specified the life stage of prey (e.g., larva). Any invertebrate prey of non-aquatic origin was 

considered terrestrial and identified to order when possible.

We placed muscle tissue into individual 4 ml glass vials and freeze-dried at -50°C for 48 hours 

(LABONCO FreeZone 1 Liter Benchtop Freeze Dry Systems 77400 Series, Kansas City, MO). 

Once dry, we used petroleum-ether to extract any remaining lipids (Kelly & Martinez del Rio, 

2010). Storing tissues in ETOH removed much, if  not all, of the tissue’s lipid prior to formal 

extraction, therefore, only 48 hours of submersion in petroleum-ether was required. Tissues air- 

dried for 24 hours. We sent all samples to the Stable Isotope Facility at the University of 

Wyoming, Laramie, where they ground and analyzed samples for of S15N and S13C with a
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continuous flow stable isotope ratio mass spectrometer (Costech 4010, Carlo Erba 1110, Thermo 

Flash Elemental Analyzer coupled to a Thermo Delta Plus XP and Delta V IRMS). Analytic 

precision was ± 0.2%o, with standards L-glutamic acid and liver (36-UWSIF-Glutamic 1, 515N a i r  

= -4.6%%, 513Cv p d b  = -28.3%%; 39-UWSIF-Glutamic 2, 515N a i r  = 27.9%%, 513Cv p d b  = 24.4%%; and 

UWSIF01 [Liver], 515N a i r  = -6.8%%, 513Cv p d b  = -17.8%%).

Data Analysis

All analyses of stomach contents were performed at the order level or higher to establish 

consistency across samples and the degree of digestion, although we acknowledge that this 

reduces our taxonomic resolution. We did not include parasites within prey items (e.g., 

Nematomorpha or Cestoda) in the analyses because they were not directly consumed. Empty 

stomachs were not included in analyses. We examined the feeding strategy of each fish species 

by plotting the prey-specific abundance against frequency of occurrence based on number of 

prey consumed. Prey-specific abundance is the proportion prey item i constitutes of all prey 

items in predators that contain prey i (see Amundsen, Gabler, & Staldvik, 1996 and Chipps & 

Garvey, 2007 for more detail). Frequency of occurrence (FO) is defined as the number of fish 

with a given prey item in its stomach (Chipps & Garvey, 2007). Mean numeric proportion was 

calculated for individual fish species within each lake (Chipps & Garvey, 2007). Differences 

were determined through a multivariate analysis of variance with function adonis in R 

(PERMANOVA; vegan, R package 2.4-1) on the Bray-Curtis distances of the mean numeric 

proportions, excluding unidentifiable well digested items. We determined the contribution of 

potentially influential diet items (Table 3-A1, in Appendix A1, for a list of all prey and numeric 

proportions) as those that contributed up to 70% of the dissimilarities between species pairs
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(pairwise comparison of each fish species) and determined the overall percent dissimilarity in 

diets between each fish species pair (SIMPER; vegan, R package version 2.4-1).

For the same fish species that we included in stomach content analyses, we conducted an 

analysis of isotopic niche area, overlap, and community measures of trophic structure (Jackson, 

Inger, Parnell, & Bearhop, 2011; Layman, Arrington, Montana, & Post, 2007; SIBER, R package 

version 2.0.3). Fourteen fish (55 -  60 mm length), of two genera (Pungitius and Coregonus), 

were used to test for mean differences between whole body and muscle sample carbon and 

nitrogen signatures. In each sampled lake, we determined the niche area (SEAB) of each species 

using a Bayesian method, which is unbiased with respect to sample size and propagates 

uncertainty in the mean (Jackson, Inger, Parnell, & Bearhop, 2011). We then used the species 

posterior means (from Markov chain Monte Carlo [MCMC] simulations in rjags, R Package 

version 4-6) from each lake to calculate the overall mode and 95% credible intervals for SEAB 

for all species groups. Variation in isotopic baselines across sampling locations prevented 

pooling of isotopic data across all individuals; calculation of SEAB in an isotopically 

heterogeneous region would artificially inflate the size of the niche. We visually assessed niche 

overlap by examining plots of 95% credible interval ellipses around the mean of each group. 

Further, we determined values of three community-wide measures of trophic structure to provide 

measures of trophic diversity (mean distance to centroid, CD), redundancy (mean nearest 

neighbor distance, MNND), and distribution of niches (standard deviation of nearest neighbor 

distance, SDNND; Layman, Arrington, Montana, & Post, 2007).

RESULTS

We collected stomach contents and muscle tissues from 10 fish species: Alaska blackfish, 

ninespine stickleback, least cisco (Coregonus sardinella), broad whitefish (Coregonus nasus),
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Arctic grayling, slimy sculpin, humpback whitefish (Coregonuspidschian), Arctic charr, pike 

(Esox lucius), and rainbow smelt (Osmerus mordax). Five species provided limited dietary 

information (< 10 individuals from < 2 lakes) and were not included in the analysis: slimy 

sculpin, humpback whitefish, Arctic charr, pike, and rainbow smelt (Table 3.1). Detailed 

information on their diets and the diets of the fishes used in the analysis can be found in the 

Appendix 3-A (Table 3-A1). We examined least cisco diets according to size class; small least 

cisco < 100 mm FL and adults >100 mm FL to account for potential ontogenetic shifts. Small 

whitefish, < 130 mm FL, either broad whitefish or humpback whitefish, could not be 

distinguished to the species level in the field and were considered as one group (Table 3.1).

Feeding strategy plots indicated that most fishes, with the exception of small least cisco, 

had either a generalist or flexible feeding strategy (Figure 3.2). All fishes had high frequency of 

occurrence of Diptera larvae (mainly Chironomidae) in their stomach contents. The feeding 

strategy plot showed that Diptera was a dominant prey for Arctic grayling. Ninespine 

stickleback, as a species, consumed the greatest variety of prey; however, few individual fish 

consumed as great a variety, indicating that feeding may have been habitat or location specific. 

The flexible feeding strategy seen in Alaska blackfish, ninespine stickleback, least cisco, broad 

whitefish and whitefish spp. indicated that variation in diets ranged from narrow to high, with 

some individuals consuming a specialized diet, while others a varied diet. Small least cisco had 

the most constrained diet, with specialization on Cladocera and Diptera larvae.

Numeric proportion of stomach contents differed by species (PERMANOVA of 1000 

permutations; R2 = 0.29, p  < 0.001). Further examination of pairwise differences in diets through 

SIMPER provided estimates of average percent dissimilarity between species. Dietary 

differences often exceeded 70%, with 19 of 21 pairwise comparisons showing little similarity in
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overall stomach content composition. Ninespine stickleback and Arctic grayling differed by an 

average of 67%, and ninespine stickleback and small least cisco differed by an average of 57%. 

Further, we identified prey items that cumulatively explained up to 70% of the variation in 

pairwise difference between fish species stomach contents. This amount of variation was 

described with three to six prey items per fish species pair, and a total of 12 prey items accounted 

for all of the differences: Notostraca, Gastropoda, Ostracoda, Hydrachnidia, Nematoda, Diptera 

larvae, Trichoptera larvae, Calanoida, Cladocera, Diptera pupae, aquatic Diptera adults, and fish 

(Figure 3.3).

Alaska blackfish (n = 26, 7.7 % empty) regularly consumed (frequency of occurrence > 

50% and/or mean numeric proportion > 0.1) benthic invertebrate taxa of Diptera larvae, 

Gastropoda, and Ostracoda, and fish (93% identified as ninespine stickleback; Figure 3.2 and 

3.3). Stomachs of ninespine stickleback (n = 468, 8.3% empty) contained 30 different taxa -  

more than any other fish species -  but cladoceran zooplankton and Diptera larvae and pupae 

made up the largest numeric proportion with the greatest frequency of occurrence (Figure 3.2 

and 3.3). Small least cisco (n = 43, 7.0% empty) also consumed cladoceran zooplankton and 

Diptera larva and pupa (Figure 3.3), but had reduced frequency of occurrence and a narrower 

selection of diet items, 13, than ninespine stickleback (Figure 3.2). The ontogenetic shift in least 

cisco adults (n = 49, 0 empty) led to an increase in the variety of diet items (n = 24), including 

fish (90% identified as ninespine stickleback), Hydrachnidia, Gastropoda, and Diptera pupae.

Small whitefishes (n = 47, 19.1% empty) consumed Diptera and Trichoptera larvae, 

Diptera pupae, and Cladocera (Figure 3.3). However, they did not consume benthic organisms 

that adult broad whitefish (n = 16, 6.3% empty) consumed, such as snails (Gastropoda) and 

bivalves (Bivalvia; Figure 3.2). Arctic grayling (n = 20, 0 empty) consumed small proportions of
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prey items, and mean numeric proportion never exceeded 0.20 for any taxa; only Diptera larvae, 

Nematoda, and Notostraca averaged > 0.10 (Figure 3.3). However, frequency of occurrence was 

high for six taxa, including fish (95% identified as ninespine stickleback) and Trichoptera larvae.

For small fish, when comparing whole body signatures to tissue only signatures (5C 1 3 t i s s u e  

- 5C 1 3 b o d y  = -0.21± 0.07 %o and 5N 1 5 t i s s u e  - 5N 1 5 b o d y  = 0.38 ± 0.15 %o); no biologically meaningful 

differences were found. Carbon values did not differ from analytical precision (0.2 %o) and 

nitrogen difference was far less than 3.4% that constitutes a trophic level, therefore, whole fish 

were used for analyses. The overall mode of isotopic niche area for each fish species ranged 

from 0.14%o2  for small least cisco to 2.22%o2  for ninespine stickleback (Table 3.2) and visually 

appeared to correspond with the known diversity of dietary items. For example, small least cisco 

and whitefish spp., which consume mainly zooplankton, had smaller niche areas than fish with 

more diverse diets like ninespine stickleback. Species ellipse areas (SEAB ) for all individuals did 

not differ by species based on overlapping 95% credible intervals. Differences in between- 

species niche areas did occur in individual lakes; for example, broad whitefish niche area was 

greater than whitefish spp., Arctic grayling, and small least cisco in lake 1. This broad whitefish 

ellipse (5.86%o2 , 2.79 LCI -  13.08 UCI) was the largest of any species and was significantly 

larger than the other measured broad whitefish ellipse (1.16%o2 , 0.58 LCI -  2.32 UCI). Only one 

other species, Alaska blackfish, showed within-species variability of niche area; the ellipse area 

in two lakes differed significantly (lakes 4 and 5). For the remaining species, there was no 

difference in within-species niche area across lakes.

Overlap in isotopic niche area and metrics of community-wide trophic structure varied 

with the number and identity of fish species present in a lake (Figure 3.4). We visually examined 

overlap in six of the eight lakes, because in two of the lakes, isotopic data were available for only
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one species, ninespine stickleback. Carbon values of the fish assemblages centered near -28  - 

-2 7 %  513C in each of the six lakes, with many of the species overlapping in carbon signatures -  

suggesting either averaging of disparate carbon resources (e.g., pelagic and benthic) or use of a 

single carbon resource (e.g., benthic only). The degree of trophic diversity, measured by CD, was 

greatest in lakes where species occupied discrete isotopic niches, with no overlap (e.g., lake 2).

In several lakes, species’ trophic niches showed a higher degree of overlap; for example, 

multiple fish species isotopic niches overlapped in Lake 1, the most species-rich lake. The 

MNND, which declines in webs with overlapping trophic ecology or increasing trophic 

redundancy, was reduced in lakes with more fish species (e.g., Lake 1) or small, tightly clustered 

species niches (e.g., Lake 4). In agreement with the other two metrics, SDNND, which measures 

the evenness of species isotopic distributions was highest also where species niches occupied 

discrete evenly spaced niches as seen in Lake 2.

