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Abstract

The fate of metal(loid)s in the environment depends on a variety of physical and 

geochemical factors. Assessing metal(loid) transport in soil solution and surface water requires 

detailed knowledge of the speciation, which can often control mobility, toxicity and 

bioavailability of a given element. The present study details the geochemical analyses of two end 

member types of systems: a ‘pristine’ Arctic watershed and a military shooting range with an 

overall focus on understanding lead (Pb) and antimony (Sb) mobility in shooting range soils. The 

project uses bulk speciation analyses coupled with micro-scale methods to quantify variations in 

metal(loid) concentration as a function of environmental conditions and characterize metal(loid) 

speciation and distribution in relation to parent source material in order to understand the impact 

that metal(loid) retention versus mobilization has on a given system.

In the Arctic, stream water concentrations of Al, Ba, Fe, and Mn in Imnavait Creek were 

highest in the late fall (September and October). This pattern appears to correlate with the depth 

of the active layer throughout the watershed. Increased water infiltration at the permafrost-active 

layer boundary could significantly impact stream water trace metal(loid) signatures due to 

mineral weathering of unfrozen soil. In the central Alaskan shooting range, there were significant 

contributions of Pb and Sb to both the soil and soil solution as a result of the weathering of 

fragmented bullets. Aqueous concentrations of Sb were higher than Pb in all soil types, 

indicating Sb is more mobile, despite the fact that bullets introduce approximately two orders of 

magnitude more Pb than Sb. We observed an association of both Pb and Sb with Fe in soils, 

which impacts remediation scenarios for ranges as Fe treatments have potential to be effective 

for system-wide immobilization of major contaminants. Overall, the results from this study
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highlight the complexity of metal(loid) speciation, transport and mobility as a function of 

seasonality, soil type and environmental conditions.
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Introduction

The soil environment is physically and chemically dynamic. The fate and transport of 

metal(loid)s are affected by the overall dynamic nature of the environment (Brusseau, 1989; 

Dunnivant and Anders, 2006; Hemond and Fechner, 2014). Physically, metal(loid) transport in 

environmental systems has been shown to be impacted by temperature (Majedi et al., 2013), 

wind (Dinis and Fiuza, 2006), water infiltration (Knechtenhofer et al., 2003), hydraulic 

conductivity (Loretta and Li, 2001), grain size and surface area of soil (Horowitz and Elrick, 

1987). Chemically, the soil environment tends to be highly heterogeneous (Seuntjens et al.,

2002) and consists of a wide range of chemical species that are constantly undergoing 

transformation (Lyman, 1995). Metal(loid)s can partition between phases (air, soil, water, biota) 

(Lyman, 1995; Walker et al., 2006; Pachana et al., 2010) and transport is facilitated by key 

environmental mediums like water (Knechtenhofer et al., 2003; Pachana et al., 2010), colloids 

(Kaplan et al., 1995) and sediment (Horowitz, 1985). Understanding metal(loid) transport in the 

environment requires detailed investigation into various environmental compartments (soil, 

interstitial waters, dissolved, bound, etc.) and knowledge of physicochemical processes that 

control overall transport.

Identifying potential sources and sinks of metal(loid)s in the environment are necessary 

to quantifying environmental impact and planning remediation strategies (Horowitz, 1985). 

Sources of metal(loid)s can vary in the environment, but with the absence of mining or industrial 

activities, mineral weathering is a major source of metal(loid)s (Filella et al., 2009; Jin et al.,

2010). Non-geogenic sources of metal(loid)s in the environment are often a result of mining 

activities (Rodriguez et al., 2008; Kossoff et al., 2012), industrial processes (Bradl, 2002; Wuana
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and Okieimen, 2011), agriculture practices (Zhang and Shan, 2008), bullet deposition (Scheinost 

et al., 2006) and environmental disasters (Bird and Grossman, 2011). Regardless of the source, 

released metal(loid)s can migrate in the environment through dissolution, colloidal transport and 

complexation (Bradl, 2002; He et al., 2005) and have been shown to accumulate in 

environmental sinks, such as interstitial waters (Cantwell and Burgess, 2001), organic matter 

(Sklodowski et al., 2006; Clemens and Ma, 2016), clay minerals (Ilgen and Trainor, 2012; Cai et 

al., 2014), Fe oxides (Yin et al., 2016) and Mn oxides (Gunawardana et al., 2015). The 

mechanisms by which metal(loid)s can accumulate in various sinks are controlled primarily by 

adsorption, precipitation, co-precipitation, complexation and incorporation into crystal lattices 

(Horowitz, 1985). Once accumulated, metal(loid)s can potentially be remobilized, thus providing 

a secondary source of metal(loid)s into the environment (Pachana et al., 2010). Key factors 

affecting metal(loid) mobilization are pH (Kaplan et al., 1995; Cao et al., 2003; Houben et al., 

2013), ionic strength (Ilgen et al., 2014), temperature (Majedi et al., 2013), redox conditions 

(Wilson et al., 2010) and speciation (Johnson et al., 2005).

Speciation, as defined by the International Union of Pure and Applied Chemistry 

(IUPAC), is ‘the process yielding evidence of the atomic or molecular form of an analyte or the 

oxidation state and local structure of the element of interest’ (Hill, 1997). For example, antimony 

(Sb) is typically found in the environment in one of two oxidation states: Sb(III) and Sb(V). The 

numerical distinction signifies different electron configurations and therefore different number of 

valence electrons. The respective Sb species behave differently in environmental systems in that 

Sb(V) is more mobile than Sb(III), but Sb(III) is considered to have greater toxicity and 

bioavailability (Johnson et al., 2005; Filella et al., 2009; Wilson et al., 2010). Key factors that
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can affect metal(loid) speciation in the environment are redox conditions (Barker et al., 2014), 

time (Ilgen et al., 2014), pH (Hill, 1997) and sunlight (Shiller et al., 2006).

Characterizing the speciation of metal(loid)s in various environmental compartments can 

be challenging and requires prior knowledge of each metal(loid) of interest in order to ensure 

appropriate sample collection and methodology. For example, hydrochloric acid (HCl) has been 

shown to be an effective preservation agent for iron (Fe) and arsenic (As) speciation in surface 

waters (Ritchie et al., 2013), but can accelerate the oxidation of Sb species, which have been 

shown to be effectively stabilized instead by organic complexing agents (Ilgen and Trainor, 

2012). Understanding the exact speciation of metal(loid)s in the environment is imperative for 

assessing the overall toxicity of a given system because toxicity is often controlled by speciation. 

Once metal(loid)s enter the environment they are long-term persistent contaminants, meaning 

they cannot be biologically destroyed, only transformed from one species to another (Knox et al., 

2000; Singh and Grafe, 2010).

Overall monitoring of metal(loid) transport, mobility and speciation in the environment 

typically focuses on quantifying concentrations in bulk phases, characterizing mineral phase 

assemblage, capturing metal(loid) distribution, investigating elemental associations and 

determining speciation. Quantifying metal(loid) concentrations can be achieved by inductively 

coupled plasma-mass spectrometry (ICP-MS) for bulk aqueous phases and x-ray fluorescence 

(XRF) for bulk solid phases. Mineralogy and long range crystalline order of solid species can be 

investigated using x-ray diffraction (XRD) techniques. Metal(loid) distribution and elemental 

associations are often examined using electron-probe micro-analysis (EPMA) or synchrotron- 

based x-ray absorption spectroscopy (XAS) for solid phases and field-flow fractionation (FFF) 

for aqueous phases. Metal(loid) speciation can be investigated using a variety of techniques,
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particularly liquid-chromatography (LC) coupled to ICP-MS (LC-ICP-MS) for aqueous phase 

speciation and synchrotron-based techniques for solid phase speciation: extended x-ray 

absorption fine structure (EXAFS) or x-ray absorption near edge structure (XANES). Proper 

sample collection, element specific sample preservation and methodical sample analysis is 

required for any detailed monitoring of metal(loid) transport, mobility and speciation in addition 

to making any future predictions of metal(loid) accumulation versus mobilization in the 

environment.

As metal(loid)s comprise a major fraction of the earth, it is necessary to understand their 

interactions with the environment and their behavior with respect to changes or disturbances in 

their setting. Metal(loid)s are both useful and valuable and have been shown to be fundamental 

to scientific and industrial advances for humans, in addition to providing essential nutrients for 

sustained existence on Earth (Kabata-Pendias, 2010). Metal(loid)s have also been shown to be 

effective tracers for landscape-scale processes, including stable isotope geochemistry 

(Wiederhold, 2015), permafrost active layer dynamics (Barker et al., 2014) and processes 

involving oxidation and reduction (Bullen, 2012). Long term monitoring of metal(loid)s requires 

prior knowledge of element-specific environmental sampling collection and storage methods and 

necessitates the use of a variety of instrumentation for sample analysis (Horowitz, 1985; Hill, 

1997). Any future predictions of the transport, mobility and speciation of metal(loid)s should (1) 

include information on the sources and sinks of metal(loid)s particular to an environmental 

compartment, (2) discuss overall transport mechanisms controlling the mobilization versus 

immobilization of metal(loid)s and (3) address metal(loid) behavior with respect to fluctuating 

environmental parameters like pH, redox conditions, salinity and organics/colloid fraction, in 

order to fully capture the complex relationship between metal(loid)s and their environment.
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Chapter 1 Late Season Mobilization of Trace Metals in Two Small Alaskan Arctic Watersheds 

as a Proxy for Landscape Scale Permafrost Active Layer Dynamics1

1.1 Abstract

Increasing air temperatures in the Arctic have the potential to degrade permafrost and 

promote the downward migration of the seasonally thawed active layer into previously frozen 

material. This may expose frozen soils to mineral weathering that could affect the geochemical 

composition of surface waters. Determining watershed system responses to drivers such as a 

changing climate relies heavily on understanding seasonal controls on freshwater processes. The 

majority of studies on elemental concentrations in Arctic river systems have focused on sampling 

only from spring snowmelt to the summer season. Consequently, there remains a limited 

understanding of surface water geochemistry, particularly with respect to trace metals, during 

late fall and early winter. To examine the variability of metal concentrations as a function of 

seasonality, we measured trace metal concentrations from spring melt to fall freeze-up in 2010 in 

two high Arctic watersheds: Imnavait Creek, North Slope, Alaska and Roche Mountanee Creek, 

Brooks Range, Alaska. We focused on aluminum (Al), barium (Ba), iron (Fe), manganese (Mn), 

nickel (Ni) and zinc (Zn). Concentrations of ‘dissolved’ (<0.45^m) Al, Ba, Fe, and Mn in 

Imnavait Creek waters and Ba in Roche Mountanee waters were highest in late fall/early winter. 

To link observed surface water concentrations at Imnavait Creek to parent soil material we 

analyzed the elemental composition of a soil core from the watershed and tracked the soil 

temperatures as a function of time and depth. The results from this study show a distinct seasonal

1Barker, A.J., Douglas, T.A., Jacobson, A.D., McClelland, J.W., Ilgen, A.G., Khosh, M.S., Lehn, G.O., Trainor, T.P. 
2014. Late Season Mobilization of Trace Metals in Two Small Alaskan Arctic Watersheds as a Proxy for Landscape 
Scale Permafrost Active Layer Dynamics. Chemical Geology. 381, 180-193.

5



signature of trace metal concentrations in late fall that correlates with the depth of the thawed 

active layer.

1.2 Introduction

Climate warming in the Arctic has led to increasing air temperatures (Peterson et al., 

2002, Arndt et al., 2010), resulting in thawing of permafrost and the downward migration of the 

seasonally thawed active layer into previously frozen material (Hinzman and Kane, 1992; 

Osterkamp and Romanovsky, 1997; 1999; Jorgenson et al., 2006; Christiansen et al., 2010; 

Romanovsky et al., 2010; Smith et al., 2010). This active layer response to climate warming may 

influence the geochemical composition of rivers in the Arctic via increasing trace element 

transport, increasing organic carbon mobilization, and evolving biogeochemical cycles, among 

other factors (Vuceta and Morgan, 1978; Kane et al., 1989; McNamara et al., 1997; Rember and 

Trefry, 2004; White et al., 2007; Pokrovsky et al., 2011; Muskett and Romanovsky, 2011). This 

partly reflects the fact that the majority of subsurface flow in permafrost systems occurs in the 

active layer (McNamara et al., 1997). Consequently, the downward expansion of the active layer 

may increase the exposure of labile mineral phases to weathering processes and provide an 

enhanced weathering signal in the soil-pore and surface waters.

With the absence of mining or industrial activities, mineral weathering is the major 

source of trace metals to surface waters in pristine Arctic rivers. Therefore, developing a 

mechanistic understanding of trace metal behavior and transport in the subsystem of soils and 

surface waters can provide insight into active layer chemical weathering processes. In addition,
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the redox environment of a given watershed controls trace metal mobility. As a consequence, 

observations of changes in fluxes of redox sensitive elements can be used to evaluate redox 

conditions. Many studies have used biogeochemical tracers such as dissolved organic carbon, 

radiogenic isotopes, nutrient fluxes and major ion concentrations to investigate watershed 

dynamics, permafrost degradation, carbon sources, the timing of spring melt, and seasonal 

controls on elemental export (Cooper et al., 2005; 2008; Petrone et al., 2006; McClelland et al., 

2007; Keller et al., 2007; 2010; Townsend-Small et al., 2010; Bagard et al., 2011). However, 

only a few studies have employed trace metals as a proxy for permafrost dynamics at the 

watershed scale (Martin et al., 1993; Dai and Martin, 1995; Rember and Trefry, 2004; Bagard et 

al., 2011). Furthermore, most of these studies only measured concentrations of trace metals in 

surface water samples without considering the composition of soil and soil pore water, and none 

have examined dissolved trace metal data in the context of the soil thermal regime (i.e., the 

timing of thawing and freezing of the active layer). As a result, there is a lack of information 

linking the trace metal composition of subsurface and surface flow within Arctic watersheds to 

the geochemistry of underlying soils and seasonal permafrost active layer dynamics.

Trace metal concentrations in surface waters fluctuate on a yearly basis partly due to 

variations in precipitation, temperature, the extent of active layer thaw, the composition of the 

underlying soils and the degree to which the watershed responds to climate warming (Hinzman 

et al., 1991; Bagard et al., 2011). Due to the strong seasonality of Arctic freshwater processes 

(Chapin et al., 2005; Bagard et al., 2011), the response of riverine trace metal signatures to 

increasing active layer depth should be most evident during late fall, when the active layer is at 

its deepest yearly extent and the base flow component is increasing toward the yearly maximum 

winter values (McNamara et al., 1998; Peterson et al., 2002; Yang et al., 2002; Hinzman et al.,
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2005). Any increase in the flux of major and trace elements to subsurface flow in late fall could 

potentially be evident as a pulse, different than the pulse for groundwater dominated streams. 

Many studies reporting trace and major element concentrations in Arctic river systems have only 

focused on spring and/or summer flow regimes (Martin et al., 1993; Dai and Martin,1995; Guieu 

et al., 1996; Rember and Trefry, 2004). As such, there remains a limited understanding of trace 

metal transport and behavior in Arctic rivers during late fall and early winter (Bagard et al.,

2011) when mineral weathering processes continue to occur.

It is also possible that major and trace ions mobilized in late fall are stored in the shallow 

subsurface during freeze up and contribute to the following year’s spring thaw signal. 

Mobilization of major and trace elements to surface waters during early spring is typically 

attributed to the dominant Arctic runoff event of spring snowmelt when precipitation that has 

accumulated all winter is released (McNamara et al., 1997; Rember and Trefry, 2004; Petrone et 

al., 2006). However, elemental transport to surface waters during spring snowmelt potentially 

encompasses contributions from previously mobilized species stored in the subsurface/surface as 

well as input from the snowpack (Bagard et al., 2011). With increasing depth of permafrost thaw 

and the potential increase in late fall mineral weathering fluxes to watersheds there are potential 

ramifications for a change in biogeochemical fluxes from watersheds during the spring and fall 

seasons. Our goal was to examine whether trace metal concentrations in surface waters draining 

areas of continuous permafrost can provide a signal of permafrost active layer dynamics 

distinguishable over normal variability at the watershed-scale. Since our data is not part of a 

multi-year set, we primarily hope to establish a baseline of measurements for longer-term 

monitoring in the future.
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We collected surface water samples for trace metal analysis from spring melt in mid-May 

through the initiation of fall freeze-up in mid-October. We mainly focused on Imnavait Creek, a 

small headwater stream underlain by continuous permafrost and dominated by tussock sedge 

tundra with organic rich soils (Osterkamp and Payne, 1981; Walker et al., 1989). In the Imnavait 

watershed, we excavated a 1 meter deep soil pit to identify and define soil horizons and collected 

a 61 cm soil core to quantify the vertical distribution of trace metals. To continuously measure 

soil temperature as a function of depth through time, we installed thermistors into the active layer 

and the top of the permafrost table within the watershed.

We attempted to correlate our findings to a broader area in the Arctic by collecting and 

analyzing surface waters from a larger watershed, Roche Mountanee Creek. As a relatively 

small, low gradient stream dominated by organic-rich soils, Imnavait Creek typifies many small 

watersheds throughout the high Arctic. In contrast, we employ Roche Mountanee Creek as an 

analog for permafrost active layer processes occurring in higher gradient, larger watersheds 

containing primarily exposed bedrock. The overall design of this study offers potential for 

extrapolating our findings to broader areas in the Arctic.

In this study we aimed to: (1) quantify variations in metal concentrations as a function of 

seasonality in two high Arctic streams, (2) characterize metal concentrations in soil layers within 

the Imnavait Creek watershed and relate them to freezing and thawing processes, (3) track the 

influence of water sourcing from the snowmelt signal, precipitation and groundwater signal on 

trace metal fluctuations in surface waters, (4) develop a conceptual model relating trace metal 

chemical composition in surface waters to permafrost active layer dynamics at Imnavait Creek, 

and (5) compare the model to the seasonal variability in metal concentrations at a
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physiographically different watershed to determine if relationships identified in Imnavait Creek 

are broadly applicable to other Arctic watersheds.

1.3 Materials and Methods

1.3.1 Field Study

Two watersheds located in the northern foothills of the Brooks Range in the Alaskan 

Arctic were examined in this study: Imnavait Creek (2.2 km ) and Roche Mountanee Creek (89 

km ) (Figure 1.1). Imnavait Creek is a small headwater stream located in a valley formed on 

Sagavanirktok glaciation till (Hamilton, 1986). A network of water tracks drain the hillslopes of 

the watershed and the creek is comprised of a chain of small ponds intermittently connected by 

water tracks that flow into the Kuparuk River (McNamara et al., 1997). The area is dominated by 

erosional topography (Black, 1976) underlain by continuous permafrost 250 to 300 meters deep 

(Osterkamp and Payne, 1981). Vegetation predominantly consists of tussock sedge tundra 

(Walker et al., 1989) with organic rich soils and sphagnum moss/ericaceous plants (Kane et al., 

1989). This accumulated acidic vegetation, as well as the saturated soil conditions, are primary 

contributors to the overall low pH values of stream water (approximately 4.5-6.5) throughout the 

summer (Everett et al., 1989; Walker et al., 2002).

The soils at Imnavait Creek are organic-rich, poorly drained silty loams covered by a 

peaty layer. They consist of highly weathered clays and silicates under acidic and often water­

logged conditions during the spring and summer (Walker et al., 1989; Kane et al., 2000). There 

are also embedded mineral layers consisting of silt overlying glacial till (Kane et al., 1989; 

McNamara et al., 1997; 1998). The soil is weathered to a greater extent than areas south of the
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North Slope within the Brooks Range (Figure 1.1) and the parent material may less effectively 

neutralize organic and carbonic acids (Ping et al., 1998). Portions of the soil profile have been 

described as having a high chroma color, indicating the oxidation of iron minerals, whereas 

adjacent zones are gleyed, pointing to more reducing conditions (Ping et al., 1998).

Roche Mountanee Creek is located approximately 30 km south of Imnavait Creek along 

the Dalton Highway. The drainage basin has extensive bedrock exposure and is underlain by 

continuous permafrost. In addition to some tussock sedge tundra along the lower section of the 

watershed the predominant vegetation is low-lying alder bush. The area has shrub-covered 

lowlands and tundra-covered and rocky uplands. Ridgelines reach about 1.5 km above sea level. 

The pH of this river ranges from circumneutral to slightly basic due to the carbonate-rich terrain 

and the minimal presence of organic vegetation and soils (Till et al., 2008).

A total of 60 surface water samples were collected from Imnavait Creek and Roche 

Mountanee Creek between early May and mid-October 2010. We extracted a soil core from the 

Imnavait drainage and in the Imnavait watershed we installed a thermistor string (Onset 

Computer Corporation, Bourne, MA) to continuously monitor soil temperatures at four depths 

spanning the surface to approximately 60 cm downward.

1.3.2 Soil Core Collection and Analysis and Soil Pit Excavation

A soil core representing the upper 60 cm of the soil column in the Imnavait watershed 

was extracted using a 10 cm diameter Snow, Ice, and Permafrost Research Establishment 

(SIPRE) corer. The core was collected from the same location into which the vertical thermistor 

string was installed (Figure 1.1). The core was collected during the winter of 2009, wrapped 

frozen in freezer paper (Reynolds, Lake Forest, IL), transported frozen and stored frozen in a
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cold room until analysis. The soil core was collected the winter before collecting surface water 

measurements and based on yearly thaw depth probing conducted every fall along a grid of 121 

points in the Imnavait Creek watershed (Circumpolar Active Layer Monitoring Network-CALM 

II, 2004-2008) we believe the core represents approximately 40 cm of material that thaws each 

year (active layer) and approximately 20 cm of the permafrost. The collected core was within 20 

meters of the main drainage and relatively level with the main drainage. A soil pit was excavated 

near the coring location that is nearest the main drainage in Figure 1.1 in July, 2011.

Initially, a soil pit profile was not considered within the scope of this project, but was 

decided upon only after analysis of all the 2010 samples. Excavating a soil pit gave insight to the 

relative depth of the permafrost-active layer boundary within the watershed. The 1x1 meter soil 

pit was excavated to a depth of 90 cm with shovels and a jackhammer and soil horizons were 

identified following established soil classification methods (Soil Survey Division Staff, 1993; 

Ping et al., 2013). In addition, we tested for reducing conditions of a hydric soil system using 

alpha-alpha-dipyridyl, as outlined in Ping et al., (1998), and established by the U.S. Department 

of Agriculture (USDA, 1999). The soil horizon profiles and alpha-alpha-dipyridyl solution were 

provided as part of a field workshop on Arctic Soils offered by the University of Alaska 

Fairbanks taught by Dr. Chien-Lu Ping and Dr. Gary Michaelson of the Palmer Research Center, 

School of Natural Resources and Agriculture Sciences, University of Alaska Fairbanks.

The frozen soil core was sectioned into 5 cm long sub-samples using a band saw and 

carbon steel band saw blade (93.5 in x 3/8 inch with 6 tpi) in a cold room at the Cold Regions 

Research and Engineering Laboratory, Ft. Wainwright, AK. The frozen core sections were 

thawed for 24 hours at approximately 22°C in plastic bags. Pore water was separated from the 

soil solids by centrifugation (7,000 rpm for 20 minutes). Water samples were decanted, passed
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through 0.20 |im nylon filters (Whatman, Kent, United Kingdom) fitted to a sterile plastic 

syringes and acidified with 6N ultrapure HNO3 . Soil pore water samples were analyzed 

following the ICP-MS procedures outlined above for surface water samples.

Each 5 cm subsection of the core was dried at 50°C for approximately 12 hours overnight 

and sieved to <75 |im (< #200 sieve). Approximately 5-7 gram subsamples were mixed with 5-7 

drops of a binder (polyvinyl alcohol) and pressed into a powder pellet using a hydraulic bottle 

jack at 20,000 psi. Each pellet was analyzed using a PANalytical (Almelo, The Netherlands) 

Axios four kW wavelength dispersive x-ray fluorescence spectrometer (XRF). The calibration 

standards for major elements were made using the geologic reference materials BIR-1, PCC-1, 

JA-2, JB-2, JP-1, JR-1, GXR-3, GXR-1, MRG-1, and SGR-1, as described in Ilgen et al., 2011. 

Samples and standards were analyzed in triplicate with corresponding errors reported and 

detection limits calculated based on analysis of the reference standards.

1.3.3 Surface Water Collection and Analysis

All water sample collection sites were located upstream of the Dalton Highway. Nitrile 

gloves were worn while sampling and water was collected from the main channel of flow using a 

peristaltic pump outfitted with Masterflex Tygon E-LFL pump tubing (Cole-Parmer, Vernon 

Hills, Illinois) and precleaned 0.45 |im polycarbonate medium-capacity filter capsules (Geotech 

Environmental Equipment, Denver, CO). The tubing and filter capsules were flushed for a 

minimum of 10 seconds before collecting samples into trace metal grade precleaned acid washed 

125 mL HDPE bottles. Samples were acidified within six hours of collection with 6 N ultrapure 

HNO3 (Baseline Nitric Acid, Seastar Chemicals, Sidney, BC) in a clean hood at the Toolik Field 

Station.

13



Chloride concentrations were quantified on a Dionex ICS-3000 ion chromatograph with 

an AS-19 anion column (Dionex Corporation Sunnyvale, California) at the Cold Regions 

Research and Engineering Laboratory Alaska Geochemistry Laboratory. Each sample had a 10 

mL injection volume. A gradient method using potassium hydroxide eluent ranged from 20 mM 

to 35mM for anion analyses. The system flow rate was 1 mL/min and the operating temperature 

was 30°C. The ion chromatograph was calibrated through repeat analysis of five calibration 

standards with concentrations ranging from 0.1 to 120 mg/L. Laboratory analytical anion 

standards with values from 0.1 to 120 mg/L were analyzed repeatedly to verify system 

calibration and assess analytical precision. Based on these analyses the calculated precision for 

the analyses is ±5 %. Peaks were identified using Chromeleon (Dionex, Sunnyvale, California) 

and were verified visually.

Surface water trace metal concentrations were measured using an Agilent 7500ce (Agilent 

Technologies, Santa Clara, CA) inductively coupled plasma-mass spectrometer (ICP-MS) 

following the general procedure outlined in Creed et al. (1994). To minimize polyatomic 

interferences from ions having identical mass-to-charge ratios as the analytes the ICP-MS was 

operated in collision/reaction cell (CRC) mode using either He or H2 gases following established 

protocols (Wilbur and Soffey, 2004). Al, Ba, Be, B, Cd, Co, Pb, Au, Mn, Mo, P, Sc, Ag, Te, Tl, 

Sn, Ti, Zn and the rare earth elements were analyzed in normal mode (no CRC). As, Cr, Cu, Ni 

and V were analyzed using CRC pressurized with He gas and Fe and Se were analyzed using 

CRC pressurized with H 2 gas. Of the above elements, Al, Ba, Fe, Mn, Ni, and Zn were above the 

limit of detection of the ICP-MS.

Six calibration standards were prepared by diluting 1x106 |ig/L single element standard 

solutions and a combined rare earth element standard provided by ULTRA Scientific
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(Kingstown, RI). All glassware was washed, and dilutions were made using 2% ultrapure HNO3 

(BDH Aristar Plus, Poole Dorset, UK). A single stock solution of 1,000 |ig/L was prepared by 

diluting 0.1 mL of the 1x106 |ig/L single element standard solutions to 100 mL in an acid- 

washed 100 mL volumetric flask. The 2% ultrapure HNO3 was also used as a blank. Calibration 

was performed at the beginning of each analytical run. The resulting calibration curves had R 

values of 0.998 or better. A check standard and blank were run after every 10 samples and all 

samples were analyzed in triplicates to quantify analytical uncertainty for each sample.

To correct for temporal variations in signal intensity, an internal standard containing 50 

|ig/L of Ge, In and Tl was added to all blanks, standards and samples. All detected values fell 

within the 1-100 |ig/L calibration range or were subsequently diluted with ultrapure water 

(Barnstead Nanopure, Thermo Scientific, Waltham, MA) with a resistivity of 18.1 MQ and 

reanalyzed. To confirm the accuracy of the pipettes, the mass of the volume delivered was 

monitored with an analytical balance. Percent relative standard deviation (% RSD) values were 

first screened for any significant errors. Values were then corrected for background from 

repeated analyses of blanks. Measurement error was assigned to each sample analyzed based on 

the triplicate measurements and shown in each data table.

The surface waters of Imnavait Creek and Roche Mountanee were monitored for in-situ 

pH measurements during the collection of each sample using a YSI-probe-600xL (YSI, Inc., 

Yellow Springs, Ohio). The pH probe was calibrated twice per day with 4.0 and 7.0 buffer 

solutions provided by YSI, Inc. The pH probe was situated 10 meters downstream of where the 

samples were collected and allowed to equilibrate until the pH measurement was stable.
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1.3.4 Thermistor Installation

A thermistor array was installed in the Imnavait watershed study area in 2009 into a hole 

drilled using a 10 cm diameter, 1 meter long SIPRE augur bit (Figure 1.1). The core material 

(described above) was removed and an array of four thermistors, attached to a wooden stake, was 

lowered into the hole. Temperature probes were set approximately 1, 29 , 42 and 53 cm apart. 

The depth of each thermistor was measured from the ground surface, and a slurry of water mixed 

with local soil was poured into the hole. The thermistors were connected to a battery powered 

ONSET-HOBO U12 datalogger (Onset Computer Corporation, Bourne, MA) that logged 

temperatures hourly in degrees Celsius.

1.4 Results

1.4.1 Soil Pit Profile and Chemical Composition of Soil Column

The soil pit profile excavated for this study and detailed horizons are shown in Figure 

1.2. The top portions of the horizons have a high chroma color, whereas the lower portions 

appear more gleyed, potentially signifying a redox boundary. With further testing of the lower 

portion of the soil (~ 5 g excavated at roughly 50cm depth) with 3-5 drops of alpha-alpha- 

dipyridyl yielded a positive pink color within 30 sec, signifying the presence of ferrous iron and 

reducing conditions. In addition, there was a clear difference in color along the soil horizons and 

the different redox zones were observed visually upon excavation of the soil pit in Imnavait 

Creek. The upper 0-20 cm portion exhibited the typical orange-rust color characteristic of Fe(III) 

during excavation and after. Upon excavation of the lower 25-90 cm, the soil horizons initially 

displayed a dark, lustrous gray-black color, but within minutes of being exposed to the
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atmosphere, orange-rich bands began to appear from 25-90 cm. The optical image in Figure 1.2 

was taken approximately 5 minutes after excavation of the full soil pit and after the testing with 

alpha-alpha-dipyridyl. This change in soil chroma as a function of excavation time is likely due 

to in-situ oxidation of Fe(II) to Fe(III).

Within the watershed and adjacent to the soil pit, we collected a 61 cm soil core. Vertical 

metal concentrations in mg/kg (ppm) determined by XRF are provided in Table 1.1 and plotted 

as a function of soil core depth in Figure 1.3. Fe, Mn and Zn are enriched in the organic layer, 

likely due to their association with natural organic matter (NOM) present (Figure 1.2). By 

comparison, Al, Ba, Cr, Ti, and Zr, as well as Rb, and V (not shown in Figure 1.3, but data 

provided in Table 1.1) are enhanced in the lower soil horizons. Ni concentrations stay relatively 

constant throughout the soil core (Table 1.1). Because Cr and V typically accumulate in reducing 

zones, their enriched concentrations relative to the upper portions of the soil column can reveal 

their environmental setting (Kimbrough et al., 1999). This clear separation between metals either 

accumulating in the upper portions of the soil column or enhanced lower in the soil column 

qualitatively correlates with the variation in redox conditions within the soil.

The soil pore water concentrations are provided in Table 1.2 and are plotted as a function 

of depth along the core in Figure 1.4. These data represent the soluble fraction likely available 

for transport to the surrounding surface water. Al, Ba, Fe, and Mn and to some extent Zn, all are 

present as soluble species in both the upper (~10-20 cm) and deeper (~35-50 cm) parts of the soil 

column.
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1.4.2 Soil Thermal Regime

Temperature data from the logger installed at Imnavait Creek is shown in Figure 1.5. The 

soil temperature at the surface correlates with fluctuations in the local ambient air temperature. 

When the soil begins to thaw in the Arctic spring, it thaws predominantly from the top-down. 

Soil at 1, 29, 42 and 53 cm depth was fully frozen as of April 28, 2010 when we initiated 

measurements. Thawing (temperatures rising above 0° Celsius) began on May 13 at the surface, 

on May 23 at 29 cm depth, on June 12 at 42 cm depth and on July 29 at 53 cm depth.

