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ABSTRACT

The Arctic marine shelves are characterized by areas of high and low invertebrate standing 

stock and communities that vary spatially in patches. Large-scale environmental characteristics, such 

as the distribution of water masses, the fenology of sea ice cover, and variability of water depth 

define changes in epibenthic community structure throughout the Arctic shelves. The longevity and 

relatively low mobility of epibenthic invertebrates make them especially relevant as indicators of 

long-term environmental patterns. In terms of standing stock and biomass, the most representative 

group among Arctic epibenthic taxa are brittle stars. Large areas of the Arctic shelves have dense 

assemblages of brittle stars; however, despite their ecological importance for Arctic shelf systems, 

little is known of their age, growth and turnover rates. The research developed through this 

dissertation examined how environmental drivers influence epibenthic invertebrate communities of 

the Alaska Arctic shelves and the population parameters o f the dominant brittle star species. The 

first chapter o f my dissertation focused on the northeastern Chukchi Sea and the second one 

focused on the Alaskan Beaufort Sea. The overarching questions addressed in chapters 1 and 2 

focused on characterizing the epibenthic communities of the Alaskan Chukchi and Beaufort seas 

and defining environmental characteristics that influence the community structure. To answer this 

question, biological and environmental data were collected and analyzed in 2009 and 2010 in the 

Chukchi Sea, and in 2011 in the Beaufort Sea. For my third chapter, the overarching question was: 

w hat is the predictive power of the seasonality o f sea ice for epibenthic community structure in the 

Alaskan Arctic, and how does it compare to more commonly used environmental descriptors. To 

test this relationship, six variables depicting the patterns of the seasonality of sea ice were computed 

from passive microwave sea ice concentration data. For the fourth chapter, the overarching question 

was, w hat are the population parameters o f  the two dominant brittle star species o f the Alaskan 

Arctic. For this analysis, individuals o f Ophiura sarsii and Ophiocten sericeum  were collected in 2013 for 

age and organic mass determination.

Findings o f  this research indicate that epibenthic communities have a patchy distribution 

w ith one or a few taxa dominating the community over large spatial extents. In both the Chukchi 

and Beaufort seas, communities were dominated by either crustaceans or echinoderms. Only in the 

mid-depth stations o f  the Beaufort Sea were both groups equally abundant. The environmental 

measure that best correlated to epibenthic commuity structure in both regions was longitude. 

Biologically relevant variables, such as sediment grain size, sediment phaeopigments, bottom water
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temperature and salinity, though region specific, were also important drivers of commuity structure. 

As predictors o f epibenthic community structure, sea ice variables resulted in moderate to high 

correlation values. In the Beaufort Sea, sea ice variables performed better than traditionally used 

environmental descriptors; however, this was not the case for the Chukchi Sea. This study is the first 

to report on the age, growth and turnover o f Arctic brittle stars. The asymptotic age was higher for 

O. sarsii than for O. sericeum ; however, both species had significantly higher maximum ages than 

temperate region congeners. The individual production of O. sarsii surpassed that of O. sericeum  by an 

order o f magnitude throughout the size spectra.

As a whole, this research highlights the complexity o f  the biological-environmental 

interactions that create the large spatial variability in community structure, benthic biomass and 

diversity throughout the Alaska Arctic. The variability in community structure throughout the 

Chukchi and Beaufort seas was linked qualitatively to large-scale environmental patterns. 

Quantitatively, these environmental forces were represented by the date of sea ice return and date of 

sea ice retreat in the Beaufort Sea. The predictive power o f sea ice variables was reduced in the 

Chukchi Sea by the large inter-annual variability in wind direction and intensity that in turn affect the 

pattern o f seasonality o f sea ice. As integrators o f large-scale environmental patterns, sea ice 

variables proved useful as additional predictors of epibenthic community structure.

The dominant shelf brittle star species do not experience short-term fluctuations in 

population size. Top-down and bottom-up controls on these populations, such as predation and 

food supply, may be governing their growth strategy and total annual growth. Considering the 

longevity and slow growth o f  many Arctic epibenthic species such as brittle stars, the recovery after 

disturbance could require decades to restore high biomass in some areas. Environmental changes 

associated with climate change and resource development in the Arctic shelves have the potential to 

create large changes in the benthic system, such as local changes epibenthic community 

composition, dominant taxa, community diversity and benthic biomass hotspots. Future research 

focusing on the biological interactions that influence epibenthic communities, the supply and 

success o f  new recruits to the benthos and the temporal stability o f epibenthic communities would 

help complete our understanding o f  the spatial and temporal variability o f  Arctic epibenthic 

communities and make solid predictions of future scenarios.
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GENERAL INTRODUCTION

The Arctic seas consist o f a series o f shelves w ith largely different bathymetries, geologic 

histories and overall oceanographic features. These shelves experienced dramatic changes 

throughout history, with vast regions left completely dry as recently as 13,000 years ago (Zenkevitch, 

1963). Because of this, the recolonization of most Arctic shelves has occurred relatively recently and 

benthic fauna have many species in common with adjacent temperate regions. However, the 

permanent residents o f Arctic shelves are well adapted to nearly constant cold waters and the 

extreme seasonality of food supply. This adaptation becomes especially important for regional 

resource management, which requires accurate estimates o f species biomass, growth and turnover 

rate to create adequate ecosystem based resource management and conservation policies for the 

region (Federal Register, 2007; North Pacific Fisheries Management Council, 2009). The 

connectivity among Arctic shelves through currents allows for benthic species w ith planktonic 

dispersal to have circumpolar distributions. However, the differences in geographic features and 

histories across shelves make it improper to extend conclusions of the environmental and biological 

interactions taking place in one region to the entire Arctic.

The great cost o f performing research in the Arctic and the historic intermittent interests for 

resource exploitation have added to the current state of limited knowledge, especially regarding 

benthic processes and species life histories across regions. The Alaskan Arctic is a clear example of 

this uneven state o f knowledge, where certain topics or regions, such as oceanographic processes in 

the Chukchi Sea and western Beaufort Sea, benthic-pelagic coupling in the Chukchi Sea, benthic 

species descriptions in the Russian Chukchi Sea, etc., have been capturing the attention o f research 

efforts for over three decades. (Aagaard, 1984; Grebmeier and McRoy, 1989; Piepenburg et al., 2011; 

Zenkevitch, 1963). Beyond these few and comparatively well understood topics, to date many 

research areas remain in the exploratory and descriptive stage. The knowledge gap that exists in the 

Alaskan Arctic today severely limits our understanding o f the biological-environmental interactions 

that currently take place and our ability to make projections based on the most plausible climate 

scenarios. Through this dissertation, my goal was to increase our knowledge o f the Alaskan Arctic 

shelf systems through three main topics: epibenthic community patterns across large spatial scales, 

the environmental influence on epibenthic communities, and population parameters of one o f the 

most prominent groups on Arctic shelves: brittle stars.
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Despite the relatively sparse coverage in benthic sampling throughout the Arctic, it is known 

that there is not one homogeneous Arctic benthic community, even within one region. Benthic 

communities on Arctic shelves vary spatially, with markedly distinct communities occurring in 

patches and often dominated by only a few taxa over large spatial scales (Bluhm et al., 2009; Mayer 

and Piepenburg, 1996; Piepenburg, 2005). This patchy distribution of communities and the great 

variability in dominant taxa can also be accompanied by striking changes in biomass and standing 

stock (Piepenburg, 2005). The high benthic biomass o f many Arctic shelves is a reflection o f a tight 

benthic-pelagic coupling, which is possible due to high seasonal primary production and low grazing 

pressure in the water column (Ambrose et al., 2001; Grebmeier et al., 2015).

Epibenthic organisms provide an important pathway for energy transfer from water column 

production to higher trophic levels, such as fish, diving ducks and marine mammals (Bluhm and 

Gradinger, 2008; Divine et al., 2015; Packer et al., 1994; Rand and Logerwell, 2011). Furthermore, 

their role as ecosystem engineers can be substantial, through bioturbation, reworking o f sediments 

and by redistributing organic matter (Ambrose et al., 2001; Renaud et al., 2007). In the Alaskan 

Arctic, despite the large differences between shelf types, described below, certain commonalities 

exist across regions. One particular commonality across the Pacific Arctic is the disproportionately 

low biomass of demersal fish in comparison to epibenthic invertebrate biomass. On the western 

Alaskan Beaufort shelf, for example, fish biomass was negligible while epibenthic invertebrates made 

up to 94% of the total trawl catch weight (Rand and Logerwell, 2011). The importance of furthering 

our knowledge of epibenthic community variability in species composition and biomass stems from 

their high biomass and standing stock, but also from their many interactions with other ecosystem 

components and their involvement in many ecosystem processes.

The Alaskan Arctic is composed o f two shelves, the Chukchi and Beaufort seas, which 

display w idely different geographic settings. The northern Bering Sea also exhibits Arctic 

characteristics (e.g. Grebmeier et al., 2015), but is excluded here. The Chukchi Sea is a wide and 

relatively shallow inflowing shelf (c.f. Carmack and W assmann, 2006); and as such, it is characterized 

by a relatively narrow coverage o f landfast ice with a mean width of 13 km (Mahoney et al., 2014) 

and a dominance of first year ice over multiyear ice. The three distinct water masses that cross the 

region are defined by variations in salinity (Woodgate et al., 2005). Primary production is high in part 

o f this region and grazing is comparatively low, allowing for a strong benthic-pelagic coupling, but at 

least as significant is the lateral advection o f nutrients and suspended organic matter transported
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with the northward transiting water masses (Carmack and Wassmann, 2006). In contrast, the 

Alaskan Beaufort Sea has a narrow interior shelf, characterized by the large input of many rivers and 

extensive landfast ice (Carmack and Wassmann, 2006; Mahoney, 2012). In this region, landfast ice 

forms earlier than in the Chukchi Sea (October) and can extend as far as 50 km offshore by late 

w inter (March) (Mahoney et al., 2014). Primary production is relatively low in this region, limited in 

part by the increased fresh water and terrigenous input from the Mackenzie, Colville and many other 

rivers (Goni et al., 2013). The two Alaskan Arctic shelves connect primarily through the narrow and 

deep Barrow Canyon. Through this geographic feature, water masses that circulated through the 

Chukchi Sea enter the Beaufort Sea shelf and slope, with an estimated decay point of the shelf break 

jet around 149° W  (von Appen and Pickart, 2012). The Chukchi Sea shelf is an ideal setting to test 

the influence o f environmental drivers on epibenthic commuity structure, due to its large spatial 

extent w ith negligible changes in bathymetry. Conversely, the Beaufort Sea shelf provides a seascape 

to explore the influence of different dynamic environmental forces on epibenthic communities along 

a depth gradient.

Unlike pelagic or migratory Arctic fauna, epibenthic invertebrates remain in the region year 

round, have mostly little mobility and tend to be long-lived, on the order of years to decades (Bluhm 

et al., 1998; Carroll et al., 2011). In a nutshell, epibenthic invertebrates are an ideal study subject for a 

time-integrated view of the area they inhabit. Throughout the Arctic, changes in water depth, water 

mass properties, food availability and sediment composition are drivers of benthic community 

composition, standing stock and diversity (Bluhm et al., 2009; Carey and Ruff, 1977; Feder et al., 

1994; Mayer and Piepenburg, 1996) in addition to biological interactions. However, the magnitude 

o f influence o f the environmental variables on epibenthic communities is highly conditioned by the 

local geography and atmospheric forcing in each region. Therefore, even if one environmental 

variable shows large explanatory power for an epibenthic community in one region (or area); this 

variable may not be as relevant for a community inhabiting a different region (or area).

In the pursuit o f finding explanatory environmental variables for epibenthic communities, 

indirect measures influencing community change are often included in multivariate analysis, such as 

latitude, longitude and depth. While these indirect measures have proven useful in multivariate 

analysis, they are only proxies for biologically relevant environmental characteristics (Bluhm et al., 

2009; Roy et al., 2014). In many cases, it is possible to qualitatively relate the indirect measures with 

spatial changes in biologically relevant environmental characteristics; however, this association does
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not have statistical or predictive power. Furthermore, indirect measures (latitude, longitude and 

depth) do not vary with changing environmental conditions, such as climate change, reducing their 

value for predicting future climate scenarios. Biologically relevant measures such as bottom water 

temperature, salinity and measures of food supply and quality are often collected in situ  at the time 

the community data are collected. This paired biological-environmental data collection provides a 

great insight into the conditions the organisms are experiencing at the time o f collection. However, 

those values only offer a snapshot in time o f the range o f conditions the epibenthic organisms 

experience throughout the seasons and their lifetime. As a whole, the environmental variables used 

currently are useful to match with epibenthic commuity structure; however, other measurable 

environmental characteristics should be considered to increase our statistical and predictive power.

From an environmental perspective, sea ice is the unifying feature that characterizes Arctic 

shelves. Throughout the Arctic shelves, sea ice responds to large-scale environmental forces, such as 

wind, water currents, warm  water input, etc. (Barber et al., 2015; Mahoney, 2012; Woodgate et al., 

2010). Therefore, sea ice reflects and integrates a set of environmental characteristics that vary 

seasonally. Furthermore, the seasonality o f sea ice changes the physical and biological environment 

through cycles o f freezing and melting, by providing habitat to sympagic flora and fauna, and 

controlling light and heat entering the ocean. In the winter, the formation of sea ice is accompanied 

by brine rejection and dense water formation, which can create not only changes in bottom water 

salinity, but also vertical m ixing and resuspension o f sediment particles (Winsor and Chapman, 

2002). As sea ice retreats in the late spring, the addition o f fresh water from ice melt induces 

stratification and stabilizes the photic zone, which has been replenished with nutrients throughout 

the w inter months. Concurrently, ice algae are released into the water and an ice-edge phytoplankton 

bloom occurs. This bloom is especially relevant for benthic organisms because it represents a first 

pulse of fresh organic matter after the long ice-covered season. Additionally, this ice-edge bloom 

occurs early in the season when grazing by zooplankton is minimal (Leu et al., 2011). These 

characteristics thus make sea ice biologically relevant for epibenthic fauna, but also reflect large-scale 

temporal variation in environmental forces. The patterns o f the seasonality o f sea ice as a driver of 

epibenthic commuity structure could, therefore, provide another measure that reflects biologically 

relevant environmental conditions.

From an epibenthic community perspective, one of the most distinct taxa of the Arctic shelf 

biota is brittle stars (Piepenburg, 2005). Throughout the Arctic, brittle star assemblages can occur in
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high densities and account for a high fraction of the total epibenthic biomass (Piepenburg, 2000; 

2005). In some regions, brittle stars are not only abundant, they are nearly the only epifaunal 

organism on the seafloor, w ith densities o f up to 566 ind./m2 (Piepenburg and Schmid, 1997). O ff 

the northeast Greenland coast, for example, brittle stars accounted for more than 95% of the 

abundance o f epibenthic fauna (Piepenburg and Schmid, 1996). High densities o f brittle stars in the 

Arctic may be aided by the relatively low abundance and smaller size o f their main predators, such 

snow crab and demersal fish (Aronson, 1989; Divine et al., 2015; Packer et al., 1994; Rand and 

Logerwell, 2011). From an ecosystem perspective, brittle star respiration can amount to a significant 

fraction of the total benthic respiration, ranging from 25 to 41% in the central Beaufort Sea and NE 

Chukchi Sea, respectively (Ambrose et al., 2001; Renaud et al., 2007).

On the Alaskan Arctic shelves, the two most abundant brittle star species are Ophiura sarsii 

and Ophiocten sericeum  (Bluhm et al., 2009; Feder et al., 1994; Frost and Lowry, 1983). Both species are 

found throughout the Arctic shelves occupying, with some overlap, mostly different habitats (Frost 

and Lowry, 1983; Piepenburg and Schmid, 1997). The large bodied O. sarsii, w ith a maximum disc 

diameter of 40 mm, can be found as far south in the Pacific as 35° N (Piepenburg, 2000). The 

smaller-bodied O. sericeum , with a maximum disc diameter of 18 mm, is also found in various habitats 

north of 40° N and is especially abundant on interior shelves, such as the central Beaufort shelf and 

Laptev Sea (Piepenburg, 2000; Piepenburg and Schmid, 1997). Despite the prevalence of these two 

species throughout the Arctic, little is known of their age, growth and productivity. Furthermore, it 

is not clear if  these dense and nearly monospecific brittle star assemblages are stable and persist 

through time.

The low temperatures and extreme seasonality of food supply characteristic of Arctic regions 

generally reduce growth rates and allow for increased longevity of marine invertebrates (Blicher et 

al., 2007; Bluhm et al., 1998; Brey and Clarke, 1993; Sejr et al., 2002). Brittle star species of the 

Southern Ocean revealed a trend of decreasing growth rate with increasing latitude, while maximum 

age showed an opposite trend (Dahm, 1999). Brittle stars from northern temperate regions were 

aged to be <10 years old and with slower growth rates than species from warm er regions (Dahm, 

1996). To date, no Arctic brittle star species have been aged, but inferring from other aged polar 

echinoderms, they may be significantly older than a decade. Future Arctic climate scenarios predict 

increases in water temperature and local changes in water column primary production (Arrigo and 

van Dijken, 2015; Woodgate et al., 2010). These changes may affect the metabolic rate, growth and
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production of brittle stars, which will have repercussions for benthic production and energy transfer 

to higher trophic levels. The lack o f knowledge of the population parameters of most Arctic species, 

and particularly brittle stars, limits our understanding of the Arctic marine environment and the 

marine systems energy flow. Furthermore, making solid predictions for future scenarios becomes 

impossible without first defining the rate o f growth under current conditions.

This dissertation explores the Alaskan Arctic through four chapters with epibenthic 

invertebrates as the central focus. Chapter 1 describes the epibenthic communities of the Alaskan 

Chukchi Sea and the environmental variables influencing commuity structure. This first chapter 

explores the hypotheses 1) that epibenthic communities are distributed in patches dominated by 

distinct taxonomic groups, and 2) that the zonation patterns o f the communities are determined by 

distinct environmental characteristics reflecting a combination o f substrate, hydrographic and/or 

food web characteristics. Chapter 2 describes the epibenthic communities of the Alaskan Beaufort 

Sea and the environmental variables that influence commuity structure, with the objectives to: 1) 

analyze the spatial variability in abundance, biomass, taxonomic composition and diversity of 

epibenthic invertebrates on the Alaskan Beaufort Shelf, and 2) determine the set o f environmental 

parameters that best correlate with the changes in the epibenthic community throughout the study 

region. Chapter 3 explores the quantitative link between epibenthic communities and environmental 

variables, and focuses on sea ice variables. The following hypotheses are tested in this third chapter: 

1) the seasonality o f sea ice is a significant predictor o f total benthic (infauna and epifauna) biomass 

and number o f taxa on the Chukchi and Beaufort Sea shelves, 2) sea ice explains a greater 

proportion o f the variability in community structure ity when communities are classified by feeding 

guilds as opposed to species composition, and 3) the addition of sea ice variables to the commonly 

used variables explains a greater proportion of the variability in community structure. Lastly, chapter 

4 focuses on the population dynamics o f two dominant brittle star species, examining: 1) if  the 

growth curves of O. sarsii and O. sericeum  have similar shapes, with an initial period o f fast growth 

that decreases gradually with increasing body size until achieving asymptotic size at similar maximum 

ages; 2) if their individual production values are similar; and 3) if  O. sarsii has a higher turnover rate 

than O. sericeum . Altogether, this dissertation aims to increase our knowledge of the Arctic ecosystem 

from an epibenthic invertebrate perspective.
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CHAPTER 1: Epibenthic community variability in the northeastern Chukchi Sea1

Abstract

Epibenthic organisms can occur in large numbers and high biomass on the continental shelf 

o f the northeastern Chukchi Sea. From an ecosystem perspective, epibenthic organisms are 

important in recycling and redistributing organic matter deposited from the pelagic zone, and are 

also key members o f the local food web. Data for biological (epibenthic species composition, 

abundance, and biomass) and environmental (bottom water temperature, salinity, dissolved oxygen 

and pH, sediment grain size, sediment organic matter and sediment chlorophyll content, latitude, 

longitude, and water depth) variables were collected at 53 stations in the northeastern Chukchi Sea 

during the summers o f 2009-2010 to characterize the epibenthos and provide a benchmark for 

potential future changes due to possible anthropogenic disturbances. Community biomass, 

abundance, species composition and taxa richness varied in patches throughout the study area, but 

were generally dominated by crustaceans and echinoderms. These two groups had an inverse 

relationship in the distribution o f their dominance. Communities dominated by crustaceans had 

significantly higher Simpson’s dominance and Pielou’s evenness values compared to echinoderm- 

dominated communities. Correlation coefficients for six environmental variables (longitude, bottom 

water temperature, water depth, bottom water dissolved oxygen, sediment grain size 2 phi and total 

organic carbon) with epifaunal abundance and biomass were moderate (0.42 for abundance and 0.51 

for biomass at a significance level o f 0.1%). However, assemblages within the study area followed a 

distinct spatial distribution pattern that matched the path o f important water masses in the region.

1.1 Introduction

Epibenthic organisms on the continental shelf of the Chukchi Sea can be found in high 

abundance and biomass. Several members of the benthic community constitute key elements in the 

Arctic food web, as prey of marine mammals, birds and fish (Bluhm and Gradinger, 2008). Arctic 

epibenthic community structure is highly variable. Often there are peaks in abundance o f specific 

groups, such as echinoderms and crustaceans, which create a mosaic or patchiness in species 

distribution (Ambrose et al., 2001; Bluhm et al., 2009; Piepenburg, 2005). Distinct communities are

1 Ravelo, A.M., Konar, B., Trefry, J.H., Grebmeier, J.M., 2014. Epibenthic community variability in the 
northeastern Chukchi Sea. Deep Sea Res Part II Top Stud Oceanogr 102, 119-131.
doi:10.1016/j.dsr2.2013.07.017
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influenced by an array o f environmental variables, including water depth, water current, seafloor 

composition and food availability (Bluhm et al., 2009; Piepenburg, 2005). However, which factors 

define the epibenthic commuity structure and to what extent is still uncertain for some areas and 

may vary by region (Bluhm et al., 2009). Echinoderms (particularly ophiuroids) typically dominate in 

abundance and/or biomass of Arctic epibenthic communities (Frost and Lowry, 1983;). Arctic 

ophiuroid assemblages are known to be less diverse than similar assemblages of Antarctica 

(Piepenburg, 2005). However, when comparing the diversity of all macrozoobenthos, the Arctic 

species richness is only marginally lower than comparable Antarctic communities (Piepenburg, 

2005). The increasing resource exploitation in the Chukchi Sea has raised concern w ith regard to the 

negative effects that anthropogenic activities, such as offshore oil exploration, mineral extractions 

and fisheries (fish and shellfish) may have on the stability and growth of the epibenthic communities 

in this region (Bluhm et al., 2009; Grebmeier et al., 2006). In addition, global climate change and 

ocean acidification have the potential to create acute stressors for Arctic benthic organisms (Bluhm 

et al., 2009; Fabry et al., 2008; Grebmeier, 2012; Piepenburg, 2005). Thus to conserve and manage 

this significant ecosystem component, it is important to document the epibenthic community 

composition and its relationship with the environmental processes that define its natural variability.