DISCUSSION

Common fish species of the ACP primarily demonstrated use of generalist or flexible 

feeding strategies, common in stressful or harsh environments where generalist ecological traits 

are beneficial (Beaudoin, Prepas, Tonn, Wassenaar, & Kotak, 2001; Eloranta et al., 2015; 

Sternberg, Balcombe, Marshall, Lobegeiger, & Arthington, 2012;). Fluctuations in prey density 

found in cold-climate regions often result from local extinction events (e.g., winterkill), and 

result in predation on organisms nearer the base of the food web or higher omnivory (Beaudoin, 

Prepas, Tonn, Wassenaar, & Kotak, 2001). Adults of the five species included in our analysis 

consumed prey across food web compartments, consistently relying on benthic Diptera larvae 

and pelagic (water column dwelling) Diptera pupae and cladoceran zooplankton. Based on 

stomach contents and stable isotope signatures, three fish species could clearly be considered
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omnivorous -  consuming both fish and invertebrate prey. However, young-of-year or sub-adult 

fish (least cisco and whitefish spp. < 100 mm FL) exhibited narrower diets, but sampling 

multiple age classes revealed an ontogenetic shift and life-history omnivory, or change in diet 

with body size (Kratina, LeCraw, Ingram, & Anholt, 2012).

Our findings, and those from other studies at northern latitudes (boreal and Arctic 

regions), showed omnivory and the use of benthic and pelagic prey (Beaudoin, Prepas, Tonn, 

Wassenaar, & Kotak, 2001; Hayden, Harrod, & Kahilainen, 2014; Merrick, Hershey, & 

McDonald, 1992). For example, Alaska blackfish sampled southeast of Utqiagvik (formerly 

Barrow, Alaska), consumed high proportions of benthic Diptera larvae and Ostracoada, and 

pelagic Cladocera (Ostdiek & Nardone, 1959); stomach contents similar to Alaska blackfish 

captured in this study. Arctic grayling from the Toolik Lake region consumed benthic 

macroinvertebrates and snails, and pelagic zooplankton (Merrick, Hershey, & McDonald, 1992). 

In contrast to grayling sampled at Toolik, the Arctic grayling of the central ACP consumed fish 

(see also McFarland, Wipfli, & Whitman, 2017), which could elevate their relative trophic 

position. However, analysis of trophic niches indicated that fish spanned two trophic levels, with 

species like Arctic grayling in intermediate positions. In fact, top predators in this environment 

may have more omnivorous or generalist diets due to reliance on macroinvertebrates, 

zooplankton, and fish (Beaudoin, Prepas, Tonn, Wassenaar, & Kotak, 2001; Eloranta, 

Kahilainen, & Amundsen, 2013; Merrick, Hershey, & McDonald, 1992).

Trophic omnivory, or consuming prey across trophic levels, was clearly demonstrated by 

three of the fish species in our analysis, Alaska blackfish, adult least cisco, and Arctic grayling. 

Overwhelmingly, the fish prey most often consumed was ninespine stickleback; and the fish that 

consumed ninespine stickleback also consumed their shared prey resources. The isotopic
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signatures of adult least cisco were less than one trophic level above their fish prey (one trophic 

level is 3.4% S1 5N; Post, 2002). Even Lake 2, where fish clearly separated according to nitrogen 

signatures and with higher trophic diversity, least cisco adults were only enriched 2.6%  5 1 5 N 

from ninespine stickleback, due to the trophic generalization of the top predator (Eloranta et al., 

2015). Interestingly, the trophic positioning of Alaska blackfish and Arctic grayling was 

typically equal or lower than their fish prey (ninespine stickleback), which suggests an averaging 

of their nitrogen signature between lower trophic level invertebrates and fish prey. The 

integration of food web compartments, via omnivory, is prominent in small, climatically variable 

lakes, where piscivores feed on a mixture of fish and abundant invertebrate resources at lower 

trophic levels (Beaudoin, Prepas, Tonn, Wassenaar, & Kotak, 2001; Eloranta et al., 2015). The 

use of zooplankton during the summer months coincides with seasonal availability in northern 

lakes (Hayden, Harrod, & Kahilainen, 2013; Rautio et al., 2011;). Zooplankton could provide 

fish with a pelagic energy pathway that brings stability to the food web (Rooney, McCann, 

Gellner, & Moore, 2006), and provide energy required during summer periods of rapid fish 

growth (Hayden, Harrod, & Kahilainen, 2014).

The size and proximity of trophic niches was similar across species, with a few 

exceptions (e.g., discrete trophic niches in lake 2), indicating similarity or sharing of energy 

resources, which supports our anticipation of trophic redundancy that ultimately contributes to 

food web stability and resilience. Given their SEAB , fishes likely had equally broad diets over 

the long-term. We expected that the muscle tissues collected would reflect months to a year of 

assimilation, given the cold climate and slow growth of fish in the Arctic (Eloranta, Kahilainen, 

& Amundsen, 2013; Hesslein, Hallard, & Ramlal, 1993). Young-of-year and sub-adult least 

cisco and whitefish spp. had slightly smaller trophic niches than adults, arguably due to a
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combination of age and diet. Ontogenetic shifts in these fishes likely will expand and shift the 

dietary and isotopic niche to incorporate large crustaceans, snails, and fish, becoming more 

similar to adults of the same species, indicating a discrete niche shift (Hammerschlag-Peyer, 

Yeager, Araujo, & Layman, 2011). Isotopic niches of adult least cisco were relatively narrow 

and occurred along the midrange of values, indicating that this species may be the top-generalist 

predatory fish of these Arctic lakes (Eloranta et al., 2015; Hecky & Hesslein, 1995). Dietary 

flexibility and omnivory seen in the diet are consistent with this role in the food web. Broad 

whitefish, on the other hand, had variability in trophic niche size. The range of carbon values 

may have resulted from variability in the basal resource pool or from the range of resources used 

(Hammerschlag-Peyer, Yeager, Araujo, & Layman, 2011) -  either mechanism has potential. 

Migratory broad whitefish may sample prey over a wide range of habitats; fish visiting one lake 

in summer may individually represent a different overwintering area due to the slow turnover of 

muscle tissue. Alternatively, seasonal dietary shifts and individual diet specialization, within a 

generalist population, could widen the isotopic niche (Eloranta, Kahilainen, & Amundsen, 2013; 

Hecky & Hesslein, 1995). However, we do not have data that support either argument, and more 

research regarding seasonal dietary shifts would be needed to clarify this pattern.

The overlap of isotopic ellipses indicated that fish species used similar carbon sources in 

ACP lakes (Sierszen, McDonald, & Jensen, 2003; Vander Zanden & Vadeboncoeur, 2002). 

Trophic redundancy, or fish with similar trophic ecologies, seems likely in lakes with higher fish 

species richness and multiple top-predators, due to consistent generalist use of prey resources by 

fish (Layman, Arrington, Montana, & Post, 2007; Thomas et al., 2016). Whether the similarities 

arose from averaged use of pelagic (lower S13C values) and benthic (higher S13C values) carbon 

or from one unique source remains unclear and requires further study. However, research on the
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productivity of shallow Arctic lakes indicates that benthic carbon (in the form of periphyton) 

supplies much of the energy to the system (Hecky & Hesslein, 1995; Sierszen, McDonald, & 

Jensen, 2003). Clear water, constant summer sunlight, and expansive littoral areas accommodate 

a high proportion of benthic production in lakes. Some species of cladoceran zooplankton may 

graze benthic mats directly or filter out resuspended material (Rautio & Vincent, 2006), creating 

an alternative pathway for benthic algae to reach fishes. In fact, periphyton stable isotope 

signatures in the region averaged -28.6 ± 0.8 %  S13C (B. Uher-Koch, U.S. Geological Survey, 

Unpublished data). This value is in line with the carbon signatures we found in sampled fishes. 

Therefore, it is plausible that fishes in these lake food webs rely on periphyton-derived carbon 

(Sierszen, McDonald, & Jensen, 2003).

Our investigation of the dietary habits of common ACP fishes supports the idea that fish 

will use the broad array of food resources available to them across aquatic boundaries in the 

Arctic. Generalist and flexible feeding strategies couple energy pathways, reduce the amount of 

competitive interaction, and reduce predation pressure on specific prey groups or energy 

channels, ultimately stabilizing trophic dynamics and the food web (Eloranta et al., 2015; 

Rooney, McCann, Gellner, & Moore, 2006; Vander Zanden & Vadeboncoueur, 2002). This 

study highlights the overarching patterns in trophic dynamics among fish in ACP shallow lakes. 

Even with limited dietary information on common species in several lakes, distinct food web 

arrangements depended on the identity and number of species present. Additional information 

regarding the diets of spatially rare species, like pike, prevents a complete assessment of all 

trophic interactions. Certainly, pike have the potential to occupy higher trophic positions than the 

fishes included in this analysis and may have the ability to fundamentally change the food web 

structure and function (Beaudoin, Prepas, Tonn, Wassenaar, & Kotak, 2001; Eloranta et al.,
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2015). However, in boreal regions, pike tend to have diverse or omnivorous diets, rather than 

specializing on fish because invertebrates are a more reliable source of food than highly 

fluctuating fish populations (Beaudoin, Prepas, Tonn, Wassenaar, & Kotak, 2001; Danylchuk & 

Tonn, 2003).

Understanding the roles of fishes in the region is critical to determining possible shifts in 

trophic dynamics of Arctic lakes due to climate change. The anticipation of warmer summers 

and longer ice free seasons brings with it potential changes in fish distributions, increased 

metabolic rates, and a longer period of fish movement and growth (Laske et al., 2016; Reist et 

al., 2006). The changes resulting from warming may indirectly alter the flow of energy through 

the food web (Reist et al., 2006; Wrona et al., 2006) via changes in timing or abundance of 

phytoplankton and zooplankton production (Carter & Schindler, 2012). It is unclear whether 

adequate resources will be available to all fish species or age classes in the future Arctic. Climate 

warming is likely to increase primary productivity, but the current balance between benthic and 

pelagic energy compartments remains unknown (Rautio et al., 2011). In a climate scenario study, 

young-of-year lake trout have difficulty acquiring adequate zooplankton resources to compensate 

for increased metabolic rates (McDonald, Hershey, & Miller, 1996). For pelagic-dependent 

species, like young lake trout, continued increases in summer water temperatures could prove 

lethal. In contrast, the effects of warming were less dire for least cisco, a species with generalist 

feeding behaviors; a bioenergetics model predicted increased growth among all age classes of 

fish provided they can maintain their current feeding rates (Carey & Zimmerman, 2014). 

Therefore, it is critical that we fully understand trophic ecologies of the species that will be 

affected by climate change. For common fish species of the ACP, generalist feeding strategies

100



likely provide adequate redundancy in feeding habits to maintain energy flow and food web 

stability in the future.
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Figure 3.1. Lakes on the Arctic Coastal Plain of Alaska where common fish species were 
sampled for stomach content analysis and stable isotope analysis. The region (left) shown as 
inset on state of Alaska. The two study areas are shown in more detail (right), with unstudied 
lakes shaded grey and study lakes shaded black.
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Figure 3.2. Feeding strategy plots for common fishes in lakes on the Arctic Coastal Plain. The 
lower right plot offers an explanatory diagram for point distribution (adapted from Amundsen 
1995). Above each plot, the names of the species and the number of stomachs included in the 
analysis are given. Small Least Cisco, those < 100 mm FL, are sLeast Cisco and Least Cisco are 
> 100 mm. Within each plot names of some specific prey taxa are adjacent to the associated data 
points.
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Figure 3.3. Mean numeric proportion (with 95% SE) of important prey items found in the 
stomachs of common ACP lake fishes. Prey shown here accounted for up to 70% of the variation 
in pairwise differences in fish diet, and are arranged from left to right from benthic to pelagic. 
Above each plot, the species name and number of lakes where the species occurred is given. 
Small Least Cisco (sLeast Cisco) are < 100 mm FL, and Least Cisco are > 100 mm.
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Figure 3.4. Stable isotope ellipse areas representing the 95% credible interval around the mean 
for each species captured in six lakes on the Arctic Coastal Plain, Alaska. Points for individual 
fish are shown. Layman metrics for each fish community are shown in the plots, CD -  mean 
distance to centroid, MNND -  mean nearest neighbor distance, SDNND -  standard deviation of 
nearest neighbor distance. ALB -  Alaska Blackfish, ARG -  Arctic Grayling, BWF -  Broad 
Whitefish, LCO -  Least Cisco (> 100 mm FL), sLCO -  small Least Cisco (< 100 mm FL), NST 
-  Ninespine Stickleback, and WFS -  Whitefish species.
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Table 3.1. Fish species, mean and standard deviation of length and sample sizes for stomach 
content analysis (SCA) and stable isotope analysis (SIA). Length for Alaska Blackfish and 
Ninespine Stickleback are given in total length, the remaining species lengths are given as fork 
length.

