
THE GEOMETRY AND FLOW OF FIREWEED ROCK GLACIER, ALASKA

By

Adam Kyle Bucki

Deaji of the Graduate School

/  L / ' t L
Date



THE GEOMETRY AND FLOW OF FIREWEED ROCK GLACIER, ALASKA

G A S
Aft-

9 , 0 0 ? -

A

THESIS

Presented to the Faculty 

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements 

for the Degree of

MASTER OF SCIENCE 

By

Adam Kyle Bucki, B.S.

Fairbanks, Alaska 

May 2002

RASM USON LIBRARY
UNIVERSITY OF AlASKA-FAIRBANKS



ABSTRACT

Little is known about the geometry, internal structure or flow of rock glaciers. 

Geophysical investigations were carried out on Fireweed Rock Glacier to define its 

geometry. Transient electromagnetic (TEM) methods were effective in determining its 

shape and depth as well as re-enforcing results of radar and seismic. All of these methods 

suggest a discontinuity at 15 to 30 m depth. The geometry acquired from these 

geophysical surveys was used to investigate the motion of the rock glacier. Analysis 

indicates that motion is concentrated in a pseudo-rectangular subsection of the larger 

valley on a “shear plane” at about 27 m depth. We infer that both deformation above and 

“sliding” along this shear plane contribute to the observed surface motion. This rock 

glacier flows relatively quickly for a rock glacier, and has seasonal and annual variations 

in speed. Some of the variations are related to the quasi-periodic calving at the terminus.
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CHAPTER 1:

Introduction

Rock glaciers are poorly understood periglacial landforms that are mixtures of ice 

and rock that flow. They are typically associated with a talus slope that provides rock 

debris; however, the mechanism for ice accumulation is not understood. It is also 

unknown how the ice and rock debris interact to allow for motion. This lack of 

knowledge is in large part, due to the fact that information about the internal structure is 

difficult to acquire. Rock glaciers are covered by an unconsolidated layer of rock that is 

typically 2-3 m thick. This layer prevents direct observations of the internal structure.

On Fireweed Rock Glacier (Fig. 1.1), a unique calving event provided a full transverse 

exposure of the internal structure, and was described by Elconin and LaChapelle (1997) 

and Elconin (1995).

Using the observations made by these authors, I employed a variety of geophysical 

methods that could be calibrated using the observed terminus exposure. With these 

methods, I was able to determine rock glacier geometry, which was then used to analyze 

rock glacier motion. For this analysis I also collected surface velocity data from a 

network of velocity markers. This network was initially established by Roger Elconin in 

1994, and I have monitored it from 1999 to 2001.

Chapters 2 and 3 are manuscripts that will be submitted to the Journal of 

Glaciology. These papers are co-authored by my graduate advisor Keith Echelmeyer. 

Chapter 2 is a description of the methods and results of the geophysical work that I



conducted and emphasizes transient electromagnetic methods, which is seldom applied 

glaciology. Chapter 3 is an analysis of the surface motion and terminus calving data, 

which utilizes the results presented in Chapter 2. Conclusions are given at the end of 

each chapter and then summarized in Chapter 4.

Fig 1.1: Location and map of Fireweed Rock Glacier.
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CHAPTER 2: 

Determination of Rock Glacier Thickness Using Transient 
Electromagnetic Methods1

ABSTRACT

Geophysical investigations on rock glaciers are often difficult because these 

glaciers are covered by an unconsolidated debris mantle a few meters thick, they are 

typically thin, and they are composed of an ice-rock melange of unknown composition. 

Transient electromagnetic (TEM) methods allow some of these difficulties to be 

minimized, and data collection is relatively efficient. TEM, with calibration from 

terminus exposure, was used to determine the thickness (~ 60 m) of Fireweed Rock 

Glacier, Alaska under complex valley geometry. A conductive layer beneath the rock 

glacier was identified, and its distribution is consistent with a till-like layer. 

Corresponding results from seismic, radar and DC resistivity were limited. However, 

seismic refraction was used to resolve the debris mantle thickness (2 to 4 m), and it 

suggested the presence of a discontinuity at about 18 to 28 m depth within the melange. 

The discontinuity was also weakly suggested by the ice radar and TEM data, and it has 

been found to be important in the flow of this rock glacier.

1 This chapter will be submitted to the Journal of Glaciology as an instruments and methods paper.
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INTRODUCTION

The thickness and cross-sectional shape of a rock glacier are important for 

understanding its stress distribution and motion. On ice glaciers this geometry is 

routinely determined using seismic and ice-radar methods. These methods are difficult to 

apply to rock glaciers because they are thinner, they are composed of a mixture of ice and 

rock of unknown composition, and they are covered by a layer of unconsolidated rock 

(the “debris mantle”). Radar is difficult because the absorption and scattering of radar 

waves are stronger in rock glacier melange than in clean ice (Haeberli, 1985) and the 

basal interface may not be distinct. Seismic methods are complicated by the debris 

mantle, which limits the transfer energy from the source (usually an explosion) into the 

rock glacier and inhibits geophone coupling. Seismic field techniques have been devised 

to overcome these problems (Costello, 2000), but they are difficult to apply on a routine 

basis and have shown limited success. D.C. electrical resistivity has been widely used in 

rock glacier soundings (Fisch and others 1977; Evin and others, 1997), but the debris 

mantle again poses problems with electrical coupling and requires labor-intensive field 

setups. We have used all of these methods to investigate the geometry of Fireweed Rock 

Glacier with limited success. We have found that transient electromagnetic (TEM) 

methods provide the best means of investigating the thickness distribution. They do not 

require a high degree of physical or electrical coupling. Here we discuss our methods and 

the results for each of these techniques applied to Fireweed Rock Glacier.



DESCRIPTION OF THE ROCK GLACIER AND ITS GEOLOGIC SETTING

Fireweed Rock Glacier is 2 km long and flows down a steep, narrow valley on 

Fireweed Mountain, which is located in the Wrangell Mountains of southcentral Alaska 

(61.45 N, 143.08 W, see Fig. 2.1 Chapter 3). This is an active rock glacier that emanates 

from three separate cirques as independent tributaries, each having average surface slopes 

of about 15°. These tributaries coalesce to form the Main Trunk, which flows for about 

500 m before it terminates at a 90 m-wide, quasi-periodically calving snout (Elconin and 

LaChapelle, 1997). Surface velocities on the Main Trunk are up to 3.5 m a*1; these are 

relatively large compared to other rock glaciers (<1 m a'1; Chapter 3). Within the Main 

Trunk, each tributary remains lithologically distinct, forming the East, Middle and West 

Flows. There are V-shaped longitudinal troughs between the flows that create an 

irregular transverse topographic profile. The longitudinal profile of the Main Trunk is 

much smoother and has an average slope of 11°.

The rock glacier occupies a cirque and valley complex that has likely contained a 

small ice glacier in the past, as indicated by the overall U-shaped valley. However, the 

lower portion of the Main Trunk fills a narrower V-shaped section that has been eroded 

into the bottom of the larger U-shaped valley. The Main Trunk narrows from 240 m in 

the upper portion to 90 m at the terminus, and the walls of the valley immediately above 

the rock glacier surface have slopes from 25° to 45°. Extrapolation of these slopes 

beneath the rock glacier suggests that the Main Trunk valley is at least 40 to 50 m deep 

along the centerline. The terminus face has a slope of 38° and has a centerline thickness



of 58 m (Chapter 3). This face is about 90 m wide at the top and narrows to about 10 to 

15 m at the base, where a proglacial stream emanates.

Fireweed Mountain is a shallow pluton of Tertiary age that has invaded 

Cretaceous sediments with fine to medium grain felsic porphyry dikes and sills. Some of 

these intrusives are hydrothermally altered, with fine-grained pyrite crystals and 

centimeter-size feldspar crystals. The sedimentary rocks are mostly mudstones with a 

few thin beds of limestone; some of these are also hydrothermally altered. The Main 

Trunk of the rock glacier flows along a contact between altered and non-altered mudstone 

(MacKevett and Smith, 1972). The bedrock adjacent to the Main Trunk does not 

contribute material to the rock glacier surface; instead the debris is derived from talus 

cones in the cirques and along the upper portions of the tributaries (Elconin and 

LaChapelle, 1997).

GEOPHYSICAL METHODS AND RESULTS 

Seismic Surveys

We attempted seismic reflection and refraction soundings using a 12-channel 

digital seismograph and a geophone spacing of 7 to 15 m. For sources we used 300 to 

500-grain blank shotgun shells discharged within the debris mantle just below the 

surface. Geophones were placed in small pits and sandwiched between flat rocks in an 

attempt to reduce noise. Shot were made at various positions along and off the ends of 

transverse and longitudinal arrays.

6



No reflections were identified, probably because of poor source coupling and a 

low signal-to-noise ratio. We suspect that larger explosive sources may have penetrated 

the debris mantle more effectively. However, refraction analysis indicated a consistent 

pattern of first-arrivals and suggested the presence of three layers. Three longitudinal 

arrays on the Main Trunk and one on the Middle Tributary indicated a debris mantle 

seismic velocity of 400 to 500 m s'1, with the second and third layers having velocities of 

about 1700-2300 m s'1 and about 4500 m s'1, respectively (Fig. 2.2). We estimate a 

debris mantle thickness of 2 to 4 m, which is similar to that observed by Elconin and 

LaChapelle (1997) in moulins and crevasses. The thickness of the second layer is 

estimated to be 18 to 28 m. Extrapolations of valley wall geometry suggest that the base 

of this second layer thickness does not represent the valley bottom nor the valley walls, 

and we suspect that there may be a discontinuity within the rock glacier melange at a 

depth of 20-27 m below the surface. This is further discussed in Chapter 3. However, the 

difficulty experienced with source/geophone coupling at the debris mantle precludes 

further detailed resolution of subsurface structure, including the base of the bottom layer.

Radio-echo Sounding

Thirty ice radar soundings were made with a ~5 MHz mono-pulse system. The 

antennas were orientated perpendicular to flow with a spacing of 30 to 50 m. The 

observed waveforms showed a distorted signal that may have been caused by the overlap 

of the airwave and a return wave, as is observed when sounding a very shallow glacier. 

Because of this interference, it was difficult to determine the timing of the return signal.



But in some cases we were able to estimate the travel time of the first return, typically in 

the range 0.12 ps to 0.19 ps. Using an electromagnetic wave velocity of 170 m ps'1 

(clean ice) we obtained a reflector “depth” of 10 to 20 m. These possible returns were 

randomly distributed and exhibited no obvious spatial relationship, hence they were not 

used to define rock glacier geometry.