The continental shelf of the Chukchi Sea is relatively shallow, with an average water depth of 

50 m. The northeastern area is covered by ice seven to eight months of the year, causing light 

limitation and vertical stability o f the water column (Woodgate et al., 2005). Compared to other 

Arctic regions, the Chukchi Sea is considered highly productive, with water column primary 

productivity values ranging from 80-90 g  C m~2 y _1 in the northern shelf to 470 g  C m~2 y _1 in the 

southern Chukchi Sea. Lower values o f 20-70 g  C m"2 y "i have been recorded in coastal water 

(Sakshaug, 2004). Seasonal changes in salinity, solar irradiance and ice coverage in the Chukchi Sea 

directly affect primary production. In the spring, light increases and sea ice melt creates stratification 

in the water column, favoring phytoplankton blooms in the ice edge zone. These marginal ice zone 

blooms occur before phytoplankton growth in the open ocean, and add up to 50% of the total 

primary production in Arctic waters (Sakshaug, 2004). The distinct water masses found in the region 

are defined by variations in salinity. Low salinity levels (<31.8) characterize the low nutrient Alaska 

Coastal W ater (ACW), which flow northward along the coast from Cape Lisburne up to Barrow 

Canyon (Figure 1.1) (Walsh et al., 1989). Bering Sea W ater (BSW) also flows northward through the 

Bering Strait and heads westward in the Chukchi Sea and is characterized by high salinity and
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nutrient levels. South of Bering Strait this water mass is composed o f Bering Shelf water and Anadyr 

water (AW) (Coachman et al., 1975; Pickart et al., 2005; W oodgate et al., 2005). In general, input of 

high nutrient water originates in the Bering Sea and is then transported northward through the 

Bering Strait. This water mass movement supports high seasonal primary production, which in 

conjunction with low grazing pressure, translates into high deposition of organic matter to the 

benthos (Grebmeier et al., 1988; Grebmeier et al., 2006). Once passed the Bering Strait, BSW  flows 

northward in two branches. One branch moves eastward through Hope Valley and Herald Valley, 

and is characterized by high salinity and nutrient rich waters (Weingartner et al., 2005). The second 

branch travels east o f Herald Shoal through the Central Channel (Figure 1.1) (Weingartner et al., 

2005). On an annual average, this branch could be responsible for approximately 25% of the mean 

Bering Strait transport (Weingartner et al., 2005). The water moving through the Central Channel 

follows the bathymetry north and to the east o f Herald Shoal, continuing in a slow flow up to 

Hanna Shoal, moving eastward and merging with the ACW  close to Barrow Canyon (Coachman et 

al., 1975; W insor and Chapman, 2004; W eingartner et al., 2005). This northeastward drift o f nutrient 

and carbon rich waters could support high benthic standing stocks despite a relatively low annual 

primary production (Feder et al., 1994) (Figure 1.1).

M any characteristics of the epibenthic communities in the Arctic make them especially 

important to benthic systems. In the Chukchi Sea, echinoderms occur in dense assemblages (several 

hundred individuals per meter square) with high biomass up to 30% higher than the highest values 

reported for echinoderms in the Barents Sea (Ambrose et al., 2001). These assemblages also showed 

higher respiration values compared to the Barents Sea (up to 25% of the total benthic respiration). 

Many members o f the epifaunal community have great mobility that allows them to access and 

redistribute organic carbon deposited from the pelagic zone. Epibenthic organisms are also 

significant bioturbators and contributors to the total benthic energy turnover (Grebmeier and 

McRoy, 1989; Piepenburg et al., 1995). The Chukchi Sea is populated by many species with slow 

growth rates and long life spans, such as echinoderms and molluscs (Gage, 1990; Piepenburg et al., 

1995). These characteristics have added importance due to the high levels of trace metals these 

organism can bioaccumulate throughout their life and subsequently transfer to higher trophic levels 

(Clarke, 1983; Dehn et al., 2006; Mariani et al., 1980). Several epibenthic organisms constitute an 

important opportunistic dietary supplement for many Arctic marine mammals, such as bearded seals 

and walruses. W ith this in consideration, the potential for biomagnification o f some potential
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pollutants to higher trophic levels becomes an issue of great concern, especially for species that are 

important to the subsistence harvests of local human communities (Bluhm and Gradinger, 2008; 

Dehn et al., 2006).

Epibenthic organisms that inhabit the Chukchi Sea, such as ophiuroids, endure a severe 

seasonal food limitation seven to eight months out o f the year, which is reflected in the slow growth 

rates and long life spans o f many of these Arctic benthic organisms (Clarke, 1983). As typical o f any 

shelf benthos, the benthic community structure and biomass in the Chukchi Sea is strongly 

influenced by the carbon input from the water column and the quality o f the organic carbon 

(Grebmeier and McRoy, 1989; Grebmeier et al., 1988; Grebmeier et al., 2006). Many studies have 

highlighted the importance o f the pelagic-benthic coupling as a major factor altering the benthic 

communities in Arctic ecosystems (Grebmeier and McRoy, 1989; Grebmeier et al., 2006; 

Piepenburg, 2005). In addition, environmental variables such as sediment grain size, water depth, 

temperature, as well as sediment C/N ratios are o f great importance in structuring benthic 

communities (Feder and Jewett, 1981; Feder et al., 2005; Piepenburg, 2005). A  more recent study of 

the epibenthos in the Chukchi Sea suggests that benthic-pelagic coupling is less important in 

determining the epibenthic community composition w ith a more important role for macroinfauna 

(Bluhm et al., 2009). This study also highlights the need for further analysis w ith regard to using 

environmental variables when modeling the composition o f epibenthic communities. Certain 

environmental variables used traditionally to explain epibenthic assemblages may also be acting as 

proxies for different environmental factors (Bluhm et al., 2009).

1.2 Materials and methods

The data used for these analyses were generated during the Chukchi Sea Offshore 

Monitoring In Drilling Area - Chemical And Benthos (COMIDA CAB) Project, in an area 

corresponding to Lease Sale 193. Stations extended from 69° to 72 °N and 168° to 157°W and 

ranged in water depth from 23 to 58 m. Site selection was determined via two methods: 1) a general 

randomized tessellation stratified design (GRTS) in the core COM IDA area, and 2) a spatially 

oriented, nearshore-to-offshore, south to north grid overlaying the GRTS design. Data were 

collected on two summer cruises (end o f Ju ly to mid-August) o f 2009 and 2010. Biological data were 

collected using one epibenthic trawl at each of the 53 stations (Figure 1.2). This analysis includes all 

2009 stations and additional new stations in 2010.
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The epibenthic trawl used in this study was a 3.05 meter plum b-staff beam trawl with a 7 

mm mesh and a 4 mm codend liner, modified with a lead-filled line and 15 cm sections of chain 

seized to the footrope every 15 cm (Gunderson and Ellis, 1986). The trawl was towed for 2 to 5 

minutes on the sea floor while the vessel was moving at 1 to 1.5 knots. The trawl time varied 

depending on the relative epibenthos density, determined by a drop video camera deployed before 

each trawl (Cooper personal communication). A  rigid 3 m pipe forward o f the net held the mouth 

open for an effective swath of 2.26 m. The vertical opening o f the net was approximately 1.2 m. A 

typical beam trawl catch ranged from 40 to 100 kg in the codend. This trawl design is very effective 

at collecting epibenthic organisms >4 mm (Gunderson and Ellis, 1986). After the trawl was brought 

on board, catches were cleaned and organisms sorted to the lowest practical taxonomic level (in 

most cases to genus). Many genera within the infraorder Caridea, such as A rgis spp., Sclemcrangon 

spp., Sabinea spp., Spirontocaris spp. and Pandalus spp., were present; however, due to time constraints 

in the field these genera were not sorted for abundance and biomass measurements and are reported 

in this analysis as Caridea. W ithin the class Ophiuroidea, the dominant species was Ophiura sarsii; 

however, other genera may have been present in our samples but not identified in the field, thus the 

category Ophiuroidea was used for our analysis. All groups were individually counted and their 

damp biomass determined. Voucher specimens were fixed in 10% buffered formalin for further 

taxonomic identification. All taxa encountered are shown in Figure 1.A, species and genus names 

updated to the latest accepted name according to World Registry o f Marine Species (WoRMS) 

(Appeltans et al., 2012).

Environmental variables were collected by the COMIDA CAB team. Vertical profiles of 

water column salinity, temperature, dissolved oxygen, turbidity and pH were obtained at each 

trawled station using a YSI SONDE 6600. Sediments were collected using 0.1 m2 van Veen grabs 

for total organic carbon, total nitrogen, grain size analyses and mean sediment chlorophyll a (details 

in Cooper et al., 2002).

1.2.1 Data analysis

Abundance and biomass data were standardized to the area trawled for spatial summary and 

diversity indices analysis. For statistical analysis, data were standardized to relative percentage per 

trawl and square root transformed. Standardizing to percent abundance or biomass per trawl allows 

smaller or less frequent taxa to be better represented in these types of community data. To 

determine the taxa that best represented the epifaunal community across all stations, a BVSTEP
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(Biological variables stepwise procedure) in the PRIMER v.6 package (Clarke and Gorley, 2006) was 

used for abundance and biomass, using Bray-Curtis resemblance matrix and Spearman rank 

correlation. Cluster analysis for abundance was used to group stations by similarity (group average 

from Bray-Curtis resemblance matrix). An MDS (Multi-dimensional scaling) plot was used to 

visualize the grouping o f stations by similarity. Simpson’s diversity, Pielou’s evenness and M argalef s 

richness indices were calculated from abundance for all stations standardized to area trawled and 

square root transformed, using the DIVERSE routine in PRIMER. For these indices, analysis of 

variance between cluster groups were calculated at a 95% confidence level and pairwise comparisons 

o f means were calculated at 0.05 significance level using R and R-Commander (public access 

statistical software). Similarity Percentages Test (SIMPER) in PRIM ER through the Bray-Curtis 

similarity matrix was used to determine the levels o f similarity within clusters, the dissimilarity 

between clusters and the role of individual taxa in contributing to the separation between groups of 

stations. To identify the group of environmental variables that best correlated to the epibenthic 

community, the BIOENV (Biological-environmental interactions) routine in PRIMER selected a list 

o f variables from a set of transformed and normalized environmental parameters (Euclidean 

distance resemblance matrix). The environmental variables that were included in these analyses were 

latitude, longitude and depth (as indirect determinants o f community structure), bottom water 

salinity, temperature, dissolved oxygen, turbidity and pH (for bottom water characteristics) and 

sediment grain size. Also, mean sediment chlorophyll a concentration, total organic carbon (TOC) 

and nitrogen (TON) content, and carbon to nitrogen ratio (C/N) were analyzed as indicators of 

food supply and quality. When necessary, variables were log transformed and to avoid colinearity 

TON was excluded from the analysis.

1.3 Results

From the 53 stations, 44 taxa were found in six phyla, w ith an approximate average 

abundance o f 33,445 ind./1000 m2 (s.d. 87,792), ranging from 150 ind./1000 m2 at Station 10 to

548,864 ind./ 1000 m2 at Station 1010 (Figure 1.3.A). Taxon counts included four cnidarians, 11 

echinoderms, 21 molluscs, five crustaceans, two pycnogonids, and two ascidians. The number of 

taxa present in each trawl varied from six at Station 109 to 25 at Stations 1014 and 5 (mean 16 ± 4 

s.d.). Across all stations, Ophiuroidea represented 71% of the total abundance, the sea cucumber 

Ocnus spp. 19%, the shrimp Infraorder Caridea 3%, the snow crab Chionoecetes opilio 2%, and the 

hermit crab Pagurus spp. 1%. The average total biomass for all stations was 62.7 kg/1000 m2 (s.d.

16



99.45), ranging from 0.57 kg/1000 m2 at Station 3 to 644.1 kg/1000 m2 at Station 1010 (Figure 

1.3.B). Across all stations, Ophiuroidea accounted for 39% of the total biomass, Chionoecetes opilio for 

17%, Ocnus spp. for 16%, Pagurus spp. for 5%, the sea star Leptasterias spp. 3%, the bryozoan 

A lcyonidium  spp. 3%, and the cucumber Psolus spp. for 3%. For more information on the 

classification and common names o f these organisms and the number of stations at which they were 

present, please refer to Figure 1.A.

Overall, the six taxa that best represented the epibenthic community in terms of abundance 

included Chionoecetes opilio, Ophiuroidea, Pagurus spp., Caridea, the sand dollar E chinam chniusparm a , 

and the moon snail Cryptonatica spp. (BVSTEP Primer-e, Spearman correlation value o f 0.958 with 

0.1% significance level). For biomass there were nine taxa selected: Chionoecetes opilio, Ophiuroidea, 

Pagurus spp., the bryozoan A lcyonidium  spp., Caridea, the sea cucumber Psolus spp., the whelk 

Neptunea spp., the sea star Leptasterias spp., and the basket star Gorgonocephalus spp. (BVSTEP Primer- 

e, Spearman correlation value o f 0. 954 w ith 0.1% significance level; Figure 1.4A, B).

A  cluster analysis based on abundance at a 55% similarity level resulted in four clusters and 

two independent stations (103 and 1010) (Figure 1.5). The same cluster analysis showed a greater 

number of smaller clusters o f statistical significance (SIMPROF test in Primer) at higher similarity 

levels (average 76%) in addition to six independent stations. Despite the slightly higher average 

similarity w ithin clusters (76% vs. 70%), the average dissimilarity between the smaller cluster groups 

was reduced significantly from an average o f 68% to an average of 34%. The dominant taxa in the 

smaller clusters selected by the SIMPROF test were the same as the dominant taxa o f the clusters at 

the 55% similarity that included the former, which means that the assemblages of the smaller 

clusters were explained by the same taxa as the larger clusters. Using this logic, we determined that 

the 55% similarity level cut off was an adequate level o f segregation among cluster groups.

Ordination of stations in an MDS plot with a stress level o f 0.12 showed no overlap of 

groups at the 55% similarity level (Figure 1.5). SIMPER analysis showed within group similarity to 

vary from 63% to 78% (70% average) (Table 1.2), dissimilarity between pairs of groups ranged from 

50% to 90% (68% average) (Table 1.3). M argalef s richness index was not significantly different 

between groups o f stations and was not included in further analysis. A  pairwise comparison of 

means revealed significant differences between Group 4 and Groups 2 and 3 for Simpson’s index. 

For Pielou’s index statistically significant differences were found between Group 4 and Groups 2, 3
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and independent stations 1010; also, between independent station 103 and Group 2 and 

independent station 1010.

Overall, stations in a cluster were geographically close together with the exception of a few 

stations in Group 2, located within the area of Group 4, and stations in Group 3 were divided in two 

separate areas (Figure 1.6). Group 1, which was formed by coastal stations, had a mean abundance 

o f 197 ind./1000 m2 and biomass of 2.19 kg/1000 m2 (Table 1.1). This group was highly dominated 

by Echinarachnius parm a  in abundance (69% and 80% of total trawl abundance) and biomass (55% 

and 75% of the total trawl weight; Figure 1.4). Diversity indices (Simpson and Pielou’s) were 

intermediate in relation to other groups and independent stations (Table 1.3). The 15 stations in 

Group 2 were located over a broad area south of Hanna Shoal, w ith the exception o f stations 21 in 

the far w est of the study area and station 44 located north o f Hanna Shoal (Figure 1.6). The mean 

abundance and biomass in this group amounted to 1,678 ind./1000 m2 and 2.21 kg/1000 m2 (Table 

1.1). High abundance and biomass of Ophiuroidea characterized stations in Group 2 (Figure 1.4). 

Simpson and Pielou’s index values were low (Table 1.1). Group 3 included four stations, two on 

Hanna Shoal and the other two further south between Herald Shoal and the coast (Figure 1.6). 

These stations were characterized by high dominance of Caridea (Figure 1.4A). The mean 

abundance for this group amounted to 89 ind./1000 m2 and the mean biomass was 0.3 kg/1000 m2. 

Intermediate Pielou’s evenness and Simpson’s indices resulted from Group 3 (Table 1.1). Most of 

the station in the largest group, which was cluster 4, were located west o f 165° longitude w ith eight 

stations following the western and southern lim it o f Hanna Shoal (Figure 1.6). Stations in this group 

were dominated by the crustaceans Chionoecetes opilio, Pagurus spp., and Caridea (Figure 1.4A). These 

stations had the highest average evenness and diversity index of all groups. The mean abundance 

and biomass o f these stations were 82 ind./1000 m2 and 0.66 kg/1000 m2, respectively (Table 1.1). 

The independent Station 103 was the farthest south station w ith 3,447 ind./1000 m2 and 44.49 

kg/1000 m2, w ith the gastropod Cryptonatica spp. accounting for 30% of the trawl abundance and 

26% of the trawls biomass (Figure 1.4). This station had the highest diversity and evenness indices 

values compared to group averages. Station 1010 had the highest abundance of all stations at

548,864 ind./1000 m2 and 644.1 kg/1000 m2 (Figure 1.3.B, Table 1.1). This station was highly 

dominated by Ocnus spp., which had a biomass o f 81% of the trawls total and abundance o f 60% of 

the trawls abundance (Figure 1.4.A). This station had the lowest diversity and evenness values o f all 

groups (Table 1.1).
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Similarity analysis within groups of stations included Caridea within the top two contributors 

o f the similarity for all groups, and alone contributing 68% of the similarity in Group 3. In Group 2, 

Ophiuroidea contributed 67% of the similarity among stations, Echinarachnius parm a  contributed to 

50% in Group 1, and the similarity among stations in Group 4 was divided almost evenly among 

Caridea, Chionoecetes opilio and Pagurus spp. (approximately 20% each;Table 1.2). The presence of 

Cryptonatica spp. at Station 103 aided in the dissimilarity between this station and all other groups 

(including Station 1010) w ith an average contribution o f 15%. In the case of Station 1010, Ocnus spp. 

added on average 26% of the dissimilarity among all other groups and Station 103 (Table 1.3).

The six environmental variables that best explained the community in terms o f abundance 

were longitude, sediment grain size >5 ^, bottom water dissolved oxygen, sediment grain size 2 ^, 

bottom water temperature, water depth, and TOC. The correlation coefficient for this set of 

variables was moderate at 0.416; w ith the alternative of pH replacing temperature and a correlation 

coefficient o f 0.415 (0.1% significance level) (Table 1.4). Similar variables were selected by the BIO- 

ENV analysis that matched with biomass. In this case seven variables were selected, also w ith a 

moderate correlation coefficient o f 0.505, and included longitude, sediment grain size 4 ^, bottom 

water dissolved oxygen, sediment grain size 2 ^, water depth, bottom water temperature and TOC. 

The alternative o f pH instead o f bottom water temperature yielded a correlation coefficient o f 0.503 

(0.1% significance level) (Table 1.5). Mean values (and standard deviations) for all variables included 

in the BIOENV are presented in Table 1.6.

1.4 Discussion

1.4.1 Dominant taxa

Epibenthic communities in the northeastern Chukchi Sea were dominated in abundance and 

biomass by echinoderms or crustaceans. These two groups had an inverse relationship in the 

distribution o f their dominance, as clearly shown in Figures 1. 3.4 A  and B. Stations dominated by 

echinoderms (mainly Ophiuroidea, Ocnus spp. and Echinarachnius parma) had low crustacean 

abundance and biomass values, and at stations where crustaceans (mainly Chionoecetes opilio, Caridea 

and Pagurus spp.) were dominant, echinoderms were scarce or absent. Ophiuroidea were the most 

abundant of all taxa (average 23,893 ind./1000 m2) and had the highest biomass (average 24.36 

kg/1000 m2) across stations. As noted above, their distribution was not homogeneous throughout 

the study area, although Ophiuroidea were present at 41 of the 53 stations sampled. The dominance
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of Ophiuroidea was concentrated south o f Hanna Shoal with a couple o f stations on the far west 

side of the study area (Figure 1.4). This extreme pattern o f abundance did not correspond to any 

depth range or clear visual substrate characteristic. Many studies have previously described the 

overwhelming abundance of Ophiuroidea on the Arctic shelves including the Chukchi Sea 

(Ambrose et al., 2001; Bluhm et al., 2009; Piepenburg and Schmid, 1996a; Piepenburg and Schmid, 

1996b; Piepenburg and Schmid, 1997). This study supports previous findings and confirms the 

extreme spatial variability in the distribution o f these ophiuroid-dominated assemblages.

For the second most abundant echinoderm taxon in this study, Ocnus spp., an interesting 

pattern was found. Seven of the nine stations where Ocnus spp. was present were adjacent to one 

another. Perhaps this pattern is related to the reproductive mode o f many holothurians. The 

Antarctic congener Ocnus sacculus is a brooding species with embryos o f the same stage of 

development, which would infer one common breeding period (Pawson, 1983). This breeding 

synchronization, along with the restricted dispersal capacity o f this taxon, could explain the close 

proximity o f stations where Ocnus spp. was present in our study area. High abundance of the sand 

dollar E chinarachniusparma  defined the cluster Group 1, with a biomass ranging from 55% to 75% of 

the total catch at those stations. Stations corresponding to Group 1 had a high proportion o f sand 

(Table 1.6) and were located near shore in shallow water (depth <40 m) under the influence o f the 

Alaskan Coastal Current (ACC). These data agree with those collected in the same area by Feder et 

al. (1994), who suggested that the strong effect o f the ACC in particle entrainment and associated 

particulate organic matter favors the presence o f suspension-feeder sand dollars (Feder et al., 1994).

1.4.2 Environmental analysis

We had hypothesized that a set o f environmental variables would explain the different 

assemblages in our study area; however the environmental variables included in this analysis were 

only moderately correlated to the epibenthic community data (correlation coefficient <0.5 w ith 0.1% 

significance level). Two variables, longitude and sediment grain size 2 ^ (0.25 to 0.5 mm, medium 

sand) contributed most to the correlation. Longitude is a reflection of the difference in stations 

located on the western side o f the system with the ones on the ACC area. Only two o f the six 

sediment grain-size categories were selected in the BIOENV analysis, and with a marginal 

contribution to the total correlation value. Other studies have shown the importance of sediment 

grain size and seafloor characteristics to taxonomic richness and taxon distribution (Bluhm et al., 

2009; Feder et al., 1994; Mayer and Piepenburg, 1996). In our study we observed the significance of
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sediment grain size for certain taxa such as E chinarachniusparma  and acknowledge the importance of 

including more environmental parameters, such as seafloor characteristics, to aid in a more 

comprehensive understanding of the distribution of assemblages in a particular area. Despite the 

variability in mean values of salinity, temperature, pH and dissolved oxygen among station groups 

(Table 1.6), the selected water mass characteristics (bottom water dissolved oxygen, bottom water 

temperature and bottom water pH) contributed little to structuring the epibenthic community. One 

possibility for the limited contribution o f these variable values could be the narrow window in time 

these data were collected, which resulted in a failure in capturing the true temporal variability that 

the bottom water undergoes throughout the year (Weingartner personal communication). The only 

variable selected as a representative of food supply and quality was TOC; however, this variable 

showed a low contribution to the correlation coefficient for biomass and abundance, as observed in 

other similar studies in the area (Bluhm et al., 2009).