Species Common name Length (SD) n SCA n SIA
Dallia pectoralis Alaska Blackfish 63 (34) 24 21
Pungitius pungitius Ninespine Stickleback 47 (11) 429 81
Coregonus sardinella Least Cisco 50 (23) 40 22

229 (58) 49 24
Coregonus spp. Whitefish spp. 65 (18) 38 12
Coregonus nasus Broad Whitefish 400 (147) 15 18
Thymallus arcticus Arctic Grayling 173 (58) 20 13
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Table 3.2. The number of fish, lake ID and mean stable isotope signatures (%o) for 513C and 515N are shown for each species. Stable 
isotope ellipse area estimates, with 95% lower and upper credible intervals, are shown for each lake, with the average ellipse area and 
credible interval for each species below. Least Cisco (> 100 mm FL) and sLeast Cisco (< 100 mm FL).

Species n Fish Lake ID 5 13C (SE) 5 15N (SE) SEAb  (%%2) 95% LCI 95% UCI
Alaska Blackfish 3 1 -28.8 (0.2) 7.1 (0.5) 0.78 0.15 3.35

3 4 -26.8 (0.2) 7.6 (0.2) 0.22 0.05 0.99
9 5 -27.9 (0.4) 8.1 (0.2) 2.11 1.07 4.39
3 6 -30.2 (0.8) 8.6 (0.2) 0.97 0.29 4.43
3 7 -28.3 (0.2) 9.5 (0.4) 0.37 0.09 1.72

0.29 0.05 3.65

Ninespine Stickleback 10 1 -27.9 (0.4) 9.0 (0.2) 1.93 1.04 4.02
10 2 -27.4 (0.2) 8.1 (0.4) 2.64 1.19 5.18
11 3 -28.1(0.2) 10.0 (0.7) 3.05 1.62 5.90
10 4 -27.4 (0.2) 8.5 (0.2) 1.41 0.78 2.92
10 5 -26.0 (0.4) 7.7 (0.3) 1.90 1.01 3.86
10 6 -28.3 (0.3) 10.0 (0.3) 1.99 1.02 4.01
10 7 -27.6 (0.5) 9.7 (0.4) 3.36 1.84 6.95
10 8 -26.5 (0.6) 7.9 (0.2) 2.63 1.33 5.38

2.22 0.90 5.30

sLeast Cisco 5 1 -28.2 (0.1) 7.4 (0.4) 0.58 0.20 1.72
5 2 -27.4 (0.1) 6.3 (0.2) 0.12 0.05 0.37
8 6 -27.1 (0.1) 7.7 (0.2) 0.24 0.13 0.59
4 7 -27.2 (0.1) 7.8 (0.2) 0.14 0.04 0.48

0.14 0.04 1.07
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Table 3.2. Continued

Species n Fish Lake ID 5 C13 (SE) 5 N 15 (SE) SEAb  (%o2) 95% LCI 95% UCI
Least Cisco 6 1 -27.5 (0.6) 10.4 (0.3) 2.67 1.09 6.85

7 2 -27.7 (0.2) 10.7 (0.2) 0.85 0.35 1.98
1 4 -27.2 9.5 - - -
9 6 -28.2 (0.2) 8.7 (0.6) 1.74 0.88 3.77
1 7 -29.8 9.2 - - -

0.95 0.26 5.22

Arctic Grayling 3 1 -27.7 (0.4) 9.1 (0.2) 0.51 0.17 2.37
10 7 -26.8 (0.5) 8.0 (0.6) 3.82 2.04 7.82

0.57 0.15 6.65

Whitefish spp. 11 1 -27.3 (0.2) 7.0 (0.2) 0.82 0.42 1.53
1 7 -27.1 7.1 - - -

0.82 0.42 1.53

Broad Whitefish 8 1 -28.4 (0.8) 9.8 ( 0.3) 5.86 2.79 13. 08
10 4 -26.6 (0.4) 8.0 (0.3) 1.16 0.58 2.32

1.17 0.46 11.03
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Appendix 3-A

Numeric proportions of prey from Arctic Coastal Plain fish stomachs.

Table 3-A1. Mean (SE) numeric proportions (as %) of prey for each of the fish species sampled 
from Arctic Coastal Plain lakes. The first 12 taxa accounted for known variation in pairwise fish 
species comparisons. Least Cisco (> 100 mm FL) and sLeast Cisco (< 100 mm FL).

Taxa Alaska Blackfish Ninespine Stickleback Least Cisco

MN SE MN SE MN SE

Notostraca 9.20 9.20 0.08 0.06 0.03 0.03
Gastropoda 20.84 8.35 0.01 0.01 12.74 5.42
Ostracoda 11.72 4.03 0.58 0.27 3.28 1.60
Nematoda 0.18 0.18 0.51 0.29 0.77 0.49
Diptera L 23.36 13.21 29.08 3.51 6.33 2.91
Trichoptera L 0.83 0.55 0.43 0.22 3.55 2.20
Hydrachnidia 0.18 0.18 0.95 0.38 16.76 7.00
Calanoida 0.09 0.09 7.44 2.33 0.28 0.26
Cladocera 8.54 5.06 19.67 2.81 2.15 1.28
Diptera Pupa 0.15 0.15 15.91 2.95 11.51 3.89
Diptera Adult 0.23 0.23 2.15 1.10 8.76 6.46
Fish 12.11 6.95 0 17.02 12.20
Amphipoda 0 2.84 2.31 0
Annelida 0 0.06 0.04 0
Anostraca 0 0.44 0.41 0
Bivalvia 0.33 0.26 0.05 0.05 7.29 6.44
Coleoptera A 0 0.01 0.01 0.31 0.16
Coleoptera L 0.42 0.42 0.14 0.08 0
Collembola 0 0.27 0.19 < 0.01 < 0.01
Copepoda (Unk) 0.09 0.09 4.79 1.53 0.19 0.19
Crustacea (Unk) 0 0.02 0.01 0
Cyclopoida 4.68 3.33 4.73 1.47 1.36 1.24
Diptera E 0 0.04 0.03 0.13 0.12
Ephemeroptera L 0 0.01 0.01 0
Fish Eggs 0 0.10 0.09 0
Harpacticoida 1.24 1.24 1.70 0.77 0.20 0.14
Oligochaeta 0 0.07 0.07 0.03 0.03
Plecoptera L 5.00 3.62 0.15 0.08 0.11 0.11
Seed 0 0.53 0.27 0
Terrestrial 0.79 0.79 0.82 0.44 2.07 1.40
Trichoptera A 0 0 3.26 2.13
Trichoptera P 0 0.01 0.01 0.05 0.05
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Table 3-A1. Continued

Taxa sLeast Cisco Whitefish spp. Broad Whitefish

MN SE MN SE MN SE

Notostraca 0 0 4.58 4.57
Gastropoda 0 0 23.19 22.33
Ostracoda 0.54 0.54 1.59 1.42 0.08 0.04
Nematoda 0.09 0.06 0.10 0.10 0.36 0.23
Diptera L 29.85 13.24 37.71 23.31 8.23 5.10
Trichoptera L 0 12.50 12.50 0.12 0.12
Hydrachnidia 2.25 1.87 0 0
Calanoida 0 0 0.23 0.23
Cladocera 36.02 13.57 14.92 12.55 20.71 20.36
Diptera Pupa 16.38 7.07 12.09 9.96 3.67 3.59
Diptera Adult 0.93 0.60 2.37 2.10 34.51 32.76
Fish 0 0 0
Amphipoda 0 0 0
Annelida 0 0 0.01 0.01
Anostraca 0 0 0
Bivalvia 0 0 4.31 4.31
Coleoptera A 0 0 0
Coleoptera L 0 0 0
Collembola 0.40 0.40 0.03 0.03 0
Copepoda (Unk) 4.93 3.45 0 0
Crustacea (Unk) 0 0 0
Cyclopoida 0.99 0.64 0.08 0.08 0
Diptera E 1.52 1.52 0 0
Ephemeroptera L 0 0 0
Fish Eggs 0 0 0
Harpacticoida 1.11 1.11 0 0
Oligochaeta 0 0 0
Plecoptera L 0 0 0
Seed 0 0 0
Terrestrial 2.36 2.00 5.93 5.81 0
Trichoptera A 0 0.17 0.17 0
Trichoptera P 0 0 0
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Table 3-A1. Continued

Taxa Arctic Grayling Humpback Whitefish Pike

MN SE MN SE MN SE

Notostraca 12.47 12.47 0.20 - 0

Gastropoda 0.05 0.05 65.80 - 5.30 -

Ostracoda 0.97 0.77 0.40 - 1.20 -

Nematoda 13.07 6.54 0 5.30 -

Diptera L 17.53 11.74 0.40 - 5.30 -

Trichoptera L 5.81 3.25 5.20 - 0

Hydrachnidia 6.06 2.66 3.20 - 0

Calanoida 0 0.40 - 0

Cladocera 9.38 7.14 2.30 - 3.00 -

Diptera Pupa 9.72 4.14 0 0

Diptera Adult 4.20 1.60 0 0

Fish 8.13 4.03 22.20 - 67.70 -

Amphipoda 0 0 0

Annelida 0 0 0

Anostraca 0 0 0

Bivalvia 0 0 12.30

Coleoptera A 0.04 0.04 0 0 -

Coleoptera L 1.29 0.88 0 0

Collembola 0.09 0.09 0 0

Copepoda (Unk) 0 0 0

Crustacea (Unk) 0 0 0

Cyclopoida 2.02 2.02 0 0

Diptera E 0 0 0

Ephemeroptera L 0.22 0.22 0 0

Fish Eggs 2.02 2.02 0 0

Harpacticoida 0.11 0.09 0 0

Oligochaeta 0 0 0

Plecoptera L 0 0 0

Seed 0 0 0

Terrestrial 5.39 4.45 0 0

Trichoptera A 1.43 1.37 0 0

Trichoptera P 0 0 0
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Table 3-A1. Continued

Taxa Rainbow Smelt Slimy Sculpin Arctic Char

MN SE MN SE MN SE

Notostraca 0 0 0

Gastropoda 0 0 0

Ostracoda 0 0 0

Nematoda 0 0 0

Diptera L 0 75.00 27. 50 26.90 -

Trichoptera L 0 11.10 - 1.10 -

Hydrachnidia 0 0 0

Calanoida 0 0 0

Cladocera 62.30 - 5.50 - 0

Diptera Pupa 37.70 - 0 25.40 -

Diptera Adult 0 0 13.30 -

Fish 0 0 0

Amphipoda 0 0 0

Annelida 0 0 0

Anostraca 0 0 0

Bivalvia 0 0 0

Coleoptera A 0 0 0

Coleoptera L 0 0 0

Collembola 0 0 0

Copepoda (Unk) 0 0 0

Crustacea (Unk) 0 0 0

Cyclopoida 0 0 0

Diptera E 0 0 0

Ephemeroptera L 0 0 0

Fish Eggs 0 0 0

Harpacticoida 0 0 0

Oligochaeta 0 0 0

Plecoptera L 0 0 0

Seed 0 0 0

Terrestrial 0 0 0

Trichoptera A 0 0 0

Trichoptera P 0 0 0
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CHAPTER 4

SURFACE WATER CONNECTIVITY INFLUENCES LAKE FOOD WEB COMPLEXITY

ON MULTIPLE SPATIAL SCALES1

ABSTRACT

Across large spatial scales, habitat complexity may translate to food web stability by 

promoting species persistence and energy flow. Examining species’ access to habitat patches 

with differing connectivity can enhance our understanding of the influence of spatial variation in 

physical processes on patterns of community assembly and food web function within a larger 

metacommunity. In the Alaskan Arctic, surface water connectivity plays a vital role in 

structuring lake fish communities and, therefore, food web structure. However, potential changes 

to the hydrologic regime due to climate and landscape changes could influence community 

composition, food web organization, and energy flows in Arctic lakes. Therefore, it is imperative 

that we examine current patterns of lentic food web structure and how they relate to surface 

water connectivity at the local and regional spatial scale. We examined how fish species richness 

and lentic food web structure responded to surface water connectivity in Arctic landscapes at the 

local scale, using a gradient of connectivity, and at the regional scale, we compared the two 

different locations. In 32 water bodies, we collected fish diet information from stomach contents 

and stable isotopes to determine the number of feeding links and trophic relationships that 

occurred among fish species. We found that local food web complexity, assessed by number of 

trophic links and trophic levels, was dependent on the lake’s relative isolation. Lakes with 

permanent channel connections were highest in food web complexity. At regional scales, food

1 Prepared for submission to Oikos as Laske, S. M., A. E. Rosenberger, M. S. Wipfli, and C. E. 
Zimmerman. Surface Water Connectivity influences lake food web complexity on multiple 
spatial scales.