Electrical Resistivity

The electrical resistivity of the subsurface is a diagnostic physical property that 

can be determined with a variety of methods. Most often used in rock glacier surveys are 

DC resistivity methods (Vonder Miihll, 2001), in which the resistivity structure is 

determined by applying a voltage between electrodes placed in the substrate.

Alternatively, induction methods determine resistivity by measuring an induced 

electromagnetic field. These induction methods are not often used in glaciology.

Laboratory Testing

To aid in our interpretation of electrical resistivity soundings, we tested the rock 

samples from the debris mantle and others inferred to underlie the Main Trunk. Our 

sampling indicates that the debris mantle on the West Flow contains 80% intrusive rock, 

a large portion of which is thermally altered. The mantle of the Middle Flow contains 

equal amounts of intrusive rocks and mudstone, and that on the East Flow has two 

compositionally distinct sections, the easternmost part having less thermally altered rock. 

We note that these compositions may not represent the relative concentrations of these

8



rock types at depth within the ice-rock melange. Electrical resistivities of the samples 

were measured in the laboratory by Zonge Engineering using conventional time domain 

methods (Table 1). The altered intrusive rocks had quite low resistivities (-800 Q m), 

while the non-altered igneous rocks and both mudstones had higher resistivities (>2000 Q 

m). These measured resistivities are likely to be somewhat different than situ values 

because of fractures and interstitial fluids, so we use them only as guidelines when 

interpreting our geophysical data. We also determined the resistivity of the proglacial 

stream water. It was quite high (-8500 Q. m), which indicates that it does not contain 

significant dissolved ions.

Transient Electromagnetic (TEM) Methods: Basic Principles

On Fireweed Rock Glacier we attempted DC resistivity measurements with 

dipole-dipole arrays. This array provides better lateral resolution than other standard 

array types (e.g. Schlumberger and Wenner arrays). However, relative to these other 

arrays, the dipole-dipole array is more sensitive to high electrode contact resistance 

(Hauck, 2001). In spite of considerable effort to overcome this limitation using, for 

example, brine soaked sponges at the electrodes, we did not acquire any interpretable 

data.

We then attempted the transient electromagnetic (TEM) methods. These do not 

require direct electrical coupling with the debris mantle. The system configuration used 

in this study is shown in Figure 2.3, and is referred to as an “in-loop” array. With TEM,
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the resistivity of the subsurface is determined by measuring the diffusive decay of 

induced currents. These currents are generated by applying a current in the large outer 

transmitting loop to create a primary magnetic field. Abruptly shutting this current off 

causes eddy currents to be induced in the substrate according to Faraday’s Law. These 

new currents generate their own secondary magnetic fields that decay with a rate 

proportional to the electrical resistivity of the subsurface. This decaying magnetic field is 

measured with the smaller receiver loop shown in Figure 2.3. This coplanar loop 

geometry is used to measure the vertical component of the transient field, Hz.

It has been shown by Nabighian (1979) that the combined effect of all induced 

currents in a uniform half-space can be approximated by a single current “loop” moving 

downward with a velocity v given by

where p  is the resistivity of the half-space, p  is its magnetic permeability and t is the time
r

since the turnoff of the primary magnetic field. This current loop expands like a “smoke 

ring” from the center of the loop on the surface at an angle of 35 to 45°. In a layered 

half-space the current filament moves with varying velocity as it crosses layer boundaries. 

If it encounters a layer with a very low resistivity, its velocity is reduced, and it can be 

trapped inside such a layer (Nabighian and Macnae, 1987). A TEM sounding is a 

measurement, normally made at the surface, of the time rate of change of the magnetic 

field generated by this propagating current loop.

(1 )
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For in-loop soundings it is useful to consider the analytic solution for the response 

at the surface of a uniform half-space of resistivity p given by Kaufman (1979). He 

determined that for a circular in-loop geometry with transmitter radius and current /, the 

decay of the vertical component of the magnetic field at the surface takes the form

Ho is the permeability of free space and t is the time after immediate turn off of the 

primary magnetic field. This theoretical transient response is shown in Figure 2.4a for a 

transmitter with radius 11 m and a current of 3.5 A. The response can be divided into 

three stages: early-time, intermediate-time and late-time. The time at which these stages 

occur is determined by the product da in Equations (2) and (3). In the early-time (da »  

1) the second term of Equation (2) is small and the rate of change of the magnetic field is 

nearly constant, with a value that is proportional to the resistivity of the half-space (early­

time segment in Fig. 2.4). Intermediate-time is the transition from the early-time 

response to the late-time response. For a given transmitter geometry (constant a) the 

resistivity of the half-space influences how quickly this transition is made. This is 

illustrated in Figure 2.4a, where the responses of two half-spaces having 90 Q m and 20 

Q m resistivities are compared. At late-time, the product da is small, and Equation (2) 

can be approximated by

^  % \  3 erf (da) —  3 + 20 V )< reV
dt / y r  L k Yi

(2)

where

(3)

RASM USON LIBRARY
UNIVERSITY OF ALASKAFAIRBAMCS



dHz
dt 20 Kyip yi 1 ^

where k = 2.5 for a uniform half-space, as shown in Figure 2.4. Over layered geology it is 

observed that k can vary from about 1.5 to 3.5. These changes in the slope of the decay 

curve can be used to infer the presence of layers of different resistivities. It follows from 

this simplified model that the response at a given time is an indicator of the resistivity at a 

given depth. However, this relationship is not necessarily one to one.

In reality, at some point in time the induced currents decay to levels such that their 

signal becomes noisy relative to background or ambient electromagnetic levels. This 

causes the decay curves in Figure 2.4a to show increased scatter and a leveling out in 

time. However, this is not observed if there exists a significantly shallow, low resistivity 

object (3-D “conductor”), such as a slab or sphere. Conductors exhibit an exponentially 

decaying field rather than the power-law decay of the half-space (Eqn. 4), as given by

f p V " ' /T (5)

where Ao encompasses geometric parameters and t  is the characteristic time of the 

conductor. The characteristic time contains information on the dimensions and resistivity 

of the object (Nabighian and Macnae, 1991). When a conductor is situated within a half­

space, the decay curve has contributions from both the half-space and the conductor. 

Because of the difference in decay between a half-space (typically resistive) and a 

conductor, a conductor’s decay can be recognized, if its characteristic time is large 

enough, because its signal persists after the half-space response has decayed to

12



background levels. As a simplification, Equations (2) and (5) can be superimposed, as 

shown in Figure 2.4b for various values of rand Ao = 30. Here, we distinguish between 

two stages: late-time I and a late-time II. In late-time I the decay follows a power-law 

(Eqn. 4). In late-time II the decay either becomes noisy as a result of background 

electromagnetic levels or, if a conductor is present, the decay is much less noisy and 

follows the exponential in Equation (5).

Transient decay curves contain a significant amount of detail about the subsurface 

resistivity structure; however, this structure is not directly apparent in the decay curves 

themselves. To more clearly express the resistivity structure of the subsurface, the decay 

curves need to be re-parameterized into resistivity-depth curves through inversion. This 

is often done by converting a decay curve into either apparent resistivity or a curve of 

“smooth-model” resistivity. Apparent resistivity curves are determined by the departures 

of a decay curve from a uniform half-space response (Kaufman and Keller, 1983). 

Smooth-model inversion assumes a multi-layered resistivity structure and solves for a 

distribution of resistivity in these layers that is sufficiently smooth (Ward and Hohmann, 

1987). This later approach can provide more detail about the subsurface than apparent 

resistivity calculations because it incorporates the time rate of change of the magnetic 

field, not just the measured magnitude of the magnetic field at a point in time. Smooth- 

model resistivities are also a complete solution to the layered-earth response, and they 

provide realistic values of the true resistivity as opposed to the averaging effects of 

apparent resistivity. Both are one dimensional, with assumed planar geometry. The

13



smooth-modeling software used in this study was developed by Zonge Engineering 

(Tucson, Arizona).

If a series of soundings is made along a transect (in our case, either longitudinal or 

transverse on the rock glacier surface), then the resulting series of smooth-model 

inversions can be plotted in a pseudo-section showing contours of resistivity at depth 

along a transect.

Summarizing the expected structure of the TEM decay curves, we note there are 

several key features. The nearly constant level of the early phase and its duration give 

some information about the overall resistivity of the upper layers. Change in the slope of 

the late-time I stage represents resistivity changes with depth, whereas the late-time II 

stage can indicate the presence and “strength” of buried conductors.

Errors in TEM Measurements

Geometric errors in TEM measurements occur if there are deviations from the 

assumed shape and relationship of the transmitter and receiver loops. For this reason, it is 

important to maintain consistent loop geometries throughout a survey. However, this is 

less critical than in frequency-domain measurements, because in TEM the induced field is 

measured when the transmitter is off. Topographic effects can also introduce error in 

TEM soundings but, unlike D.C. resistivity methods, these are often reduced by simply 

accounting for the relative positions of different soundings. Cultural features such as 

power lines, large metallic objects, and VLF radio signals can negatively affect TEM.

14



Consideration of induced polarization (IP) is also required. IP effects can “mask” 

the transient response in a TEM measurement. We note that ice does exhibit polarization 

within the frequencies typical of TEM systems; however, the displacement currents from 

the induced polarization are likely to be small relative to the induced currents (Keller, 

1991; Petrenko and Whitworth, 1999).

TEM Instrumentation

The effective depth of investigation for TEM sounding depends on the size of the 

transmitter loop, background noise and resistivity of the substrate. The rate at which the 

current can be shut off in the transmitter loop prior to measurements is a limiting factor in 

resolving shallow depths. Rock glaciers can be considered shallow, so rapid termination 

of the transmitter current is required. Systems that employ such a rapid turn-off (~1.5 (is) 

are capable of depth resolution of a few meters, even in resistive substrates.

We used the NanoTEM® system developed by Zonge Engineering for our survey 

(Fig. 2.3). This system collects a series of data at 31 progressive time windows per 

measurement, and 400-1000 individual measurements (made at 32 Hz) are stacked to 

compose a sounding. For each measurement, data collection begins at about 1.5 (is and 

extends to 3 ms after transmitter turn-off. These data define the decay of the magnetic 

field in a curve similar to those shown in Figure 2.5. For smooth-model inversions the 

earliest time window is often discarded because it is sensitive to the transmitter turn-off. 

The noisy results late in the record (at the end of late-time II) are also discarded.