Water masses characterize the marine physical environment and they affect the distribution 

o f food and dispersion of the planktonic larvae of benthic species. Therefore, different water masses 

may play an important role in the composition and abundance o f benthic communities (Feder et al., 

1994; Stewart et al., 1985). The two main water masses that occupy the northeastern Chukchi Sea 

shelf, the Bering Shelf Waters and Alaska Coastal Waters, have been well described (Coachman et 

al., 1975; Walsh et al., 1989) (Figure 1.2). Despite the low correlation of epibenthic assemblages and 

the environmental variables included in this analysis, the geographical distribution o f the main 

cluster groups coincided w ith the trajectory of water masses in the region. The variable selected first 

in the BIOENV analysis for abundance and biomass was longitude. M ost likely longitude is acting as 

a proxy for the effect o f the different water currents and is reflected in the south-north trajectory 

over the sample stations. Stations in Group 4 are located off the coast o f Cape Lisburne (at the 69° 

N parallel) and extend along the Central Channel following the east flank o f Herald Shoal. Stations 

further north follow the western and southern flanks o f Hanna Shoal. This distribution matches the 

location o f the branch o f Bering Sea Water that flows through the Central Channel and mixes with 

water that flows northward offshore of Cape Lisburne and around the southern lim it of Hanna 

Shoal (Weingartner et al., 2005; W insor and Chapman, 2004). Communities in Group 4 also had the 

highest diversity indices o f all cluster groups and were dominated by crustaceans. Although not 

examined in detail in this analysis, the diversity in feeding habits could reflect an enhanced
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availability o f food through the water column, the benthic boundary layer, and the substrate (Feder 

et al., 2005).

The stations with highest biomass coincided with the pathway of the central shelf water that 

carry nutrients and carbon flowing eastward in the northern Chukchi Sea (Central Channel flow and 

AW), following the south of Hanna Shoal and merging with the near coastal circulation (ACC) at the 

head o f Barrow Canyon (Weingartner et al., 2005). However, variability in ice cover and the 

formation of winter polynyas (offshore between Icy Cape and Barrow), mainly caused by changes in 

wind direction and advection o f heat and salt through the Bering Strait, create changes in the flow 

pattern o f water masses off the coast o f the northeastern shelf and dense water formation_(Spall, 

2007; W eingartner et al., 1998; W insor and Chapman, 2002). W ith reduced seasonal ice cover and 

smaller w inter polynyas, the flow of Bering Shelf water through this area becomes more passive and 

reduces the ventilation o f w ater towards Barrow Canyon (Weingartner et al., 2005). This reduced 

flushing time o f dense hyper-saline water creates a “dome” of dense water and reduced m ixing over 

the sea floor (Winsor personal communication). The stations corresponding to Group 2, dominated 

by Ophiuroidea, could be affected by the persistence o f dense water in the area (Weingartner 

personal communication). These localized periodic hyper-saline conditions may prove too stressful 

for many benthic organisms such as crustaceans and fish, favoring the development o f dense 

assemblage o f more tolerant groups, such as ophiuroids. Our observation is supported by evidence 

from the Paleozoic era that shows dense beds o f brittle stars covering the seafloor around the 

British Isles. This extremely high abundance is explained by the scarcity of predators such as teleost 

fish and decapod crustaceans that did not radiate until the Cenozoic era (Aronson, 1989; Piepenburg 

et al., 2001).

1.5 Summary

To better understand the effect that anthropogenic disturbances have on the epibenthic 

communities of the productive Chukchi Sea, it is necessary to comprehend the different aspects that 

m ight cause variability in the epibenthic community in this region. In the area included in this study, 

there were marked differences in the total biomass and abundance recorded for each station, with 

the highest biomass values corresponding to the area close to the mouth of Barrow Canyon. 

Community assemblages also varied in diversity values. Stations in the center o f the study area had 

the lowest diversity and stations following the trajectory of the Central Channel had the highest 

diversity index values. Moreover, there was a marked variability in the dominant taxa across stations.
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Ophiuroidea, crustaceans (Chionoecetes opilio, Caridea and Pagurus spp.), sand dollars, and sea 

cucumbers were dominant groups. The variability in the communities was influenced by the flow 

and trajectory o f water masses, sediment characteristics, and possibly variability in food quality and 

quantity. The taxa that form a community have specific requirements for their success. To determine 

the factors that are affecting the community, it is necessary to both measure environmental variables 

in the correct scale (i.e. seabed categories and sediment grain size) and account for the variability and 

fluctuations that many o f the influencing factors may have (i.e. temporal changes in water current 

direction and dense water formation). Considering the complexity o f the variability in the epibenthic 

assemblages in the Chukchi Sea, the effect of disturbances could be fundamentally different from 

one area to the next within a specific, defined region.
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Table 1.1. Number of taxa present by group, mean abundance (ind./1000 m2) and biomass (kg/1000 m2) of 
station groups and totals for independent Stations 103 and 1010. In parenthesis s.d. refers to standard 
deviation. Diversity indices: 1-^ (Simpson's dominance index) and J ’ (Pielou’s evenness index).

G ro u p /
Station

N u m b er 
o f  taxa

A bundance 
in d . / 1 0 0 0  m 2 (s.d.)

Biom ass kg /1 0 0 0  
m 2 (s.d.) 1 -X (s.d.) J' (s.d.)

1 17 197 (1,307) 2.19 (12.0) 0.78 (0.1) 0.75 (0.1)
2 36 1,678 (15,503) 2.21 (14.1) 0 . 6 8  (0 .1) 0.63 (0.1)
3 29 89 (584) 0.30 (1.0) 0.72 (0.1) 0.74 (0.1)
4 42 82 (334) 0.66 (3.4) 0.87 (0.1) 0 . 8 6  (0 .1)
103 14 3,447 44.48 0.89 0.90
1 0 1 0 16 548,864 644.05 0.64 0.51
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Table 1.2. Percent similarity among samples within cluster groups, with percent contribution of each taxon up 
to approximately 80%. In parenthesis s.d. refers to standard deviation. Av.: Average. Contrib.: Percent 
Contribution. Cum.: Percent Cumulative.

Av. 
A bundance 
(% in trawl)

Av. %  similarity 
(s.d.)

C ontrib .
(%) Cum . (%)

G rou p  1 - Av. similarity: 78 %
Echinarachnius parm a 8.61 39.20 50.06 50.06
C aridea 3.56 15.98 20.40 70.46
Hyas spp. 1.53 6.70 8.56 79.02
Chionoecetes opilio 0.99 4.61 5.89 84.91
G rou p  2 - Av. similarity: 72 %
O phiu ro idea 9.28 48.49 (5.2) 67.19 67.19
C aridea 2.08 6.78 (2.5) 9.40 76.59
Chionoecetes opilio 0.95 3.26 (1.8) 4.51 81.10
G rou p  3 - Av. similarity: 63 %
C aridea 9.11 42.86 (5.2) 6 8 . 0 2 6 8 . 0 2

Pagurus spp. 1.45 4.97 (3.8) 7.89 75.92
Chionoecetes opilio 1.48 4.76 (3.6) 7.55 83.47
G rou p  4 - Av. similarity: 65 %
C aridea 4.68 13.76 (3.3) 21.17 21.17
Chionoecetes opilio 4.74 13.62 (2.4) 20.95 42.12
Pagurus spp. 4.24 12.85 (4.6) 19.77 61.89
Leptasterias spp. 1.35 3.73 (2.1) 5.73 67.63
O phiu ro idea 2.62 3.54 (0.5) 5.45 73.08
Neptunea spp. 1.26 3.45 (2.6) 5.31 78.39
Colus spp. 1.07 2.56 (1.6) 3.93 82.32
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Table 1.3. Dissimilarity between station groups and independent Stations 103 and 1010, determined by taxa 
with approximately 50% contribution. In parenthesis s.d. refers to standard deviation. Contrib.: Percent 
Contribution. Cum.: Percent Cumulative.

Av. A bundance 
(% in trawl)

Av. %
Dissim ilarity

(s.d.)
C ontrib .

(%)
Cum.
(%)

G roups 1 &  2 - Av. G rou p  1 G rou p  2
dissimilarity =  67 %
Echinarachnius parma 8.61 0.07 21.61 (8 .1) 32.05 32.05
O phiu ro idea 2.04 9.28 18.51 (3.4) 27.46 59.51
G roups 1 &  3 - Av. 
dissimilarity =  63 % G rou p  1 G rou p  3

Echinarachnius parma 8.61 0 20.78 (6.1) 33.15 33.15
C aridea 3.56 9.11 13.51 (4.4) 21.55 54.7
G roups 1 &  4 - Av. 
dissimilarity =  65 % G rou p  1 G rou p  4

Echinarachnius parma 8.61 0.03 17.57 (10.7) 26.82 26.82
Chionoecetes opilio 0.99 4.74 7.73 (2.1) 1 1 .8 38.62
Pagurus spp. 0.96 4.24 6 . 6 8  (2 .8 ) 1 0 . 2 0 48.83
O phiu ro idea 2.04 2.62 5.42 (1.3) 8.28 57.10
G roups 1 &  Station 103 - Av. G ro u p  1 Station
dissim ilarity =  72 % 103
Echinarachnius parma 8.61 0 16.95 (11.2) 23.58 23.58
Cryptonatica spp. 0 5.44 10.71 (26.3) 14.89 38.47
Stomphia spp. 0 . 1 2 3.32 6.28 (70.3) 8.74 47.20
A ctiniaria 0 3.13 6.15 (26.3) 8.56 55.76
G roups 1 &  Station 1010 - Av. G ro u p  1 Station
dissim ilarity =  81 % 1 0 1 0

Echinarachnius parma 8.61 0 22.78 (9.8) 28.06 28.06
Ocnus spp. 0 7.71 20.37 (19.6) 25.10 53.16
G roups 2 &  3 - Av. 
dissimilarity =  67 % G rou p  2 G rou p  3

O phiu ro idea 9.28 1.08 21.50 (3.4) 32.09 32.09
C aridea 2.08 9.11 18.51 (2.9) 27.62 59.72
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Av. A bundance Av. %  C ontrib . Cum.
(% in trawl) ^ ^ l a n t y  (%) (%)

G roups 2 &  4 - Av. 
dissim ilarity =  61 % G ro u p  2 G rou p  4

O phiu ro idea 9.28 2.62 14.49 (2.1) 23.60 23.60
Chionoecetes opilio 0.95 4.74 8.31 (2.1) 13.54 37.14
Pagurus spp. 0 . 8 6 4.24 7.34 (2.4) 11.95 49.10
Caridea 2.08 4.68 6.44 (1.7) 10.49 59.58
G roups 2 &  Station 103 - Av. 
dissim ilarity =  75 % G ro u p  2 Station

103
O phiu ro idea 9.28 0 19.30 (7.3) 25.61 25.61
Cryptonatica spp. 0.36 5.44 10.55 (8 .6 ) 14 39.61
Stomphia spp. 0.03 3.32 6.80 (1 2 .1) 9.03 48.64
A ctiniaria 0.06 3.13 6.37 (11.2) 8.45 57.09
G roups 2 &  Station 1010 - Av. 
dissimilarity =  50 % G rou p  2 Station

1 0 1 0

Ocnus spp. 0.45 7.71 20.67 (5.5) 40.98 40.98
O phiu ro idea 9.28 6.30 8.60 (3.3) 17.04 58.02
G roups 3 &  4 - Av. 
dissimilarity =  54 % G rou p  3 G rou p  4

Caridea 9.11 4.68 9.24 (2.5) 17.18 17.18
Chionoecetes opilio 1.48 4.74 6.92 (1.8) 12.87 30.05
Pagurus spp. 1.45 4.24 5.86 (2.1) 10.90 40.95
O phiu ro idea 1.08 2.62 5.28 (1.1) 9.82 50.77
G roups Station 3 &  103 - Av. 
dissimilarity =  60 % G rou p  3 Station

103
Cryptonatica spp. 0.34 5.44 10.15 (8.1) 16.87 16.87
Caridea 9.11 4.64 8.99 (4.2) 14.94 31.81
Stomphia spp. 0.26 3.32 6.13 (4.4) 1 0 . 2 0 42.01
Actiniaria 0.09 3.13 6.08 (6 .0 ) 1 0 .1 1 52.12
G roups 3 &  Station 1010 - Av. 
dissimilarity =  85 % G rou p  3 Station

1 0 1 0

Caridea 9.11 0.67 22.98 (4.3) 27.07 27.07
Ocnus spp. 0 7.71 20.83 (5.8) 24.54 51.61
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a a  j  Av.%Av. A bundance C ontrib . Cum.
(% in trawl) D ^ r n d a n t y  (%) (%)

G rou ps 4 &  Station 103 - Av. 
dissim ilarity =  47 % G ro u p  4 Station

103

Cryptonatica spp. 0.79 5.44 8.06 (6.5) 16.98 16.98
Stomphia spp. 0 . 2 2 3.32 5.39 (7.5) 11.36 28.35
A ctiniaria 0.04 3.13 5.38 (13.1) 11.33 39.68
O phiu ro idea 2.62 0 4.53 (0.9) 9.55 49.23
Chionoecetes opilio 4.74 3.03 3.69 (1.8) 7.77 57

G roups 4 &  Station 1010 - Av. 
dissim ilarity =  80 % G ro u p  4 Station

1 0 1 0

Ocnus spp. 0.04 7.71 17.22 (13.5) 21.63 21.63
Chionoecetes opilio 4.74 0 . 2 2 10.23 (2.5) 12.84 34.47
Pagurus spp. 4.24 0.17 9.11 (3.7) 11.44 45.91
O phiu ro idea 2.62 6.30 9.11 (1.6) 11.43 57.34

G roups Station 103 &  Station 
1010 - Av. dissim ilarity =  90 %

Station
103

Station
1 0 1 0

Ocnus spp. 0 7.71 16.60 18.37 18.37
O phiu ro idea 0 6.30 13.56 15.01 33.38
Cryptonatica spp. 5.44 0 . 2 0 11.28 12.48 45.86
Caridea 4.64 0.67 8.56 9.47 55.33
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Table 1.4. Combination of variables that best explain the community abundance (similarity matrix based on 
relative abundance per trawl). Correlation coefficients appear in parenthesis. The significance level for this 
analysis_________was_________ 0.1%._________TOC:_________ total_________organic_________ carbon.

B est variable com bination  Second b est variable com binationvariables
1 longitude (0.330) T O C  (0.232)

2 longitude, T O C  (0.375) longitude, sedim ent grain size 2 9  (0.365)

3 longitude, sedim ent grain size 2  9 , w ater dep th  
(0.396)

longitude, T O C , w ater d ep th  (0.388)

4 longitude, b o tto m  w ater tem perature , w ater dep th , 
sedim ent grain size 2 9  (0.406)

longitude, w ater dep th , sedim ent grain size 2  9 , 
T O C  (0.401)

5 longitude, w ater dep th , sedim ent grain size 2  9 , 
b o tto m  w ater tem perature, T O C  (0.413)

longitude, w ater dep th , oxygen, sedim ent grain size 
2 9 , T O C  (0.409)

6 longitude, b o tto m  w ater tem perature, w ater dep th , 
b o tto m  w ater dissolved oxygen, sedim ent grain 
size 2 9 , T O C  (0.416)

longitude, w ater dep th , p H , b o tto m  w ater 
dissolved oxygen, sedim ent grain size 2 9 , T O C  
(0.415)
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Table 1.5. Combination of variables that best explain the community biomass (similarity matrix based on 
relative biomass per trawl). Correlation coefficients appear in parenthesis. The significance level for this 
analysis was 0.1%. TOC: total organic carbon.

N u m b er o f 
variables B est variable com bination Second best variable com bination

1 longitude (0.319) sedim ent grain size 2 9  (0.283)

2 longitude, sedim ent grain size 2 9  (0.421) longitude, sedim ent grain size >5  9  (0.396)

3 longitude, sedim ent grain size 2  9 , b o tto m  w ater 
dissolved oxygen (0.458)

longitude, sedim ent grain size 2  9 , w ater dep th  
(0.439)

4 longitude, sedim ent grain size 2  9 , b o tto m  w ater 
dissolved oxygen, sedim ent grain size 4 9  (0.476)

longitude, sedim ent grain size 2  9 , b o tto m  
w ater dissolved oxygen, T O C  (0.474)

5 longitude, sedim ent grain size 2  9 , b o tto m  w ater 
dissolved oxygen, sedim ent grain size 4 9 , w ater 
d ep th  (0.488)

longitude, sedim ent grain size 2  9 , b o tto m  
w ater dissolved oxygen, T O C , sedim ent grain 
size 4 9  (0.486)

6 longitude, sedim ent grain size 2  9 , b o tto m  w ater 
dissolved oxygen, sedim ent grain size 4 9 , w ater 
dep th , p H  (0.496)

longitude, sedim ent grain size 2  9 , b o tto m  
w ater dissolved oxygen, T O C , sedim ent grain 
size 4 9 , w ater dep th  (0.496)

7 longitude, sedim ent grain size 2  9 , b o tto m  w ater 
dissolved oxygen, sedim ent grain size 4 9 , w ater 
dep th , b o tto m  w ater tem perature, T O C  (0.505)

longitude, sedim ent grain size 2  9 , b o tto m  
w ater dissolved oxygen, T O C , sedim ent grain 
size 4 9 , p H  (0.503)

34



35

Table 1.6.Mean values for selected environmental variables, bottom water characteristics, depth, sediment grain size, sediment total organic carbon, 
sediment Chlorophyll a and sediment C/N for each cluster group and the two independent stations. SD: stands for standard deviation. The following 
abbreviations were used, BW for bottom water, Temp. for temperature, Sal. for salinity, diss. O2 for dissolved oxygen, Sed. for sediment, TOC for total 
organic carbon, Chl a for Chlorophyll a.

BW Sed Sed Sed Sed Sed Sed
BW

T em p
(°C)

BW
Sal

(ppt)
BW
p H

Diss
O 2

(%)

D e p th
(m)

grain 
size 

< 0  9

(%)

grain 
size 
1 9
(%)

grain 
size 
2  9

(%)

grain 
size 
3  9
(%)

grain 
size 
4 9

(%)

grain 
size 
>5  9

(%)

T O C
(%)

C /N
(%)

Sed
C hla

(m g /m 2)

G roup M ean 0.14 32.25 7.95 90.55 31.63 0.57 2.47 25.38 49.55 8 . 2 0 13.85 0 . 2 0 7.84 5.41
1 SD 0.3 0 . 0 0 . 0 5.5 7.7 0 . 6 2 . 0 7.8 8 . 2 4.7 2.5 0 . 0 0 . 2 3.3
G roup M ean - 1 . 0 1 32.62 7.68 95.06 38.42 4.30 0.70 1.74 1 1 . 1 2 14.18 67.96 0.97 7.44 1 0 . 8 6

2 SD 0.9 0 . 2 0 . 2 6 . 0 3.1 10.4 1.5 2.4 14.4 10.7 23.3 0.4 0.4 3.0
G roup M ean -0.61 32.47 7.78 1 0 0 . 2 0 33.93 7.99 2.19 8.15 36.90 18.48 26.30 0.34 6.13 16.79
3 SD 1 .0 0.4 0.3 2 . 8 6 . 6 8.4 2.4 5.5 13.9 .88. 15.8 0.3 1.9 1 0 .1

G rou p M ean -0.05 32.45 7.78 92.02 40.28 2.03 0.29 1.39 9.10 16.18 71.01 0.95 7.48 13.12
4 SD 1.7 0.4 0 . 2 6.9 3.9 5.3 0.4 2 . 1 11.3 1 1 . 2 2 2 .1 0.3 1.3 1 0 .6

Station 1010 -1.37 32.97 7.35 69.60 47.99 0 . 0 0 0 . 0 0 0 . 2 1 0.63 3.62 95.54 1.57 7.14 10.78
Station 103 3.08 32.53 7.85 86.40 46.73 0 . 0 0 0.05 0 . 1 0 0.55 19.35 79.95 1.32 6.29 18.90



Figure 1.1. A schematic of the circulation over the Chukchi Sea and Beaufort/Chukchi slope, showing the 
three branches along which Pacific waters cross the Chukchi shelf. These are color-coded with navy blue 
being the most nutrient-rich waters (Bering Sea water) and light blue being the least nutrient-rich (ACC 
water). Courtesy of Tom Weingartner, modified from http: //www.ims.uaf.edu/chukchi/#chan. The dark 
rectangle is enclosing the area of interest for this study
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Figure 1.2. Epibenthic stations sampled in 2009 and 2010 in the Chukchi Sea. In the top right corner insert, 
the main study area is outlined by a black box and the blue box includes stations sampled in the upstream 
Bering Strait/SE Chukchi region, seen in detail in the insert at the bottom right.
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Figure 1.3. Map of stations total abundance and biomass, showing (A) the total abundance (number of 
individuals/m2) and (B) biomass (g/m2) for each station. Circle size intervals were determined by natural 
breaks by ArcMap 10.
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Figure 1.4. Maps of stations relative abundance and biomass (A and B, respectively) for taxa selected by the 
BVSTEP (Biological variables stepwise procedure in the PRIMER v.6 package) analysis as important 
representatives in the community.
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Figure 1.5. Multi-Dimensional Scaling plot of relative abundance, the different station groups outlined by the 
55 % similarity level and using a 0.12 stress level. Station clusters from the relative percentage per trawl of 
abundance (square-root-transformed, Bray-Curtis similarity).
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Figure 1.6. Map shows the spatial distribution of cluster groups and independent stations with a schematic of 
the general trajectory of water currents over the study area.

41



1.6 Appendix

Table 1.A. Taxa identified across the study area, the Class, Phyla and number of stations they were present.
Phylum Class Taxa C om m on nam e Presence

M ollusca G astropoda Admete solida N u tm eg  shell snail 24
Boreoscala greenlandica G reenland  W entletrap  snail 1
Boreotrophon spp. T ro p h o n  snail 38
Buccinum  s p p . /Beringius spp. W helk 42
Calycidoris guentheri N u dib ranch 4
Colus spp. Colus snail 45
Cryptonatica spp. M oon snail 37
Euspira spp. M oon snail 40
Iphione spp. H airy snail 14
Margarites spp. M argarite snail 26
Neptunea spp. N ep tu ne  w helk 47
Obesotoma simplex snail 10
Onchidiopsis spp. B lob snail 1
Plicifusus spp. Colus 29
Tachyrhynchus spp. T u rrit shell snail 41
Trichotropis spp. H airy snail 4

Bivalvia Musculus niger Black M ussel 4
Chlamys spp. Scallop 1
N u dib ranch  U n ID N udib ranch 3

Polyplacophora Amicula vestita C oncealed ch iton 3
C ephalopoda Muusoctopus sibiricus O ctopus 4

E ch ino derm ata A steroidea Crossasterpapposus C om m on rose star 11
Ctenodiscus crispatus M ud star 8
Henricia spp. H enricia star 7
Leptasterias spp. Sea star 47
Pteraster spp. C ushion star 7

O phiuro idea Gorgonocephalus spp. B asket star 19
O phiuro idea brittle star 41

H o lo thuro idea Ocnus spp. Sea cucum ber 9
Psolus fabricii A rctic A rm o red  C ucum ber 8

E chino idea Echinarachnius parma N o rth e rn  Sand dollar 5
Strongylocentrotus spp. Sea urch in 2

A rth ro p o da M alacostraca Caridea shrim p 53
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Chionoecetes opilio Snow  crab 53
Hyas coarctatus A rctic Lyre crab 39
Pagurus spp. H erm it crab 52
Saduria spp. Iso pod 2

P ycnogonida Pycnogonidae Sea spider 5
C hordata Ascidiacea Boltenia spp. T unicate 4

Halocynthia spp. T unicate 1
Cnidaria A n thozo a A ctiniaria A nem one 7

Gersemia spp. R aspberry  Soft Coral 28
Metridium  spp. A nem one 1
Stomphia spp. A nem one 19

B ryozoa G ym nolaem ata Alcyonidium  spp. B ryozoan 19
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CHAPTER 2: Spatial variability of epibenthic communities on the Alaska Beaufort Shelf1

Abstract

Arctic marine epibenthos contribute significantly to the regional biomass, remineralization 

and redistribution of organic carbon, and are key elements o f local food webs. The main purpose of 

this study was to describe the epibenthic invertebrate community on the Alaska Beaufort Shelf and 

identify links between community patterns and environmental drivers. Using a plum b-staff beam 

trawl, 71 stations were sampled between 13-220 m and from 145.09° W  to 155.25°W along the shelf, 

in Aug/Sept o f 2011. A t each station, epibenthic taxonomic composition, abundance and biomass 

data were collected together with environmental data. Significant spatial variability in community 

composition and standing stock of the dominant taxa were observed along changes in depth and 

along-shelf position. The significant interaction between along-shelf position and depth helped 

define six geographic domains (two regions w ith three depth groups each). Shallow stations (<25 m) 

were dominated by mobile crustaceans and had the lowest values in diversity indices and total 

number o f taxa. Mid-depth stations (26-100 m) had the highest values in diversity indices and were 

dominated by molluscs, crustaceans and echinoderms. Deep stations (101-220 m) were mostly 

represented by echinoderms and crustaceans w ith intermediate diversity values but high abundance 

and biomass values. However, at constant depth ranges, there were very few similar representative 

taxa in the eastern and western regions. Also, a clear reduction in abundance and biomass along the 

shelf break was observed from w est to east. The six most influential environmental drivers 

(sediment phaeopigments, bottom water salinity, bottom water temperature, sediment organic 

matter, bottom water pH and percent sand) explained up to 50% of the variance in epibenthic 

community structure. Through this study we learned that the epibenthic community on the Alaska 

Beaufort Shelf is diverse, spatially heterogeneous and can have high biomass and density. Also we 

show how these community assemblages and total epibenthic biomass are linked to spatial changes 

in the environment through changes in bottom water temperature, salinity, sediment grain size and 

proxies for food quantity and quality.