119



webs were more complex when represented as an aggregate, or meta-food web of all potential 

fish species, compared to the average or “typical” food web for a particular region. Spatial 

variation in hydrological processes that drive individual fish species occupancy and community 

richness contributed to food web diversity across the Arctic landscape.

INTRODUCTION

Physical mechanisms that structure aquatic communities are directly relevant to the 

development of aquatic food web structure and complexity (e.g., Hershey et al. 1999, Jackson et 

al. 2001, Giam and Olden 2016). Landscapes regulate carbon inputs at the resource base, 

constraining the availability and assimilation of energy to food webs (Smits et al. 2015), and 

control the distributions of mobile species (e.g., fish) that shape trophic structure within food 

webs (Hershey et al. 1999). At the local scale, complex food webs with numerous, tightly linked 

species (Williams et al. 2002), may be more vulnerable to alteration via extinctions (Dunne et al. 

2002). However, at the regional scale, food web complexity may promote species persistence 

through colonization-extinction dynamics of predators and their prey (Gravel et al. 2011). 

Complexity across greater spatial scales may translate to food web stability by increasing the 

redundancy of certain predator-prey links and by offering alternative and heterogeneous habitat 

patches to prey species where they can take refuge from predators (Gravel et al. 2011, Bellmore 

et al. 2015, Ziegler et al. 2017). Spatial heterogeneity is an important part of metacommunity 

organization (Heino et al. 2015), and examining local communities or food webs in a 

metacommunity framework can enhance understanding of spatial processes on patterns of 

species distribution and diversity (Leibold et al. 2004, Henriques-Silva et al. 2013). Further, 

spatial complexity may provide a mechanism for stabilizing food web structure and function
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(Bellmore et al. 2015) and highlights the importance of maintaining heterogeneity of habitats 

across the landscape.

Dispersal of species in a metacommunity facilitates food web branching (i.e., regional 

persistence of multiple consumers through consumption of a shared resource) and diversity 

(Pillai et al. 2011). The regional persistence of a predator requires that it follow its prey through 

space, and the number of patches occupied is determined by rates of colonization and extinction 

(LeCraw et al. 2014). Generalist species may be quicker to colonize, given their wide trophic 

breadth and ability to consume early-colonizing prey, followed by specialist species with narrow, 

prey-specific foraging patterns (Piechnik et al. 2008). Ultimately, food web complexity should 

result from the aggregation of foraging links for each species in the community (Beckerman et 

al. 2006). Therefore, with the addition of more species, predators may “stack vertically up” food 

chains or cause further branching of the food web (Pillai et al. 2011). Complexity due to 

branching is a stabilizing force, particularly for generalist consumers that respond rapidly to 

change and dampen destabilizing resource oscillations (Rooney et al. 2006, Pillai et al. 2011)

Omnivores may act as an external predator in a metacommunity framework by feeding 

on prey in multiple habitat patches and switching prey based on availability or profitability 

(Kratina et al. 2012). Prey switching can be either spatial (e.g., Reid et al. 2012, Eloranta et al. 

2015) or temporal (e.g., Hayden et al. 2014), with generalists shifting between energy sources 

across trophic levels. Shifting to alternative energy sources, or mulitchain trophic omnivory 

(Vadeboncoeur et al. 2005, Rooney et al. 2006), may help maintain food web function even if 

sympatric species are lost (Gravel et al. 2011, Pillai et al. 2011). The higher proportion of weak 

interactions between predator and prey as local food webs are aggregated across a complex 

landscape may indicate a mechanism that links complexity and stability (Bellmore et al. 2015).
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The stability of food webs increases in highly connected webs when many species operate as 

weak interactors, generally as omnivores or trophic generalists (McCann et al. 1998, Dunne et al. 

2002, LeCraw et al. 2014, Ziegler et al. 2017).

In stream-lake networks, surface water connectivity, local colonization and extinction 

factors, and predator-prey interactions often determine the species assemblage, and, ultimately, 

metacommunity organization (Beisner et al. 2006, Heino et al. 2015, Giam and Olden 2016). 

However, short growing seasons, low temperatures, and low light intensity supersede biotic 

controls for communities and food webs in harsh high-latitude environments (van der Wal and 

Hessen 2009), and physical controls of the landscape likely play a greater role in structuring 

species occupancy, communities, and food webs (Hershey et al. 1999, Haynes et al. 2014, Smits 

et al. 2015). In the Alaskan Arctic, surface water connectivity plays a vital role in determining 

distribution patterns of fishes and formation of local assemblages (Hershey et al. 2006, Laske et 

al. 2016). Surface water connectivity influences the pool of species (regional) and shapes the 

rates of species colonization between habitat patches (local) and is, therefore, a driver of aquatic 

ecosystem structure and function (Tonn 1990, Reid et al. 2012, Henriques-Silva et al. 2013). 

Additionally, the relative simplicity of Arctic lake assemblages may improve our ability to 

recognize patterns in food web architecture as it relates to the environment at multiple spatial 

scales (e.g., Hershey et al. 1999).

However, climate-induced changes to the hydrologic cycle may affect the function of 

these food webs (Prowse et al. 2006, Wrona et al. 2006). Evaporative losses and flow regime 

changes will affect connectivity of lakes and ponds differentially depending on their current state 

(Koch 2016). Ponds may evaporate completely or disconnect altogether from the hydrologic 

network, leading to greater numbers of fishless pond habitats (Smol and Douglas 2007). Water
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levels in lakes will decrease due to evaporative loss, reducing overflow and affecting both 

connectivity and water depth (Lesack and Marsh 2010, Koch 2016). Reduced water levels will 

limit overwintering refuges for fish, and, without a sustaining pulse of colonists, species and 

associated trophic links would be lost from those lakes (Hershey et al. 2006, Haynes et al. 2014).

Large heterogeneous landscapes support an array of habitats and associated species that 

are important to the function of freshwater ecosystems and biodiversity (Heino et al. 2009), but 

may be vulnerable to changes in hydrologic networks and lake and pond connectivity. Therefore, 

we examine how fish species richness and lentic food web structure respond to surface water 

connectivity in Arctic landscapes at two spatial scales. Locally, we considered a gradient of 

connectivity that differentiates between strong permanent connections, ephemeral connections, 

and isolation (for details regarding the connectivity scale, see Riera et al. 2000). Regionally, we 

compared two locations that varied in physiography, climate, and surface water availability 

associated with colonization potential.

We expected that fish species richness would increase with the degree of surface water 

connectivity, with lowest richness in isolated lakes and highest richness in lakes with strong, 

permanent channel connections. Regionally, we predicted that the average richness of lakes 

would be greater at the site with higher overall surface water connectivity. We anticipated that 

food web complexity would be greater in lakes of higher connectivity; we therefore predicted 

that the number of trophic links, link density, and maximum trophic position would increase 

along the local gradient of surface water connectivity. We examined regional webs in two ways -  

as an average of the region’s lakes and as a metacommunity. We anticipated that both the 

average food web and the aggregate metacommunity food web would have higher complexity in 

the wetter location, with a greater number of trophic links and link density in that region.
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Further, we discuss the complexity of food webs in a metacommunity framework. Considering 

colonization, dispersal ability, and the heterogeneity of habitats available to fishes in the two 

study locations, we discuss how changes due to climate warming may affect local food webs 

(i.e., lakes) and regional meta-food webs (i.e., location) with respect to local scale channel 

connectivity and regional scale differences in surface water availability.

STUDY AREA

The Arctic Coastal Plain of Alaska (ACP) is a 50,000 sq km area located north of the 

Brooks Range and south of the Beaufort Sea. The region is underlain by permafrost and is 

covered in snow from October to June (Martin et al. 2009). In the central ACP (156°50’W -  

154°00’W and 70°00’N -  70°50’N), where permafrost processes are chiefly responsible for lake 

formation and distribution, lakes occupy approximately 40% of the landscape (Grosse et al.

2013). Mean annual temperature is -10.3°C, and mean summer (June-August) temperature is 

7.1°C (U.S. Geological Survey Ikpikpuk Metrological Station 2006-2012; Urban and Clow

2014). The spring freshet results in flooding and movement of water across the low gradient 

landscape, causing water to spill across stream and lake boundaries. This temporarily increases 

water body volume and surface water availability, ephemerally connecting otherwise isolated 

lakes and ponds to the hydrologic network.

We sampled ponds (surface area [SA] < 0.02 km2) and lakes (SA > 0.1 km2) at two 

locations on the central ACP in 2012-13 (Figure 4.1 A-D). Study locations were selected in 

coordination with other research interests in the region, but provided a contrast in temperature 

and physiography. Summer temperatures at the northern location were consistently cooler, due to 

the prevalence of fog near the Beaufort Sea coast. In 2012 and 2013, the daily average 

temperature in July was consistently 1.3°C warmer the southern location (J. Koch, U.S.
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Geological Survey, unpublished data), and spring melt was advanced six days at the southern 

location based on final dates of snow loss in 2012 (24-June at south and 30-June at north, Gurney 

and Uher-Koch 2012, Uher-Koch 2012). The locations but are starkly different in the amount of 

surface water drainage (Figure 4.1 A, B). The northern location is low gradient and is underlain 

by peat, whereas the southern location has a slight gradient, some topography, and is underlain 

by sand (Jorgenson and Grunblatt 2013). The differences in drainage above the permafrost 

boundary created a wetter landscape matrix surrounding northern lakes compared to the drier, 

broadly spaced lake arrangement to the south.

METHODS

At each location, we selected eight ponds and eight lakes of varying surface water 

connectivity -  no connection, ephemeral connection, or permanent connection -  for inclusion in 

the study to incorporate water bodies of varying species richness and composition. We used the 

metric of lake order proposed in Riera et al. (2000) as a guide, which specifies various 

connectivity states of lakes based on their position relative to a chain of lakes. Isolated water 

bodies with no surface water connection are designated -3, while water bodies with ephemeral 

connections are -1. For water bodies with permanent connections, there are three groups: 0, 

headwater lakes with no inflow and only an outflow; 1, first order lakes with a first order stream 

outflow; and 2, second order lakes with a second order stream outflow. Stream channels on the 

ACP are not typical of Strahler (1957) stream orders, so the use of the Riera et al. (2000) lake 

order metric is modified. For example, a 1st order lake would have one inflow and one outflow, 

with the inflowing channel coming from a similarly connected lake or a headwater lake. A 2nd 

order lake would possess at least two inflows and one outflow, or would have one inflow from an 

upstream lake possessing at least two inflows. Lake order was determined by examining the
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perimeter of each pond or lake sampled and by investigating the direction and permanence of 

stream connections in the field.

We sampled fish from lakes using fyke nets, hoop nets, minnow traps, and experimental 

gill nets. In shallow ponds, we sampled fish with only hoop nets and minnow traps. Two fyke net 

designs were used, including one constructed with 0.6 cm mesh, 15.2 x 1.2 m wings, and a 1.1 m 

square opening; and another with 0.6 cm mesh, 9 x 1 m wings, and a 1 m diameter opening. Nets 

either blocked lake inlets or outlets or were set perpendicular to the shoreline. We often used two 

nets, set end to end, to capture fish traveling in both directions along the shoreline. Hoop nets 

made of 0.6 cm mesh, with a 61 cm opening, had leads of 4.6 m. One lead was attached from the 

center or two leads attached as wings depending on the location of fish capture. We used two 

wings blocking a lake inlet or outlet and one lead if the net was set perpendicular to shore. 