15
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NanoTEM Data

Ten in-loop soundings were performed along the centerline of the Main Trunk in 

about two hours (Fig. 2.1). The soundings began about 120 m upglacier from the 

terminus and extended to the uppermost Main Trunk. An additional 30-sounding transect 

across the Main Trunk was made and included soundings made, with some soundings 

made off the rock glacier on or near bedrock exposures. This transect crossed the Main 

Trunk about 150 m up from the terminus (Appendix 1). Figure 2.5 shows both a typical 

bedrock decay curve and a decay curve from the centerline transect.

TEM Interpretation

The observed decay curves in Figure 2.5 are, at first viewing, quite similar to each 

other. However, closer examination does indicate differences, and these represent 

variations in resistivity structure. Using the different curves in Figure 2.4a as a guide, it 

can be seen that the upper portion of the rock glacier is more resistive than the upper 

portion of the bedrock. The response curve on the rock glacier reaches the late-time I 

stage sooner than the bedrock response curve. The debris mantle and the ice-rock 

melange of the rock glacier is likely contributing to this response, they are more resistive 

than the bedrock. Another distinct difference in these decay curves is the behavior of the 

magnetic field within the late-time II stage, as indicated by the arrow in Figure 2.5. At 

these times the bedrock curve rapidly becomes noisy, whereas the rock glacier curve



shows a slower and more noise-free decay. This slow and less noisy decay is observed on 

all decay curves from the centerline. It is an indicator that there is a conductive layer 

under the rock glacier that is not present in the bedrock.

These features are illuminated by smooth-model inversions, as shown in Figures 

2.6a and b. In these inversions, the upper portion of the rock glacier is found to be more 

resistive than the upper part of the bedrock section. As suggested by the late-time II 

decay, there appears to be a conductive layer under the rock glacier (< 50 Q m) that is not 

present in the bedrock section. Elconin (1995) described the existence of a < 2 m-thick 

wet mud layer between the sole of the rock glacier and the bedrock. It was also reported 

that within the rock glacier melange there was significant silt and clay (Elconin and 

LaChapelle, 1997). From these observations, it is quite likely that there exists a 

significant amount of wet, fine-grained material beneath the center of the rock glacier — 

similar to some glacial tills. This layer is illustrated in the TEM soundings by the 

conductive response observed at late times. It is unlikely that the conductive response is 

the result of a different bedrock found under the rock glacier than along its margins, 

although it may represent water-saturated bedrock under the rock glacier and not 

elsewhere. However, if this were the case, then this water must not be connected to the 

highly resistive water found in the pro-glacial stream (Table 1).

Comparison of the smooth-model rock glacier curve with that of the bedrock 

section shows that there is no bedrock signature beneath the basal conductive layer. This 

is likely because of increased eddy current (and induced magnetic field) diffusion and 

dissipation within the conductive till-like layer (via Eqn. 1).
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The resistivity from the smooth-model inversion on the rock glacier is shown on a 

linear scale in Figure 2.6b, which more clearly indicates prominent changes in resistivity. 

We use the measured 58 m-thickness at the terminus to calibrate the model inversion of 

the sounding nearest the terminus. From this calibration we define the “depth-to-till” at 

the point where the resistivity decreases to -900 Q m (diagrammed in Fig. 2.6b).

There is also a change in resistivity at about 20 m depth. This value of 20 m is 

similar to that indicated by the seismic refraction, and to a lesser extent, the ice radar. 

However, this depth is much less well resolved by the TEM data. We note that the 

resolution of both this -20 m discontinuity and the basal discontinuity is limited by the 

averaging effects of the geophysical smooth-model inversion, with possible depths of the 

basal layer indicated by the range shown by the box in this figure.

The smooth-model inversions for each of the ten soundings along the centerline 

are plotted along section in Figure 2.7a, where the location of each sounding is shown 

along the top axis. The data are then contoured to produce a pseudo-section along the 

rock glacier from about 120 m to 530 m up from the terminal face (located at 0 m). We 

interpret this as a longitudinal thickness profile for the rock glacier. This profile shows 

structure in the basal topography that is similar to that observed in the surface topography 

and marginal features. For example, Figure 2.1 shows the location of two snow-filled 

depressions along the margins, where we might expect a deeper rock glacier bed. There 

is a corresponding low in the pseudo-section at a longitudinal position of 340 m (‘D’ Fig. 

2.7a), and a corresponding change in surface slope that is consistent with a rock glacier 

flowing over a dip in its bed.
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We estimated the rock glacier thickness based on the 900 Q m level in each of the 

ten centerline soundings following the calibrated signal (Fig. 2.6b). This leads to the 

longitudinal profile shown in Figure 2.7b. This depth corresponds to about the 900 Q. m 

contour in Figure 2.7a. From these data, and the slope of the valley walls, it is also 

possible to construct transverse cross-sections that conform to a reasonable channel 

geometry, as in Figure 2.7c.

The low-resistivity basal layer was also identified in the transverse TEM profile 

(Appendix 1). A localized anomaly was observed at depth over just the central part of the 

traverse. The anomaly was offset to the west of the centerline. This localized low- 

resistivity layer in the transverse section has a similar signature as that observed along the 

length of the longitudinal profile. This suggests that a wet till-like layer covers much of 

the central portion of the bedrock channel. The off-center location of this low resistivity 

layer is consistent with the observed asymmetrical wedge-shaped terminus geometry 

(Appendix 1).

CONCLUSIONS

We have investigated the geometry of Fireweed Rock Glacier using various 

geophysical techniques. Seismic, ice-radar and the DC resistivity methods were of 

limited value. Using seismic refraction we were able to resolve the thickness of the low 

velocity debris mantle (2-4 m). This is consistent with direct observations made by 

Elconin and LaChapelle (1997). Additionally, seismic refraction, and to a lesser extent,
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ice-radar, suggests a discontinuity at about 18 to 28 m depth in the rock glacier. Such a 

discontinuity is also noted in the TEM results at about 20 m depth (Figs. 2.6 and 2.7). 

Analysis of the observed surface motion of this rock glacier (Chapter 3) indicates that this 

discontinuity may be a “shear plane” at depth, on and above which most of the glacier’s 

motion occurs.

TEM methods effectively circumvent the debris mantle coupling problems that 

complicate other geophysical methods, and with TEM we were able to resolve the 

thickness of the rock glacier. Instrumental setup and data collection are efficient and 

require minimal time and power. Analysis requires care, but we were able to determine 

this thickness even with the inferred complex channel geometry. Calibrating this method 

with the terminal exposure of the rock glacier, we determined the thickness of the Main 

Trunk to be about 40-60 m. From these results it is possible to construct longitudinal and 

transverse cross sections that are consistent with the shape of the valley walls, marginal 

features and surface slopes. There is a prominent low-resistivity layer below the more 

resistive rock glacier, which we interpret to be a till-like layer. It is interesting that this 

layer probably enhances our ability to resolve the thickness because of its well-defined 

signature.
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Sample Resistivity (£2 m)
mudstone 1 (altered) 2024
mudstone 2 3532
igneous 3005
altered igneous 1 910
altered igneous 2 685
stream water 8500
glacier ice (temperate) 2.0xl06 - 1.2xl08
Table 2.1:Resistivities of rock glacier materials.



Fig. 2.1: Rock glacier overview and TEM sounding locations. Main Trunk of the rock 
glacier showing the East, Middle and West tributaries labeled with “E.T.”, “M.T.” and 
“W.T.” White squares indicate approximate location of individual centerline NanoTEM 
soundings. The horizontal distance between each sounding is about 50 m. “B” is the 
location of the bedrock sounding. “D” marks the location of marginal, snow-filled 
depressions corresponding to detected subsurface topography of the rock glacier, about 
340 m from terminus.
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Fig. 2.2: Seismic refraction data. P-wave first arrival times from an array along the Main 
Trunk centerline. Layer 1 is the debris mantle, layer 2 and layer 3 may represent a 
discontinuity within the ice-rock mixture. Vj = (slope of linear segments)'1
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NanoTEM Plan View

Fig. 2.3 : TEM system description.
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Fig. 2.5: Decay curves from the rock glacier centerline and the nearby bedrock. The 
relatively slow decay shown after the arrow on the rock glacier curve indicates a 
conductor under the rock glacier, most likely a saturated till. Error bars reflect the 
standard deviations of the stacked records in each case. Note that the bedrock curve has 
larger errors in late-time II.
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Smooth-model resistivity (Q m) Smooth-model resistivity (D m)

Fig. 2.6: Smooth-model resistivity example. Calculated resistivites from decay curves in 
Figure 2.5. a) logarithmic scale and b) linear scale.
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CHAPTER 3: 

The Flow of Fireweed Rock Glacier, Alaska1

ABSTRACT

Fireweed Rock Glacier is a large rock glacier in southcentral Alaska. It flows 

relatively fast, with velocities up to 3.5 m a'1, and exhibits both seasonal and annual 

variations, some of which are related to periodic terminus calving and increased rainfall. 

Our analysis reveals that motion is likely concentrated in a pseudo-rectangular channel 

within the larger parabolic channel with a “shear plane” at -27 m depth. There is likely 

motion along the shear plane as well as internal deformation above it. We estimate that 

the ice-rock melange is about two times softer than clean glacier ice. Prominent 

transverse ridges exist in an extensional flow field. Calving at the terminus is an 

important component of the mass balance.

1 This chapter will be submitted to the Journal of Glaciology
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INTRODUCTION

The internal structure and flow mechanisms of rock glaciers are poorly 

understood. They are composed of a melange of ice and rock, where the rock debris 

ranges in of size from silt to medium-sized boulders. They are covered with an ice-free 

debris mantle a few meters thick, which inhibits or eliminates surface ablation as a 

component of mass balance. Rock glaciers are typically thin (<50 m), and they move 

relatively slowly, typically on the order of 1 m a'1. While the rheology of the ice-rock 

melange is likely to be different than that of clean glacier ice, we still might expect that, 

like ice glaciers, both internal deformation and motion at the bed govern their flow.

A rare glimpse into the internal structure of a rock glacier has been provided by 

the quasi-periodic calving of Fireweed Rock Glacier, Alaska (Elconin and LaChapelle, 

1997). These authors found that the rock glacier was composed of a heterogeneous 

mixture of ice and rock, with several indicators of deformation. In addition, it has 

relatively high surface velocities (> 3m a'1) compared to velocities commonly observed 

on most other rock glaciers. Here we describe observations of surface velocities and 

topography, and investigate the correlation among the calving, precipitation and velocity 

variations. We then analyze the velocities in order to estimate the nature and magnitude 

of basal motion and internal deformation. From these models and the observed flow we 

are able to estimate the rheological parameters of the rock glacier melange.
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DESCRIPTION OF FIREWEED ROCK GLACIER 

Location and Overview

This rock glacier is situated in southcentral Alaska on the southern flank of the 

Wrangell Mountains (Fig. 3.1). It flows down a north-facing valley on Fireweed 

Mountain, and is the largest of 12 rock glaciers there. The valley that it occupies 

previously contained a small ice glacier as evident by the broader U-shaped valley and 

moraines near the terminus (Fig. 3.2). There are three tributaries that originate at 

elevations of 1400 to 1600 m and coalesce to form the Main Trunk, which terminates at 

1000 m in a narrow, steep-sided valley. On the Main Trunk, v-shaped longitudinal 

furrows separate contributions from the tributaries (Fig. 3.1), and each tributary (and its 

contribution to the Main Trunk) is distinct in coloration due to different lithologies. We 

term these distinct contributions on the Main Trunk as a “flow” (Fig 3.2). The rock 

glacier exceeds 2 km in length from the head of the Middle Tributary to the terminus.