1.4.3 Surface Water Metal Concentrations at Imnavait Creek

Surface water concentrations of Al, Ba, Fe, Mn, Ni, and Zn (in |ig/L) are provided in 

Table 1.3 and are plotted as a function of sampling date in Figure 1.6. The remaining measured 

metals outlined in the methods section were at or below the detection limit of the analytical 

method. Late fall and early winter yielded the highest influx of Al, Ba, Fe, and Mn to Imnavait 

Creek. Ni concentrations were relatively constant throughout the summer. Zn behaved similarly 

to Al, Ba, Fe, and Mn except that concentrations do not rise towards the end of fall consistent 

with the observation that Zn does not have an enhanced solubility signature deeper in the soil 

column (Figure 1.4). Mn and Zn concentrations peaked during spring snowmelt and late fall. All 

other metals exhibited a gradual increase in concentrations until the end of September, with peak 

values in early October. We expected to see high, relative metal influxes to surface water as a 

result of spring snowmelt, but for Fe, Al, Ba and Ni that was not the case, likely a result three 

possible attributions: (1) low, relative solubility of the species present at the top layers of the 

surface (2) the Fe, Al and Ba concentrations seem low in comparison to the high, relative influx 

of these metals late in the season and/or (3) our sampling season missed peak snowmelt values
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for these specific metals. Highest measured concentrations of 175.6 |ig/L (Al), 15.4 |ig/L (Ba), 

3383.0 |ig/L (Fe), and 165.2 |ig/L (Mn), occurred on October 8, 2010. Maximum Zn 

concentrations of 4.3 and 4.4 |ig/L occurred on May 19 (spring freshet) and August 7. Ni 

concentrations stayed relatively constant between 1.1 and 2.0 |ig/L throughout the melt season.

Imnavait Creek exhibits acidic surface water conditions for the entirety of summer. The 

pH values for Imnavait Creek as a function of sampling date is presented in Figure 1.7. In the 

spring, pH values are at their lowest for the entire season, dipping below 5 to a value of 4.79 on 

May 17, 2010. For the majority of late May-June, pH values average to 5.80 with a range from 

5.54 to 6.02. Throughout the end of July until mid-August, daily pH variability increases with an 

average value of 5.71, ranging from 5.06 to 6.62. During late fall, pH fluctuates to a greater 

extent in September than October. Imnavait Creek surface water in September has an average pH 

of 5.99, ranging from 5.32 to 6.64. For October, the average is 5.65, ranging from 5.24 to 6.00. 

Overall, Imnavait Creek in late fall/early winter, including both September and October months, 

exhibits an average pH of 5.84, ranging from 5.24 to 6.64. The lowest pH for the time period 

occurs in October and the highest pH occurs in September.

1.4.4 Surface Water Metal Concentrations at Roche Mountanee Creek

Metal concentrations observed in the surface waters of Roche Mountanee Creek in 2010 

are provided in Table 1.4 and plotted as a function of sampling date in Figure 1.8. Al, Fe and Mn 

concentrations increased during the first spring melt flows in mid-May, when flow is 

predominately derived from surface soils and the organic layer. Al and Fe also exhibited 

increased concentrations during rain events in late July and early August. In the fall, Al, Fe, and 

Mn concentrations decreased to the lowest values measured, mostly hovering at or below their
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respective detection limits. The pattern for Ba in Roche Mountanee Creek mimics the patterns 

for Al, Ba, Fe, and Mn in Imnavait Creek with the highest concentrations occurring in late fall. 

The highest measured Ba concentration of 70.0 |ig/L occurred on October 13. On May 18, Al, Fe 

and Mn concentrations peaked at 107.0, 194.8, and 4.2 |ig/L, respectively.

For the most part, Roche Mountanee surface water is slightly basic. pH values range from 

6.98 to 8.06. The pH values for Roche Mountanee as a function of sampling date is presented in 

Figure 1.7. pH values in the spring for Roche Mountanee range from 6.98 to 8.06, with an 

average value of 7.73. During late July and early August, pH values range from 7.32 to 8.03, 

with an average pH value of 7.75. During late September and the first half of October, pH values 

range from 7.17 to 8.06, with an average pH value of 7.52. The lowest observed pH value occurs 

on May 17, 2010 and the highest recorded pH value occurs on both May 23 and September 13, 

2010.

1.5 Discussion

1.5.1 Seasonal Controls on Metal Fluctuations in Imnavait Creek Surface Water

As shown in Figure 1.4, pore waters in the oxidizing zone (~10-20 cm depth) of the 

organic layer have relatively high metal concentrations. In comparison, pore waters deeper in the 

soil column (~30-55 cm) also exhibit an enhanced relative mobility of metals. This depth 

corresponds to the typical maximum vertical extent of seasonal thaw (the active layer) each fall. 

In the case of Fe, the soluble-rich bands in both the oxidizing and reducing zones are comparable 

in terms of their bulk aqueous metal concentrations (Figure 1.4). However, when compared to
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the source concentration originally present in the core in solid form (Figure 1.3), the difference is 

substantial. There is approximately 140,000 mg/kg Fe present in the 15-20 cm portion of the 

organic layer with approximately 5.5 mg/L of that being soluble. In comparison, there is 

approximately 25,000 mg/kg Fe present in the reduced zone lower in the soil column (~35-55 

cm) and approximately 4 mg/L becomes mobilized upon thawing. Based on the solubility 

signatures depicted in Figure 1.4, the Fe species at the surface is fully oxidized Fe(III), likely in 

the form of amorphous ferric (hydr)oxides and/or Fe(III)-organo-complexes. Similar Fe redox 

species were detected in boreal catchments by Sundman et al., (2014) and characterized using x- 

ray absorption spectroscopy (XAS). Therefore, based on several observations, including field 

tests for reducing, hydric soils, observations of the soil pit profile during sampling, and the 

solubility signature of dissolved Fe in Figure 1.4, Fe in the active layer predominantly occurs as 

Fe(II), which is much more soluble than Fe(III) (Schwertmann, 1991).

The metal solubility profiles elucidated from the data in Figures 1.3 and 1.4 is 

summarized in Figure 1.9 by plotting the metal partition coefficients (Kd) as a function of depth 

of the soil core. Kd values were calculated using the ratio of metal concentrations in the solid 

fraction of the soil core to the metal concentrations in the pore water extracted from the soil 

fraction (values shown in Table 5). Therefore, a small, relative partition coefficient is indicative 

of high, relative partitioning from the solid to the aqueous phase.

Fe, Al and to some extent Mn, Ba and Zn exhibit a band of high, relative solubility from 

10-15 cm. We expected to see evidence of this solubility band by a mass Fe mobilization and to 

some extent Al to Imnavait Creek during spring snowmelt (Figure 1.6), but as stated previously 

there is potential that these species present above 10 cm soil depth are not as soluble or Fe and 

Al mobilized before our sampling began May 19, 2010. We do not have bulk metal
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concentrations for the soil column above 10 cm due to the prevalence of moss and plants instead 

of actual soil. However, Mn and Zn concentrations have a relative peak in mid-May, unlike Fe, 

Al or Ba, therefore signal dilution from snowmelt as the sole factor seems unlikely. We would 

expect all metals to behave similarly if that were the case.

In the summer months, the soil column continues to thaw and the active layer deepens, 

this is evident by slightly increasing surface water metal concentrations over the course of June, 

July and August for Fe, Al, Mn, Ni, Zn and Ba (Figure 1.6), correlating with low partition 

coefficients for Fe and Mn and to some extent Al, Ba and Zn at soil depths 20-45 cm (Figure

1.9). According to the soil thermal regime (Figure 1.5), the soil is thawed for depths 0, 29 and 42 

cms at this time, but remains frozen at depth 53 cm.

The soil at depth 53 cm initiated thawing on July 29th, 2010. All metals exhibit bands of 

small, relative partition coefficients (high, relative solubility) at depths 45-61 cm. Aluminum 

mostly obeys this except at lower depths (50-61 cm) the solubility decreases, again. The low 

partition coefficient of these metals in the lower portions of the soil column correlated to the 

subsequent thawing of these layers and likely produces the high, relative surface water 

concentrations in Imnavait Creek in late September, early October. This is evident for Fe, Al, 

Mn, and Ba, but not Zn or Ni. Nickel concentrations stay relatively constant throughout the 

sampling season, except for in mid-May when they are at the detection limit for the analytical 

method. Zinc concentrations decrease during late fall, which suggests that any increase in the 

concentration of metals in surface waters during this time of year as an effect of discharge is 

likely not a factor, as all metals would be expected to continue to increase like Fe, Al, Mn and 

Ba. Furthermore, Zn geochemistry in late Arctic fall is potentially more complex than our 

interpretations can predict.
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1.5.2 Permafrost Active Layer Dynamics Inferred at Roche Mountanee Creek

The majority of this project focused on characterizing soil and surface water samples 

from Imnavait Creek, a small, organic-rich, low gradient tundra stream. In an attempt to correlate 

our findings at Imnavait Creek to a broader area in the Arctic, including to a large watershed 

with higher gradient and exposed bedrock, we analyzed surface water collected from Roche 

Mountanee Creek (Table 1.4 and Figure 1.8). We did not collect a core, excavate a soil pit, or 

install thermistors at Roche Mountanee Creek, and no CALM site is present there. Thus, we 

mainly use data from Roche Mountanee Creek to investigate whether the seasonal dynamics 

present in Imnavait Creek also occur for a larger, higher gradient stream with different soil, 

active layer and permafrost composition.

The soils at Roche Mountanee are sourced predominantly from carbonate bedrock with 

minimal organics present in the surface and shallow subsurface (Till et al., 2008). The Al, Fe and 

Mn concentrations measured during the spring are derived from the weathering of the thin, upper 

portions of the subsurface. Once the source of those metals weather and subsequently freezes 

(assuming temperature fluctuations behave similarly as recorded at Imnavait, Figure 1.5), Al, Fe 

and Mn concentrations substantially drop during the summer and are at the detection limit of our 

analytical method during the fall and early winter.

We interpret the late season increase in Roche Mountanee surface water Ba 

concentrations to the late fall mobilization of Ba from the weathering of carbonate rocks in the 

active layer. The fluid characteristic of the late season flow path in comparison to the spring and 

summer primarily embodies water-rock interactions. Because bedrock has a low permeability, 

the thaw front has to move fairly deep into the active layer. Therefore, Ba concentrations in
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Roche Mountanee increase in the late fall when the pore water flow paths are forced deeper into 

the soil column due to freezing of the surface and shallow subsurface.

1.5.3 Surface Water Trace Metal Signatures as a Function of Snowmelt, Precipitation and 

Groundwater Influence

Discharge and primary source of water play a role in the overall transport of metals to 

surface waters. However, discharge measurements can be convoluted, particularly when there are 

multiple main channels and if ice is present. In addition, identifying the primary source of water 

contributing to the overall discharge of a river at any given time of the year is necessary to 

understanding seasonal element fluctuations, as a whole. For this study, we employed surface 

water chloride concentrations as a tracer for estimating the primary source of water flow to 

Imnavait Creek and Roche Mountanee. We utilized chloride because it occurs in the environment 

primarily as a free ion, rarely complexes or forms ion pairs and moves through soil without being 

significantly transformed (Lockwood et al., 1995; Albek, 1999).

Trace metal-chloride relationships for Roche Mountanee and Imnavait Creek surface 

waters are shown in Figure 1.10 (a) and (b). Only Ba values are presented for Roche Mountanee 

surface water because concentrations of Fe, Al and Mn were primarily present at or below the 

detection limit for our method. Roche Mountanee Ba-chloride relationship represents a simple, 

ideal model for estimating the dominant water source in our Arctic systems. The snowmelt 

signature is characterized by having high chloride concentrations, derived from the snowpack 

and low relative metal contributions, considering pristine snowpack should contain trace 

amounts of metals. The melting process of the snowpack mobilizes metals into the local surface 

water and with the changing season from spring to summer the dominant source of water in the
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Arctic is from precipitation. It is important to note that during the spring and summer, there are 

potentially additional sources of precipitation, i.e., melting of adjacent glaciers and base flow 

influence, but these are considered minor in comparison to summer precipitation events.

In the fall, pore waters are forced deeper in the soil column as a result of the top-down 

freezing processes in the Arctic and the water source is dominated by groundwater influence. 

This is highlighted in Figure 1.10 and evident by a signature of older, deeper water. Ba 

concentrations in late fall increased as a result of weathering the lower portions of the soil 

column and mobilizing Ba in the soil pore water. There is an increase in chloride concentrations 

above the normal variability of summer rain events, but not to the extent that the melting of the 

snowpack in May provides. However, there is still variability in chloride concentrations late in 

the season, even in October (Table 1.4), indicating Ba signal concentration due solely to lack of 

precipitation late in the season (Figure 1.6) is likely not a factor.

For Imnavait Creek, metal-chloride relationships are more muddled than at Roche 

Mountanee. The snowmelt signature is apparent, but the transition from being dominated by 

precipitation to a groundwater-dominated creek is less clear, than in Roche Mountanee. For Fe, 

Mn and to some extent Al and Ba, the transition is visible. This transition occurs while the soil 

surface and shallow subsurface is frozen and the soil column at lower depths is thawed (Figure

1.9). For Zn and Ni, the chloride relationship is unclear, likely attributed to the low overall 

concentrations of Zn and Ni creating a lack of sensitivity in this kind of relationship.

One goal of this project was to determine if we could detect other dominant sources of 

water in addition to snowmelt, precipitation and groundwater that would influence trace metal 

transport to local surface waters. In particular, the thawing of the top centimeters of the
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permafrost may provide another source of metals to surrounding surface waters, but our metal- 

chloride results likely indicate (1) if there is a metal signature from permafrost thaw it is not 

discernable over the metal signature from groundwater for our dataset and (2) longer monitoring 

strategies are necessary to determine if and to what extent metal fluctuations to surface waters 

are influenced by permafrost thaw.

1.5.4 A Conceptual Model of Permafrost Active Layer Dynamics

A conceptual model for the soil thawing and freezing process and the deepening of the 

active layer throughout the course of 2010 is schematically illustrated in Figure 1.11. As our 

model suggests, the organic layers and upper portion of the soil column begin to thaw following 

the snow melt in mid-May and are fully thawed by the end of May. This exposes the surface soil 

to oxidation and weathering processes, releasing soluble metals from the soil and vegetation 

surface and flushing them into nearby surface waters. Once the soil below the surface and 

organic layer begins to thaw and the active layer extends downward, acidic pore water from the 

surface reaches the reducing front of the subsurface and mobilizes metals.

When the soil begins to freeze in the fall, it freezes predominantly from the top-down 

(Figure 1.11). Top-down freezing forces pore water flow paths deeper into the reducing zone of 

the soil column, where Fe, Al, Ba and Mn are mobile (Figure 1.4), and exhibit low, relative 

partition coefficients.. Acidic conditions, deepening flow paths and greater source concentrations 

with respect to depth during this time of the year contribute to the overall high, relative metal 

concentrations shown in Figure 1.6. Zn concentrations decrease because the source of Zn 

decreases (Figure 1.3) and Ni concentrations stay relatively constant because the partition 

coefficient is assumed to be constant with respect to depth. During the time of the season when
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the active layer is at its deepest yearly extent, the surface of the soil column is frozen (late 

September/October in Figure 1.11), and the surface water geochemical composition roughly 

correlates to the solubility of the metal species in the exposed soil layers.

An anticipated increase in active layer thaw depths (Hinzman and Kane, 1992;

Osterkamp and Romanovsky 1997; 1999; Jorgenson et al., 2006, Christiansen et al., 2010; 

Romanovsky et al., 2010; Smith et al., 2010), or, due to subsidence, a downward movement in 

the thaw front over time (Belshe et al., 2012; LeBlanc et al., 2012) would liberate previously 

frozen soils and expose them to mineral weathering processes. This is presented as the 

downward movement of the top of the stippled “permafrost” layer in Figure 1.11 in September 

and November. The baseline results from this study demonstrate there is likely a key relationship 

between the extent of the active layer thaw, redox environment of the soil as a function of depth 

and trace metal fluctuations to local surface waters and that relationship is complex and warrants 

the attention of multi-year monitoring. However, any future effects of this anticipated downward 

progression as a whole are unknown.

1.6 Conclusions

Future climate scenarios predict a warmer Arctic, which is expected to cause permafrost

degradation and the downward movement of the seasonally thawed active layer, exposing fresh

soil to mineral weathering processes. This expected result of a warmer Arctic affects trace metal

signatures in surface waters due to mineral weathering providing a significant source of metals in

pristine systems. One goal of this study was to discern whether geochemical signatures of trace

metals in surface waters could provide a landscape or watershed scale proxy for thawing
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processes in permafrost soils. Our results show a distinct seasonal signature of trace metal 

concentrations in Imnavait and to a lesser extent Roche Mountanee Creeks. Stream water 

concentrations of Al, Ba, Fe, and Mn in Imnavait Creek were highest in the late fall (September 

and October). This pattern appears to correlate with the depth of the active layer throughout the 

watershed. The signal for Ba was detectable in both a low gradient tundra stream and a larger 

high gradient bedrock dominated stream. Other metals (Al, Fe, and Mn) experienced enhanced 

concentrations in late fall flows in the smaller low gradient stream, but these metals did not 

exhibit a late fall increase in the higher gradient bedrock dominated stream, likely due to the 

difference in the soil composition, pH, organic ligand content and soil water flow rates for the 

two compared streams.

Our findings show that the transport, mobility and ultimate fate of metals to local surface 

waters as a result of pristine mineral weathering is complex and likely controlled by a variety of 

factors, particularly speciation. The transport and behavior of trace metals strongly depends on 

local soil conditions, especially the redox environment. Increased water infiltration at the 

permafrost-active layer boundary as a result of increasing air temperatures could significantly 

impact stream water trace metal signatures due to mineral weathering of unfrozen soil being a 

major contributor of metals to local surface waters. Therefore, deepening of the active layer may 

cause detectable changes in surface water geochemical signatures. Over time, as permafrost 

degrades and exposes previously frozen, metal-rich layers, we hypothesize that the late season 

trace metal signal could be differentiated from the groundwater-dominated signal. However, 

there are many noteworthy limitations to this hypothesis, particularly differentiating between 

fluctuating active layer thicknesses due to normal variability, as opposed to longer-term trends. 

In order to establish a noteworthy trend relating surface water metal concentrations with
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increasing active layer depth/degrading permafrost, a watershed likely warrants continuous 

monitoring of active layer dynamics, in addition to soil and surface water geochemical 

measurements.

Presently, this study offers many improvements on previous efforts and provides a 

baseline of data for future monitoring in Arctic Alaska. Our results capture the seasonality of 

trace metals in two Arctic watersheds from spring snowmelt until early winter, a measurement 

that is widely overlooked. Our findings highlight a correlation between the top-down freezing 

processes that occurs in Arctic soils to metal fluctuations in local surface waters. In addition, our 

results highlight the complexity of metal transport as a function of seasonality in the presence of 

permafrost, necessitating the need for longer summer sampling seasons in the Arctic.
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Figure 1.1 Map of study area.
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Figure 1.2 Soil pit profile

Soil pit profile and detailed soil horizons at Imnavait Creek watershed basin. Profile shows an 

oxidation/reduction front at approximately 40 cm depth, substantial organic layer on the surface 

and cryoturbation.
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Figure 1.3 Vertical metal distributions
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Metal distributions in soil core show element enhancement associated with (a) the organic layer 

in an oxidizing zone or (b) in the lower portion of the soil column in a reducing zone.
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Figure 1.4 Vertical soluble metal distributions

Vertical soluble metal distributions measured in the soil water extracted from a soil core 

collected from Imnavait Creek watershed in late March/early April 2009.
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Figure 1.5 Soil temperature

Imnavait Creek watershed soil temperature (°C) at multiple soil depths as a function of date in

2010. Soil in the Arctic freezes from the top-down forcing pore water flow paths deeper in the 

soil column.
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Figure 1.6 Surface water metal concentrations at Imnavait Creek

Imnavait Creek surface water soluble metal concentrations (^g/L) as a function of date in 2010.
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Figure 1.7 Surface water pH

Imnavait Creek and Roche Mountanee surface water pH values over the course of spring-fall 

2010
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Figure 1.8 Surface water metal concentrations at Roche Mountanee Creek

Roche Mountanee Creek surface water soluble metal concentrations (^g/L) as a function of date 

in 2010.
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Figure 1.9 Partition coefficients

Plot of the partition coefficients (Kd) for the Imnavait Creek soil core collected in late 

March/early April. Values were calculated using the ratio of metal concentrations (g/kg) in the 

solid fraction of the soil to the metal concentrations (g/L) in the pore water fraction.
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Figure 1.10 Metal-chloride relationships

Metal-chloride relationships for (a) Roche Mountanee and (b) Imnavait Creek surface waters 

over the course of Spring-Fall 2010.
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Figure 1.11 Schematic of freeze-thaw process

Schematic depicting the freezing and thawing process in Arctic soils and the observed deepening 

of the active layer during late fall of 2010.
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XRF results for the soil core collected from Imnavait Creek watershed, location shown in Figure 

1. (-) indicates below detection limit or limit of detection not calculated if present in the lowest 

row in each section

Table 1.1 XRF soil core results

Core 1 sections (era) Sc (ppm) +/- Ti (ppm) +/- V (ppm) +/- Cr(ppm) +/- Mn (ppm) +/- Ba (ppm) +/-
10-15 6.4 0.2 796.3 8.0 12.2 0.2 15.4 2.8 420.6 4.2 249.0 2.5
15-20 3.2 0.1 572.1 5.7 14.6 0.3 10.7 1.9 1088.4 10.9 158.7 1.6
20-25 7.5 0.2 2809.3 28.1 45.2 0.9 39.4 7.1 76.7 0.8 240.7 2.4
25-30 10.5 0.3 5374.9 53.7 65.5 1.3 64.2 11.6 65.4 0.7 358.5 3.6
30-35 11.2 0.3 7165.0 71.7 85.6 1.7 80.2 14.4 74.3 0.7 442.0 4.4
35-40 11.2 0.3 7871.1 78.7 82.1 1.6 90.6 16.3 97.3 1.0 422.8 4.2
40-45 9.9 0.3 6825.5 68.3 83.5 1.7 93.5 16.8 102.8 1.0 406.4 4.1
45-50 10.7 0.3 6248.3 62.5 80.5 1.6 92.4 16.6 105.2 1.1 434.8 4.3
50-55 10.7 0.3 6749.9 67.5 80.3 1.6 126.9 22.8 111.1 1.1 495.8 5.0
55-61 9.6 0.3 6541.8 65.4 68.4 1.4 142.7 25.7 110.5 1.1 402.4 4.0

Detection Limit 1.5 0.0 2.8 0.0 1.9 0.0 1.3 0.2 2.4 0.0 _ _

Core 1 sections (cm) Fe (ppm) +/- Xi(ppin) +/- Cu (ppm) +/- Zn (ppm) +/- Al (ppm) +/- Pb (ppm) +/-
10-15 14054.8 4216.4 20.2 2.0 42.3 0.8 175.9 1.8 6530 65.3 6.4 0.5
15-20 140713.9 42214.2 18.3 1.8 24.7 0.5 43.1 0.4 20950 209.5 4.8 0.4
20-25 29548.2 8864.5 13.9 1.4 48.1 1.0 24.5 0.2 45020 450.2 6.3 0.5
25-30 21505.3 6451.6 16.7 1.7 44.9 0.9 23.5 0.2 77990 779.9 7.6 0.6
30-35 25282.0 7584.6 18.7 1.9 42.0 0.8 39.3 0.4 100360 1003.6 13.1 1.1
35-40 23261.2 6978.4 18.7 1.9 36.1 0.7 43.8 0.4 96330 963.3 12.1 1.0
40-45 21533.8 6460.1 19.5 1.9 33.8 0.7 46.2 0.5 92870 928.7 12.7 1.0
45-50 23019.5 6905.9 19.8 2.0 36.8 0.7 53.8 0.5 85320 853.2 11.1 0.9
50-55 23550.5 7065.1 23.7 2.4 34.0 0.7 62.2 0.6 90480 904.8 10.0 0.8
55-61 19772.0 5931.6 20.9 2.1 22.5 0.4 58.9 0.6 72540 725.4 7.6 0.6

Detection Limit 3.3 1.0 1.0 0.1 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.1

Core 1 sections (cm) Br (ppm) +/- Rb (ppm) +/- Sr (ppm) +/- Y (ppm) +/- Zr (ppm) +/- Tl (ppm) +/-
10-15 14.1 1.8 7.1 0.4 22.8 0.2 2.2 0.0 12.7 2.0 2.5 0.2
15-20 19.6 2.5 6.6 0.3 13.5 0.1 15.0 0.1 23.2 3.7 1.9 0.2
20-25 13.7 1.8 22.4 1.1 27.4 0.3 15.2 0.2 84.8 13.6 3.9 0.3
25-30 13.5 1.7 38.2 1.9 43.2 0.4 22.3 0.2 162.0 25.9 6.1 0.5
30-35 8.6 1.1 50.5 2.5 54.2 0.5 27.1 0.3 224.5 35.9 7.9 0.7
35-40 6.6 0.9 47.4 2.4 60.0 0.6 28.3 0.3 285.4 45.7 7.0 0.6
40-45 9.0 1.2 46.7 2.3 54.8 0.5 25.4 0.3 287.6 46.0 7.3 0.6
45-50 10.0 1.3 41.9 2.1 50.5 0.5 22.0 0.2 269.7 43.2 5.4 0.5
50-55 8.0 1.0 43.9 2.2 55.3 0.6 21.7 0.2 341.1 54.6 6.8 0.6
55-61 6.5 0.8 34.2 1.7 52.2 0.5 19.9 0.2 423.4 67.7 5.5 0.5

Detection Limit 1.0 0.1 1.0 0.1 1.0 0.0 1.0 0.0 1.0 0.2 1.0 0.1
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Table 1.2 Metal concentrations for soil pore water

Metal concentrations for soil pore water samples extracted from the soil core collected from 

Imnavait Creek watershed. (-) indicates below detection limit, (*) indicates qualitative values 

outside the calibration

Core 1 (cm) B 0ig/L ) +/- Al (fig/L) +/- P(,ig/L) +/- Sc (fig/L) +/- TiO i^L) +/-
3-5 90.1 0.3 984* 3 771* 3.6 1.4 0.1 4.3 0.1
5-10 24.1 0.3 223.9 1.8 1397* 6.6 - - 3.0 0.1

10 15 - - 158.3 0.6 405* 5.6 - - - -

15-20 - - 210.4 4.4 124* 10.0 - - - -

20-25 - - 110.4 2.3 208* 1.6 - - 1.5 0.1
25-30 - - 1330.0 256.4 572* 11.9 1.2 0.1 1.8 0.1
30-35 - - 1029.0 8.6 136* 1.3 1.9 0.1 16.5 0.1
35-40 11.8 0.4 451.5 9.9 89.4 0.7 1.2 0.1 8.3 0.2
40-45 22.1 0.3 237.4 3.3 100.2 1.8 1.4 0.1 8.1 0.1
45-50 - - 467.7 1.5 99.4 0.9 1.4 0.1 8.0 0.1
50-55 2.4 0.1 253.8 3.3 105.4 0.1 1.4 0.1 6.4 0.1
55-61 15.4 0.5 167.6 1.9 97.0 1.4 - - 2.1 0.1

Core 1 (cm) Mn (HfrL) +/- Feftig/L) +/- Co (fig/L) +/- N i0ig/L) +/- Cu +/-
3-5 495* 3 2292* 29 1.8 0.1 - 1.3 0.1
5-10 155* 1 5324 47.9 1.5 0.1 - - - -

10-15 SI.6 0.8 1000 13.4 1.3 0.1 - - - -

15-20 154* 10 390 1.1 2.3 0.2 1.8 0.2 - -

20-25 120* 1 390 2.8 - - 3.9 0.1 6.5 0.4
25-30 45.4 1.0 3580 485.8 - - - - - -

30-35 34.6 0.2 4090 89.6 - - - - 12.5 0.1
35-40 47.0 0.6 2840 18.7 - - - - - -

40-45 67.8 1.0 520 4.5 - - - - 1.5 0.1
45-50 90.3 0.5 1190 21.1 - - - - 1.4 0.1
50-55 103.1 0.7 2160 18.8 1.8 0.1 2.7 0.1 - -

55-61 146* 1 540 7.0 1.8 0.1 1.1 0.1 - -

Core 1 (cm) Zn (fig/L) +/- Sr (fig/L) +/- +/- Ba (fig/L) +/- Tl* ftig/L) +/-
3-5 39.0 0.1 7.7 0.1 - 89.4 1.1 1890* 59
5-10 41.7 0.1 7.0 0.1 - - 77.2 0.4 1098* 86

10-15 24.5 0.2 6.6 0.1 - - 23.8 0.1 1064* 23
15-20 15.7 1.2 4.4 0.4 - - 32.9 3.1 1759* 228
20-25 15.3 0.1 6.0 0.1 - - 65.8 0.5 2547* 59
25-30 7.4 0.1 2.3 0.1 - - 47.5 1.6 342* 53
30-35 3.8 0.1 1.9 0.1 2.5 0.1 47.3 0.7 258* 39
35-40 3.0 0.1 1.5 0.1 1.1 0.1 24.4 0.2 - -

40-45 6.0 0.1 1.9 0.1 1.5 0.1 34.4 0.5 - -

45-50 8.1 0.1 2.3 0.1 1.9 0.1 57.8 0.6 - -

50-55 9.0 0.1 2.7 0.1 1.4 0.1 77.6 0.6 - -

55-61 13.3 0.1 4.4 0.1 - - 85.5 1.3 - -
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Table 1.3 Trace concentrations in Imnavait Creek

Trace concentrations (^g/L) of species found in Imnavait Creek surface waters over the course of 

spring through fall 2010. (-) indicates below detection limit (/) indicates samples not analyzed for 

chloride

AL +/- Mn +/- Fe +/- Ni +/- Zn +/- Ba +/- CL +/-
19-May 39.2 0.7 126.7 1.3 187.8 1.6 - - 4.3 0.1 5.6 0.1 / /
25 May 57.2 1.1 118.7 1.1 551.0 3.9 - - 1.7 0.1 5.9 0.1 118.9 5.9
28 May 84.1 0.6 49.1 0.9 750.4 5.1 1.1 0.1 2.2 0.1 7.9 0.1 / /
31-May 85.2 0.6 32.3 0.3 776.7 6.8 1.3 0.1 2.5 0.1 8.4 0.1 42.9 2.1

