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ABSTRACT

A comparative stream study was conducted to assess the influence of development 

and blockage on the hydrology, water quality, primary production, and Arctic grayling of 

Badger Slough, Alaska. Data collected showed that Badger Slough exhibited stable, 

clear flows throughout the summer, and higher total and total dissolved phosphorus, 

orthophosphate, alkalinity, pH, conductivity, and average temperatures, and lower winter 

dissolved oxygen concentrations than both Piledriver and 23-Mile Sloughs. Mean algal 

biomass (3.3 mg m"3) and primary production (6.9 g O2 m"2 d'1) are greater than that 

recorded for any other interior Alaska streams and percent fines in riffle substrates have 

increased. However, growth of age-0 grayling remains high. Badger Slough has 

eutrophied due to increased nutrients and stable flows, and the quality of rearing habitat 

for age-0 fish remains good. However, an annual flushing flow of 8.0 m3 s'1 is 

recommended for controlling accumulations of fines and maintenance of grayling habitat.
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INTRODUCTION

Blockage and development of lotic systems can affect the physical and chemical 

characteristics of these systems and ultimately affect the fish habitat (Hynes 1970, Ellis et 

al. 1979, Skulberg 1982, Welch 1992). The blockage of Tanana River sloughs, Alaska 

has created highly suitable habitat for Arctic grayling (Thymallus arcticus) populations; 

however it appears that urbanization of a slough’s catchment may accelerate 

eutrophication, resulting in the development of unanesthetic aquatic vegetation, and 

depressed Arctic grayling populations. The impetus for this study was to demonstrate 

how blockage and development of Tanana River sloughs may influence the succession of 

a slough and its fish habitat, thereby providing a basis for the protection and management 

of desirable Arctic grayling habitat.

Badger Slough (previously part of Chena Slough) is a groundwater drainage that 

flows for about 27 km toward the northwest, between North Pole and Fairbanks. Prior to 

1940, Chena Slough was one o f several side channels o f the Tanana River that carried 

large volumes of glacial water to the Chena River 35 km from its mouth (Figure 1). In 

1933 it was estimated that 70% (100 m3/sec) of the Chena River flow at Fairbanks was 

inflow from the Tanana River, and during the 1937 summer flood an estimated 50% of the 

620 m3/s peak flow at Fairbanks was due to overflow from the Tanana River (U.S. 

Congress 1938). Flooding problems attributed to Chena Slough resulted in the 

construction of several river engineering projects. In 1943, Chena Slough was bisected by 

the construction of Moose Creek Dike, which diverted the waters back into the Tanana
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Figure 1. Chena Slough prior to construction of flood control projects, 1940.



and created both Badger (lower section of Chena Slough) and Piledriver (upper section) 

Sloughs (Figures 2 and 3). Subsequently, Badger Slough and the lower Chena River 

changed from glacial to clearwater streams. The Tanana River continued to flow into 

Piledriver Slough until the construction of the Chena River Flood Control Project when 

dikes were placed at the entrance of Piledriver Slough in 1976, blocking inputs of silty, 

glacial water from the Tanana River. These river engineering projects have turned Badger 

and Piledriver Sloughs into groundwater systems fed by up wellings from the Tanana 

River Aquifer.

The blockage of Badger Slough has significantly enhanced the recreational value of 

this system by creating new habitat for several species of fish and the establishment o f an 

Arctic grayling fishery. The springs and seepage of Badger Slough are sufficient to keep 

portions of it open throughout the winter (Tack 1976). This results in Badger Slough 

being ice free by mid-April before the ice in the Chena River breaks up. Arctic grayling 

(hereafter referred to as grayling) enter Badger Slough in early spring to spawn and a 

majority of these fish return to the Chena River during late May and early June with a few 

grayling of all sizes remaining in the slough until freeze-up (Tack 1976, Hughes 1986). 

Consequently, Badger Slough has one of the earliest grayling fisheries in the Fairbanks 

area and has historically provided one of the highest angling success rates in the state of 

Alaska (Roguski and Winslow 1969). For the period 1968-1977, the annual harvest of 

grayling was estimated at 9,540 (Walker 1983). Badger Slough provides spawning and 

rearing habitat for the Chena River population, and grayling reared in Badger Slough are 

thought to make a large contribution to the Chena River fishery (Tack 1976; Walker
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Figure 2. Location of sampling stations at Badger Slough, 1996.
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Figure 3. Location of sampling locations at Piledriver Slough, 1996.
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1983). Using scale analysis, Walker (1983) estimated 30 to 50% of Chena River grayling 

originated from Badger Slough, and a mark-recapture study showed that the Badger 

Slough grayling represented an estimated 35% of the potential spawners of the lower 152 

km of the Chena River (Fleming 1997).

The establishment of a grayling fishery in Badger Slough has coincided with the 

development of residential and commercial areas within Badger Slough’s catchment and 

along its shore. In conjunction with this development of Badger Slough, the Alaska 

Department o f Fish and Game, Sport Fish Division, has expressed concern over the 

apparent decline in numbers of grayling. Catch data suggest that the Badger Slough 

grayling fishery has declined from 11,064 grayling harvested in 1973 to an estimated 1,102 

fish in 1990 (Tack 1974, Mills 1991). After 1990, catch-and-release regulations were 

established in Badger Slough. In addition to the decline of the grayling fishery, a growing 

concern among the residents of Badger Slough has developed about the aesthetic qualities 

and apparent eutrophication of the slough. In summer, Badger Slough supports 

substantial growths o f aquatic vegetation (attached algae and rooted macrophytes) 

(Hughes 1986). It has been suspected that the urbanization of the drainage basin has 

resulted in cultural eutrophication of the slough and may ultimately impact the grayling 

population.

Although Badger Slough represents a unique situation in regards to its history, it 

shares common problems with other streams that have been impacted by humans such as 

flow regulation and urban pollution (i.e., sewage and urban runoft). Badger Slough is 

representative of a regulated river in that it no longer experiences periodic high-water or

17



flushing events that are necessary for channel maintenance (particularly for the removal of 

fine sediments from gravel), riparian habitat maintenance, prevention of vegetation 

encroachment, and the maintenance or enhancement of fishery habitat (Reiser et al.

1989). Stream regulation can cause sedimentation problems which can negatively affect 

the stream biota (Milhous 1982, Waters 1995) and cause changes in physical and chemical 

factors (Welch 1992).

Stream sediments are known to influence the composition, abundance, density, 

biomass, and distribution of stream invertebrates (Cordone and Kelly 1961, Erman and 

Erman 1984, Minshall 1984,). Loss in macroinvertebrate habitat due to sedimentation 

may lead to a decline in the food base of salmonids, resulting in decreased biomass and 

abundance (Alexander and Hansen 1986, Gore 1989), decreased production (Waters 

1982), and ultimately in reduced growth of juvenile salmonids (Crouse et al. 1981,

Murphy et al. 1981). Intrusion of fines into the gravel substrates o f streams can further 

impact salmonid embryos by decreasing redd permeability, and thereby decreasing 

dissolved oxygen (DO) concentrations within the redd (McNiel and Anhnell 1964, USEPA 

1987, Chapman 1988).

Changes in water quality as a result of stream regulation (increased light 

penetration, reduced flows, increased temperature) (Milhous 1982, Reiser et al. 1989), 

and additions of limiting nutrients (nitrogen, phosphorous, carbon) can influence the biota 

of a stream (Hynes 1970, Deegan and Peterson 1992, Welch 1992). One influence often 

implicated is the over-development of algae. Nutrient enrichment experiments have
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demonstrated that nitrogen, phosphorus, or carbon additions can stimulate algal growth in 

streams (Grimm and Fisher 1986, Jones et al. 1984, Peterson et al. 1986, Dickman 1973). 

Positive correlations between periphyton biomass and ambient total nitrogen (TN) and 

total phosphorous (TP) concentrations have been established in the contiguous United 

States and Alaska (LaPerriere et al. 1989, Lohman et al. 1991, Van Nieuwenhuyse and 

Jones 1996). In addition to nutrient levels, light, temperature (Van Nieuwenhuyse and 

LaPerriere 1986), substratum, and particularly flood frequency can act to control algal 

production (Bushong and Bachmann 1989, Lohman et al. 1991). The synergistic effects 

of a regulated stream, characterized by stable, low flows, increased light penetration, and 

warmer temperatures, and nutrient enrichment can result in the accrual o f undesirable, 

nuisance levels of attached algae (100-150 mg chlorophyll a m'2) (Welch et al. 1988) and 

rooted plants (Hynes 1970, Welch 1992). In streams, beds of macrophytes can 

profoundly reduce and change the velocity profiles of a cross-section resulting in the 

deposition of organic and inorganic fines, accelerating eutrophication of a stream (Petts 

1989). Hence, primary production can be further stimulated by greater nutrient 

availability at the sediment/water interface due to greater retention and processing of 

organic matter in the hyporheic zone (Coleman and Dahm 1990, Valett et al. 1994).

Whether excessive benthic algae exerts a negative influence on salmonid growth is 

uncertain. Decomposition of algal vegetation can deplete oxygen, resulting in impaired 

growth and the displacement or the killing of fish (Hynes 1970, Skulberg 1982, Warren 

1971), and dense mats of filamentous algae can reduce habitat for benthic animals (Welch
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1992). Conversely, increased primary production from physical and chemical changes can 

result in increased fish production and juvenile growth rates from the increased food 

availability of invertebrates (Warren et al. 1964, Deegan and Peterson 1992, Welch 1992, 

Bilby and Bisson 1992).

The purpose of this study was to characterize the successional state, hydrology, 

water quality, primary production, invertebrate drift, and growth of young of the year 

Arctic grayling in Badger Slough. This study was done in order to address the issue of 

how development has impacted Badger Slough and its grayling population, and to 

recommend possible remedial action. Because virtually no historical water quality data 

exist for Badger Slough, a comparative stream study using Badger, Piledriver, and 

23-Mile Sloughs was conducted to assess the influences of development on Badger 

Slough. It was assumed that each of these sloughs represents a particular successional 

state of a blocked slough of the Tanana River. Badger Slough was blocked off in 1941 

and is developed. Piledriver Slough was blocked off in 1976, has experienced some 

agricultural and residential development, and is probably representative of Badger Slough 

in the 1960s. Twenty-three-mile Slough is in the process of naturally being blocked, runs 

clear from early fall to spring, and is probably representative of Badger Slough 

immediately after blockage.
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STUDY AREA

The area encompassing Badger, Piledriver, and 23-Mile Sloughs occupies part of 

the alluvial plain (approximately 244 m) in depth) of the Tanana River and is underlain by 

localized areas of permafrost (Collins 1990). The boreal, riparian vegetation is 

characterized by stands of white Picea glauca and black Picea mariana spruce, larch 

Larix laricina, cottonwood Populus tacamahacca, and overhanging alder Alnus spp. and 

willow Salix spp. The water table in the high-transmissivity aquifer that underlies the area 

is generally shallower than 4.6 m and fluctuates seasonally about 0.6 m , and slopes 

northwesterly (0.75 m km"1), the principal direction of groundwater flow (Krumhardt 

1982). The Tanana Basin has a continental climate of long, cold winters and short, warm 

summers. The average annual temperature in Fairbanks is -3°C (26°F) with record 

extremes of 37°C (99°F) and -54°C (-66°F) (ACRC 1997). Precipitation averages 27.7 

cm (10.9 in) of water equivalent per year with 180 cm (71 inches) of snow (ACRC 1997).

Badger Slough drains a relatively flat (mean channel slope = 0.00063 m km'1) area 

of approximately 68 km2 and enters the main Chena River 34.6 km above the confluence 

of the Tanana and Chena Rivers. Badger Sloughs lies almost entirely within the 

municipality of North Pole, Alaska (population approx. 24,400) with most of its banks 

developed into residential areas. The groundwater in the area of Badger Slough, which 

has no piped sewage system, is contaminated by seepage from septic tanks (Krumhardt 

1982). Homeowners bury their septic systems (including leach fields) 10 to 15 ft below



the surface to avoid seasonal frost conditions, and in many areas, this places the system 

below or at the water table, thereby nutrifying the groundwater (Krumhardt 1982). For 

Badger Slough, only limited water quality data exist from 1949-51.

The groundwater springs and seepage of Badger (and Piledriver) Slough are 

sufficient to maintain open leads throughout the winter (Tack 1976), though long portions 

may be frozen to the substrate. Because of the slf - rtly warmed temperatures, the ice 

melts out before ice in the Chena River breaks up, and Badger Slough tends to be ice-free 

from mid-April to late October. Discharge measurements made in Badger Slough during 

the ice-free season between 1948 - 1952, in the 1970s, and in 1982 averaged 3.4,2.0, and 

1.4 m3 s“l, respectively (USGS 1951, Walker 1983) with the higher discharges during 

1948-52 being attributed to seepage from Piledriver Slough through the earthen Moose 

Creek Dike (Burrows 1995). The relatively stable Badger and Piledriver discharges are 

related to the level of the aquifer which fluctuates with the height of the Tanana River, 

rising during the summer months and falling during the winter (Krumhardt 1982).

Since the construction of Moose Creek Dike, Badger Slough has atrophied 

considerably over the years and is now much smaller and shallower (Collins 1990). Most 

of Badger Slough has a wide (20-30 m), fairly shallow channel with a thick layer of 

organic mud on the bottom (Hughes 1986). The flow in these sections is sluggish and the 

channel is being narrowed as rushes, alders, and willows colonize the banks. Few natural 

riffle areas exist and a majority of the riffle areas result from the constriction of flow 

through a culvert at one of several road crossings. In summer, the slough supports a thick
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growth of aquatic macrophytes (Hippuris sp., Potomageton vaginitus, Sparganium sp., 

Valtisneria sp., and Ranunculus sp.) and algae (diatoms, Nostoc sp., and filamentous 

algae).