JRavelo, A.M ., K onar, B., B luhm , B.A., 2015. Spatial variability o f  ep ibenth ic com m unities on  the  A laska B eaufort Shelf. 
Polar Biol 38, 1783-1804. doi:10.1007/s00300-015-1741-9
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2.1 Introduction

Throughout the Arctic shelves, benthic communities can differ greatly in standing stock, 

diversity and taxonomic composition due to differences in hydrography, food supply and substrate 

(Piepenburg 2005). Pacific Arctic shelves comprise areas of both high and low standing stock of 

benthic invertebrates, but comparatively small densities and biomass o f pelagic and demersal fishes 

(Rand and Logerwell 2011; Day et al. 2013). On the western Alaska Beaufort shelf, epibenthic 

invertebrates made up to 94% of the total trawl catch weight while fish biomass was negligible 

(Rand and Logerwell 2011). Within the benthos, mega-epibenthic communities contribute up to 

41% of the carbon demand and are dominated by echinoderms with peaks in abundance and 

biomass in the 60-90 m depth range in the Canadian Beaufort Sea (Renaud et al. 2007). Although 

epibenthic communities are patchy w ith variable biomass and taxonomic diversity, communities 

dominated by echinoderms are a common feature in many Arctic regions, such as the Chukchi, 

Greenland and Barents Seas (Starmans et al. 1999; Piepenburg 2005; Bluhm et al. 2009; Ravelo et al. 

2014). Despite the great variability observed throughout the Arctic shelves, benthic species richness 

is intermediate on a global scale and comparable to values from the Antarctic region (Piepenburg et 

al. 2011).

Benthic community patterns reflect and integrate the environmental forces that take place in 

the region they inhabit; therefore differences in the ecologically relevant environmental drivers 

among shelves can help explain the great variety in community patterns throughout the Arctic 

shelves. A t a local scale, the main forces that shape benthic communities are biological interactions, 

while environmental drivers may act at a local and regional scale (Connell 1961). Predation can have 

a profound effect on benthic community composition, as many epibenthic organisms in the Arctic 

are important prey items to marine mammals, fishes and birds (Packer et al. 1994; Coyle et al. 2007; 

Bluhm and Gradinger 2008; Cooper et al. 2013). Competition for resources (food from vertical flux 

advected to the benthos from the pelagic zone, and infaunal organisms) can also have an important 

effect on epibenthic community composition (Feder et al. 2011). Through tight benthic-pelagic 

coupling, benthic organism distribution and standing stock can to some degree be determined by the 

level of productivity in the water column above (Grebmeier 2012). In the Chukchi and Beaufort 

Seas, seasonal primary production is large and its phenology such that large quantities fall to the 

seafloor ungrazed, supporting high benthic biomass (Carmack et al. 2004; Grebmeier et al. 2006a; 

Campbell et al. 2009). As in most Arctic shelves, changes in current speed, water mass properties,
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and water depth are accompanied by changes in seafloor characteristics, sea ice cover, water column 

productivity, etc., all o f which can have a large effect on benthic community standing stock, diversity 

and taxonomic composition (Mayer and Piepenburg 1996). For example, patterns in epibenthic 

community composition have been linked to a combination o f environmental drivers such as 

changes in water mass, food supply and sediment grain size throughout the Chukchi Sea (Bluhm et 

al. 2009; Ravelo et al. 2014). However, this link between environmental drivers and epibenthic 

communities is largely undescribed for the Alaska Beaufort Shelf.

O f particular importance to epibenthic communities in the Alaska Beaufort Shelf is its 

narrow (50-100 km wide) and shallow interior nature (Carmack and Wassmann 2006). Sediments are 

poorly sorted muds or sandy-muds on the shelf, w ith distinct differences in the overall mean grain 

size on the shelf, slope and basin (Naidu 1974). Carbon sources on the Beaufort Sea shelf include 

both advected and in situ components of marine production and riverine and coastal erosion-related 

inflow o f terrestrial carbon (Goni et al. 2013). As an Arctic interior shelf, water originated both in 

the Atlantic and the Pacific flow over this region. The eastward-flowing Atlantic Water, that is part 

o f the Arctic-wide cyclonic boundary current system, is found below the 200 m isobath along the 

Alaska Beaufort slope (McLaughlin et al. 2006). Pacific originated water enters the Arctic through 

Bering Strait and follows a northward trajectory through the Chukchi Sea, entering the Beaufort 

shelf through Barrow Canyon, where it forms the “Beaufort shelf-break jet” (Pickart 2004; 

Nikolopoulos et al. 2009). This shelf-break jet has an eastward trajectory and distinct seasonal 

configurations. During the spring it is bottom intensified, transporting dense w inter transformed 

water from the Chukchi Sea, while in the summer it becomes surface intensified transporting warm  

Alaska Coastal Current waters (Pickart 2004; Nikolopoulos et al. 2009). W ind has a strong effect on 

the direction, extent and intensity o f this jet (Pickart et al. 2011). During the fall and winter, easterly 

winds prevail or increase and can reverse the direction o f the shelf-break jet, thus promoting 

upwelling along the Alaska north slope, making nutrients available for primary productivity (Aagaard 

1984; W eingartner et al. 1998; Pickart et al. 2013). The high benthic biomass on the Chukchi Sea 

shelf and western Beaufort Sea has been linked to the highly productive waters o f Pacific and Bering 

Sea origin (Logerwell et al. 2011; Ravelo et al. 2014). Further along the eastern Alaska Beaufort shelf 

(east of 150°W), the fate o f the shelf-break jet is still unclear (Nikolopoulos et al. 2009). On the 

Canadian Beaufort Shelf, low sediment organic carbon content has been attributed to low water 

column primary production mostly limited by nutrients and light availability, resulting in a total
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annual estimate ranging from 12 to 16 g  C m-2 for this region (Naidu 1974; Carmack et al. 2004). 

Another allochthonous source o f carbon in the region comes from the seasonal discharge o f many 

rivers, particularly the Colville and the Mackenzie rivers, which can affect large areas o f the shelf 

w ith terrigenous organic matter, inorganic sediments and reduced salinity (Macdonald et al. 1998; 

Carmack and Macdonald 2002; Carmack and Wassmann 2006). Changes in food web structure with 

increased terrestrially derived carbon from rivers have been determined for the Alaska Beaufort Sea 

shelf and slope (L. Bell, unpublished data); however, the changes in community structure associated 

w ith the proximity of river inflow are largely unknown for the outer shelf in this region.

Currently, pack ice advances over the region in November and starts to retreat by Ju ly 

(Maslanik et al. 2007). Landfast ice forms gradually in the fall (October) and by late w inter (March), 

its extent can reach up to 50 km offshore (Mahoney et al. 2014). In the winter, the offshore 

movement of the Beaufort Gyre pushes the pack ice westward, which breaks against the fixed 

landfast ice, forming a large pressure-ridge system that can run aground along nearshore areas 

(Barnes et al. 1984). In this area, known as the Stamukhi zone, the seafloor is scoured by dragging 

ice keels. Some ice gouges are more than 4 m deep (Barnes et al. 1984), with the highest density 

found between water depths o f 20 to 40 m (Reimnitz and Kempema 1984). This seasonal gouging 

disturbs the benthic communities, which may take more than a decade to recover to the original 

state (Conlan and Kvitek 2005).

M ost o f our knowledge on the benthic communities of the Alaska Beaufort Shelf date from 

the 1970’s, sparked by interests in off-shore oil exploration (Carey and Ruff 1977; Frost and Lowry 

1983; Carey et al. 1984; Dunton 1984). Benthic offshore studies focused on fish and infauna while 

nearshore studies for the past three decades have focused on kelp communities associated with 

boulders (Dunton 1984; Dunton and Schonberg 2000; Konar and Iken 2005; Konar 2007). The 

overall purpose for this study stems from our lack of knowledge o f epibenthic communities in this 

area, the biological importance o f the epibenthos to Arctic shelf systems, the rapid environmental 

changes occurring in the Arctic and the increase in economic interest in this region (Loeng et al. 

2005; Dunton et al. 2009; Dunton et al. 2012; Grebmeier 2012). Our general objective was to 

describe the epibenthic community on the Alaska Beaufort Sea shelf. W e specifically wanted to 1) 

analyze the spatial variability in abundance, biomass, taxonomic composition and diversity of 

epibenthic invertebrates on the Alaska Beaufort Shelf; and 2) determine the set o f environmental
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parameters that best correlate with the changes in the epibenthic community throughout the study 

region.

2.2 Methods

In August-September of 2011, 71 stations were sampled from 70.45°N and 145.09°W to 71.66°N 

and 155.25°W, in water depths from 13 to 220 m (Figure 2.1). The stations sampled by this project 

were in part chosen to repeat previously sampled locations by other research projects. The station 

spacing was chosen at approximately 0.5° latitude and 0.25° longitude with the goal to cover the 

majority o f the along-shelf extent o f the Alaska Beaufort Shelf and include replicate sampling 

locations in the shallow nearshore, m id-shelf and at the upper slope. Two gear types were used, a 

plumb-staff beam trawl (PSBT) designed after Gunderson and Ellis (1986) and a modified version 

o f this beam trawl (PSBT-A). Both gear types were 3.05 m plumb-staff beam trawls with a 7 mm 

mesh and a 4 mm codend liner. A  rigid 3 m pipe forward o f the net held the mouth open for an 

effective swath of 2.26 m; the vertical opening of the net was approximately 1.2 m. The modification 

o f the PSBT-A gear consisted of the addition of rubber rollers on the bottom of the net following 

the design o f Abookire and Rose (2005). The PSBT-A was used at stations w ith very soft bottom, 

where the rubber rollers allowed a more surficial swath o f the gear over the seafloor. A t five 

opportunistically chosen stations (WB13, WB14, WB18, WB21 and CB33) both trawl types were 

used to allow a comparison o f the catch o f both trawls and to ensure that comparisons of epibenthic 

communities among stations sampled using different trawls were valid. The trawl time for either 

gear ranged from 1 to 5 minutes on the seafloor at a vessel speed o f 2 to 5 knots. Trawl bottom time 

was estimated based on vessel w ire scope and vessel GPS position at the beginning and end o f the 

trawl. The distance covered ranged from 63 m to 383 m. Information for each station 

(georeferenced position, depth, gear type, date sampled and a posteriori defined region and depth 

group) is provided in Figure 2.A.

After a trawl was brought on board, catches were rinsed o f sediments and organisms sorted 

to varying taxonomic levels, in some cases species level, in most cases to genus. All community 

analyses were made using the taxonomic resolution achieved in the field. Bryozoa and Hydrozoa 

were grouped at the phylum and class level, respectively. Voucher specimens were fixed in 10% 

buffered formalin for later taxonomic verification and finer taxonomic resolution for a taxa list 

(Figure 2.B). Taxon names were verified using WoRMS (WoRMS Editorial Board 2015). All 

individuals were counted by taxon and their damp biomass determined by digital scales w ith 1 gram
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accuracy. Single trawl hauls were collected at each station due to the considerable time commitment 

they involve. A t six opportunistically chosen stations(WB07, WB31, WB32, CB33, CB34 and CB35) 

a second haul was collected w ith no more than five days apart from the first haul and using the same 

gear type (PSBT-A in all cases). These trawls were performed to determine the representativeness of 

the area sampled by one trawl.

A t each station, sediment samples collected from a van Veen grab were immediately frozen 

at -20°C for later determination of chlorophyll a  concentration, organic matter content, total organic 

carbon (TOC) and nitrogen content (TN), carbon to nitrogen ratios (C/N), and sediment grain size. 

All sediment samples were processed at the University o f Alaska Fairbanks. Sediment chlorophyll a 

(|j.g/cm3) and phaeopigments (^g/cm3) were determined from a 4.16 cm3 sub-core (2.77 cm 

diameter x 1.5 cm deep) taken from each van Veen grab. Sediment samples were processed within 

three months o f collection. Samples were thawed and pigments extracted w ith 25 ml of 90% acetone 

for 24 h in the dark at -20°C. Pigment concentration was determined using a fluorometer following 

the procedure described by Arar and Collins (1997). Sediment organic matter (% dry weight) was 

determined from surface subsamples from van Veen grabs, which were dried at 105°C for 24 h. 

Organic matter content was determined by the difference in weight of the sample before and after 

ignition in a muffle furnace at 440°C for 1 h (Schumacher 2002). Two types of substrate descriptors 

were included as variables in the environmental analysis, quantitative values o f sediment grain size 

and qualitative categories of seafloor characteristics. Sediment grain size samples were collected 

from the sediment surface with a scoop from each van Veen grab and classified into fractions of 

gravel, sand, mud and sediment water content, following the protocol described by Strobel et al. 

(1995). Seafloor characteristics were noted from the van Veen grab (i.e. presence o f soft sediments 

only) and the trawl (i.e. cobbles and boulders present) at each station. These observed seafloor 

characteristics were included as dummy variables in the environmental analysis; where the 

categorization was based on the presence/absence o f cobbles, boulders or a combination of the two 

(0: only soft sediments, 1: cobble, 2: boulders, 3: cobble and boulders). Sediment TOC (%), TN (%) 

and molar C/N values were obtained from measurements o f sediments processed following the 

same protocol as in Iken et al. (2010). In addition, bottom water characteristics (temperature (°C), 

salinity (%o), pH) and water samples for bottom water chlorophyll a (^g/l) and phaeopigments 

(^g/l) were collected using a SeaBird 25 CTD equipped w ith Niskin bottles (average distance from 

the seafloor was 8 m, s.d. 7 m). The CTD data were processed using SeaBird software and averaged
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vertically into 1-m bins. W ater samples were filtered and processed for chlorophyll a  content 

following Parsons (1984).

2.2.1 Data analysis

To analyze spatial variability in epibenthic abundance, biomass, taxonomic composition and 

diversity on the Alaska Beaufort Shelf, community structure was investigated with non-parametric 

multivariate statistical analysis using the software package PRIM ER v. 6 (Clarke and Gorley 2006). 

For this purpose, all taxa abundance and biomass values were standardized to their relative 

contribution per trawl (in percent) and a square root transformation was applied. Proportional data 

are commonly used in multivariate analysis when the size o f the samples is not fixed, such as the 

area trawled (Clarke and W arwick 2001). For each statistical test used, all assumptions were verified. 

To confirm that there was no significant difference in the performance o f the two types o f trawl 

gear used in this study, relative abundance and biomass data from five stations were sampled using 

both gear types (n = 10) were analyzed using a one-way design w ith “gear type” as the factor level 

using PERMANOVA+ (Clarke and Gorley 2006). The PERMANOVA+ analysis tests the 

simultaneous response o f the variables to the factor in an analysis o f variance type experimental 

design on the basis o f the resemblance measure, using a permutation method (Anderson et al. 2008). 

In this analysis, the null hypothesis o f no difference between the factor levels is determined by a 

pseudo-F ratio and permutation p-value (P(perm)) (Clarke and Gorley 2006). The same statistical 

procedure was used to test the difference between samples collected at the same station using the 

same gear type (six stations, n = 12). This was done to assess the overall representativeness o f the 

area sampled by only one trawl collected at each station, using the factor levels “sample 1 or 2”.

To respond to the general objective and determine the taxa that best explain the pattern of 

the epifaunal community across all stations, BVSTEP (Biological Variables Stepwise Procedure) was 

used separately on the abundance and biomass data, using a Bray-Curtis resemblance matrix and 

Spearman rank correlation. The BVSTEP procedure carries a step wise approach, searching for high 

rank correlations between a faunal data matrix and a Bray-Curtis similarity matrix. Community 

cluster analysis calculated with abundance data provided station grouping by similarity, using group 

averaging based on Bray-Curtis resemblance matrix. The SIMPROF test (Similarity Profile) detected 

the statistical significance of the internal structure at each node o f the dendrogram. Based on the 

results o f the community cluster analysis, stations were grouped into six “geographic domains”, 

consisting o f three depth categories (shallow, mid-depth and deep) for each two regions (east and
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west) (Figure 2.5). Depth categories were determined by environmental features characteristic o f the 

shelf. For the shallow stations (< 25 m), the lim it was determined by the extent o f the ice scouring 

that occurs on the sea floor up to 20-25 m in depth (Mahoney et al. 2014). The deeper lim it for the 

mid-depth stations was determined by the shelf break (100 m). The deep station category 

corresponded to the shelf break and the upper slope (101-220 m). To better understand the changes 

along the shelf from the western to the eastern extent of the study area, stations within the three 

depth categories were also divided into two regional categories (east and west), loosely determined 

again by the cluster analysis and a spatial gap in the station distribution. W e stress that we do not 

consider longitude in itself as a factor for these two groups, but consider the group ‘w est’ as having 

strong influence from Chukchi Sea inflows, and ‘east’ as having weaker Chukchi influence. A  two­

w ay crossed PERMANOVA+ design was used to determine the statistical significance of the a 

posteriori defined geographic domains w ithin the study area. For this analysis, the fixed factors used 

were “region” with two levels, east (32 stations) and west (39 stations) and “depth” with three levels, 

shallow (17 stations), mid-depth (33 stations) and deep (21 stations). To determine the taxa 

representing each of these assemblages, a BVSTEP analysis was performed separately with the 

relative abundance and biomass data. Epibenthic abundance and biomass data were standardized to 

100 m2 for community standing stock description (i.e. Figures 2.2a and 2.2b) and estimation of 

diversity indices. Shannon-W iener’s diversity (H =  —E  Pi loge (Pi)), Pielou’s evenness J ’= H ’/ lo g eS) 

and M argalef s richness (d = (S -1 )/ lo g eN) indices were calculated from biomass (g w et wt/100 m2) 

for all stations using the DIVERSE routine in PRIMER. S denotes species, which in our case also 

included taxa identified to coarser resolution. Biomass over abundance was chosen because biomass 

data include colonial taxa not captured by the abundance data. For these diversity indices, two-way 

crossed ANOVAs using “region” and “depth” as factors were conducted at a 95% confidence level 

and Tukey tests were applied at 0.05 significance level using R (www.r-proiect.org. V2.15.0). All 

assumptions for ANOVA tests were met. All maps presented were generated using ArcMap from 

ESRI software. Total abundance and biomass data were projected onto maps by scaled circles, with 

breaks determined by Jenks’ natural breaks.

To determine the set of environmental parameters that best correlate with the changes in the 

epibenthic community throughout the study region, the BIOENV (Biological-Environmental 

Interactions) routine using normalized variables was applied (Clarke and Gorley 2006). The stations 

that had one o f the below-mentioned variables missing were excluded from the analysis, reducing
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the number o f stations included to 55. No variables were excluded from the BIOENV analysis due 

to high colinearity (< 90%). The full set of environmental variables included in this analysis were: (1) 

indicators of food supply and quality, including sediment chlorophyll a  (^g/cm3) and phaeopigment 

(|j.g/cm3) concentration, organic matter content in surface sediments (% dry weight), surface 

sediment total carbon (TOC) and nitrogen (TN) content, molar carbon to nitrogen ratio (C/N), 

bottom water chlorophyll a (^g/l) and bottom water phaeopigment content (^g/l), (2) habitat 

descriptors, such as sediment grain size including gravel, sand, and mud (silt and clay) fractions and 

sediment water content; as well as qualitative substrate descriptors “seafloor characteristics”, and (3) 

hydrographic descriptors including bottom water salinity (% ), temperature (°C) and pH. To explore 

the environmental patterns in the study region, a principal component analysis (PCA) was 

performed using the most relevant variables as identified by the BIOENV analysis.

2.3 Results

There was no significant difference between the five stations sampled w ith PSBT and PSBT- 

A  trawl gears for relative abundance (PERMANOVA+, Pseudo-F: 0.163, P(perm): 0.992) or relative 

biomass (PERMANOVA, Pseudo-F: 0.246, P(perm): 0.991). Therefore, we included all stations in 

the community analysis regardless o f the gear type used. Similarly, there was no significant difference 

in relative epifaunal abundance (PERMANOVA, Pseudo-F: 0.211, P(perm): 0.868) or biomass 

(PERMANOVA+, Pseudo-F: 0.239, P(perm): 0.986) between the repeated samples collected at the 

six stations that were revisited. These results increase our confidence that the single sample collected 

at each station is sufficient to represent the epibenthic community at that station at a given time.

The mean total abundance per station was 2,531 ind/100 m2 (sd 5,349), ranging from a total 

abundance o f 4 ind/100 m2 at station WB30 to 27,559 ind/100 m2 at station W B04 (Figure 2.2). The 

mean total biomass amounted to 3,656.9 g  w et wt/100 m2 (sd 7,854), ranging from 5.8 g  w et wt/100 

m2 at station CB07 to 50,103.1 g  w et wt/100 m2 at station WB04 (Figure 2.3). Across all stations, a 

total o f 133 taxa in nine phyla were identified from voucher specimens and in the field; including 54 

Mollusca, 27 Echinodermata, 24 Arthropoda, eight Cnidaria, seven Chordata, six Porifera, five 

Bryozoa, one Platyhelminthes, and one Brachiopoda (Figure 2.B). The average number o f taxa 

across all stations was 22 (sd 9), w ith the total number of taxa ranging from three at stations CB10, 

CB31 and WB30 to 42 at station EB21 (Figure 2.4). O f the total abundance across all stations, the 

brittle star Ophiura sarsii represented 74.5% o f all individuals, followed by the brittle star Ophiocten 

sericeum  w ith 6.3%, the brittle star Ophiacantha bidentata w ith 4.1%, the sea cucumber Ocnus glacialis
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with 3.4%, and the shrimp family Pandalidae with 1.1%. All other taxa contributed <1% each to the 

total abundance across the study region. O f the total biomass across all stations, Ophiura sarsii 

represented 41.3%, the basket stars Gorgonocephalus spp. 13.3%, the sea star Ctenodiscus crispatus 11.3%, 

the sea cucumber Psolus p eron ii 4.5%, Ophiacantha bidentata 3.3%, the sea urchin Strongylocentrotus 

pallidus 2.4%, and the anemone order Actiniaria 2.3%. The biomass o f the following taxa was each 

<2% of the total biomass; the soft corals Gersemia spp., the whelks N eptunea spp., the snail Buccinum  

polare , the sea anemones Stomphia spp. and Ocnus glacialis. The individual biomass of all other taxa 

each amounted to <1% of the total biomass.