1-Jun 104.2 1.0 31.5 0.3 593.3 1.2 1.3 0.1 2.6 0.1 8.6 0.1 33.6 1.7
3-Jun 102.9 0.3 23.3 0.1 369.6 4.8 1.5 0.1 2.6 0.1 8.6 0.1 34.1 1.7
5 Jun 97.5 0.9 23.4 0.2 374.5 3.1 1.5 0.1 2.4 0.1 8.8 0.1 11.4 0.6
8-Jun 104.6 2.0 25.7 0.3 607.5 4.6 1.4 0.1 2.4 0.1 9.5 0.1 13.3 0.7
11 Jun 95.8 2.3 27.6 0.4 538.8 3.7 1.5 0.1 2.6 0.1 9.6 0.1 13.9 0.7
22-Jul 123.9 1.0 23.6 0.2 352.7 2.2 1.7 0.1 3.8 0.1 11.5 0.1 9.9 0.5
23-Jul 116.3 1.4 26.8 0.3 323.4 1.1 1.7 0.1 3.6 0.1 11.1 0.3 14.6 0.7
24-Jul 112.8 1.7 19.4 0.2 333.6 4.0 1.6 0.1 3.4 0.1 10.4 0.1 40 2.0
26-Jul 109.9 0.8 29.1 0.2 307.0 3.6 1.9 0.1 3.7 0.1 11.0 0.1 37.6 1.9
28 Jul 105.0 0.3 30.2 0.2 485.1 9.6 1.8 0.1 3.4 0.1 11.6 0.1 6.9 0.3
30-Jul 141.1 1.1 24.5 0.1 362.8 3.7 2.0 0.1 3.7 0.1 11.6 0.1 18.4 0.9
2-Aug 129.2 2.5 36.7 0.6 484.3 5.9 1.9 0.1 3.5 0.1 12.8 0.2 14.8 0.7
5-Aug 137.6 1.9 44.8 0.6 844.2 7.0 2.0 0.1 3.5 0.1 13.9 0.1 8 0.4
7-Aug 158.7 2.0 38.6 0.4 456.2 4.7 1.9 0.1 4.4 0.1 11.8 0.1 14.1 0.7
13-Sep 132.2 1.9 50.6 0.7 1403.7 12.5 1.8 0.1 2.7 0.1 12.9 0.1 / /
15-Sep 132.3 1.6 54.9 0.2 1855.0 8.3 1.7 0.1 2.7 0.1 12.9 0.1 20.9 1.0
17 Sep 123.6 1.1 60.0 0.2 1354.7 13.3 1.7 0.1 2.6 0.1 12.6 0.1 35.5 1.8
18-Sep 114.1 0.4 54.9 0.2 1077.7 16.4 1.7 0.1 2.7 0.1 12.0 0.2 49.6 2.5
20 Sep 119.0 1.4 51.4 0.8 969.8 10.0 1.8 0.1 2.7 0.1 11.8 0.1 45.7 2.3
22-Sep 122.6 4.3 53.4 0.2 1179.7 11.9 1.7 0.1 2.7 0.1 11.6 0.1 40 2.0
23-Sep 121.4 1.9 56.5 0.4 1143.7 7.5 1.7 0.1 2.7 0.1 12.0 0.2 34.8 1.7
25 Sep 129.5 1.8 75.2 0.9 1156.0 10.5 1.7 0.1 2.8 0.1 12.7 0.2 43.7 2.2
27-Sep 133.7 0.4 82.9 0.4 1570.7 23.7 1.8 0.1 3.0 0.1 13.3 0.3 17.6 0.9
29 Sep 123.6 2.0 97.3 0.6 1366.7 12.4 1.8 0.1 3.8 0.1 12.9 0.1 27.1 1.4
3-Oct 161.0 4.0 130.4 0.2 2640.0 28.8 1.6 0.1 3.3 0.1 14.5 0.2 28.7 1.4
8-Oct 175.6 2.9 165.2 2.3 3383.0 9.5 1.5 0.1 3.1 0.1 15.4 0.2 36.8 1.8
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Table 1.4 Trace concentrations in Roche Mountanee

Trace concentrations (^g/L) of species found in Roche Mountanee surface waters over the course 

of spring through fall 2010. (-) indicates below detection limit, (/) indicates samples not analyzed 

for chloride, (*) indicates outside the calibration range for the analytical method, therefore value 

is qualitative

Al +/- Mn +/- Fe +/- Ba +/- Cl +/-
15 May 41.5 1.1 2.7 0.1 35.4 2.5 16.7 0.2 599.7 30.0
18 May 194.8* 5.5 4.2 0.1 107.0 0.8 16.0 0.1 447.6 22.4
20 May 35.4 7.6 2.9 0.1 35.2 1.5 20.6 0.3 302.5 15.1
26-May 8.4 0.7 - - 20.3 0.6 16.7 0.4 174.1 8.7
28 May 3.9 0.1 - - 1.8 0.1 16.1 0.2 137.1 6.9
29 May 4.0 0.1 - - 2.1 0.1 17 0.3 130.2 6.5
1-Jun 5.7 0.1 - - 3.1 0.1 15.1 0.1 111.7 5.6
3-Jun 7.0 0.2 - - 7.3 0.1 18.3 0.2 / /
4-Jirn 13.8 0.3 - - 20.8 0.2 17.5 0.3 96.8 4.8
7-Jun 11.5 0.5 - - 17.8 0.1 21.3 0.1 113.4 5.7
10-Jun 4.7 0.2 - - 5.1 0.1 22.4 0.1 109.4 5.5
12-Juu 6.8 0.5 - - 6.9 0.1 23.7 0.2 94.9 4.7
22 Jul 5.7 0.1 - - 6.2 0.1 24.3 0.3 76.8 3.8
23 Jul 16.9 1.5 - - 26.8 0.1 25.7 0.1 / /
26 Jul 7.8 0.1 - - 13.8 0.2 26.9 0.2 84 4.2
29 Jul 17.3 0.3 - - 29.3 0.1 20.5 0.2 94.3 4.7
31 Jul 9.7 2.3 - - 7.5 0.1 24.4 0.2 100.7 5.0
2 Aug 13.0 0.5 - - 22.6 0.1 25.9 0.5 94.9 4.7
3 Aug 9.6 0.1 - - 15.1 0.3 27.5 0.3 99.1 5.0
6-Aug 4.4 0.1 - - 3.8 0.1 22.5 0.3 / /
7 Aug 18.5 0.8 - - 34.1 0.3 26.5 0.1 127.3 6.4
13 Sep - - - - 1.1 0.1 63.6 0.4 / /
14 Sep - - - - - - 63.8 0.5 297.1 14.9
17-Sep - - - - - - 64.2 0.3 326.1 16.3
18-Sep - - - - - - 64.5 1.0 392.5 19.6
20-Sep - - - - - - 65.5 0.3 346.7 17.3
22-Sep - - - - - - 66.2 1.0 369.4 18.5
24 Sep - - - - 1.8 0.1 70.3 0.8 390 19.5
25 Sep - - - - - - 70.3 0.6 382.2 19.1
27 Sep - - - - 2.6 0.1 69.4 0.2 405.4 20.3
29 Sep - - - - - - 72.8 0.5 398.3 19.9
7 Oct - - - - 3.2 0.1 69.8 0.4 365.7 18.3
13 Oct - - - - - - 70 0.6 354.4 17.7
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Table 1.5 Partition coefficients for soil core

Partition coefficients (Kd) for the Imnavait Creek soil core. Kd values were calculated using the 

radio of metal concentrations (g/kg) in the solid fraction of the soil to the metal concentrations 

(g/L) in the pore water fraction.

Iron Partitioning Coefficient
C orel (cm) C. (g/kg) C ,, (g/L) Kj (Cs/Caq)

10-15 14.0548 0.001000 14050
15-20 140.7139 0.000390 36100
20-25 29.5482 0.000390 75800
25-30 21.5053 0.003580 6007
30-35 25.282 0.004090 6181
35-40 23.2612 0.002840 8191
40-45 21.5338 0.000520 41400
45-50 23.0195 0.001190 19340
50-55 23.5505 0.002160 10900
55-61 19.7720 0.000540 36600

Barium Partitioning Coefficient

Manganese Partitioning Coefficient

C orel (cm) C, (g/kg) C ,, (g/L) K,, (Cs/Caq)
10-15 0.4206 0.0000816 5150
15-20 1.0884 0.000154 7070
20-25 0.0767 0.000120 639
25-30 0.0654 0.0000454 1440
30-35 0.0743 0.0000346 2150
35-40 0.0973 0.0000470 2070
40-45 0.1028 0.0000678 1520
45-50 0.1052 0.0000903 1170
50-55 0.1111 0.0001031 1077
55-61 0.1105 0.000146 757

Aluminum Partitioning Coefficient
C orel (cm) C. (g/kg) C ,, (g/L) Kj (Cs/Caq)

10-15 6.530 0.0001583 41250
15-20 20.950 0.0002104 99570
20-25 45.020 0.0001104 407800
25-30 77.990 0.0013300 58639
30-35 100.360 0.0010290 97532
35-40 96.330 0.0004515 213400
40-45 92.870 0.0002374 391200
45-50 85.320 0.0004677 182400
50-55 90.480 0.0002538 356500
55-61 72.540 0.0001676 432800

Core 1 (cm) C„ (g/kg) C_, (g/L) K,, (Cs/Caq)
10-15 0.2490 0.0000238 10500
15-20 0.1587 0.0000329 4830
20-25 0.2407 0.0000658 3660
25-30 0.3585 0.0000475 7550
30-35 0.4420 0.0000473 9350
35-40 0.4228 0.0000244 17300
40-45 0.4064 0.0000344 11800
45-50 0.4348 0.0000578 7520
50-55 0.4958 0.0000776 6390
55-61 0.4024 0.0000855 4700

Zinc Partitioning Coefficient

Core 1 (cm) C.(g/kg) P a ! K,, (Cs/Caq)
10-15 0.1759 0.0000245 7170
15-20 0.0431 0.0000157 2750
20-25 0.0245 0.0000153 1600
25-30 0.0235 0.0000074 3200
30-35 0.0393 0.0000038 10000
35-40 0.0438 0.0000030 15000
40-45 0.0462 0.0000060 7700
45-50 0.0538 0.0000081 6600
50-55 0.0622 0.0000090 6900
55-61 0.0589 0.0000133 4440
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Chapter 2 Lead and Antimony Speciation Associated with Weathering Bullets in Newly 

Constructed Target Berms1

2.1 Abstract

Understanding Pb and Sb speciation associated with the weathering of bullets is essential 

for identifying the potential for mobile species to migrate, as well as assess the overall toxicity of 

a shooting range. In the present study, we fired 5.56 mm bullets into newly constructed berms 

composed of well-characterized test soils (sand, sandy loam, loamy sand and silt loam) during a 

controlled event in order to observe the progression of Pb and Sb oxidation as a function of time 

and soil properties. After four years reaction time, an iron amendment was added to a subset of 

the test berms of each soil type to study remediation strategies. Bulk speciation analysis coupled 

with micro-scale spectroscopic methods show that both Sb(III) and (V) species are present in soil 

solution depending on the type of soil matrix, but Sb(III) is no longer observed after 9 months. In 

addition, Sb is mobilized to a greater extent than Pb in all test soil types, attributable to the 

overall low solubility of the dominant Pb species present in the crust and soil fraction; a mixture 

of lead oxide, lead carbonate and lead sorbed onto iron (III) oxides. Based on the results, this 

study suggests constructing target berms out of 100% silt loam soil, which is shown to be 

naturally effective at immobilizing both Pb and Sb, and adding Fe(OH)3 coated sand/CaCO3 

buffer to the berm runoff. Results stemming from this study are essential for understanding the 

potential for off-site migration, as well as determining the ultimate bioavailability and toxicity of 

lead and antimony in shooting soils.

1Barker, A.J., Douglas, T.A., Ilgen, A.L., Trainor, T.P. Lead and antimony speciation associated with weathering 
bullets in newly constructed test berms. Prepared for submission in Geochimica et Cosmochimica Acta.
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2.2 Introduction

Shooting range training facilities contain high loadings of metal(loid)s within soil and 

soil porewater, particularly lead (Pb), antimony (Sb), copper (Cu), nickel (Ni) and zinc (Zn) 

(Murray et al., 1997; Basunia and Landsberger, 2001; Str0mseng et al., 2009; Sanderson et al., 

2013; Martin et al., 2013; Guemiza et al., 2014). In the U.S., it is estimated that over 3,000 small 

arms ranges (SARs) are managed by the Department of Defense (DoD) and another 9,000 non­

military outdoor ranges exist (ITRC, 2003; US EPA, 2005). In the late 1990’s, EPA estimated 

that four percent of all the Pb produced in the U.S., about 2 million tons per year, was consumed 

in the production of bullets (US EPA, 2005). Once bullets are deposited into a berm they 

fragment, increasing the surface area and exposing fresh metallic surfaces to the soil 

environment. The bullet fragments weather causing zero-valent metals to oxidize, which form a 

crust rich in secondary mineral phases often encapsulating surfaces and acting as a control on 

metal(loid) release to solution (Vantelon et al., 2005). In addition, metal(loid)s can be released 

directly into soil solution and the extent to which mobilized metal(loid)s fractionate between soil 

surfaces (clay minerals, Al, Mn and Fe oxides, organic matter) and soil porewater depends on a 

variety of factors including time, soil conditions and saturation levels (Jorgensen and Willems, 

1987; Cao et al., 2003; Sanderson et al., 2013).

The core of a bullet is composed of a Pb-alloyed core with Sb added as a hardening 

agent, with average concentrations ranging from 0.7 wt. %  Sb (Randich et al., 2002) for a 0.22 

caliber (5.56 mm) to 1.8 wt. % Sb for a 0.357 caliber (9 mm) round (Keto, 1999). Concentrations 

of Sb in shooting range soils have been reported from 1-517 mg/kg in a Texas firing range 

(Basunia and Landsberger, 2001) to upwards of 10,000 mg/kg at a Swiss shooting range reported 

by Johnson et al., 2005 of the <0.5 mm sieved bank material including bullets. Lead
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concentrations have been found in the range of 11 to 4675 mg/kg (Basunia and Landsberger,

2001), 1142 mg/kg (Hardison et al., 2004) and 68,000 mg/kg (Vantelon et al., 2005). In addition 

to Pb and Sb, elevated (above background) concentrations of Cu have been reported in shooting 

range soils, approximately 13 to 359 mg/kg (Basunia and Landsberger, 2001).

Firing and subsequent deposition of bullet slugs to soil represents a pathway of metal 

release to soil pore waters. Concentrations of Pb have been reported in shooting range surface 

waters ranging from 60-2900 |ig/L (US EPA, 1994) with maximum Pb values reported of 838 

|ig/L by Stansley et al. (1992); 2256 |ig/L by Murray et al. (1997); and 1495 |ig/L by Okkenhaug 

et al. (2016). Antimony concentrations in soil-waters have been reported to range from 19-349 

|ig/L in untreated shooting range soil over 4 years (Okkenhaug et al., 2016). In addition, Pb and 

Sb have also been shown to accumulate in plant roots and soil organism communities (Rooney et 

al., 1999; Labare et al., 2004; Migliorini et al., 2004; Robinson et al., 2008; Feng et al., 2009; 

Pourrut et al., 2011; Okkenhaug et al., 2011) demonstrating characteristics of bioavailability in 

soil. Given that both Pb and Sb are toxic and Sb(III) is a suspected carcinogen (US EPA, 1979; 

IARC, 1989; WHO, 2003; 2011), there is a growing concern that metal(loid) accumulation in 

shooting range systems may pose a serious contamination risk to groundwater, surface water, 

plants and site reclamation (US EPA, 1994; Mellor and McCartney, 1994; Cao et al., 2003; 

Robinson et al., 2008; Martin et al., 2013).

Understanding the overall processes controlling mobilization versus retention of 

metal(loid) species requires understanding speciation. Antimony is primarily found in the 

environment in two oxidation states, Sb(III) and Sb(V), which unless in highly acidic systems, 

readily hydrolyze in aqueous solution to Sb(OH)3 and Sb(OH)6-, respectively (Johnson et al., 

2005). Lead is predominantly found in the environment in only one oxidation state: Pb(II)
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(Hardison et al., 2004; Vantelon et al., 2005). Both Pb and Sb have been shown to complex with 

colloidal sized particles, such as clay minerals, Fe-, Al-, and Mn- oxy/hydroxides, and 

humic/fulvic acids, which has implications affecting the overall transport and mobility of 

contaminants in shooting range soils (Denaix et al., 2001; Klitzke et al., 2012). In particular, Pb 

forms a variety of stable mineral phases with oxides and carbonates in addition to forming stable 

sorption complexes on the surfaces of humus and Si-, Fe-, Mn- and Al- oxides (Rooney et al., 

2007; Clausen et al., 2011). Lead partitioning between soil and soil solution is largely controlled 

by pH (Reddy et al., 1995; Clausen et al., 2011) and has been shown to become more mobilized 

at lower pHs while the capacity of soil to adsorb Pb increases at higher pHs (USGS, 1976; Reddy 

et al., 1995; Cao et al., 2003). This is different than Sb in solution, which has been shown to be 

more mobile at higher pHs for Sb(V) species, while Sb(III) is independent of pH (Johnson et al., 

2005).

Numerous studies have focused on shooting range soil and water monitoring for metal 

fate, transport and speciation (Murray et al., 1997; Cao et al., 2003; Johnson et al., 2005; 

Vantelon et al., 2005; Scheinost et al., 2006; Rooney et al., 2007; Ackermann et al., 2009; 

Clausen et al., 2011; Guemiza et al., 2014). However, the majority of studies focus on older 

shooting range facilities (20-90 years old) that have been heavily used, resulting in a gap in 

knowledge concerning Pb and Sb transport and speciation in initial stages (Hardison et al.,

2004). In this study, we constructed shooting range test berms comprised of four different, well- 

characterized soils and fired approximately 2,000 - 5.56 mm bullets into each of the berms in the 

summer of 2010 at the Cold Regions Test Center (CRTC) outside of Delta Junction, Alaska. 

Sampling occurred during the summer seasons for a total of 5 years. Samples were collected to 

determine Pb and Sb aqueous concentrations and speciation using the berm liquid runoff as well
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as solid-phase speciation. After 4 years of reaction time, slurries of FeCl2 and CaCO3 were added 

to a set of duplicate test berms to evaluate the potential of this treatment as a low-cost, easy to 

apply remediation strategy for range managers. Given the natural attenuation of both Pb and Sb 

by Fe present in soil via surface complexation reactions, it has been postulated that Fe additions 

have the potential to work as an effective sorbent in shooting range soil systems (Dzombak and 

Morel, 1990; Belzile et al., 2001; Leuz et al., 2006). Remediation strategies designed for small 

arms ranges should ideally immobilize both Pb and Sb, which can be challenging due to 

differences in mobility with pH among their respective mobile species (Jardine et al., 2007; 

Mitsunobu et al., 2010; Griggs et al., 2011; Okkenhaug et al., 2011; Sanderson et al., 2013; 

Ogawa et al., 2015; Okkenhaug et al., 2016).

The main goals of this project were to establish a baseline of initial oxidation products in 

both the solid and aqueous phase as a result of bullet weathering from deposition to 5 years 

reaction time. Select Pb and Sb species may occur initially, but are most likely overlooked by 

previous studies due to long term instability. We also tracked Pb and Sb distribution, transport 

from parent source, correlations with other elements and metal speciation as a function of time 

amid varying soil properties. The results from this study provide a unique dataset to 

understanding the overall fate, transport and speciation of Pb and Sb in shooting range soils. 

Finally, this study outlines suggestions for the construction of future shooting ranges in addition 

to defining remediation strategies.
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2.3 Methods

2.3.1 Field Site Construction

Twelve test berms were constructed in central Alaska on the Donnelly Training Area 

(DTA), located approximately 10 miles southeast of Delta Junction, Alaska. The test berms are 

comprised of four different types of soil: silt loam, loamy sand, sandy loam and sand and each 

cover an area approximately 2 square meters. The layout for the site is depicted in Figure 2.1.

The silt loam end member was sourced locally from DTA and the sand end member was 

purchased from Delta Sand and Gravel. The soil end members were mixed by Delta Sand and 

Gravel in a large soil mixer and construction began in August 2010 in conjunction with Cold 

Regions Test Center (CRTC) on the Texas Range of DTA. The different types of soil were 

loaded into a dump truck, transferred to a front-loader and unloaded in mounds onto water-proof 

plastic geoliner sheets (Alaska Tent and Tarp, Fairbanks, Alaska). The open sides of the geoliner 

sheets were then rolled and set with wooden stakes in order to direct runoff to one location 

(Figure 2.1). Plastic 5 gallon buckets covered with 1mm nylon screen mesh were installed at the 

mouth of each berm to collect the berm runoff. Each bucket was covered with a sheet of plywood 

for protection. Soil moisture and temperature probes were installed into a subset of berms of each 

soil type and were installed 180 degrees away from bullet pocket and 1 m up from the ground at 

a depth of 0.5 m into the berm. Data loggers for soil/air temperature and soil moisture (Onset 

HOBO Data Loggers, Bourne, MA) were logged every hour for 5 years and downloaded twice 

per year. There were periodic breaks in data collection primarily due to equipment failure or to 

animals chewing/destroying the logger cords. Of the twelve separate berms and four soil types, 

four berms remained untouched and are classified as ‘pristine’ berms. The other 8 berms 

(duplicates of each soil type) were fired into in a controlled firing event in September 2010 and
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are classified as the ‘contaminated’ berms. The firing event was facilitated by CRTC and Alaska 

Army National Guard Ft. Greely MP Company, 49th Missile Defense Battalion. We fired 2,000 

military-issued 5.56 mm bullets into each of the 8 contaminated berms. Shortly after the berms 

were loaded the winter season began and the berms remained untouched until May 2011.

In August 2014, an Fe amendment was added to a subset of the contaminated berms, 5, 7, 

9 and 11 (one of each of the soil types) in order the investigate the cost, ease of application and 

overall effectiveness of Fe as a treatment for limiting Pb and Sb mobility. The Fe amendment 

was added as a solution made up by adding 40 g of Fe(II) in the form of FeCl2 (Alfa Aesar, 

99.5% metals basis powder, Haverhill, MA) to 15 liters of drinking water (Water Wagon, 

Fairbanks, AK) in a pre-washed 15 L capacity fertilizer sprayer pump (Echo, MS-401) and 

manually mixed. In another 15 L sprayer, we added 75 g of CaCO3 (Powder, J.T. Baker, Center 

Valley, PA) to 15 liters of drinking water and manually mixed. We sprayed the two mixtures 

independently, but in tandem, to each of the selected berms. Timing of the application was 

chosen to ensure the berm soils were dry at the time of application. The overall Fe addition 

process took approximately 30 minutes per berm.

2.3.2 Sampling

The number of samples varied each summer as a result of fluctuating precipitation, but 

each berm was sampled 1-16 times for aqueous metal concentrations and 1-2 times for solid 

phase metal distribution and speciation, on average per year. The pristine berms were routinely 

monitored for background concentrations of metals, approximately 1-4 sample collections per 

summer.
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2.3.2.1 Berm Runoff

Sampling the berm runoff consisted of collecting the liquid from the plastic buckets 

situated at the base of the bullet pockets draining from the geoliner. We also sampled the small 

pan lysimeters when they contained runoff. During the winter, we collected snow samples and 

during spring snowmelt we collected samples from the drainage. All liquid samples were 

collected in HDPE trace metal grade Nalgene bottles (Nalgene, Waltham, MA) or sterilized 15 

and 50 mL plastic centrifuge tubes (VWR International, Radnor, PA). Samples for trace metal 

analysis were filtered to either 0.45 or 0.2 |im and acidified with 6 N ultrapure HNO3 (BDH 

Aristar Plus, Poole Dorset, UK). Samples for Sb speciation were filtered to 0.45 |im and 

stabilized with 0.1M EDTA (BDH, VWR International, Radnor, PA) solution (1 mL for every 10 

mL), further outlined in Ilgen et al., 2014. All liquid samples were stored at 4°C in a refrigerator 

until analysis.

2.3.2.2 Bulk Soil Samples

Soil samples were collected from the pristine berms during construction in August 2010 

for soil characterization. Samples for Pb/Sb solid phase analysis were collected 1-2 times per 

summer. At the end of the sampling summer in 2015, triplicate soil samples were collected from 

each of the 12 berms for bulk metal analysis. Soil was collected using plastic scoopulas (30 

increments picked at random for each of the triplicate measurements) and Whirl-Pak sampling 

bags (Nasco, Salida, California) or plastic bags (Ziploc, Racine, WI). Samples were stored in a 

sample freezer (-18 °C) until analysis.
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2.3.2.3 Collection of Micro-focused Samples

Heterogeneous soil samples containing contaminated soil and bullet fragments were 

collected using plastic scoopulas and Buehler SamplKups (Buehler Company, Lake Bluff, 

Illinois). The cups were inserted into the surface of the soil until they were two-thirds full and a 

plastic scoopula was then inserted in order to retain the soil in the cup. This method was carried 

out for all samples in order to preserve bullet distribution within the soil and minimize 

disturbance. The samples were then transported back to a research lab at the University of Alaska 

Fairbanks and impregnated with 301-2FL low stress optical epoxy (Epoxy Technology EPO- 

TEK (Billerica, Massachusetts). Samples were allowed to cure for 3 days under vacuum and then 

removed from the SamplKups; the result was a circular soil plug approximately 3 cm tall and 2.5 

cm wide. Soil plugs were sliced into 0.5-1 mm sections using a rotating diamond saw (Buehler 

Company, Lake Bluff, Illinois) and then ground to approximately 250-500 microns thick using a 

rotating diamond plate (Buehler Company, Lake Bluff, Illinois). Slices were mounted to 25 x 25 

x 1 mm quartz microscope slides (Quartz Scientific, Fairport Harbor, OH) using Loctite gel 

epoxy (Loctite, Dusseldorf, Germany) and polished to approximately 50-250 microns thick using 

aluminum oxide powder (grit sizes 400, 570 and 1000) (Buehler Company, Lake Bluff, Illinois) 

or cerium oxide polishing compound (Ed Rouleau, Taylor Jewelry Company, Fairbanks, AK). 

After polishing, the thin sections were rinsed with ‘DI water’ (ultrapure water with a resistivity 

of 18.1 MQ, Barnstead Nanopure, Thermo Scientific, Waltham, MA) and wrapped in plastic 

wrap until analysis.
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2.3.3 Analysis

2.3.3.1 Berm Water Runoff

The pH of select field samples was analyzed using a Thermo Scientific Orion Refillable 

Ag/AgCl pH electrode (Thermo Scientific, Waltham, MA). The probe was calibrated with 4.01, 

7.00 and 10.01 buffer solutions (Hach Company, Loveland, Colorado) at 25°C with a calibration 

curve R 2 > 0.97.

Samples were analyzed for trace metal concentrations further, procedure outlined in 

section 1.3.3. Al, Ba, Ca, Cd, Co, K, Mg, Mn, Na, P, Pb, Sb, Sn, Te, Ti and Zn were analyzed in 

normal mode (no CRC). As, Cr, Cu and Ni were analyzed using CRC pressurized with He gas 

and Fe was analyzed using CRC pressurized with H 2 gas.

Samples for Sb speciation analysis were analyzed using liquid chromatography coupled 

to an ICP-MS (LC-ICP-MS). Five standards of 1-100 |ig/L Sb(III)(aq) and Sb(V)(aq) were 

prepared by dissolving SbCl3 (J.T. Baker, Center Valley, PA) and KSb(OH)6 (Electron 

Microscopy Sciences, Hatfield, PA) with DI water. The concentration of Sb in the standards was 

verified by ICP-MS analysis prior to LC analysis, analytical method of ICP-MS described 

previously. Antimony species (III/V) were separated in the samples using an IonPac AS12A 

4x200 mm Carbonate Eluent Anion-Exchange Column (Dionex, Sunnyvale, CA). The eluent 

solution consisted of ammonium bicarbonate and tartaric acid. Description of the analytical 

method for preparing EDTA preservation solution and eluent solution is outlined by the Centre 

of Expertise in Environmental Analysis of Quebec (2013). The injection volume was 100 |iL, 

flow rate was set at 1.5 mL/min and the radio frequency (RF) power was set to 1500 W. An ICP- 

MS standard of 50 |ig/L 1 1 5Indium was added as an internal standard to the mobile phase. The
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retention time for Sb(III) and Sb(V) was approximately 2.3 and 1.4 minutes, respectively. 

Antimony (121Sb) counts were divided by the internal standard (115In). The background was 

subtracted and the area under the resulting peaks was integrated using the Microcal Origin 6.0 

software package (Northhampton, MA).

2.3.3.2 Soils

Each bulk soil sample collected from the pristine and contaminated berms was dried at 

50°C for approximately 12 hours and sieved to <75 |im (< #200 sieve). Approximately 5-7 gram 

subsamples were mixed with 5-7 drops of a binder (polyvinyl alcohol) and pressed into a powder 

pellet using a hydraulic bottle jack at 20,000 psi. Each pellet was analyzed using a PANalytical 

(Almelo, The Netherlands) Axios four kW wavelength dispersive x-ray fluorescence 

spectrometer (XRF). The calibration standards for major elements were made using the geologic 

reference materials BIR-1, PCC-1, JA-2, JB-2, JP-1, JR-1, GXR-3, GXR-1, MRG-1, and SGR-1, 

as described in Ilgen et al., 2011. Samples and standards were analyzed in triplicate with 

corresponding errors reported and detection limits calculated based on analysis of the reference 

standards.

To identify crystalline phases present in the four types of pristine soil, randomly 

orientated dried (60°C for 2 hours) soil was analyzed by X-ray powder diffraction (XRD) using 

an X ’Pert PRO Material Research Diffractometer (PANalytical) equipped with a Cu (Ka X = 

1.54277 A) X-ray tube with a generator set at 45 kV and 40 mA. Scans were collected from 5 to 

65° 2 0  and a counting time of 180 s per point at 0.0125° step size. Diffraction patterns were 

processed using PANalytical’s X ’Pert HighScore Plus 2.2 software package and Bragg peaks

65



were matched by hand using the Indiana Geological Survey’s Table of Key Lines (Indiana 

University, Bloomington, Indiana).

Samples were analyzed for elemental distribution and speciation using x-ray fluorescence 

(XRF) mapping and x-ray absorption near edge spectroscopy (XANES) techniques, which were 

collected at beamline station 10-2 (bulk analysis), 2-3 (micro-focused analysis for Pb) and 14-3 

(micro-focused analysis for Sb) at the Stanford Synchrotron Radiation Lightsource (SSRL) in 

Menlo Park, California. Samples were mapped on BL10-2 for bulk elemental distribution and 

BL2-3 for micro-speciation with a 2.5 x 2.5 |im beam generated by Pt-coated Kirkpatrick-Baez 

mirrors (Xradia Inc.) with the SPEAR accelerator ring operating ~350-500 mA at 3.0 GeV. The 

incident energy was tuned to 13,055 eV, just above the Pb Lm absorption edge, using a Si (111) 

double crystal monochromator. Samples were rastered at a 45° incident angle to the incoming x- 

ray beam. A Si drift Vortex detector (SII Nano Technology, Northridge, CA) positioned 

perpendicular to the incident beam was used to monitor sample fluorescence. Dwell time and 

step size differed for each sample depending on the size of the area of interests. In general, the 

dwell time was set at 100 ms with a 40 |im step size for the bulk line and 5-10 |im step size and 

10-25 ms dwell time. Samples were selected to map at multiple energies (13,025 eV, 13,037 eV, 

13,041 eV, 13,045 eV and 13,053 eV) to investigate Pb oxidation state variability across an area 

in the sample. Micro-focused XANES data was collected from select Pb spots within the 

samples.

The incident energy on BL14-3 was tuned to 4,170 eV, just above the Sb Lm absorption 

edge, using a water-cooled Si (111) double crystal monochromator. The sample chamber was 

flushed with He gas to purge oxygen levels in the chamber to below 2% O2. Samples were 

scanned above (4,150 eV) and below (4,100 eV) the Sb Lm absorption edge to investigate the x-
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ray overlaps with Ca in the samples. Samples were rastered at a 45° incident angle to the 

incoming x-ray beam and the fluorescence signal was detected using a Si drift Vortex detector 

(SII Nano Technology, Northridge, CA). Step size and dwell time was set at 5-10 |im and 10-25 

ms, respectively. Select samples were selected to map at multiple energies (4,120 eV, 4,142 eV, 

4,148 eV and 4,170 eV) to investigate Sb oxidation state variability across an area in the sample. 

Micro-focused XANES data was collected from select Sb spots within the samples.

The XRF maps and XANES spectra were analyzed using the Microanalysis Toolkit 

(Webb, 2005). All spectra and model compounds were calibrated to the first inflection of the 

absorption edge of a Pb and Sb foil standard at 13,035 eV and 4132 eV, respectively, which were 

collected at the beginning and end of the beam run and periodically throughout the run as a 

check for monochromater drift. Spectra were corrected for deadtime (if needed) and the 

background was subtracted, averaged and normalized to a unit edge step using the SIXPACK 

software package (Webb, 2005). The XANES spectra were compared to standard and model 

compounds using linear combination fitting (LCF). Data processing is described in more detail in 

Kelly et al., (2008). Antimony standards included Sb foil (provided by SSRL standard reference 

foils), metallic Sb powder (99.999% metallic Sb powder, ~200 mesh size; Alfa Aesar, Ward Hill, 

MA), Sb2 O3 (J.T. Baker, Center Valley, PA), Sb2 O5 (Alfa Aesar, Ward Hill, MA), NaSb(OH)6 

(Alfa Aesar, Ward Hill, MA), KSb(OH)6 (Electron Microscopy Sciences, Hatfield, PA) and 

lewisite. Lead standards included Pb foil (provided by SSRL standard reference foils), zero- 

valent Pb (analysis of a fresh, unfired bullet alloyed core), PbO (Litharge, Alfa Aesar, Haverhill, 

MA), PbCO3 (Alfa Aesar, Haverhill, MA), hydrocerrusite (normalized absorption provided by 

Hayes et al., 2012) and Pb(II) sorption model compound with synthesized Fe oxides. The Pb(II) 

sorption compound was prepared by mixing 40 mL of a 0.1 M solution of Pb(NO3 )2 (Alfa Aesar,
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Haverhill, MA) with 1 g of 2-line ferrihydrite (pH = 8.06) and adjusting the pH to 6.5 using 1 M 

KOH (~2 drops). The preparation for ferrihydrite is outlined in Schwertmann and Cornell,

(2007). The slurry was rotated for 24 hours, centrifuged at 6000 rpm for 30 minutes and the solid 

and supernatant liquid was separated by gravity filtration. The solid was air dried, stored in a 

sealed container (Nalgene, Fisher Scientific, Waltham, MA) and analyzed within 6 days from 

preparation.