Piledriver Slough is a 34-km-long (mean channel slope = 0.00077 m km*1) 

groundwater system fed by the Tanana River aquifer draining an area of approximately 75 

km2 (Figure 3). The name Piledriver Slough originates from the logging industry in the 

early 1900s when piles were driven into the Tanana River to divert water down Chena 

Slough in order to float timber to downtown Fairbanks. In 1976, with the construction of 

the Chena River flood control project, dikes were placed at the top of Piledriver Slough, 

blocking the inputs of glacial Tanana River water, and Piledriver Slough was changed 

from a periodic Tanana River side-channel to a clearwater slough. Periodically, as in 

1993, the Tanana River has overflowed its banks and drained into Piledriver Slough. 

Currently, Piledriver Slough consists of a series of long pools and shallow riffles. The 

bottom of the upper half of Piledriver is characterized by sandy pools and gravel riffles 

with little or no rooted aquatic vegetation. Further downstream, pools are layered with 

organic fines covered by mosses, and riffles support a sparse development of rooted 

macrophytes and algal mats.

Grayling have become established in Piledriver Slough at higher densities than 

other assessed populations in the Tanana River drainage (Fleming 1995). A substantial 

grayling fishery has developed and has provided as much as 20% of the drainage total 

catches in 1990 and 1991 (Mills 1991, 1992). Although popular among anglers, Piledriver
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Slough has remained undeveloped, aside from some farms and a few residential houses at 

the beginning of the slough, because it mostly lies within the Eielson Air Force Base 

Reservation.

Twenty-three-mile Slough is a 10-km side-channel of the glacial Tanana River 

paralleling Piledriver Slough to the south (Figure 3). The slough runs clear from 

mid-September until late May when the rising Tanana River spills into the slough. 

Twenty-three-mile Slough is fed by the Tanana River aquifer and remains ice-free 

throughout the winter with shore-to-shore ice developing only during extreme cold 

(-40°C). The slough channel is composed of gravels and glacial sands free o f aquatic 

macrophytes with periphyton colonizing the substrates when the slough is running clear. 

This slough is free of development and access to the slough is restricted by private 

property.

Samples for this study were collected from three locations along both Badger and 

Piledriver Sloughs to elucidate any upstream-downstream changes in the sloughs. Badger 

Slough samples were collected from the Persinger Road crossing (lower site), Nordale 

Road crossing (middle site), and Airway Road crossing (upper site) (Figure 2). Piledriver 

Slough samples were collected from Eielson Farm Road crossing (lower site), the old 

Bailey Bridge site (middle site), and the Stringer Road crossing (upper site) (Figure 3). 

Due to the restricted access of 23-Mile Slough only one sample location was selected, 

which was located on private land at the end of Crick Road, at its approximate mid-point.
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METHODS AND MATERIALS

Discharge

Discharge was monitored in all sloughs for the duration of the ice-free season. 

Discharge was measured at the middle monitoring station for Badger Slough, at the lower 

monitoring station for Piledriver Slough, and at the sole monitoring station for 23-Mile 

Slough. The mid-section method was used to estimate discharge by measuring water 

depth and current velocities at 0.6 o f water depth at 10-20 even-distance intervals across 

the stream perpendicular to the flow (Gorden et al. 1992). Current velocities were 

measured using a Marsh-McBimey model 201 portable water current meter. Staff gauges 

were placed at the monitoring stations and water levels were recorded opportunistically.

A stage-discharge relationship was established and stream flows not measured directly 

were estimated using this relationship.

Water quality

Grab samples were collected 2-3 times per month (usually around noon) from May 

through August at each of the monitoring sites. All samples were taken in triplicate and 

samples not analyzed in the field were collected in labeled, acid pre-cleaned polyethylene 

bottles and transferred back to a lab for later processing. Slough temperatures (°C) were 

recorded every 3 hours at monitoring sites during the field season using StowAway 

temperature data loggers. Specific conductivity (jjS  cm'1) and pH were measured with a 

calibrated Checkmate digital pH/conductivity/DO meter. Total alkalinity (mg L'1 as
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CaCOs), orthophosphate (mg L'1), nitrate-N (mg L '1), and ammonium-N (mg L '1) were 

measured with a HACH Chemical Company field test kit containing a 2000 DR 

spectrophotometer. Turbidity (NTU) was measured with a HACH hand-held 21 OOP 

turbidimeter. Water samples for total nitrogen (pig L '1) and for total and total dissolved 

phosphorous (pg L*1) were sent to the University of Missouri at Columbia for analysis. 

Nitrogen concentrations were determined by using the second derivative UV scan after 

persulfate oxidation method (Crumpton et al. 1992). Phosphorous concentrations were 

determined using ascorbic acid color development after persulfate digestion (APHA et al. 

1985). Dissolved oxygen (DO) (mg L 1) was monitored from March 1996 to March 1997 

using a YSI model 57 oxygen monitor, and during cold conditions HACH Accuvac DO 

ampules in conjunction with a HACH DR100 dissolved oxygen colorimeter were used.

Algal biomass

Summer benthic algal standing crops were indexed by measuring sestonic 

chlorophyll a concentrations (Swanson and Bachmann 1976). Sestonic algae refers to the 

fraction of benthic algae that is scoured off the substratum and is suspended in the water 

column. Sestonic chlorophyll a samples were taken in triplicate in conjunction with water 

quality sampling. Grab samples o f suspended algae (1-2 L) were collected and filtered 

through a 0.3-//m glass fiber filter and frozen over desiccant until processing. All filters 

were ground with 90% acetone and allowed to extract for 24 hours in a refrigerator. 

Samples were centrifuged for 30 minutes at half speed and immediately analyzed for
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chlorophyll a content by the fluorometric method using a Turner Designs fluorometer 

calibrated against spectrophotometric readings of diluted standards (APHA 1985). When 

chlorophyll concentrations were at permissible concentrations, the trichromatic method 

was used to determine chlorophyll a concentrations using a Shimadzu UV-1601 

spectrophotometer (APHA 1985).

Primary productivity

Primary productivity was estimated using the standard (APHA 1985) freewater 

single-station diel oxygen curve method of Odum (1956) as modified by Van 

Nieuwenhuyse and LaPerriere (1986). A YSI Model 56 dissolved oxygen monitor 

continuously recorded DO concentrations and temperature (°C). Temperature and DO 

readings at 1-hour intervals were manually transferred from the strip charts to a data file. 

Changes in DO concentrations were plotted against time (hours) and corrected for 

diffusion. Tables from Mortimer (1981) were used to calculate oxygen saturation, and the 

formula of O’Conner and Dobbins (1956) was used to derive the reaeration coefficient. 

The reaeration coefficient was corrected for temperature according to Elmore and West 

(1961). From the DO vs. time plot, gross primary productivity was calculated using the 

trapezoid rule. Daytime respiration was quantified by connecting the pre-dawn and 

post-sunset minimums as suggested by Hall and Moll (1975). Accrual of oxygen other 

than from production and diffusion was considered negligible. Atmospheric pressure was 

calculated from altitude according to Goltermann (1969).



The DO monitor was always placed in a smooth-flowing stretch, usually at the end 

o f a glide approximately 30 cm below the water surface. The DO probe was secured with 

a clamp to a section of a steel rod driven into the substrate. At all times a stirrer was 

engaged to ensure adequate flow across the membrane surface. Measurements were taken 

over 5-10 day intervals and the DO monitor was periodically calibrated against a YSI 

Model 57 dissolved oxygen meter. Observed means depths were used to adjust 

production estimates from g-0 2  m'3 d'1 to g-0 2  m'2 d*1.

Invertebrate drift

Invertebrate drift samples were collected to obtain an index of invertebrate 

biomass (number of invertebrates m‘3 hr'1). Waters (1961) determined that the amount of 

drift in the water column is proportional to the production of invertebrates in riffles. 

Duplicate 2-hour drift samples were collected once in June and once in July near the three 

sampling locations in both clearwater sloughs. Standard drift nets were deployed during 

the same time on consecutive days until sampling was completed. A pair of nets was 

placed near the downstream end of each riffle, perpendicular to the stream flow, 

equidistant from the banks, with the bottom edge of the net at the substrate surface. The 

nets were secured to steel rods driven into the stream bed. Discharge measurements were 

made before and after the sampling period. Water velocity was measured at the center of 

the net mouth using a Marsh-McBimey model 201 portable water current meter. Samples 

were placed into and preserved in a labeled wide-mouthed bottle containing 95% ethanol 

solution and stored until laboratory analysis.
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Juvenile Arctic grayling growth

Age-0 Arctic grayling were collected on four sampling occasions from July 

through September from both Piledriver and Badger Sloughs and measured to the nearest 

mm (fork length). Differences in growth (length) between sloughs and comparisons with 

historical growth patterns (Walker 1983) were used to indicate a change in the quality of 

rearing conditions in Badger Slough. In fish, growth is very labile, influenced by abiotic 

and biotic factors. Water temperature, velocity, hardness, and pH, as well as food supply 

and competition, may be jointly or individually important in determining fish growth along 

a stream’s gradient (Hynes 1970). Age-0 grayling were selected as opposed to age-l+ 

fish because of the migratory behavior of the grayling in Badger Slough.

Using minnow seines (4.6 m long x 1.2 m wide with 1.6 mm mesh, and 6.1 m x 1.2 

m with 3.1 mm mesh) age-0 grayling were collected within three reaches located in the 

upper, middle, and lower segments of both Badger and Piledriver Sloughs. A minimum of 

100 fish per sampling reach were collected and all age-0 grayling captured were measured 

and recorded to the nearest mm. Due to the active nature of juvenile fish, grayling were 

anesthetized by immersing them in a dilute solution of tricaine methanesulfonate (MS-222) 

for 3 minutes. Fish were held in temporary gravel pools dug out o f the bank until 

sampling was completed to ensure that fish were not recaptured and were fully recovered.
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Substrate

Bed materials from riffle areas were collected from areas near each of the 

monitoring sites for each slough. These riffles were selected because that they appeared 

representative and were unaffected by man-made structures such as culverts. Eight to ten 

randomly selected substrate samples were collected from each riffle using a cylindrical 

substrate corer with a minimum of 5 kg of material being removed. The sediment corer 

was 27 cm in height by 18 cm in diameter and essentially represented an opened, 

one-pound coffee can. Samples were collected by driving the corer into the substrate, 

digging the bed material away from the downstream edge of the corer, slipping a metal 

plate underneath, and lifting out the sample. The top 20 cm of the stream substrate was 

placed into a labeled sampling bag and transported back to the lab for dry sieving. 

Samples were oven dried (48 hr at 150° C) and passed through a series o f 12 US Tyler 

sieves following a geometric progression. Sieve sizes used were 128,64,32, 16, 8 ,4, 2, 

1, 0.5, 0.25,0.125, and 0.633 mm. Substrate sizes and percent fines were analyzed by 

plotting a cumulative frequency curve (% mass), the X-axis being the particle size (mm) 

and the Y-axis being percentage finer (cumulative) (Gorden et al. 1992).

Flushing flows

Duration and magnitude of flushing flows were estimated using the incipient 

motion methodology based on the Shield entrainment function (Reiser et al. 1989). This 

method was selected because of the lack of extensive flow records often needed for 

assessing flushing flow requirements and the inability to conduct test flow releases.



The incipient motion methodology provides an estimate of discharge expressed as 

discharge per unit stream width for flushing fines from bed sediments. In this method, 

critical unit discharges for bed mobilization are a function of grain size and channel slope 

(Reiser et al. 1989). The relationship is derived from the Shields entrainment function. 

This relationship can be expressed as:

q = m ,l3( d ^ /s V6)

where q = unit discharge (cms/m), S = the channel slope (m/m), k = estimated Shields 

parameter, and dso — the median grain size where half of the sample based on mass is 

larger or smaller (Reiser et al. 1989). There are several values for k that might be selected 

based on the condition of the stream bed. Milhous (1986) recommends a k-value of 0.03 

for movement of the amour layer and “deep” flushing of trapped fines in riffle segments of 

a stream and it was therefore used. The duration of the estimated flushing flows was 

approximated using the travel time - median bed grain size relationship as described by 

Reiser et al. (1987). Median grain sizes were obtained from the analysis o f the slough 

substrates as previously described. Stream widths were measured with a 100 m tape 

measure and channel slope was measured utilizing a level and graduated staff as described 

by Gorden et al. (1992).
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Statistics

A one-way analysis o f variance was performed to determine significant differences 

(P<0.05) between means of measured variables (Neter et al. 1990). Tukey analysis was 

then used to make pairwise comparisons of a variable within and among sloughs. For 

water quality data and sestonic algae data, averages from May 14 - September 1 were 

calculated and tested for significant differences among sampling stations within a slough 

and for differences between sloughs. The average lengths of age-0 grayling from one 

sampling event were tested for significant differences between sampling sites within a 

slough, and when no differences were found, data sets were pooled and differences in 

mean lengths between Piledriver and Badger Sloughs were tested. For percent fines, 

samples for a particular size class from a slough were averaged, and then these averages 

were tested for significant differences between sloughs.



RESULTS

Discharge

Flows in Badger, Piledriver and 23-Mile Sloughs averaged 1.23 (1.01 - 1.50), 1.65 

(1.45 - 2.10), and 3.34 (0.85 - 6.12) m3 s'1, respectively (Appendix Table 6). Flows for 

Piledriver and Badger Sloughs tended to remain relatively stable, and excluding 

precipitation events, fluctuated slightly with the flow in the Tanana River (Figure 4). 