The East Tributary is about 1350 m long from its head to the confluence with the Main 

Trunk and the Main Trunk flows for about 470 m (Fig. 3.1b) from the confluence of the 

East and Middle Tributaries to the break in slope at the terminus (the “terminus break”). 

This geometry is to be compared with that of some well-studied rock glaciers in the Alps, 

such as Murtel and Griiben in Switzerland (Haeberli, 1985; Haeberli and others, 1998), 

which are typically less than 1 km long and consist of a single flow extending onto a flat 

slope.



Fireweed Rock Glacier exists entirely below the regional equilibrium line altitude 

of nearby ice glaciers, which is -1800 m above sea level as observed in late August 2000 

and 2001. Semi-permanent snow patches, resulting from avalanche debris and shading, 

exist in all cirques and along the margin. The mean annual temperature is about -6° to -9 

° C, as estimated from temperatures measured in the nearby town of McCarthy (460 m 

elevation and 9 km to the southeast) with a lapse rate of 6 °C km'1. In McCarthy, mean 

annual precipitation is 0.42 m and average snow depth during the winter is 0.35 m.

With geophysical exploration methods, especially transient electromagnetic ones, 

we determined the thickness of the Main Trunk of the rock glacier to be about 55 m (Fig

3.1). In addition to this depth-to-bedrock measurement, we observed a seismic and, to a 

lesser extent a resistivity, discontinuity ranging at about 15 m depth in the upper Middle 

Tributary to about 30 m in the Main Tmnk (Chapter 2).

Tributaries and Debris Mantle

The rock debris mantle is composed of two main lithologies: a fine-grained felsic 

igneous rock and a fine-grained mudstone. Both occur in different states of hydrothermal 

alteration. On the East Tributary, the debris is composed of -65% unaltered igneous 

rock and -35% mudstone. On the Middle Tributary, it consists of about equal parts of the 

two unaltered rock types. The mantle of the West Tributary is composed of -20% altered

34



mudstone and -80% mostly altered igneous rock; this high percentage of altered rocks 

gives the West Tributary and flow a reddish hue.

Elconin and LaChapelle (1997) measured the thickness of the debris mantle on the 

Middle Tributary to be 0.7 to 1.2 m in moulin-like and bergschrund-like features, while at 

the terminus they found the mantle to be 2 to 3 m thick. Seismic soundings 90 m 

upglacier of the terminus indicate a debris mantle thickness of about 2.5 m (Chapter 2). 

This thickening of the debris mantle toward the terminus has been observed on other rock 

glaciers (Barsch, 1987).

Rocks of 0.1 to 0.6 m diameter make up the visible debris mantle; their average 

size decreases from the head to the terminus. Soils are nearly absent on the upper 

tributaries, but are more common on the Main Trunk, where they occur as a matrix 

between the blocks and in the furrows between the flows. A few small shrubs and grasses 

occur in these areas.

Surface Features

Much of the rock glacier has a convex transverse surface profile (Fig. 3.1c). This 

shape is most evident where there are no talus slopes draping onto the rock glacier’s 

surface. In some areas where talus overlaps onto the surface, the surface is concave. 

However, in other areas where talus falls toward the rock glacier, a trough separates the 

rock glacier and the talus slope and does not appear to contribute to its mass balance.
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But, in some years of our study, a few of these troughs have been completely filled with 

snow, making a smooth transition from the talus slope to the rock glacier. And possibly 

allowing avalanched rock debris to be deposited on the surface.

Transverse ridges exist on two of the tributaries, but unlike many rock glaciers 

(e.g. those studied by Kaab and others, 1998), they do not occur near the terminus. The 

most distinct set of these transverse ridges occurs on the upper West Tributary, while 

ridges in the Middle Tributary are small. There are also crevasse-like features (‘C’ in Fig.

3.2); the extent to which they penetrate below the debris mantle cover is unknown. The 

“crevasses” are associated with a steep area on the Middle Tributary (labeled I in Figs. 3.1 

and 3.2). Above this steep section the crevasses are orientated similar to marginal shear 

crevasses on ice glaciers, which tend to intersect the valley walls at an angle of about 45° 

upglacier. The crevasses occur where the transverse surface is convex and a large, deep 

trough separates the surface of the rock glacier from the valley walls (Fig. 3.1). Within 

the steep section, crevasses are oriented perpendicular to flow, similar to those found 

above an icefall. Below the steep section, crevasse-like features are found along much of 

the Middle Flow, while along the West Flow the crevasse patterns smooth out below the 

steep section. The steep section of the East Tributary (II in Figs. 3.1 and 3.2) is smooth 

and does not have crevasses or ridges. On the lower 150 m of the East Flow, there is a set 

of longitudinal ridges and furrows (‘B’ in Fig. 3.2) associated with distinct internal 

structures that are exposed at the terminus during calving events.
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Terminus Calving Events and Internal Structure

In 1993 the terminus calved and provided a complete transverse exposure of its 

internal structure (Elconin and LaChapelle, 1997). The calving event followed a period 

of heavy rainfall at the end of August. When first observed (1 Sept.) the terminus was 

overhanging and undercut by the proglacial stream. The calving and melt ablation of the 

exposed terminus caused a retreat of about 50 m. By September 1995, the terminus was 

completely draped by a steep slope of rock debris and it had advanced since the calving 

event.

From the exposure created during the 1993 calving event, Elconin and LaChapelle 

(1997) described the internal structure as a “consolidated melange of ice and rock,” with a 

bulk ice concentration greater than 50%. They concluded that the melange is formed by 

the accumulation of ice and talus at the bases of the cirque headwalls. Photographs (e.g. 

Fig. 3.3) and descriptions of the terminus exposure show heterogeneous concentrations of 

ice and rock. An ice-rich region (-90% ice) exists at the terminus of the East Flow (Fig. 

3.3b). The longitudinal ridges and furrows on the East Flow (‘B’ in Fig. 3.2) appear to be 

a surface expression of this ice-rich area, and anomalously large surface velocities exist 

there. The remainder of the East Flow contains 30-50% ice. At the terminus, the Middle 

Flow is largely overrun or displaced by the East Flow and, as a result, it contributes little 

to the exposed face. Where the Middle Flow outcropped, it had an ice concentration of 

about 30%. The West Flow contains about 50% ice. Elconin and LaChapelle (1997)
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found thin layers of bubble-free and debris-free ice within the terminus face. They also 

found aligned debris clasts, foliation and elongated bubbles, all of which indicate 

deformation.

The terminus again calved after August 2000 and before May 2001, and we 

believe that it may calve regularly. This recent event may have occurred as early as 

September 2000, when there was a period of extreme rainfall — more than twice the 

precipitation than during the rain event prior to the 1993 calving. Rainfall in McCarthy 

over the seven-day period from 20-26 September 2000 was almost 13 cm, whereas in late 

August 1993, 5 cm of rain fell. The overall magnitude of the 1993 calving event was 

much larger than the 2001 event. However, we note that the over-steepened terminal face 

observed in September 2001 may cause additional calving over the following year.

Estimates based on observations made in August 2001 indicate that about 12,000 

m3 of material were removed from the snout as a result of calving. A talus apron skirted 

the bottom third of the terminus (Fig. 3.3a), but its volume was estimated to be only a 

fraction of the estimated calved material. The remainder of the calved material was 

melted or washed away by the proglacial stream. The timing of the calving event 

coincided with changes in surface velocity on the lower Main Trunk, as described in the 

following section.
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SURFACE TOPOGRAPHY AND VELOCITY FIELD 

Methods

The geometry of the rock glacier was determined by topographic surveys of the 

surface and by geophysical soundings (Chapter 2). A longitudinal section of the Main 

Trunk is shown in Figure 3. Id. In 1997 we established a survey network of four 

benchmarks (Fig. 3.4) using GPS methods. A theodolite and electronic distance meter 

were used for the surface and motion surveys. The centerline thickness of the Main 

Trunk of the rock glacier was determined to be 50 to 60 m using geophysical soundings, 

and the channel shape can be approximated as a parabola (Fig. 3.1c).

Over 300 positions on the 0.83 km2 total surface area were surveyed to define the 

surface topography and margins. This included longitudinal profiles of each of the 

tributaries with a position measured every 50 m along flow. The uncertainties for these 

measurements are about 0.3 m in both the horizontal and vertical. More detailed surveys 

were made of the terminus break and of the transverse ridges on the West Tributary.

Velocity markers were positioned in four transverse profiles on the Main Trunk 

(Profiles A-D in Fig. 3.4b), and throughout the tributaries. On the tributaries, many of the 

markers were placed along the longitudinal profile (Fig. 3.4). The markers were 60 cm 

sections of steel-reinforcement bar (“rebar”) that were set into the debris layer so that 

only —3-15 cm projected above the rough surface. Stability of the markers was good and 

minimal tilting occurred over the measurement period. Limited velocity surveys began in
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1997, followed by more complete surveys in the summers of 1998 to 2001. Long-term 

average velocities were calculated over the two-year period from July 1999 to August 

2001. To detect seasonal variations in flow, surveys were made in late June/early July 

and then again in late August/early September of both 1999 and 2000. Surveys made in 

1999 and later have estimated horizontal and vertical position errors of about 0.02 m and 

0.04 m on the Main Trunk, respectively, and 0.04 m and 0.07 m on the tributaries. 

Estimated errors for the pre-1999 surveys are about twice these values.

Topography, Slopes, and Ridges

The elevation along each longitudinal profiles shown in Figure 3.4, is shown in 

Figure 3.5a. The local surface slope at each of these markers was calculated from the 

surface elevations over a longitudinal distance of 100 m. The uncertainty of these local 

surface slopes is about 0.5°. Along the centerlines of the Main Trunk and tributaries, the 

surface slope ranges from about 3° to 27°; the steepest sections are labeled ‘I’ and ‘IT in 

Figures 3.1 and 3.2. (This does not include the terminus front or the margins that dip 

toward the valley walls, which have slopes of about 40°.) The average slope of the Main 

Trunk is about 13°; the Middle Tributary, inclusive of the steep section, averages about 

16°, and both the East and West tributaries average 14°.