2.3.3.3 Statistical Analy sis

For data analysis, the statistical package JMP Pro 11 (JMP, Version 11, SAS Institute 

Inc., Cary, NC) was used to determine differences and variability for Pb and Sb as a function of 

time and soil type. One-way ANOVA was determined using bivariate analysis with a 

significance level of p < 0.05. To determine which means were different, student’s t test was 

used as a post hoc multiple comparison technique. Levels (A, B, C, D, E, etc.) were reported to 

indicate statistical significance and levels not connected by the same letter were determined to be 

not significantly different at p < 0.05.

2.4 Results

2.4.1 Pristine Soil and Bullet Characterization

Pristine samples of the four soil types (silt loam, sand, loamy sand and sandy loam) 

before construction of the berms were analyzed for soil texture, bulk elements, background 

aqueous and solid phase Pb/Sb concentrations and mineral phases. Tabulated results are shown 

in Table 2.1 and x-ray diffraction results can be found in Appendix A, Figure 2.13. The soil pHs
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(1g to 1mL DI water) range from 5.34 for the silt loam end member to 8.38 for the sand end 

member. The ‘mixed’ soil types have soil pH values of 5.66 for the loamy sand and 6.75 for the 

sandy loam. The silt loam end member can be characterized as having greater surface area, 

higher organic matter content and a higher cation exchange capacity (CEC) than the sand end 

member (Table 2.1). The sand end member contains higher concentrations of Ca, Fe, Si, As, Cu, 

Mn, Ni, Pb, Sb, Sn, Sr, Ti and Zn, while the silt loam end member contains higher concentrations 

of Al and Ba (Table 2.1). The soil types were below detection limit for Pb(aq), but contain 

‘background’ Sb(aq), ranging from 1.1 to 2.4 |ig/L. Major mineral phases in common between the 

soil types are quartz (SiO2) and plagioclase (Na,Ca)(Si,Al)4O8. Chlorite 

(Mg,Fe,Li)6AlSi3O10(OH)8 and mica/illite (KAl3Si3O10(OH)2 were found exclusively in silt 

loam-containing soils.

Information on the lot of bullets used in the test berm experiment is presented in Table 

2.2. Data was collected and provided by Defense Ammunition Center (DAC) -  Munitions Items 

Disposition Action System (MIDAS). The bullet jacket is comprised primarily of Cu and Zn, to a 

lesser extent. Trace amounts of Pb and Fe are present. The bullet core consists of Fe with trace 

amounts of Mn, C and S. The bullet slug is 99% Pb and 1% Sb, accounting for approximately 

31.7 g Pb and 0.3 g Sb per bullet deposited into the test berms.

2.4.2 Total Pb and Sb Concentrations in Berm Soils

XRF analysis of the pristine and ‘fired’ (contaminated) berms for the different soil types 

are shown in Table 2.3. These results show that the solid phase concentrations of Pb, Sb, Cu, Sn 

and Zn are significantly elevated in the contaminated berm soils, which was expected 

considering the initial composition of the unfired bullets. Concentrations of Ni were found to be

69



relatively constant between the berm types. Concentrations of Pb are 50 times higher than Sb in 

the contaminated soils, on average (Table 2.3). Copper concentrations were the second highest to 

Pb, then Sb, Zn and Sn.

The pristine soil containing sand had higher concentrations of Pb, Sb, Cu, Sn and Zn than 

the soils containing primarily silt loam. For the contaminated soils, the sand had higher 

concentrations of Pb, Sb, Cu, Sn and Zn. The degree to which the bullets were fragmented in the 

sand soil was greater than in the soils containing loam, which could have led to a higher 

percentage of the bullets to be sampled as part of the soil fraction. Since the sampling procedure 

for the contaminated berms was careful to not include any large bullet fragments, the higher 

concentrations of metals in the sand containing soils is likely a consequence of the greater 

fragmentation capacity of the large particles in sand. The sand containing soils do naturally have 

higher concentrations of Pb, Sb, Cu, Sn and Zn (Table 2.1), but that alone does not explain the 

large difference between soil type concentrations seen in the contaminated berms. Comparing the 

duplicate berms showed higher concentrations of Pb, Sb, Cu, Sn and Zn in the un-amended 

berms (6, 8, 10, 12) than in the Fe amended berms (5, 7, 9, 11). The only exception is for Sb in 

the sand duplicate where Sb concentrations are higher in the amended berm (5) than un-amended 

(6). For the most part the differences are small, particularly for Sb, Sn and Zn, but for Pb and Cu 

the differences are more substantial.

2.4.3 Total Pb and Sb Concentrations in Berm Runoff

Trace metal analysis of the berm water runoff highlights key differences in solution 

behavior between Pb and Sb as a function of soil type. Box plots showing the distribution of Pb 

and Sb concentrations over the course of 4 sampling summers are shown in Figure 2.2. Sampling
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summer 2015 was not included for comparison because Fe amendments were added to a subset 

of the berm soil types. Statistically significant differences (p <0.05) in the distributions are 

indicated with lettered levels (A, B, C for Pb and A, B, C, D, E for Sb). Levels not connected by 

the same letter are significantly different at p <0.05. The highest concentrations of Sb are found 

in the sand runoff, whereas the highest concentrations of Pb are found in the loamy sand runoff. 

In general, Sb concentrations are higher than Pb for the sand and sandy loam runoff. 

Concentrations of Pb were not significantly different (p < 0.05) in the runoff from the sand and 

silt loam soils. Pb concentrations did vary significantly in the runoff from the loamy sand 

duplicate berms, with duplicate ‘b ’ containing the highest concentrations of Pb over four years 

(Figure 2.2). The other duplicate berm soil types for Pb besides loamy sand did not vary 

significantly. Concentrations of Sb varied significantly between end member soil types (sand 

versus silt loam). For both Pb and Sb, the silt loam soil runoff contained the lowest 

concentrations, exhibiting a greater retention capacity (Figure 2.2).

In relation to weathering time, Pb and Sb concentrations varied from 2011 to 2015. Box 

plots showing concentrations of Pb as a function of summer sampling season 1 (2011), 2 (2012),

3 (2013), 4 (2014) and Fe versus control (August 22, 2016 to end of sampling 2015) is shown in 

Figure 2.3 and Figure 2.4 for Sb. For Pb, the presence of sand in the berm soils corresponded to a 

greater amount of significantly different sampling years, potentially indicating sandy soil creates 

higher variability in aqueous Pb concentrations leaching from bullets. While there were spikes in 

concentrations for the silt loam draining berms, overall the majority of the data and the means 

were not significantly different over the course of 5 years (Figure 2.3). For Sb, sand soil runoff 

contained the highest concentrations annually, but did not show significant variability between 

years (Figure 2.4). Only the sandy loam soil showed significantly different data sets comparing
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2011 to 2015. Similar to Pb, the silt loam runoff contained generally low concentrations of Sb 

and showed little variability over the course of 5 years, except for 2012 to 2013 in Berm 12 

(Figure 2.4h).

The FeCl2/CaCO3 amendment was added to a subset of the berms (5, 7, 9, and 11) at the 

end of summer 2014 in order to study Pb and Sb retention, results are shown for Pb in Figure 2.3 

a, c, e and g in comparison to the control berms that were not amended (Figure 2.3 b, d, f, h) and 

for Sb in Figure 2.4 a, c, e and g in comparison to the control berms that were not amended 

(Figure 2.4 b, d, f, h). The Fe amendment had little effect on Pb immobilization in berm soil 

runoff, except in the sand draining soils where Pb distributions were significantly lower in the 

control sand berm (un-amended) than the Fe amended berm (Figure 2.3). The Fe versus ‘ctrl’ 

distributions are marked (*) if  distributions are significantly different at p <0.05. For the 

remainder of the berms, the runoff was not significantly different at p <0.05 comparing the 

amended and un-amended berms. Antimony, however, behaves much differently than Pb after 

the Fe addition and is significantly immobilized in all the soil types except the silt loam (Figure 

2.4, g and h), where concentrations of Sb were already low (Figure 2.2). In addition, the silt loam 

draining Berm 11 contained little runoff during 2015 and sampling was limited.

2.4.4 Sb Speciation

The speciation of aqueous Sb was found to be different between the sand and silt loam 

soil types as a function time. The speciation of mobile Sb species was investigated for the soil 

types of the test berms for years 1-2, results are shown in Figure 2.5b and c, with the retention 

times for Sb standards of 100 |ig/L Sb(III), Sb(V) and DI water are shown in Figure 2.5a. 

Analysis of the sand and sandy loam berm runoff in 2011 showed the sole presence of Sb(V).
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There is detectable Sb(III) in the loamy sand runoff of one of the duplicate sets of berms (Figure 

2.5b) and was quantified to be 35 |ig/L Sb(III). This is the only observation of Sb(III) in the 

runoff during the 5 year monitoring, in the high loam content berms after less than 1 year of 

weathering. All other Sb samples tested were found to be fully oxidized. The silt loam-draining 

berms were not quantified for Sb speciation due to the overall low sample volume collected from 

the berm runoff and the low concentrations of total Sb, however, we expect similar behavior in 

that Sb(III) is the initial aqueous oxidation product. At the beginning of summer 2 (2012) we 

analyzed the test berms again, but found only fully oxidized Sb in 2012 for all soil types (Figure 

2.5c). Oxidation of Sb was expected to be fast, as determined by Ilgen et al., 2014, and 

sequential oxidation is rarely observed in shooting range berms due to the lack of Sb(III) stability 

in oxidizing soil conditions and the usually long reaction time shooting range berms have before 

analysis.

The speciation of Sb in the soil fraction was investigated for all test berm soil types as a 

function of time using XRF mapping and Sb Lm-edge |i-XANES spot analysis and is presented 

in Figure 2.6. Corresponding linear combination fitting results are shown in Table 2.4. Zero- 

valent Sb occurred within the bullet core and Sb(V) occurred in the soil fraction in the silt loam 

soil type, adjacent to the bullet core (XRF map not shown). The normalized absorption edge 

energies (Figure 2.6) show differences between the zerovalent Sb absorption (4132.0 eV), 

trivalent Sb oxide absorption (4133.4 eV) and pentavalent Sb oxide absorption (4143.1 eV). 

Spectra were compared to a variety of Sb(III) and Sb(V) compounds with metallic Sb and Sb2O5 

contributing to the best fit. Only the silt loam-containing soil sample is shown due to the higher 

content sand soils showing little accumulation of Sb in the soil fraction making collection of 

spectra challenging and with high signal to noise ratio. Instead, Sb was present as a diffuse signal
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throughout the soil. Antimony is present in bullets in low percentages and has been shown to 

partition to soil solution to a greater extent than Pb in all systems (Figure 2.2), leading to low 

concentrations for XANES analysis, particularly for sand-containing soils. Furthermore, studying 

Sb Lin-edge in soil samples is difficult due to abundance of Ca typically found in natural soil 

samples. The Sb LIII-edge is at 4132.0 eV, whereas the Ca K-edge is at 4038.5 eV. The emission 

line for Sb-La1 is 3603.8 eV and Ca-Ka1 is 3692.3 eV. This difference in less than 100 eV leads 

to some overlap in the fluorescence channel data. As a result, we mapped above and below the 

Sb LIII-edge and used filtering and masking techniques within the program MicroToolKit (Webb,

2005) in an effort to separate Sb and Ca fluorescence overlap. Using these methods, 

differentiating between zero-valent Sb and Sb(V) was achieved for soil samples (Figure 2.6).

2.4.5 Pb Speciation

The Pb speciation was investigated for all test berm soil types as a function of time using 

XRF and Pb LIII-edge |i-XANES spot analysis. Overall, 90 samples were analyzed from the four 

types of soil as a function of year from 2011 to 2014. The results are shown in Figure 2.7 with 

LCF parameters presented in Table 2.5. Overall, the Pb speciation in the soil fractions consisted 

primarily of metallic Pb, litharge, cerussite, hydrocerussite and Pb sorbed to Fe(III) oxides when 

comparing the berm samples to various standards and model compounds. Pb LIII-edge |i-XANES 

spectra (Figure 2.7) and fitting parameters (Table 2.5) are shown for samples with the best fits 

with careful attention to ensure the samples presented are representative, as a whole.

Fired bullets are not uniformly fragmented in soil often resulting in highly heterogeneous 

distributions of metals. Lead and Fe distribution are shown for samples collected after two years 

of weathering in Figure 2.8. Metallic Pb was detected in each soil type throughout the sampling
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years and remained a large fraction of the total Pb in the samples. In addition to metallic Pb, the 

primary Pb products were litharge, cerussite and hydrocerussite for the first two summer seasons 

(2011-2012) (Figure 2.8). These species occurred primarily as a crust around the Pb alloy or 

present as Pb hotspots throughout the soil (Figure 2.8). After two years, the presence of Pb 

sorbed species was detected and the best fits of many soil samples included contributions of 

Pb(II) sorbed to Fe(III) oxides (Table 2.5). While the majority of the spots for years 3 and 4 

include contributions from sorbed species, there are also spots that are characterized differently. 

There are distributions that only contain metallic Pb and are either part of the bulk metal alloy or 

present in small (~1-50 |im) highly concentrated globular areas, similar to the initial weathering 

samples. This highlights the heterogeneity of bullet samples and emphasizes the fact that metal 

release from the weathering of bullets is discontinuous. After four years reaction time, there is 

still a large percentage of metallic Pb present, but major Pb phases consists of litharge, cerussite, 

hydrocerussite and Pb(II) sorbed.

2.5 Discussion

2.5.1 Evolution of Bullet Corrosion Products as a Function of Time

The weathering of Pb in the bullet alloy exhibits distinct transformation stages as a

function of time. The dominant Pb oxidation products within 2 years of weathering appear to be

PbO, cerussite and hydrocerrusite, which tend to form as a crust around the surface of the

fragmented bullet alloy. These species can also occur with Pb0 hotspots that are separated from

the parent bullet and heterogeneously dispersed within the soil fraction (Figure 2.8). The overall

occurrences and average percent contributions of each detected Pb corrosion product is shown in
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Table 2.6. For all soil types within the 2 years, Pb0 and cerrusite yield the highest average 

percentage of Pb species. After 3 years weathering time, sorbed Pb species were detected as a 

large percentage of the overall composition of the corrosion products. The appearance of 

sorption products after 3 years weathering time is likely an indication that oxidation and 

weathering reactions are kinetically limited and it takes several years for the sorbed species to 

accumulate to detectable levels for the analytical method. The XANES spectra of sorbed Pb 

(Figure 2.7) does not have many distinctive features and could potentially be present at low 

concentrations during the first two years and not detected using Pb LIII XANES methods. Based 

on these findings, a summary of the overall dominant Pb weathering corrosion stages are 

summarized in Figure 2.9. Upon exposure to air and water, the fragmented bullet alloy initially 

oxidizes to a combination of PbO, cerussite and hydrocerussite, with cerussite being the

dominant weathering product from 0-2 years. Dissolution of PbO, cerussite and hydrocerussite

2+
releases Pb into soil solution. After 3 years weathering time, sorption corrosion products are

2+
detectable by XANES spectroscopy with hydrated Pb bound to the surface of Fe(III) oxides via 

sorption processes. After 4 years weathering time, cerussite and Pb sorbed to the surface of 

Fe(III) oxides are the dominant solid-phase corrosion products.

The initial detection and quantification of Sb(III)(aq) in the high content loam berm is a 

novel result, revealing information about the overall oxidation kinetics of Sb0 -  Sb(III) -  Sb(V) 

in shooting range soil runoff during the initial stages. While colder temperatures found near the 

Arctic have been shown to slow mineral weathering reaction rates (Langman et al., 2014), 

chemical interactions do not entirely cease to occur during the winter months (Mikan et al.,

2002), particularly because the sun is still active and freeze/thaw periods do occur (Barker et al., 

2014). Initial oxidation of Sb0 to Sb(OH)3(aq) occurred within 9 months in the loamy sand soil
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(Figure 2.10). While this study did not detect any Sb(III) solid formation, based on the findings 

in Chapter 3 from an older shooting range berm, we anticipate Sb(III) is formed as a transient 

product, leading to the release of Sb(OH)3 in solution. Once oxidized, Sb(OH)3(aq) is released into 

solution and in the higher content sand berms, oxidized within 9 months. In the higher content 

loam berms, both oxidation states exist initially in runoff and are fully oxidized on the order of 1­

2 years.

2.5.2 Transport of Pb and Sb

Elemental correlations in the berm water runoff indicate that both Pb and Sb behave 

similarly in the higher silt loam content berms, with R-squared values of the linear regression 

averaging to 0.67 (Figure 2.11). There was no correlation (R <0.50) found in their behavior in 

the higher sand content berms. Element correlations and linear regression R-squared values are 

shown in Table 2.7 for individual elements and matching pairs. Both Pb and Sb were also shown 

to behave similarly to Cu in certain soil types, likely sourced from zero valent metal oxidation 

from bullet weathering. For Sb, the correlations with Cu were found in all the soil types and 5 

out of the 8 contaminated berms with an R-squared value average of 0.57, while Pb and Cu 

correlations were only found in the 100% silt loam (berm 11) with an R-squared value of 0.84 

(Table 2.7). This result was anticipated considering the abundance of zero-valent Pb, Sb and Cu 

deposited in the test berms and the likelihood the metals would mobilize upon fragmentation. In 

addition, Sb was found to behave similarly to Ca and to a lesser extent Fe and K, potentially 

indicative of colloidal association and transport (Figure 2.11). Associations with other positively 

charged cations investigated (Na, K, Mg) were not found, but this could be primarily because 

concentrations were too low.
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Concentrations of Pb and Sb in 200 and 450 nm size fractions were investigated in order 

to compare this study to other shooting range studies that have determined colloids are a major 

component in the overall transport of Pb and Sb (Yin et al., 2010; Klitzke et al., 2012). 

Concentrations of Pb and Sb were unchanged between the two different size fractions. However, 

concentrations of Al, Mn, Fe, Ba, Zn were consistently lower in the 200 nm filter samples than in 

the 450 nm filter samples indicating the presence of nano-sized particles (between 200 and 450 

nm) in the berm water runoff (data not shown). The majority of the particle fractions (200-450 

nm) for all the test berms (1-12) consisted of Al (27%), Fe (33%) and Ba (63%) and to a lesser 

extent Mn (7%) and Zn (18%). Colloidal transport of Pb and Sb by particles ranging from 200­

450 nm was not detected. The weak correlations between Sb and Fe (Table 2.7) may be a 

product of colloidal transport of Fe particles <200 nm.

2.5.3 Natural Versus Artificial Attenuation of Metals in Soil

Soil type plays a significant role in the overall retention of the deposited metals in our 

systems. Average concentrations of both Pb and Sb were relatively low in the runoff from the silt 

berms in comparison to the sand berms. Furthermore, concentrations were also considerably less 

variable in the silt loam runoff (besides a spike in Pb concentrations in Berm 11 in 2014), 

representing a relatively low and steady leaching rate. Both soils have similar elemental 

concentrations (excluding Mn fraction; Table 2.1). However, the silt loam soil also has triple the 

surface area and 30 times the organic matter (L.O.I.; Table 2.1). The higher surface area, low 

particle size and high organic content of the soil fraction translate to minimal transport of water 

from the berm to the runoff lysimeter and a greater retention capacity for moisture. The silt loam 

soil also requires a greater amount of water (precipitation) to saturate the berms. During 

sampling after a large rain event, the silt loam berm lysimeters were often completely dry in
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comparison to the full sand berm lysimeters. Transport of water out of the loam systems is small 

in comparison to the sand (Appendix A, Figure 2.15). This likely plays a role in the overall 

flushing out of metals from the berms. The loam berms retained moisture and retained Pb and Sb 

to a greater extent than the sand berms (Appendix A, Figure 2.15). The variability in the 

concentrations of Pb and Sb in the runoff from the sand-containing berms is indicative of the 

permeability of the sand. While pH likely played a role in precipitating Pb in the 100% sand 

system, concentrations were still on average higher than the loam berm, highlighting the natural 

ability for silt loam soil type to immobilize Pb and Sb in shooting range systems.

The Fe amendment (FeCl2 + CaCO3 buffer) added in 2014 represents a cost-effective, 

easy-to-apply solution to minimize Pb and Sb migration off-site. The addition immobilized Sb by 

63% compared to the control (no addition), on average, except in the 100% silt loam berms 

where the addition made little impact in the overall immobilization of Sb. For Pb, the Fe addition 

was effective at immobilizing Pb in the mixed soils, but not in the 100% end members, where Pb 

was more mobilized, initially. The total element concentrations for Pb, Sb, Cu, Ni and Zn are 

shown in Table 2.8 with the date of the Fe addition highlighted (August 22, 2014). The runoff 

from the 100% silt loam -  Fe amended berm does not have data for August 22, 2014 because 

there was no runoff to be collected. The runoff from the addition was entirely retained by the 

soil. In the mixed berms, concentrations of Pb were 44% lower as a result of the Fe amendment, 

on average. While the Fe amendment proved excellent at retaining Sb, it only moderately 

retained Pb. Furthermore, the application of the Fe amendment to the actual bullet pocket 

initially mobilized certain elements (Pb, Ni, Cu, and Zn; Table 2.8) due to an instantaneous drop 

in pH caused by Fe hydrolysis in solution. The CaCO3 component was added in tandem in order
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to buffer the pH, but in a subset of the berms there was still a measurable drop in pH. The pH 

drop had no effect on Sb mobility.

2.5.4 Landscape-scale Shooting Range Design and Remediation Strategies

Designing a shooting range and implementing remediation strategies for DoD land 

should be tackled in parallel and consist of 3 major consideration points. The first major 

consideration is whether the berms will be natural or man-made. If the berms are natural then 

they consist of a natural hillside or slope, which is fired upon. If the berms are man-made then 

they primarily consist of disrupted soil that has been manually moved to a target location. This 

consideration will affect whether or not there can be any separation between pristine ground and 

the contaminated berm. The second major consideration is what type of soil comprises the berm 

or hillside. This will affect the overall speciation and mobility of the target contaminant species 

in bullets (Pb and Sb). The third major consideration is how to apply or implement a remediation 

strategy that is effective for both Pb and Sb, which are the major contaminants of interest. The 

remediation strategy must be easily applied, cost-effective and target both Pb and Sb species, 

which were shown in this study to be variable in oxidation state and variable in the local 

structure. All of which affect the potential for off-site migration of Pb and Sb.

Based on the findings in this study, Figure 2.12 presents a schematic for the landscape- 

scale design of shooting range berms and remediation strategies for DoD land managers. This 

recommendation is based on limiting both Pb and Sb migration in runoff while being cost- 

effective and easy to implement. The design starts with silt loam soil loaded onto an 

impenetrable waterproof geoliner and the geoliner is funneled into a trough. If a natural hillside 

is used instead of a berm then the geoliner cannot be utilized. This is not as ideal considering
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there will be no separation between the pristine and contaminated soils, but this study did find 

that there was minimal downward leaching into the soil fraction and overland runoff produced 

the majority of the Pb and Sb concentrations. Inside the trough, a mixture of Fe(OH)3 -  coated 

sand. The Fe is already oxidized and precipitated, therefore dramatic fluctuations in pH should 

not be a concern. The coated sand increases particle size and porosity, creating a higher degree of 

infiltration and interaction with the runoff. Additional treatments over time will most likely be 

required and can be added on a monthly or yearly basis. While the Fe addition directly to the soil 

was very effective for Sb immobilization, it did not produce the same results for Pb 

immobilization (Table 2.8). The silt loam soil type was naturally effective at immobilizing both 

Pb and Sb over sand. While the silt loam soil did stabilize Sb(III) initially, which has been shown 

to be more toxic than Sb(V), it rapidly oxidized to Sb(V) in solution. Given the transitory nature 

of Sb(III) in shooting range soils, the overall benefits of using silt loam for construction 

outweigh the concerns.

2.6 Conclusion

The overall setup and design of this study made it possible to observe initial 

transformation pathways and corrosion products of Pb and Sb in newly constructed target berms. 

The initial products formed have often been overlooked in previous studies due to a focus on 

older, heavily used shooting range samples. Liquid speciation analysis confirms the presence of 

Sb(III)(aq) in the berm runoff of the high content loam mixed soil, indicating Sb(III) is likely the 

initial oxidation product formed from the weathering of Sb0 in the alloy. Solid-phase analysis of 

the shooting range soil show Sb(V) dominates in the soil fraction and zero-valent Sb in the bullet
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alloy. Distribution of Pb in the samples and speciation analysis showed metallic Pb and cerussite 

as the dominant corrosion products after 2 years and revealed a time-dependence unique to 

sorption processes, overall.

In addition, the aqueous concentrations of Sb were determined to be greater than Pb in all 

the soil types indicating Sb is more mobile despite the fact that Sb is present ~2 orders of 

magnitude less in bullets than Pb. The highest concentrations of Sb were found in the sand soil 

runoff and the highest concentrations of Pb were found in the mixed soil runoff. For both 

species, the 100% silt loam soil runoff contained the lowest concentrations, highlighting the 

overall natural effectiveness silt loam soil has on metal(loid) retention. Correlations (R > 0.6) 

existed between Pb and Sb, Pb/Sb with Cu, Sb with Ca, and weak correlations (R < 0.6) existed 

between Sb and Fe and Sb and K in the berm runoff. Information from this study will be useful 

to understanding the overall mobility and speciation of Pb and Sb with respect to soil properties 

and reaction time in shooting range soils.

This study establishes an overall procedure for designing shooting ranges and 

implementing remediation strategies in parallel that is cost effective, easy to implement and 

effective at immobilizing both Pb and Sb. The design takes into account natural hillsides versus 

man-made berms that are often used to construct shooting ranges. One key difference in this 

study and other shooting range remediation studies is the addition of the amendment to only the 

runoff instead of the bullet pocket/soil in order to minimize mobilization of one element over the 

other since Pb and Sb behave differently in soil. Instead, the berms are constructed of 100% silt 

loam type soil, which this study showed was effective at naturally retaining Pb and Sb and 

minimizing local migration. Overall, this study establishes an initial baseline of Pb and Sb 

speciation products from deposition to 5 years in the future, which has been often overlooked by
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similar studies. In particular, this study offers a baseline of information for shooting ranges in 

Alaska. In addition, this research offers a suggestion for safely building shooting ranges that 

have minimal introduction of Pb and Sb into the surrounding environment.
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Figure 2.1 Site layout for test berms

Site layout for the test berms on Donnelly Training Area (DTA) outside of Delta Junction, 

Alaska. Berms are comprised of four types of soil and are designated as contaminated, Berms 5­

12 and pristine, Berms 1-4. Expanded view of water runoff funneling is shown on bottom right.
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Figure 2.2 Box plot diagram of total Pb and Sb

Box plot diagram of total Pb (left half) and Sb (right half) concentrations from 2011 to 2014 

(prior to Fe addition) as a function of soil type (sand, sandy loam, loamy sand and silt loam) for 

the duplicate contaminated test berms (a) refers to berms 5, 7, 9, 11 and (b) refers to berms 6, 8, 

10, 12. Gray lines indicate median values during the 4 years. The gray boxes depict the lower 

(25th percentile) and upper (75th percentile) quartiles. A, B, C, D, E indicates levels that are 

statistically different at p <0.05. Levels are not comparable between Pb and Sb.
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Figure 2.3 Pb concentrations in berm runoff

Pb concentrations in berm runoff as a function of soil type for the duplicate berms (a) 5, (b) 6, (c) 

7, (d) 8 (e) 9, (f) 10, (g) 11 and (h) 12. ‘Fe’ indicates amended berms and ‘ctrl’ indicates un­

amended berms. A, B, C indicate levels that are statistically different at p <0.05, but are not 

comparable between duplicate soil types. ‘*’ signifies statistical differences between Pb 

distributions between the Fe versus control berm runoff. Blue circle indicates there was initial

spike in Pb concentrations in the immediate runoff from the Fe addition that did not reach the 

sample collector (4398.0 ± 14.9 and 1177.0 ± 9.1 |ig/L for (c) and (d).
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Figure 2.4 Sb concentrations in berm runoff

Sb concentrations in berm runoff as a function of soil type for the duplicate berms (a) 5, (b) 6, (c) 

7, (d) 8 (e) 9, (f) 10, (g) 11 and (h) 12. ‘Fe’ indicates amended berms and ‘ctrl’ indicates un­

amended berms. A, B, C indicate levels that are statistically different at p <0.05, but are not 

comparable between duplicate soil types. ‘*’ signifies statistical differences between Sb 

distributions between the Fe versus control berm runoff.
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Figure 2.5 Speciation of Sb

Speciation for Sb (III)/(V) in (a) standards and berm water runoff collected (b) summer 2011 and 

(c) summer 2012 analyzed by LC-ICP-MS.
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Figure 2.6 Normalized Sb-LIII ^-XANES

Normalized Sb-Lm ^-XANES spectra for the silt loam berm 12 soil end member. Sample data is 

in black lines with corresponding LCF plotted in gray circles. Standards are black lines without 

any overlying gray circles. Dotted line corresponds to the absorption edge for Sb-Lm  edge 

(4132.0 eV).
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Figure 2.7 Normalized Pb-LIII ^-XANES

Normalized Pb-Lm ^-XANES for the end member test berms (5, 12) over 4 years. Sample data is 

in black lines with corresponding LCF plotted in gray circles. Standards are in black with no fits 

present. Pb*Ferri corresponds to Pb sorption product with synthesized Fe(III) oxides.
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Figure 2.8 XRF maps of bullets after 2 years weathering

XRF maps showing distributions of Pb (red) and Fe (green) in thin sections collected from the 

(a) sand and (b) sandy loam test berms in the summer of 2012. Thin section area is 25x25 mm 

and scale bar units are in |im. Pb0 = metallic Pb, L = litharge, C = cerussite, H = hydrocerussite.
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Figure 2.9 Simplified weathering pathways for Pb

Schematic of the overall dominant corrosion stages of Pb weathering from a fragmented 5.56 

mm bullet. XANES analysis showed the dominance of Pb adsorption to the surface of 

Fe(III)oxides as a central corrosion product.
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Figure 2.10 Simplified stages of initial Sb oxidation

Schematic of the initial stages of Sb oxidation from a fragmented 5.56 mm bullet as a function of 

reaction time. Oxidation of Sb0 to Sb(III)(aq) occurs within 9 months in Alaska loamy sand soil 

and complete oxidation to Sb(V)(aq) occurs within 1-2 years.
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Figure 2.11 Correlation plots of Pb and Sb

Correlation plots of Pb (top) with Cu (Berm 11) and Sb (Berm 10) in the shooting range berm 

runoff and Sb (bottom) with Cu (Berm 9), Fe (Berm 5), Ca (Berm 9) and K (Berm 5).
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Figure 2.12 Landscape-scale shooting range design

Schematic of landscape-scale shooting range design and remediation strategy to limit the overall 

mobility of Pb and Sb off-site. Berms are constructed with silt loam soil on top of an 

impenetrable, waterproof geoliner. Using the geoliner, berm runoff is funneled into a man-made 

grate on top of a trough. The trough is sprinkled with Fe(OH)3/CaCO3 buffer once every month 

(depending on precipitation).
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Table 2.1 Pristine soil characterization

Soil characterization for the four types of soil used to construct the test berms.

£oii Ciaziifteatictt Silt Loam Sand Ixxbtq' sand Samfy loarn

Soil Tsxticrs
% s-an-: 26 0.3 96 2.9 52 1.6 74 2.2

%atH 71 2.1 2.0 1.0 46 1.4 24 0.7
3.0 1.0 2.0 1.0 2.0 0.1 2.0 0.1

surface ar=-a (m-.'Ej 3.2 0.10 1.9 0.10 3.3 0.10 3.7 0.10

Chsmisal Charac-ta'iztw:
soil pH 3.3 0.27 3.4 0.42 5.7 0.23 6.3 0.34

OrEant-; matter % (L. O.I ] 3.3 ! 0.1 / 3.2 i 1.3 !
Xcn-purs5itl=cr?ajii-: marten (pptti 12 ! 3 0 / 16 ! 12 !