Unbaited minnow traps, often used in ponds, with 6 mm steel mesh, 23 cm diameter, and 44.5 

cm length had two 2.5 cm openings captured small-bodied and juvenile fish. Experimental gill 

nets measured 24.8 by 1.8 m, with eight panels ranging in mesh size from 19 to 64 mm (North 

American standard, Lester et al. 2009). Time of net deployments was generally four hours or 

less, to limit digestion of stomach contents or potential net feeding. Further, we checked gill nets 

every hour to limit fish mortality and stomach content digestion or regurgitation. Collection took 

place over two (2011) to four days (2012-13) for each lake we sampled. Often, we sampled in 

the crepuscular hours; however, given the 24-hr cycle of light in the Arctic, there is little diel 

variation in fish movements and our ability to detect them (Kahilainen et al. 2004; Haynes et al.

2013). We also collected 10 snails (Gastropoda) from each lake and pond at North to establish 

baseline stable isotope signatures; we preserved snails in 95% ETOH.
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We measured fork length and total length of each fish species captured. Fish weight, to 

the nearest gram, was collected for all species except ninespine stickleback (Pungitius pungitius) 

due to their small mass (often less than 1g) and the accuracy of our field scales. We took 

stomach contents for up to 30 of every species collected in all ponds and lakes and preserved 

them in 95% ETOH. Only char (Salvelinus spp.) stomach content retrieval was done via gastric 

lavage with a 60 ml syringe and 1.7 mm diameter catheter tube, so these fish could be released 

unharmed. Whole stomachs were removed from all other fish after euthanasia via severing the 

spinal cord (per IACUC approved protocol, see Appendix A). We collected muscle tissues for 

stable isotope analysis from these fish as well by removing a small section of dorsal tissue from 

the left side of the fish and preserving it in 95% ETOH.

We prepared fish muscle tissue and snails minus their shells (up to 10 individuals) from 

each sampled lake at North for stable isotope analysis and determination of S15N and trophic 

position (Post 2002; Vander Zanden et al. 2004). We placed tissues into open 4 ml glass vials, 

and freeze-dried at -50°C for 48 hours (LABONCO FreeZone 1 Liter Benchtop Freeze Dry 

Systems 77400 Series, Kansas City, MO). Once dry, we used petroleum-ether to extract 

remaining lipids. Storing tissues in ETOH removed much, if  not all, of the tissue’s lipid prior to 

formal extraction; therefore, only 48 hours of submersion in petroleum-ether was required (Kelly 

and Martinez 2010). Tissues were air-dried for 24 hours before capping vials. We sent all 

samples to the Stable Isotope Facility at the University of Wyoming, Laramie, where they 

ground and analyzed samples for of S15N with a continuous flow stable isotope ratio mass 

spectrometer (Costech 4010, Carlo Erba 1110, Thermo Flash Elemental Analyzer coupled to a 

Thermo Delta Plus XP and Delta V IRMS). Analytic precision was ± 0.2%o, with standards L-
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glutamic acid (515N = -4.6%0, AIR, 36-UWSIF-Glutamic 1 and 515N = 27.9%0, AIR, 39-UWSIF- 

Glutamic 2).

Data Analysis

Use of the lake order metric throughout our analyses combines the effects of surface 

water connectivity and observations of fish species richness. We examined relations between fish 

species richness and lake order via analysis of variance (ANOVA, Package R 3.3.1) and test of 

multiple comparisons using a false discovery rate (FDR) correction method. Further, analyses 

were conducted independently for ponds and lakes. These two systems differ fundamentally, 

especially considering that the ponds are shallow and freeze to the bottom annually, whereas the 

lakes do not.

For each species and water body, we counted the number of trophic links -  identified to 

the Family level for aquatic macroinvertebrates and cladoceran zooplankton -  between fishes 

and their prey. In lakes where dietary data were unavailable for a present species, we interpolated 

by including prey with frequency of occurrence greater than 10% for the species. We determined 

the average link density, or number of links per taxa, across the connectivity gradient of lake 

order. Link density in lake food webs was analyzed across the connectivity gradient with a one

way analysis of variance (ANOVA, Package R 3.3.1) and test of multiple comparisons using a 

false discovery rate (FDR) correction method. Link density data were assessed for normality. To 

examine differences in regional food webs, we counted the total number of links and determined 

the total link density for each location. We also examined differences in average link density 

using a Welch two sample t-test (Package R 3.3.1) comparing all pond and lake food webs from 

northern and southern locations.

128



We assembled food web diagrams for each surface water connectivity grouping (lake 

orders) and for northern and southern sampling locations; keeping ponds separate from lakes (R 

package diagram, version 1.6). Dietary items shown in the webs are weighted according the 

mean numeric proportion of items found in the diets of fish (see Laske et al. in prep, for more 

detail on fish diets). Only items with a mean numeric proportion > 0.06 were included in the web 

diagrams. When species dietary information was missing for a category, we interpolated using 

the mean diet for that species. For diagrams demonstrating food webs along the connectivity 

gradient, black lines indicate fish that occurred in all lakes of a category and gray lines indicate 

fish that occurred in at least one, but not all lakes in the category. This coloring scheme is meant 

to show another level of complexity, distinguishing fishes that are consistently present from 

those that are potentially present. Webs prepared for the sampling locations (north and south) 

were prepared as meta-food webs with all of the species found in the region.

To correct for variation in 5 15N at the base of the lake’s food web, we estimated species 

trophic positions (TP) using the following equation from Vander Zanden et al. (2004) for 

individual fish:

TP c o n s u m e r  = [(S^N c o n s u m e r  -  5 15N b a s e l in e)/3.4] + 2,

where 3.4 is the trophic enrichment factor, and primary producers are at level two. The stable 

isotope nitrogen signature of snails (Gastropoda) was averaged within each water body and used 

as the baseline. We then calculated the average trophic position for each species across the 

spectrum of surface water connectivity (lake order) for ponds and lakes independently. We 

visually examined the data for correlations between length and trophic position for each species. 

For any species where length appeared to be an influential factor, we fit linear mixed-effects 

models as a function of length in mm (fork length or total length dependent on species
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morphology) and included the identity of the water body as a random effect (R version 3.3.1, 

package lme4). We then examined effect plots to determine significance -  a positive trend in 

trophic position with increasing length (R version package effects version 3.3-1). We determined 

differences in species trophic positions with one-way ANOVA and used a false discovery rate 

(FDR) correction method to test multiple comparisons among species (R version 3.3.1). Also, we 

plotted the average trophic position for each species for each category of lake connectivity (lake 

order) to look for trends in the data within and across species. Further, we calculated the 

maximum trophic position for each category of lake connectivity. Maximum trophic position 

was determined as the average trophic position for the species that occupied the top position in 

each category. The differences in maximum trophic position across the gradient of surface water 

connectivity in lakes were assessed with a one-way ANOVA (R version 3.3.1).

RESULTS 

Local scale

We sampled 32 water bodies of varying connectivity at two locations: 12 isolated water 

bodies (8 ponds, 4 lakes), 12 ephemerally connected water bodies (8 ponds, 4 lakes), and 8 

permanently connected lakes (Table 4.1). Ponds fell only into two surface water connectivity 

categories, lake order of -3 or -1. Isolated ponds (-3) never contained fish, while ephemerally 

connected ponds (-1) contained only ninespine stickleback. Three isolated lakes (-3) also 

contained only ninespine stickleback, while one isolated lake contained ninespine stickleback 

and Alaska blackfish (Dalliapectoralis). Ephemerally connected lakes (-1) contained up to four 

fish species, ninespine stickleback, Alaska blackfish, least cisco (Coregonus sardinella), and 

slimy sculpin (Cottus cognatus). In lakes with permanent connections (0, 1, and 2), we observed 

three to nine fish species, including those mentioned above and broad whitefish (Coregonus
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nasus), humpback whitefish (C. pidschian), Arctic grayling (Thymallus arcticus), Arctic char 

(Salvelinus alpinus), pike (Esox lucius), rainbow smelt (Osmerus mordax), and burbot (Lota 

lota). However, we captured only larval burbot and have no dietary information on the species.

In ponds, the relationship between fish richness and connectivity (lake order) was 

constant. If an ephemeral connection was present in a pond, then one fish species was present. 

Without a surface water connection, ponds were void of fish. In lakes, fish species richness 

increased with the degree of surface water connectivity (ANOVA, F  = 11.7, p  < 0.001). Multiple 

comparisons showed isolated lakes, with a richness of 1.2 species, differed in richness from all 

other lake order types (Figure 2). Ephemerally connected lakes, headwater lakes, and first order 

lakes did not differ in fish richness. Estimates of mean richness ranged from 2.5 to 4 species 

across this range of connectivity. However, richness of a second order lake differed from 

richness in isolated lakes by 4.6 species and from ephemerally connected lakes by 3.4 species on 

average. Second order lakes did not differ from permanently connected headwater and first order 

lakes.

Number of links and link density increased with the degree of surface water connectivity 

(Table 4.1). The number of links increased with the addition of fish species; however, fish 

species did not contribute equally to the web’s complexity. Generalist species like Arctic 

grayling averaged 15 trophic links, while a benthic fish like Slimy Sculpin averaged 2.5 links 

(Table 4.2). Therefore, the addition of different fish species to lake food webs resulted in 

differences in overall complexity. Food web diagrams (Figure 4.3) showed increasing 

complexity with the addition of fish species. However, the identity of fish included in any given 

web can change its architecture. The number of consistently present fish species did not increase 

beyond one -  ninespine stickleback -  until lake connectivity was relatively high (Figure 4.3 E
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and F). Headwater lakes (Figure 4.3 D) also have potential for greater web complexity, but this 

complexity was dependent on species identity rather than on a suite of consistently present fish 

species -  chiefly least cisco and broad whitefish. A comparison of link density given surface 

water connectivity demonstrated that the number of links per taxa did not differ across any lakes 

with a channel connection, whether permanent or ephemeral (Figure 4.4). Difference in link 

density occurred between food webs in isolated lakes (predicted link density = 0.99; Figure 4.3 

B) and food webs in lakes with strong permanent connections (predicted link density = 1.82; 

Figure 4.3 F), with an increase of about 0.8 links per taxa when the lake was strongly connected 

rather than isolated.

We found a correlation between length and trophic position for one species, least cisco (r 

= 0.77). However, the distribution of fish lengths in our sample allowed us to partition this 

species into two groups that sorted young-of-year fish (44 ± 6 mm FL) from adults (224 ± 38 

mm FL); mean trophic position for least cisco < 100 mm FL was 3.2 ± 0.1 (confidence interval), 

while least cisco > 100 mm FL was 3.7 ± 0.2. None of the fish species included in our stable 

isotope model occupied whole number trophic positions, and many appeared similar (Figure 

4.5). Among fish that resided in lakes, trophic position varied with species identity (F  = 5.09, d f  

= 10, p  < 0.001), and a test of multiple comparisons indicated clear differentiation between the 

smaller fish, Alaska blackfish, juvenile whitefish, and least cisco < 100 mm FL, and large 

predators like humpback whitefish and pike (Figure 4.5). Many species had overlapping trophic 

positions, like Arctic grayling, broad whitefish, least cisco > 100 mm FL, ninespine stickleback, 

pike, rainbow smelt, and slimy sculpin.

When we examined maximum trophic positions (MTP) across the spectrum of surface 

water connectivity, three species occupied that role: ninespine stickleback (lake order -3), least
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cisco (lake order -1 and 0), and humpback whitefish (lake order 2; Figure 4.6). Analysis of 

variance indicated that the change in maximum trophic position was significant between isolated 

lakes and strongly connected lakes (d f = 3, F  = 4.23, p  = 0.014), and the change was equal to 

approximately one trophic level (2nd order lake MTP = 4.3 ± 0.5, isolated lake MTP = 3.3 ± 0.1). 

Within lakes of higher surface water connectivity, fish species spanned a broader range of 

trophic positions, from small whitefish spp. at 3.3 ± 0.1 to humpback whitefish at 4.3 ± 0.5, also 

ranging approximately one trophic level. Isolated lakes, with only one or two fish species, had 

the smallest range of trophic positions. Ninespine stickleback in isolated lakes had a mean 

trophic position of 3.3 ± 0.1, which was similar to that of ninespine sticklebacks in ponds, with a 

mean trophic position of 3.5 ± 0.2. Interestingly, ninespine stickleback, least cisco, Alaska 

blackfish, and broad whitefish trophic positions increased with surface water connectivity 

(Figure 4.6).