Formation of the transverse ridges on the West Tributary begins upglacier of our 

uppermost velocity marker there (Fig. 3.4). The uppermost ridges have a peak to trough
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amplitude of < 1 m, which increases for some distance downglacier. The amplitude then 

decreases until the ridges disappear -500 m downglacier (roughly 800 years) of their 

inception. Detailed surveys of the middle section of these transverse ridges were carried 

out in July 1999 and August 2001. The transect began at the uppermost large transverse 

ridge and followed the line of the velocity markers along the tributary. Surface elevations 

were determined at about 10 m intervals, approximately corresponding to the crest and 

trough of each ridge (Fig. 3.6). Within the surveyed section there were two distinct ridge 

amplitudes, one about 2 m and the other about 1 m. The wavelength increases from about 

20 m near the upper extent of the large ridges to about 50 m at the downglacier end of the 

ridges. Comparison of the surveys in 1999 with those in 2001 shows no discemable 

change in their position, so with the resolution of our surveys it is impossible to 

determine if the transverse ridges are advecting downglacier or their location has 

remained fixed in space.

The Terminus Front and Terminus Break

In July 1999, a marker (TP) was set into the debris mantle on the West Flow about 

3 m upglacier of the terminus break (Figs. 3.3a and 3.4b). From this location, the average 

slope of the terminus front was measured to be about 38° in 1999 and 2000. By August 

2001, calving had removed material between the marker and the old terminus break, and
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the average slope of the calved terminus was 40°. However, following calving the upper 

20 m was nearly vertical with a lower angled talus apron below (Fig. 3.3a).

The transverse position of the terminus break was measured from 1999 to 2001 

(Fig. 3.7). From 2000 to 2001 the break retreated by calving in the central portion and it 

advanced somewhat near the margins. Some material was removed from the marginal 

areas by calving, but there was still a net advance there. Removal of material by the 

calving was evident everywhere along the terminus, with exposed ice, fresh surfaces, and 

the close-to-vertical face (Fig. 3.3a). The largest calving retreat was in the East Flow, 

where Elconin and LaChapelle (1997) described the ice-rich region.

The Surface Velocity Field

Horizontal surface velocities (1999 to 2001 averages) are less than 0.5 m a'1 on 

the upper tributaries of the rock glacier and increase on the Main Trunk to a maximum of 

3.8 m a'1 as measured 80 meters above the terminus on the East Flow (Figs. 3.4 and 3.5). 

At the terminus break of the West Flow, the speed was about 4 m a’1 (Fig. 3.7). (The 

error in these two-year velocities is about 0.03 m a'1.) Analysis of air photos taken in 

1957, 1970 and 1994 indicates that surface velocities with this order of magnitude have 

persisted for several decades. These are exceptional velocities for a rock glacier; typical 

velocities are ~1 m a'1 or less (Haeberli, 1985; Barsch, 1987; Konrad and others, 1999). 

The steep sections of the East and Middle Tributaries have somewhat higher velocities
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than the other tributaries, but in general there appears to be no direct correlation between 

surface slope and surface velocity (compare Figs. 3.5a and b). For example, in the steep 

section I the slope is 21° and the speed is 1.5 m a '1, while just above this steep section, 

where the local slope is 17°, velocities are about 2.0 m a'1.

Surface Velocity Field o f the Main Trunk

The magnitude of the velocity increases by as much as 1.5 m a'1 from Profile B to 

Profile A, a distance of 100 m (Fig. 5b). The velocity profile at A is asymmetric (Fig. 

3.8a). The largest velocities on the rock glacier (except for at marker TP) are on the East 

Flow, where they are associated with the ice-rich region identified in the calving front. 

The velocity vectors in this ice-rich region are oriented about 10° more westward than the 

general channel direction, and the flow appears to displace (or override) the ice-poor part 

of the rock glacier (Fig. 3.2 and 3.4b).

The transverse velocity pattern at Profile B is more symmetric, but it is plug-like 

in shape (Fig. 3.8b), having high marginal shear strain rates. The velocities measured 

close to the margins are about 0.6 m a '1; these give effective transverse gradients in 

velocity of about 0.3 a’1 near the east margin and 0.1 a'1 at the west margin, assuming 

there is no marginal “sliding”. Similarly, the near-margin transverse velocity gradients at 

Profile A are about 0.2 a '1. Profiles C and D show similar patterns as those found at 

Profile B, including the nearly plug-like flow.
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Velocity Patterns in the Transverse Ridges

The central flowline and the line of our velocity markers on the West Tributary 

are roughly normal to the transverse ridges there. The surface velocity increases from the 

upglacier end (0.35 m a'1) to the downglacier end (0.41 m a '1) of our longitudinal transect, 

as shown in Figure 3.6. This positive longitudinal velocity gradient through the ridges 

corresponds to an increase in amplitude and in wavelength of the ridges. Downglacier of 

this, where the transverse ridges vanish, velocities continue to increase (Fig 3.4a). 

Unfortunately, our velocity marker coverage does not extend upglacier into the upper­

most ridges.

Longitudinal Strain Rates

Longitudinal strain rates were estimated from the measured two-year average 

velocities over a longitudinal separation Ax between markers:

Av
(3.1)

Figure 3.5c shows the longitudinal strain rate along the central flowlines. They are small, 

generally about 0.002 a '1, but increase to 0.008 a'1 near some of the steeper sections. 

These are about an order of magnitude less than typical strain rates on temperate valley



glaciers, but are similar to those measured on McCall Glacier in arctic Alaska, where they 

correspond to a low mass- balance gradient and mass flux (Rabus and Echelmeyer, 1997).

The pattern of strain rate is unlike that expected on an ice glacier, where the 

accumulation area is generally extending, the ablation area is compressive and the rate of 

extension is often high where the surface slopes are high. On Fireweed Rock Glacier, the 

strain rates increase above steep sections I and II and decrease within them. The strain 

rates are negative (compressive) at the base of the steep section (I) of the Middle 

Tributary, as expected, but they are positive below steep section II of the East Tributary. 

Strain rates increase within the narrowing Main Trunk between profiles B and A. The 

largest longitudinal strain rates of about 0.015 a'1 were measured on the West Flow near 

Profile A and marker TP. As noted, the flow is slightly extending along the transverse 

ridges of the West Tributary. However, there are similar extending strain rates on the 

East Tributary, where no transverse ridges exist.

Seasonal Variations

Motion surveys indicate that there is temporal variability in velocity at both 

seasonal and annual time scales. Figure 3.9 shows the two-year average annual velocity 

(thick line), along with velocities measured over shorter time intervals. The velocity 

variations are to be compared with their estimated errors over the 2000 to 2001 interval 

(-0.03 m a'1) and over the shorter summer intervals (-0.15 m a '1). The velocities in
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summer 1999 were less than the two-year average by 40% at Profile A, 30% at Profile B 

and 13% at Profiles C and D. Velocities during the calving year from July 2000 to 

August 2001 were higher than average, especially at Profile A. After calving, velocities 

were largest on the East Flow. At Profile A velocities were as much as 1.2 m a'1 above 

the two-year average, and at B they were about 0.7 m a'1 above the average.

Strain rates also exhibit temporal variability. For example, in the lowermost 100 

m of the East Flow, strain rates were especially high (0.05 a'1) over the 2000-2001 period, 

being twice those measured over the previous three years (0.02 a'1).

ANALYSIS OF SURFACE VELOCITIES AND CALVING 

Precipitation, Velocity, and Calving

Precipitation records from 1987 to 2001 for McCarthy were obtained from the 

National Climate Data Center. The average annual precipitation over this interval was 

about 42 cm per year, and the three years with the highest recorded precipitation were 

1988, 1993 and 2000.

Although our data are limited, there appears to be a correlation between times of 

increased precipitation and both velocity changes on the Main Trunk and calving at the 

terminus (Fig. 3.10, terminus status and velocity in 1988 are unknown). Similar 

correlations among velocity, calving and precipitation have been observed on tidewater 

glaciers (O’Neel and others, in press). The highest annual velocities measured at Profile

46



47

A correspond to those years having calving events, and the elevated velocities measured 

in the two years following the 1993 calving are likely associated with that event. It is 

inferred that velocities remained high while the terminus advanced into its pre-calved 

geometry. After calving, a longitudinal force imbalance exists at the unsupported face, 

providing an additional “pulling” force on the nearby portion of the rock glacier, 

analogous to the Jakobshavns Effect proposed by Hughes (1986) for tidewater glaciers. 

As the valley fills in and the terminus returns to its sloping, non-calved geometry (e.g. 

1996 to 2000), longitudinal stress gradients near the terminus decrease, and the near­

terminus velocities decrease.

Both the calving event in 1993 and that in 2001 were associated with periods of high 

rainfall, and an accompanying period of larger-than-normal velocities. Thus, increased 

precipitation, particularly large rainfall events, likely promotes calving, and this calving 

affects the surface velocity near the terminus. Of course, we would also expect that the 

terminus must build back up to some given geometry before it can again calve. This 

scenario is reasonable, but the limited resolution and coverage of our dataset does not 

preclude other possibilities.

Velocities in the West Tributary Transverse Ridges

The observed amplitude patterns on the transverse ridges of the West Tributary is 

similar to those patterns described by Kaab and others (1998) for formation, growth, and
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decay of transverse ridges. However, the observed (but poorly resolved) weakly 

extensional flow regime (0.0003 a '1; errors ±0.0004 a'1) within the large amplitude ridges 

is contradictory to their observations. If we make the reasonable assumptions that the 

accumulation of material within the ridges is zero and that channel geometry does not 

vary, then the extensional flow should indicate thinning of the ridges. The velocity 

transect may be sub-parallel to a longitudinal axis of the ridges, in which case our 

observed flow would then be one of apparent extension. Our measurements lack the 

detail required to resolve these contradictory results.