Excluding the early July storm event, maximum flows in all three sloughs occurred in early 

August when the Tanana River was at its maximum flow. Minimum discharge for all 

sloughs was recorded in late May and early June, a period of time between breakup and 

the increase in discharge in the Tanana River due to glacial melt.

Water quality

Average temperatures (°C) from May 14 - August 27 were 1.5 degrees warmer in 

Badger Slough than in Piledriver Slough. Due to vandalization of the data logger at the 

upper Badger Slough site, only the lower and middle monitoring stations were used from 

Badger and Piledriver Sloughs. Maximum recorded temperatures for Badger, Piledriver, 

and 23-Mile Sloughs were 20.7,18.5, and 17.3, respectively, and minimum temperatures 

were 2.6,2.1, and 0.6. (Appendix Tables 7 - 9). During May and into mid-June water 

temperatures in the lower reaches of Piledriver Slough were depressed until the dissipation 

of extensive shelf ice in early June (Figure 5). By mid-October, both Piledriver and
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Figure 4. Discharges for Badger, Piledriver, and 23-Mile Sloughs, 1996. OJ



Figure 5. Average daily temperatures for Badger, Piledriver, and 23-Mile Sloughs, 1996. u>Ui



Piledriver and Badger Sloughs were mostly ice covered with water temperatures at 0° C. 

After ice-up, temperatures remained at 0°C until the last sampling date on February 3,

1997.

From May 14 to September 1, Badger Slough consistently displayed significantly 

higher values for pH, alkalinity (Figure 6), and conductivity than Piledriver and 23-Mile 

Sloughs (P<0.001) (Table 1). Prior to intrusion of the Tanana River water into 23-Mile 

Slough in early June, there were no significant differences in alkalinity, pH, turbidity, and 

conductivity between Piledriver and 23-Mile Sloughs. Intrusion of Tanana River water 

into 23-Mile Slough resulted in decreased conductivity, alkalinity, and pH, and turbidity 

increased as discharge increased. Turbidity was significantly different among sloughs 

(23-Mile > Badger > Piledriver) (PO.OOl) (Figure 7).

Ammonium-N and Nitrate-N levels were consistently below detection limits, 1.0 

and 0.8 mg L"1, respectively. No significant differences were found for TN and TDN 

among sloughs. Processing error may have occurred for TN and TDN samples and the 

values are therefore suspect.

Mean orthophosphate-P values were significantly different among sloughs (Badger 

> Piledriver and 23-Mile), as well as among sampling stations within Badger and 

Piledriver Slough (upper site > middle and lower sites) (P < 0.01) (Table 1). Mean TP 

was significantly different among sloughs (23-Mile > Badger > Piledriver), as well as 

among sampling stations within Badger and Piledriver Sloughs (upper site > middle and 

lower sites) (P < 0.01). No differences were found in TDP between Piledriver and 

23-Mile Sloughs, and TDP was significantly greater in Badger than both Piledriver and
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Figure 6. Alkalinity (as CaC03) at monitoring stations for Badger, Piledriver, and 23-Mile Sloughs, 1996. OJ•vj



Table 1. Water quality data (paired means ± SD) at water monitoring stations for sloughs, May 14 to September 1, 1996.

COoo

Sample Alkalinity pH conductivity Turbidity TP TDP Orthophophate-P TN DN

location (CaCO3 mg/L) (pS/cm) (NTU) (pg/L) (pg/L) (pg/L) (mg/L) (mg/L)

Badger

Upper 133 ±4 7.7 ± 0.4 327± 12 5.5 ± 2.9 66 ±29 34 ± 7 32 ± 21 1.59 ±1.56 1.10 ± 1.22

Middle 137 ±5 7.8 ± 0.4 328± 12 2.6 ± 0.9 38 ±9 23 ±5 20 ± 5 1.14 ± 1.31 1.14 ± 1.46

Lower 137 ±5 7.9 ± 0.4 326± 12 2.4 ± 0.8 33 ± 8 21 ±4 20 ± 9 0.83 ±1.18 0.76 ±1.09

Mean 136 ±5 7.8 ± 0.4 327± 12 3.5 ± 2.3 45 ±23 27 ± 8 24 ±20 1.13 ± 1.39 0.96 ±1.26

Piledriver
Upper 112  ± 8 7.4 ± 0.4 303 ± 14 0.7 ± 0.1 18 ± 3 15 ± 4 7 ± 5 1.18 ±1.54 1.01 ± 1.28

Middle 115 ± 3 7.5 ± 0.4 293 ± 20 0.6 ± 0.2 10 ± 2 8 ± 3 1 ± 1 1.31 ±1.47 1.07 ±1.21

Lower 121 ±3 7.4 ± 0.3 303 ± 16 0.7 ± 0.3 9± 3 8 ± 3 0 ± 0 1.06 ±1.40 1.16 ± 1.33

Mean 116±6 7.4 ± 0.4 300 ± 8 0.7 ± 0.2 12 ± 7 11± 5 3 ± 5 1.29 ±1.48 1.12 ± 1.25

23-Mile
Middle 96 ± 6 6.8 ± 0.1 269 ±34 362 ± 369 203 ±216 13 ± 8 2 ± 3 1.02 ± 1.16 0.82 ±0.81
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23-Mile Sloughs. The highest total phosphorus concentrations tended to occur in May 

and June (Figure 8). Orthophosphate and TDP also followed this pattern. A significant 

relationship (P < 0.001) was found between TP and tuibidity in 23-Mile Slough (Figure 

9).

Minimum DO concentrations (mg L'1) were observed in March 1996 in all three 

sloughs (Table 2). From May 15 to October 4, DO concentrations remained above 9.0. 

After the development of ice cover, DO decreased more rapidly at all three sampling 

stations in Badger Slough than in Piledriver Slough. Extensive open leads above the 

lower sampling station during a warming trend in early February coincided with the 

rebound o f DO concentrations at the lower monitoring station of Badger Slough. In 

23-Mile Slough, DO levels remained >8.0 as it tends to remain ice free throughout winter.

Algal biomass

Suspended chlorophyll a concentrations (May 15 to September 1) collected from 

Badger, Piledriver, and 23-Mile Sloughs averaged 3.29 ± 2.35,0.71 ± 0.47, and 2.53 ±

1.47 mg m’3, respectively (Appendix Table 10). Average sestonic chlorophyll a 

concentrations in Badger and 23-Mile Sloughs were not significantly different from each 

other but both were significantly greater than Piledriver Slough (P < 0.01). Additionally, 

there were significant differences (P < 0.05) between stations within Badger Slough 

(lower>middle>upper) as well as within Piledriver Slough (lower>both middle and upper) 

(Figure 10). Maximum concentrations in all sloughs were found during June and 

minimum concentrations occurred at the end of summer. Maximum chlorophyll a
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Figure 9. Relationship between turbidity and total phosphorus concentrations in 23-Mile Slough, 1996. 4*K>
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Table 2. Dissolved oxygen concentrations (mg L*1) at slough sampling stations, March 15, 
1996 to February 4,1997.

Date Badger Piledriver 23-Mile

lower middle upper lower middle upper

15-Mar — 1.4 0.85 2.25 — 2.5 8.08

2-Apr — 1 3.3 4.1 — 2.9 8.5

10-May 8.8 6 6 7.2 — 7.8 >9.0

1-Jun >9.0 >9.0 >9.0 >9.0 >9.0 >9.0 >9.0

1-Sept >9.0 >9.0 >9.0 >9.0 >9.0 >9.0 >9.0

4-Oct — 7.8 — 9 — -- 8.8

6-Nov 3.2 1.4 3.5 5 6 5.5 8.6

13-Dec 3 0.9 2.3 4.25 6.7 3 8.5

4-Feb 6 1.3 2.0 4.3 5 2.7 7.8
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concentrations in 23-Mile Slough coincided with the intrusion of the Tanana River 

resulting in increased scouring of attached algae. A positive relationship (P < 0.001) was 

found between TP and sestonic chlorophyll a (Figure 11).

Primary productivity

Simultaneous comparisons of gross primary productivity (g-C>2 m'1 d*1) between 

the upper, middle, and lower sampling stations of Badger and Pilednver Sloughs were not 

possible due to the M ure of a DO probe. However, some general comparisons were still 

possible.

Gross primary productivity (GPP) rapidly decreased below detection limits (0.2 

g-O2 m'1 d'1) in 23-Mile Slough as turbidity increased from the intrusion of glacial Tanana 

River water (Figure 12). After June 24, GPP was no longer measurable in 23-Mile 

Slough. In Badger Slough (middle site), GPP estimates ranged from a maximum of 6.9 in 

early July to a low of 0.63 in fall (Appendix Tables 11 -13). In Piledriver Slough, 

productivity attained maximum value of 4.0 during mid-August at the lower sampling 

station and a low of 1.1 during mid-July at the middle sampling station.

July productivity estimates at the middle sampling station in Badger Slough were 

five times greater than the middle sampling station in Piledriver Slough and almost twice 

that of the lower Piledriver station. Even upper Badger Slough displayed greater 

productivity than did lower Piledriver Slough. These comparisons are notable because the 

highest observed productivity estimates tended to occurr farthest downstream during 

mid-summer. This pattern of increasing primary production estimates is consistent with
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Figure 11. Relationship between total phosphorus and sestonic chlorophyll a concentrations among sampling stations 
within Badger and Pilednver Sloughs, 1996.
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the pattern of chlorophyll a concentrations observed. In Badger and Piledriver Sloughs, 

the chi a values also tended to increase as one moved downstream with the maximum 

concentrations occurring during the month of June.

Invertebrate drift

Unfortunately, copious amounts of filamentous algae and seston clogged the drift 

nets in Badger Slough, which negated any accurate measure of drift and made the 

separation of the invertebrates from the seston a formidable task. Therefore, the drift 

samples were used only for qualitative assessments.

Especially notable were the large numbers of planktonic organisms (mainly 

chydorids, copepods, and daphnids) that tended to dominate the drift samples, as well as 

large numbers o f ostracods. Visual inspection revealed that drift samples also contained 

Ephemoptera, Plecoptera, Tricoptera (EPT taxa), and Diptera in both Badger and 

Piledriver Sloughs. Visually, the densities of the planktonic organisms appeared 

equivalent between Badger and Piledriver Sloughs. Drift samples from 23-Mile Slough 

(collected in mid-July after intrusion of the Tanana River) also contained EPT taxa and 

Diptera, however, in far fewer numbers than Badger and Piledriver Sloughs, and no 

planktonic organisms were found. During the July 4 sampling period, large numbers of 

caddis flies were observed hatching from 23-Mile Slough.
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Juvenile Arctic grayling growth

No Arctic grayling were captured in 23-Mile Slough. Seine hauls made in 23-Mile 

Slough in July and August did capture juvenile round whitefish Prosopium cylindraceum, 

juvenile coho salmon Oncorhynchus kisutch, and slimy sculpin Cottus cognates. Numbers 

and sizes were not noted. In April, a large school (approximately 100 fish) of 150-250 

mm grayling were observed feeding within pools near overhanging vegetation above the 

sampling station. A local landowner also has reported seeing schools o f coho salmon 

spawning annually in late fall within 23-Mile Slough and its tributaries.

No significant differences were found between sampling areas within a slough; 

therefore, samples from a slough were pooled for data analysis. The average length of 

age-0 grayling was significantly greater in Badger Slough than in Piledriver Slough (Figure 

13) at each sampling event (P< 0.001). By September 30, mean lengths (± SE) of age-0 

grayling in Badger and Piledriver Sloughs were 82.3 (0.7) mm and 78.5 (0.6) mm, 

respectively (Appendix Table 14). The patterns of growth (length) o f age-0 grayling in 

both sloughs appear to parallel one another. Due to the low number o f sampling dates, 

growth rates were not analyzed; however, the pattern of growth does suggest that growth 

rates in Badger Slough age-0 grayling are similar to that of Piledriver Slough age-0 

grayling.

It should be noted that there was an absence of age-0 grayling after August 9 (no 

age-0 grayling captured) at the upper and middle reaches of Piledriver Slough. A similar 

pattern occurred in Badger Slough with no fish being captured at the upper sampling site 

on September 30. Consequently, additional riffle sections were sampled at the lower



Figure 13. Average fork lengths ( ± SE) of age-0 Arctic grayling in Badger and Pilednver Sloughs, 1996. KJt
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sampling sites at each slough to ensure an adequate number (a representative sample) of 

fish were collected.

Substrate

Piledriver Slough had significantly less (P<0.01) percent fines for each size 

category (4.0,2.0,1.0, and 0.5 mm) than Badger and 23-Mile Sloughs. No significant 

differences were found between Badger and 23-Mile Sloughs (Table 3). The median grain 

size (dso) and the grain size of which 90% is finer by weight (dso) were significantly 

different among all three sloughs (P< 0.01). Particle sizes were consistently smaller in 

Badger Slough across all size categories than in both Piledriver and 23-Mile Sloughs 

(Figure 14). Twenty-three-mile Slough had a greater fraction of larger particles (>64 mm) 

than did Piledriver Slough (Appendix Table 15). Visual inspection of substrates showed 

that the organic content of the fines (< 2 mm) was considerably greater in Badger Slough 

than in Piledriver and 23-Mile Sloughs (Frank Wuttig, geological engineer, personal 

communication, 1996). The fines sampled from Badger Slough appeared dark brown in 

coloration, whereas the fines in Piledriver and 23-Mile Sloughs were the color of glacial 

flour (gray).