Regional scale

The fish assemblage at the southern location was composed of five species -  Alaska 

blackfish, Arctic grayling, broad whitefish, least cisco, and ninespine stickleback. Those fishes, 

plus an additional six -  Arctic char, burbot, humpback whitefish, pike, slimy sculpin, rainbow 

smelt -  occurred at the northern location (Table 4.3). When examining food webs at a broader 

scale, comparatively, lakes at the northern location contained more trophic taxa and 1.9 times 

more links in the regional food web. Also, link density of regional lake food webs was seven 

times greater at wetter northern locations (link density = 3.18) than dryer southern locations (link 

density = 0.45). Diagrams of regional food webs (Figure 4.7) increased in complexity with the 

addition of fish species found at the northern location, including the appearance of two additional 

piscivores, pike and humpback whitefish (Figure 4.7 B). In ponds at both locations, ninespine
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stickleback was the only fish species present. Pond food webs differed little; southern webs 

contained 22 links with a link density equal to 1.0 link per taxa, while northern pond webs 

contained 17 links with a link density of 0.94 links per taxa. One incidence of cannibalism 

occurred among ninespine stickleback in a pond at South.

In terms of averages for the two locations, observed richness in southern lakes was 2.8 ± 

1.0 fish species, while northern lakes averaged 3.9 ± 1.7 fish species (Table 4.3). Lakes at the 

southern location tended to have fewer links on average, at 28 trophic taxa, than the northern 

lakes, with 40 trophic taxa. However, the difference in average number of links had little 

influence on link density, with an average of 1.35 links per taxa in southern lakes and 1.47 links 

per taxa in northern lakes (one-way t-test, t = 0.55, d f  = 13.97, p  = 0.29). In ponds, fish species 

richness was constant. One species, ninespine stickleback was present if  the pond had an 

ephemeral connection, regardless of the location. Contrary to the effects seen in lakes, northern 

pond webs had a slightly less complex structure than southern ponds, but average link density 

did not differ (south link density = 0.95 links per taxa; north link density = 0.90 links per taxa at 

North; one-way t-test, t = -2.02, d f  = 6, p  = 0.96).

DISCUSSION

The diversity of individual food webs resulted from the variation in surface water 

connectivity among individual lakes and within study locations. At the local scale, food web 

complexity increased with surface water connectivity. The average species richness of isolated 

lakes was four times lower than a lake with a 2nd order stream outflow, and the lack of surface 

water connection translated to reduced fish species richness and 1.8 times loss in food web 

complexity, measured by link density. At the regional scale, increased food web complexity 

arose from the aggregation of trophic species as part of a metacommunity, but not as an average
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of all lake types at each location. The additional fish species in the wetter, northern region meta

food web added trophic links between fish and invertebrates and fish and fish, increasing web 

complexity and potentially lengthening the food chain. This aggregation of eleven fish species 

led to a more complex food web with seven times the link density of the drier, southern region 

food web, which contained only five fish species. However, average lake food web complexity 

did not differ by location, suggesting increased complexity resulted from the aggregation of 

multiple diverse of food webs rather than from regional differences in the food webs of a 

“typical” lake.

We hypothesized that fish species richness, the number of trophic links, and link density 

would increase with lake surface water connectivity (LeCraw et al. 2014). At the local scale, 

using lake order as a metric for surface water connectivity (Riera et al. 2000), we found support 

for this hypothesis. While we may expect a positive correlation between species richness and the 

number or density of trophic links (Hershey et al. 1999, Dunne et al. 2002), large changes in 

surface water connectivity were required to obtain differences in food web link density. This is 

because the relationship between surface water connectivity and fish species richness was non

linear, and richness overlapped in lakes of differing connectivity strengths. For example, in lakes 

with ephemeral channel connections richness ranged from two to four fish species, while in lakes 

with a permanent channel connection richness ranged from three to nine fish species, including 

top-predators.

We also hypothesized that the maximum trophic position, a proxy of food chain length, 

would increase with surface water connectivity, primarily due to the addition of top-predators in 

lakes with higher colonization potential (Pillai et al. 2011, LeCraw et al. 2014). Interestingly, 

food chain length only increased substantially (i.e., ~ 1 trophic level) in a 2nd order lake where
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Pike and Humpback Whitefish occurred. In other lakes, regardless of which fish was the apex 

predator (either Ninespine Stickleback or Least Cisco), food chain length was similar. The high 

degree of omnivory in the diets of Arctic fishes (Laske et al. in prep) likely promotes this 

similarity in the food chain length; however, the diversity of diets simultaneously promotes 

complexity, albeit in a shorter web (Gravel et al. 2011).

Foraging strategies and the dietary habits of individual fish species may provide a 

mechanism to explain patterns of food web complexity (Beckerman et al. 2006). Omnivorous 

feeding links may be critical for assembling complex webs via creation of network braches, 

where a species (potentially with a competitive disadvantage) feeds on a different trophic level or 

from different branches of the food web (Pillai et al. 2011). Most predators fed on zooplankton, 

macroinvertebrates, and fish, promoting complexity in these webs and drawing on resources 

from benthic, pelagic, or terrestrial energy compartments (Solomon et al. 2011). A majority of 

fish in the region demonstrated generalist feeding strategies, which allowed them to switch food 

resources in accordance with their availability, thereby increasing the number of trophic links for 

these fish species (Beaudoin et al. 2001, Eloranta et al. 2015, Laske et al. in prep). Species like 

Arctic Grayling, Least Cisco, and Ninespine Stickleback had the greatest dietary diversity, 

readily using resources from benthic and pelagic sources and from multiple trophic levels link 

energy compartments (Schindler and Scheuerell 2002, Eloranta et al. 2013), conferring stability 

on the local food web (Williams et al. 2002, Rooney et al. 2006).

If we consider each pond or lake food web within a region as a network of habitat 

patches, or a metacommunity, then food web function would depend on the accessibility of a 

patch (i.e., the surface water connectivity; Pillai et al. 2011) and the preexisting presence of its 

prey in that patch (LeCraw et al. 2014). LeCraw et al. (2014) point out that most empirical food
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web studies demonstrate the idea of bottom-up control on food chain length -  predators follow 

prey through space, and ultimately, prey constrain predators -  yet few studies address the 

concept. We cannot provide any direct evidence that fish in these Arctic lakes were responding 

to bottom-up controls at the local scale. Given the generalist feeding behaviors demonstrated by 

common fish species, like Ninespine Stickleback, Alaska Blackfish, Least Cisco, Broad 

Whitefish, and Arctic Grayling (Laske et al. in prep), limited access to prey is unlikely, and 

many fishes relied heavily on similar prey (e.g., Diptera and Cladocera) in all lake types. We 

suspect similar outcomes even for fish commonly considered top predators, like Arctic Char or 

Pike, because they too are generalists (Beaudoin et al. 2001, Eloranta et al. 2015). Furthermore, 

given the abiotic constraints to productivity in the extreme Arctic environment, generalists may 

be best able to track limited resources and stabilize food webs through prey switching (Beaudoin 

et al. 2001, Hayden et al. 2014, Laske et al. in prep). It is far more likely that environmental 

controls such as stream size, permanence, or discharge influenced patterns of fish species 

distribution, richness, assemblage composition, and the resultant food web structure (Heino et al. 

2015, Laske et al. 2016). Therefore, access to habitat patches is likely more limiting than prey 

availability, and access to habitat patches then becomes a major factor in distributing food webs 

in space.

Dispersal modes vary among Alaska’s Arctic fishes, and colonization potential of lakes 

and ponds in the region depends upon the connectivity of the water body and the ecology of the 

fish species in question (Die Bie et al. 2012, Laske et al. 2016). For example, Ninespine 

Stickleback likely disperse in an undirected manner in pathways opened by flood waters during 

each spring melt; Ninespine Stickleback inhabit more aquatic habitats than other fishes in the 

region and often occur in ponds and lakes with limited surface water access (Laske et al. 2016).
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On the other end of the spectrum, Arctic Grayling migrate, with site-specific fidelity, to foraging 

habitats (Buzby and Deegan 2000). Their movement patterns coincide with stream flow cues; 

movements into feeding areas occur with high flows during the spring freshet and movements 

out of feeding areas occur with summer base flows (Heim et al. 2016).

Shallow pond habitats (depths < 1 m) freeze solid annually, essentially resetting the fish 

population of Ninespine Stickleback each spring, and if surface water connections are not 

available for outmigration in fall, then the ponds function as a sink for Ninespine Stickleback. 

The persistence of specific ponds as Ninespine Stickleback food webs on an annual basis is 

unknown; local factors like variation in snow accumulation, spring flood severity, and summer 

precipitation or evaporation would dictate a pond’s connectivity to the hydrologic network or 

accessibility to fish (Woo and Guan 2006, Haynes et al. 2014). Given the stochasticity of pond 

habitats with respect to connectivity and permanence, spatial processes (e.g., dispersal ability) 

may be more relevant to community structure (Heino et al. 2015). Therefore, it is not surprising 

that food web structure was similar in ponds supporting Ninespine Stickleback at both locations. 

The ability of Ninespine Stickleback to access a pond is not contingent upon the pond’s location, 

but rather its connectivity during periods of high water availability. However, one important 

distinction should be noted: we observed that locating a pond without Ninespine Stickleback was 

much more difficult at our northern location, where peaty soils and lower relief tundra resulted in 

a greater potential for overland flow and ephemeral channel connections. Therefore, it is more 

likely that fishless food webs would occur in ponds at the drier, less connected, southern 

location.

Each of the lakes included in our analysis supported fish food webs. The variation in 

local surface water connectivity was primarily responsible for patterns of species richness (Laske
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et al. 2016). Examination of surface water connectivity along an ordered gradient (lake order; 

Riera et al. 2000) improved the resolution of surface water connectivity and provided insight into 

distributions of food webs at the local scale (i.e., lake). Isolated lakes, which lacked connection 

to hydrologic networks, supported only the hardiest fish species -  Ninespine Stickleback and 

Alaska Blackfish (Haynes et al. 2014, Laske et al. 2016) -  and supported distinctive invertebrate 

assemblages comprised of large-bodied Cladocera, Anostraca, and Amphipoda (SML, personal 

observation). Amphipoda comprised a notable proportion of the web in isolated lakes only. Food 

webs in complete isolation lacked large fish predators (e.g., Least Cisco, Arctic Grayling, or 

Pike), either because of lower colonization rates to those patches (Pillai et al. 2011, LeCraw

2014), or due to extreme conditions (e.g., low dissolved oxygen) that tend to negatively affect 

survival of larger predator species (Jackson et al. 2001). Therefore, it is unknown whether these 

lakes had, but then lost, these predators due to local extinction factors (Hershey et al. 2006, 

Ledger et al. 2012, Haynes et al. 2014) or whether larger fish were prevented from following 

prey to the isolated habitat patch (Holt 1996). In either case, the resultant food web in isolation 

was less complex, with reduced link density and food chain length than webs found in lakes with 

greater surface water connectivity.

Lakes with ephemeral or 1st order channel connections (headwater and 1st order lakes) 

had similar fish species richness and link density. Differences in food webs in these lakes, and 

the species components, depended indirectly on the degree of surface water connectivity and 

likely a suite of other environmental characteristics or landscape controlled food web 

characteristics (e.g., geomorphic-trophic hypothesis, Hershey et al. 1999). Access to lakes varied 

by fish species. For example, Least Cisco was the only salmonid that occupied ephemerally 

connected lakes (for more detail see Laske et al. 2016), and was the top predator in those

139



systems, yet they remained omnivorous -  which allows species to invade systems at lower 

colonization rates (Pillai et al. 2011). Other fishes, like Arctic Char and Slimy Sculpin, may 

require greater area or water depth (Hershey et al. 1999; Eloranta et al. 2015) to colonize. 

However, a generalist, like Arctic Char, can stabilize food web compartments by changing their 

trophic niche, which reduces competition with other fish and reduces oscillations in the resource 

base (Rooney et al. 2006, Eloranta et al. 2015). Perhaps these stabilizing species -  those that shift 

between available sources of production (e.g., Arctic Char, Eloranta et al. 2015; Ninespine 

Stickleback, Gallagher and Dick 2011) -  were well suited to physically remote lakes, such as 

headwater, ephemerally connected, or isolated systems.