Basal Motion and Deformation

The plug-like velocity profiles indicate that there are two contributions to the 

surface velocity, one from internal deformation (uj) and one from motion along basal and 

marginal interfaces î bed)- As already noted, Elconin and LaChapelle (1997) observed 

features that indicate deformation of the ice-rock melange. In addition, temporal 

variations in the velocities strongly suggest a basal component of flow. Assuming that 

sliding or basal motion is the same everywhere across the bed and extrapolating the 

observed velocities at Profile A to the margins, which suggests that 2 m a'1 and Ubed ~ 

1 m a '1. Similarly, at Profile B, we estimate uj ~ 1.2 m a'1 and ~ 0.6 m a'1. Flow 

models discussed next provide some further insight into these two contributions.
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Channel Geometry, Flow Models, and Rheology

The internal deformation of both ice glaciers (Paterson, 1994) and permafrost 

(Andersland and Ladanyi, 1994) is often described in terms of a power law rheology. For 

simple shear in a vertical plane, with x aligned parallel to flow and y positive upward, we 

have

e *y =

where %xy is the shear stress, e xy the strain rate, and A is the flow law parameter, which 

can vary with temperature, debris content and impurities. The flow law exponent, n, is 

typically less than or equal to 5 for permafrost, and n < 3 is often used for clean glacier 

ice.

The calculation of shear stress for a rock glacier is complicated by the additional 

mass of the debris mantle, and by the often-unknown density of the melange. For a two 

layer rock glacier with a deforming core of average thickness h and density pc, and an 

overlying debris mantle of thickness d and density pm, we have, at the bed

T t y  ( bed)  =  f g ( P c h  +  Pm)sin a  (3.2b)

where a  is an appropriately averaged surface slope, g is the gravitational acceleration and 

/  is a channel shape factor. Assuming the debris mantle rides passively on top of the 

deforming core (Kaufman, 1998), Equations 3.2a and 3.2b lead to a centerline surface 

velocity of
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0 .3 )

(Konrad and others1, 1999). For d «  h, the last term can be ignored. Here we take to 

be about 2200 kg m' by assuming the mantle is composed of rock debris having a density 

of about 2800 kg m 3 and about 20% air space. Likewise, we estimate pc to be about 1850 

kg m‘ , by assuming equal volumes of ice and rock debris. With Equation 3.2b we 

calculate the basal shear stress (t^) to be about 0.9 bars.

How the flow law parameter of ice varies with debris content is poorly 

understood; as a result, we must make a priori assumptions about A within the rock 

glacier. First, we assume that A is constant with depth and take Ubed = 0. At Profile B,

Ud=1.8 m a '1, h = 58 m, d = 2 m (Chapter 2), a  = 9°, an d /=  0.55 for an assumed

parabolic geometry (width = 158 m). From Equation 3.3 with = 3, we find = 0.14 a'1 

bar’3. This is about the same value found for temperate ice (e.g. Hooke, 1981; Truffer 

and others, 2001). However, this conclusion is based on the assumption that there is no 

basal or marginal motion, contrary to the observed plug-flow, as discussed in the previous 

section.

Velocity Profile and Channel Geometries

The analysis based on Equation 3.3 is limited to the centerline velocity.

1 In Konrad and others (1999) the last term of this formula is incorrect, but in Konrad and others (2000) it 
has been corrected. The shape factor is not included in either version, and it is incorrectly applied to non­
centerline surface velocities in the first version.



51

Information on flow mechanisms can also be obtained from the shape of a transverse 

velocity profile. Nye (1965) calculated the deformational velocity profiles of a glacier in 

various channel shapes, and Echelmeyer (1983) extended this analysis to various values 

of n. Here we compare the results of Echelmeyer (1983), scaled to the observed 

centerline velocity, with the velocity at Profile B (Fig. 3.1 la). For any reasonable n (with 

constant A), the fit of parabolic channel flow to the observed velocities is poor as long as 

we assume no basal motion.

We can include basal motion by adding and Ubed directly, although we 

acknowledge that this direct addition is likely more complicated because of stress transfer 

and the non-linear rheology expressed by Equation 3.2 (Tmffer and others, 2001).

Assuming a parabolic channel at B, with h  = 58 m, and using Ud= 1.2 m a'1 and Ubed = 0.6

1 1  ̂m a , we find a flow law parameter of A = 0.08 a' bar' . This is about half that of

temperate ice. However, the predicted velocity profile does not match the shape of the

observed profile (Fig. 3.1 lb). Additional modeling shows that no assumed parabolic

geometry with the measured centerline depth can reproduce the observed velocity pattern

at Profile B — for any reasonable values of A, nand Ubed-

These models assume that deformation occurs throughout the rock glacier 

melange in a channel geometry that is approximately parabolic. However, we note that 

the geophysical soundings on this rock glacier indicate a seismic discontinuity at 15 to 30 

m depth. Also, observations at Murtel and Pontresina-Schafberg rock glaciers in



Switzerland indicate that all of the deformation is concentrated at (and possibly above) a 

shear horizon within the melange (Haeberli and others, 1998; Hoelzle and others, 1998). 

Following these observations, we consider models with localized deformation at and 

above a plane at some depth in a parabolic channel of centerline depth 58 m. To simplify 

the computations, we assume that deformation is limited to the rectangular sub-section of 

the channel so defined, with “sliding” around its perimeter. We considered rectangular 

channels (Nye, 1965) with depths ranging from 58 m to 10 m and = 3. (Of course, a 58 

m-deep rectangular channel is unreasonable, given the projected shape of the valley 

walls.) We find that the fit for a rectangular sub-section with no sliding is still poor (Fig. 

3.11c). A reasonable fit to the observed velocity profile arises by assuming a 27 m-deep 

rectangular subsection (f= 0.87) with Ubed = 0.6 m a'1 and uj = 1.2 m a'1 (Fig. 3.1 Id). 

However, we note that this model is not unique. The value for A required to fit the 

observed surface velocity is 0.26 a'1 bar'3. This is roughly two times softer than clean 

temperate ice.

Thus, the geophysical observations and the observed velocity profile suggest that 

there is a quasi-rectangular core that deforms more easily than clean ice, and that there is 

a zone of localized deformation at the base and sides of this core.

Longitudinal Stress Gradients and the Flow Law Parameter

Variations in glacier geometry, such as those shown in Figure 3.1, produce longitudinal 

stress gradients that influence the motion of a rock glacier. Following Kamb and
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Echelmeyer (1986), we can approximately account for longitudinal stress gradients by an 

appropriate longitudinal average of slope, thickness and shape factor. These authors 

show that the centerline velocity in a non-parallel-sided channel is given by an 

exponentially-weighted average:

0 L
ud(x) = w° + —y |  A ln(an f n hn+l) cxp(-\s -  x\ / l)ds (3.4)

0

where ud is the velocity calculated for an average parallel sided reference state and A 

denotes the difference between reference state and the actual geometry at a longitudinal 

position s along the glacier. L is the length of the glacier and 1 is the longitudinal 

coupling length, which is about two times the ice thickness for glaciers with longitudinal 

surface strain rates on the order of 0.01 to 0.05 a '1. Given the relatively small strain rates 

we observed near Profile B, we use a coupling length of about 4h (Kamb and Echelmeyer, 

1986; 1=230 m in this case). To determine an estimate of the flow law parameter (A) for 

the rock glacier melange, we combine Equations 3.3 and 3.4 to give
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A(x) = Aq
1 r

1 + — J A ln (a" /"^"+1)e x p (- |^ -x |/
o

(3.5)

where Ao is the flow law parameter calculated without longitudinal averaging from 

Equation 3.3 . An appropriate scaling factor of the exponential weighting function, K, is 

required because we cannot extend the analysis out to I s - xl = 21, due to the limited 

length of our dataset.



We find that the effect of including these longitudinal stress gradients in each of 

the models discussed (Figs. 3.12a - d) is to decrease the value of A required to match the 

observed centerline speed by about 10%. For the rectangular subsection model, we 

assume that the depth of the subsection is constant along the length of the Main Trunk.

(It should be noted that because of the longitudinal coupling length imposed on our 

limited data set, we are able to include only about 50% of the theoretical effects of the 

longitudinal stress gradients.) With this correction we find that the stiffness of the 

melange in the best fit model (a 27 m deep rectangular subsection with 0.6 m a'1 sliding)

o  i  n

is 0.27 bar a . This is roughly 2.5 times softer than clean temperate ice (A = 0.1 bar a 

Truffer and others, 2001; Hooke and others 1981*).

Rock glacier melange may be similar to ice-rock mixtures in permafrost 

(Andersland and Ladanyi, 1994) and to the debris-laden ice found at the base of ice 

glaciers. The manner in which the rock debris influences the rheology of ice is poorly 

understood and observations regarding its rheology conflict. Laboratory studies have 

shown that weakening of ice occurs when debris concentrations are high (>70%), while at 

lower concentrations the melange is stiffened with respect to ice (Hooke and others,

1972; Nickling and Bennet, 1984). The mechanism often suggested explaining stiffening 

by debris is that, for most concentrations, the debris particles collide and act as pinning 

points, thus strengthening the melange.

* Note that these authors and others found that the best value for the flow law parameter of temperate ice is 
about half that recommended by Paterson, 1994, p. 97.
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In-situ studies indicate that debris concentrations of 25% - 60% result in 

significant softening of ice-rock mixtures (Echelmeyer and Wang, 1987; Cohen, 2000). 

Also, extrapolation of in-situ permafrost studies to the temperature and stress conditions 

within glaciers indicates softening with respect to clean ice. A mechanism for this 

softening has been suggested by Echelmeyer and Wang (1987), in which interfacial water 

at the debris-ice contacts allows slip at each debris particle, lowering the effective 

viscosity. Cohen’s observations of the water content, fabric and deformation of debris­

laden ice (2000) support this idea. This mechanism can also lead to shear planes in 

heavily debris-laden ice, as observed by Echelmeyer and Wang (1987). Our inferred 

softening of rock glacier melange at Profile B is consistent with these later observations. 

If these increased values of A are indeed typical of rock glacier melanges, then we expect 

that rock glaciers would have higher surface velocities than ice glaciers of similar 

geometry and basal shear stress. However, we must note that the non-uniqueness of our 

best-fit model, with an interplay between the depth to the shear plane, Ubed, melange 

density and A limits these conclusions.

Mass Balance of Fireweed Rock Glacier

For ice glaciers, mass balance and longitudinal changes in channel geometry 

control the longitudinal strain rate and emergence velocity (Paterson, 1994). On this rock 

glacier, the patterns of longitudinal strain rate along the rock glacier (Fig. 3.5c), and



patterns of the measured emergence velocity (Appendix) are different than those typically 

observed on ice glaciers. Thus we might expect that the mass balance distribution of the 

rock glacier is different than that of an ice glacier in both the sources and distribution of 

accumulation, and the insulating effects of the debris mantle. On a rock glacier, 

accumulation may not be limited to talus cones, as surface water (meteoric and/or melt) 

can freeze below the debris mantle along the length of the rock glacier and add ice to the 

melange. Near-surface ablation is severely limited by the debris mantle over the entire 

length of the rock glacier. This distribution of mass balance can support the convergent 

flow observed at the terminus of Fireweed Rock Glacier, which should be compared to 

ice glaciers that typically exhibit divergent flow as a response to ablation.