Flushing flows

A Shields parameter of 0.03 was utilized to estimate unit discharge (m3 s'1 m*1) 

recommended for the release of trapped fines (Gordon 1992). Unit discharges for Badger, 

Piledriver, and 23-Mile Sloughs were calculated as 0.53, 0.81, and 0.46 m3 s'1 m'1,
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Table 3. Percent fines by weight of riffle substrates in Badger, Piledriver, and 23-Mile 

Sloughs. Given are sample size (N), average, standard deviation (SD), median 

grain size by weight (d5o), and grain size of which 90% is finer by weight (dpo).

Slough N Particle size 

(mm)

Percent

Mean SD

dso

(mm)

dgo

(mm)

Badger 24 <4 17.5 4.5 14.7 49.6

<2 12.4 4.2

<1 10.8 4.2

<0.5 9.4 3.9

Piledriver 24 <4 10.4 5.7 25.8 66.9

<2 6.8 4.1

<1 5.6 3.4

<0.5 4.7 2.8

23-Mile 10 <4 17.1 4.3 19.7 73.7

<2 11.7 3.2

<1 10 2.9

<0.5 8.4 2.5
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respectively. By multiplying the mean width of riffle areas measured, a rough estimate of 

a required flushing flow was obtained. Flushing flows for Badger, Piledriver, and 23-Mile 

Sloughs were estimated as 7.95,10.5, and 11.4 m"3 s*1, respectively. Utilizing a 

conservative bed load travel time of 0.03 h km*1 (Reiser et al. 1987), the needed duration 

of a flushing flow in Badger and Piledriver Sloughs would be approximately 83 hours.
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DISCUSSION

Water quality

My results indicate that there are significant differences in water quality between 

Badger, Piledriver, and 23-Mile Sloughs. Water in Badger Slough shows pH values near 

neutrality. Although greater than Piledriver Slough, Badger Slough turbidity values were 

still very low. Badger Slough alkalinity values are high when compared to other streams 

in interior Alaska. Alkalinity in Badger Slough is twice that found in the Chena River; 

only the Delta Clearwater River, also a groundwater tributary to the Tanana River has 

similar values (LaPerriere et al. 1989). Alkalinity levels in Piledriver Slough and 23-Mile 

Slough (prior to intrusion of the Tanana River) are also some of the highest recorded for 

clearwater streams in interior Alaska.

Mean TP values recorded for Badger Slough are greater than any other found for 

clearwater streams of interior Alaska (3.2 to 26 mg m'3) and in the Kuparuk River on the 

North Slope (1.5 - 16 mg m"3) as reported by LaPerriere et al. (1989), and Peterson et al. 

(1986), respectively. However, in comparison with 115 north temperate streams (Van 

Nieuwenhuyse and Jones 1996), Badger Slough ranks near the lower 25th percentile (48 

mg m 3) and would be classified as moderately enriched (Lohman et al. 1991). The range 

of TP values is consistent with values associated with mixed land uses in the eastern 

United States (Brooks et al. 1991) and with rural areas of Norway (Skulberg 1982).
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might be interpreted as evidence of sewage inputs; however, a similar pattern was 

observed in Piledriver Slough which had a 100% TP and a 57% increase in TDP.

However, in Badger Slough TP increased 30 pg/L as compared to only 9 pg/L in 

Piledriver Slough, and orthophosphate concentrations in Badger Slough were 9 times that 

found in 23-Mile and Piledriver Sloughs, suggesting the influence of septic systems in 

Badger Slough. It has been shown that urbanization results in increases in the amount of 

phosphorus discharged to surface waters is in approximately direct proportion to 

population densities (Wetzel 1983).

During the ice-free season, dissolved oxygen remained above levels considered 

strongly suitable for overwintering salmonids (Merritt 1992). With the onset of icing, DO 

rapidly decreased in Badger Slough, and within one month, concentrations had dropped to 

levels considered strongly unsuitable for salmonids. In contrast, areas within Piledriver 

Slough maintained areas of suitable levels of oxygen throughout winter as did 23-Mile 

Slough which tends to remain ice free. However, unsuitable DO were found in portions of 

Piledriver Slough in 1991 (Merritt 1992). Although considered unsuitable for salmonids, 

Arctic grayling can tolerate DO levels below 2.0 mg L'1 at 0°C (Schallock 1980), and 

grayling have been shown to overwinter in lakes where DO levels reached 1.0 mg L '1 

(Rogoski and Tack 1970).

The pattern of oxygen depletion observed in the sloughs during winter corresponds 

with the levels of aquatic vegetation that developed. Algal biomass is one of the principal 

effects of eutrophication, and the respiratory demands from decaying organic matter can 

rapidly deplete the supply of oxygen (Welch 1992). As noted, DO rapidly declined in



Badger Slough, with DO remaining depressed throughout much of the winter. In the 

upper reaches of Piledriver Slough, where little vegetation develops, DO remained 

relatively high. At the lower sampling station of Piledriver, with a greater development of 

algae, unsuitable DO levels were attained, but, not until February.

Algal biomass

Use of sestonic chlorophyll a concentrations to compare algal production can be 

criticized because of the variation of physical parameters found among streams (Jones et 

al. 1984). However, comparisons between Badger and Piledriver Sloughs are allowable 

because both sloughs are similar in terms of stream flow, catchment size, and substrate. 

Comparisons with 23-Mile Slough are not valid due to its physical characteristics after 

intrusion of the Tanana River. When 23-Mile Slough is running clear, benthic algae 

develops on a thin layer of glacial silt coating the substrates that is easily sloughed off, and 

any algae collected after intrusion of the Tanana River is likely due to the silt coating being 

scoured off and to catchment effects (inputs from tributary streams of the Tanana River).

Based upon suspended chlorophyll a concentrations, Badger Slough had more than 

twice the amount of benthic algal biomass than Piledriver Slough. Maximum 

concentrations were recorded in mid-June when solar radiation and slough temperatures 

were at their maximums. The month of August was the coolest in 27 years and September 

was the second coldest on record; both months were relatively cloudy (ACRC 1997). The 

resulting decline in water temperature and light in conjunction with declining phosphorus
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levels could have caused a decline in algal production as reflected by the sestonic 

chlorophyll a concentrations (Welch 1992).

Average summer sestonic chlorophyll a concentrations measured in Badger are 

greater than any previously recorded (0.31± 0 .18-1 .12±  0.84 mg m'3) in the interior of 

Alaska (LaPerriere et al. 1989). Piledriver Slough concentrations are within the ranges of 

values reported from other interior Alaskan streams. As with TP, Badger Slough sestonic 

chlorophyll a concentrations rank near the 25th percentile (4.9 mg m'3) in comparison with 

115 north temperate streams, Badger Slough (Van Nieuwenhuyse and Jones 1996).

A nuisance level of algae has been established when benthic algal biomass exceeds 

100-150 mg chi a m'2, a level at which filamentous algae covers approximately 20% of the 

stream bottom (Welch et al. 1988). By assuming a certain fraction of the algae is scoured 

off and transported downstream (daily export rate), benthic algal biomass can be estimated 

and compared against the nuisance standard. In Missouri Ozark streams Jones et al. 

(1984) estimated that daily export rates of chlorophyll a ranged from 0.25% to 2.9% of 

the mean benthic standing crop. If a conservative export rate of 2% is used, nuisance 

levels of algal biomass would be reached when sestonic chlorophyll a concentrations 

exceed a threshold level of 2.0 mg L'1 (Table 4). In May, June, and July calculated 

nuisance levels were attained in Badger Slough, primarily at the middle and upper 

sampling stations, and were never exceeded in Piledriver Slough. The nuisance levels 

estimated are consistent with personal observations. In Piledriver Slough, scattered algal 

mats were only observed in the lower reaches. At the upper site of Badger Slough there 

was a noticeable absence of the extensive growths of benthic algae (filamentous algal
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Table 4. Estimated benthic chlorophyll a concentrations (mg m'2) at monitoring stations 

for Badger, Piledriver, and 23-Mile Sloughs, 1996. A 2.0% daily export rate 

was assumed and sestonic chlorophyll a was measured.
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Badger Piledriver 2 3 -Mile

Date upper middle lower upper middle lower

1-May 59 138 — 11 — 49 —

14-May 148 247 256 24 30 80 90

29-May 86 251 410 15 54 30 147

18-Jun 119 259 404 34 23 87 257

8-Jul 81 123 334 18 26 59 86

5-Aug 65 64 82 12 17 61 83

1-Sep 48 72 67 12 15 58 55

Mean 112.50 185.50 297.50 21.00 30.00 63.50 132.50



mats) that developed at the middle and lower sampling sites. Near Peede Road, located 

between the upper and lower sampling stations, the entire width of Badger Slough was 

covered with filamentous algae, well in excess of the 20% considered a nuisance.

It is evident that Badger Slough has developed excessive growths of benthic algae, 

although the exact cause of this development is not clear. Several factors can regulate 

algal growth in streams: light, temperature, flood frequency, substrata, and nutrients 

(Welch 1992). Of these factors, periodic high-water events that scour the substratum and 

turbidity, which decreases light penetration, are often the major determinants of 

periphyton biomass (Van Nieuwenhuyse 1983, Lohman et al. 1991). In Badger Slough, 

the absence of flooding and turbidity has certainly promoted the development of algae.

However, similar hydrologic conditions existed in Piledriver Slough without the 

same level of periphyton developing. Observed differences in phosphorus, alkalinity, and 

temperature may help account for the differences in periphyton biomass. A significant 

relationship was observed in Interior streams between sestonic algae and alkalinity 

(LaPerriere et al. 1989). Using this relation, predicted versus observed chi a 

concentrations were 0.72 versus 3.29 in Badger Slough and 0.64 versus 0.71 in Piledriver 

Slough suggesting, something else besides alkalinity may be stimulating algal growth in 

Badger Slough. Using the sestonic algae and TP relation established for northern 

temperate streams (Van Nieuwenhuyse and Jones 1996), predicted vs. observed chi a 

concentrations for TP were 5.01 versus 3.29 for Badger Slough, and 1.30 versus 0.71 for 

Piledriver Slough, respectively. The closeness of these predictions and the significant 

relationship found between chi a and TP among sampling stations within Badger and
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Piledriver Sloughs suggest that phosphorus may be acting as a limiting nutrient, and that 

any additions of phosphorus are stimulating algal production. Likewise, the neighboring 

Chena River had been found to be phosphorus limited based on the 50 - 220:1 inorganic 

nitrogen to inorganic phosphorus ratios measured (Frey et al. 1970). However, more data 

from experimental additions of nutrients or conclusive TN:TP ratios would be needed to 

establish primary productivity and nutrient relationships.

The elevated levels o f periphyton are most likely a result of additional nutrients. It 

has been suggested by many residents of Badger Slough that contaminated groundwater 

from septic systems (Krumhardt 1982) may be entering Badger Slough- However, it 

would be difficult to address the sources of the elevated phosphorus (and possibly 

nitrogen) levels without a comprehensive water quality monitoring program. It is possible 

that the eutrophication of Badger Slough is a function of internal nutrient loading and 

recycling. The deposition of organic fines on and within the substratum of Badger Slough 

could result in increased release of nutrients from the processing of organic matter within 

the hyporheos (substratum) (Pringle 1987, Valett et al. 1994). Thus, the retentive action 

of the culverts and beaver dams may in fact be increasing nutrient availability as 

demonstrated by Coleman and Dahm (1990).

Primary productivity

It is evident that there is greater algal production in Badger Slough than in 

Piledriver and 23-Mile Sloughs, and this conclusion is confirmed by the GPP estimates. 

Although direct comparisons between corresponding sampling stations o f Badger and
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Piledriver Sloughs at the same times could not be made, my data do show that GPP tends 

to be more than 2-5 times greater in Badger Slough than in Piledriver Slough. Compared 

with the range of values (0.2 - 2.9 g O2 m‘2 d 'l) observed in other interior streams of 

Alaska (LaPerriere et al. 1989), Badger Slough far exceeds this range, and values o f GPP 

for Piledriver and 23-Mile Sloughs fall within this range.

The results from 23-Slough show turbidity disrupting production and underscore 

the importance of light in regulating productivity (Van Nieuwenhuyse and LaPerriere 

1986). Throughout the entire ice-free season, turbidity in both Badger and Piledriver 

sloughs was very low, allowing for maximum solar radiation.

Juvenile Arctic grayling growth

Assuming that the growth of individual age-0 Arctic grayling reflects the quality of 

rearing habitat, there appears to be no decline in the quality of rearing habitat in Badger 

Slough. Comparisons between Badger and Piledriver Slough show that, in fact, rearing 

habitat in Badger Slough may be better than in Piledriver Slough. Moreover, comparison 

with growth data collected from Walker (1983) also indicates that there appears to be no 

decline in the quality of rearing habitat in Badger Slough. No significant decreases in 

age-0 grayling growth (maximum average lengths attained at end of summer season) were 

found between Walker’s (1983) data and mine in 1996 (Table 5). It may be that growth in 

Piledriver Slough has increased; however, Walker’s 1982 Piledriver data are suspect due 

to a biased sample. His data show the average length of age-0 grayling decreasing during 

the month of September.

62



Table 5. Maximum lengths of age-0 Arctic grayling attained at the end of September for 

Badger and Piledriver Sloughs, 1996. Given are mean lengths, standard 

deviations (SD), ranges, and sample sizes (N). Data from 1981 and 1982 are 

from Walker (1983).