Nine taxa best represented epibenthic abundance across all stations, including (in order of 

importance) Ophiura sarsii, Pandalidae, Ophiocten sericeum, the order Amphipoda, the shrimp Sabinea 

septemcarinata, Ophiacantha bidentata, the hermit crabs Pagurus spp., the isopods Saduria spp., and the 

snails Boreotrophon spp. (BVSTEP, Spearman correlation coefficient: 0.956 w ith 0.1% significance 

level; Figure 2.5). Using biomass data, 16 taxa best represented the epibenthos in the study area. 

These taxa included (in order o f importance) Ophiura sarsii, Sabinea septemcarinata, Saduria spp., Pagurus 

spp., Ophiocten sericeum  and Ophiacantha bidentata, Amphipoda, Pandalidae, Ctenodiscus crispatus, the snail 

Buccinum elatior, Strongylocentrotus pallidus, the sea stars Leptasterias spp., the crab H yas coarctatus, the 

order Actiniaria, the phylum Bryozoa, and the sea star Urasterias lincki (BVSTEP, Spearman 

correlation coefficient: 0. 955 w ith 0.1% significance level; Figure 2.6).

From the cluster analysis o f abundance data, 11 statistically significant clusters and one 

independent station were determined with an average similarity within clusters o f 42.5% (sd 11.4) 

(Figure 2.7). Stations grouped in clusters had similar water depths and/or were located in close 

proximity of each other. Guided by the cluster analysis results, we defined six “geographical 

domains” delineated by depth and along-shelf position. This simplified grouping increased the 

sample size in each group and allowed for a more detailed description of each community 

assemblage. Stations were grouped in three depth categories (shallow, mid-depth and deep) and two 

regions (east and west), loosely determined again by the cluster analysis and a spatial gap in the 

station distribution (Figure 2.8). A  two-way crossed PERMANOVA+, using region and depth 

category as fixed factors, revealed a significant difference between regions and among depth 

categories, as well as a significant interaction between factors for abundance and biomass (Table

2.2). The pairwise comparisons of means for regions at the same depth category and depth
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categories within the same region were all significant, w ith the exception o f the east and west 

shallow stations for biomass (Table 2.2).

Diversity indices were calculated for all stations and then grouped by region or depth as 

factors for analysis o f variance. Mean values for each geographic domain show higher number of 

taxa for mid-depth stations and lowest number of taxa for the shallow stations across regions (Table

2.2). Overall, mean values for M argalef index were highest for mid-depth stations and lowest for 

deep stations (Table 2.2). Two-way ANOVA for M argalef was significant across depths (p<0.001), 

w ith significant differences between mid-depth and deep stations, as well as between mid-depth and 

shallow stations (Table 2.3). For Shannon index, results from the two-way ANOVA showed a 

significant difference among depths as well as a marginally significant interaction between depth and 

region (p=0.0006 and p=0.0549, respectively); western shallow stations were significantly different 

from eastern mid-depth stations and western mid-depth stations respectively (Table 2.3). Pielou’s 

index was relatively high for all geographic domains, reflecting comparable dominance levels o f one 

or a few taxa in each community across the region. For this index, the two-way ANOVA was 

significant only in the interaction between depth and region (p-value: 0.0215) and from the 

comparison o f means test, the only significant difference among groups was between east and west 

shallow stations (Table 2.3).

D ifferent characteristic taxa were selected for each geographic domain, w ith high correlation 

coefficients in the BVSTEP analysis (0.771 to 0.961) (Tables 2.4 and 2.5). The eastern deep group 

had only 6 stations resulting in a comparatively weak significance level, which reduces the 

meaningfulness of the correlation value and the list of taxa selected. Out of the total 34 most 

representative taxa of the six geographic domains, only seven were selected for the same depth 

category across regions (taxa in bold in Tables 2.4 and 2.5). The gradual transition in taxonomic 

composition w ith increasing water depth is well reflected in the high number o f characteristic taxa 

that are shared between mid-depth and shallow stations, and mid-depth and deep stations for both 

regions. Also the mid-depth stations had the highest number o f representative taxa selected, which 

also belonged to a greater number of phyla (six) compared to the two other depth groups. Shallow 

stations were represented by crustaceans and echinoderms, while deep stations were represented by 

different echinoderms, crustaceans, and anemones (Tables 2.4 and 2.5). Most characteristic taxa 

showed obvious changes in their relative biomass from w est to east (Figure 2.9); however the vast 

majority o f these taxa were present at least in some small proportion in both regions. Only four
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representative taxa of the community in the western region were absent east o f 149.5°W. These taxa 

are the brittle stars Stegophiura nodosa, Amphiodia craterodmeta, and Ophiopholis aculeata and the hermit 

crab Labidochirus splendescens (Figure 2.9, Tables 2.4 and 2.5).

Variability across geographic domains was also evident in the measured environmental 

variables (Table 2.6). The eastern stations had overall higher mean bottom water salinity, gravel and 

sand fractions across depth categories. The western stations had overall higher mean sediment 

organic matter content, sediment phaeopigment concentration, mud and sediment water content, 

TN, and TOC across depth categories. In both the eastern and western regions, shallow stations had 

the highest mean bottom water temperature, pH, sand fraction, and C/N ratios. Also, shallow 

stations had the lowest mean gravel fraction and sediment chl a values. Across regions there was an 

increase with depth in mean bottom water salinity, sediment organic matter content, sediment 

phaeopigment concentration, sediment water content, TN, and TOC content. Mean pH, percent 

sand, and C/N values decreased with depth in both regions (Table 2.6).

The environmental and biological resemblance matrices were moderately correlated. For 

abundance, a combination o f five variables had the highest correlation coefficient o f 0.48 at a 

significance level o f 0.1%. These variables were (in order o f importance), sediment phaeopigments, 

bottom water salinity, bottom water temperature, organic matter content, and bottom water pH. For 

biomass, at a correlation value o f 0.38 and 0.1% significance level, the five variables selected were (in 

order of importance) sediment phaeopigments, bottom water salinity, bottom water temperature, 

percent sand, and bottom water pH.

To explore the spatial variability in environmental drivers throughout the study region, a 

principal component analysis (PCA) was performed using the variables identified by the BIOENV 

analysis as most relevant in determining epibenthic community structure (Figure 2.10). Combined, 

PC1 and PC2 explained 74.7% of the variability among stations (Table 2.7). Overall, stations 

clustered in depth categories along PC1 (49.4% explained variation). The tight clustering of all deep 

stations was determined by a strong negative correlation w ith bottom water pH, as well as a high 

positive correlation with bottom water salinity and sediment phaeopigments. The opposite trend was 

observed for shallow stations along the PC1 axis. Most stations in the mid-depth group were mostly 

neutral along the PC1 axis, but eastern and western mid-depth stations dispersed on opposite ends 

o f the PC2 axis (25.2% explained variation). This was driven by a positive correlation w ith percent
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sand and a negative correlation w ith bottom water temperature and sediment organic matter for 

most eastern mid-depth stations, while the opposite trend occurred for the western stations o f the 

mid-depth group. Shallow stations also dispersed along the PC2 axis w ith no eastern or western 

distinction along this axis (Figure 2.10). The bottom water salinity-temperature plot revealed shallow 

and mid-depth stations dispersing along a strong temperature gradient spanning ~6°C. The warmest 

bottom waters were found in the western shallow and mid-depth stations. Deep stations had higher 

salinities than shallow and mid-depths stations w ith the largest range in salinity found among the 

western deep stations (Figure 2.11).

2.4 Discussion

In general, the epibenthic community varied with depth and along the shelf throughout the 

Alaska Beaufort Shelf and upper slope w ith interactions between these two factors. This change in 

community pattern was reflected in significant differences in abundance, biomass, taxonomic 

composition and diversity with both changes in along-shelf position and water depth.

The number o f taxa identified from voucher specimens in this study was 133, which is 

substantially less than the 238 epifaunal invertebrates reported for the same region in 1977 (Frost 

and Lowry 1983). The combination o f a coarser taxonomic resolution and the exclusion of certain 

groups (i.e. polychaetes) in this study is most likely the reason for the fewer taxa. The range of 

epifaunal taxa per trawl was three to 42, which is similar to the adjacent Chukchi Sea, where the 

number of taxa surveyed w ith the same gear type ranged from 13 to 47 (Bluhm et al. 2009; Ravelo et 

al. 2014). In part, a higher taxonomic resolution in Bluhm et al. (2009) may be responsible for the 

smaller range in number of taxa identified across stations. For example, in the present study only 

four taxa in the order Amphipoda were identified to lower taxonomic levels, as opposed to 12 in 

Bluhm et al. (2009), thus underrepresenting to some extent the taxonomic diversity at stations with 

the least o f number of taxa (mostly the shallow stations, dominated by amphipods). In addition, the 

lower number of taxa encountered at some stations in the present study compared to the Chukchi 

Sea survey, could be a consequence o f the difference in water depths sampled. This study caught the 

lowest number o f taxa inshore of 20 m depth (mean 7, sd 3), a depth range not sampled by the 

Chukchi Sea studies. The environmental stressors are intense in these shallow waters and forcing 

factors change rapidly with depth over this range; in particular low salinity and sediment re-working 

by waves and ice keels, see discussion on changes in water depth.
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The highest biomass and abundance were located close to Barrow Canyon on the western 

side of the study region and continued along the shelf slope diminishing east of 149°W. Overall, the 

shelf (<100 m) showed homogeneously lower abundance and biomass than the shelf break and 

upper slope, w ith the exception of a few stations w ith higher abundance and biomass in the far east 

o f the study area (145° - 146°W). Maximum epibenthic biomass reported in the Chukchi Sea 

sampled using the same gear ranged from 21,702 to 64,500 g  w et wt/100 m2 (Bluhm et al. 2009; 

Ravelo et al. 2014). The maximum biomass presented here (50,103 g  w et wt/100 m2) falls in the 

range of values reported for the adjacent Chukchi Sea, documenting that at least the Pacific water- 

influenced western Beaufort Sea is capable o f sustaining comparable standing stocks to the much 

more productive Chukchi Sea. Past benthic sampling efforts on the Alaska Beaufort Shelf were 

performed using different sampling gear and only few report values for total epibenthic abundance 

or biomass (Carey and Ruff 1977; Frost and Lowry 1983; Rand and Logerwell 2011). Perhaps 

because o f the discrepancy in collection methods, in particular the larger mesh size o f the trawl gear 

used in past surveys, total biomass reported in these previous studies is lower than the biomass 

presented here. A  2008 trawl survey reported biomass for the Alaska Beaufort Shelf from 638.8 g 

w et wt/100 m2 to 8,695 g  w et wt/100 m2 (depth range from 40 to 500 m, Rand and Logerwell

2011), while a survey in the 1970s reported 12,000 g  w et wt/100 m2 to 22,700 g  w et wt/100 m2 

(depth range from for 21-2,600 m; Carey and Ruff 1977).

This study supplies further evidence for the dominance of Ophiura sarsii as well as several 

other ophiuroid species in Arctic epibenthic communities. In concordance w ith past surveys, 

epibenthic communities in the western Beaufort Sea were dominated in abundance by Ophiura sarsii 

(Frost and Lowry 1983; Rand and Logerwell 2011). In the present study, this species also dominated 

the total epibenthic biomass w est o f 148°W. In the Chukchi Sea, many studies reported Ophiura sarsii 

as the single-most abundant brittle star species throughout the region and in many areas, the 

dominant epibenthic species over all other taxa (Ambrose et al. 2001; Feder et al. 2005; Bluhm et al. 

2009; Ravelo et al. 2014). In this study, Ophiocten sericeum  dominated stations east of 149°W, w ith a 

maximum density of 21 ind/m2. Photographic surveys o f the Canadian Beaufort shelf communities 

showed highest ophiuroid abundance at 60 ind/m2 (Renaud et al. 2007). The brittle star Ophiocten 

sericeum  was also reported as an important representative o f the epibenthic community in the Atlantic 

Arctic, w ith densities ranging from 32 to 524 ind/m2 in the Barents Sea (Piepenburg and Schmid 

1996). Brittle stars that inhabit cold regions are thought to be long lived with Antarctic species aged
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to be at least a decade old (Dahm 1993). These characteristics, longevity and high standing stock, 

along w ith their limited mobility make brittle stars ideal indicators of the environmental conditions 

year round. Also, the distinct distribution pattern described here and the large difference in 

maximum size o f the two most common brittle star species Ophiura sarsii (maximum disc diameter 

40 mm) and Ophiocten sericeum  (maximum disc diameter 18 mm) can be useful for Arctic wide 

comparisons of population productivity and growth, which in turn may reflect differences among 

shelf productivity and environmental characteristics.

Along with the significant changes in community w ith depth and along-shelf position, the 

PERMANOVA+ analyses showed a significant interaction between these two factors. Except for 

the biomass o f the eastern and western shallow stations, all geographic domains were significantly 

different from one another, as shown in the comparison of means analyses (Table 2.1). These 

significant differences validate the separation o f the shelf into these six domains and highlight the 

importance of considering them as distinct units. However, although, these geographic domains 

(determined both by along-shelf position and depth) were a strong determinant o f community 

patterns, the next two sections w ill discuss depth and along-shelf position separately with the 

interaction implied. Also, because ultimately depth and along-shelf position are proxies for 

environmental drivers acting seasonally or year-round, the description o f community changes by 

depth and along-shelf position cannot be separated from the changes o f the environmental drivers 

examined in this study. In addition, while the correlation values o f environmental parameters with 

the community matrix for abundance and biomass were moderate (correlation coefficients <0.5 with 

0.1% significance level), they were meaningful in a biological community context (Bluhm et al. 2009; 

Ravelo et al. 2014) and demonstrate clear links between community structure and environmental 

forcing as it changes with depth and along-shelf position in the study area.

2.4.1 Changes with depth

Depth can act as an easily measurable proxy for a combination o f environmental drivers that 

influence epibenthic organisms (Piepenburg 2005). This relationship also holds true for this and for 

other Arctic shelf epifauna studies (Bluhm et al. 2009; Blanchard et al. 2013; Jorgensen et al. 2015; 

Ravelo et al. 2014; Roy et al. 2014). A  previous trawl survey performed on the Alaska Beaufort shelf 

also described a distinct depth zonation in the epibenthic community composition; however, no 

inferences were made specifying the possible environmental variables or biological interactions 

driving these depth patterns (Carey and Ruff 1977). In the PCA analysis, using only the selected
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environmental variables, station clusters segregated by depth groups along the PC1 axis. This pattern 

reinforces the concept that the effect o f depth on benthic communities is mostly reflecting the 

changes with depth o f one or a combination of environmental drivers. Even though most o f the 

environmental data used in our analysis are point in time measurements, the clear separation by 

depth of the community cluster groups and select environmental drivers indicate that changes in 

water depth are acting as a proxy for persistent environmental forces in the region.

Organisms that inhabit the shallow region o f the Alaska Beaufort Shelf (<~25 m) are 

affected by multiple seasonally distinct physical forces. This creates a year round high stress 

environment that could explain the low taxon richness in this area. The formation of ice keels from 

grounded ice ridges in the Stamukhi zone can occur quite rapidly and the seafloor from 15 to 45 m 

depth is scarred by deep draft-ice keels, w ith the largest density o f gouging reported at 17 m water 

depth (Mahoney et al. 2014). In addition to gouging, the ice keels create a barrier for water 

movement near the seafloor, modifying currents and in turn affecting the distribution o f sediments 

(Barnes et al. 1982; Reimnitz and Kempema 1984). An increase in salinity occurs in the near shore 

environment from October through mid-May, the main factors are the reduction o f riverine input 

and brine injection from the formation o f sea ice (Dunton et al. 2006). On the Alaska Beaufort 

Shelf, after breakup and until late fall, there are 14 major rivers discharging freshwater and 

terrigenous sediments that mix rapidly off the coast (Hearon et al. 2009). As rivers start to flow in 

the spring and early summer, prior to break-up, the nearshore environment is flooded with fresh 

inflow water forming the Riverine Coastal Domain (Carmack et al. in press) and, if  trapped behind 

ice ridges, may pool as a brackish water lake o f high turbidity (Carmack and Macdonald 2002). In 

summary, the nearshore environment of the Alaska Beaufort Shelf is a highly dynamic environment, 

w ith extreme changes in salinity, temperature, water movement and physical disturbance (Barnes 

1999; Mahoney et al. 2014). For these reasons the Alaska Beaufort Sea nearshore has been 

characterized as a biological “desert”, with attached or burrowing organisms almost absent, a 

concept that our study confirms (Reimnitz and Kempema 1984).

The shallow stations along the inner shelf were characterized by overall low epifaunal 

abundance and biomass, along with a distinct group o f taxa with several common characteristics. 

The representative taxa o f the shallow shelf were pandalid shrimp, Amphipoda and the isopods 

Saduria spp., all characteristically mobile groups. Mobility can be of great importance for survival in a 

region regularly disturbed by ice scouring (Conlan et al. 1998). Amphipods and pandalid shrimp
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were rather homogeneous in abundance and biomass at different depths and dominated the 

nearshore community mostly due to the absence of other taxa, as previously found in this region 

(Frost and Lowry 1983). These taxa provide a food source for diving ducks, stressing the importance 

o f their presence in the shallow nearshore environment (Dunton et al. 2012). Shrimps and 

amphipods are highly mobile w ith a wide range of feeding habits, from predators of small benthic 

organisms to herbivores (Graeve et al. 1997; Macdonald et al. 2010). In the southeastern Chukchi 

Sea, shrimp species revealed diluted regional signals in S13C values and a wide range of Sl5N, which 

was interpreted as the ability to feed over large horizontal spatial areas on multiple food sources, 

from the overlaying water column to the seafloor (Feder et al. 2011). Inferring from the high bottom 

water chl a  and phaeophytin concentrations, in conjunction w ith the low sediment organic matter, 

sediment chl a and phaeopigment concentrations found in the nearshore, it is possible that some 

dominant taxa may be grazing on near bottom particles while others may scavenge on the sparse 

disturbed benthos available in fresh ice scoured sediments.

Other characteristic taxa o f the shallow stations were the isopods Saduria spp. This genus 

was encountered exclusively shallower than 40 m, representing more than 30% of the total biomass 

at ten of the 18 stations where they were present. Saduria spp. are characterized by a w ide range of 

feeding modes from scavenger to non-selective predators. In addition, Saduria entomon (one of the 

species in this study) has a very large salinity tolerance and has been found inhabiting salinity ranges 

from 0.2 to 30, possibly allowing this species to remain in the nearshore year round (Haahtela 1990; 

Sandberg and Bonsdorff 1990). The combination of representative taxa and the overall low 

epibenthic standing stock of the nearshore Alaska Beaufort Shelf clearly reflect the many 

environmental disturbances that take place year round in this region.

Many studies in the Arctic have highlighted the importance of food quantity and quality for 

benthic systems (Ambrose and Renaud 1995; Grebmeier et al. 2006a, 2006b; Bluhm et al. 2009). In 

the present study, we found changes in community patterns w ith changes in indicators o f food 

supply. Surface sediment chl a, phaeopigment concentrations and sediment C/N ratio were included 

as proxies o f the quality of organic matter advected to the benthos (Iken et al. 2010; Dunton et al.

2012). The sediment C/N ratio mean values in this study (Table 1.6) were w ithin the range o f values 

published for the Beaufort Sea region and show the expected trend o f lower values at deeper 

stations w ith increasing values at shallower stations (Naidu et al. 1975; Naidu et al. 2000). This 

pattern across the shelf reflects the higher carbon input originated from riverine sources close to
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shore, and the higher oceanic nitrogen export to the benthos offshore. The measured proxies for 

food supply increased with depth, indicating higher food availability for epibenthic organisms on the 

shelf break and upper slope, especially in the western region. This increase in quantity and quality of 

food at the shelf break and upper slope were coupled w ith increases in total epibenthic biomass and 

abundance at most deep stations. Benthic-pelagic coupling has been well documented in many other 

polar regions (Ambrose and Renaud 1995; Grebmeier et al. 2006b; Link et al. 2013) and the results 

o f this study again show a strong relationship between benthic biomass and abundance and proxies 

for food supply from the overlaying water column. One specific example o f this coupling is the 

occurrence of snow crab, Chionoecetes opilio, which was encountered almost exclusively at deep 

stations along the shelf (12 out o f 15 stations encountered were deeper than 150 m). In the 2008 

western Beaufort survey, snow crab had the second largest biomass values after ophiuroids at the 

100 to 500 m depth range (Rand and Logerwell 2011). On the Chukchi Sea shelf, snow crab are an 

important representative o f epibenthic communities, but in that region their presence/abundance 

has not been correlated to water depth, probably owing to the relatively homogeneous depth profile 

o f the Chukchi Sea shelf (Bluhm et al. 2009). Instead, Chukchi Sea snow crab are particularly 

dominant following the trajectory o f the nutrient rich Central Channel water mass (Ravelo et al. 

2014). Two results shown here concur that the deep stations, most o f which had snow crab present, 

were among the coldest bottom water temperature stations and were characterized by a positive 

correlation with bottom water salinity and sediment phaeopigments (Figures 2.7 and 2.8). 

Considering the time of year of this study, snow crab were found exclusively at the boundary 

between the Chukchi Sea w inter water and Atlantic W ater layers (Nikolopoulos et al. 2009; Carmack 

and McLaughlin 2011). This w inter water has the potential to support high secondary production 

due to the higher levels of organic carbon associated w ith this water mass (Mathis et al. 2007). The 

presence of snow crab and particularly high biomass of brittle stars in these productive waters could 

imply that their distribution in the Alaska Beaufort Sea may reflect the trajectory of the nutrient rich 

waters that flow through Barrow Canyon heading east along the Alaska Beaufort shelf break and 

upper slope. This relationship has previously been observed for snow crab and a number of fish 

species in the region, where the highest CPUE was positively correlated to the portions of the shelf 

slope occupied by Chukchi Sea w inter water (Logerwell et al. 2011).

Besides food supply and disturbance nearshore, seafloor characteristics and sediment grain 

size are important determinants o f Arctic benthic community composition (Feder et al. 1994; Mayer
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and Piepenburg 1996; Bluhm et al. 2009). O f the substrate variables included in this analysis, sand 

was most important in determining the epibenthic community. The sand fractions were higher at the 

shallow nearshore locations, where rivers and wave action have a direct influence over the region, 

depositing medium-size entrained particles while finer particles tend to get moved offshore (Naidu 

et al. 1975). In this study, the nearshore areas w ith sandy sediments and — as discussed above — 

variable salinities and high mechanical disturbance were also the most impoverished in terms of 

taxonomic diversity, abundance and biomass. The combination of large seasonal changes in salinity 

(large riverine input) and physical disturbance (wave action and ice gauging) may restrict the diversity 

o f this area to more seasonally transient or mobile epibenthic fauna. The relatively higher percent 

gravel found at the deeper stations could be a result o f ice-rafting and the reworking of sediments 

over a very long time scale (Naidu et al. 1975; Reimnitz et al. 1993; Carmack et al. in press).The m id­

depth stations had intermediate sediment values for mud, sand, and gravel fractions. These soft 

sediments are important habitat for infaunal organisms, many o f which are prey for the epibenthos 

(Dale et al. 1989; Feder et al. 1994). Interspersed within the soft sediment, some mid-depth stations 

contained hard surfaces, such as gravel, boulders, and shell hash, which provide substrates for 

attachment for sessile and colonial organisms that in turn provide refuge to larval stages and smaller 

organisms (Dale et al. 1989; Bluhm et al. 2009). Therefore, the increased sediment heterogeneity at 

m id-depth (and deeper) stations may promote the wide range o f taxa inhabiting the outer Alaska 

Beaufort Shelf and upper slope. The mid-depth stations in the eastern and western regions had the 

highest diversity values and the highest number of taxa selected in the BVSTEP analysis. The 

increase in diversity at the 25-100 m depth range was consistent along the shelf and had no 

particular regional difference, though the taxa selected as representatives o f the community in the 

eastern and western regions differed significantly. In other Arctic regions, higher substrate 

heterogeneity has also been linked to higher epibenthic diversity values (Dale et al. 1989; Mayer and 

Piepenburg 1996; Bluhm et al. 2009). As discussed above, the mid-depth stations did not have the 

highest biomass despite having the highest diversity; a pattern that was also observed on the adjacent 

Chukchi Sea shelf, where the highest biomass and abundance stations were dominated by ophiuroids 

and had the lowest mean diversity values (Ravelo et al. 2014).