At the terminus, calving (and calving-induced melt ablation, Elconin and 

LaChapelle, 1997) is a significant mechanism of mass loss that does not exist on other 

rock glaciers. As a result, other rock glaciers are likely much further from a steady-state 

length than Fireweed Rock Glacier, and are subject to continuous advance (Konrad and 

Humphrey, 2001). We suggest that Fireweed Rock Glacier is subject to periodic calving. 

The time to the next calving event can be estimated using the flux through the rectangular 

section at Profile B (-5700 m3 a'1), and assuming that the terminus geometry (and glacier 

length) that existed prior to September 2000 is necessary (but not sufficient) for calving 

to occur. This calculation indicates that by Fall 2003 the glacier may be primed for 

calving once again. Of course, a rainfall event of sufficient magnitude is likely required
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some time after that as well.

The mass contribution from the talus cones may also be investigated by 

considering the ice flux at Profile B. We assume that any accumulation from the freezing 

of surface-water under the debris mantle is small, and that the rock glacier is not changing 

in time. From air photos, we estimate that the area of talus cones in contact with the rock 

glacier surface (those with accumulation potential) is roughly 100,000 m2. Based on our 

ice and rock flux estimate at Profile B (-5700 m3 a '1) and our assumption that ablation is 

very small, this indicates that the annual average accumulation over the area of the talus 

cones is about 0.057 m a'1. Any surface water freezing would reduce this accumulation 

rate, as would any thinning at Profile B.

CONCLUSIONS

The flow of Fireweed Rock Glacier is similar that of an ice glacier in many ways, 

yet there are distinct differences. We have observed strong evidence of temporal 

variability, motion along a basal interface, and internal deformation. However, the shape 

of the transverse velocity profile indicates that most of the motion occurs on and above a 

shear plane. This shear plane is situated about halfway down into the rock glacier cross­

section. At least one third of the motion is contributed by slip (localized deformation) on 

this plane and the remainder can be accounted for by internal deformation of the melange. 

Thus, the effective channel shape is best modeled by a rectangular subsection about 27 m
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deep in a parabolic channel with a 58 m centerline depth. Our best-fit model, which is 

necessarily non-unique in both the depth of the shear plane and the rheological 

parameters of the melange (but constrained by reasonable geometries), implies that the 

ice-rock melange is about 2.5 times softer than clean ice. This is consistent with the 

observations of Echelmeyer and Wang (1987) and Cohen (2000). It is noteworthy that 

anomalous geophysical findings described in Chapter 2 are consistent with the presence 

of a shear plane at about 27 m depth, and that such a flow discontinuity has been 

observed on other rock glaciers (e.g. Haeberli and others, 1996; Hoelzle and others,

1996).

We note, however, that this model does not explain the observed velocity patterns 

at Profile A, where there appears to be enhanced deformation in the ice-rich region 

relative to adjacent ice-poor regions. A possible explanation for this behavior is that 

enhanced basal motion may occur below this ice-rich flow as it overrides and displaces 

the Middle Flow near the terminus. This is suggested by the anomalous flow vectors on 

the east half of Profile A (Fig. 3.4), which are directed 10° more westward than expected 

for channel convergence.

Our analyses also show that longitudinal stress gradients, the shape of the channel 

(for w hich/<  1), the increased density of the rock glacier material, and the mass of the 

debris mantle all significantly affect the flow of a rock glacier. It has been suggested that 

changes in melange temperature may lead to seasonal or annual velocity variations, such
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as those we observed, through variations in the flow law parameter. However, such 

temperature variations beneath a thick debris layer are likely to be small (Harris and 

Pedersen, 1998) and insufficient to cause recognizable variations in stiffness of the core 

of this rock glacier. We conclude that hydraulic conditions — both englacial and 

subglacial — likely contribute to short-term temporal variations of rock glacier flow, as 

they do in ice glaciers.

There appears to be a correlation among near-terminus temporal velocity 

variations, calving, and precipitation. Our data show that large rainfall events may lead to 

terminus calving, if the terminus geometry is favorable. This in turn enhances flow near 

the terminus because of an increase in longitudinal stress gradients caused by the steep, 

unsupported calving face, similar to the Jakobshavns Effect proposed for tidewater 

glaciers (Hughes, 1986). The subsequent flow into the constricted valley and a less steep 

terminal slope reduces this longitudinal force imbalance with time. The calving of this 

rock glacier is also an important mechanism of mass loss that is not generally found on 

other rock glaciers.

The morphology of the transverse ridges in the West Tributary of Fireweed Rock 

Glacier is similar to that described by Kaab and others (1998), with an increase in 

amplitude followed by decrease. However, our observations indicate that these ridges 

exist in a region of slight extensional (or at least not compressive) flow, which is not 

consistent with the strain field of the ridges they describe. Further measurements of
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velocity and strain rates are required to better document the mechanisms for transverse 

ridge formation.
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Fig. 3.1: Location, topography and geometry of Fireweed Rock Glacier. Contours are 
interpolated from surface profiles along the margins and centerlines of each tributary and 
flow. Thickness measurements in (c) and (d) are from geophysical soundings (Chapter 
2). W.F., M.F., and E.F., are the West, Middle, and East Flows of the Main Trunk. I and 
II mark the steep sections referred to in the text.



Fig. 3.2: Main Trunk overview photo. Oblique air photo showing the convergence of the 
three tributaries into the Main Trunk. Labels are as follow: E.T. (East Tributary), M.T. 
(Middle Tributary), W.T. (West Tributary), E.F., M.F., and W.F. are the respective flows. 
‘A’ indicates lateral moraines from previous glaciation. ‘B’, longitudinal ridges and 
furrows thought to delineate the ice-rich region of E.F. I and II, the steep sections 
discussed in the text. (Photo by R. Elconin)



Fig. 3.3: Caved terminus photos, a) Photograph of the calved terminus in 2001. ‘D’ is 
the location of the ice-rich region. Contributions of the flows to the face are marked as 
E.F., M.F., and W.F. The top of the photograph is -90 m across and note the person for 
scale near the bottom of the talus. (Photo by L. Cox) (b) Close-up of the ice-rich region, 
2001. View is looking across the calved face from the east margin toward the west. 
(Photo by M. Truffer)
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Fig. 3.4: Horizontal surface velocity coverage. Surface velocities of Fireweed Rock 
Glacier. Center point of the arrow marks the location of the velocity markers, (a) The 
entire rock glacier showing location of benchmarks denoted by diamonds, (b) Detailed 
diagram of the Main Trunk.
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Fig. 3.5 : Centerline profile, velocity and strain rate, (a) Centerline surface profile along 
the tributaries and Main Trunk, centerline location shown in Fig. 3.4. (b) Horizontal 
velocities along the profiles, and (c) strain rate between the velocity markers in (x 0.001
a 1) (b).
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Fig. 3.6: Velocities in transverse ridges. Topography profile along transect through W.T. 
transverse ridges (line) and velocities along these ridges (bars). The location of this 
transect is shown in Fig. 3.4.
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Fig. 3.7: Terminus Break position changes. Profiles along the terminus break at different 
times during the study. The August 2001 location shows the removal of material from 
the most recent calving. The velocity of TP averaged from 1999 to 2001 was 3.7 m a'1 
(error -0.5 m a'1).
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Fig. 3.8: Velocity profiles A and B. (a) Asymmetric Profile A and (b) more symmetric 
Profile B.
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Fig. 3.9: Temporal velocity variations at profiles (a)A and (b)B.
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Fig. 3.10: Precipitation, velocity and calving. Annual precipitation, calving events, and 
annual velocities on the centerline at Profiles A,B, and C.
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Fig. 3.11: Channel flow analysis, (a) modeled flow in a parabolic channel for various 
values of n, (b) parabolic channel solutions with sliding, (c) rectangular channel for 
various channel depths, (d) reasonable fit to Profile B velocities, shallow (-27 m) channel 
with sliding and n = 3.



CHAPTER 4: 

SUMMARY

With geophysical methods we have investigated the geometry of Fireweed Rock 

Glacier. From this geometry and surface velocity measurements we analyzed the flow. 

With transient electromagnetic methods we were able to determine rock glacier thickness 

and with seismic surveys we were able to resolve the debris mantle thickness and identify 

a discontinuity within the melange. Analysis suggests that the discontinuity is the focus 

of much of the motion. We infer that “sliding” occurs along a shear plane at this 

discontinuity (-27 m depth) and deformation occurs above this. Our best fit model, 

which is non-unique, indicates that the melange is about 2 times softer than clean glacier 

ice. This is consistent with other observations of debris laden ice found at the base of ice 

glaciers. Fireweed Rock Glacier is also very fast — flowing over 3.5 m a'1 within the 

Main Trunk —on most other rock glaciers, surface velocities seldom exceed 1 m a '1. The 

flow of this rock glacier is also interesting in that it exhibits seasonal variations in flow. 

We have also detected an influence on flow by the quasi-periodic calving of the terminus 

and rainfall events. This behavior is similar to that observed on tidewater glaciers, which 

also calve.

Applications of transient electromagnetic methods to glaciology are uncommon. 

This method is very good at determining the geometry of a rock glacier. This study also
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indicates that it may be a effective means of locating the distribution of tills beneath 

glaciers and rock glaciers alike.
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APPENDICIES

APPENDIX 1: TRANSVERSE TEM PROFILE

In addition to the longitudinal TEM profile in Figure 2.7, a transverse profile was 

also made about 150 m upglacier from the terminus. This profile began on the talus slope 

that flanks (but does not feed) the Main Trunk on the west side. Soundings were made at 

about 10 m intervals using a 20 m transmitter loop. The transect crossed the rock glacier 

perpendicular to flow and extended up past the glacial moraine (Fig. 2.1) on the east side 

and ended at the position “B” in Figure 2.1. The center position of each of these 

soundings was measured with optically surveyed from BM1 (Appendix 3.1).

This transverse profile indicates a conductive feature centered beneath the western 

portion of the Main Trunk (Fig. 2.8). This same conductive body, interpreted to be a 

subglacial till or water saturated bedrock, is likely that which is apparent in the 

longitudinal profile shown in Figure 2.7. These two profiles are consistent with a ribbon­

like distribution of till beneath the rock glacier. Although Figure 2.8 does not strongly 

show an interface between the melange and the bedrock, it does identify the location of a 

possible conductive layer. One implication is that maybe with TEM it may be possible to 

map till distribution beneath glaciers and rock glaciers, even when narrow channel 

geometry may be present. The location of the underlying layer shown in Figure 2.8 

suggests that a basal till or other conductive layer is distributed in an asymmetric way 

along the bed. This is consistent with the asymmetry in channel shape observed at the 

terminus, as is shown in the inset in this figure.
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Fig. A -l: TEM transverse pseudo-section, (a) Asymmetric trapezoid geometry measured at the 
terminus, (b) Pseudo-section showing location of conductive till with overlain asymmetrical 
geometry (thick black line) consistent with terminus channel geometry and a ribbon of till situated at 
the bottom of the channel.