Location Year N Mean

Fork length (mm) 

SD Range

Badger 1981 80 86.3 8.7 57-111

1982 35 83.6 5.1 72-90

1996 288 84.3 9.0 65-111

Piledriver 1982 28 63.0 7.6 47-85

1996 288 78.5 8.2 59-98
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In Badger Slough age-0 grayling have continued to exhibit high growth. This 

growth can be attributed to the absence of high-water events that can be detrimental to the 

early life history of Arctic grayling. Clark (1992) found that recruitment of grayling in the 

Chena River, Alaska is influenced by stream flows during the initial weeks of life of a 

grayling, namely during spawning, emergence, and the larval stage. High flows may 

dislodge eggs from the shallow nests of grayling (Elwood and Waters 1969) or flush the 

weak swimming larval fish downstream into unfavorable rearing habitat (Creeco and 

Savoy 1984). Recently hatched larval fish have poorly developed fins and require shallow, 

calm backwater areas or side channels with little flow (Sempeski and Gaudin 1995).

Water temperatures are typically depressed by high flows and can affect growth by 

delaying the initiation of spawning, delaying emergence, and the slowing of metabolic 

processes (Walker 1983). Turbidity from high water decreases water clarity, lowering 

feeding effectiveness and resulting in decreased growth (Schmidt and O’Brien 1982, 

McLeay et al. 1987). As witnessed in 1981,1982, and 1996, Badger Slough has acted as 

a refuge from high waters, creating favorable rearing conditions characterized by stable 

flows with calm backwater areas, low turbidity, and wanner waters. In fact, in both 

Badger and Piledriver Sloughs, average temperatures fluctuated within the optimal thermal 

tolerances (8-14°C) for young Baikal grayling (Tugaiina and Ryzhova 1969).

It could be argued that any decreases in rearing habitat in Badger Slough were 

offset by an abnormally warm summer in 1996, resulting in increased growth. However, 

the summer (June, July, and August) of 1996 was the coolest on record since 1984, cooler 

than 1982, and slightly warmer than 1981 (ACRC 1997). The smaller mean lengths of
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Piledriver Slough age-0 grayling may be a function of cooler water and not a function of 

less suitable habitat. When viewing the parallel growth curves (Figure S), it appears that 

the depressed water temperatures (Figure 4) in Piledriver Slough may have delayed 

spawning and/or emergence, causing age-0 grayling growth in Piledriver Slough to lag 

behind that of Badger Slough. During the month of May when fish are spawning and 

incubating, water temperatures for the last two weeks were 2°C cooler on average in 

Piledriver Slough. Additionally, from May 14 to August 27, Badger Slough had 170 more 

cumulative degree days than did Piledriver Slough. The lower water temperatures in 

Piledriver Slough appear to be from the melting of extensive aufeis, and the sharp increase 

in water temperatures corresponds with the dissipation of aufeis. However, growth of 

age-0 grayling in Piledriver Slough was still considered robust for interior Alaska streams 

(Walker 1983).

The growth of grayling in Badger and Piledriver Sloughs may also be attributed to 

food availability. During the 1960s, it was speculated that nutrient enrichment from the 

sewage facilities could have increased invertebrate densities in the lower Chena River and, 

thereby, accounting for the elevated grayling populations in the lower river (Tack 1971). 

In comparison to Arctic grayling from other areas of the Chena River watershed, Badger 

Slough fish feed on a greater taxonomic diversity of food items not found in Chena River 

(Tipulidae, Culiciadae, Ephemoptera, and Arachnia), and more frequent ostracods and 

copepods (Walker 1983). Drift samples confirmed an abundant supply of zooplankton, 

particularly, ostracods, copepods, and daphnia. In addition, out of 20 age-0 grayling
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stomach contents examined, a high proportion (60%) o f age-0 grayling were feeding on 

leeches.

Temperature may be influencing the migration of age-0 grayling. As the sampling 

season progressed there was a notable absence of fish from the upper and middle reaches 

of Badger and Piledriver Sloughs as the temperatures dropped in August and September, 

which were the second coldest on record when averaged together (ACRC 1997). By the 

end of September, fish were only found at the lower sampling stations of each slough. 

Hughes (1986) began capturing out-migrating age-0 grayling in September 1985 at the 

middle Badger Slough sampling location. The out migration o f grayling may be crucial for 

overwinter survival due to the unsuitable oxygen conditions that develop quickly after the 

formation of ice in Badger Slough. Overwintering habitat was found to be suitable during 

1996-1997 in reaches of Piledriver Slough with DO concentrations remaining at or above 

4.0 mg L '1.

Based on the growth of age-0 grayling, it appears as if the quality of rearing 

habitat in Badger Slough is still very suitable for young grayling; however, growth doesn’t 

indicate whether there may be a decrease in the quantity of habitat available. In Badger 

and Piledriver Sloughs, age-0 grayling > 40 mm were observed mostly feeding within 

riffles and glides over exposed (gravel) substrates. Preference for this habitat type is 

consistent with other findings that show age-0 grayling feeding within the channel over 

exposed gravel substrates (Lucko 1992). In Badger Slough, areas of exposed gravels tend 

to occur only in natural riffles or riffles below culverts as identified on a habitat map by 

Hughes (1986). One particular culvert riffle located below Nordale Road crossing was
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used as a weir site by Hughes (1986) and for the collection o f age-0 grayling by Walker 

(1983). This particular riffle was described as having exposed substrates and a high 

density of age-0 grayling that were easily seined. In 1996, this riffle had been largely 

covered by rooted macrophytes and algal mats; only one age-0 grayling was observed and 

none were captured by a seine. This is in stark contrast to the exposed riffles from which I 

captured large numbers (>200) of age-0 grayling with a single seine haul in other parts of 

Badger Slough in 1996. Similar seine haul successes occurred within Piledriver Slough’s 

unvegetated riffles.

Foot surveys and test fishing revealed that higher densities of age-0 grayling 

tended to occur in natural riffles as opposed to culvert riffles. A goal of Hughes (1986) 

was to identify areas o f critical habitat, and it should be stressed that the natural riffle 

areas, particularly those above Peede Road and below Plack Road should be protected.

Substrate

The substrate data show that Badger Slough riffle substrates contain almost twice 

the amount of fines (<2. 0 mm) and have a smaller geometric mean particle size than 

Piledriver Slough. When compared to 23-Mile Slough, no significant differences were 

found in percent fines, however Badger Slough did have a smaller dso. This suggests that 

the riffles of Badger Slough are accumulating organic and inorganic fines and have 

reached levels similar to that of 23-Mile Slough, which carries large volumes of glacial 

sands and silts.
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The increased fines in riffle substrates can directly or indirectly affect juvenile 

salmonids. Intrusions of fines into riffle substrates can decrease redd permeability, 

smothering developing embryos (Chapman 1988), and the resulting loss of invertebrate 

habitat can indirectly affect salmonid production, causing a decline in the food base 

(Alexander and Hansen 1986). However, it does not appear that the spawning success or 

the food base of Badger Slough grayling is affected. Although Interior grayling usually 

spawn over pea-sized gravel, grayling have been observed spawning over a variety of 

substrates such as vegetated organic mud and rubble (Armstrong 1986). The ability of 

grayling to use a variety of substrates and the high catches per seine haul indicates that 

spawning success has not been affected, and the high growth of age-0 grayling indicates 

that the food base is adequate. The percent fines in Badger Slough are below the 15-30% 

level at which salmonid reproduction and invertebrate densities become affected 

(Chapman 1988, Waters 1995).

The percent fines in Badger Slough are likely underestimated. Riffles were 

selected only if exposed gravel substrates were observed; and some of the riffle habitat 

described by Hughes (1986) has since developed a layer of organic fines with thick mats of 

aquatic vegetation and was subsequently not sampled, as was the case with the riffle 

located below Nordale Road.

Flushing flows

A flushing flow (approximately 8.0 m3 s'1 for 80 hr) in Badger Slough is 

recommended for the maintenance of Arctic grayling habitat and the encroachment of
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riparian vegetation. Such a flow would help to remove fines from the substrate, deposits 

of organically enriched fines that have accumulated, rooted aquatic macrophytes, and 

attached algae. Clearly, the incipient method used is an oversimplification, and the most 

effective methods are those that can predict bankfiill discharges from extensive flow 

records or from test flows (Reiser et al. 1987). However, the 8.0 m3 s'1 recommendation 

is supported by its close approximation to the maximum flows observed in 23-Mile Slough 

during 1995 and 1996. During these flows, bedload movement was felt during discharge 

measurements, however the substrates aren’t cleansed due to the substantial amount of 

suspended sediments in the Tanana River water that is redeposited.

The release of a flushing flow in Badger Slough presents several obstacles: a water 

source, hydrologic constraints, funding, and biological parameters. A water source would 

be required and the Chena River and Piledriver Slough are the closest alternatives.

Existing culvert crossings would have to be modified to allow for increased flow, and 

potential flooding of residential areas could limit the size of the flow. The flow would 

have to occur with ice out before adult grayling have spawned or during the late summer 

and fall rains after age-0 grayling have adequately developed. Clearly, such a project 

would be costly and funding would be a formidable obstacle. A flushing flow is highly 

recommended; however, such an undertaking would be best handled by certified 

hydrologists.
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CONCLUSIONS AND RECOMMENDATIONS

The differences in water quality and algal production shown between Badger 

Slough and Piledriver and 23-Mile Sloughs indicate that blockage and development have 

accelerated the eutrophication of Badger Slough. It can be argued that the eutrophic state 

of Badger Slough is due to natural succession because groundwater-fed systems of the 

Tanana River tend to be productive. However, it is unlikely that a slough, such as 

Piledriver Slough, would eutrophy to the same extent as did Badger Slough in just 25 

years without developmental influences. Natural succession may be partially the case as 

the lower sections of Piledriver Slough have eutrophied some when compared to the 

upper reaches. However, the strong relationship between TP and chlorophyll found 

among sampling stations and the elevated phosphorus levels in Badger Slough are 

convincing evidence of culturally accelerated eutrophication.

The eutrophication of Badger Slough is a contentious issue among residents of 

Badger Slough and they are quick to blame the unaesthetic growths of algae on faulty 

septic systems. However, more conclusive data from the experimental additions of 

nutrients or irrefutable TN:TP ratios would be needed to establish primary production and 

nutrient relationships. In addition, a thorough and comprehensive water quality 

monitoring program would be required to determine any potential nutrient sources.

Clearly, Badger Slough is valuable in terms of spawning and rearing habitat for 

Arctic grayling and for Chena River recruitment. Currently, there appears to be no
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degradation in the quality of rearing habitat for age-0 grayling in Badger Slough; 

however, there are indications that the quantity o f suitable habitat may be decreasing. 

Accumulations of organic fines in pools and riffles and the development of rooted aquatic 

plants and nuisance levels of periphyton may eventually constrict the available rearing and 

spawning habitat.

Without intervention, the aesthetic value of Badger Slough to its residents, the 

recreational value of Badger Slough as a fishery, and the quantity and quality of rearing 

habitat for age-0 grayling in Badger Slough will all most likely decline. The blockage and 

development of Badger Slough have created an open channel with stable, clear, 

nutrient-rich flows that promote autochthonous production as well as rearing Arctic 

grayling. However, a lack of high-water events has allowed for the development of 

aquatic macrophytes and attached algae; accumulations of nutrients, organic fines, and 

inorganic fines; and the encroachment of riparian vegetation to go unchecked. Therefore, 

annual flushing flows in fall are strongly recommended in Badger Slough for channel 

maintenance, the prevention of vegetation encroachment, and the maintenance or 

enhancement of fishery habitat. Such flushing flows are also recommended for Piledriver 

Slough, which has begun to show indications of eutrophication in its lower reaches.
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APPENDIX

Table 6. Discharges (m3 s‘l) for Badger, Piledriver, and 23-Mile Sloughs, 1996.

Date 23-Mile Slough Piledriver Slough Badger Slough

14-May 1.29 1.61 1.52

26-May — 1.45 1.04

28-May 0.84 1.45 1.01

4-Jun 1.73 1.40 1.04

17-Jun 2.04 1.40 1.11

21-Jun 2.73 1.51 1.20

27-Jun 4.45 1.54 1.20

4-Jul 5.20 2.13 1.21

8-Jul 4.88 1.67 1.52

15-Jul 5.23 1.69 1.24

23-Jul 5.57 1.70 1.24

5-Aug 5.88 1.75 1.30

7-Aug 5.70 1.74 1.28

8-Aug — 1.74 1.28

14-Aug 5.16 1.78 1.29

27-Aug 4.62 1.75 1.29

16-Sep 0.93 1.58 1.10

26-Sep 0.92 1.54 1.10
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Table 7. Mean daily temperatures of sloughs at monitoring stations, 1996.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle

5/14/96 5.1 4.0 2.9 4.4 2.9 6.7
5/15/96 5.6 4.2 4.1 4.5 3.5 5.3
5/16/96 6.1 5.2 5.0 4.7 3.8 5.3
5/17/96 6.3 5.3 4.8 4.9 4.7 4.9
5/18/96 6.6 5.9 4.8 4.6 4.5 4.5
5/19/96 6.2 5.6 4.5 4.7 5.6 4.5
5/20/96 6.7 6.1 5.4 5.1 5.7 4.9
5/21/96 7.3 6.7 5.9 6.0 7.8 5.4
5/22/96 8.8 8.0 6.5 6.7 8.6 5.9
5/23/96 10.0 9.2 7.6 7.4 9.4 6.3
5/24/96 11.0 10.2 8.1 8.0 10.0 6.6
5/25/96 11.5 10.8 8.4 8.0 10.0 6.4
5/26/96 11.9 11.2 8.5 8.5 10.7 6.7
5/27/96 11.0 10.2 7.6 7.9 9.3 5.9
5/28/96 10.7 9.9 6.1 8.7 9.9 6.2
5/29/96 12.2 11.2 6.4 9.7 11.3 6.9
5/30/96 11.3 10.7 6.3 8.9 10.8 6.5
5/31/96 12.0 11.2 6.4 10.1 12.1 7.6
6/1/96 12.6 11.9 7.7 10.5 12.1 7.7
6/2/96 12.3 11.8 5.8 10.5 11.1 7.8
6/3/96 11.2 10.4 6.8 9.4 10.2 7.3
6/4/96 11.3 10.7 8.1 9.7 10.5 8.0
6/5/96 10.9 10.4 8.2 9.3 9.7 7.3
6/6/96 11.8 11.3 7.8 10.3 10.8 7.4
6/7/96 12.9 12.9 8.1 11.4 12.3 7.8
6/8/96 12.9 12.6 5.1 11.5 11.8 7.4
6/9/96 12.2 11.7 9.4 11.2 11.8 7.6
6/10/96 10.3 9.9 8.9 8.8 9.5 5.5
6/11/96 9.6 9.1 9.4 9.7 9.8 6.7
6/12/96 10.2 10.7 10.3 9.5 10.2 6.9
6/13/96 11.2 11.5 10.4 9.7 10.2 8.5
6/14/96 12.5 12.3 11.1 10.5 11.3 9.3
6/15/96 13.0 13.0 11.8 11.1 11.9 9.5
6/16/96 13.7 14.1 12.9 12.4 12.8 10.0
6/17/96 15.8 15.4 13.8 13.1 13.5 10.4
6/18/96 16.3 15.6 14.2 13.5 14.1 11.0
6/19/96 16.0 15.4 14.5 13.5 14.3 11.4
6/20/96 15.8 15.3 14.2 13.5 14.2 11.4
6/21/96 16.3 15.7 14.5 14.1 14.6 12.1
6/22/96 16.1 15.8 15.0 14.5 14.7 12.7
6/23/96 16.6 15.9 14.8 14.5 14.2 13.1
6/24/96 15.8 15.5 14.1 13.4 13.0 12.8
6/25/96 15.5 14.5 13.7 13.3 13.6 13.1
6/26/96 15.5 14.7 14.1 13.6 13.2 13.1
6/27/96 15.5 14.6 13.9 13.3 12.7 12.6
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Table 7. Continued.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle

6/28/96 14.3 13.8 13.3 13.2 12.7 11.9
6/29/96 12.4 11.8 11.6 11.5 10.6 10.5
6/30/96 10.7 9.9 9.9 10.1 8.8 9.6
7/1/96 11.7 10.6 10.8 10.7 9.2 9.9
7/2/96 13.2 13.1 12.7 11.5 9.4 10.1
7/3/96 15.0 14.3 13.5 12.1 9.7 11.2
m m 15.4 14.4 13.3 12.2 10.6 11.9
7/5/96 15.7 14.7 14.0 13.2 11.1 12.4
7/6/96 15.1 14.6 13.6 12.6 10.6 12.2
7/7/96 15.5 15.1 13.8 13.3 11.4 13.3
7/8/96 16.3 16.3 14.5 13.8 11.7 13.7
7/9/96 15.0 14.3 10.2 11.8 9.7 12.5
7/10/96 14.4 13.5 11.3 12.5 10.2 12.7
7/11/96 14.6 14.1 13.4 12.4 10.3 13.1
7/12/96 14.4 13.8 13.4 12.3 10.3 12.9
7/13/96 13.8 13.0 12.2 11.6 9.5 12.1
7/14/96 12.9 12.2 11.1 10.6 8.8 10.9
7/15/96 12.4 11.8 11.0 10.6 8.8 10.5
7/16/96 12.6 12.2 11.6 10.7 8.7 10.1
7/17/96 13.3 13.5 12.8 11.9 9.9 11.1
7/18/96 14.2 14.7 14.1 12.7 10.8 12.2
7/19/96 15.1 15.7 14.4 14.0 12.1 13.0
7/20/96 16.1 16.6 15.7 14.3 12.2 12.6
7/21/96 15.9 15.4 14.5 13.5 11.0 12.4
7/22/96 15.2 14.4 13.8 12.8 10.6 12.3
7/23/96 15.0 14.7 13.8 12.8 10.7 11.9
7/24/96 15.5 15.7 14.5 13.2 11.3 12.2
7/25/96 15.7 15.3 14.5 13.2 10.9 13.5
7/26/96 14.7 13.6 13.2 12.2 10.0 12.4
7/27/96 13.7 12.8 12.7 12.0 10.0 11.8
7/28/96 13.6 13.0 13.0 12.1 10.1 11.8
7/29/96 13.4 12.5 12.6 11.3 9.2 11.8
7/30/96 12.8 11.9 12.0 11.0 8.9 11.9
7/31/96 12.5 11.9 11.9 11.2 8.6 12.2
8/1/96 12.6 12.1 12.1 10.8 8.3 11.8
8/2/96 11.8 10.8 10.5 9.5 7.4 10.6
8/3/96 11.0 9.7 9.6 9.2 7.4 9.8
8/4/96 10.7 9.9 10.1 9.0 7.8 8.8
8/5/96 11.3 10.5 10.1 9.1 7.5 8.3
8/6/96 10.9 10.1 9.7 9.0 7.5 8.3
8/7/96 10.8 10.0 9.9 9.5 8.0 9.6
8/8/96 10.3 9.9 9.6 8.4 7.0 9.4
8/9/96 9.9 9.1 8.7 8.1 6.9 8.9
8/10/96 9.8 8.9 8.7 8.3 7.0 9.1
8/11/96 10.3 9.4 9.5 8.8 7.5 10.0
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Table 7. Continued.

Badger Piledriver 23-mi

Date lower middle lower middle upper middle

8/12/96 11.2 10.4 10.7 9.3 8.0 10.2
8/13/96 12.4 11.5 11.1 10.0 8.9 10.5
8/14/96 12.5 11.8 11.4 10.1 8.9 10.6
8/15/96 12.2 11.6 11.4 10.3 9.1 11.0
8/16/96 11.8 11.0 10.8 9.9 8.5 11.0
8/17/96 11.4 10.7 10.1 9.5 8.2 10.5
8/18/96 10.9 10.1 9.9 9.6 8.5 10.8
8/19/96 10.6 9.9 10.0 9.4 7.9 10.6
8/20/96 10.3 9.6 9.7 9.0 7.7 10.1
8/21/% 9.3 8.6 8.7 8.2 7.1 9.2
8/22/96 8.0 7.4 7.7 7.7 7.0 8.7
8/23/96 8.4 7.7 8.4 8.4 7.6 9.0
8/24/96 8.9 8.5 8.9 8.3 7.3 9.2
8/25/96 10.0 9.5 9.3 8.5 7.6 9.4
8/26/96 9.3 8.6 8.1 7.7 7.0 8.6
8/27/96 8.6 7.9 7.3 7.0 6.4
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Table 8. Minimum daily temperatures at monitoring stations of sloughs, 1996.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle
5/14/96 3.3 5 1.9 2.0 2.3 0.6
5/15/96 3.1 2.8 2.6 1.7 2.2 0.8
5/16/96 4.5 3.9 4 3.9 3.1 1.5
5/17/96 3.6 2.8 3.6 3.3 2.8 1.7
5/18/96 5.2 3.7 4.2 4.7 3.7 3.4
5/19/96 3.3 2.2 2.6 3.4 2.2 3
5/20/96 4.5 3 4 4.5 3.3 3.3
5/21/96 4.5 3.1 4.4 4.8 3.6 3.7
5/22/96 5 ‘3.1 4.4 5.6 3.7 4.2
5/23/96 6.3 3.1 5.5 6.6 3.9 4.5
5/24/96 7.5 3.7 6.3 7.9 4.8 5.8
5/25/96 7.9 3.7 6.4 8.6 5 5.9
5/26/96 8.7 3.9 6.6 9.2 5.5 6.4
5/27/96 9.5 4.7 7 9.3 6.4 7.6
5/28/96 7 3.4 5.2 7.2 5.3 5.6
5/29/96 8.1 3.7 5 8.7 5.6 6.6
5/30/96 9.7 4.8 5.6 9.8 6.7 8.4
5/31/96 8.6 4.8 5.2 8.9 7 8.6
6/1/96 8.9 4.5 6.3 9.7 6.4 8.2
6/2/96 10.6 6.1 4.5 10.8 8.6 9.5
6/3/96 8.4 4.7 5 8.4 6.7 6.9
6/4/96 8.6 5.5 6.7 8.7 7 7.6
6/5/96 7.3 4.4 6.1 7.9 5.3 5.6
6/6/96 8.1 4.2 4.7 8.9 6.3 6.7
6/7/96 10 5.5 3.9 10.9 8.1 9.2
6/8/96 10.4 5.2 3.1 10.9 8.4 9.2
6/9/96 10 5.3 7.2 10.1 8.4 9.3
6/10/96 9.7 4.8 8.1 8.6 7.5 8.7
6/11/96 7.9 4.7 7.2 7.3 7 7.3
6/12/96 8.2 4.2 8.6 8.9 7 7.9
6/13/96 9.5 6.7 8.4 9.5 7 7.8
6/14/96 10.6 7 9 10.8 7.8 9
6/15/96 10.8 6.9 9.3 10.6 7.9 9.3
6/16/96 11.4 6.7 10 11.4 8.7 9.2
6/17/96 12.6 7.5 11.4 13.1 9 10.6
6/18/96 12.6 8.1 11.5 13.4 9.7 11.1
6/19/96 12.8 8.9 12.1 13.5 10 11.5
6/20/96 13.2 9.2 12.1 13.5 10.4 11.8
6/21/96 13.2 10 12.3 13.7 10.8 11.8
6/22/96 13.8 10.6 13.1 14.5 11.2 12.4
6/23/96 12.9 10.6 10.9 13.8 10.8 11.2
6/24/96 13.5 11.7 13.2 14.5 11.2 11.7
6/25/96 13.4 11.8 12 13.4 11.1 10.9
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Table 8. Continued.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle

6/26/96 12.8 11.7 12.3 13.2 11.1 11.2
6/27/96 12.8 11.1 12.1 13.1 10.8 10.3
6/28/96 12.8 10.6 12.1 13.1 10.9 10.1
6/29/96 11.8 9.8 10.6 10.8 10.8 10
6/30/96 10.1 9.2 9.5 9.3 9.3 8.2
7/1/96 9.2 8.9 8.9 8.7 8.9 7.5
7/2/96 10.4 8.9 10.8 11.4 9 7.3
7/3/96 12.8 10.1 11.7 12.9 10.1 7.8
7/4/96 12.4 9.8 11.2 12.4 9.3 7.3
7/5/96 13.5 10.9 11.8 13.5 10.9 8.6
7/6/96 12.9 10.4 12 13.2 10.4 8.4
m m 13.2 11.1 11.4 13.1 10.1 8.1
7/8/96 14.8 12.4 9 14.9 11.5 9.5
7/9/96 14.3 12.1 8.2 12.8 11.2 8.9
7/10/96 13.1 11.5 8.7 11.7 10.1 7.6
7/11/96 13.2 11.7 11.8 12.9 10 7.6
7/12/96 13.2 12.3 12 12.4 10.6 8.2
7/13/96 12.9 11.5 10.9 11.8 10 7.9
7/14/96 12.4 10.6 10.6 11.5 9.8 7.6
7/15/96 11.5 10.1 9.7 10.6 9 7.3
7/16/96 11.7 8.7 10 10.8 8.4 6.4
7/17/96 12.3 9.7 10.9 11.8 9.5 7.3
7/18/96 13.4 10.8 12.6 13.5 10.6 8.6
7/19/96 14.1 11.7 9.5 14.0 10.9 8.9
7/20/96 15.1 11.4 13.8 15.3 11.7 9.5
7/21/96 15.3 11.7 13.8 14.6 11.8 9.3
7/22/96 14.5 11.7 12.9 13.5 11.7 9
•7/23/96 14 11.1 12 13.1 10.8 8.4
7/24/96 14.8 11.1 12.6 14.1 10.6 8.6
7/25/96 15.1 12.3 13.2 14.3 11.2 9
7/26/96 14.1 11.7 12.1 12.8 10.4 8.1
7/27/96 13.2 11.1 11.5 12.0 10.4 7.9
7/28/96 13.1 10.9 11.4 11.7 10 7.8
7/29/96 13.1 11.1 11.7 12.0 9.7 7.6
7/30/96 12.4 11.2 11.4 11.4 10 7.6
7/31/96 11.8 11.1 10.4 10.9 9.3 7
8/1/96 12.3 11.2 11.5 11.7 9.7 7.2
8/2/96 11.5 9.8 9.7 10.0 8.9 6.9
8/3/96 10.6 9.3 8.7 9.0 7.9 5.9
8/4/96 10 8.1 8.2 8.4 6.9 5.3
8/5/96 10.4 7.9 9.2 9.7 7.6 5.9
8/6/96 10 7.8 8.7 9.3 7.8 6.1
8/7/96 8.7 7.5 8.2 8.6 7.2 5.3
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Table 8. Continued.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle

8/8/96 9.5 8.7 9 9.3 7.3 5.5
8/9/96 9.2 8.6 8.2 8.6 7.6 6.1
8/10/96 8.9 8.2 7.8 8.2 7.2 5.8
8/11/96 8.9 8.9 8.2 8.2 7 5.8
8/12/96 9.7 9.2 9.2 9.3 7.6 6.3
8/13/96 10.8 9.3 9.5 10.3 8.1 6.6
8/14/96 11.2 9.3 10.1 11.1 8.2 7
8/15/96 11.2 10.1 10.6 10.9 8.9 7.2
8/16/96 10.9 10.4 10.3 10.4 8.9 7.3
8/17/96 10.4 9.8 9.3 10.1 8.2 6.6
8/18/96 9.7 9.8 8.7 9.3 7.9 6.6
8/19/96 8.7 9 8.1 8.4 7 5.5
8/20/96 8.6 8.7 8.2 8.4 6.7 5.3
8/21/96 8.2 8.6 7.8 7.8 7 5.6
8/22/96 7 7.9 6.6 6.7 6.4 5.5
8/23/96 6.7 7.5 6.7 6.3 6.3 5.5
8/24/96 7 7.5 7 6.9 5.8 4.8
8/25/96 9 8.9 8.6 8.7 7.6 6.6
8/26/96 8.7 7.8 7.3 7.9 7.2 6.1
8/27/96 6.3 5.3 6.1 5.3 4.7
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Table 9. Maximum daily temperatures recorded at monitoring stations of sloughs, 1996.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle

5/14/96 7.3 7.9 4.4 6.1 6.7 5.8
5/15/96 8.9 8.4 6.1 6.9 7.6 8.1
5/16/96 7.8 7 6.3 6.3 6.4 6.4
5/17/96 9.3 7.5 6.4 7.3 7.3 8.2
5/18/96 8.2 5.5 5.5 7.0 5.5 5.8
5/19/96 9.2 6.9 6.3 7.5 7.6 9.5
5/20/96 9.5 7.3 7.3 7.5 7.2 8.6
5/21/96 10.3 7.6 7.9 8.6 8.9 12.8
5/22/96 12.9 9 9 10.0 10.1 12.8
5/23/96 14.1 10 10.1 11.4 11.2 14.5
5/24/96 15.1 9.7 10.1 12.0 11.5 14.6
5/25/96 15.7 9.7 11.2 12.6 11.1 14.9
5/26/96 15.9 10 11.1 13.1 12.1 15.7
5/27/96 13.1 7.9 8.6 11.7 9.3 11.7
5/28/96 14.5 9.5 7.6 12.1 12.6 14.8
5/29/96 16.8 10.4 8.6 13.4 14 17.2
5/30/96 13.1 8.4 7 12.3 11.2 13.2
5/31/96 15.9 10.9 7.8 13.4 13.8 16.4
6/1/96 16.5 11.1 9.8 13.7 14.5 15.9
6/2/96 14.3 10.1 7.2 12.8 12.3 13.7
6/3/96 14.1 10.1 9.5 11.8 12.3 14.3
6/4/96 14.6 11.2 10.1 12.4 12.6 14.6
6/5/96 14.6 10.6 10.8 12.3 13.8 14.1
6/6/96 15.9 10.9 11.8 13.5 14.8 14.9
6/7/96 16.1 11.1 13.4 14.8 14.9 16.1
6/8/96 15.3 10 10.6 14.0 14.6 14.5
6/9/96 14.8 10.3 13.5 13.2 14.3 15.4
6/10/96 12.4 6.3 10 11.7 12.1 12
6/11/96 12 9.8 12.9 11.2 13.1 12.8
6/12/96 11.7 9.5 12 11.8 11.4 11.8
6/13/96 13.1 11.4 13.2 13.4 12.3 12.6
6/14/96 14.6 12.8 13.8 14.3 13.4 13.8
6/15/96 16.2 12.9 14.9 15.4 14.8 14.8
6/16/96 16.5 13.8 16.1 16.4 17.3 17
6/17/96 20.2 14 17 17.6 17.2 17
6/18/96 20.7 14.8 17.3 17.9 18.1 17.5
6/19/96 18.7 14.3 17.2 17.0 17.3 17
6/20/96 18.7 13.8 16.4 17.0 16.5 16.7
6/21/96 19.9 14.9 17.6 17.8 17.9 17.8
6/22/96 18.7 15.3 17.8 17.5 18.1 17.5
6/23/96 20.4 16.1 18.1 17.9 18.7 17.3
6/24/96 17.6 13.8 14.9 16.2 15.7 14.6
6/25/96 17.9 14.8 16.2 15.7 15.7 16.7
6/26/96 18.6 15.6 17 16.7 16.2 15.4
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Table 9. Continued.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle
6/27/96 18.4 14.1 15.9 16.1 16.4 14.8
6/28/96 15.9 13.8 14.9 14.5 15.7 15.3
6/29/96 14 11.4 12.6 12.8 13.5 13.1
6/30/96 11.4 10.1 10.3 10.4 10.8 9.5
7/1/% 15.1 11.5 13.4 13.1 13.4 11.5
7/2/96 16.2 11.2 14.5 14.8 14.3 11.4
7/3/96 17.2 12.4 14.8 15.9 14 11.7
7/4/% 18.4 14.3 14.8 15.9 15.1 14.5
7/5/96 17.9 14.5 16.1 16.1 16.2 14.1
7/6/% 17.2 13.8 14.8 15.7 15.1 13.1
7/7/96 18.3 15.7 16.2 17.0 17.3 14.9
7/8/% 17.6 15.6 16.7 17.3 16.2 13.5
7/9/96 16.8 12.9 11.1 16.4 13.1 11.2
7/10/96 16.2 14.5 14.9 15.1 15.4 13.1
7/11/96 15.9 14.8 14.6 15.3 15.1 13.1
7/12/96 15.7 14.1 14.9 14.9 14.6 13.1
7/13/% 15.3 13.2 13.4 13.8 14 11.5
7/14/96 14.1 11.4 11.7 12.9 11.5 10.3
7/15/96 13.4 11.2 12.8 12.9 13.2 10.8
7/16/% 13.5 11.4 13.1 13.4 13.2 11.1
7/17/% 14.8 12.8 14.8 15.4 15.1 12.8
7/18/% 15.6 14.1 16.2 15.9 15.6 13.7
7/19/96 16.7 14.6 17.8 17.6 18.1 16.2
7/20/% 17.2 13.8 17.5 17.8 17.6 14.9
7/21/96 16.8 13.5 15.4 16.5 15.6 12.6
7/22/96 15.9 12.9 14.5 15.1 14.1 12.1
7/23/96 16.2 12.9 16.2 16.2 15.7 13.5
7/24/96 16.5 13.4 16.2 17.2 16.5 14.1
7/25/96 16.5 14.9 15.9 16.1 15.7 12.9
7/26/96 15.7 13.4 14.3 14.5 14.1 11.8
7/27/96 14.3 12.9 13.8 13.8 13.8 12.1
7/28/96 14.3 12.9 14.6 14.1 14.8 12.8
7/29/96 14.1 12.4 13.2 13.2 12.6 10.6
7/30/96 13.4 12.6 12.9 12.6 12.1 10.1
7/31/96 13.2 13.7 13.5 13.1 14.1 11.1
8/1/96 13.2 12.6 12.8 12.4 11.5 9.2
8/2/% 12.4 11.2 11.7 11.7 10.3 8.2
8/3/96 11.4 10.3 10.9 10.6 10.8 9.3
8/4/% 11.7 9.8 12.4 11.4 11.5 10.8
8/5/% 11.8 9 11.4 11.4 10.9 9.3
8/6/96 12 9.2 10.9 10.8 11.2 9.5
8/7/% 13.2 12.1 12.3 11.5 12.9 11.5
8/8/% 12.1 10 10.1 10.6 9.3 8.1
8/9/% 10.6 9.3 9.2 9.7 8.7 7.5
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Table 9. Continued.

Badger Piledriver 23-Mile

Date lower middle lower middle upper middle

8/10/96 10.8 10 9.7 9.5 9.7 8.4
8/11/96 11.7 11.5 10.9 10.4 10.8 9.3
8/12/96 13.2 11.7 12.4 11.7 11.7 10.3
8/13/96 14.1 12.3 12.9 12.8 12.8 11.7
8/14/96 13.7 12.3 12.8 12.4 12.6 11.1
8/15/96 13.1 12.3 12.3 12.0 12.3 10.9
8/16/96 12.6 12 11.2 11.5 11.4 9.8
8/17/96 12 11.2 10.9 11.1 10.9 9.5
8/18/96 12.4 12.6 12 10.9 12.3 11.2
8/19/96 12.8 12.6 12 11.2 12.6 10.6
8/20/96 12 12 11.4 10.4 11.7 10.4
8/21/96 10.9 10.1 9.5 9.7 9.5 8.1
8/22/96 8.9 10 9.2 8.2 9.5 8.6
8/23/96 10.6 11.1 10.6 9.0 11.5 10.1
8/24/96 11.1 11.5 11.1 9.8 11.5 9.8
8/25/96 10.8 10 9.8 10.1 9.5 8.2
8/26/96 10 9 8.6 9.2 8.4 7.8
8/27/96 9.8 8.4 8.9 8.4 6.3



Table 10. Average (± SD) sestonic chlorophyll-a concentrations (mg m'3) at monitoring

stations for Badger, Piledriver, and 23-Mile Sloughs, 1996.

Badger Piledriver 23-Mile

Date Upper Middle Lower Upper Middle Lower Middle

1-May 1.18 ± 
0.06

2.76 ± 
0.22

— 0.23 ± 
0.06

~ 0.98 ± 
0.06

—

14-May 2.96 ± 
0.06

4.95 ± 
0.42

5.12±
0.26

0.48 ± 
0.01

0.61±
0.03

1.61 ± 
0.15

1.80 ± 
0.04

29-May 1.72 ± 
0.34

5.02 ± 
0.02

8.20 ± 
0.16

0.31 ± 
0.03

1.08 ± 
0.17

0.60 ± 
0.09

2.95 ± 
0.80

18-Jun 2.39 ± 
0.48

5.19 ± 
0.05

8.08 ± 
0.16

0.69 ± 
0.03

0.46 ± 
0.02

1.74 ± 
0.07

5.14 ± 
0.31

8-Jul 1.63 ± 
0.07

2.46 ± 
0.30

6.69 ± 
0.91

0.37 ± 
0.02

0.52 ± 
0.01

1.18 ± 
0.12

1.72 ± 
0.14

5-Aug 1.30 ± 
0.02

1.28 ± 
0.20

1.64 ± 
0.08

0.24 ± 
0.00

0.35 ± 
0.01

1.23 ± 
0.12

1.66 ± 
0.12

1-Sep 0.97 ± 
0.06

1.44 ± 
0.36

1.34 ± 
0.15

0.25 ± 
0.00

0.30 ± 
0.00

1.17 ± 
0.07

1.10±
0.10

Mean 2.25 ± 3.71 ± 5.95 ± 0.42 ± 0.60 ± 1.27 ± 2.65 ±
0.80 1.65 2.59 0.17 0.28 0.45 1.49
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Table 11. Gross primary production data for Badger Slough, 1996.

Elevation = 130 m
Gross Respiration P/R Mean Mean

Date Station production ratio temp. depth

(g-02 m'2 d '1) (g-02m‘2 d'1) (°C) (m)

4-Jul Middle 6.44 1.76 3.65 14.4 0.45

5-Jul 6.61 2.10 3.15 14.7

6-Jul 6.90 1.73 3.98 14.6

7-Jul 6.38 1.77 3.61 15.1 0.41

8-Jul 6.72 2.46 2.73 16.3

9-Jul 5.36 2.40 2.24 14.3

10-Jul 6.08 2.02 3.01 13.5 0.42

20-Jul Upper 5.12 2.05 2.49 16.6 0.22

21-Jul 4.47 2.11 2.12 15.4

22-Jul 4.36 1.88 2.32 14.4

23-Jul 4.55 1.96 2.33 14.7 0.22

27-Sep 1.57 2.42 0.65 2.1 0.45

28-Sep 1.40 2.75 0.51 1.7

29-Sep 0.97 2.41 0.40 1.3

30-Sep 1.13 2.86 0.39 0.9

1-Oct 1.48 2.67 0.56 1.5

2-Oct 0.71 2.82 0.25 1.1

3-Oct 0.63 3.27 0.19 0.3 0.45
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Table 12. Gross primary production data for Piledriver Slough, 1996.

Elevation = 144 m
Gross P/R Mean Mean

Date Station production Respiration 

(g-02m'2 d 1) (g-02in2 d'1)

ratio temp.

(°C)

depth

(m)

20-Jun Lower 3.37 1.16 2.89 14.2 0.33

21-Jun 3.05 1.11 2.75 14.5

22-Jun 3.30 1.17 2.82 15

23-Jun 3.53 1.12 3.16 14.8

24-Jun 3.14 1.21 2.59 14.1

25-Jun 3.04 1.17 2.60 13.7

20-Jul Middle 1.34 1.28 1.05 14.3 0.25

21-Jul 1.16 1.08 1.08 13.5

23-Jul 1.10 1.36 0.81 12.8

8-Aug Lower 3.11 1.65 1.88 9.6 0.35

11-Aug 3.90 1.91 2.04 10.7

12-Aug 3.96 2.05 1.93 11.1

13-Aug 3.80 2.16 1.76 10.8

17-Sep 1.67 2.25 0.74 4.7 0.28

18-Sep 1.48 2.21 0.67 3.3
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Table 13. Gross primary production data for 23-Mile Slough, 1996.

IIC301

146 m
Gross P/R Mean Mean

production Respiration ratio temp. depth

(g-02m‘2 d'1) (g-02m'2 d'1) (°C) (m)

19-Jun 0.93 3.36 0.28 11.4 0.29

20-Jun 0.76 3.72 0.20 11.4

22-Jun 0.43 3.37 0.13 12.7 0.33

24-Jun 0.20 3.17 0.06 12.8

25-Jun 0.17 3.16 0.05 13.1 0.4

26-Jun 0.15 3.15 0.05 13.1 0.41

18-Aug 0.12 3.84 0.03 10.5 0.46

19-Aug 0.21 3.65 0.06 10.8

20-Aug 0.11 3.71 0.03 10.6

23-Aug 0.16 3.84 0.04 9.2

24-Aug 0.09 4.07 0.02 9

25-Aug 0.18 3.78 0.05 9.2

26-Aug 0.19 3.79 0.05 9.4 0.42
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Given are mean lengths, standard deviations (SD), ranges, sample size (N), and 

95% confidence intervals (C.I.).