Cksmic-ai Cuanttfisoticn
A1203(%] 15.0 0.0100 13.6 0.0100 14.3 0.0100 14.3 0.0100

G O  (54] 1.73 0.0100 2.41 0.0100 1.99 0.0100 2.11 0.0100
Fa203 C%] 3.73 0.0100 593 0.0100 3.93 0.0100 5.95 0.0100

si0 2  (%; 33.9 0.0200 62.1 0 0 2 0 C 56.3 0.0200 5 6 0 0.0200
Ai (hie ks;j 15.3 1.33 13.2 1.92 20.1 1.32 21.0 1.34
B a (hie k ?0 331 3.23 779 3.35 3C3 3.25 331 3.29
Cu (illE 1ie;J 26.3 0.527 54.3 0 602 29.6 0.533 32.2 0.541

Mil (iu? kg] 599 3.00 1020 3.34 636 3.14 639 3.16
Xi (in? kg] 34.2 0.530 33.3 0.573 36.2 0.533 36.9 0.546
Pb (hie kg] 19.3 0.666 3 0 0 0.724 25.4 0.673 20.4 0.663
Sb (iue ks;) bid 6.37 1.57 6.29 1.52 6.56 1.52
En (iue ks;) 3.30 1.06 13.4 1.11 3.30 1.06 7.37 1.06
Er (iue ks;) 193 0.296 204 0.313 203 0.301 202 0.302

Ti.02 [hie I5 ] 9650 7.22 10700 7.37 9630 7.19 9620 7.22
W (hie ks;) 6.30 1.20 6.60 1.23 3.43 1.21 6.74 1.21
Zn (mg kg] 69.3 0.372 1—• O

 1—i 0.413 72.7 0.375 7 4 0 0.377

3 a s ::5roun£lAgusoiu; Cons.
sb teL .; 2.0 0.10 2.4 0.10

'“I
1—1 0.10 1.4 0.10

Pbfus/L] bid i bid / bid ! bid !
T =  error n-ct quint n is i
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Table 2.2 Pristine bullet characterization

Bullet chemical composition provided by Defense Ammunition Center (DAC) -  Munitions Items 

Disposition Action System (MIDAS).

Jacket Mass (g)
Cu 17.82
Zn 1.96
Pb 0.01
Fe 0.01

Core
Fe 9.80
Mn 0.08
C 0.05
S 0.01

Slug
Pb
Sb

31.68
0.32
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Total metal concentrations in the 12 test berms collected at the end of summer 2015, analyzed by 

XRF. Pristine soil concentrations showed for comparison. LLD = lower limit of detection.

Table 2.3 Total metal concentrations in test berms

Beim Soil type Status Pb (me'ks) +/- Sb (m&'ks) +/- Cu (mg/kg) +/- Ni Cm g/kg) +/- Sn (mg/kg) +/- Zn (mg/kg) +/-
1 Sih loam Pristine 19.5 0.666 bid 26.5 0.527 34.2 0.530 8.30 1.06 69.3 0.372
2 Sand Pristine 30.0 0.724 6.37 1.57 54.3 0.602 38.3 0.573 13.4 1.11 101 0.418
3 Loamy sand Pristine 25.4 0.678 6.29 1.52 29.6 0.533 36.2 0.538 8.30 1.06 72.7 0.375
4 Sandy loam Pristine 20.4 0.668 6.56 1.52 32.2 0.541 36.9 0.546 7.87 1.06 74.0 0.377
5 Sand (a) Fired 14500 7.83 281 2.21 65S 1.35 36.5 0.645 74.8 1.39 -1 t-J 0.555
6 Sand (b) Fired 16400 8.36 275 2.21 733 1.42 34.8 0.647 75.1 1.40 172 0.566
1 Sandy loam (a) Fired 1680 2.46 42.5 1.61 132 0.700 37.5 0.562 17.4 1.10 88.8 0.405
5 Sandy loam (b) Fired 2810 3.22 61.8 1.66 215 0.809 37.6 0.565 19.1 1.12 99.2 0.421
9 Loamy sand (a) Fired 1260 2.12 25.7 1.57 129 0.687 36.2 0.552 114 1.08 88.0 0.400
10 Loamy sand (b) Fired 1680 2.49 32.5 1.60 165 0.739 36.8 0.556 14.3 1.10 94.8 0.409
11 Sih loam (a) Fired 301 1.17 9.56 1.53 50.0 0.568 34.0 0.532 8.24 1.06 69.1 0.375
12 Sit loam (b) Fired 459 1.39 12.0 1.53 62.8 0.590 34.1 0.533 10.3 1.06 71.7 0.380

LLD 2.47 5.91 1.28 1.30 3.43 1.07
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Fitting parameters for the LCF of the normalized Sb-LIII ^-XANES from the silt loam 

constructed target berm with Sb0 standard and Sb2O5.

Year Berm Soil type Spot Sb(0) Sb2O5 Sum (%) X red. X
2 12 Loam 1 100 100 9.3E-02 5.6E-04
2 12 Loam 2 100 100 2.7E-01 1.5E-03

Table 2.4 Fitting parameters for LCF of normalized Sb-LIII ^-XANES
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Select linear combination fitting results for the constructed target berms using Pb reference 

spectra, samples were collected in 2011-2014. Sum (%) refers to the actual sum of the partial

2 9contributions for the overall best fit. X  and reduced X  are derived from the fit refinement 

process. Pb(0) = Metallic bullet alloy; L = Litharge (PbO); C = Cerussite; H = Hydrocerussite; 

Ferri = Pb(II) sorbed on synthesized Fe(III)oxies; error associated with fit in parenthesis.

Table 2.5 Fitting parameters for LCF of normalized Pb-LIII ^-XANES

Year Berm Soil type Name Pb(0) L C H Ferri
Sum

(100%) X2 red. X2
1 5 Sand S-l 65(1) 14(1) 23(1) 101 9.6E-03 7.0E-05
2 5 Sand S-2 -99 99 1.1E-02 8.1E-05
2 5 Sand S-3 -100 100 1.8E-02 1.3E-04
3 5 Sand S-4 45(1) 28(2) 26(1) 99 1.4E-02 1.1E-04
3 5 Sand S-5 57(1) 38(1) 95 8.9E-03 7.0E-05
4 5 Sand S-6 20(2) 74(1) 93 2.1E-02 1.5E-04
2 12 Silt loam L-l -100 101 1.6E-02 1.3E-04
2 12 Silt loam L-2 15(3) 10(3) 50(2) 25 (2) 100 1.1E-02 7.9E-05
3 12 Silt loam L-3 100 100 1.8E-02 1.3E-04
3 12 Silt loam L-4 16(1) 70(3) 14(1) 100 1.8E-02 1.3E-04
4 12 Silt loam L-5 26(1) 30(3) 23(1) 22(1) 100 1.1E-02 8.0E-05
4 12 Silt loam L-6 17(1) 63(3) 10(1) 11(2) 100 1.3E-02 9.4E-05

*Refers to Pb(II) sorption product with synthesized Fe(III)oxides 
(#) Refers to linear combination fitting error
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Table 2.6 Occurrence and average contributions of Pb components

Occurrence and average contributions of Pb components over the 4 years of summer sampling. 

(-) indicates species was not detected, but number of samples was relatively low, (/) denotes 

species was not detected. Pb(0) = Metallic bullet alloy; L = Litharge (PbO); C = Cerussite; H = 

Hydrocerussite; Ferri = Pb(II) sorbed on synthesized Fe(III) oxides; Fine = Pb(II) sorbed on the 

fine fraction of pristine silt loam soil.

Year
1 2 3 4

Pb(0) 65 100 / /
L 14 / 50 16

Sand C
H

23 /
/

43
32

/
/

Ferri - / / 64
Fine - / 41 27

Pb(0) - 48 45 36
L - 31 50 41

Sandy Loam C
H

- 61
23

27
/

57
25

Ferri - / 58 46
Fine - / 45 /

Pb(0) - 68 33 /
L - 20 19 22

Loamy sand C
H

- 32
21

30
21

52
11

Ferri - / 43 30
Fine - / 32 15

Pb(0) - 48 100 100
L - 19 29 20

Silt loam C
H

- 59
25

50
15

49
20

Ferri - / 38 19
Fine - / / /
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Linear correlations between elements in the contaminated test berm runoff (Berms 5-12). Linear 

regression was performed and R-squared values reported. ‘-’ indicates there was no correlation 

detected between the element and element pair. R-squared values above 0.50 were reported.

Table 2.7 Linear correlations between elements in runoff

Element correlations in contaminated berms
Element Pair 5 6 7 8 9 10 11 12

Pb Cu - - - - - - 0.84 -

Pb Sb - - - - - 0.70 0.63 -

Sb Ca - - - 0.79 0.85 - - -

Sb Cu - 0.51 0.59 - 0.61 - 0.60 0.52
Sb Fe 0.53 - - - - - - -

Sb K 0.53 - - - - - - -

Fe Ni - - 0.91 - 0.50 0.50 - 0.67
Ni Cu - - - - 0.84 - 0.62 -

Na K 0.62 - 0.83 0.66 0.81 - - -

Na Mg - 0.86 0.83 0.94 0.95 - 0.94 -
Na Ca - - 0.98 0.92 1.00 - 1.00 -

Mg K 0.83 - 0.94 - 0.91 - - -
Mg Ca 0.72 - 1.00 0.99 1.00 0.96 0.98 -

Ca K 0.68 - 0.92 - 0.93 - - -

indicates no correlation
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Table 2.8 Total Aqueous Metal Concentrations after Fe Addition

Metal concentrations before and after the Fe additions in a subset of the test berms of each soils 

type. Berm 5 (sand), Berm 7 (sandy loam), Berm 9 (loamy sand) and Berm 11 (silt loam).

3 eiui t Ft -  - I l l i l i , Et -- - :u iU Cu ■ Ni Zn fu"\L>
575/201* 1L3 1313 53.5 4.7 0.17 bid 4.1 0.053
5 19.1014 115 3 555 39 ‘ 0.354 4.3 0.13 bid : ■ 0.033
fi/25/2014 IS 0J 3 57.3 1.15 5.3 0.11 bid : 5 0.053
5151014 19 3 330 37.3 3.140 4.S 0.17 bid . u 0.033
5.50.1014 O.S 0J01 55.5 L01 5 : 0.05 bid 4.5 0.053
7.- 3. 1014 m o23 ;■ 37.3 1J0 4.; 0.05 bid ■ 1 3 355
” 30.1014 3L31 0.115 73.3 n m ; l 0.11 3S 3.1 5J 3 373
3.5.1014 303 a im 24.9 5.17 11 3352 1 31 9.7 0.0S4

S /T i '- W f 1 2 J 6.145 S3.4 3.S5 J J 0.16 AH fl.J? 0.060
a 15.1014 35 9 0.176 33.0 3.144 55 0.15 bid S5 3 374
9.5.2014 3- 1 0.332 17.7 153 5.6 3 355 bid 5J 3 »"
5 11.1015 134 0.101 43.7 3.390 3 1 3 330 bid 5.8 3 377
7/3 1015 7.95 3 397 71 1 5.13 5.5 3 3" 5 bid ; ; 3 377
".■13.2015 i s ; DUOSS 45 1 197 5 1 3.050 bid ■: 0.033
m  2015 515 0.155 15.4 3.160 5.5 0.57 bid - 5S 0.033

3 e i u i  7 Ft +:'-<n&'Ll Et +:'- ( a g ' I . ) Cu +,'-(ns,U Ni - -fu iL > Zu +:'- (o&l.)
5:5.1014 1 5 3 393 13.7 3 3537 - ; 0.19 bid i.: 0.077
519.1014 15.5 0.197 111 3 : ; _ 31.4 0533 : f 3 357 i.: 3 377
5-25:1014 115 3 3915 115 144 15.5 143 n 315 bid
525-2014 4.9 3 393 119 3:97 17 s 1Jj3 : ■ 315 bid
5.50.2014 15.5 0.157 111 3.739 55S 3507 5 : 3 357 4.5 3 350
7.3.2014 11.7 3 3915 511 145 14.1 3151 i.; 3 357 4.7 3 377

7/14.1014 4 4 3 393 30 35: 17.4 3.0543 :.i 3 357 5 j 3 377
3.51014 5.1 310 34.3 1.20 17.4 3.0353 :.4 3 357 4 0.03

S /T i '- W f 1177 9.063 0.3 0.1 40.6 0.146 47 0.35 10.5 0.0766
3.19.1014 5 9 310 1 1 351 1 1 - 3 3537 15 _5 0.145 15.5 3 3755
9.5:2014 bid 41.5 0.295 11 j 3.0355 4 7 314 1.7 3 377
511.1015 3 3.1 ? i : 3 235 111 3.0353 14 3 357 4_5 3 377
7/3 2315 11.5 0.179 65.7 3410 155 3 555 1.1 3 355 13 3377
■■.-13.1015 11 3 354 52 ‘ 3.1" 5 15J 3.173 3s 31 13 3 377
9.3:1015 5.3 0.054 90.9 0.373 19.5 3.0559 1 31 1J 0.077

3ei-ui ? Ft - -I.U 'Ii, Et +:'-(HR,U Cu +,'-(ns,U Ni +■'- (n&L) Zu +:'- (o&l.)
5.19.1014 3L2 0.154 45.3 3H 0 113 0.395 5.5 335 51 3.035
5-15:1014 14.1 0.107 41.9 3J95 H 5 3 -3 3 5 f 0.15 1 1 0.15
5151014 H i 3.0901 4" : I  "65 14.0 139 43 334 2J 0.15
5.30.1014 9.1 3 351 541 3:55 19J 3.195 5 3.051 ; : 0.15
7:3:2014 4SJ 3575 54.4 3.0930 16.3 3.150 4 3 3.054 7.5 0.15
■■.•'14.1014 5 4 0.045 403 3511 12 5 3.0541 15 3 356 5.1 0.15
■'.30.1014 555 1 11 63.3 12Z 57.1 3553 53 0.11 ; ; 0.15

£■■22V014* 43S9 14.92 0.7 0.1 94.0 134 55.S 0.57S 493 0399
519.1014 14J 0.299 14.4 1.05 s 1 0.19 5 5 0.13 6.7 0.10
9.5:1014 174 5."s bid 19 3 3.134 59 3 3415 55.1 0.290
511.1015 5 j 3 353 19 5 3.147 3.7 0.11 1.7 0.11 31 0.15
7/3 1315 13.3 0.135 : i 4 151 1 1 - 3.0503 3 ; 31 14 0.15
■'.■13.1015 15.1 0.151 15.6 135 9.3 0.11 1.1 3 356 1.7 0.15
9.3:1015 15 4 I 3“S1 25.6 3.133 12 5 0.109 1J 3 356 7J 0.15

3eiui 11 Ft +.-fnjL> Et - - f u jL ) Cu - - fu s L ) Ni - - f u jL ) Za -  - :u? LI
5:5:1014 55 3 372 5 3 3 371 10.1 1.09 11 1 ; 555 3L5 0.065
5.19.1014 115 0.100 4.5 3315 15 4 3 1 ’ 3 5.5 0.11 1.3 0.055
5-15:1014 7 3 3.10 4 5 3 311 13 : 3471 5 ; 0.17 1.5 0.065
5151014 54 3 3s 4 5 3 355 143 3 "67 4 5 314 1.; 0.055
7:3:1014 :3 5 3155 15.5 3.151 19.7 3 3510 5 1 3.059 5.0 311

7/14.1014 53S 3555 213 3.111 55.5 3.445 10.3 3.0557 14.4 3505
511.1015 15.5 3.039*0 10 5 3 595 113 3 3510 5 1 3.039 5.6 0.065
9/3/2015 15.1 0.163 ; ‘ 0.10 10.0 0.151 3.5 0.11 15.5 0.151

Uni t'i- if. ug. L 
* Addi tnoofFeC^ CeCCl 
Tjld' = bilc^ ddsctiai I isi t tfn a tyxa l asthod 

= 3I-3T Hot t̂ lcidzfei
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2.9 Appendix A
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Figure 2.13 X-ray diffraction patterns for pristine soil

X-ray diffraction (Cu Ka) patterns for pristine samples of the four well-characterized soils that 

comprise the target berms: (a) sand (b) sandy loam (c) loamy sand (d) silt loam. Major peaks 

identified are Q = quartz, C = Chlorite, M = Mica, P = Plagioclase.
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Soil moisture and thermal regime

The soil moisture and soil temperature of the berms were monitored to track water 

retention and the freezing/thawing cycles. In this study, soil moisture is defined as the volumetric

3 3water content, which has units of m /m . The berm saturation profiles and temperature results are 

shown in Appendix Figure 2.14, Figure 2.15 and Figure 2.16.

3 3The average soil moisture for the berms ranged from 0.07 to 0.12 m /m and was highest 

for the mixed and silt loam berms. In order of increasing loam content, the average soil moistures

3 3were 0.07, 0.12, 0.12 and 0.10 m /m . The highest soil moisture values were recorded in the silt 

loam end member in 2011 and the loamy sand in 2013 and 2014. In 2014-2015, we measured 

saturation as a function of soil surface depth for the 100% silt loam system, results shown in 

Appendix Figure 2.16. The ‘surface’ measurement corresponds to a probe inserted 0.2 m into the 

side of the soil berm, whereas the ‘buried’ measurement corresponds to 0.5 m. There is greater 

soil moisture variability closer to the surface of the loam berm. Overall, there is an order of 

magnitude decrease in soil moisture as a function of berm soil depth for the loam soil, indicating 

the dominance of surface flow in these types of systems and limited downward percolation. In 

general, the loam soil is colder and has an average soil temperature of 1.14 °C, whereas the 

average soil temperature for the sand soil is 2.53 °C. There is more variability in the soil 

temperatures in 2013-2015, most likely due to the berm soil mounds settling and pushing the 

probes closer to the surface over time where they have more influence from air temperatures.

114



Figure 2.14 Soil temperature

Temperature (°C) as a function of end member berm soil type throughout 4 summers in Alaska. 

Summer 2012 data is excluded due to small animals repeatedly chewing the wires.
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Figure 2.15 Soil moisture

3 3Soil moisture (m /m ) as a function of berm soil end member type throughout 3 summers in 

Alaska.
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Figure 2.16 Soil moisture and precipitation for 2015 season

Precipitation and soil moisture data for the Texas Range on DTA. Precipitation was downloaded 

from MesoWest, University of Utah monitoring station. ‘Surface’ probe was inserted 0.2 m and 

‘buried’ probe was inserted 0.5 m into the silt loam berm soil (Berm 11).
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Chapter 3 Lead and Antimony Speciation Associated with the Weathering of Bullets in a 

Historic Shooting Range in Alaska 1

3.1 Abstract

Lead and antimony are toxic and found in bullets used in military training exercises. 

Small arms shooting ranges present a unique opportunity to study the fate of Pb and Sb in 

various types of soil and soil porewaters, where their fate is largely controlled by microscale 

morphological and chemical variations exclusive to a particular soil system. In this study, we 

analyzed bullet and soil samples from a historic military shooting range located in the interior of 

Alaska. Bulk speciation analysis coupled with micro-scale methods demonstrate that the 

presence of Sb(V) in octahedral coordination with 5 O and 3 Fe atoms is the primary species 

present in the weathering crust. However, trivalent Sb bound to 3 O atoms is likely the initial 

oxidation species as detected in the weathering bullet alloy from this study and a laboratory 

oxidation sample with metallic Sb. Similar methods show that cerussite, hydrocerussite and 

litharge comprise the bulk of the Pb concentration in the weathering crust, but Pb(II) sorbed to 

Fe(III) oxides are present in the soil fraction distal to the source material. These results show 

differences in speciation between the weathering crust and soil fraction in shooting range 

samples and highlight the natural association of Pb and Sb with Fe. Understanding metal 

speciation is a critical first step in developing and implementing remediation strategies in small 

arms shooting ranges.

1Barker, A.J., Mayhew, L.E., Douglas, T.A., Ilgen, A.L., Trainor, T.P. Lead and antimony speciation associated with 
the weathering of bullets in a historic shooting range in Alaska. Prepared for submission in Science of the Total 
Environment.
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3.2 Introduction

Training ranges in the United States managed by the Department of Defense (DoD) often 

contain extremely high loadings of toxic metal(loid)s and organics, including but not limited to 

Pb, Sb, copper (Cu), zinc (Zn), arsenic (As) and polycyclic aromatic hydrocarbons (PAH) 

(Basunia and Landsberger, 2001; ITRC, 2003; Scheetz and Rimstidt, 2008; Clausen and Korte, 

2009; U.S. Army Corps of Engineers, 2014). The primary contaminants are Pb and Sb and to a 

lesser extent, Cu, which are the major components of bullet fragments (Randich et al., 2002; 

Johnson et al., 2005; Laporte-Saumure et al., 2011). Small arms ranges typically employ 

backstops consisting of a natural hillside or artificial soil mound called a berm. Bullets impact 

the berm and fragment, exposing fresh metallic surfaces to weathering processes, which leads to 

the release of metal(loid) species into solution. Once Pb and Sb enter into the environment they 

are long-term persistent contaminants that transform from one species to another (Knox et al., 

2000; Grisbert et al., 2003; Singh and Grafe, 2010). In addition, both Pb and Sb are toxic (US 

EPA, 1979; Rooney et al., 1999) and Sb is a suspected carcinogen (IARC, 1989; WHO, 2003). 

Therefore, Pb and Sb contamination from small arms training facilities pose a major public 

health and environmental concern stemming from the fact that Pb and Sb can migrate in soil 

solution.

The soil material at shooting range sites can far exceed crustal soil background 

concentrations for Pb and Sb of 10-30 mg kg-1 and 1 mg kg-1, respectively (Agency for Toxic 

Substances, 1992; Rooney et al., 1999; Adriano, 2001; Filella et al., 2009). In the United States, 

it was estimated that 80,000 tons of Pb produced was made into bullets in the late 1990s (US 

EPA, 2005) and the U.S. DoD on average expended more than 2 million pounds of Pb annually 

(ITRC, 2003). Lead accounts for approximately 93.1 wt.% of the bullet mass (Laporte-Saumure
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et al., 2011) and comprises the bulk of the bullet. Antimony is added to Pb as a hardening agent 

with Sb wt.% on average reported anywhere between 0.7 wt.% (Randich et al., 2002) to 1.9 wt.% 

(Laporte-Saumure et al., 2011) to 2-5 wt.% (Johnson et al., 2005). A copper alloy is used to 

jacket bullets (4.5 wt.%) and contains trace amounts of Ni and Zn (0.5 wt.%) (Laporte-Saumure 

et al., 2011). Previously reported Pb concentrations for shooting range soils can range up to

150,000 mg kg-1 (Jorgensen and Willems, 1987; Basunia and Landsberger, 2001; Cao et al.,

2003; Knechtenhofer et al., 2003; Johnson et al., 2005), while Sb load is significantly less, 

ranging from 1-13,800 mg kg-1 (Basunia and Landsberger, 2001; Johnson et al., 2005).

The mobility and extent to which Pb and Sb can migrate depends predominantly on their 

speciation (Cao et al., 2003, Johnson et al., 2005; Singh and Grafe, 2010). Therefore, it is 

important to understand the overall mineralogical and morphological composition of Pb species 

present in both the corroding bullet crust and shooting range soil material due to controls on the 

overall concentration and mobility of Pb. Lead is typically found in the environment in one 

oxidation state, Pb(II), which forms upon dissolution and subsequent oxidation of metallic Pb 

(Cao et al., 2003; Vantelon et al., 2005; Scheinost et al., 2006). The activity of Pb2+ in solution 

has been shown to be primarily limited in shooting range soils by the solubility of secondary 

minerals that form as a weathering crust around the corroding bullets, which include but are not 

limited to: PbCO3 (cerussite), Pb3(CO3)2(OH)2 (hydrocerussite), PbO (massicot or litharge), and

to a lesser extent PbSO4 (anglesite) (Chen et al., 2002; Cao et al., 2003; Hardison et al., 2004;

2+
Vantelon et al., 2005). In addition, amorphous species may form since Pb in solution is 

strongly bound by soil organic matter, clays and manganese or iron oxides via adsorption 

processes (Manceau et al., 1996; Mozafar et al., 2002).
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Antimony is typically found in the environment in two oxidation states, +3 and/or +5. 

Both species strongly hydrolyze in water as Sb(OH)3 and Sb(OH)6- and Sb(III) forms complexes 

with organic ligands (Johnson et al., 2005). Sb(OH)3 is a neutral species and thus expected to 

adsorb to Fe oxides over a wide pH range, it is considered relatively immobile in environmental 

systems. In contrast, Sb(OH)6- adsorbs to Fe oxides only at a low pH (<2.5) and remains mobile 

at neutral and alkaline pHs (Scheinost et al., 2006). The dominant aqueous form of Sb observed 

in soil solution and shooting range soil porewater is Sb(OH)6- (Johnson et al., 2005; Filella et al., 

2009). Similar to Pb, the activity of Sb in solution is limited by secondary mineral formation and 

partitioning to sorbents available in the soil fraction. Among other alteration products, Sb(III) 

may be limited by the formation of Sb2O3, senarmontite or valentinite (Zotov et al., 2003). 

Whereas, Sb(V) may be limited by the formation of Sb2O5, for example, that has a solubility in 

the molar range at pH 7 (Johnson et al., 2005). In addition to Fe oxides, Sb has been shown to 

partition to other natural sorbents that may be present including: Mn and Al hydr(oxides), clay 

minerals and humic acids (Thanabalasingam and Pickering, 1990; Tighe et al., 2005; Ilgen and 

Trainor, 2012).

While investigations of berm soil material have been the subject of numerous reports 

both in the U.S. and abroad (Cao et al., 2003; Vantelon et al., 2005; Scheinost et al., 2006; 

Ackermann et al., 2009; Conesa et al., 2010; Okkenhaug et al., 2013; Sanderson et al., 2015), 

there is little known about the speciation of Pb and Sb in shooting ranges in Alaska despite 

housing three Army bases: Ft. Wainwright (Fairbanks, AK), Ft. Greely (Delta Junction, AK) and 

Ft. Richardson (Anchorage, AK). More importantly, like other cold regions, Alaska presents a 

unique opportunity to study metal leaching from bullets and subsequent mineral weathering as a 

function of the cold climate. For half the calendar year, the Alaskan arctic and subarctic
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maintains temperatures below 0°C, which translates to less time the surface and subsurface of the 

shooting range berms will be exposed to weathering processes. As a result, shooting ranges that 

are relatively ‘old’ may still be ‘young’ in terms of Pb and Sb weathering from bullets and can 

thus provide a unique dataset addressing the gap in knowledge concerning small arms ranges in 

cold regions.

The focus of this study was to understand the chemical fate and transformation pathways 

of Pb and Sb as a result of bullet weathering at a shooting range site outside of Fairbanks,

Alaska. Metal speciation tends to be the limiting factor for determining bioavailability of a 

contaminant, as well as dictating the potential for off-site transport, thus we employed grain- 

scale characterization methods (electron-microprobe analysis (EMPA), micro-focused x-ray 

absorption spectroscopy (XAS) and x-ray fluorescence (XRF) measurements) to determine the 

speciation of Pb and Sb as a function of element spatial distribution relative to the source 

materials (bullet slugs). Results from this study provide key insights into the geochemical 

behavior of metals in cold regions that control the overall mobility and bioavailability of toxic 

metals. This is of particular importance in Alaska, where the soil thermal regime and temperature 

dynamics play an important role in metal geochemistry and weathering pathways may be altered 

by unique temperature and soil conditions (Barker et al., 2014).

3.3 Methods

3.3.1 Field Study

Soil samples and bullet fragments were obtained from a hillside used as a natural berm-

style backdrop at the Meadows Range Donnelly Training Area, Fort Greely near Delta Junction,
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Alaska. While no longer active, the Meadows Range was heavily used for small arms training 

exercises approximately 15-20 years ago. Multiple types of ammunition rounds were fired into 

the berm including .50 caliber, 7.62 mm and 5.56 mm caliber bullets. The 5.56 mm ammunition 

round was the only size round this study examined. The bullet alloy was composed of 99 wt. % 

Pb and 1 wt. % Sb (DAC, 2010).

3.3.2 Sample Collection and Preparation

Reference in this paper to DI water means ultrapure water with a resistivity o f 18.1 MQ

(EMD Millipore, Billerica, Massachusetts) at 25°C.

3.3.2.1 Thin Section Preparation

Samples were collected from Meadows Range in the summer of 2010, 2011 and 2012. 

Heterogeneous soil samples and incremental bulk soil samples were collected in the same 

method as reported in section 2.3.2. In order to investigate metal speciation in a controlled 

environment, a subset of the pristine soil fraction (5g) was sieved to 2 mm and dried at 60°C for 

2 hours, then uniformly mixed with 0.5 g of 99.999% metallic Sb powder, ~200 mesh size (Alfa 

Aesar, Ward Hill, MA) and 0.5 g of 99.999% metallic Pb powder, 200 mesh size (Alfa Aesar, 

Ward Hill, MA) and loaded into a plastic (HDPE) column connected to Tygon tubing (Saint- 

Gobain Performance Plastics, Courbevoie, France). The column and tubing were previously 

acid-washed with 2% HNO3 (Ultrex Ultrapure Reagent, J.T. Baker, Center Valley, PA). An 

additional 5 g of the soil fraction was incrementally added on top of the Sb/Pb soil mixture for a 

total of 9 increments (50 g total including the Sb/Pb soil mixed bottom layer). A 5mM electrolyte 

solution of KNO3 (prepared by dissolving 0.5 g of reagent grade KNO3 into 1 L of DI water and
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subsequently filtered to 0.45^m using a nylon filter tip) was reverse-flushed through the column 

at 0.5 mL/min for 2 hours. Soil was drained and kept frozen at -18 °C until analysis.

3.3.2.2 Weathering Crust Preparation

To investigate the speciation of the weathering crust, approximately 15 bullets were 

scraped and the powder was consolidated into one sample using plastic spatulas. The crust was 

spread evenly in a thin layer on a piece of tape (Scotch Brand, 3M, St. Paul, MN) and covered 

with double-sided tape (Scotch Brand, 3M, St. Paul, MN) for a total of three layers. In addition, a 

pristine bullet was removed from the firing cartridge, sliced length-wise in half using a Diamond 

Saw (Buehler Company, Lake Bluff, Illinois) and served as a representation of a ‘pristine’ bullet 

similar to the bullets fired into Meadows Range.

3.3.3 Sample Analysis

The pH of pristine, local soil was analyzed within 2 hours of collection and is outlined in 

section 2.3.3.2. The soil type was determined based on the fractionation of particles and the soil 

particle triangle classification system (Soil Survey Division Staff, 1993).

For the identification of crystalline phases, total metal concentrations and Pb distribution 

in the historic shooting range soil, the soil was prepared and analyzed as reported in section 

2.3.3.2.

Elemental distribution and semi-quantitative element wt. percentage analysis were 

conducted on a JEOL JXA-8530F field emission electron microprobe in both wavelength- 

dispersive (WDS) and energy-dispersive (EDS) mode. Samples were carbon coated (Edwards 

carbon coating system, AIL, Fairbanks, AK) prior to analysis to reduce the effects of charging.
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Analyses were conducted with an accelerating voltage of 15 keV. WDS element maps were 

collected at a constant probe current of 200nA. Estimated minimum detection limits (MDL) for 

WDS maps were extrapolated from standards run for WDS point analyses and calculated 

according to Potts (1992); Pb = 0.34 wt% (0.0017 mol%); Sb = 0.25 wt% (0.0021 mol%); Fe = 

0.34 wt% (0.0061 mol%). WDS maps were used to locate areas of interest for collection of 

quantitative WDS point data. Point analyses were collected at a probe current of 25nA. Lead and 

Sb were counted for 20 seconds on peak and 20 seconds on background (10 s below and 10 s 

above the peak). Iron and Cu were counted 25 seconds on peak and 20 seconds on background 

(10 s below and 10 s above the peak). Standards used were PbS, Sb2Te3, hornblende, and 

chalcopyrite for Pb, Sb, Fe, and Cu respectively. Qualitative EDS data were used to help locate 

spots of interest for WDS analyses and to identify all elements present to ensure that non­

analysis of any major elements was not the cause of WDS data totals < 100. The EDS spectra 

were also collected simultaneously with WDS spectra. Percent analytical error and 99% 

confidence detection limits in weight percent were calculated for quantitative EMP-WDS 

analyses. For all analyses, typical detection limits for Pb and Sb are< 0.1 wt%. Typical analytical 

errors for (1) high Pb, low Sb areas =Pb< 0.5wt% (0.0024 mol%), Sb 0.5-5wt% (0.0041- 

0.041mol%), (2) low Pb, high Sb areas =Pb</= 1.5wt% (0.0072 mol%), Sb = 0.1wt% (0.00082 

mol%). It was not possible to account for the error due to geometry effects resulting from sample 

surface topography, which is magnified by the hardness differences at the bullet-soil interface 

and between the bullet, soil, and epoxy. The presence of oxygen, carbon, and hydrogen can be 

inferred in calculations but could not be measured with the EMP system used in this study. Thus, 

while WDS totals of less than 100% may signify the presence of oxide, carbonate, or hydrous
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mineral phases, it was not possible to definitively identify the presence of these phases because 

of our inability to achieve a flat sample surface.