As the strength of channel connections increased, so did the number of piscivorous fishes 

and the length of the food chain (Pillai et al. 2011). However, the relatively short chains did not 

increase substantially with surface water connectivity due to the high degree of omnivory within 

the food webs (Morin and Lawler 1996, Beaudoin et al. 2001). Surprisingly, even for 

omnivorous or generalist species, the average link density of food webs in ephemeral, headwater, 

and 1st order lakes did not differ from average link density of food webs in isolated lakes, even 

when fish species richness was greater. This was counter to our expectation that number of links 

and link density would be positively correlated with habitat connectivity (LeCraw et al. 2014). In 

part, the similarity in link density was due to high variation in number of feeding links in food 

webs of differing connectivity. Small sample sizes of fish, like Broad Whitefish, Arctic Grayling, 

and occasionally Least Cisco, and limited dietary data from some individuals (i.e., stomachs not 

“full”) weakened our ability to determine differences in food web complexity. For example, in 1st 

order lakes, the minimum number of trophic links was 17 for a lake with Ninespine Stickleback, 

Broad Whitefish, and Least Cisco adults and young-of-year. However, based on the average
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number of feeding links for each of those species, we expected the number of trophic links to 

approach 40, with a link density value intermediate of that found for headwater lakes and 2nd 

order lakes.

The 2nd order lakes had the most complex food webs, with four fish species that occurred 

consistently in each individual web. At this level of surface water connectivity, colonization is 

unconstrained for fish species; also, given bottom-up constraints of food webs, their prey would 

also be established and available (Pillai et al. 2011, LeCraw et al. 2014). Second order lakes 

spanned the greatest range of fish species richness and included fish species that did not occur in 

in lakes of lower surface water connectivity, indicative of higher colonization potential (Hershey 

et al. 2006, Laske et al. 2016). One of the most prominent features of these lakes was the span of 

trophic positions. Longer food chains in 2nd order lakes may result from increasing colonization 

potential with the number of species that “stack vertically up” (Pillai et al. 2011), or as a function 

of greater access to refuge habitats (e.g., other lakes or streams) for intermediate predators 

(Ziegler et al. 2017). Fish in lakes with strong channel connections are also more likely to come 

and go from them; particularly fish with strong swimming abilities, migratory behaviors, or 

roving prey-search patterns. The maintenance of species richness and web structure in these 

lakes depends on their location within the hydrologic network, number of dispersal corridors 

(i.e., stream channels), distance between patches, and presence of lakes or patches that provide 

colonists or refuge (Holyoak 2000).

At both locations, the aggregation of individual lake food webs to one meta-food web 

increased the overall food web complexity, with greater complexity arising with increased 

species richness. Interestingly, when we compared the average web complexity for both 

locations, they were similar. The difference between the aggregate web and the average web
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highlights the importance of the diversity of local food webs, including webs in isolated lakes 

with one fish species and webs from 2nd order lakes with five or more species. The differences in 

connectivity and colonization potential for each lake type are ultimately responsible for the array 

of local food webs and the overarching meta-food web. The aggregation of individual patches 

from a complex landscape can decrease the average strength of predator-prey interactions and 

increase the number of weak interactors in the larger, aggregated species pool, which may 

promote food web stability (McCann et al. 1998, Bellmore et al. 2015, Cross et al. 2013). The 

availability of multiple habitat patches in a metacommunity, which provide refuge for prey 

species or forage for predators, provides populations with stable resources used to sustain them 

(Ziegler et al. 2017). Predators, often generalists or omnivores, may rapidly switch to an 

increasing prey in accordance with its availability, and in doing so the predator releases the 

declining prey from top-down pressure (Rooney et al. 2006). In this way, the predator balances 

the asynchrony in food web energy channels (Rooney et al. 2006, Hayden et al. 2014, Eloranta et 

al. 2015). In a highly integrated system, such as they hydrologic network of Coastal Plain lakes, 

these connections may well exist in multiple patches (i.e., lakes). The meta-food web of a 

complex landscape may contribute to both community diversity and persistence by increasing the 

spatial heterogeneity of habitats and reducing associated species interaction strengths that 

constrain prey dispersal or survival (Holyoak 2000, Leibold et al. 2004, Bellmore et al. 2015). 

Much of the food web diversity we found across lakes and locations was due to fish species 

access, resulting from hydrological processes that drive fish species occupancy and richness in 

Arctic Coastal Plain lakes (Haynes et al. 2014, Laske et al. 2016). However, we expect the 

distribution of species and associated food webs to change across the landscape because of 

climate induced changes to surface water dynamics (Prowse et al. 2006, Wrona et al. 2006). If
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landscape drying occurs as projected (23-37% drier by 2075-2084, Martin et al. 2009), we 

would expect reduced surface water connectivity to lakes with ephemeral or limited (e.g., 

headwater lakes) channel connection and a resultant shift in their associated food webs (Prowse 

et al. 2006). Isolated lakes could comprise as much as 25% (up from 3%, currently; estimated 

from site visits and aerial photography) of the nearby lakes at the northern location and 39% (up 

from 23%, currently) of the nearby lakes at the southern location, increasing the proportion of 

lake food webs that are vulnerable to extinction events like winter kill (Hershey et al. 2006, 

Gravel et al. 2011, Heino et al. 2015). Landscape complexity (e.g., variety of connectivity states) 

may be critical for maintaining regional food web stability by maintaining diversity of energy 

pathways through support of colonization processes in the meta-food web (Gravel et al. 2011, 

Bellmore et al. 2015, Smits et al. 2015). However, the effects of metacommunity properties, like 

colonization and extinction rates, on these on Arctic lake food webs require further study before 

we can fully evaluate the impacts of climate change.
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Figure 4.1. Locations of lakes and ponds sampled for fish food webs (A, B) on the central Arctic 
Coastal Plain (C) of Alaska. Surface water connectivity metrics for sampled lakes are indicated 
for the northern (A) and southern (B) locations. Connectivity categories are: -3, isolated; -1, 
ephemerally connected; 0, headwater lake with outflow only; 1, first order lake with 1st order 
stream inflow; and 2, seconder order lake with a 2nd order stream outflow. Sampled ponds are not 
indicated on the map.
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L a k e  O rd e r

Figure 4.2. Mean (± 1 SE) observed fish species richness across the range of local surface water 
connectivity, or lake order, for lakes at two locations on the Arctic Coastal Plain of Alaska. Lake 
orders, adopted from Riera et al. (2000), indicate a lake’s relationship with the hydrologic 
network as either -3, isolated; -1, ephemerally connected; 0, headwater lake with outflow only; 1, 
first order lake with 1st order stream inflow; and 2, seconder order lake with a 2nd order stream 
outflow. Multiple comparisons are indicated with letters above each point, mean richness values 
that share a letter are not statistically different.

145



146

A. O B. C.

Diptera I.

D.

Figure 4.3. Example food web diagrams for fishes of the Arctic Coastal Plain, Alaska. Diagrams represent food webs from water 
bodies with differing surface water connections (A) ponds with ephemeral connections, (B) lakes with no connections, (C) lakes with 
ephemeral connections, (D) headwater lakes with one outflow, (E) lakes with a 1st order stream outflow, and (F) lakes with a 2nd order 
stream outflow. Links in black are shown for fish species that occurred in all lakes of that type, whereas links in gray are shown for 
species that occurred in at least one lake of that type. Fish are Stickleback = ninespine stickleback, Blackfish = Alaska blackfish,
Cisco = least cisco > 100 mm FL, Cisco sm. = least cisco < 100 mm FL, Sculpin = slimy sculpin, Whitefish = juvenile whitefish, 
Grayling = Arctic grayling, Smelt = rainbow smelt. For invertebrate prey: l = larva, p = pupa, and a = adult.



L a k e  O rd e r

Figure 4.4. Mean (± 1 SE) link density, the number of links per taxa, across the range of local 
surface water connectivity, or lake order, for lakes at two locations on the Arctic Coastal Plain of 
Alaska. Lake orders, adopted from Riera et al. (2000), indicate a lake’s relationship with the 
hydrologic network as either -3, isolated; -1, ephemerally connected; 0, headwater lake with 
outflow only; 1, first order lake with 1st order stream inflow; and 2, seconder order lake with a 
2nd order stream outflow. Multiple comparisons are indicated with letters above each point, mean 
richness values that share a letter are not statistically different.
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Species

Figure 4.5. Mean (± 1 SE) trophic positions calculated as the difference in 515N between 
individual fish and the snail baseline for fish species captured in lakes at the northern location on 
the Arctic Coastal Plain, Alaska. Species are, AB = Alaska blackfish, AG = Arctic grayling, WF 
= juvenile whitefish, BW = broad whitefish, HW = humpback whitefish, LCs = least cisco < 100 
mm FL, LC = least cisco > 100 mm FL, NS = ninespine stickleback, PK = pike, RS = rainbow 
smelt, SS = slimy sculpin. Multiple comparisons are indicated with letters above each value.

148



Species
♦  Ninespine Stickleback 

-)|f Alaska Blackfish

•  Least Cisco
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Figure 4.6. Mean (± 1 SE) of the trophic position, calculated as the difference in 515N between 
individual fish and the snail baseline, for fish species in lakes across the range of local surface 
water connectivity, or lake order, at two locations on the Arctic Coastal Plain of Alaska. Lake 
orders, adopted from Riera et al. (2000), indicate a lake’s relationship with the hydrologic 
network as either -3, isolated; -1, ephemerally connected; 0, headwater lake with outflow only; 1, 
first order lake with 1st order stream inflow; and 2, seconder order lake with a 2nd order stream 
outflow. No data (ND) were available for 1st order lakes. Not all species are represented in this 
plot due to availability of data.
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Figure 4.7. Meta-food web diagrams for lakes at the southern sampling location (A) and the northern sampling location (B) on the 
Arctic Coastal Plain, Alaska. Fish are Stickleback = Ninespine Stickleback, Blackfish = Alaska Blackfish, Cisco = Least Cisco >100 
mm FL, Cisco sm. = Least Cisco <100 mm FL, Sculpin = Slimy Sculpin, Whitefish = juvenile whitefish, Grayling = Arctic Grayling, 
Smelt = Rainbow Smelt. For invertebrate prey: 1 = larva, p = pupa, and a = adult.
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Table 4.1. Number of ponds or lakes sampled (N) across the range of connectivity (lake order) found on the Arctic Coastal Plain, 
Alaska. Lake orders, adopted from Riera et al. (2000), indicate a lake’s relationship with the hydrologic network as either -3, isolated; 
-1, ephemerally connected; 0, headwater lake with outflow only; 1, first order lake with 1st order stream inflow; and 2, seconder order 
lake with a 2nd order stream outflow. For each category, richness of fish species found and the assemblages in each grouping is given, 
along with the number of different food webs, the mean number of links (range), the average link density (standard deviation), and the 
maximum trophic position (MTP; standard deviation). No data (ND) were available for trophic positions in 1st order lakes. Fish are NS 
= Ninespine Stickleback, AB = Alaska blackfish, LC = least cisco, SS = slimy sculpin, BW = broad whitefish, AG = Arctic grayling,
AC = Arctic char, BB = burbot, HW = humpback whitefish, PK = pike, and RS = rainbow smelt.

Ponds Lakes

Isolated Ephemeral Isolated Ephemeral Headwater 1st order 2nd order

Lake order -3 -1 -3 -1 0 1 2

N 8 8 4 4 3 2 3

Richness 0 1 1 - 2 2 - 4 4 3 - 5 4 - 9

Assemblages None NS NS AB NS AB LC NS BW BW LC NS AB BW LC NS

AB NS LC NS AC AG NS SS AB AG BW LC NS AB AG BW LC NS

AB LC NS SS AB AG BB BW HW LC NS PK RS

N webs Na 1 2 3 2 2 3

N links Na 13 (6 - 21) 12 (9 - 18) 26 (16 - 35) 43 (33 - 51) 35 (17 - 52) 62 (41 - 99)

Link density Na 0.93 (0.04) 1.00 (0.14) 1.22 (0.08) 1.64 (0.23) 1.53 (0.56) 1.84 (0.47)

MTP Na 3.5 (0.5) 3.3 (0.2) 3.6 (0.3) 3.84 ( - ) ND 4.3 (0.2)



Table 4.2. The number (n) of fish included in stomach content analysis (SCA) and stable isotope 
analysis (SIA). Also given, the number of lakes sampled and the mean number of trophic links 
(Links) with standard deviation (SD) for each of the fish species captured on the Arctic Coastal 
Plain, Alaska.