Table 14. Length data of age-0 Arctic grayling for Badger and Piledriver Sloughs,1996.

Fork length (mm)

Location Date N mean SD Range C.I.

Badger

12-Jul 544 51.2 5.6 38-67 (50.7-51.6)

9-Aug 282 70.0 6.0 52-89 (69.3-70.7)

30-Aug 312 77.5 8.1 62-103 (76.4-78.4)

30-Sep 288 82.3 9.0 65-111 (81.1-83.5)

Piledriver

11-Jul 758 43.6 4.0 31-61 (43.3-43.9)

8-Aug 573 66.2 7.2 41-84 (65.6-66.8)

29-Aug 347 74.4 6.9 56-97 (73.7-75.2)

30-Sep 288 78.5 8.2 59-98 (77.3-79.7)
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Table 15. Average substrate particle size distributions, by mass, for Badger, Piledriver,

and 23-Mile Sloughs, 1996. Given are cumulative proportion finer and 

standard deviation (SD) and sample size (N).

Badger Slough 

(N = 24)

Piledriver Slough 

(N=24)

23-Mile Slough 

(N=20)

Particle size Proportion 

(mm) finer

SD Proportion

finer

SD Proportion

finer

SD

<0.0633 0.03 0.25 0.23 0.88 0.05 0.04

0.0633 1.18 0.78 0.74 0.96 0.54 0.26

0.125 2.04 1.1 1.3 1.1 1.19 0.57

0.25 4.64 2.34 2.76 1.68 3.18 1.09

0.5 9.48 3.91 4.79 2.82 8.42 2.5

1 10.83 4.21 5.61 3.39 10.02 2.86

2 12.36 4.22 6.87 4.12 11.72 3.23

4 17.53 4.59 10.37 5.73 17.08 4.31

8 30.88 6.21 19.54 9.12 29.16 6.64

16 53.41 8.26 34.69 16 45.62 9.2

32 79.32 9.98 59.68 14.81 64.85 12

64 98.38 4.5 87.81 11.35 87.52 15.68

75 99.48 2.52 96.63 6.9 90.39 13.82

100 100 0 100 0 96.35 11.55



Table 16. Water quality data for Badger Slough at lower sampling station, 1996. Means (±SD); n = 3.

\o
VO

Date Alkalinity 

(CaC03 mg/L)

pH Cond.

(pS/cm)

Turbidity

(NTU)

TP

(Mg/L)

TDP

(Mg/L)

p o 4'3

(mg / L)

TN

(mg/L)

DN 

(mg / L)

NO3-N 

(mg / L)

16 April — — - - — - - - - - - — — —

01 May — — ~ — — — - - — — ~

14 May 128 ± 6 - - 302 7.05±0.98 102 ±4 27 ±1 0.26±0.03 0.30± 0.01 ,030±0.30 ND

29 May 140 ±1 7.95 332 9.95±1.57 82 ± 1 2 38 ±1 0.21±0.06 0.28±0.03 0.20±0.04 0.4

18 June 140 ±2 8.21 330 7.20±0.81 89 ±11 43 ±2 0.16±0.02 0.20±0.05 0.16±0.05 ND

08 July 138 ±3 8.31 327 4.04±0.15 61 ±4 40 ± 2 0.15±0.01 3.36±0.97 2.54±1.24 ND

05 August 134 ±3 8.25 330 2.23±0.10 30 ± 2 32 ±7 0.07±0.01 2.04± 1.44 1.74±1.40 ND

01 September 142 ±1 7.17 332 2.46±0.08 32 ±2 28 ±4 0.0 1±0.02 3.35±0.18 1.67±1.23 ND



Date Alkalinity 

(CaCO3 mg/L)

pH Cond.

(pS/cm)

Turbidity

(NTU)

TP

(Pg/L)

TDP

(Pg/L)

P 0 4*3 

(mg / L)

TN 

(mg / L)

DN 

(mg / L)

N 03-N

(mg/L)

02 April — — - - 3.30±0.37 — — 0.1 1 ±0.02 — — ND

16 April 152 ±1 — - - 3.78±0.03 27 ±1 12 ± 1 ND 0.17±0.02 0.21±0.03 1.8

01 May 131 ± 1 7.63 279 3.70±0.44 39 ±3 18 db 0 0.02±0.05 0.13±0.01 0.17±0.14 0.1

14 May 127 ±1 — 301 4.06±0.41 54 ± 6 — 0.08±0.02 — - - ND

29 May 138 ± 1 7.95 333 3.04±0.07 37 ± 1 21 db 1 0.05±0.01 0.16±0.0 0.32±0.07 ND

18 June 139 ± 1 8.11 330 3.23±0.17 32 ± 2 30 ± 6 0.05±0.01 0.19±0.04 0.15±0.0 ND

08 July 140 ±2 8.2 328 1.77±0.03 38 ± 6 33 ± 6 0.08±0.01 3.31±0.88 3.53±0.97 ND

05 August 136 ±3 7.92 340 1.80±0.08 30 ± 4 23 ± 6 0.08±0.00 1.78±1.16 2 .2 1± 1.10 0.0

01 September 142 ±3 7.15 335 1.88±0.03 28 ±3 20 ± 3 0.05±0.01 0.94±0.04 1.63±1.18 0.0

Table 17. Water quality data for Badger Slough at middle sampling station, 1996. Means (±SD); n -  3.

i—*oo



Table 18 Water aualitv data for Badger Slough at upper sampling station, 1996. Means (±SD); n -  3.

O

Date Alkalinity 

(CaCO3 mg/L)

pH Cond.

(pS/cm)

Turbidity

(NTU)

TP

(Pg/L)

TDP

(Pg/L)

P0 4*3 

(mg / L)

TN 

(mg / L)

DN 

(mg / L)

NO3-
N

(mg/L)

02 April — — — — — — — — — —

16 April 144 ±3 -- — 3.85±0.05 25 ±1 -- ND 0.13±0.05 0.57±0.58 1.2

01 May 135 ±2 7.28 300 3.79±0.13 33 ±1 15 ±1 0.1±0.01 0.1 1 ±0.02 0.10±0.01 ND

14 May 128 ± 1 — 307 4.10±0.21 42 ±3 19 ± 1 O.lliO.Ol 0.13±0.05 0.13±0.06 ND

29 May 136 ±3 7.99 326 2.47±0.14 32 ± 8 21 ± 1 0 .10±0.02 0.07±0.05 0.14db0.04 ND

18 June 133 ±1 7.76 328 1.91±0.06 29 ± 8 20 ± 1 0.04±0.01 0.12±0.02 0.08±0.04 ND

08 July 133 ±1 8.01 328 2.03±0.22 31 ±4 24 ±4 0.05±0.01 0.83±0.23 1.67±1.30 ND

05 August 131 ±1 7.79 338 1.97±0.02 38 ±9 22 ± 6 0.05±0.01 2.69±1.41 1.95±1.32 ND

01 September 138 ±2 7.06 336 2.07±0.05 24 ±2 20 ±4 0.05±0.01 1.84±1.45 2.11±1.51 ND



Date Alkalinity 

(CaCO3 mg/L)

pH Cond.

(pS/cm)

Turbidity

(NTU)

TP

(Pg/L)

TDP

(Pg/L)

p o 4'3

(mg/L)

TN 

(mg / L)

DN 

(mg / L)

NO3-N

(mg/L)

02 April -- -- — 0.52±0.02 — — — -- — 0.4

16 April 128 ± 0 — — 0.46±0.01 13 ±1 6 ± 2 0.0 1±0.00 0.34±0.51 0.29±0.16 1.7

01 May 116 ± 0 6.85 285 1.24±0.10 24 ±6 18 ± 2 0.06±0.01 0.10±0.02 0.15±0.06 0.4

14 May 115 ± 1 6.90 277 1.26±0.09 18 ± 2 12 ±3 0.05±0.01 0.06±0.01 0.12±0.13 ND

29 May 120 ± 2 7.61 291 0.67±0.04 18 ± 1 13 ±0 0.0 1±0.00 0.12±0.02 0.10±0.01 ND

18 June 124 ±2 8.00 308 0.64±0.07 16± 1 13 ±1 0.04±0.01 0.08±0.03 0.17±0.01 ND

08 July 122 ± 1 7.38 310 0.54±0.10 22 ±3 20 ±6 0.0 1±0.01 2.30±1.73 1.76±1.54 ND

05 August 119± 1 7.40 316 0.77±0.26 20 ± 0 16 ± 2 0.04±0.01 2.4±1.45 2.02±1.16 ND

01 September 123 ±1 7.16 335 0.59±0.08 18 ± 5 18 ± 1 ND 3.19±1.14 2.46±1.42 ND

Table 19. Water quality data for Piledriver Slough at lower sampling station, 1996. Means (±SD); n -  3.
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Table 20. Water quality data for Piledriver Slough at middle sampling station, 1996. Means (±SD); n = 3.
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Date Alkalinity 

(CaCO3 mg/L)

pH Cond.

(pS/cm)

Turbidity

(NTU)

TP TDP

(pg/L)

P04‘3 

(mg / L)

TN

(mg/L)

DN 

(mg / L)

NOa-N

(mg/L)

16 April - - — - — “ — — — - —

01 May - — — — “ - - — — - - —

14 May Ill ± 1 - - 270 0.67±0.04 7±1 — ND — - - ND

29 May 117± 1 7.90 267 0.39±0.02 9 ± 1 7 ± 1 ND 0.05±0.0 0.1 1 ±0.02 ND

18 June 115 db 1 7.74 301 0.53±0.03 8 ± 0 7 ± 1 ND 0.08±0.01 0.66±0.74 ND

08 July 117 ± 1 7.89 298 0.64±0.06 12 ± 2 6 ± 1 ND 2.82±1.39 2.56dbl .57 ND

05 August 1 1 1  ± 0 7.39 316 0.77±0.26 12 ± 2 9 ± 3 0 .01± 0.00 1.87±1.39 0.96±0.15 ND

01 September 115 ± 1 7.16 308 0.65±0.14 12 ± 3 8 ± 2 ND — — ND



Date Alkalinity 

(CaCO3 mg/L)

pH Cond.

(pS/cm)

Turbidity

(NTU)

TP

(Mg/L)

TDP

(pg/L)

P 0 4'3 

(mg / L)

TN 

(mg / L)

DN

(mg/L)

NO3-N

(mg/L)

02 April “ — -- — — — — -- — —

16 April 131 ±4 -- -- 0.61±0.07 4 ± 1 — ND 0.17±0.01 0.18±0.01 1.6

01 May 107 ±1 6.85 272 1 .1 1 ±0.22 11  ± 2 -- 0.02±0.01 0.13±0.03 0.1 1 ±0.02 0.4

14 May 96 ±0 — 275 0.87±0.02 8 ± 0 6 ± 1 ND 0.09±0.02 0.1 l=fc0.05 ND

29 May 1 1 2 ± 1 7.90 301 0.55±0.02 7 ± 2 6 ± 2 ND 0.09±0.01 0.13±0.05 ND

18 June 1 1 2 ± 1 7.80 313 0.79±0.08 12 ± 3 7 ± 2 ND 0.21±0.17 -- ND

08 July 118 ± 1 7.84 310 0.76±0.06 11  ± 1 1 1  ± 2 ND 2.82±1.39 2.00±1.19 ND

05 August 1 12  ± 2 7.22 306 0.74±0.10 11 ± 4 9±3 ND 1.81±1.38 2.63±1.31 ND

01 September 114± 1 7.05 313 0.70±0.06 8±3 8±3 ND 2.29±1.71 1.99±1.29 ND

Table 21. Water quality data for Piledriver Slough at upper sampling station, 1996. Means (±SD); n -  3.



Table 22. Water quality data for 23-Mile Slough, 1996. Means (±SD); n - 3.
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Date Alkalinity 

(CaC03 mg/L)

pH Cond.

(pS/cm)

Turbidity

(NTU)

TP

(pg/L)

TDP 

(Pg / L)

p o 4'3

(mg / L)

TN 

(mg / L)

DN 

(mg / L)

NO3-N 

(mg / L)

02 April - — — 0.06±0.34 — — 0.02±0.01 — — 0.5

16 April 114± 1 — -- 0.73±0.01 6 ± 0 .6 5 ±0.5 ND 0.13±0.05 0.22±0.07 1.6

01 May 114± 1 — -- 1.22±0.03 — -- 0.0 1±0.01 — — ND

14 May 114 ± 2 6.75 283 8.03±0.35 14 ±1.5 7 ±1.5 0.0 1±0.01 0.23±0.29 0.08±0.05 ND

29 May 1 12  dfc 1 6.70 295 0.60±0.04 8 ±1.7 5 ±1.2 ND 0.04±0.01 0.08±0.04 ND

18 June 95 ±0 6.87 261 55±10 55 ± 7.0 10 ± 1.0 ND 0.37±0.11 0.23±0.24 ND

08 July 81 ± 1 6.82 240 565±38 359 ±33.8 17 ± 2 0 .0 1±0.02 0.51±0.57 2.06±1.19 ND

05 August 80 ± 1 6.84 222 917±35.16 577 ±55.2 25 ±2.1 ND 1.56±1.17 2.51±1.24 ND

01 September 78 ± 1 6.87 240 628 ±29 251 ±28.9 18 ± 5 0.0 1±0.01 1.12±.094 1.09±0.10 ND