Samples were analyzed for Sb elemental distribution, spatial correlation and speciation 

using synchrotron-based x-ray spectroscopy. Extended x-ray absorption fine structure (EXAFS) 

data was collected at beamline sector 13 IDE (GSECARS), Advanced Photon Source (APS), 

Argonne National Laboratory. The incident energy for the Si(111) water-cooled monochromator 

was set at the peak derivative mid-point of the antimony K-edge spectra of an Sb(0) reference 

foil, corresponding to 30,491 eV. The monochromator was detuned by 20% for harmonic 

rejection using platinum-coated Kirkpatrick-Baez mirrors. The monochromator step size was 5 

eV in the pre-edge, 0.5 eV in the near edge region and 0.05 A-1 in the EXAFS region. Samples 

were placed at 45° to the Vortex silicon drift diode array detector. The EXAFS data were 

processed using the Athena interface of the Demeter package (Ravel and Newville, 2005) to the 

IFEFFIT (Newville, 2001) program. Data processing is described in more detail in Kelly et al., 

(2008), but included background subtraction using AUTOBKG algorithm (Newville et al.,

1993), normalization and conversion into k-space. The data was then Fourier transformed over 

the k-range of approximately 3.0 to 9.0 or 3.0 to 10.5, depending on the sample. The amplitude 

reduction factor, s0 , was set to 0.97 based on fitting of KSb(OH)6 (Electron Microscopy 

Sciences, Hatfield, PA) standard in the same analysis window and reported by Ilgen et al., 

(2014). The resulting Fourier transformed antimony K-edge EXAFS spectra was modeled using 

Artemis (Ravel and Newville, 2005), which fits theoretical paths calculated with Feff 6 

(Zabinsky et al., 1995; Newville, 2001) based on the structures of Sb(0) (Wyckoff, 1963), 

valentinite (Whitten et al., 2004) and Sb2O5 (Jansen, 1979).
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3.4 Results

3.4.1 Characterization of historic shooting range soil

Pristine soil from the historic shooting range is a silty loam that was previously 

characterized in section 2.4.1 and Table 2.1 (soil type 1).

Total metal concentrations for the contaminated berm soil are shown in Table 3.1. Bulk 

concentrations of Pb (77.91 mg/kg) are almost an order of magnitude higher than Sb (8.43 

mg/kg). While background concentrations of Sb in Alaskan sediment can be elevated, 

particularly as a result of mining activities (43 to 6000 mg/kg reported by Eppinger et al. (2000); 

6.6 to 7230 mg/kg reported by Ritchie et al. (2013)) compared to average crustal abundances 

reported as 0.2 mg/kg by Onishi and Sandell (1955) in Filella et al. (2009), background 

concentrations for the local soil in this study were below the instrumental detection limit of 5.9 

mg/kg.

3.4.2 Characterization of an Unfired 5.56 mm Bullet

Electron microprobe analyses were conducted on an intact, unfired, military-issued 0.22

caliber (5.56 mm) bullet in order to understand the initial anatomy and composition prior to

weathering and alteration, shown in Figure 3.1. The pristine bullet is 30 mm long, 6 mm wide in

the center, 1 mm wide at the tip and consists of four distinct chemical zones of varying thickness

(Figure 3.1a). The outermost layer consists mainly of Fe, approximately 500 -  1500 |im thick,

and surrounds a Cu-rich interlayer, approximately 50 -  100 |im thick. A discontinuous Pb-rich

interlayer (50 -  150 |im thick) exists between the Cu-rich interlayer and the slug (500 -  4000 |im

thick), the innermost region of the bullet (Figure 3.1b). Electron microprobe analyses revealed

that the distribution of Pb and Sb within the bullet is heterogeneous. Lead is the main component
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in the matrix but occurs in different proportions with Sb in the matrix of the slug (87 and 13 

mol%, respectively) than in the Pb-rich interlayer (96 and 4 mol%, respectively) (Table 3.2), 

making these two regions chemically distinct (Figure 3.1c). Lead also occurs as discrete ~2x2 

|im, ~100 mol% spheres, which form as a result of melting during analyses conducted at high 

beam currents (> 100nA) and are thus an artifact of the analytical method, shown in Figure 3.1d, 

Table 3.2).

Antimony is relatively evenly distributed within the matrix of the slug (Figure 3.1e), 

except that it occurs as diffuse, discrete, roughly circular Sb-rich spherical ‘hotspots’ (40 mol% 

Sb). The hotspots are ~2-5 |im in diameter and are embedded within the Pb-matrix and not 

specifically associated with Pb spheres that are an artifact of melting during analysis. The Sb- 

rich hotspots are more common within the Pb-rich interlayer, where they have a higher Sb 

content (88 mol % Sb) and contain the majority of the Sb present (Figure 3.1f). When averaged 

across the entire area of the Pb-rich interlayer, Sb is present at a level of 4 mol% Sb.

3.4.3 Chemical Characterization and Speciation Analysis of a Weathered Bullet

The fragmentation process that occurs once a bullet impacts soil often exposes the Pb and 

Sb alloyed core and Fe slug to the environment. X-ray fluorescence maps were collected on a 

spent bullet that had weathered for approximately 15 years within the shooting berm soil in order 

to track the elemental distribution after bullet fragmentation upon impact with soil. Tri-color 

plots showing distributions of Pb (red), Fe (green) and Cu (blue) are shown in Figure 3.2a. The 

steel and Cu jacket partially separated from one another, leaving the Pb/Sb alloyed core exposed. 

While Pb comprises the bulk of the alloyed core, there are also particles of Pb present within the 

soil matrix.
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The back-scattered electron image of Region 1 (outlined in white box in Figure 3.2b) 

depicts the interface of the bullet with soil particles (Figure 3.3). Soil minerals are present within 

the fracture that passes through the slug and Pb-rich interlayer of the bullet. The tip of the 

fracture has little exposure to soil while, at the base of the fracture, soil grains are the 

predominant material. As a result, we identified three different areas within a single region of the 

sample that experienced differing degrees of exposure to soil and exhibited different degrees of 

weathering and alteration. Relative mole percentages of Pb and Sb found within Region 1 are 

presented in Table 3.2.

The Pb and Sb distribution in the area at the tip of the fracture is similar to that seen in 

the pristine bullet (Figure 3.3 a). The Sb-rich hotspots in this region have WDS totals equal to 

100% with contributions from only Sb and Pb, indicative of the metals being present in their 

elemental form. As shown in Figure 3.1, the Pb/Sb alloy used to make the core of bullets is not a 

homogenous mixture, but instead it appears as Sb inclusions in a matrix of metallic Pb. The axis 

of the fracture becomes progressively more soil rich until eventually, in areas of the sample 

further from the bullet, fragments of slug material are completely incased in soil material such as 

seen in Figure 3.3c. As the abundance of soil particles increases, there is a corresponding 

decrease in the relative abundance of Pb and Sb, as illustrated in the WDS elemental maps 

(Figure 3.3), suggesting that weathering occurs along the axis of the fracture.

The weathering crust and bullet to soil interface is primarily comprised of Pb, whereas Sb 

is present in segregated clusters (depicted in Figure 3.4). Back scatter electron imaging and 

chemical analyses by electron microprobe reveal the crust appears to act as a cement between the

bullet fragments and surrounding soil particles as well as between individual soil particles.

3.4.3.1 Electron Microprobe Analysis
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Similar weathering crusts have previously been observed around bullets weathering in shooting 

range soils (Jorgensen and Willems, 1987; Lin et al., 1995; Hardison et al., 2004; Vantelon et al., 

2005; Ackermann et al., 2009). The alteration crust in the current study is discontinuous; it does 

not entirely surround any single bullet fragment. The distance the alteration crust extends away 

from the bullet fragments varies between individual fragments.

In previous work studying two bullet samples, Vantelon et al. (2005) report an average 

crust thickness of 100 |im. The change in relative Pb intensity with distance from the bullet is 

shown in Figure 3.5. The Pb profile represents the average Pb intensity at every pixel from the 

bullet-soil interface to the edge of the mapped area. To obtain this profile, an area on the sample 

was chosen that had relatively linear features with respect to bullet to soil interface (shown in 

Figure 3.4) and the Pb intensity change at the bullet-soil interface was mathematically defined. 

The particular pixel fulfilling the mathematical definition of the bullet-soil interface was defined 

in each column of image intensity data and the x coordinate of that pixel was set to be at a 

distance equal to 0 micrometers. After identification of the 0 |im pixel in each column, the 

columns were adjusted to align the pixels representing x = 0 micrometers. Once the data was 

aligned, the Pb intensities in each pixel in every column of data were averaged. The Pb intensity 

decreases by ~60% over the first ~20^m beyond the bullet-soil interface. At a distance of 20-50 

|im from the interface, the Pb intensity continues to decrease though at a slower rate, reaching 

20% of the original Pb signal at a distance of 50 |im from the bullet. The Pb intensity remains 

relatively constant over the distance of 50-120 |im before beginning a steady decline to 3% of 

the original Pb intensity at 190 |im from the bullet-soil interface.

The concentration of Pb decreases with increasing distance from the bullet-soil interface 

(Figure 3.5). Analysis of the chemical composition of the alteration crust at different distances
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from the bullet-soil interface did not reveal a systematic variation in Pb content of the crust with 

the distance. Thus, the decreasing Pb concentration with distance is due, instead, to a decrease in 

the abundance of the alteration crust with distance from the bullet (visible in Figure 3.4). There is 

a sharp decrease in Pb concentration over the first 20 |im away from the bullet-soil interface. 

Within this area, relatively unaltered but physically separated shards of the Pb-rich interlayer are 

concentrated. The shards are not found at slightly greater distances from the bullet-soil interface 

which likely accounts for the further decrease in Pb intensity. At approximately 50 um from the 

bullet-soil interface the Pb intensity is ~25% of the intensity in the Pb-rich interlayer. This level 

of Pb extends another ~70 |im (from 50 -  120 |im away from the bullet-soil interface). By a 

distance of 200 |im away from the bullet-soil interface, the abundance of the alteration crust has 

greatly decreased, reaching a Pb intensity only 3% of the signal from the Pb-rich interlayer. In a 

previous study where the Pb concentration was measured over a much longer transect, the profile 

revealed a strong decrease in Pb over a distance of a few hundred micrometers from the 

weathering crust (Vantelon et al., 2005). Distribution of Sb is discontinuous and appears to be 

random in the bullet alloy and cemented crust, which caused difficulty when trying to determine 

concentration as a function of distance from bullet. As mentioned previously, Sb concentrations 

present in the soil fraction were low indicating Sb might be considerably mobile in the soil 

system, which is consistent with previous studies on Sb mobility (Ilgen et al., 2014).

3.4.3.2 Pb-Lra XANES Analysis

Detailed micro-scale analysis of the Pb speciation in the weathering feature in Region 1 

revealed the presence of oxidized Pb species most adjacent to the fracture, in addition to 

containing metallic parent material. Multiple energy mapping and PCA of Region 1 showed 

distinct distributions of Pb components (Figure 3.6) and representative spots (1-4) were further
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analyzed by XANES methods, with results shown in Figure 3.7 with respective fit parameters for 

the model spectra generated by the LCF function detailed in Table 3.3. Cerussite (42%) with 

lesser amounts of litharge (32%) and hydrocerussite (28%) comprise spot 1, corresponding to the 

yellow principle component distribution (Figure 3.6b). Spot 2 best fit analysis corresponds to 

primarily metallic Pb (88%) with lesser amounts of cerussite (15%), represented by the red 

component distribution (Figure 3.6b). Spot 3 XANES spectra contains relatively equal 

contributions of litharge (52%) and cerussite (51%). Spot 4 best fit analysis corresponds to Pb(II) 

sorption product with Fe oxides present in soil, in addition to relatively equal contributions from 

litharge and hydrocerussite, as denoted by the green component distribution (Figure 3.6b). Lead 

speciation analysis of Region 1 suggests there are unique distributions correlated to both distance 

from alloyed parent material and distance from soil particles. Lead is distributed in low, relative 

concentrations closest to soil particles along the axis of the fracture in Region 1 (Figure 3.6a) in 

comparison to the higher concentrations of Pb found approximately 5-10 |im from the fracture.

In addition to micro-scale speciation measurements, the weathering crust of approximately 15 

bullets was scraped and consolidated into a powder sample and the bulk Pb speciation was 

analyzed, results shown in Figure 3.7, Table 3.3. The crust was comprised of predominantly 

cerussite (54%), with lesser, relatively equal contributions of litharge (26%) and hydrocerussite 

(23%).

3.4.3.3 Sb K-edge EXAFS Analysis

Antimony K-edge EXAFS analysis was carried out on four separate samples from the 

historic shooting range (Region 1, the consolidated weathering crust, a laboratory soil sample, 

and an unaltered bullet alloy) and revealed various Sb oxidation states. The absorption edge 

energies (Figure 3.8) range from 30,491 eV, corresponding to the unfired bullet alloy, to 30,495
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eV, belonging to the consolidated weathering crust scraped from the outside of the bullet 

fragments. The Sb species in Region 1 exhibits intermediate edge energy at 30,492 eV.

Similarly, the local, uncontaminated soil that was mixed with metallic Sb powder in the 

laboratory also has absorption energy of 30,492 eV. The normalized absorption for the new 

bullet is dampened due to self-absorption effects, as the cross-section sample was thick 

(approximately 1 mm) and comprised entirely of bullet core alloy. In addition, the two samples 

with intermediate edge energies (Sb soil and Region 1) also display a less pronounced 

normalized absorption line than the weathering crust sample and the Sb-O peaks at 

approximately 1.5 A (not corrected for phase shift) in the EXAFS Fourier Transform plot are 

much larger for the weathering crust than for the Sb soil and Region1 sample.

Shell-by-shell fitting of the backscattering features was carried out to elucidate the local 

structure of the Sb species most prevalent in the samples. The respective fit parameters are 

shown in Table 3.4. The two samples with intermediate edge energies exhibited comparable 

backscattering features and were fit with an O with a coordination of 2.6 (Sb soil) and 3.1 

(Region 1) at distance 1.96 and 1.97A, consistent with trivalent Sb speciation. Based on 

assumptions concerning the structure of the two samples, the higher order shells were fit with 

Sb-Sb scattering paths, but iterations did not significantly improve the fit. Particularly for Sb 

hotspot Region 1, there likely is a heavy atom in a more distant shell based on the small 

backscattering feature at 2.8A (uncorrected for phase shift) and an unfit oscillation feature in the 

k3 weighted EXAFS spectra at approximately 7.2 A-1. However, the backscattering features are 

weak, indicating a relatively disordered system. Therefore, only the first shell fittings are 

presented for Sb soil and Region 1 (Table 3.4). The weathering crust was the most oxidized 

sample analyzed, bearing a more prominent white line than the other samples with an absorption
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edge energy of 30,495 eV (Figure 3.8). The Sb-O path was best fit with a coordination number of

5.3 at a distance of 1.99 A, indicative of an octahedral-coordinated pentavalent Sb species. The 

larger distance FT peaks were fit with an Fe atom at 3.15 A and a coordination number of 3 

(Table 3.4).

3.5 Discussion

3.5.1 Heterogeneous Distribution of Pb and Sb in a Pristine Bullet

The starting distribution of Pb and Sb in bullets discharged into a 15+ year old shooting 

berm at Fort Greeley, Delta, AK is not homogeneous (Figure 3.2). Chemically distinct regions of 

the bullet contain metallic Pb and Sb in varying quantities (Table 3.2). A relatively well-mixed 

Pb/Sb slug (87 norm wt% Pb, 13 norm wt% Sb) is surrounded by a discontinuous, higher Pb 

content interlayer (96 norm wt% Pb, 4 norm wt% Sb) and Sb occurs as discrete, ~2-5 |im 

diameter Sb-rich hotspots (Figure 3.1). Observing the heterogeneous distribution of Pb and Sb in 

bullets is not unique to this study, but supports previous findings by Ackermann et al. (2009).

The distinct nature of the heterogeneous distribution of Pb and Sb in a bullet contributes 

to the overall discontinuous oxidation of Pb and Sb, likely resulting in sporadic mobilization.

The historic bullets from this shooting range were not highly fragmented. Instead, they remained 

relatively intact though deformed. This is attributed to the Fe casing present between the Cu- 

jacket and the core/slug. This steel casing surrounding the exposed Pb is not consistently present 

in munitions testing (Grund et al., 2010) and likely creates an additional barrier to fragmentation 

processes. The initial composition of bullets and the extent to which they are weathered are often
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not reported in studies, but typically play a role in overall Pb exposure after impact. Commonly 

the bullets found in this study were bent, but the Cu-jacket and steel enclosures remained 

together with the slug, effectively lowering the surface area exposed to weathering processes. 

Relatively large, intact bullet fragments that have separated from the main bullet were found 

embedded between soil particles (as seen in Figure 3.2). These fragments were relatively 

unaltered and metallic parent materials remained the main component of these fragments. The Fe 

encapsulation protected the interior from excessive weathering.

3.5.2 Characterization of a Pb/Sb Alteration Crust

Back scatter electron imaging and chemical analyses by electron microprobe revealed the 

presence of a Pb-rich alteration crust around bullet fragments. The crust acts as a cement 

between the bullet fragments and surrounding soil particles as well as between individual soil 

particles (Figure 3.4). The existence of alteration crusts around bullets has been observed in 

shooting range soils (Jorgensen and Willems, 1987; Lin et al., 1995; Hardison et al., 2004; 

Vantelon et al., 2005; Ackermann et al., 2009). The alteration crust in the current study was 

discontinuous; it did not entirely surround any single bullet fragment. The distance the alteration 

crust extends away from the bullet fragments varies between individual fragments. In previous 

work studying two bullet samples, the average crust thickness was 100 |im (Vantelon et al., 

2005).

Semi-quantitative EDS and quantitative WDS analyses revealed that the alteration crust 

is predominantly composed of O, Pb, Si and Al. Elements originating from the surrounding soil 

(Fe, Mg, Ca, Na), were not a major component of the crust; present at only low levels (~2 wt%). 

The abundance of oxygen in the crust relative to the primary bullet material suggests that the Pb
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is likely oxidized. The presence of Si, Al, Fe, Mg, Ca, Na suggests a reaction between the 

oxidized Pb and soil to form a crust with components originating from both the bullets and the 

surrounding soil. Thus, a portion of the metallic Pb weathered and released from the primary 

bullet was re-precipitated in oxidized secondary phases. The combination of elements sourced 

from bullets and soil to form an alteration crust has been noted in previous work (Lin et al.,

1995; Vantelon et al., 2005).

3.5.3 Speciation of Sb and Pb in the Alteration Crust and Soil

3.5.3.1 Speciation of Sb

The speciation of Sb in the alteration crust is dominated by an Sb-Fe sorption complex 

(Figure 3.8). Antimony is bound to O atoms at a distance of 1.99 A with coordination number of

5.3 and Fe atoms in the second shell at a distance of 3.15 A with a coordination number of 3. The 

lower (<6) coordination number for Sb-O (5.3) could potentially be due to self-absorption of the 

sample, e.g. Ackermann et al. (2009), where pentavalent Sb had a coordination number of 3.72 

(R = 1.98 A) and 3.1 (R = 1.97 A). The Sb-Fe distance for the weathering crust sample (3.15 A) 

is consistent with edge-sharing (~3.10 A Scheinost et al., 2006; ~3.11-3.13 A Ackermann et al., 

2009). Both edge and corner-sharing between Sb and Fe were reported in Scheinost et al. (2006) 

and Ackermann et al. (2009) studies, but we could only fit an edge-sharing Fe scattering pattern. 

However, the coordination number best fit for this sample (3 ± 1) is higher than observed by 

these two studies for edge-sharing sorption complex, and with higher error. It is more closely 

associated with what has been observed for corner-sharing sorption complexes, but with a lower 

fitted atomic distance. A higher Sb-Fe coordination number has been attributed to the presence 

of tridentate Sb octahedral complexes or direct incorporation of Sb into the structure of Fe
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oxides, e.g. 2.0-2.5 (Guo et al., 2014); 2.9-3.5 for Sb(V) in ferrihydrite (Mitsunobu et al., 2006). 

While this could likely explain the higher coordination number, we would expect a larger atomic 

distance between Sb and Fe in our sample if this were the case. The Sb-Fe atomic distance 

indicates an edge-sharing association, but the higher coordination number suggests a corner- 

sharing structure or co-precipitation species. Incorporating the error associated with the Fe 

coordination number measurement in addition to the Sb-Fe distance, it is more likely that the 

sorption complex between Sb and Fe is inner sphere.

The trivalent Sb weathering product in the fracture in Region 1 is likely a transient 

weathering product and not stable long-term unless in reducing conditions (Johnson et al., 2005; 

Ilgen et al., 2014). However, the occurrence has implications to the overall mobility and toxicity 

of Sb. Antimony (V) species will have enhanced mobility at circum-neutral pHs, whereas the 

mobility of Sb (III) species is independent of pH (Johnson et al., 2005) and trivalent Sb 

compounds have a ten times higher acute toxicity than pentavalent species (Krachler et al., 

2001). Besides in the alteration crust and bullet fracture (Region 1), Sb was not detected in the 

soil either independently or associated with Fe. Rapid oxidation of Sb(III) to Sb(V) (e.g. Ilgen et 

al., 2014) in berm water could explain the low concentration of soil-bound Sb. Other potential 

sorbents for Sb were investigated including organic fractions and clay mineral surfaces, all of 

which were detected in the soil, but did not contribute significantly to the overall best fits for the 

x-ray absorption spectra.

3.5.3.2 Speciation of Pb

The speciation of Pb in the weathering crust was primarily cerussite, PbCO3 (53-55%), 

with minor amounts of litharge, PbO (25-27%), and hydrocerussite, Pb3(CO3)2(OH)2 (22-24%).
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The distribution of litharge dominated near the metallic Pb core, whereas cerussite accumulated 

in the outer crust in contact with soil. This finding is consistent with that of previous studies 

(Hardison et al., 2004; Vantelon et al., 2005). Lead was also found in association with Fe in the 

soil fraction, distal to the parent material. Surrounding the predominantly cerussite layer, was a 

species of Pb that was best fit with Pb(II) sorbed to Fe oxide model compound (Figure 3.6, Table 

3.3). Iron (oxy)hydroxides are known to be an effective sink for Pb (Gustafsson et al., 2011) and 

has often been sourced as one of the major species limiting Pb mobility in soils (Manceau et al., 

1996; Mozafar et al., 2002). The accumulation of Pb bound to Fe is important in determining the 

overall mobility of Pb as it accumulates at the bullet-soil interface. However, it accounts for only 

a small contribution to the overall distribution of Pb species, in comparison to cerussite in the 

regions studied in the historic shooting range samples (Figure 3.7).

3.5.4 Microscale Chemical Variations Influence Behavior During Weathering

The characterization of the alteration crust of a 15 year old shooting range indicates that 

bullet materials are highly susceptible to weathering. Solid phase chemical investigations reveal 

the heterogeneous distribution of Pb and Sb in the primary bullet materials, as well as the 

heterogeneous distribution of the alteration crust around bullet fragments and in the surrounding 

soil. A model of the microscale weathering process of the historic bullets is depicted in Figure 

3.9. We hypothesize that the alloyed bullet material in direct contact with soil weathers first and 

most extensively. This process releases the bulk of Pb and Sb to solution. Antimony-rich 

hotspots found in the alloy initially oxidize to Sb(III) upon exposure. We hypothesize that the 

Sb(III) further oxidizes to Sb(V) and becomes incorporated (primarily sorbed) with Fe(III) found 

adjacent to the bullet. As a result, the Sb(V) sorption species with Fe(III) becomes part of the
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weathering bullet crust. We were unable to characterize any Sb in the soil fraction of the historic 

samples, likely indicating Sb is more mobile than Pb in the system studied.

The activity of Pb in solution is primarily controlled by the partitioning between various 

species found in the weathering crust and throughout the soil fraction. Zero-valent Pb present in 

either the Pb alloy or the Pb-rich interlayer is oxidized to PbO or PbCO3. We suspect PbO is the 

initial oxidation product due to its proximity to the crust/soil interface. It remains unclear 

whether PbCO3 forms solely as a result of PbO alteration or also due to Pb0 oxidation via 

reaction with porewaters. Cerussite and hydrocerrusite comprise the majority of the weathering 

crust surrounding the historic bullet and the dissolution of these secondary minerals in the 

alteration crust gives rise to mobile Pb species that can interact with soil particles (Figure 3.6). 

The majority of Pb associated with the soil fraction is Pb(II) sorbed species to Fe(III) oxides 

(Figure 3.7, Table 3.3) and PbCO3 indicating that precipitation and sorption are primary 

mechanisms of Pb immobilization in the historic shooting range soil.

Portions of Pb and Sb released from the primary bullet material transform into oxidized 

phases composing the bulk of the alteration crust found in association with bullet fragments. The 

formation of secondary Sb/Pb-bearing phases act as a limit on the initial amount of Sb/Pb 

released to solution. However, they could also serve as a secondary source of Pb/Sb to solution 

as they dissolve under different conditions (Jorgensen and William, 1987; Lin et al., 1995) or 

over a weathering time scale that differs from that of the primary bullet material. Additionally, 

the alteration crust appears to cement together soil particles and as such may impact the 

microscale porosity and permeability thereby limiting or slowing further weathering.
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3.6 Conclusion

Our results highlight the complexity of Pb and Sb speciation as a function of distance 

from the parent source and interaction with surrounding soil. There are limited studies on 

shooting range soils in Alaska and the majority are published by army-controlled organizations 

(Tardy et al., 2003), focusing more on applied aspects of bullet weathering like total 

concentrations instead of overall detailed speciation. As a result, there is a lack of technically- 

focused studies on the speciation of Pb and Sb and concentration as a function of distance from 

bullet in Alaska’s military shooting ranges. Presently, this study provides a baseline of data for 

future monitoring in Alaska and offers many improvements on previous efforts.

Our findings show that the transport and ultimate fate of Pb and Sb in a historic shooting 

range in Alaska is largely controlled by oxidation, dissolution, sorption and precipitation 

reactions in addition to reactions with individual soil particles present. The fact that soil particles 

are cemented to the bullet alteration crust likely impacts the microscale porosity and 

permeability, thus affecting the weathering rate. Micro-scale characterization techniques 

established a correlation between Pb/Sb and Fe present in the soil, indicating the importance of 

naturally occurring Fe as a remediation sink for oxidized metal(loid)s. Lead was not found to be 

in association with Fe in the weathering crust, contrary to Sb. Instead, Pb was observed in 

associated with Fe in the soil fraction, highlighting potential differences between Sb and Pb 

speciation with respect to Fe in shooting range soil systems. In addition, analysis of transitory 

oxidation products revealed Sb(III) is found in shooting range soil samples that contain bullet 

material actively weathering. It is likely that the distinct nature of the heterogeneous distribution 

of Pb and Sb in a pristine, unfired bullet contributes to the overall discontinuous oxidation of Pb 

and Sb resulting in sporadic mobilization.
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Figure 3.1 Characterization and composition of an unweathered bullet

Anatomy and composition of an unweathered 5.56 mm bullet. (a) Back scatter electron image 

showing chemically distinct zones. (b) Schematic depiction of bullet anatomy. (c) WDS 

elemental map showing heterogeneous distribution of Pb. (d) Metallic Pb spheres designated by 

arrows are the result of melting during analyses at high beam current (> 100nA). (e) WDS 

elemental map showing that Sb is relatively well-mixed within Pb in the slug but exists mainly as 

discrete hotspots (2-5 |im) within the (f) Pb-rich interlayer.
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Figure 3.2 Pb, Fe and Cu distributions

(a) Tri-color plot showing x-ray fluorescence distributions of Pb (red), Fe (green) and Cu (blue) 

within the historic shooting range soil. Specific area of interest outlined as a white square and 

classified as Region 1 (b).
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Figure 3.3 BSE image of Region 1

BSE image of Region 1 in a historic shooting range sample. The sample features a crack within 

the Pb-rich rim that propagates and is increasingly (left to right) filled by soil (dark particles). 

A,B,C represent different areas analyzed.
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Figure 3.4 BSE image of Region 2

BSE image (a) showing soil particles embedded between the Cu rim and the Pb-rich interlayer of 

the bullet. (b) WDS map showing elemental distribution in the bullet and soil, Cu = blue, Pb = 

green, Al = yellow, Sb = magenta.

153



Figure 3.5 Pb intensity profile

Pb intensity profile in historic shooting range sample, calculated using image greyscale values 

from the Pb distribution WDS map.
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Figure 3.6 Pb distribution and component analysis

Region 1 (a) Pb distribution marked by differences in intensity (concentration) and 

corresponding (b) distributions of principle Pb components determined by PCA of multiple 

energy mapping. Spots 1-4 correspond to collected XANES. Scale bars are in units of microns.
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Figure 3.7 Normalized Pb-LIII ^-XANES

Normalized Pb-Lm ^-XANES spectra (solid lines) of Region 1 from the historic shooting range 

sample, spots 1-4 are denoted. Corresponding linear combination fits are shown in gray circle 

markers based on the reference spectra, which are shown as black solid lines.
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Figure 3.8 Sb K-edge EXAFS

Sb K-edge EXAFS spectra of samples collected from the historic shooting range (weathering 

crust and Region 1), a laboratory generated sample (Sb soil) and an unfired, new bullet. Empty 

gray circles correspond to experimental data and solid black lines represent best fit.
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Figure 3.9 Simplified weathering process of weathering bullets

Depiction of morphological and chemical constraints on the weathering of historic bullets.
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Table 3.1 Total metal concentrations in soil

Total metal concentrations for historic shooting range berm including lower limit of detection 

(LLD) for the analytical method.

Amount Unit +/- LLD

Al2O3 14.29 wt. % 0.01 7.35
CaO 1.86 wt. % 0.01 /

Fe2O3 5.49 wt. % 0.01 1.30

SiO2 57.78 wt. % 0.02 14.53
As 17.37 mg/kg 1.81 10.06
Ba 789.19 mg/kg 3.21 /
Cr 122.10 mg/kg 1.21 2.98
Cu 32.99 mg/kg 0.53 1.28
Mn 578.01 mg/kg 2.94 5.47
Ni 31.41 mg/kg 0.51 1.30
Pb 77.91 mg/kg 0.79 2.47
Rb 82.59 mg/kg 0.24 0.79
Sb 8.43 mg/kg 1.50 5.91
Sn 7.74 mg/kg 1.04 3.43
Sr 206.25 mg/kg 0.30 0.54
Ti 9684.35 mg/kg 7.21 6.10
U 6.20 mg/kg 0.55 1.72
V 112.84 mg/kg 1.15 4.45
Zn 66.18 mg/kg 0.37 1.07
Zr 402.74 gk

"a/m 0.35 0.87
'/' indicates LLD not calculated
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Relative mole percentages of Pb and Sb within chemically and morphologically distinct regions 

in a pristine 5.56 mm bullet and Region 1 of a spent bullet/soil thin section, analyzed by EMPA.

Table 3.2 Relative mole percentages of Pb and Sb

Sample/Region____________ Pb (mol %)* Sb (mol %)*
P r is t in e  B u lle t

Pb-rich rim** 96 4
Slug** 87 13
Pb sphere 100 0
Sb hotspot in Pb-rich rim 12 88
Sb hotspot in slug 60 40

R e g io n  1

Pb-rich rim** 93 7
Slug** 86 14
Pb sphere 100 0
Sb hotspot in Pb-rich rim 3 97
Sb hotspot in slug 4 96
Alteration crust matrix 100 0
Pb sphere in alteration crust 100 0
*Mol % was calculated from standardized, normalized EDS or WDS 
analyses
** Data was collected from large areas that include both Pb spheres and 
Sb-rich hotspots
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Linear combination fitting results for Region 1 from the historic shooting range berm using

reference spectra. Sum (%) refers to the actual sum of the partial contributions of reference

2 2spectra for the overall best fit. X  and reduced X  are derived from the fit refinement process. 