2.4.2 Changes along the shelf

While spatial and latitudinal patterns in community structure have been described in the 

Chukchi Sea (Bluhm et al. 2009), descriptions o f changes in communities with longitude within the
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Pacific Arctic region are rare (Ravelo et al. 2014; Roy et al. 2014). In the present study, we found 

that at constant depth ranges, there were very few similar representative taxa w est o f 150°W 

longitude compared to east of that longitude. Although most taxa had a wide along-shelf distribution 

throughout the study area, their relative abundance and dominance changed greatly from east to 

west. This distribution pattern was also observed for infaunal polychaetes in a 1970’s survey in the 

same region (Bilyard and Carey 1979). In the present study, all eight ophiuroid species identified 

were encountered w est of longitude 148°W, with only Ophiocten sericeum  and Ophiacantha bidentata 

found east o f this line.

The dominance of O. sarsii over all other ophiuroids, and in many stations over all other 

taxa, was observed only at the western slope o f the Alaska Beaufort Sea (western-deep and some 

western-mid-depth stations). The prevalence of the two most abundant ophiuroid species changed 

along the shelf, from eastern stations dominated by O. sericeum  and O. sarsii being absent, to the 

western stations dominated by O. sarsii while O. sericeum  was only present at very high total standing 

stocks stations. As w ith the above discussed abundance pattern of snow crab, the dominance of O. 

sarsii throughout the Chukchi Sea and the observed distribution lim it at ~148°W in the Alaska 

Beaufort Sea seem to be linked to the distribution of water masses in the two regions. Much o f the 

Pacific-origin water flowing through the Chukchi Sea flows eastward rounding Point Barrow and 

entering the Beaufort shelf as the Beaufort shelf-break jet (Pickart 2004; Nikolopoulos et al. 2009). 

This shelf-break jet advances over the western Beaufort shelf break with a complete decay point at 

approximately 147°W (von Appen and Pickart 2012). The transport o f O. sarsii larvae from the 

Chukchi Sea population could, therefore, be limited to the western Beaufort Sea shelf break by the 

diminishing shelfbreak jet over the Beaufort Sea shelf.

The change in dominant taxa along the shelf was also evident for other taxa such as the 

scallop Similipecten greenlandicus, which dominated in abundance at eastern stations but was rare west 

o f 150°W in the present study as well as in the 1976-77 survey (Frost and Lowry 1983). The brittle 

stars Stegophiura nodosa, A mphiodia craterodmeta and the hermit crabs Labidochirus spp. were the only 

other representative taxa that did not occur east o f 148°W. However, there were several other, less 

abundant taxa that occurred only either w est or east o f ~148-150°W, such as the chiton A micula 

vestita and the brittle star Ophiopholis aculeata. Along w ith the clear along-shelf change in epibenthic 

taxon composition, there is a decrease from west to east in total epibenthic abundance and biomass 

along the shelf break. This pattern can also be linked to the transit and decay o f the shelfbreak
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current over the region. Changes in the direction o f the prevailing winds over the Beaufort shelf 

have a strong effect on the intensity and direction o f the water entering the region through Barrow 

Canyon, affecting the distribution of benthic productivity and taxonomic composition on the Alaska 

Beaufort Shelf, especially for the mid-depth and deep stations o f this study region (Dunton et al. 

2005; Pickart et al. 2011). Evidence from long-term atmospheric data collected from Point Barrow 

indicates that an increase in prevalence and intensity of easterly winds in the Alaska Beaufort shelf 

region has occurred over the past 40 years, causing more persistent and prolonged reversals of the 

Beaufort shelf-break jet (Hufford 1973; von Appen and Pickart 2012; Pickart et al. 2013). 

Considering the strong link between water masses and community composition shown in our 

results, the epibenthic community we find today on the Alaska Beaufort shelf may be experiencing a 

very different environment from the community sampled by Frost and Lowry in 1976-77. The best 

evidence o f these long term changes in environmental and community patterns for this region can 

be seen in the large shift in distribution we observed of most brittle star species from 1977 to 2011 

(Frost and Lowry 1983). The species O. sarsii, Ophiopholis aculeata, Ophiura robusta and A mphiodia 

craterodmeta were encountered in past studies, from two to seven degrees further east from the 

eastward most point each species was encountered in the present study (Carey 1977; Frost and 

Lowry 1983). Considering that this shift in distribution from the 1970’s survey was only observed 

for certain taxa and no quantitative comparison could be made (due to different survey methods 

used), we can only speculate towards the implications of these environmental changes on the 

benthic community as a whole. In this regard, it remains for future research to define the 

implications o f these species distribution shifts for the benthic realm, as well as to determine the 

ecological winners and losers in this increasingly changing Arctic system (Carmack et al. 2010).

2.5 Summary

In summary, this paper is the first to detail the depth-related and along-shelf changes in the 

epibenthic community along the Alaska Beaufort Shelf. W e found that the western deep portion of 

the Beaufort shelf has many elements in common with the adjacent Chukchi Sea shelf. This was 

evident from the high biomass values found in the western deeper part o f the Beaufort Sea study 

region that is connected to the Chukchi Sea through the path o f the shelf-break jet. Also, many 

dominant taxa of the western deep stations of the Alaska Beaufort Shelf are found throughout the 

Chukchi Sea. In combination w ith the reduction in total epibenthic biomass from w est to east along 

the shelf break, changes in dominant taxa and overall community composition were observed along
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the shelf and upper slope. The change in epibenthic community with depth was most obvious in the 

nearshore environment (<20 m), which was characterized by low epibenthic abundance, biomass 

and taxonomic diversity. We suggest this was probably mostly due to the seasonal scouring of the 

sediments by ice keels, and highly variable bottom water salinity throughout the seasons due to the 

influence o f the many rivers and landfast ice in the region. The higher mean diversity values in the 

mid-depth stations can be linked to overall higher sediment heterogeneity (soft and hard substrates). 

Through this analysis we show how epibenthic communities change spatially and we mark the 

relevant environmental drivers that model these communities. Even though the most relevant 

drivers were point-in-time measurements o f the environment, depth and along-shelf helped define 

assemblages and can be seen as proxies for a combination o f environmental drivers acting at 

different time scales.
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Table 2.7. PERMANOVA analysis and pairwise comparison of means for the effect of region and depth on 
the epibenthic community abundance and biomass on the Alaska Beaufort Sea shelf. df: degrees of freedom. 
SS: sum of squares. **P(perm) <0.001 and *P(perm) <0.01.

D ata F actors o r levels d f SS P seudo-F  
o r t-value P(perm )

Region 1 20,326 14.79 0.0001**
D ep th 2 54,710 19.91 0.0001**
Region x  D e p th 2 15,940 5.80 0.0001**
Shallow: E as t vs W est 2.03 0.0046*
M id-depth: E as t vs W est 3.62 0.0001**
D eep: E as t vs W est 3.59 0.0001**

A bundance
E ast: M id-dep th  vs Shallow 3.42 0.0001**
E ast: M id-dep th  vs D eep 2.36 0.0001**
E ast: Shallow vs D eep 3.91 0.0001**
W est: M id-dep th  vs Shallow 3.83 0.0001**
W est: M id-dep th  vs D eep 3.52 0.0001**
W est: Shallow vs D eep 5.71 0.0001**
Regions 1 15,967 7.88 0.0001**
D epths 2 51,258 12.65 0.0001**
Region x  D e p th 2 15,814 3.90 0.0001**
Shallow: E as t vs W est 1.32 0.1441
M id-depth: E as t vs W est 2.99 0.0001**
D eep: E ast vs W est 2.69 0.0002**

Biomass
E ast: M id-dep th  vs Shallow 2.60 0.0001**
E ast: M id-dep th  vs D eep 2.36 0.0002**
E ast: Shallow vs D eep 2.71 0.0007**
W est: M id-dep th  vs Shallow 3.34 0.0001**
W est: M id-dep th  vs D eep 2.62 0.0001**
W est: Shallow vs D eep 4.16 0.0001**
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Table 2.8. Mean values for diversity indices, mean number of taxa and total number of stations by geographic 
domains. Standard deviations are shown in parenthesis.

G eograph ic dom ain N u m b er o f  
stations

M ean 
n u m b er o f  

taxa M argalef

Index
Shannon Pielou

E aste rn  Shallow 7 13 (8) 2.86 (0.50) 1.57 (0.34) 0.52 (0.12)
E aste rn  M id-dep th 19 25 (8) 3.81(0.71) 1.56 (0.66) 0.49 (0.20)
E aste rn  D eep 6 21 (3) 2.5 (1.11) 1.30 (0.56) 0.61 (0.26)
W estern  Shallow 10 9 (4) 2.62 (0.84) 1.30 (0.42) 0.41 (0.10)
W estern  M id-dep th 14 31 (5) 4.19 (0.69) 1.81 (0.41) 0.54 (0.11)
W estern  D eep 15 25 (7) 1.95 (1.39) 0.81 (0.62) 0.36 (0.22)

76



Table 2.9. Two-way crossed ANOVA values for the tree diversity indices Margalef, Shannon and Pielou. 
Only significant values for Tukey test (95% confidence level) shown for each index. df: degrees of freedom. 
SS: sum of squares. **p value <0.001, *p value <0.01 and •p value <0.1.

Index F actors o r levels d f SS F-value p value
D ep th 2 43.01 27.31 0.0001 **
R egion 1 0.00 0.00 0.9497

M argalef D e p th  x  Region 2 2.66 1.69 0.1926
M id-dep th  vs D eep 0.0001 **
Shallow vs M id-dep th 0.0001 **
D ep th 2 4.80 8.42 0.0006 **
Region 1 0.08 0.30 0.5879

Shannon D e p th  x  Region 2 1.73 3.04 0.0549
W estern  Shallow vs E aste rn  M id-dep th 0.0079 *

W estern  Shallow vs W estern  M id-dep th 0.0004 **
D ep th 2 0.07 1.28 0.2858
Region 1 0.08 2.73 0.1036

Pielou
D e p th  x  Region 2 0.24 4.07 0.0215 *

W estern  Shallow vs E aste rn  Shallow 0.0567
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Table 2.10. Taxa selected by BVSTEP analyses for each geographic domain, using abundance data. In bold 
taxa selected for the same depth category across regions. Taxa marked with an asterisk were present 
exclusively in the western region.

G eographic
dom ain

N u m b er o f  
taxa 

selected
C orrelation

Value
Sig. level

(%) Taxa

E astern
Shallow

6 0.945 0.1 A m p h ip o d a , S a d u r ia  sp p .,  Pandalidae, Leptasterias spp., 
Ophiocten sericeum, Psolus spp.

E astern
M id-depth

9 0.953 0.1 Admete spp., Buccinum elatior, Similipecten greenlandicus, 
Tachyrhynchus spp., Sabinea septemcarinata, P a n d a lid a e , 
Ophiocten sericeum, Psolus spp., Urasterias lincki

E astern
D eep

1 0.771 0.9 Ophiacantha bidentata

W estern
Shallow

4 0.947 0.1 A m p h ip o d a , Sabinea septemcarinata, S a d u r ia  sp p ., 
Stegophiura nodosa*

W estern
M id-depth

9 0.959 0.1 Retifusus roseus, A rgis spp., Pagurus spp., P a n d a lid a e , 
Spirontocaris spp., Ctenodiscus crispatus, Stegophiura nodosa*, 
Ophiura sarsii, Strongylocentrotus pallidus

W estern
D eep

8 0.950 0.1 A rgis spp., Ctenodiscus crispatus, Leptasterias spp. Ophiopholis 
aculeata*, Ophiura robusta, Ophioscolex glacialis, Ophiura sarsii, 
Amphiodia craterodmeta*
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Table 2.11. Characteristic taxa selected by BVSTEP analyses for each geographic domain using biomass data. 
In bold taxa selected for the same depth category across regions. Marked with an asterisk are the taxa that 
were present exclusively in the western region.

G eographic dom ain
N u m ber 
o f  taxa 
selected

C orrelation
Value

Sig. level
(%) Taxa

E astern  Shallow 3 0.949 0.1 A m phipod a , S a d u r ia  s p p ., Psolus spp.

E astern  M id-depth 7 0.950 0.1 Buccinum elatior, N e p tu n e a  s p p . ,  Similipecten 
greenlandicus, P a g u r u s  sp p ., Sabinea septemcarinata, 
Psolus spp., Urasterias lincki

E astern  D eep 5 0.957 9.7 Chionoecetes opilio, O p h ia c a n th a  b id e n ta ta ,
Ophiocten sericeum, Strongylocentrotus pallidus, 
S to m p h ia  sp p .

W estern Shallow 2 0.955 0.1 S a d u r ia  sp p ., Pandalidae

W estern M id-depth 12 0.951 0.1 N ep tu n e a  sp p ., Hyas coarctactus, P a g u r u s  sp p .,
Labidochirus splendescens*, Pandalidae, Ctenodiscus 
crispatus, Ophiura sarsii, Psolus spp., 
Strongylocentrotus pallidus, Stomphia spp., Bryozoa, 
Thenea muricata

W estern D eep 6 0.951 0.1 Ctenodiscus crispatus, Gorgonocephalus spp., 
O p h ia c a n th a  b id e n ta ta ,  Ophiura sarsii, 
Actiniaria, S t o m p h ia  sp p .
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Table 2.12. Mean value and standard deviations (SD) of the environmental parameters included in the 
BioEnv analysis for each geographic domain (Primer v6). Depth (m), bottom water temperature (T, °C), 
bottom water salinity (S, %o), bottom water pH, bottom water chlorophyll a (BW chl a, ^g/l) and bottom 
water phaeophytin (BW phaeo., ^g/l), Sediment organic matter (Org. matter, % dry weight), sediment 
chlorophyll a (Sed. chl a , ^g/cm3), sediment phaeopigments (Sed. phaeo., ^g/cm3), gravel (%), sand (%), 
mud (%), sediment water content (Sed. water, %), sediment total nitrogen (TN, %), sediment total organic 
carbon (TOC, %), adjusted carbon to nitrogen ratio (C/N), seafloor categories (range 0-3; (0: only soft 
sediments, 1: cobble, 2: boulders, 3: cobble and boulders).

W estern
E nv.
Variables Shallow 

M ean SD
M id-depth 

M ean SD
D eep 

M ean SD

E astern
Shallow 

M ean SD
M id-depth 

M ean SD
D eep 

M ean SD
D ep th
T
S
p H
B W  chl a 

B W  phaeo. 
Org. m atter 
Sed. chl a 

Sed. phaeo. 
Gravel 
Sand 
M ud
Sed. w ater
T N
T O C
C /N
Seafloor
categories

19.1
3.2
31.3
8.2 
0.3 
0.2
3.3 
2.2 
1.6 
0.6 
35.5
63.7
31.7 
0.1
1.4
8.4

0.2

3.6 
0.9 
0.2 
0.0 
0.2 
0.1
1.5 
2.4 
0.8
1.7
31.5 
31.1 
7.3 
0.1 
0.7 
1.9

0.4

58.4 
2.9
31.7 
8.2 
0.2 
0.1
4.4
2.3
5.0
6.5
23.7 
69.6
41.3 
0.2 
1.4
8.1

0.6

14.7
1.4 
0.2 
0.0 
0.2 
0.1 
0.9 
1.2 
1.8 
13.5
12.4
17.8 
9.1 
0.0 
0.4 
0.8

0.8

183
-0.3
33.9 
8.0 
0.1 
0.1
5.6 
4.3
7.6
8.6
17.5
73.6
47.7 
0.2 
1.5
7.9

0.4

14.7
0.6
0.8
0.1
0.1
0.1
1.2
1.5
3.1 
17.4
7.6 
21.2
11.1 
0.1 
0.5 
1.0

0.5

20
1.3 
31.6 
8.2 
0.2 
0.2
3.5
2.4 
1.8
2.6 
40.7 
56.6
25.4 
0.1 
0.9 
8.9

1.4

1.9
0.5
0.1
0.0
0.2
0.1
2.5 
2.1 
2.2
5.6 
28.4 
31.1
7.7 
0.1 
0.9
2.3

1.4

41.1 
-0.6 
31.9
8.1 
0.8 
0.5
3.2
2.5
4.0
12.0 
34.6
53.2
34.5 
0.1 
0.9
7.3

1.3

11.7
0.7
0.3
0.1
0.8
0.4
0.8
1.2
2.1
17.5 
11.3
18.5 
12.9 
0.1 
0.4 
1.2

1.1

172.2 
0.04
34.2 
8.1 
0.1 
0.0 
4.4 
1.8 
5.3 
16.6
25.2 
57.9 
36.6 
0.2
1.2
7.2

1.3

20.3 
0.7 
0.9 
0.0 
0.1 
0.0 
0.9 
1.1
2.5
21.4
8.5
15.4
5.5 
0.0 
0.1 
0.4

0.7
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Table 2.13. Principal component analysis (PCA) of normalized environmental variables selected by BioEnv 
analysis (Primer V6). Cumulative variation for three PCs amounts to 83.8%. Selected variables are bottom 
water pH, sediment phaeopigments (Sed. phaeo., ^g/cm3), bottom water salinity (S, %o), sand (%), bottom 
water temperature (T, °C), sediment organic matter (Org. matter, % dry weight).

Eigenvalues 
%  V ariation

PC1 PC 2 PC3
2.98
49.40

1.52
25.20

0.55
9.20

Eigenvectors
p H 0.49 -0.26 0.04
Sed. phaeo. -0.47 0.01 -0.77
S -0.43 0.11 -0.28
Sand 0.27 0.63 -0.19
T 0.35 -0.54 0.54
Org. m atter -0.41 -0.48 -0.10
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Figure 2.7. Stations sampled for epibenthic invertebrates during the Beaufort Sea Marine Fish Monitoring in 
the Central Beaufort Sea research cruise in 2011.
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Figure 2.8. Abundance of epibenthos. Stations represented by scaled circles of total abundance (expressed in 
individuals in 100m2) by station.
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Figure 2.9. Biomass of epibenthos. Stations represented by scaled circles of total biomass (expressed in grams 
of wet weight in 100m2) by station.
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Figure 2.10. Total epibenthic taxa. Stations represented by scaled circles of number of taxa present by station.
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Figure 2.11. Relative epibenthic abundance per station. Each chart is showing the relative abundance of the 
selected taxa by BVSTEP procedure at each station.
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Figure 2.12. Relative epibenthic biomass per station. Each chart is showing the relative biomass of the 
selected taxa by BVSTEP procedure at each station.
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Figure 2.13. Cluster analysis of all stations based on a Bray-Curtis resemblance matrix of relative abundance 
per trawl and square root transformed data (Primer V6). Red dotted line represents groupings with no 
statistical significance defined by the SIMPROF test (Primer V6). Stations are symbolized and color coded by 
geographic domains.
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Figure 2.14. Defined geographic domains. Epibenthic trawl stations symbolized and color coded by 
geographic domain.
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Figure 2.15. Range of distribution along the longitudinal extent of the study area for taxa selected in BVSTEP analysis by geographic domains. The first 
seven taxa were selected exclusively for the eastern region, the following 14 were selected exclusively for the western region and the last three were 
selected in the eastern and western regions for different depth groups. Each bubble is a station and the size of the bubble represents the taxon’s relative 
biomass (bubble size range from 90% to <0.001% of the taxon’s total biomass). Marked with an asterisk are the taxa that were only present exclusively 
in the western region.



Figure 2.16. Principal Component Analysis (PCA) plot (Primer V6). Stations are symbolized by geographic 
domains and show the multivariate similarity among stations for the combination of environmental variables 
selected by BIOENV analysis (Primer V6). Vectors represent the direction and strength of each 
environmental variable to the total station distribution (Eigenvector values in Table 2.7).
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Figure 2.17. Bottom water temperature-salinity correlation for each station coded by geographic domain. 
Western shallow (WS), eastern shallow (ES), western mid-depth (WMd), eastern mid-depth (EMd), western 
deep (WD) and eastern deep (ED).
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2.6 Appendix

Table 2.A. Stations sampled during the 2011 Alaska Beaufort trawl survey. Station names (-GC: stations 
sampled for gear comparison, -R: replicated station using the same gear as original sample), trawl beginning 
position, depth (meters), gear type (PSBT: plumb-staff beam trawl, PSBT-A: modified plumb-staff beam 
trawl), date sampled, and a posteriori defined region and depth group for each station.