Species n SCA n SIA n lakes Links (SD)
Alaska blackfish 24 21 8 6.5 (3.6)
Arctic char 3 ND 1 4
Arctic grayling 20 13 3 15 (2.7)
Broad whitefish 15 18 4 10 (6.4)
Humpback whitefish 3 3 1 12
Least cisco (> 100 mm) 49 24 8 11.6 (6.5)
Least cisco (< 100 mm) 40 22 6 6 (1.9)
Ninespine stickleback 429 81 16 11.1 (1.9)
Pike 3 2 1 9
Rainbow smelt 3 2 1 3
Slimy sculpin 8 7 2 2.5 (0.7)
Whitefish spp. 38 12 4 4.8 (4.3)
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Table 4.3. Trophic summary data for the southern and northern sampling locations on the Arctic Coastal Plain, Alaska, includes the 
number of water bodies (N), the fish assemblages, along with fish species richness, number of trophic links and link density, for both 
the meta-food web and the average food web. Values in parentheses are standard deviation of fish richness and link density, and the 
range of number of links. Fish are NS = ninespine stickleback, AB = Alaska blackfish, LC = least cisco, BW = broad whitefish, AG = 
Arctic grayling, AC = Arctic char, BB = burbot, HW = humpback whitefish, PK = pike, and RS = rainbow smelt, and SS = slimy 
sculpin.

South North
Ponds Lakes Ponds Lakes

N 4 8 4 8
Assemblages NS AB AG BW 

LC NS
NS AB AC AG BB 

BW HW LC 
NS PK RS SS

Meta-food web Richness 1 5 1 11

N links 22 77 17 143
Link density 1 0.45 0.94 3.18

Average food web Richness 1 (0) 2.8 (1.5) 1 (0) 3.9 (2.5)
N links 16 (14 - 21) 26.88 (10 - 52) 10.25 (6 - 14) 40 (9 - 99)
Link density 0.95 (0.03) 1.35 (0.42) 0.90 (0.03) 1.47 (0.40)
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GENERAL CONCLUSIONS

The function of fish communities and their food webs in lakes of the Arctic Coastal Plain 

required that several factors operate in favor of individual species: (1) presence in the regional 

species pool, (2) ability to colonize the patch given functional traits (e.g., swimming ability), (3) 

ability to colonize the patch given availability of resources (e.g., prey), (4) ability to persist in a 

patch given the environment (e.g., tolerate winter), and (5) ability to persist in the patch given 

predators (e.g., find refuge). Simply put, each fish must live in the area, be able to access a 

habitat, survive the extreme Arctic climate, have access to food, and avoid predators. I found that 

colonization factors played an important role, not only in the assemblage of fish communities, 

but also in the structuring of their food webs. Further, feeding habits of individual fish species 

and the generalist behaviors they demonstrated may bolster resilience to the extreme and variable 

climate of the Arctic Coastal Plain.

Surface water connectivity among lakes and across regions acted as a primary driver for
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the distribution of individual fish species, and therefore, species richness, assemblage 

composition, and food web structure. Channel connectivity in the Arctic was a fundamental 

driver, or faunal filter (Tonn 1990), which structured fish assemblages across the landscape 

according to species’ functional traits (i.e., life history or body morphology) and principles of 

metacommunity assembly (e.g., colonization rates). Dispersal abilities of fish, coupled with the 

arrangement or accessibility of available habitat had a strong influence over current distribution 

patterns (De Bie et al. 2012; LeCraw et al. 2014). This was true over regional and local spatial 

scales. Regionally, the availability of surface water influenced larger patterns of fish species 

richness and food web complexity -  with wetter areas having more species and more complex 

meta-food webs. Locally, the physical presence of a channel provided an access point for 

individual fish to enter a lake; yet the strength and permanence of channel connections may play 

an important role in determining what species have access and when. In tandem, regional and 

local properties of hydrologic connectivity filtered species, resulting in the assemblage found in 

and across lake patches.

Lake communities are assembled not only by abiotic factors (e.g., surface water 

connectivity), but also by biotic factors (e.g., predation; Jackson et al. 2001). In lakes, pelagic 

fishes often exert strong top-down influence on their invertebrate prey (Carpenter et al. 1987). 

However, invertebrate responses in complex aquatic habitats are typically intractable (Batzer 

2013), so the use of an experimental design in simple pond habitats provided an advantage for 

determining control of invertebrate prey by their fish predators. The response of invertebrates to 

Ninespine Stickleback in the experimental ponds was strong. Invertebrate taxonomic richness 

and biomass responded consistently with strong declines, and, to a lesser extent, invertebrate 

abundance and size. The patterns witnessed during the course of the experiment were related in
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many ways to selective feeding and preference for specific taxa over others. Understanding the 

role of a ubiquitous predator provided information on the effects of top-down influence and 

predator foraging ecology on invertebrate prey, establishing a baseline for investigation of food 

webs in more complex or heterogeneous habitats.

Common Arctic Coastal Plain fishes employed generalist foraging strategies, which help 

fish take advantage of fluctuations in prey availability in space and time (Hayden et al. 2014). 

Variability in abundance of invertebrate prey has the potential to disrupt energy flow if predators 

lose access. Therefore, there is an advantage among fishes that can switch between prey 

resources -  having the benefit of maintaining a supply of food and energy while allowing 

declining prey to rebound from predatory pressure (Rooney et al. 2006). The use of both benthic 

and pelagic prey by common Arctic Coastal Plain fishes not only stabilizes their individual 

species diets but the food web as a whole. Redundancy of trophic niches, even with high degree 

of individual variation in species diets, indicates similar or shared resource use that further 

contributes to the stability and resilience of food webs. In such an extreme environment, 

resilience of food web function would protect against perturbations or stochastic events, such as 

winterkill, spring flooding, summer droughts, and, potentially, climate change.

At small spatial scales, the generalist feeding habits of individual fish promoted stability 

within their food webs. Food webs were more complex in lakes with strong permanent channel 

connections, and more fish species, compared to food webs in lakes with no channel connections 

or ponds with ephemeral channel connections. At larger spatial scales, habitat complexity 

promoted species persistence and energy flow, thereby offering increased food web stability 

(Gravel et al. 2011; Bellmore et al. 2015). Complexity arose from aggregating the total number 

of food webs in a region into one meta-food web, where food webs are linked by predator and
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prey movements between habitat patches, or in this case, lakes and ponds (Pillai et al. 2011).

This contrasts with the average food web from each region, where complexity did not differ 

based on the mean representation of a region’s food web. Therefore, it is the accumulation of 

different food webs from a variety of habitat patches and communities that likely promotes 

stability on the landscape.

Access to lake and pond habitats via surface water appears to be a critical component of 

aquatic ecosystem function on the Arctic Coastal Plain. Fish colonization potential relied heavily 

on the presence or absence of surface water connections or the abilities of fishes within a habitat 

to persist given their physical tolerances, abilities, and life history requirements. Access to 

habitats is likely to change with climate warming in the Arctic (Reist et al. 2006), and with it 

changes to fish species richness, composition, and food web structure. Effects of climate change 

may be dampened locally, through the resilience of food webs and foraging strategies of fish that 

stabilize webs and maintain energy flow if species are lost (Dunne et al. 2002; Beckerman et al. 

2006). It is likely that across the broader landscape some communities and food webs will be 

restructured due to local changes in colonization potential. If the landscape dries, as projected 

(Martin et al. 2009), then many of the ephemeral or weak channel connections may be lost, 

leaving temporarily connected ponds and lakes and headwater lakes more vulnerable to change 

than other strongly connected habitats. In these systems, top predators may colonize less 

frequently or lose the ability to persist as winter conditions remain harsh, while spring and 

summer water conditions offer little to no recolonization potential. However, the diversity of 

freshwater lentic habitats, which cover a spectrum of size and surface water connectivity, may 

contain the necessary heterogeneity to maintain an array of fish species assemblages and local 

food webs to preserve ecosystem function and resilience in the face of climate change.
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Appendix A

IACUC approvals

mf
UNIVERSITY O F A LA SK A

FAIRBANKS

Institutional Animal Care and Use Committee
909 N Koyukuk Dr. Suite 2 12 , P.O. Box 757270 , Fairbanks, Alaska 99775-7270

(907) 474 -78 0 0  

(907) 4 7 4 -5 6 3 8  fax 

fyiacuc@ uaf.edu 

w w w .uaf.edu/iacuc

October 6, 2011

To: Amanda Rosenberger, PhD
Principal Investigator 

From: University of Alaska Fairbanks IACUC

Re: [233290-3] Ecology and bioenergetics o ffish  in North Slope coastal and inland lakes

The IACUC reviewed and approved the Revision referenced below by Designated Member Review.

Received:

Approval Date:

Initial Approval Date: 

Expiration Date:

June 19, 2011 

October 6, 2011 

October 6, 2011 

October 6, 2012

This action is included on the October 31, 2011 IACUC Agenda.

The PI is responsible for acquiring and maintaining all necessary permits and permissions 
prior to beginning work on this protocol. Failure to obtain or maintain valid permits is 

considered a violation of an IACUC protocol, and could result in revocation of IACUC approval.
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IK̂ f
UNIVERSITY O F A LA SKA

FAIRBANKS

Institutional Animal Care and Use Committee
909 N Koyukuk Dr. Suite 2 12 , P.O. Box 757270, Fairbanks, Alaska 99775-7270

March 28, 2012

To: Amanda Rosenberger, PhD
Principal Investigator 

From: University of Alaska Fairbanks IACUC

Re: [233290-4] Ecology and bioenergetics o ffish  in North Slope coastal and inland lakes

The IACUC reviewed and approved the Amendment/Modification referenced above by Designated 
Member Review.

Received: March 20, 2012

Approval Date: March 28, 2012

Initial Approval Date: October 6, 2011

Expiration Date: October 6, 2012

This action is included on the March 27, 2012 IACUC Agenda.

The PI is responsible for acquiring and maintaining all necessary permits and permissions 
prior to beginning work on this protocol. Failure to obtain or maintain valid permits is 

considered a violation of an IACUC protocol, and could result in revocation of IACUC approval.

The PI is responsible for ensuring animal research personnel 
are aware of the reporting procedures on the following page.

(907) 474-7800 

(907) 4 74-56 38  fax 

fyiacuc@ uaf.edu 

www.uaf.edu/iacuc
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(907) 4 7 4 -7 8 0 0  

(907) 4 7 4 -5 9 9 3  fax 

fyiacu c@ uaf.edu  

w w w .uaf.edu/iacuc

U N I V E R S I T Y  O F

ALASKA
F A I R B A N K S

Institutional Animal Care and Use Committee
909 N Koyukuk Dr. Suite 2 1 2 ,  P.O. Box 75 7 270 , Fairbanks, A laska 99 775-7270

March 27, 2013

To: Mark W ipfli, PhD

Principal Investigator

University of A laska Fairbanks IACUC

[233290-5] Ecology and bioenergetics o ff is h  in North Slope coastal and inland lakes

From:

Re:

The IACUC reviewed and approved the Reportable Event referenced above by Full Committee Review.

This action is included on the March 21, 2013 IACUC Agenda.

The com m ittee reviewed this subm ission and concurs that no violation has occurred as no work took 
place during the lapse in approval.

• Acquire and maintain all necessary permits and permissions prior to beginning work on this protocol. 
Failure to obtain or maintain valid permits is considered a violation of an IACUC protocol and could 
result in revocation of IACUC approval.

• Ensure the protocol is up-to-date and submit modifications to the IACUC when necessary (see form 
006 "Significant changes requiring IACUC review" in the IRBNet Forms and Templates)

• Inform research personnel that only activities described in the approved IACUC protocol can be 
performed. Ensure personnel have been appropriately trained to perform their duties.

• Be aware of status of other packages in IRBNet; this approval only applies to this package and 
the documents it contains; it does not imply approval for other revisions or renewals you may have 
submitted to the IACUC previously.

• Ensure animal research personnel are aware of the reporting procedures on the following page.

Received:

Approval Date:

Initial Approval Date: 

Expiration Date:

February 4, 2013 

March 21, 2013 

O ctober 6, 2011 

O ctober 6, 2012

PI responsibilities:

171

mailto:fyiacuc@uaf.edu
http://www.uaf.edu/iacuc