Pb(0) = Metallic Pb from a new bullet, PbO = Litharge, C = Cerussite, H = Hydrocerussite, 

‘Ferri’ refers to Pb(II) sorption model compounds with Fe oxides.

Table 3.3 Fitting parameters for LCF of Region 1

Sample name Pb(0) PbO C H Ferri* sum (100%)
2

X

2
Xd.er

Reg 1-1 32 (1) 42 (1) 28 (1) 102 1.4E-02 1.0E-04
Reg 1 -2 88 (1) 15 (1) 103 7.4E-03 5.5E-05
Reg 1-3 52 (1) 51 (1) 103 1.4E-02 1.0E-04
Reg 1-4 27 (1) 29 (1) 46 (1) 102 1.2E-02 9.0E-05

Weathering Crust 26 (1) 54 (1) 23 (1) 103 1.2E-02 9.1E-05
*Refers to Pb(II) sorption product with synthesized Fe(III) oxides 
(#) Refers to linear combination fitting error
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Fitting parameters and EXAFS results for historic shooting range samples. Fitting was done in 

R-space, k-weights of 1,2 and 3 were fitted simultaneously and the amplitude reduction factor 

(S0) was set at 0.97.

Table 3.4 Fitting parameters for EXAFS analysis

Sample En(eV) Arrange J?-range (A) Shell CNd R ( A f a2 (A2)f AE„ (eVV J?-factorh R e d x 2' Ind. Pts.J
1 W eathering Crust 30,495 3.0 -10.5 1 . 1 - 4  S b-0 5-3(1) 1.99(2) 0.002(2) 11(2) 0.007 62.9 14

Sb-Fe 3(1) 3.15(3) 0.006(8)
’Sb soil 30,492 3.0 - 9.0 1 - 5 Sb-O 2.6(8) 1.96(3) 0.002(4) 10(4) 0.06 30.1 15
Region 1-4 30,492 3.0 - 9.0 1 - 4.5 S b -0 3.1(2) 1.97(3) 0.005(4) 7(3) 0.03 45.4 13
a Weathering crust surrounding approx, 15 bullets from the historic shooting range site, removed and consolidated 
b Metallic Sb powder sorbed onto local, uncontaminated soil adjacent to the historic shooting range site 
c Sb hotspot from Region 1-4 historic shooting range sample 
d Coordination number 
e Bond length
f Debye-Waller factor (mean-square amplitude reduction factor) including thermal and static disorder components 
g Energy shift between the theoretical and measured spectrum

^-factor =  £.  tdala.-fil.H 
L,data,2

‘ f c d r  j  aiiJp-N „ r

1 Independent po in ts — N var)
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Chapter 4 Attenuation of Pb and Sb in Shooting Range Soils by Fe Amendments 1

4.1 Abstract

Lead (Pb) and antimony (Sb) contamination pose a major environmental concern at firing 

ranges used by the U.S. Department of Defense (DoD), threatening training land sustainability. 

Methods for the stabilization of metal contaminants to prevent migration off site are of particular 

interest. In the present study, two remediation treatments (FeCl2 + CaCO3 and nanoscale zero- 

valent iron (NZVI)) were applied to column studies constructed from the same materials used to 

construct field-scale berms in Chapter 2. The columns were constructed using four well- 

characterized soils (sand, sandy loam, loamy sand and silt loam) to study Pb and Sb behavior.

The soil fraction and soil runoff were continuously monitored for three months before 

amendment addition and 10 months afterward using bulk and micro-scale techniques for both the 

liquid and solid phase. We found that Sb was more mobile than Pb in all soil systems and 

primarily present in the dissolved fraction, whereas Pb was associated with both soil organic 

matter (SOM) and Fe colloids. Dominant Pb solid phase species were determined to be Pb0, PbO, 

PbCO3 and Pb sorbed to Fe(III) oxides while Sb was present as fully oxidized Sb(V) in soil and 

soil solution. The nZVI addition had little effect on Pb and Sb immobilization in comparison to 

the control soil columns. The FeCl2 and CaCO3 amendment decreased Sb concentrations by 

>80% for all soil types and >96% reduction in the soil type end members. Lead was more 

mobilized due to an initial drop in pH, but additional soil treatments have the potential to be 

effective for system-wide immobilization with adequate additions of CaCO3 buffer.

1Barker, A.J., Douglas, T.A., Spaleta, K.J., Trainor, T.P. Attenuation of Pb and Sb in shooting range soils by Fe 
amendments. Prepared for submission in Geochimica et Cosmochimica Acta.
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4.2 Introduction

The remediation of Pb and Sb in shooting range soils has been the subject of recent 

studies due to the overwhelming amount of ammunition deposited on military training lands 

(Jardine et al., 2007; Conesa et al., 2010; Griggs et al., 2011; Moon et al., 2013a-c; Dorjee et al., 

2014). The production of ammunition accounts for a large portion of the yearly Pb and Sb 

consumption with the U.S. Department of Defense (DoD) expending more than 2 million pounds 

of Pb annually (ITRC, 2003). Lead and Sb comprise the bulk of a bullet core. Antimony is added 

to Pb in bullets as a hardening agent and accounts for anywhere between 0.7 Sb wt.% (Randich 

et al., 2002) to 1.9 Sb wt.% (Laporte-Saumure et al., 2011) to 2-5 wt.% reported by Johnson, et 

al., 2005 with Pb reported at 93.1 wt.% of the bullet mass (Laporte-Saumure et al., 2011). A 

large portion of the ammunition produced end up in outdoor shooting ranges and small arms 

training areas (Basunia and Landsberger, 2001; Cao et al., 2003; Hardison et al., 2004; Johnson 

et al., 2005; Rooney et al., 2007; Ackermann et al., 2009; Str0mseng et al., 2009; Martin et al., 

2013). Concentrations of Pb in shooting range soils containing bullet fragments have been found 

to range from approximately 50,000 -  500,000 mg/kg with Sb concentrations ranging from 

approximately 1 -  17,500 mg/kg (Manninen and Tanskanen, 1993; Basunia and Landsberger, 

2001; Knechtenhofer et al., 2003; Johnson et al., 2005; Dermatas et al., 2006; Spuller et al.,

2007; Robinson et al., 2008; Sanderson et al., 2013). Since Pb and Sb are both toxic and Sb is a 

suspected carcinogen (US EPA, 1979; IARC, 1989; Rooney et al., 1999; WHO, 2003), there is a 

risk of contamination to groundwater, surface water, local plants and animals all of which 

culminate in the need to minimize adverse environmental impacts (US EPA, 1994; Mellor and 

McCartney, 1994; Rooney et al., 1999; Martin et al., 2013).
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Understanding the speciation of both Pb and Sb contamination in the environment is 

critical for predicting the overall mobility in addition to evaluating the potential for off-site

migration. Lead is typically found in the environment in one oxidation state, Pb(II), and the

2+
activity of Pb2+ in solution has been shown to be limited in shooting range soils by secondary 

minerals phases (i.e. PbCO3; cerussite, Pb3(CO3)2(OH)2: hydrocerussite, PbO polymorphs; 

massicot and litharge, and PbSO4;anglesite) that form as an alteration crust around deposited 

bullets (Chen et al., 2002; Cao et al., 2003; Hardison et al., 2004; Vantelon et al., 2005). These

secondary mineral phases are in addition to any amorphous species that may form as a result of

2+
Pb in solution having a strong affinity to soil organic matter, clays and iron (Fe) or manganese 

(Mn) oxides (Manceau et al., 1996; Mozafar et al., 2002; Bargar et al., 2004). Antimony 

primarily exists in the environment with an oxidation state of either +3 and/or +5 and, similar to 

Pb, has also been shown to have an affinity for natural sorbents present in soil, particularly, Fe, 

Mn and Al hydr(oxides), clay minerals, organic ligands and humic acids (Thanabalasingam and 

Pickering, 1999; Johnson et al., 2005; Tighe et al., 2005; Ilgen and Trainor, 2012; Ritchie et al., 

2013).

Various environmental conditions will affect the overall speciation of both Pb and Sb in a 

particular system; therefore remediation techniques must have a specific strategy for targeting 

any or all of these potential species. In addition, remediation strategies designed for small arms 

ranges must be able to limit both Pb and Sb mobility, which is complicated due to Sb being an 

oxyanion and Pb a cation in soil systems. Many strategies have been studied to limit Pb mobility 

including additions of phosphate to form insoluble lead-phosphate compounds (Jardine et al., 

2007), carbonate to buffer the pH and form less soluble lead-carbonate phases (Spuller et al., 

2007; Griggs et al., 2011), and red mud, fly ash, oyster/mussel shells, cow bone and biochar to
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reduce metal availability (Lee et al., 2009; Moon et al., 2013a-c; Ahmad et al., 2014). Overall, 

the soil additions limited Pb mobility, biochar was shown to also limit Sb mobility to some 

extent, but cow bone and mussel shell increased Sb mobility (Ahmad et al., 2014). Antimony 

may also be displaced from solids via competition with other anionic species such as phosphate 

or carbonate, thus increasing the mobility (Conesa et al., 2010). Therefore, it is essential to apply 

the appropriate amendment that immobilizes both Pb and Sb.

While Pb amendment strategies are the focus of numerous studies, a lesser number of 

have focused on limiting Sb mobility in shooting range soils and the majority have centered 

around natural attenuation via sorption complexes with Fe present in soil (Scheinost et al., 2006; 

Mitsunobu et al., 2010) and manual Fe soil additions (Spuller et al., 2007; Okkenhaug et al., 

2016). Antimony concentrations in solution have been shown to be reduced with the addition of 

polyaluminum chloride, ferric chloride and freshly precipitated ferrihydrite (Bagby and West, 

1995; Kang et al., 2003; Guo et al., 2009). In addition, iron oxyhydroxides have the ability to 

form surface complexes with both cationic and anionic species due to variable charged surface 

groups (Dzombak and Morel, 1990), giving them potential to work as an effective sorbent for 

both Pb and Sb (Belzile et al., 2001; Leuz et al., 2006; McComb et al., 2007).

In more recent studies, nano-scale zero valent iron (nZVI) has been shown to be effective 

at removing metals from groundwater and aqueous solutions, including antimony(III/V), lead(II) 

arsenic(III/V), chromium(III/VI), and uranium(VI) (Ponder et al., 2000; Kanel et al., 2005; 2006; 

Manning et al., 2007; Dorjee et al., 2014; Sheng et al., 2014). Nanoscale Fe particles are flexible 

for use as remediation solution because they are cost-effective, have a large surface area (Sun et 

al., 2006 showed synthesized nZVI particles with an average surface area of 14,500 m /kg) and 

high surface reactivity (Zhang, 2003). Dorjee et al. (2014) found that nZVI has a strong potential
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to reduce Sb(V) to Sb(III) and the ability of nZVI to adsorb Sb is minimized in the presence of 

soil-derived humic acid. Kanel et al. (2005; 2006) showed that 25% of As(V) was reduced to 

As(III) by nZVI after 90 days and As(III)/As(V) adsorption kinetics were rapid (within minutes) 

and both species formed inner-sphere surface complexes with nZVI (in separate systems). 

Manning et al. (2007) saw reduction of Cr(VI) to Cr(III) along with the production of highly 

insoluble Cr species as a result of nZVI addition. Sun et al. (2006) showed nZVI has dual 

chemical properties of possessing a core of zero-valent Fe (~44%) acting as a reductant and a 

shell of mainly iron oxides (FeO, ~56%) acting as a sorbent.

In the present study, we employed two types of Fe amendments to separate, duplicate soil 

columns containing spent bullet shooting range soil. The amendments were composed of: (1) a 

slurry solution of nZVI and (2) an FeCl2 solution with CaCO3 to act as a pH buffer. Twelve 

acrylic soil columns were loaded with four types of characterized Alaskan soil (loamy soil, sandy 

soil, sandy loam and loamy sand) that were fired into with 5.56 mm bullets in a controlled firing 

event in central Alaska prior to loading the columns, results outlined in Chapter 2. Once the 

columns were loaded they were continuously reverse-flushed with an electrolyte solution to 

simulate ‘wet’ and ‘dry’ events typically seen throughout the summer in Alaskan conditions. The 

runoff was monitored for major and minor elemental species and the four types of soil were 

studied in triplicate for three months. This was part of a larger, ongoing study, which compares 

laboratory soil columns in a relatively controlled environment to paralleled field berms at a 

military shooting range site on Ft. Greely, Alaska in Delta, Junction, AK. Iron soil amendments 

were added to 8 of the soil columns (nZVI added to the 4 types of soil, FeCl2 added to the 4 

types and 4 columns remaining that were unamended used as controls) 4 months into the column 

study and allowed to react for 10 months with analogous raining and drying events as the
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unamended columns. After completion of the runoff study, the soil from all columns was 

analyzed for bulk metal concentrations and a subset of the soil from each column was analyzed 

for Pb and Sb speciation using synchrotron x-ray absorption spectroscopy (XAS). The overall 

goals of this study were to investigate the speciation and mobility of Pb and Sb as a function of 

saturation time and soil type in recently contaminated soil and determine the overall 

effectiveness of two Fe amendments on limiting the mobility of both Pb and Sb in all of our 

respective systems.

4.3 Methods

4.3.1 Experiment Design and Setup

4.3.1.1 Soil

Soil material was contaminated from a controlled firing event in conjunction with a bullet 

deposition test carried out by Cold Regions Test Center (CRTC) on the Donnelly Training Area 

(DTA), Ft. Greely, Alaska. Cold Regions Test Center designed a bullet trap that guided fired 

rounds into plastic buckets (Home Depot) filled with 10 liters of the soil that would be utilized in 

the columns. Fifty bullets were fired into each type of soil using 0.22 caliber (5.56 mm) rounds. 

The buckets were frozen and stored in a cold room until the construction of the columns.

The frozen soil was allowed to thaw for 2 hours to ensure uniform consistency and 

transferred onto a plastic liner sheet (Home Depot) for mixing. The soil was thoroughly mixed 

by hand using nitrile gloves (VWR International, Radnor, PA) and then shaped into a cone in the 

center of the sheet. The cone was flattened and divided into four even quarters separate from
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each other. Two opposite quarters were removed and mixed together and then the two remaining 

quarters. This process was repeated 10 times for each of the four types of soil.

4.3.1.2 Columns

Twelve acrylic columns purchased from Soil Measurement Systems, LLC (Tucson, 

Arizona) were packed with the 4 types of soil (silt loam, loamy sand, sandy loam and sand) in 

triplicate. The column setup scheme is presented in Table 4.1. Each column was packed with soil 

in centimeter increments using the bottom of a heavy weighted glass 250 mL beaker until 0.1 m 

was reached. Columns were saturated upwards (reverse-flow) from the base using 125 mL of 

electrolyte solution using a peristaltic pump and Tygon tubing (Saint-Gobain Performance 

Plastics, Courbevoie, France) at a flow rate of 2 mL/min. The electrolyte solution was modified 

and prepared according to the fluid chemistry in Bormann et al., 1989 and the fluid chemistry 

monitored for background metal concentrations of Pb and Sb. Reagent grade Na2SO4, KCl, 

CaCl2 2H20, MgCl2 6H2O, and NaCl (J.T. Baker, Center Valley, PA) in respective masses of 

0.06, 0.01, 0.01, 0.02, 0.01 g were dissolved in ‘DI water’ (ultrapure water with a resistivity of

18.1 MQ (Barnstead Nanopure, Thermo Scientific, Waltham, MA) and diluted for total 

concentrations of 0.22 and 0.26 mg/L for Na+ and Cl-, respectively (1:100 dilution). The pH was 

adjusted to 7 ± 1 with ultrapure HNO3 (BDH Aristar Plus, Poole Dorset, UK).

Columns were allowed to sit for 1 hour fully saturated and then drained. That initial 

drainage sample was ‘runoff’ sample 1. The columns were repeatedly flushed and drained for the 

next 100 days for a total of 15 runoff sampling events. Each sampling event had various 

‘saturation’ times and ‘drying’ durations to simulate raining and drying events. After the 

collection of runoff sample 15, two types of Fe amendments were introduced after runoff sample
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15 to a subset of the columns (5-8 and 9-12) representing the duplicates of the 4 main soil types 

in columns 1-4. The saturation durations for the remainder of the runoff samples (16-30) were 

kept constant at 1 hour. Nano-scale zero-valent Fe (nZVI) was added to columns 5-8 and 

FeCl2/CaCO3 was added to columns 9-12. Both amendments were introduced to the column 

systems in reverse-flow in a slurry solution and allowed to fully saturate the soils. For columns 

5-8: 1 g of nZVI was added to 125 mL of DI water and introduced. For columns 9-12: 1 g of 

Fe(II) in the form of FeCl2 was added to 62.5 mL of DI water and introduced then immediately 

0.75 g of CaCO3 in 62.5 mL of DI water was introduced after the Fe(II). The columns with 

additions were allowed to sit and the column sampling restarted when the columns were fully 

dried after 22 days, giving the amendments sufficient time to saturate the soils and replicating the 

ideal amendment application in field conditions. The columns were then flushed and drained 1 

hour later and that runoff sample was sample 16. The columns were saturated and drained 

repeatedly until the total runoff sample reached 30. In total, the columns reacted for 412 days 

with 30 runoff samples.

4.3.2 Sample Analysis

4.3.2.1 Solid Phase Characterization

Soil samples were collected of the 4 types of soil prior to the bullet deposition and upon 

completion of the experiment; the soils were allowed to dry for 24 hours, removed from the 

columns and spread onto separate plastic liners. Complete description of the identification of 

crystalline phases, total metal concentrations and Pb and Sb distribution in the column soil can 

be found in section 2.3.3.2.
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All runoff samples were collected from each column using acid-washed (rinsed with 25 

mL of 2% HNO3) HDPE trace-metal grade wide-mouth bottles. From that bottle, aliquots were 

dispersed for analysis. The procedure for determine element concentration in the runoff is 

outlined in section 1.3.3 and the pH and Sb speciation of each runoff sample was analyzed 

according to the procedure in section 2.3.3.1.

Raw runoff samples were collected in 15 mL amber centrifuge tubes (VWR International, 

Radnor, PA) and analyzed for size fraction analysis using a Postnova AF2000-FFF (Postnova 

Analytics, Landsberg, Germany) coupled to a UV-VIS diode array detector (UV-DAD; 

Shimadzu SPD-M20A). The setup was made metal free by using plastic PEEK fittings. The 

channel was equipped with a 500 |im spacer and a 300 Da nominal cut-off polyethersulfone 

(PES) membrane and the absorption wavelengths on the UV-DAD detector were set 

independently to 254 and 284 nm. The carrier solution was an 8 mM NaCl (J.T. Baker, Center 

Valley, PA) solution prepared with DI water and filtered to 0.45 |im using vacuum filtration. 

Sample aliquots of 0.5 mL were introduced into the sample loop using a glass syringe (Postnova 

Analytics) at 0.3 mL/min and injection time was typically 9 minutes. The method utilized a 

power decay flow consisting of 4 mL/min for 10 minutes then decayed to 0.1 mL/min within 25 

minutes and stayed constant for 25 minutes. Detector flow was set at 0.3 mL/min. Bovine serum 

albumin (BSA) was used to calibrate the channel thickness. To investigate colloid-element 

associations, the FFF was also coupled in-line to an ICP-MS (instrument described previously in 

section 1.3.3). The outflow from the UV-DAD detector was introduced to the ICP-MS along 

with a 50 ppb Indium standard (2% HNO3) and a blank (DI water) was analyzed after every 

sample. Elements measured include Pb, Sb, Fe, Ni, Cu for the sandy loam and Pb, Sb, Fe, Ca, K,

4.3.2.2 Column Effluent
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Na, Mg, Mn and Zn. Raw counts were divided by the internal standard and normalized to 1 for 

each sample.

4.4 Results

4.4.1 Pristine Soil Characterization

Pristine samples of the four soil types (silt loam, sand, loamy sand and sandy loam) 

before the controlled firing event were analyzed for soil texture, bulk elements, background 

concentrations and mineral phases. Tabulated results can be found in section 2.4.1.

4.4.2 Total Elements in Runoff

Analysis of the column runoff highlights unique solution behavior for both Pb and Sb in 

relation to soil type. Antimony concentrations were the highest in the sand column effluent (sand 

‘a’), and lowest in the silt loam and loamy sand draining columns (silt loam ‘b’ and loamy sand 

‘a, b, c’). Results are shown in Figure 4.1 and depicted using box plot diagrams for each 

triplicate column as a function of soil type. Statistically significant differences between columns 

are indicated using lettered levels. In general, the results from the soil column analysis showed 

similar behavior between triplicates columns (levels connected by the same letter are not 

significantly different at p < 0.05), except for the sand column ‘a’, which contained the highest 

concentrations, overall. The solution behavior of Pb in relation to soil type is different than the 

behavior observed for Sb. Lead concentrations were highest in the effluent draining from silt 

loam column ‘a’ and lowest in the effluent draining from sand column ‘b’ (Figure 4.2). Despite 

differences between silt loam ‘a’ and sand ‘b’ end members, distributions of Pb for the mixed
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soil effluent and the other end member columns were not statistically different at p <0.05 (Figure 

4.2). Lead distributions of the column effluent showed no difference between the triplicate 

analyses within the same soil type. The column runoff analysis highlighted major differences 

between Pb and Sb mobility. Antimony concentrations are higher than Pb in the column runoff. 

Particularly for sand and the sand mixed soils, the concentration of Sb is an order of magnitude 

higher than Pb in some samples, demonstrating the tendency of Sb to become mobilized in 

shooting range systems more so than Pb, despite Pb comprising ~90% of the bullet mass. The 

higher content sand soil promotes the retention of Pb, whereas the higher content silt loam and 

loamy sand soil promotes the retention of Sb.

The addition of the two Fe amendments to the soil columns caused varying responses to 

Pb and Sb retention versus mobilization. Antimony was immobilized in systems implementing 

the FeCl2/CaCO3 amendment (Figure 4.3). Concentrations of Sb for the soil types in the sample 

prior to the Fe addition were approximately 200 |ig/L for the silt loam draining systems and 1000 

|ig/L for the sand draining system and both systems saw an instantaneous decrease in 

concentrations (Figure 4.3). Figure 4.3 shows Sb concentrations as a function of sample for the 

end member soil types only (mixed soils exhibited similar behavior as their respective end 

members). The addition of the nZVI had moderate effect on immobilizing Sb, particularly in the 

silt loam runoff, but had little effect in the sand soil runoff (Figure 4.3). The general decrease in 

Sb concentrations in the unamended systems could be attributable to the lower saturation times 

for this phase of the experiment, where the saturation was kept constant at 1 hour per sampling 

event, which in the previous 15 samples, saturation time varied. It could also be due to natural 

fluctuations in the soil solution as a result of the dissolution of small bullet fragments.
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Concentrations of Pb were initially mobilized upon the addition of FeCl2/CaCO3 

amendment. The rise in concentration is consistent with an observed drop in pH caused by not 

adding adequate amounts of CaCO3 in excess to buffer the pH drop caused by the hydrolysis of 

Fe(II) when added to water. Once the pH began to rise and stabilize, concentrations of Pb were 

reduced for the remainder of the sampling with the exception of Pb in the loam systems after 

sample 20 (Figure 4.4). The addition of the nZVI amendment also mobilized Pb initially in the 

silt loam draining columns, but not the sand columns. However, Pb concentrations in the sand 

columns remained similar to the Pb concentrations in the control columns (Figure 4.4). Overall, 

the Pb concentrations were lowest in the control columns, except for the silt loam draining soils 

with the nZVI addition after sample 21.

4.4.3 Colloidal Fraction in Column Runoff

Size fraction analysis was performed on a mixed column runoff sample in order to 

minimally investigate the presence of colloids as any elemental association with colloids would 

indicate colloid-facilitated mobility. The FFF fractogram of UV signal of the mixed soil runoff is 

shown in Figure 4.5a with the corresponding element counts that are all normalized to 1 shown 

in Figure 4.5c. The void peak (0-100 seconds) is indicative of all particles passing through the 

300 Da membrane and is co-eluted with Cu, Fe and Sb. In addition to the void peak, there are 

increases in UV detector signal approximately 200, 600 and 1200 seconds in the UV spectra 

(Figure 4.5a). The shoulder peak at 200 seconds (visually expanded in Figure 4.5f) correlates 

with peaks of Ni and Pb counts and is mostly likely indicative of SOM particles that are 

absorbent of UV light, particularly 254 nm wavelength (humic/fulvic acids). The increase in UV  

detector signal at this range of an elution time is often attributed to organic particles that absorb 

UV light present in the sample (Regelink et al., 2013). Further methods need to be carried out to
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characterize the exact colloidal species in relation to standards and in order to differentiate 

between humic and fulvic acids based on molecular weight size standards. The peak at 600 

seconds is correlated with primarily Fe and Pb and is indicative of an inorganic Fe colloid. The 

counts of Fe versus Pb are shown in 5e, which indicates that Fe concentrations are greater than 

Pb when the signal is not normalized. The peak from 1200-3000 seconds is broad and poorly 

separated indicative of a wide range of colloidal sizes and there is likely conglomeration of 

particles. This broad peak when coupled to the ICP-MS shows increases in Ni, Cu and Fe 

concentrations. Antimony and Pb do not seem to be co-eluted with this peak. The sandy loam 

column runoff contained 4 characteristic peaks: (1) void peak co-eluting with Sb, Fe and Cu (2) 

SOM particles co-eluting with Pb and Ni (3) colloids correlated with Pb signal and (4) colloids 

correlated with Ni, Cu and Fe signal. The SOM particle separation is difficult to detect on the 

FFF fractogram, but clear increases with Pb and Ni counts were detected in the ICP-MS 

normalized signal.

Size fraction analysis was also performed on a silt loam draining runoff sample from the 

Fe(II) amended column (Column 9). One of the major differences upon the addition of Fe(II) 

amendment was the increase in the void peak, indicating higher amount of dissolved species. 

There is evidence of Pb, Zn, Sb, Mg, K, Fe, Ca and Al in the dissolved fraction. The FFF 

fractogram of UV signal of the loam soil upon the addition of Fe(II) amendment is shown in 

Figure 4.5b with the corresponding element counts that are all normalized to 1 shown in Figure 

4.5d. A greater number of elements were analyzed after the addition of Fe, but there is evidence 

that Pb, Zn, Sb, Mn, Mg, K, Fe, Ca and to a lesser extent Al are all transported by SOM particles. 

Small increases in element count (normalized) can be seen in Figure 4.5d in relation to the 

increase in UV detector signal seen in Figure 4.5b. Further methods need to be carried out to
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characterize the exact colloidal species in relation to standards and in order to differentiate 

between humic and fulvic acids based on molecular weight size standards. There is also an 

increase in Pb counts at approximately 800 seconds, similar to what was detected for the sandy 

loam soil (Figure 4.5c), corresponding with an increase in UV signal that was difficult to 

distinguish due to the large void peak, but is depicted in Figure 4.5g. The increase in Pb 

concentrations in relation to the location of the peak in the UV detector signal is most likely Fe 

colloids similar to the particle separation in the sandy loam soil runoff. Counts of Fe when not 

normalized are shown in Figure 4.5h and are indicative of a small increase in Fe around the same 

time as Pb. The addition of the Fe(II) amendment changed the particle size distribution of the 

system by increasing the dissolved species in the soil runoff.

4.4.4 Speciation

4.4.4.1 Pb Speciation

The predominant Pb species present in the column soil fraction were most similar to Pb, 

PbO, PbCO3 and Pb sorbed to the surface of Fe(III) oxides. The speciation of Pb was 

investigated using micro-focused Pb-Lm XANES on polished thin sections collected from the 

columns after the flushing experiment. Linear combination fitting for Pb XANES spectra 

determination was carried out using a set of standards and model compounds, shown in Figure

4.6 with corresponding fit parameters shown in Table 4.2. Overall, approximately 30 samples 

were analyzed and the samples with the best fits are presented (Figure 4.6) with consideration to 

represent the species distribution accurately among all samples analyzed. We were able to 

describe the sample XANES using various contributions of metallic Pb from the bullet alloy,

176



lead oxide (litharge), lead carbonate (cerussite) and laboratory-prepared Pb(II) sorbed to 

synthetic Fe(III) oxides.

While XANES does not yield direct information about the local structure and nearest 

neighbors of the absorbing Pb, the XRF maps displaying elemental associations show a 

widespread correlation between Pb and Fe (XRF maps shown in Appendix A-2). With respect to 

soil type, there was little distinction between the two end members, sand and loam, except for the 

greater presence of PbCO3 in sand (Table 4.2). The sand soil contained the highest 

concentrations of PbCO3 in comparison to the loam. One sample draining the silt loam soil 

contained detectable cerussite, but the amount used towards the LC fits is 10%. While XANES 

linear combination fitting has been shown to be approximately ±10% error (Foster et al., 1998), 

the inclusion of cerussite is still worth mentioning as the component contribution borders on 10% 

and likely plays a role in the weathering of bullets. Hydrocerussite did not significantly 

contribute to the overall best fits. With respect to Fe amendments, we saw little distinction in the 

near edge absorption spectra for Pb in the unamended, nZVI and FeCl2/CaCO3 columns, 

indicating Pb and Fe associations are present within all soil types, regardless of amendment.

4.4.4.2 Sb Speciation

The speciation of mobile Sb species was investigated for runoff sample 1 and 2, results 

shown in Appendix B, Figure 4.13. Standards of 100 |ig/L Sb(III) and Sb(V) are shown in dotted 

lines with the samples shown in solid lines. Analysis of the sand and sandy loam runoff samples 

were fully oxidized from Sb(0) to Sb(V) within 1 hour and Sb(III) was never detected. Antimony 

oxidation is slower in the loam-containing columns, but still on the order of hours. There is 

detectable Sb(III) in the loam and loamy sand runoff of one of the triplicate set of columns and is
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slightly above the detection limit of the analytical method for the LC-ICP-MS. Concentrations 

are estimated between 1-5 |ig/L, in comparison to ~500 |ig/L Sb(V) in the corresponding sample. 

The rapid oxidation of Sb is expected to be fast as observed in Ilgen et al., 2014 for similar 

samples.

Antimony LIII-edge absorption energies for the column samples were consistent with 

Sb(V) coordination. Sample energies ranged from 4139.3 eV to 4143.0 eV, while absorption 

energies for Sb(V) standards analyzed ranged from 4140.9 to 4143.6 eV. X-ray fluorescence 

maps, absorption edge energies and XANES spectra for the standards and samples are shown in 

Appendix B, Figure 4.14 through Figure 4.15 and Appendix B, Table 4.4. Metallic Sb edge 

energy is 4132.0 eV and Sb(III) standards range from 4133.1 to 4133.4 eV. The detection of 

Sb(V) in the column soil fraction is consistent with liquid speciation data. Sample spectra was 

not fit using LCF due to the majority of the spectra obtained was generally noisy due to the low 

overall concentrations and diffuse distribution of Sb in the samples.

Antimony distribution in the XRF maps show correlations may exist with other elements 

in the soil, particularly Fe, but Sb Lm-edge signal is weak making precise characterization 

difficult in our systems. The Sb, Ca and Fe distributions for a silt loam column sample are shown 

in Figure 4.7a along with a micro XRF map of the smaller area (b). Antimony is distributed in 

small accumulation spots diffuse throughout the soil fraction. Calcium fluorescence is shown 

because studying Sb Lm-edge in soil samples can be difficult due to abundance of Ca typically 

found in natural soil samples. The Sb Lm-edge is at 4132 eV, whereas the Ca K-edge is at 4038.5 

eV. This difference in less than 100 eV leads to some overlap in the fluorescence channel data. 

Filtering and masking techniques within the program MicroToolKit (Webb, 2005) were 

implemented in an effort to separate Sb and Ca fluorescence overlap culminating in the color
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differentiation between Sb, Ca and Fe in the tri-color plots (Figure 4.7), but the overlap is 

significant and elemental associations could not be successfully characterized.