Station Latitude Longitude D ep th G ear type D ate
Sam pled

Region
G rou p

D ep th
G rou p

EB21 70.3315 -145.4430 52 PSBT 8 /1 7 E astern M id-depth
EB23 70.7739 -145.4070 127 PSBT 8 /1 7 E astern D eep
EB 12 70.7782 -146.1099 68 PSBT 8 /1 8 E astern M id-dep th
EB 14 70.4561 -145.7967 39 PSBT 8 /1 8 E astern M id-depth
EB16 70.6503 -145.7977 56 PSBT 8 /1 8 E astern M id-depth
EB19 70.5520 -145.4381 33 PSB T-A 8 /1 8 E astern M id-depth
EB 04 70.4360 -146.4200 35 PSB T-A 8 /1 9 E astern M id-depth
EB06 70.6667 -146.4938 45 PSB T-A 8 /1 9 E astern M id-depth
EB08 70.3367 -146.1104 30 PSBT 8 /1 9 E astern M id-depth
EB10 70.5619 -146.1066 41 PSBT 8 /1 9 E astern M id-depth
CB11 70.7583 -147.1254 48 PSB T-A 8 /2 0 E astern M id-depth
EB 02 70.8725 -146.6500 64 PSB T-A 8 /2 0 E astern M id-depth
EB 32 70.9101 -146.4159 126 PSBT 8 /2 0 E astern D eep
CB01 70.5145 -147.3533 28 PSBT 8 /2 1 E astern M id-depth
CB02 70.5970 -147.7415 26 PSB T-A 8 /2 1 E astern M id-depth
CB12 70.7989 -147.5143 41 PSB T-A 8 /2 1 E astern M id-depth
CB22 70.9950 -147.4627 184 PSB T-A 8 /2 1 E astern D eep
CB04 70.6262 -148.6868 13 PSB T-A 8 /2 2 E astern Shallow
CB13 70.8133 -148.0767 43 PSB T-A 8 /2 2 E astern M id-depth
CB14 70.8528 -148.5788 36 PSB T-A 8 /2 2 E astern M id-depth
CB23 71.0686 -147.8788 183 PSB T-A 8 /2 2 E astern D eep
CB24 71.1592 -148.3365 180 PSB T-A 8 /2 2 E astern D eep
CB03 70.5928 -148.2158 23 PSB T-A 8 /2 3 E astern Shallow
CB05 70.6548 -149.1974 19 PSB T-A 8 /2 3 E astern Shallow
CB06 70.6970 -149.6623 19 PSB T-A 8 /2 3 E astern Shallow
CB15 70.9201 -148.0300 33 PSB T-A 8 /2 3 E astern M id-depth
CB16 70.9602 -149.5722 33 PSB T-A 8 /2 3 E astern M id-depth
CB25 71.2073 -148.8749 179 PSB T-A 8 /2 3 E astern D eep
CB27 71.2184 -149.9031 163 PSB T-A 8 /2 4 W estern D eep
CB28 71.2520 -150.4104 103 PSB T-A 8 /2 4 W estern D eep

93



CB07 70.7384 -150.1203 19
CB17 70.9791 -150.0197 30
CB20 71.1149 -151.4424 20
CB08 70.7432 -150.5349 19
CB09 70.8136 -151.1057 18
CB10 70.8556 -151.5946 17
CB31 70.9089 -151.8422 17
W B17 71.1594 -152.2214 24
W B19 71.3442 -152.0087 90
CB30 71.3610 -151.3092 183
W B08 71.6546 -152.6614 183
W B20 71.5015 -152.1839 184
W B23 71.5343 -152.9027 60
W B24 71.5634 -153.5034 53
W B07 71.7110 -152.9747 183
W B31 71.8005 -153.4167 183
W B10 71.7238 -153.9227 53
W B12 71.4710 -153.9570 52
W B15 71.3723 -153.0386 79
W B16 71.4517 -153.0111 65
W B26 71.5988 -153.9508 49
W B22 71.6912 -154.5217 51
W B04 71.8418 -153.9206 184
W B05 71.8086 -154.4321 155
W B27 71.8512 -154.4951 178
W B30 71.2433 -155.1354 13
W B13 71.3977 -153.9775 43
W B21 71.5933 -155.0366 48
W B02 71.7344 -154.9747 183
W B28 71.6624 -155.2461 183
W B25 71.2221 -154.0137 23
W B34 71.1379 -153.1948 25
W B35 71.1017 -154.0514 18
W B14 71.2457 -153.1169 41
W B32 71.7340 -153.5261 83
CB32 70.8096 -151.6320 16
W B18 71.2730 -152.3036 51

PSB T-A 8 /2 4 E astern Shallow
PSB T-A 8 /2 4 E astern M id-depth
PSB T-A 8 /2 5 W estern Shallow
PSB T-A 8 /2 5 E astern Shallow
PSB T-A 8 /2 6 W estern Shallow
PSB T-A 8 /2 6 W estern Shallow
PSB T-A 8 /2 6 W estern Shallow
PSB T-A 8 /2 6 W estern Shallow
PSB T-A 8 /2 6 W estern M id-depth
PSB T-A 8 /2 7 W estern D eep
PSB T-A 8 /2 7 W estern D eep
PSB T-A 8 /2 7 W estern D eep
PSB T-A 8 /2 8 W estern M id-depth
PSB T-A 8 /2 8 W estern M id-depth
PSB T-A 8 /2 8 W estern D eep
PSB T-A 8 /2 8 W estern D eep
PSB T-A 8 /2 9 W estern M id-depth
PSB T-A 8 /2 9 W estern M id-depth
PSB T-A 8 /2 9 W estern M id-depth
PSB T-A 8 /2 9 W estern M id-depth
PSB T-A 8 /2 9 W estern M id-depth
PSB T-A 8 /3 0 W estern M id-depth
PSB T-A 8 /3 0 W estern D eep
PSB T-A 8 /3 0 W estern D eep
PSB T-A 8 /3 0 W estern D eep
PSB T-A 8 /3 1 W estern Shallow
PSB T-A 8 /3 1 W estern M id-depth
PSB T-A 8 /3 1 W estern M id-depth
PSB T-A 8 /3 1 W estern D eep
PSB T-A 8 /3 1 W estern D eep
PSB T-A 9 /1 W estern Shallow
PSB T-A 9 /1 W estern Shallow
PSB T-A 9 /1 W estern Shallow
PSBT 9 /1 W estern M id-depth
PSB T-A 9 /1 W estern M id-depth
PSB T-A 9 /2 W estern Shallow
PSB T-A 9 /2 W estern M id-depth
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W B36 71.5773 -152.5094 154 PSB T-A 9 /2 W estern D eep
CB34 71.2805 -150.6733 183 PSB T-A 9 /3 W estern D eep
CB35 71.2883 -150.6699 223 PSB T-A 9 /3 W estern D eep
CB33 70.6780 -150.7046 16 PSB T-A 9 /3 E astern Shallow
W B32-R 71.7329 -153.5032 80 PSB T-A 8 /2 8
W B 21-G C 71.5943 -154.9852 45 PSBT 8 /3 1
W B 13-G C 71.3973 -153.9954 40 PSBT 9 /1
W B 14-G C 71.2467 -153.1024 38 PSBT 9 /1
W B31-R 71.7967 -153.4090 180 PSB T-A 9 /1
W B 18-G C 71.2867 -152.2603 48 PSBT 9 /2
W B07-R 71.7137 -152.9786 180 PSB T-A 9 /2
C B33-G C 70.6802 -150.6911 13 PSBT 9 /3
CB33-R 70.6732 -150.7012 15 PSB T-A 9 /3
CB34-R 71.2782 -150.6530 180 PSB T-A 9 /3
CB35-R 71.2875 -150.6599 220 PSB T-A 9 /3
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Table 2.B. List of epifaunal taxa encountered during the 2011 Alaska Beaufort Sea shelf research cruise. 
Taxon identification was performed by the authors and the following taxonomist: Nora Foster (NRF 
Taxonomic Services, USA; Mollusca), Kenneth Coyle (University of Alaska Fairbanks, USA; Amphipoda), 
Gordon Hendler (Natural History Museum of Los Angeles County, USA; Ophiuroidea), Chritopher Mah 
(Smithsonian National Museum of Natural History, USA; Asteroidea), Linda Cole Smithsonian National 
Museum of Natural History, USA; Ascidacea), Carlos Angulo-Preckler (University of Barcelona, Spain; 
Porifera). Taxon names were verified using WoRMS (WoRMS Editorial Board 2015).

Phylum Taxa Station o f vou cher co llection o r  field 
identification

A rth ro p od a A m phipod a EB 02, EB04, CB03, CB10, W B08, W B12
Arctolembos arcticus EB21
A rgis spp. EB 21, CB25
Chionoecetes opilio CB23
Cirripedia CB15
Hyas coarctatus CB03
Labidochirus splendescens W B24
Lebbeus groenlandicus W B14
Nototropis smitti EB21
Pagurus spp. CB03
Pandalidae EB21
Paralithodes platypus CB25, W B07
P ycnogonida CB29, EB23
Sabinea septemcarinata EB 21, CB25
Saduria entomon CB08
Saduria sabini CB08, CB01
Sclerocrangon boreas W B23
Spirontocaris arcuata W B23
Spirontocaris phippsii EB21
Spirontocaris spinus CB25
Stegocephalidae EB21
Synidotea spp. W B20
Synidotea bicuspida EB21
Weyprechtia heuglini CB05

B rachiopoda B rachiopoda CB30
Bryozoa Alcyonidium  (Paralcyonidium ) vermiculare W B32

Alcyonidium disciforme CB20
Alcyonidium  spp. W B07, CB08, W B07

W B19, W B32, EB 06, EB 01, W B19, CB01,
B ryozoa EB06
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Flustra spp. WB07, CB01

C hordata A cidia obliqua CB23, CB04
A scidiacea CB03
Chelyosoma spp. CB03, W B10
Halocynthia spp. EB 12
Pelonaia corrugata W B14
Styela rustica EB 12
Trididemnum  spp. W B18

C nidarian Actinauge spp. EB 21, EB 32
Actiniaria EB 14, EB23, CB01, W B22
Alcyonacea CB23, EB 12
Gersemia spp. EB06
H ydrozoa CB01, W B12, CB04
Staurozoa CB15
Stomphia spp. EB 21, EB23
Urticina spp. W B31
Amphiodia craterodmeta CB29
Amphiura sundevalli CB29, CB25
A ntedonidae CB23, CB25, CB27
Crossasterpapposus EB21
Ctenodiscus crispatus CB24
H olo thuro idea W B08
Gorgonocephalus arcticus EB23
Gorgonocephalus eucnemis EB23
Henricia sanguinolenta W B32
Leptasterias arctica W B22
Leptasterias groenlandica EB21
Lophaster furcifer EB 04, CB23
Ocnus glacialis EB21
Ophiacantha bidentata CB23, EB 21, W B32, E B 12
Ophiocten sericeum CB25
Ophiopholis aculeata W B27, W B19
Ophiura robusta CB23, CB25, W B07
Ophiura sarsii CB24
Pontaster tenuispinus EB23
Poraniomorpha tumida EB 12, EB23
Psolus peron ii EB21
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M ollusca

Pteraster militaris W B15
Pteraster obscurus CB11
Solaster stimpsoni CB29
Stegophiura nodosa W B23
Strongylocentrotus pallidus EB21
Urasterias lincki CB01
Admete spp . CB30
Admete viridula EB 23, W B27, CB02
Amicula vestita W B32, CB30
Beringius spp. W B04, W B16
Boreotrophon spp. W B27, W B04, EB 23, CB13
Buccinum angulosum W B07, EB 21, EB 12
Buccinum scalariforme EB23
Buccinum glaciale W B31
Buccinum glaciale W B32
Buccinum polare W B07
Buccinum scalariforme EB21
Chlamys behringiana W B16
Clinopegma magnum W B04
Colus sabini EB23
Cryptonatica affinis CB08
Curtitoma conoidea CB30
Curtitoma decussata CB30
Curtitoma novajasemljensis CB01
Cylichna alba EB 21, CB01
Cylichna occulta CB20
Dendronotus sp. CB23
Habevolutopsius attenuatus W B02
Hermissenda crassicornis EB10
Iphione sp. EB08
Lacuna turneri CB03
Lepeta caeca EB 06, CB28, W B32
Limneria undata EB 14
Euspira pallida EB21
Margarites costalis EB23
Margarites giganteus CB20
Musculus niger W B04

98



Muusoctopus sibiricus CB23
Neptunea communis W B13
Neptunea spp. CB01
Neptunea ventricosa CB13
Nodulotrophon coronatus CB13
Oenopota elegans CB01
Onchidiopsis spp. EB 12
O nchidorid idae EB 14
Pandora glacialis EB 14
Plicifusus kroeyeri EB 21, W B20
Pyrulofusus deformis CB01, EB 23, EB 19
Retifusus roseus EB 21, W B07
Rossia pacifica EB23
Similipecten greenlandicus EB21
Solariella varicosa EB10
Stenosemus albus EB 06, W B22
Tachyrhynchus spp. EB21
Tritonia spp. CB23
Velutina coriacea EB21
Velutina velutina EB 12
Volutopsius fragilis EB23
Volutopsius norwegicus W B07
Volutopsius spp. EB23

Platyhelm inthes Platyhelm inthes EB 12, EB 14
Porifera Halichondria (Eum astia) sitiens CB03

Myxilla (B urtonanchora) lacunosa W B18
Polymastia spp. EB 21, EB23
Porifera CB03
Semisuberites cribrosa CB11
Thenea muricata EB23
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CHAPTER 3: What lies beneath the ice: relating seasonal sea ice patterns with benthic
shelf fauna in the Alaska Arctic1

Abstract

Sea ice, as one o f the most prominent features of the Arctic Seas, provides habitat for 

sympagic primary and secondary producers, which in turn provide food to the benthos. The 

seasonality o f sea ice affects processes that influence export production, such as vertical mixing in 

the water column and changes in the depth of the photic zone, which in turn affect the quantity and 

quality of food deposited to the benthos. To date, the impact that sea ice variables (e.g., ice cover, 

persistence o f the ice edge, and the phenology o f ice retreat and growth) may have on Arctic benthic 

communities has been poorly quantified. The main objective o f this analysis was to evaluate the 

relationship between the spatial variability in infaunal and epifaunal benthic community 

composition, biomass, and feeding guilds with the spatial variability in the patterns o f the seasonality 

o f sea ice. Benthic community data from 102 stations were gathered throughout the Alaska Beaufort 

and Chukchi Sea shelves, between 2009-2011. Passive microwave sea ice concentration data were 

used to compute variables meant to reflect the variability in the patterns o f the seasonality o f sea ice. 

Linear regressions resulted in 10 significant correlations between the number of benthic taxa, total 

station biomass, and each of the sea ice variables evaluated (from a total o f 30 possible correlations). 

Multivariate analysis resulted in moderate and low correlation values between sea ice variables and 

taxonomic community composition based on biomass in the Beaufort Sea and Chukchi Sea. Sea ice 

variables were not more highly correlated with communities classified by feeding guilds in either 

region. The inclusion o f sea ice variables to multivariate analysis using hydrographic variables 

(bottom water temperature, salinity), food availability and sediment type better explained variation in 

benthic community biomass. The patterns of the seasonality of sea ice did not have a direct effect 

on benthic communities, but rather provides a proxy for seasonal changes in w ind driven currents, 

upwelling and riverine input on benthic community variability. Given its coarse resolution and 

insensitivity to ice thickness and snow depth, the passive microwave-derived sea ice data is a poor 

predictor of sympagic-benthic coupling. However, many o f the environmental drivers relevant to

1 Ravelo, A.M., Konar, B., Grebmeier, J.M., Mahoney, A.R. (In review) What lies beneath the ice: relating 
seasonal sea ice patterns with benthic shelf fauna in the Alaskan Arctic. Deep Res Part II Top Stud Oceanogr
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benthic communities are hard to record in situ year round, and sea ice variables reflect changes in 

m any o f these environmental variables. Despite the shortcomings o f passive microwave derived sea 

ice variables, their inclusion to the commonly used list o f predictors o f benthic commuity structure 

can improve our ability to explain benthic community patterns and their relation to the changing 

Arctic environment

3.1 Introduction

Alaskan Arctic shelves are characterized by areas of variable benthic standing stock and an 

overall dominance o f invertebrate biomass over fish biomass (Feder et al., 2005; Rand and 

Logerwell, 2011; Ravelo et al., 2015, 2014). The seasonally high water column primary production 

that characterizes the Pacific Arctic shelves is reflected in the overall high benthic biomass and 

relatively low pelagic secondary production (Grebmeier et al., 2006a). In the Chukchi Sea, benthic 

biomass is comparable to other highly productive regions, with maximum values of >4000 g  wet wt. 

m-2 for infauna and 217 g  w et wt. m-2 for epifauna (Bluhm et al., 2009; Grebmeier et al., 2006a; 2015; 

Denisenko et al. 2015). On the western Alaskan Beaufort shelf, epibenthic invertebrates made up to 

94% of the total benthic standing stock; with maximum epibenthic biomass estimates as high as

50.103.1 g  w et wt. 100 m-2 (Rand and Logerwell, 2011; Ravelo et al., 2015). The predominance of 

benthic invertebrates over fish biomass is also reflected in the abundant higher trophic organisms, 

such as spectacled eiders, bearded seals, grey whales, and walrus that depend on bivalves, benthic 

amphipods, crab and polychaetes as main prey items (Bluhm and Gradinger, 2008; Cooper et al., 

2013; Coyle et al., 2007; Schonberg et al., 2014). Besides being a food source, benthic organisms play 

an important role in bioturbation, and through organic carbon remineralization they contribute to 

the total benthic energy turnover (Piepenburg and Schmid, 1996; Renaud et al., 2007). Many Arctic 

benthic invertebrates are long lived and relatively stationary (Bluhm et al., 1998; Carroll et al., 2009; 

Gage, 2003). From patterns o f species distribution and biomass, we can infer spatial patterns of 

persistent environmental conditions, as well as monitor for enviromental changes.

Despite being spatially variable, Arctic shelf systems are generally characterized by a tight 

relation between primary production and benthic food supply (Ambrose and Renaud, 1995; Dunton 

et al., 2005; Grebmeier and Barry, 1991; Piepenburg et al., 1997). Throughout the winter season, the 

ice-covered continental shelves are replenished with nutrients that are rapidly depleted as the ice- 

edge algal bloom forms in the spring (Stein and MacDonald, 2004). As sea ice melts, large amounts 

o f sympagic algae sink rapidly to the benthos and provide fresh food to benthic consumers
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(Ambrose et al., 2005; McMahon et al., 2006; Renaud et al., 2007). In addition to sympagic 

production, algal blooms in the ice-covered Pacific Arctic occur early in the season, before 

zooplankton biomass can significantly graze down the fresh phytoplankton material exported to the 

benthos (Grebmeier et al., 1988).

The most visible effect of climate change on the Arctic shelves is the spatial reduction of 

perennial sea ice, along w ith the early retreat and late formation of annual sea ice (Comiso et al., 

2008; Stroeve et al., 2012). On Arctic shelves, changes in thickness, extent and persistence of sea ice 

can have a profound effect on biological processes and ecosystem functioning (Grebmeier, 2012; 

Lohrer et al., 2013). Through a longer phytoplankton growth season, the reduction of sea ice in 

Arctic waters is a main contributor to increased phytoplankton production, which is projected to 

increase over 3-fold from past decades if  the Arctic becomes ice-free in spring (Arrigo et al., 2008). 

A long with an increase in phytoplankton production, pelagic secondary production may also benefit 

from longer ice-free seasons (Arrigo and van Dijken, 2015; Matsuno et al., 2011). The strong 

dependence o f benthic communities on the early season primary production could force a shift from 

specialized feeders to more opportunistic benthic detritivores (Soreide et al., 2013). Changes in water 

column productivity will affect the quality and quantity of food deposited to the benthos, potentially 

changing the distribution o f organisms based on their feeding strategies (Carmack and Wassmann, 

2006; Grebmeier et al., 2006a; Wassmann et al., 2011).

One o f the most distinct environmental characteristics o f Arctic shelves is the seasonal 

formation and retreat of sea ice. W ith the onset o f winter, the ocean loses heat to an increasingly 

cold atmosphere, allowing the formation o f ice crystals and eventually sea ice floes. Although most 

Arctic shelves are annually covered by a combination o f drifting pack ice offshore and landfast ice 

nearshore, the regional phenology of sea ice formation and retreat are largely defined by a 

combination of geographic, oceanographic and atmospheric features. The Alaskan Arctic is 

composed o f two shelves, the Chukchi and Beaufort Seas, which differ greatly in their physical 

features. The Chukchi Sea is a w ide shallow shelf (mostly <50 m), bordered latitudinally by land 

masses and delimited by the Bering Strait to the south. The Chukchi Sea is thus the only conduit of 

Pacific originated water into the Arctic Ocean (Carmack and Wassmann, 2006). In this region, sea 

ice retreats in response to the combination o f atmospheric forcing and the inflow o f warm water 

traveling north through Bering Strait, leaving the shelf mostly ice free during the summer months 

and limited to first-year ice the following winter (Frey et al., 2015; Mahoney, 2012; W oodgate et al.,
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2010). In contrast, the Alaskan Beaufort Sea has a shallow and narrow interior shelf that slopes 

down to the Canadian Basin (>3,000 m) in less than 100 km from shore (Norton and Weller, 1984). 

In the summer, many rivers discharge freshwater onto the Alaskan Beaufort Sea shelf, including the 

Mackenzie River, east o f the Canadian border. Along the slope, the Alaskan Beaufort Sea receives 

inflowing modified Pacific water though Barrow Canyon and Atlantic water from the Arctic-wide 

cyclonic boundary current (Carmack and Macdonald, 2002; Nikolopoulos et al., 2009). The Beaufort 

Gyre, due to its anti-cyclonic movement, carries multiyear sea ice south and on to the shelf 

(Pritchard, 1984; Reimnitz and Kempema, 1984). These characteristics, along w ith other physical 

factors, determine the differences in the phenology of sea ice in each o f the two regions. Recent 

research has focused on the impact that long term changes in environmental variables (including, 

changes in ice cover) have on specific benthic species biomass and/or nutrient fluxes, and sediment 

oxygen uptake (Cooper et al., 2013; Link et al., 2013; Soreide et al., 2013). However, the effect that 

sea ice parameters, such as ice cover, onset of sea ice melt and persistence of ice edge may have on 

the structure and composition of benthic communities remains largely unknown.

Benthic assemblages on Arctic shelves vary spatially following meso-scale (10-100 km) 

environmental patterns, such as changes in water mass properties, sediment grain size, and presence 

o f polynyas (Blanchard et al., 2013; Carroll and Ambrose, 2012; Piepenburg et al., 2000; Roy et al.,

2014). Indirect determinants o f commuity structure such as position (latitude and longitude) and 

depth are commonly used as proxies for these or other unresolved meso-scale community drivers. 

In many cases, these proxies have higher predictive power than environmental variables that may 

directly affect benthic organisms, such as water mass characteristics and indicators o f food supply 

(examples in Bluhm et al., 2009; Ravelo et al., 2014; 2015). Poor spatial resolution and a lack o f year- 

round in situ measurements have limited past analysis to use point-in-time values to correlate with 

benthic communities or total biomass. The high seasonal variability that benthic organisms 

experience in Arctic shelf systems cannot be represented with a single value. Moreover, assessing the 

implications that the changes in patterns o f the seasonality o f sea ice w ill have for benthic 

invertebrates throughout the Alaskan Arctic becomes impossible without first determining which 

environmental variables are driving these communities. Using these same epibenthic community 

data as presented here, two previous studies used a number o f environmental variables collected in 

situ to explain the pattern o f epibenthic community variability in the Chukchi and Beaufort Sea 

shelves (Ravelo et al., 2014; 2015). The present analysis expands the previous work by including sea
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ice as a possible explanatory variable o f epibenthic and infaunal communities, and by contrasting the 

relationship between benthic community taxonomic composition and feeding guilds and sea ice 

variables.

The overarching goal of this project was to explore the potential links between the patterns 

o f the seasonality of sea ice and benthic invertebrate community patterns on two Alaskan Arctic 

shelves. The hypotheses tested were: 1) the patterns o f the seasonality o f sea ice is a significant 

predictor o f total benthic (infauna and epifauna) biomass and number o f taxa on the Chukchi and 

Beaufort Sea shelves, 2) sea ice is a better predictor of community structure when communities are 

classified by feeding guilds as opposed to communities classified by taxa, and 3) the addition o f sea 

ice variables to the commonly used variables increases the predictive power of environmental drivers 

o f benthic community structure.

3.2 Methods

3.2.1 Benthos

Stations were sampled in the Chukchi and Beaufort Seas from 2009-2011 (Figure 3.1). 

Specifically, on the Chukchi Sea shelf, stations extended from 67.67° to 72.40 °N and 168.96° to 

159.37°W and ranged in w ater depth from 23 to 50 m. The sampling design was determined via two 

methods: 1) a general randomized tessellation stratified design (GRTS), and 2) a spatially oriented, 

nearshore-to-offshore, south to north grid overlaying the GRTS design; these two methods were 

applied to cover long term monitoring stations and include new stations, specific to a new sampling 

effort. Epibenthic data were collected at 52 stations and infaunal data were collected at 39 stations 

during two summer cruises, end of Ju ly  to mid-August o f 2009 and 2010 (Figure 3.1). On the 

Beaufort Sea shelf, 50 epibenthic stations were sampled in August-September o f 2011, spanning 

from 70.33°N and 145.41°W to 71.73°N and 155.32°W and ranging in water depths from 13 to 90 

m. The sample design for this survey chose some stations to repeat previously sampled locations by 

other research projects, while other stations were defined with a spacing of approximately 0.5° 

latitude and 0.25° longitude with the goal to cover the majority o f the along-shelf extent of the 

Alaskan Beaufort Shelf (Figure 3.1).