APPENDIX 2: LOCATION OF BENCHMARKS AND VELOCITY MARKERS

Surveying of the velocity markers and the topography was done from a network of 

4 benchmarks. These benchmarks were constructed and surveyed relative to each other in 

1997. They defined a local coordinate system that in July, 1999 was tied to the WGS 84 

reference system with GPS using the National Geodetic Survey marker designated 

McCarthy PID: UV4128 (This marker and Fireweed Rock Glacier are found within the 

McCarthy B-5 Quadrangle, Alaska; UTM Zone 7). The four benchmarks are designated 

BM1-BM5. BM1 and BM4 were tied to the geodetic reference and the others were 

surveyed in reference to these. The local coordinate system was defined by BM 1 and 

BM4 as the approximate East-West axis. Perpendicular to this, was defined an 

approximate North-South axis. This coordinate system was -2.1467° from UTM-north 

(West from North). All stake positions were first measured in the local coordinate system 

and then later converted to UTM position by a simple rotation about BM1. Calculations 

were carried out within the local coordinate system. Table 3.2 gives the local coordinates 

and UTM coordinates for the benchmarks.

82

BM X Y Z Easting Northing Height
1 2000 2000 3500 388984.572 6817064.665 1065.355
2 1991.234 2017.976
4 3060.564 2000 3897.123 6817104.361 390043.557 14650.097
5 1805.843 1562.662 3778.124

Table A-l: Survey benchmark data. Local coordinates given in X (-north),Y(~east) and 
Z(vertical). UTM in Easting, Northing and Height (msl). Height is in msl at it may be 
converted to height above ellipsoid (Hae) by adding 18.18 m.



Velocity markers on the Main Trunk and both steep sections (I and II; Fig. 3.1) 

were surveyed from BM1 with horizontal reference set at BM2. The entire West 

Tributary and the remainder of the Middle Tributary above the steep section were 

surveyed from BM5 with horizontal reference set at BM1. The East Tributary above the 

steep section was surveyed from BM4 with horizontal reference again set to BM1. The 

local coordinate position and average horizontal velocity from July 1999 to August 2001 

of each marker is given in Table A-2.
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Table A-2: Velocity markers: positions and velocities.

Stake Hz Vel HzVelErr Easting Northing Hae
Ir1 1.21 0.01 389113.735 6817235.148 1046.892
Ir2 2.2 0.01 389107.833 6817232.848 1046.534
Ir3 2.59 0.01 389101.804 6817230.655 1047.033
Ir4 2.87 0.01 389095.745 6817228.379 1046.646
Ir5a 2.42 0.01 389099.545 6817210.049 1048.826
Ir5 3.06 0.01 389086.47 6817224.809 1045.118
Ir5b 3.81 0.01 389073.057 6817238.44 1041.186
Ir6 3.02 0.01 389080.354 6817222.568 1043.581
ur1 0.66 0.01 389173.572 6817133.73 1060.721
ur2 1.28 0.01 389167.688 6817131.59 1061.41
ur3a 1.75 0.01 389167.925 6817111.093 1067.772
ur3 1.76 0.02 389161.094 6817129.199 1062.389

ur3b 1.73 0.02 389153.992 6817147.454 1059.546
ur4 1.67 0.01 389156.656 6817127.548 1062.355
ur5 1.7 0.01 389152.26 6817125.933 1062.354
ur6 1.8 0.01 389146.111 6817123.722 1062.344
rf 1 1.72 0.01 389184.511 6817027.863 1082.263
rf2 1.38 0.01 389253.7 6816912.735 1125.141
rf3 1.94 0.01 389227.555 6816894.499 1122.793
rf4 2.48 0.01 389349.122 6816810.599 1174.107
rf5 0.38 0.02 389475.782 6816824.184 1237.332
rf6 2.17 0.02 389472.258 6816799.182 1237.349
rf7 2.12 0.02 389470.779 6816751.907 1231.836



Table A-2: Continued

Stake Hz Vel HzVelErr Easting Northing Hae
rf8 1.05 0.02 389467.363 6816718.079 1235.298
rf9 1.02 0.02 389615.9 6816736.617 1288.773
rf10 0.87 0.02 389732.154 6816766.66 1330.777
rf11 0.43 0.02 389909.52 6816693.519 1386.507
rf12 0.58 0.02 389861.48 6816607.072 1391.782
rf 13 0.17 0.02 390105.828 6816681.514 1435.151
rf14 0.26 0.02 390090.414 6816631.954 1436.101
rf15a 9.55 0.02 390091.133 6816602.422 1438.825
rf15 0.33 0.02 390081.784 6816605.015 1437.561
rf15b 0.27 0.04 390072.441 6816607.591 1435.858

rf16 0.35 0.02 390064.137 6816575.382 1433.008
rf 17 0.4 0.02 390030.407 6816521.762 1435.124
rf18 0.19 0.02 390319.195 6816521.308 1472.67
rf19 0.24 0.02 390395.607 6816507.658 1481.026
Im1 2.47 0.01 389057.232 6817213.795 1037.256
um1 1.78 0.01 389115.386 6817112.51 1060.049
um2a 1.78 0.01 389114.259 6817091.439 1063.914
um2 1.76 0.01 389108.369 6817109.896 1061.825
um2b 1.69 0.02 389102.293 6817128.593 1057.57

um3 1.75 0.01 389101.651 6817107.371 1063.119
mf1 1.72 0.01 389151.53 6817016.067 1079.675
mf2 1.26 0.01 389142.138 6816840.319 1126.795
mf3 1.67 0.02 389197.114 6816737.985 1166.162

mf4 1.92 0.02 389274.346 6816623.127 1233.492
mf5 1.96 0.02 389216.42 6816618.995 1227.157
mf6 1.66 0.02 389317.158 6816574.852 1243.302
mf7 1.64 0.02 389266.652 6816549.314 1246.476
mf8 1.55 0.02 389214.007 6816534.73 1240.404
mf9 1.27 0.02 389283.766 6816438.782 1268.34
mf10 0.56 0.02 389399.852 6816292.265 1295.919
mf11a 0.89 0.02 389365.045 6816284.018 1295.501
mf11 0.92 0.02 389362.399 6816293.653 1294.291
mf11b 0.94 0.02 389360.073 6816303.076 1292.958
mf12 1.05 0.02 389339.108 6816291.837 1291.693
mf13 0.9 0.03 389418.993 6816121.553 1315.348
mf14 1.42 0.03 389330.895 6816119.507 1306.436
uf 1 0.69 0.03 389353.602 6815964.895 1347.607



Table A-2: Continued

uf2 0.34 0.03 389388.245 6815729.376 1443.565
uf3 0.19 0.04 389404.931 6815412.912 1539.865
111 2.22 0.01 389037.21 6817206.192 1039.368
II2 2.17 0.01 389031.922 6817204.119 1040.307
II3 2.14 0.01 389025.721 6817201.761 1040.712
II4 1.95 0.01 389017.774 6817198.758 1040.586
Il4a 1.9 0.01 389025.335 6817180.677 1046.268
Il4b 2.08 0.01 389010.208 6817216.749 1035.107
II5 1.77 0.01 389012.576 6817196.836 1039.873
If1 1.59 0.01 389077.983 6816991.921 1083.423
If2 0.32 0.01 389104.602 6816839.091 1128.408
If3 1.39 0.01 389124.004 6816718.516 1176.137
If4 1.55 0.02 389141.95 6816599.446 1220.61
If5 0.97 0.02 389103.407 6816594.501 1217.854
If6 0.97 0.02 389129.778 6816485.662 1250.537
If7 0.55 0.02 389083.797 6816484.574 1252.67
If8 0.75 0.02 389101.539 6816360.291 1273.673
If9 0.55 0.02 389092.491 6816206.64 1299.528
If 10 0.53 0.02 389044.246 6816094.975 1340.297
If 11 a 0.53 0.02 389014.93 6816106.061 1343.322
If11 0.54 0.02 389020.933 6816113.945 1340.13
If 11 b 0.54 0.02 389026.691 6816121.258 1336.987
If 12 0.49 0.02 389003.309 6816127.607 1338.512
If 13 0.52 0.02 388997.522 6816074.853 1355.866
If 14 0.37 0.02 388941.089 6816013.192 1373.487
If 15 0.35 0.02 388899.096 6815970.171 1381.852
If 16 0.35 0.02 388880.105 6815927.8 1385.693

Table A-2: Velocity markers: positions and velocities. Two year average horizontal 
velocity of each marker and the error. Position of each marker is given in UTM 
coordinates for UTM Zone 7. Hae is height above ellipsoid (Geoid 96).
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APPENDIX 3: EMERGENCE VELOCITIES

Emergence velocity is the rate of vertical rise or subsidence of the rock glacier’s 

surface:

vE =v + uHtanal (A-l)

where v and uh are the vertical (positive upward) and horizontal components of surface 

velocity and oti is the local surface slope, positive downward. On an ice glacier, vE is 

generally negative in the accumulation area and positive in the ablation area. In steady

state, V£ is equal and opposite to the annual mass balance rate, b . If the glacier is not in 

steady state then the rate of change in the thickness at a fixed position is

h = vE +b (A-2)

We calculated the emergence velocities on the rock glacier using the two-year 

average velocity components. Using estimated errors of 0.05 and 0.02 in v and uh, 

respectively. We estimate an uncertainty in v of up to 0.1 m a '1, being dominated by

errors in slope and the averaging length for slope. The pattern of emergence velocities at 

Fireweed Rock Glacier (Fig. A-2) does not follow that expected for a simple ice glacier, 

as there is no distinct position where vE switches from negative to positive values, as at 

the equilibrium-line of an ice glacier. The emergence velocities are all very near zero 

except within the steep section. The large calculated emergence velocities there are 

probably due to large errors in surface slope. The near-zero emergence velocities 

everywhere else indicate a very different flow pattern than on ice glaciers.



Em
er

g.
 V

el
. 

(m 
a 

)

87

Distance From Terminus (m)

Fig. A-2: Emergence velocities along centerline of tributaries. Centerlines of each flow 
along which these velocities were calculated are shown in Fig. 3.4.