4.5 Discussion

4.5.1 Trends Between Saturation Time and pH with Pb and Sb Mobilization

Concentrations of Pb increased with increasing saturation time for the majority of the soil

types, except for the 100% sand systems where Pb concentrations decreased at approximately

120 hours. Lead concentrations as a function of saturation time are shown in Figure 4.8. Lead

concentrations are grouped by soil type and in order of increasing % of sand content. For the

remainder of the soil types (silt loam, loamy sand and sandy loam), Pb concentrations continue

to increase as a function of increasing saturation time, indicating Pb in soil solution is likely not

saturated even after 120 hours. The decreasing concentration of Pb in the sand soil after 120

hours of saturation time is likely a result of saturation of Pb in solution and subsequent

precipitation and/or sorption processes occurring between 80 and 120 hours of saturation.

Cerussite and Pb sorbed were the most common species found in the sand soil column samples.

In addition, the sand soil has a larger fraction of carbonates than any of the other soils (0.75% for

sand versus 0.00% determined by Midwest Laboratories, Inc. Omaha NE), possibly explaining

why Pb saturation only occurs in the sand soils after 120 hours. Elzahabi and Yong (2001)

showed that the presence of carbonates in the soil increased the retention of heavy metals and

also enhanced the buffering capacity of the soil. This could explain the decrease in Pb

concentrations in primarily the sand soil after 120 hours saturation time. There are initial

increases and decreases in Pb concentrations before the 80 hour mark in all soil types, which are
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likely not explained by carbonate availability. Contaminated soils have been shown to have high 

solubility initially, due to the small fragments and small particle sizes derived from deposition 

(Rieuwerts et al., 1998). This could explain the initial increase of Pb dissolution in the column 

runoff samples regardless of saturation time. However, it is likely that once the soils release the 

initial outflux of Pb to solution, concentrations will decrease as precipitation and sorption 

reactions occur. For the four soil types, these reactions take place faster in the sand soil than the 

silt loam-containing soils and Pb becomes saturated quicker.

Antimony enters solution and becomes saturated in soil solution to a greater extent than 

Pb (Figure 4.9). For the most part, Sb concentrations increase with increasing saturation time and 

decrease after approximately 120 hours. In two out of the three triplicate measurements of the 

sand soil (Figure 4.9a, b), Sb concentrations did not decrease substantially after 120 hours 

saturation time in comparison to the remaining sand system. It appears that Sb concentrations 

decrease at 80 hours saturation time and then Sb is released into solution to a greater extent 

between 80 and approximately 120 hours saturation time. It is likely that Sb is released in pulses 

to the soil solution considering the Pb alloyed core is comprised of pockets of Sb instead of 

being uniformly dispersed (see Chapter 3, Section 3.5.1). For the remainder of the triplicate soil 

column runoff measurements, Sb concentrations decline after 120 hours saturation time. The 

decrease in Sb concentration as a function of saturation time suggests Sb is saturation in soil 

solution, however little Sb in the solid phase was detected by XANES analysis, potentially 

signifying that Sb accumulation in the soil fraction requires time. In a waterlogging pot 

experiment, Wan et al. (2013) observed decreases in Sb concentration in soil solution as a 

function of saturation time due to reduction of Sb(V) to Sb(III). However, the timeframe of this 

experiment was on the order of months of waterlogging in comparison to a maximum of 120
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hours in this study. The first measurement in Wan et al. (2013) after the initial baseline 

measurement was 6 days, where total Sb decreased in the systems containing plants, indicative of 

Sb(III) uptake primarily by the roots. In the system containing no plants, the total Sb 

concentrations only decreased by 5 |ig/L and are well within error bars. While this study 

measured only the first 2 column runoff samples (until the complete oxidation of Sb(III) to 

Sb(V) was measured), it is unlikely that the formation of Sb(III) occurred in the column systems 

as a result of saturation considering Sb(III) was first observed in Wan et al. (2013) after 5 weeks 

of soil waterlogged conditions. Comparing Sb behavior as a function of soil type, concentrations 

increase initially in the order sand > sandy loam > loamy sand > silt loam, indicating Sb enters 

into soil solution faster and to a greater extent depending on the % of sand in the soil. For the 

sandy loam soil, there are two major spikes in Sb concentration that occur at low saturation times 

(Figure 4.9b and c). This is most likely due to the initial high solubility of species in 

contaminated soil due to the small fragments and small particle sizes derived from deposition 

(Rieuwerts et al., 1998).

Upon the addition of the Fe(II) amendment, the solution pH dropped to 3.15 (silt loam) to 

4.25 (sand). Lead and Sb concentrations behaved dissimilar when comparing the concentration 

as a function of pH in the Fe(II) amended columns. The log of the Pb and Sb concentrations are 

plotted as a function of pH of the column runoff in Figure 4.10. In general, Pb concentrations 

were negatively associated with pH, whereas Sb was positively associated. The decrease in pH 

caused by the hydrolysis of Fe in solution and lack of adequate carbonate buffer led to an 

increase in Pb concentration, which was not observed for Sb. This is supported by other studies 

that observed Sb mobility increasing with increasing pH (except for very acidic environments; 

pH <2 and environments with high phosphate fraction) (Johnson et al., 2005; Okkenhaug et al.,
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2016) and Pb mobility increasing with decreasing pH, similar to other metal cations in solution 

(Elzahabi and Yong, 2001; Cao et al., 2003; Rooney et al., 2007). For circumneutral pH ranges 

(6.5-8), the Pb concentrations are relatively stable and begin to increase below pH 6.5, indicative 

of Pb mobility at this pH regime. The availability of surface sites for sorption reactions from the 

addition of Fe(II) to the columns immobilized Sb regardless of a decrease in pH. For the most 

part the Sb concentrations are below detection limit (<0.1 |ig/L), but in the silt loam soil 

corresponding to pH of 3.15, Sb concentrations peak at approximately 1 |ig/L. This potentially 

indicates low pH may play a role in the mobilization of Sb, but this data point also corresponds 

to the sample immediately following the addition of the Fe(II) amendments, therefore it is also 

likely that the small peak in the log concentration is a result of the Fe addition requiring more 

than an hour time to be effective.

4.5.2 Dissolution of Sb Versus Colloidal Transport of Pb

The mobility of Pb in the mixed (sandy loam) column runoff is facilitated by colloidal 

transport, primarily SOM particles that absorb UV wavelengths at 254 nm and inorganic Fe 

colloids present in the soil solution. This is consistent with other studies that found Pb associated 

with colloidal sized particles (Denaix et al., 2001; Cao et al., 2003; Yin et al., 2010; Plathe et al., 

2013; Ogawa et al., 2014). In these studies, Pb was found to be associated with biocolloids 

(Denaix et al., 2001), Ti oxides (Plathe et al., 2013), humic acids (Tang and Weisbrod, 2009), 

Fe/Mn oxides (Ogawa et al., 2014) and present in the dissolved form (Yin et al., 2010). A portion 

of the studies only determined if Pb was associated with ‘colloid’ sized particles in general and 

did not investigate the composition of the particles directly (Cao et al., 2003; Yin et al., 2010). 

This study found minimal Pb present in the dissolved fraction, which is consistent with one study 

that found ‘Pb is only mobile when associated with colloids’ (Tang and Weisbrod, 2009).
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Instead, there were associations of Pb primarily with Fe colloids and SOM particles, to a lesser 

extent. Further methods need to be carried out to characterize the exact colloidal species in 

relation to standards and in order to differentiate between humic and fulvic acids based on 

molecular weight size standards.

Antimony in the column runoff (without Fe amendments added) is present primarily in 

the dissolved fraction (<300 Da), which is consistent with other studies that found Sb 

preferentially dissolved (Klitzke et al., 2012) and was more mobile than Pb (Ogawa et al., 2014). 

The study done by Ogawa et al. (2014) observed that Sb was transported further than Pb in 

shooting ranges and is ‘transported easily through water migration’ as an oxyanion, whereas Pb 

is transported by colloids. An overall depiction of the primary Pb and Sb soil solution fractions 

are shown in Figure 4.11. The sandy loam column runoff contains 4 characteristic soil solution 

fractions: (1) void peak co-eluting with Sb, Fe and Cu (2) SOM particles co-eluting with Pb and 

Ni (3) colloids correlated with Pb signal and (4) colloids correlated with Ni, Cu and Fe signal 

(Figure 4.5). Further methods need to be carried out to characterize the exact colloidal species in 

relation to standards and in order to differentiate between humic and fulvic acids based on 

molecular weight size standards.

While this study did not measure Al, Si or major ions (Ca, K, Mg, Na) in the total 

element counts for the sandy loam runoff sample, there could be contributions from these 

elements in the larger colloidal sized fraction indicative of clay mineral colloids. Regelink et al.

(2013) found small contributions of Fe to colloidal size fractions can indicate Fe that is 

structurally incorporated into clay minerals and the study also suggested that an increase in the 

number of particle sizes (broad peaks and conglomeration) was indicative of clay mineral 

nanoparticles in soil solution, which is consistent with the shape of the peak for the largest size
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fraction in Figure 4.5. This size fraction was associated with Fe, in addition to Ni and Cu. Both 

the colloidal facilitated transport of Pb and primarily dissolved fraction of Sb present in the 

mixed soil solution have implications on shooting range remediation overall. This study 

minimally investigated the separation of the colloidal fractions after the Fe amendments were 

added and the addition affected the overall fractionation of the colloidal particles present in that 

there was a greater dissolved fraction. We also found Sb correlations to SOM in the silt loam 

after the Fe addition, but not in the sandy loam before the Fe addition. While Sb is present 

primarily in the dissolved fraction, there could be some association to SOM that were not fully 

characterized in this study.

4.5.3 Unique Distributions of Pb Corrosion Products

The observation of unique Pb distributions across the soil types within the column 

samples significantly furthers the understanding of Pb speciation in relation to bullet weathering. 

Representative depictions of each type of distribution are shown in Figure 4.12. The XRF maps 

are plots of the relative fluorescence Pb signals with brightness correlating with signal intensity 

(high counts). The first characteristic Pb distribution can be characterized by small (~1-5 |im), 

discrete, intense Pb hotspots present scattered throughout the soil fraction. Each Pb hotspot 

typically contains various contributions from secondary weathering phases of PbO and/or 

cerussite. This study hypothesizes the small particle size and solitary distribution of the unique 

Pb0 hotspots causes it to weather rapidly, initially oxidizing to PbO and PbCO3. These metallic 

Pb deposits likely weather relatively quickly upon fragmentation, due to the small size (increased 

surfaces) and isolated nature of the metallic Pb deposits. We detected no hydrocerrusite in any of 

the column systems.
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Surrounding the Pb hotspots (Figure 4.12a) is a more diffuse distribution of Pb, further 

outlined in Figure 4.12b. This distribution was common throughout all samples and is 

characteristic of a Pb sorption corrosion product, typically best fit with Pb sorbed to Fe(III) 

oxides. The majority of these diffuse Pb distributions contain no Pb0 and are entirely comprised 

of oxidize Pb species (PbO, cerussite and Pb sorbed to Fe fraction) in varying percentages. This 

Pb distribution represents the traveling Pb species that was mobilized at one point, transported 

away from the parent source and subsequently precipitated as PbO and/or cerussite or adsorbed 

to the surface of Fe particles present in the soil fraction (or Fe amendment). This type of unique 

Pb distribution likely has major implications for long-term systems as the more Pb that is leached 

from parent bullet material; the greater the potential transport distance will be for Pb to be 

immobilized by surface sorption reactions.

The unique distribution outlined in Figure 4.12c was observed in the majority of samples 

containing fragments of Fe bullet core. The thin line of Pb on the surface of the Fe bullet core is 

likely there as a product of the fragmentation process and has since created a ‘weathering crust’ 

on the surface. This distribution has weathered since exposure and often contains secondary 

mineral phase, PbO and cerussite, as well as Pb sorption products distal to the crust. For the most 

part, these Pb distributions are likely a remnant of the fragmentation process and were observed 

in a variety of samples. When a select bullet impacts soil the Fe core can break away from the 

Pb-alloyed slug at the weak interface resulting from the casting process. As a result, some of the 

Pb0 remains intact and adjacent to the Fe core. We hypothesize the sudden exposure of this Pb0 

creates a weathering front where there is a clear separation between zero-valent Pb and Pb(II). 

The best fit for the Pb species adjacent to the Pb0 is comprised of PbO, cerussite and Pb sorbed to 

Fe.
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The fourth type of Pb distribution distinguishable from visual and spectral comparison of 

the columns is Pb encrusted on the surface of mineral grains present in the soil fraction (Figure 

4.12d). This LCF for this type of Pb distribution predominantly features of sorbed Pb and in 

particular, Pb sorbed to the fine fraction of the silt-loam soil type. The model compound ‘Pb 

sorbed to fine fraction’ was used in addition to Pb sorbed to Fe(III)oxides in order to embody an 

umbrella ‘Pb sorption’ term, which may include Pb sorbed to Fe, clay particles, humics, organics 

and/or other surfaces present in soil. While the LCF for this type of Pb distribution are quality 

fits to the collected data, the summations are the lowest and highest out of all of the spectra 

collected (ranging from 88.6-104.3%), indicating there is potentially a missing contribution from 

the fitted spectra. The encrustation and immobilization of Pb via mineral grains or surface 

coatings on mineral grains acting as a sink has been observed previously (Freedman et al., 1994; 

Coston et al., 1995; Fuller et al., 1996) and has potentially important implications for future 

shooting range remediation scenarios.

4.5.4 Efficiency of Fe Amendments

Overall, each Fe amendment affected the soil and solution chemistry in different ways by 

either creating environments with greater ability to retain metals or promoting mobilization. To 

quantify the effects of the additions, percent reductions of Pb and Sb in the soil columns are 

tabulated in Table 4.3. Reductions were calculated based on the value of Pb and Sb in runoff 

sample 15 in comparison to runoff sample 30 after the addition. Concentrations of Sb and Pb (for 

the loam and sandy loam columns) were reduced in the control berms, likely a result of the quick 

1 hour flushes the saturation profile in comparison to previous saturation times in the 

experiment. Concentrations of Pb in the loamy sand increased, which could solely be due to
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natural fluctuations in Pb concentrations as a function of time as the Pb values in the end of the 

sampling period are well within the natural fluctuations observed in samples 1-15.

The nZVI addition proved to be minimally successful overall at immobilizing both Pb 

and Sb within all soil types. We hypothesize that the expected decrease in solution potential 

(Frohne et al., 2011) along with the slow overall oxidation kinetics of Fe0nano -  Fe(II) -  Fe(III) 

hindered the overall effectiveness of this amendment. Sun et al., 2006 observed only ~56% 

formation of FeO from nZVI after 3 weeks and solution. In addition, the presence of soil organic 

matter (humic acid particles) could hinder the ability for nZVI to be an effective sorbent for Sb 

as found by Dorjee et al. (2014). For these reasons, we hypothesize that the nZVI amendment 

may have greater potential over longer periods of reaction time.

The FeCl2 and CaCO3 amendment was remarkable at immobilizing Sb, particularly upon 

fresh addition. Overall, there was >80% reduction of Sb in the runoff for all soil types and a 

>96% reduction in the soil type end members. After ~40 days of reaction time, Sb concentrations 

began to steadily increase above detectable levels (for 3 out of the 4 soil types), suggesting that 

multiple additions may be necessary for continued Sb immobilization. Multiple additions may 

prove problematic for Pb immobilization, however, due to the potential pH drop that can occur 

without an efficient buffering partner. Pb concentrations dramatically decreased after the first 

initial pH-induced mass mobilization and we expect would continue to decrease. Additional soil 

treatments have potential to be effective for system-wide immobilization of Pb and Sb with 

adequate addition of CaCO3 buffer so the pH remains stable, overall.
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The goals of this study were to investigate the speciation and mobility of Pb and Sb as a 

function of time and soil properties in shooting range soils and determine the overall 

effectiveness of two Fe amendments on limiting the mobility of both Pb and Sb in all of our 

respective systems. Soil type (silt loam and sand end members) played a role in the mobilization 

versus retention of Pb and Sb, naturally. Antimony was more mobile than Pb in all soil systems 

and primarily present in the dissolved fraction, whereas Pb was associated with both SOM and 

Fe colloids. Antimony was found to be more mobile in sand than silt loam, whereas Pb was 

found to be more mobile in the silt loam soil than sand, highlighting potentially differing solution 

behavior. Lead and Sb were both found to be positively correlated to saturation time, 

highlighting the potential of element mobilization as a result of water-logging soils. However, Sb 

entered solution and became saturated in soil solution to a greater extent than Pb, whereas Pb 

concentrations, for the most part, continued to increase as a function of saturation time.

Antimony was found to be positively associated with pH, whereas Pb was found to be negatively 

associated with pH, which contributed to the mobilization of Pb as a result of the Fe(II) 

amendment addition. Overall, the results from the column runoff samples provided an 

informative sample set for understanding the overall mobility of Pb and Sb with respect to soil 

type and soil conditions.

Lead in the bullet crust and soil fraction was found to be comprised of primarily 

cerussite, litharge and Pb sorbed to Fe(III) oxides in this study. Unique distributions of these 

species were represented as discrete Pb0 hotspots with crusts of PbO and PbCO3, diffuse Pb 

dispersed throughout the soil primarily comprised of Pb sorbed fraction, oxidized Pb present as a 

rim along the surface of the Fe bullet core and Pb sorbed to the surface of mineral grains. These

4.6 Conclusion
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species are sinks for Pb and also acted as a control on the overall mobility of Pb in solution. The 

speciation of Sb was found to be fully oxidized Sb(V) present in the soil and soil solution. While 

there may have been Sb associations with Fe, this study did not detect any strong correlations as 

observed with Pb.

Overall, the Fe amendments proved to be moderately successful treatments for the 

immobilization of Pb and Sb from shooting range soil solution. The nZVI addition was 

moderately successful at immobilizing both Pb and Sb within all soil types, but was more 

capable of decreasing runoff concentrations of Sb than Pb. The FeCl2 and CaCO3 amendment 

was remarkable at immobilizing Sb, particularly upon fresh addition. Overall, there was >80% 

reduction of Sb in the runoff for all soil types and a >96% reduction in the soil type end 

members. Although Pb was initially mobilized upon the addition due to a initial drop in pH, 

additional soil treatments have the potential to be effective for system-wide immobilization of Pb 

and Sb with adequate addition of CaCO3 buffer so the pH remains stable.
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Figure 4.1 Box plot of Sb concentrations

Box plot of Sb concentrations in runoff leachate for each of the soil types in all the columns prior

to the Fe additions. Concentrations of Sb in each soil type leachate were measured in triplicate

indicated by ‘a, b, c’ on the plot. Plot is arranged in order of increasing % of sand. Dark gray

lines indicate median values during the runoff experiment (prior to the Fe additions) and the gray

boxes depict the lower (25th percentile) and upper (75th percentile) quartiles. A, B, C, D, E

indicates levels that are statistically different between data sets using one-way ANOVA with

bivariate analysis and Student’s t-test to compare means, p-value <0.05. Levels connected by the

same letter were determined to not be significantly different at p < 0.05.
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Figure 4.2 Box plot of Pb concentrations

Box plot of Pb concentrations in runoff leachate for each of the soil types in all the columns prior

to the Fe additions. Concentrations of Sb in each soil type leachate were measured in triplicate

indicated by ‘a, b, c’ on the plot. Plot is arranged in order of increasing % of sand. Dark gray

lines indicate median values during the runoff experiment (prior to the Fe additions) and the gray

boxes depict the lower (25th percentile) and upper (75th percentile) quartiles. A, B, C, D indicates

levels that are statistically different between data sets using one-way ANOVA with bivariate

analysis and Student’s t-test to compare means, p-value <0.05. Levels connected by the same

letter were determined to not be significantly different at p < 0.05.
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Figure 4.3 Sb concentrations in runoff with Fe additions

Antimony concentrations in runoff leachate for the (a) silt loam column set and the (b) sand 

column set (soil type end members). The amendments were added after runoff sample 15 and 

were (1) no amendment in the controls, (2) nZVI and (3) FeCl2 + CaCO3. Black dotted line 

indicates when the amendments were added.
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Figure 4.4 Pb concentrations in runoff with Fe additions

Lead concentrations in runoff leachate for the (a) silt loam column set and the (b) sand column 

set (soil type end members). The amendments were added after runoff sample 15 and were (1) no 

amendment in the controls, (2) nZVI and (3) FeCl2 + CaCO3 (plotted on the right axis for scale). 

Black dotted line indicates when the amendments were added.
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Figure 4.5 Colloid particle separation

FFF-ICP-MS results of the sandy loam mixed soil column runoff experiment and the silt loam 

soil after the addition of the Fe(II) amendment. (a, b) correspond to FFF fractogram of time 

versus UV detector response (a; 254 nm and b; 284 nm) and (c, d) refers to in-line coupling to 

ICP-MS detector counts. There is approximately a 100 second delay between FFF and ICP-MS 

signal. The ICP-MS data has been normalized to 1 and stacked. The UV detector signal has been 

visually increased in (f) for the sandy loam and (g) for the silt loam with Fe(II) addition. The 

ICP-MS counts (not normalized) were visually increased in (e) for the sandy loam and (h) for the 

silt loam with Fe(II) addition.
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Figure 4.6 Normalized Pb-LIII ^-XANES

Normalized Pb-LIII ^-XANES spectra of end member column samples and corresponding linear 

combination fits (black lines correspond to samples with attached gray circles representing the 

LCF fits. Black dotted line represents the absorption edge of Pb LIII-edge.
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Figure 4.7 Sb distribution in soil

XRF maps showing the distribution of Sb (blue), Ca (red) and Fe (green) in the silt loam soil (a) 

macro-scale ~1x1mm soil plug thin section the remaining maps are sample subsets of various 

hotspots for microanalysis.
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Figure 4.8 Effects of saturation time on Pb concentrations

Effects of saturation time on Pb concentrations (^g/L) as a function of soil type and column set 

(a, Columns 1-4; b, columns 5-8; and c, columns 9-12) in triplicate in the column runoff 

experiment. Pb concentrations are grouped by soil type and in order of increasing % of sand 

content.
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Figure 4.9 Effects of saturation time on Sb concentrations

Effects of saturation time on Sb concentrations (^g/L) as a function of soil type and column set 

(a, Columns 1-4; b, columns 5-8; and c, columns 9-12) in triplicate in the column runoff 

experiment. Sb concentrations are grouped by soil type and in order of increasing % of sand 

content.
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Figure 4.10 Pb and Sb in relation to pH

Trends between log Pb and Sb concentrations (^g/L) and pH as a function of soil type in the 

Fe(II) amended columns that experienced a drop in pH due to the hydrolysis of Fe in solution 

and lack of carbonate buffer.
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Figure 4.11 Schematic of colloidal transport

Overall schematic of colloidal transport of Pb and Sb in the column soil and runoff. The column 

soil depicts the identify of the primary colloids (humic acid particles and Fe colloids) associated 

with the sandy loam (mixed soil) system studied. This is for contaminated shooting range 

systems (sandy loam) and the Fe amendment addition was not included.

211



Figure 4.12 Unique distributions of Pb

Unique distributions of Pb in representative columns samples, XRF maps show relative Pb 

intensities. The distribution in (a) shows discrete Pb0 hotspots with varying amounts of oxidized 

products (b) represents diffuse Pb dispersed throughout the soil (c) is characterized by a thin rim 

of oxidized Pb running along the surface of the Fe bullet core (d) illustrates the occurrence of Pb 

sorbed to the surface of mineral grains.
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Table 4.1 Column setup scheme

Column Soil Type Amendment
1 Silt loam none
2 Sand none
TJ Loamy sand none
4 Sandy Loam none
5 Silt loam nZVI
6 Sand nZVI
7 Loamy sand nZVI
8 Sandy Loam nZVI
9 Silt loam FeCl2 + CaC03
10 Sand FeCl2 + CaC03
11 Loamy sand FeCl2 + CaC03
12 Sandy Loam FeCl, + CaCO,
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Linear combination fitting results for column experiment end member soil types using reference

spectra. Sum (%) refers to the actual sum of the partial contributions of reference spectra for the

2 o
overall best fit. x  and reduced x  are derived from the fit refinement process. Pb(0) = Metallic 

bullet alloy; L = Litharge (PbO); C = Cerussite; Ferri = Pb(II) sorbed to Fe(III) oxides; error 

associated with fit in parenthesis.

Sample Soil type Addition Spot Pb(0) L C Ferri Sum x2 red, x2

Table 4.2 LCF results for Pb-LIII XANES

Col 1 Loam none 1 10(2) 85(2) 95.4 2.3E-02 1.7E-04
Col 2 Sand none 1 49 (1) 47 (1) 96.5 3.4E-03 2.5E-05
Col 2 Sand none 2 29 (1) 23 (1) 48 (1) 99.5 8.8E-03 6.5E-05
Col 2 Sand none 'j

J 19(1) 50 (2) 28 (1) 96.6 1.2E-02 9.4E-05
Col 5 Loam nZVI 1 14(1) 10(1) 75 (1) 99.2 4.3E-03 3.2E-05
Col 5 Loam nZVI 2 20 (1) 77 (1) 97.1 T  ' I F  A T 2.5E-05
Col 6 Sand nZVI 1 31(1) 29 (1) 37(2) 96.2 1.7E-02 1.3E-04
Col 6 Sand nZVI 2 23 (1) 8(5) 67(4) 98.3 1.1E-02 8.2E-05
Col 9 Loam Fe(II) 1 22 (1) 8(1) 67 (1) 96.8 8.2E-03 6.2E-05
Col 9 Loam Fe(II) 2 19(1) 8(1) 70 (1) 96.9 9.6E-03 7.1E-05
Col 9 Loam Fe(II) 'j

J 12 (1) 15(1) 69 (1) 97.0 4.6E-03 3.4E-05
Col 10 Sand Fe(II) 1 <5 (5) 94 (5) 94.3 1.2E-02 9.2E-05
Col 10 Sand Fe(II) 2 <5(4) 93(4) 94.4 9.4E-03 7.0E-05
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Table 4.3 Percent reductions of Pb and Sb

Percent reductions of Pb and Sb in the soil columns as a result of the Fe amendments. Reductions 

were calculated based on the value of Pb and Sb in porevolume sample 15 in comparison to 

porevolume sample 30 after the addition.

% Reduction
Column Soil type Addition Pb Sb

1 Loam None 62 62
2 Sand None -6 60
->3 Loamy sand None -99 8
4 Sandy loam None 4 14
5 Loam nZVI 59 43
6 Sand nZVI 16 51
7 Loamy sand nZVI 80 36
8 Sandy loam nZVI -11 27
9 Loam FeCL + CaC03 -6152 100
10 Sand FeCL + CaC03 69 96
11 Loamy sand FeCL + CaC03 TIT-313 83
12 Sandy loam FeCL + CaCO, 43 91
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4.9 Appendix B
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Figure 4.13 Sb aqueous speciation.

Antimony aqueous speciation in porevolume sample 1 and 2 from silt loam and loamy sand 

columns.
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Figure 4.14 Pb and Fe distributions

XRF map showing Pb (red) and Fe (green) distribution in column 9 (loam soil FeCl2/CaCO3 

amendment) (a) macro-scale ~1x1mm soil plug thin section the remaining maps are sample 

subsets of various hotspots for microanalysis.
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Figure 4.15 Sb solid speciation

Normalized Sb-LIII ^-XANES spectra of (a) standards and model compounds used for visual 

comparison with (b) column samples.
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Absorption edge energies for Sb standards, model compounds and column samples.

Table 4.4 Sb-LIII edge energies with standards

Column Amendment Soil type Spot_____
4
9

none
Fe(II)

Sandy loam 1 
Silt loam 1

4143.0
4139.2

Standards
Sb° powder 4131.6

Sb° foil 4132.0
Sb20 3 ppt 4133.1

Sb20 3 4133.4
KSb(OH)6 4140.9

Lewisite 4143.1
Sb20 5 4143.1

NaSb(OH)* 4143.6

220



Overall, the results from this body of work contribute significantly to multiple scientific 

fields in the area of chemical speciation analysis, geochemical weathering and analytical 

chemistry. In the first field study (Chapter 1), the findings showed that metal transport and 

mobility as a result of pristine mineral weathering is complex and likely controlled by a variety 

of factors, particularly metal speciation. The transport and behavior of trace metals strongly 

depends on local soil conditions, especially the redox environment. The study offers many 

improvements on previous efforts and provides a baseline of data for future monitoring in Arctic 

Alaska. Our results capture the seasonality of trace metals in two Arctic watersheds from spring 

snowmelt until early winter, a season that is widely overlooked. Our findings highlight a 

correlation between the top-down freezing processes that occurs in Arctic soils to metal 

fluctuations in local surface waters. In addition, our results highlight the complexity of metal 

transport as a function of seasonality in the presence of permafrost, culminating in the need for 

longer summer sampling seasons in the Arctic.

The overall setup and design of the second study (Chapters 2-4) allowed initial 

transformation pathways and corrosion products of elemental Pb and Sb to be observed in newly 

constructed shooting range berms. The initial products formed have often been overlooked in 

previous studies due to a focus on older, heavily used shooting range samples. Liquid speciation 

analysis confirms the presence of Sb(III)(aq) in the berm runoff of the high content silt loam 

mixed soil, indicating Sb(III) is likely the initial oxidation product formed from the weathering 

of Sb0 in the alloy, which was supported by bulk speciation analysis coupled with micro-scale 

methods that showed Sb(V) in octahedral coordination with 5 O and 3 Fe atoms are the 

predominant species present in the weathering crust. However, trivalent Sb bound to 3 O atoms

Conclusion

221



is likely the initial oxidation species as detected in the weathering bullet alloy and laboratory 

oxidation samples with metallic Sb. Solid-phase analysis of the newly constructed shooting 

range soils show Sb(V) dominance in the soil fraction and zero-valent Sb in the bullet alloy. 

Distribution of Pb in the samples and speciation analysis showed metallic Pb, cerussite, 

hydrocerussite and litharge comprise the bulk of the Pb concentration in the weathering crust, but 

Pb(II) sorbed to Fe(III) oxides are present in the soil fraction distal to the source material. 

Understanding the overall distribution of Pb and Sb speciation is necessary when designing 

overall remediation strategies, as the solid phase distribution likely control the activity of species 

in solution.

One of the most interesting results of the second project was the finding that Sb 

concentrations were higher than Pb in all the soil types in both the field and column studies 

indicating Sb is more mobile than Pb, despite the fact that Sb is present ~2 orders of magnitude 

less in bullets than Pb. The highest concentrations of Sb were found in the sand soil runoff and 

the highest concentrations of Pb were found in the mixed soil runoffs. The 100% silt loam soil 

runoff often contained lower concentrations of both species, highlighting the overall natural 

effectiveness silt loam soil has on metal(loid) retention. Lead and Sb were both found to be 

positively correlated to saturation time, highlighting the potential of element mobilization as a 

result of water-logging soils. However, Sb entered solution to a greater extent than Pb, whereas 

Pb concentrations, for the most part, continued to slowly increase as a function of saturation 

time. Antimony aqueous concentrations were found to be positively correlated with pH, whereas 

Pb aqueous concentrations were found to be negatively correlated with pH, which contributed to 

the mobilization of Pb as a result of the Fe(II) amendment addition. The mobility of Pb in the 

mixed (sandy loam) column runoff is facilitated by colloidal transport, whereas Sb (without Fe
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amendments added) is present primarily in the dissolved fraction (<300 Da). Information from 

this study will be useful to understanding the overall mobility and speciation of Pb and Sb with 

respect to soil properties and reaction time in shooting range soils.

Of the two remediation amendments added (nZVI and FeCl2+CaCO3), the FeCl2 and 

CaCO3 amendment remarkably immobilized Sb, particularly upon fresh addition. Overall, there 

was >80% reduction of Sb in the runoff for all soil types and a >96% reduction in the soil type 

end members. Additional soil treatments have potential to be effective for system-wide 

immobilization of Pb and Sb with adequate addition of CaCO3 buffer so the pH remains stable.

This study establishes an overall procedure for designing shooting ranges and 

implementing remediation strategies in parallel that is cost effective, easy to implement and 

effective at immobilizing both Pb and Sb. The design takes into account natural hillsides versus 

man-made berms that are often used to construct shooting ranges. One key difference in this 

study and other shooting range remediation studies is the addition of the amendment to only the 

runoff instead of the bullet pocket/soil to minimize mobilization of one element over the other 

since Pb and Sb behave differently in soil. Instead, the berms are constructed of 100% silt loam 

type soil, which this study showed was effective at naturally retaining Pb and Sb and minimizing 

local migration.
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