In the Chukchi Sea, epifaunal samples were collected at all stations using a 3.05 m plumb- 

staff beam trawl (PSBT) w ith a 7 mm mesh and a 4 mm codend liner (Gunderson and Ellis, 1986). 

A  rigid 3 m pipe forward o f the net held the mouth open for an effective swath of 2.26 m; the
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vertical opening of the net was approximately 1.2 m. For the Beaufort Sea, the same PSBT was used 

at eight stations, while a modified version o f this trawl net (PSBT-A) for stations with very soft 

sediments was used at 42 stations. The gear modification consisted of the addition of rubber rollers 

on the bottom o f the net, which allowed a more surficial swath o f the gear over the seafloor 

(Abookire and Rose, 2005). There was no significant difference in the samples collected by the two 

gear types, tested by repeated samples at 10 sites (results published in Ravelo et al., 2015). In both 

seas, trawls were towed for 2 to 5 minutes on the sea floor with a vessel speed o f 1 to 1.5 knots. 

Once onboard, epifaunal samples were rinsed in sieves (4 mm mesh size), sorted to the lowest 

possible taxonomic level, and wet weight was recorded (1 gram precision). Epifaunal organisms were 

mostly identified to genus, but in some cases to family or phylum. Taxa lists for the Chukchi and 

Beaufort seas are provided in Ravelo et al. (2014, 2015).

Infaunal samples were collected only in the Chukchi Sea at 39 stations using a single 0.1m2 

van Veen grab following methods outlined in Grebmeier et al. (1989). Samples were sieved (1 mm 

mesh size) shipboard and preserved with 10% buffered seawater formalin for post-cruise taxonomic 

identification and w et biomass determinations at the Chesapeake Biological Laboratory (CBL). 

Infaunal organisms were identified to family for most groups, with dominant infauna by biomass 

sorted to genus and species, particularly bivalves. A  list o f the top three infaunal taxa per-station can 

be found in Grebmeier and Cooper (2012).

3.2.2 Sea ice

Sea ice concentration data were obtained from the Nimbus-7 SMMR and DMSP SSM/I- 

SSMIS Passive Microwave Data set, available through the National Snow and Ice Data Center 

archives (Cavalieri et al., 1996). The data were generated using the NASA Team algorithm developed 

by the Oceans and Ice Branch, Laboratory for Hydrospheric Processes at NASA Goddard Space 

Flight Center (GSFC). Daily fields o f sea ice concentration, w ith 25 km spatial resolution, were 

compiled for each station sampled for benthos spanning 5 years back from the date the benthic 

samples were collected. A  five year retrospective mean was used to smooth out anomalies in sea ice 

coverage. From the sea ice concentration data at each station sampled, the following sea ice variables 

were produced): 1) Date o f sea ice return, 2) Date of sea ice retreat, 3) Days with no sea ice, 4) Days 

covered by sea ice, 5) Days with MIZ (marginal ice zone) and 6) Average seasonal sea ice 

concentration (Table 3.1). The conventional value o f 15% sea ice concentration was used to define 

the lim it o f continuous sea ice in passive microwave data (Parkinson et al., 1999). A  seven day
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moving average was applied when calculating the “Date o f sea ice return” and “Date o f sea ice 

retreat” to smooth large abrupt changes in sea ice concentration. W hen quantifying the “Days with 

M IZ”, some stations remained with low and above zero sea ice concentration for most o f the “open 

water season”. In those cases, all days were categorized as MIZ until the “Date o f sea ice return”.

3.2.3 Environmental

Environmental variables for all stations were collected when each station was sampled for 

biological data. For the Chukchi Sea, bottom water salinity, temperature (°C) and pH were obtained 

at each station using a YSI sonde 6600V2-4 (Yellow Springs, Ohio, USA). The sonde was factory- 

calibrated for temperature prior to use, salinity and pH were recalibrated daily. For the Beaufort Sea, 

bottom water salinity, temperature, pH, chlorophyll a  and phaeopigments were collected using a 

SeaBird 25 CTD equipped w ith Niskin bottles (average distance from the seafloor was 8 m, s.d. 7 

m). W ater samples were filtered and processed for chlorophyll a  content following Parsons (1984). 

For both regions, surface sediments were collected from a 0.1 m 2 van Veen grab for chlorophyll a 

concentration, total organic carbon (TOC) and nitrogen content (TN), carbon to nitrogen ratios 

(C/N), and sediment grain size (detailed description in Cooper et al., 2002; Ravelo et al., 2015; 

Trefry et al., 2014). For the Beaufort Sea, surface sediment organic matter and sediment water 

content were also collected for each station (details in Ravelo et al., 2015).

3.3 Data analysis

3.3.1 Biological data

Different sampling methods were used for collection o f epifaunal and infaunal samples, 

therefore these data were analyzed separately. For the first hypothesis, “sea ice is a significant driver 

o f total benthic biomass and community composition in the Chukchi and Beaufort Sea shelves”, the 

predictors of total biomass and total number o f taxa were determined with linear regressions using R 

(www.r-project.org. V2.15.0). The assumptions o f normality and homogeneity o f variance were 

verified for each linear model using the diagnostic tools QQ plot and Durbin-Watson tests. 

Epifaunal biomass was standardized to kg w et weight in 100 m2 and infaunal biomass was 

standardized to g  w et weight per m2 for regression analysis. The station Chuk1010 for Chukchi Sea 

epifauna and the Beaufort Sea stations EB21 and WB21 were extreme data points and therefore they 

were excluded from the linear regression analyses to meet the assumption o f normality. For the 

second hypothesis, “Sea ice is a better predictor of benthic commuity structure when organisms are
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classified by feeding guilds as opposed to communities classified by taxa”, benthic taxa were 

classified by feeding guilds, based on the available bibliographic information (Gaymer et al., 2001; 

Hobson et al., 1995; Iken et al., 2010; Macdonald et al., 2010). W hen no information about the 

feeding mode o f a specific taxon was available in the literature, the feeding mode o f the closest 

related group was used. To address the second and third hypothesis, multivariate analyses were 

performed. Drivers of benthic community biomass were determined by means o f Bray-Curtis 

dissimilarity matrix using the BioEnv routine in PRIMER v6 (Clarke and Gorley, 2006). Multivariate 

analyses were performed with epifaunal community data standardized to the relative contribution 

per trawl (in percent). Proportional data are commonly used in multivariate analysis when the size of 

the sample is not fixed, such as the area trawled (Clarke and Warwick, 2001). All biomass data were 

square-root transformed prior to analyses. All maps presented were generated using ArcMap from 

ESRI software. Total biomass was projected onto maps by scaled circles, with breaks determined by 

Jenks’ Natural Breaks.

3.3.2 Sea ice variables

For the Chukchi Sea, the variable “Average seasonal sea ice concentration” was excluded 

from analyses due to high colinearity with the variables “Date of sea ice retreat” and “Days covered 

by sea ice”. For the Beaufort Sea shelf, the variable “Days with no sea ice” was excluded from the 

analyses due to high colinearity with the variable “Days w ith MIZ”. All other variables for both 

regions had colinearity values below 90%. The variable “Days with M IZ” was log transformed to 

correct for skewedness in both the Chukchi and Beaufort Sea data sets. For all maps of sea ice 

variables, interpolations were calculated using the Inverse Distance Weighted (IDW) technique from 

the Spatial Analyst tools in ArcMap from ESRI software and the color gradients were defined by 

Jenks’ Natural Breaks.

3.3.3 Environmental data

To examine correlations between different sets of environmental drivers and benthic 

communities, the BioEnv procedure in PRIMER was used (Clarke and Gorley, 2006). The 

environmental variables examined in both regions corresponded to two main categories, permanent 

and seasonally variable. For the Chukchi Sea, the permanent variables available were: the position 

variables, depth (m), latitude and longitude, and habitat descriptors: sediment grain size fractions 0-5 

phi (0 phi is gravel, 1-4 phi correspond to various sand grain sizes and >5 phi is silt and clay). The
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seasonal variables used were: sediment chlorophyll a (mg/m2), sediment total organic carbon (TOC, 

%) and sediment total organic nitrogen (TON, %), carbon to nitrogen weight ratio (C/N), bottom 

water salinity (ppt), bottom water temperature (°C) and bottom water pH. No station was excluded 

from the analysis due to missing data; however, sediment TON and sediment grain size >5 phi were 

excluded from analyses due to high colinearity with sediment TOC and both sediment grain size 3 

phi and sediment TOC, respectively. All environmental variables were normalized prior to analysis.

The permanent variables for the Beaufort Sea consisted o f position variables: depth (m), 

latitude and longitude, and habitat descriptors: sediment grain size fractions gravel, sand and mud 

(silt and clay), and sediment water content (%). The seasonal variables used were: sediment 

chlorophyll a  (|ag/cm3) and sediment phaeopigment (|ag/cm3) concentration, sediment organic 

matter content (% dry weight), sediment total organic carbon (TOC, %) and sediment total organic 

nitrogen (TON, %) content, molar carbon-to-nitrogen ratio (C/N), bottom water chlorophyll a 

(|ag/l) and bottom water phaeopigment content (^g/l), bottom water salinity (%o), bottom water 

temperature (°C) and bottom water pH (-). A  total o f 46 stations had a complete set of 

environmental variables and were included in the analyses. Sediment percent gravel was square-root 

transformed, while bottom water chlorophyll a  and bottom water phaeopigments were natural log 

transformed to correct for skewedness. No variable had to be excluded due to high colinearity. All 

environmental variables were normalized prior to analysis.

3.4 Results

3.4.1 Sea ice

Sea ice variables extracted from the passive microwave sea ice concentration data confirmed 

that, on average, the stations sampled in the Chukchi Sea had an earlier date of sea ice retreat, a later 

date o f sea ice return, more days with no sea ice, less days covered by sea ice and less average sea ice 

concentration from May to October than the ones in the Beaufort Sea (Table 3.2, Figure 3.A). The 

“Date o f sea ice retreat” had a much larger range across all stations in the Chukchi Sea (57 days) in 

comparison to the Beaufort Sea stations (13 days) (Table 3.2, Figure 3.A). On average, sea ice 

retreated in a south to north trajectory in the Chukchi Sea (Figures 3.2A and 3.5A), while in the 

Beaufort Sea the sea ice retreat typically followed an east to west trajectory (Figures 3.3A and 3.5A). 

The “Date of sea ice return” also had a much larger range across stations in the Chukchi Sea (32 

days) in comparison to the Beaufort Sea (18 days) (Table 3.2, Figure 3.A). The edge of the sea ice
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advanced approximately perpendicular to the coast in the Chukchi Sea (Figures 3.2B and 3.5B), 

while in the Beaufort Sea the ice edge advanced parallel to the coastline (Figures 3.3B and 3.5B).

The range of summer days with no sea ice was similar between the Chukchi and the 

Beaufort Seas (Table 3.2, Figure 3.A). In the Chukchi Sea, most southern stations had the most 

number o f sea ice free days during the summer season, with the exception o f one southern 

nearshore station that had comparatively much less ice free days (Figure 3.2C). In the Beaufort Sea, 

the number o f ice-free days increased from nearshore to offshore (Figure 3.3C). There was a large 

difference in the range of days covered with sea ice across all stations o f the Chukchi and the 

Beaufort Seas (Table 3.2, Figure 3.A). In the Chukchi Sea, nearshore stations had the least number 

o f w inter days covered by sea ice (Figure 3.2D); while in the Beaufort Sea, stations on the western 

side of the shelf had the least number of days covered by sea ice (Figure 3.3D). Both regions had 

similar ranges for the number o f days with MIZ and highest mean values nearshore (Table 3.2, 

Figures 3.2E & 3.3E). The average seasonal sea ice concentration (from May to October) across all 

stations had a similar high-end value in the Chukchi and the Beaufort Seas, while the low-end value 

was much lower in the Chukchi Sea in comparison to the Beaufort Sea (Table 3.2, Figure 3.A). In 

the Chukchi Sea, northern stations had an average higher sea ice concentration from May to 

October (Figure 3.2F); while in the Beaufort Sea, the higher average sea ice concentrations were 

observed in the eastern near shore and western shelf area (Figure 3.3F).

To explore the inter-annual variability o f sea ice in each region, an animation o f the sea ice 

concentration for each day of the years encompassed in the analysis was projected over the entire 

study area (“Sea ice animation” provided as supplemental material online, Figure 3.B). In the 

Chukchi Sea, the greatest inter-annual variability was in the location of the onset of sea ice formation 

and retreat. In 2005, 2008 and 2010 sea ice retreat occurred off the northern coast at the same time, 

or even before, sea ice was retreating through Bering Strait. In contrast, in 2006 and 2009 sea ice 

retreat advanced from Bering Strait northward throughout the shelf and in 2007 sea ice retreat 

started from Bering Strait opening a narrow corridor that reached all the way to Barrow Canyon 

before breakup occurred on the rest o f the shelf (Figure 3.5A). Similarly, sea ice formation in the 

Chukchi Sea varied between some years, advancing from northeast to southwest, while in other 

years, forming off the north coast and advancing towards the northwest before the pack ice 

advanced from the north and reached the shelf (Figure 3.5B). In the Alaskan Beaufort Sea, a 

progressively earlier onset o f ice retreat from 2005 to 2010 and a prevalent direction of retreat from
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east to w est were observed (Figure 3.5A). In terms of sea ice return for the Beaufort Sea study area, 

the variability among years was restricted to the latitude at which sea ice advancing from shore 

northwards met with pack ice advancing south (Figure 3.5B). Also from these observations, Figures 

3.3A, 3.3B and Figure 3.A, it is clear that sea ice retreat and return over the Beaufort shelf occurred 

very rapidly, resulting in very little variation in “Date of sea ice return” and “Date of sea ice retreat” 

between years.

3.4.2 Sea ice-benthos linkages

Sea ice variables had some predictive value for biomass and number of taxa per station 

(Figure 3.4). The variable “Days w ith M IZ” was a significant predictor o f epifaunal and infaunal 

biomass and number of taxa, with opposite relationships with the response variables in the Chukchi 

(Figures 3.4A-C) and Beaufort Seas (Figures 3.4D-E). Regression analysis showed a weak linear 

relationship between “Days with M IZ” and total benthic biomass, with <18% explained variability 

in both regions (Table 3.3). “Days w ith M IZ” was also a significant predictor o f number o f taxa for 

Chukchi Sea infauna and Beaufort Sea epifauna, explaining 12% and 27% of the variability, 

respectively (Table 3.3, Figures 3.4D & 3.4H). The variable “Date o f sea ice return” was negatively 

correlated with infaunal total biomass and number o f taxa in the Chukchi Sea (Figures 3.4F & 3.4G). 

This variable explained 11% of the variability in number o f infaunal taxa and less than 1% of the 

variability o f total biomass in the Chukchi Sea (Table 3.3). In contrast, the “Date of sea ice return” 

was positively correlated with epifaunal total biomass and number of taxa in the Beaufort Sea, with a 

highly significant relationship (Figures 3.4H & 3.4I). This variable explained 31% of the total 

epifaunal biomass and had a moderate correlation to the number o f epifaunal taxa, explaining 60% 

of the variability in the Beaufort Sea (Table 3.3). The variable “Average seasonal sea ice 

concentration” was marginally a significant predictor o f the number o f epifaunal taxa in the Beaufort 

Sea, explaining less than 1% of the variability in number o f taxa (Table 3.3, Figure 3.4J). The 

variables “Days with no sea ice” and “Days covered by sea ice” were not significant predictors of 

benthic total biomass or number of taxa in either region.

The epifaunal community in the Chukchi Sea had 11 feeding guilds, and the infauna had 16 

guilds; while the Beaufort Sea epifauna had 15 guilds (Figure 3.B). The hypothesis, “sea ice is a 

better predictor of benthic commuity structure, when organisms are classified by feeding guilds as 

opposed to communities classified by taxa”, was essentially not supported. Only for the Chukchi Sea 

epifauna was the correlation value marginally higher than for taxonomic classification, and the
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variable “Days covered by sea ice” was the only variable selected as a driver of commuity structure 

(the correlation value was 0.4 at 0.1% significance). W hen performing the same analysis with the 

community classified by taxa, three variables were selected as drivers o f commuity structure at a 

correlation value of 0.38 (0.1% significance) (Table 3.4). O f the three variables selected, “Days 

covered by sea ice” and “Date of sea ice return” added the most to the correlation value, while the 

addition of “Days with M IZ” was a negligible increase of 0.005 in the correlation value. For the 

Chukchi Sea infauna, the variables “Days w ith M IZ”, “Days covered by sea ice” and “Date of sea 

ice return” were selected (in order of importance) as drivers of community feeding guilds w ith a 

correlation value of 0.37 (0.1% significance). This correlation value is essentially the same value that 

resulted from the community classified by taxa, where the variables “Days covered by sea ice” and 

“Date o f sea ice return” were selected as community drivers (Table 3.4). For the Beaufort Sea, the 

variables “Date of sea ice return” and “Date of sea ice retreat” were selected (in order of 

importance) as drivers o f the community feeding guilds, with a correlation value o f 0.23 (0.3% 

significance). Although this correlation value was significantly smaller than for the community taxa 

(0.53, 0.1% significance), the same sea ice variables were selected as drivers for both types of 

community classification (Table 3.4).

The final hypothesis “the addition of sea ice variables to the commonly used variables will 

result in more explanatory power of benthic commuity structure”, was fully supported by the results 

o f the BioEnv analyses for communities of both regions. The highest correlations of environmental 

drivers w ith benthic communities were obtained by including permanent, seasonally variable and sea 

ice variables into the analysis (Table 3.5). In comparison to seasonal variables, sea ice variables 

correlated better to epibenthic communities in Beaufort and Chukchi Seas; however, this was not 

the case for infaunal communities in the Chukchi Sea (Tables 3.3 and 4). In the analyses with all the 

environmental variables available, one sea ice variable was selected as a driver o f benthic commuity 

structure along w ith the traditionally used variables in both regions (Table 3.5). For epifaunal 

communities in both regions, the weakest correlation values were obtained when using seasonal 

variables alone; these were 0.3 for Chukchi Sea and 0.35 for Beaufort Sea (both at a 0.1% 

significance).
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3.5 Discussion

3.5.1 Univariate linear correlations

As one of the most prominent features o f the Arctic Sea shelves, sea ice drives many 

oceanographic and biological processes, such as water column stratification, formation of dense 

winter water, and ice edge algal blooms. From our analysis, several o f the sea ice variables examined 

were significantly correlated with benthic biomass and number of taxa per station. “Days with 

MIZ”, “Date of sea ice return” and “Average seasonal sea ice concentration” were individually weak 

to moderate predictors o f total benthic biomass or number of taxa in both regions. Thus far, past 

studies in the Chukchi and Beaufort shelves have not directly included these sea ice variables in the 

search for drivers o f benthic community standing stock. Furthermore, these earlier studies reported 

few or no single environmental variable as a significant predictor of total biomass or number of taxa 

(Blanchard et al., 2013; Bluhm et al., 2009; Ravelo, unpublished data; Roy et al., 2014). This suggests 

that although sea ice variables showed weak linear relationships in this current study, these variables 

should still be considered when attempting to understand the environmental features driving benthic 

communities.

Out of the five sea ice variables analyzed for each region, “Days w ith M IZ” was the only 

significant predictor, using linear regressions, o f benthic biomass and number o f taxa per station 

(except epifauna in the Chukchi Sea) in both regions. The MIZ has the potential for increased 

phytoplankton production due to the stratification o f nutrient rich waters associated with the onset 

o f sea ice melt (Cooper et al., 2002; Sakshaug, 2004). Long persistence of the ice edge over an area 

may extend the time the underlying benthos receives MIZ production. However, in the Chukchi Sea 

the relationship between the “Days with M IZ”, total station biomass and number o f taxa was 

positive, while the relationship in the Beaufort Sea was negative. This difference between regions 

indicates that this variable is encompassing different processes that may promote or hamper benthic 

biomass and number of taxa in each region. Overall, the majority of stations had similarly low 

number of “Days w ith M IZ” with higher values concentrated nearshore. This pattern reflects the ice 

that remains longer along the Arctic shores in the form of landfast (or formerly landfast) ice 

(Mahoney et al., 2014). In the Beaufort Sea, in the vicinity of the 20 m isobath, pressure ridges in the 

ice reveal the forces driving the pack ice against the landfast ice by the counterclockwise motion of 

the Beaufort Gyre (Mahoney et al., 2007). These pressure ridges can become grounded and plow 

through the sediments, acting as a barrier for water flow from the nearshore to the rest of the shelf
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(Carmack et al., 2015; Reimnitz and Kempema, 1984). Therefore, benthic communities in the 

nearshore environment are subject to large seasonal changes in salinity (from riverine input), along 

with physical disturbance from increased sedimentation and ice grounding, which negatively affect 

the total biomass and limits the number of taxa that are able to live in such environments (Barnes, 

1999; Carmack et al., 2015; Conlan and Kvitek, 2005; Kasper and Weingartner, 2015; Ravelo et al.,

2015). The nearshore epibenthic community is less diverse, and has lower standing stock than the 

rest o f the shelf (Ravelo et al., 2015). The results of this analysis reflect well the direct impact of sea 

ice on the nearshore Alaskan Beaufort Sea.

Landfast ice in the Chukchi Sea is less extensive offshore than in the Beaufort Sea, leaving 

the nearshore stations sampled in the Chukchi Sea outside o f the typical spatial extent of landfast ice 

(Mahoney, 2012; Mahoney et al., 2014). Therefore, any potential grounded ice would not directly 

affect the nearshore stations o f the Chukchi Sea study region in the same way as the nearshore 

stations of the Beaufort Sea. While no direct causation confirms the enhanced biomass in areas of 

persistent sea ice or former fast ice, the influence of the Alaska Coastal Current (ACC) in the 

nearshore area o f the Chukchi Sea may help explain this positive correlation. The ACC is 

characterized as swift, fresh and nutrient-depleted in comparison to other offshore water masses 

transiting the Chukchi Sea (Coachman et al., 1975; W eingartner et al., 2005). Prevailing northeasterly 

winds have the potentioal to reverse the northward circulation along the Alaska coast (Weingartner 

et al., 2013; W insor and Chapman, 2004). Therefore, prevalence o f sea ice on the coast of the 

Chukchi Sea may explain by the persistence of landfast ice after breakup occurs on the shelf. In 

addition, the subsequent entrainment of the former landfast ice in the coastal current may also 

increase the number o f days with ice in the nearshore region. The prevailing winds may keep this ice 

from exiting the shelf, moving it up and down the coast and lingering longer over the nearshore 

stations. Previous research characterized benthic communities in the nearshore Chukchi Sea as 

strongly driven by the influence of the ACC, with mixed results as to whether or not this water mass 

enhances benthic biomass or abundance (Blanchard and Feder, 2014; Feder et al., 2007; Grebmeier 

et al., 1988; Ravelo et al., 2014). A long the nearshore areas o f the NE Chukchi Sea, areas o f high 

biomass o f benthic prey for sea ducks were explained by local environmental forces, such as 

nearshore counter currents that create depositional zones, hydrographic fronts and upwelling 

(Lovvorn et al., 2015). The nearshore stations in this analysis had communities (infauna and 

epifauna) dominated by the sand dollar Echinarachniusparma , that in comparison w ith communities
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offshore (dominated by other organisms), yield much larger biomass (measured in wet weight) 

(Feder et al., 1994; Ravelo et al., 2014). The details o f the link between the ACC (or other 

environmental drivers) and the nearshore community dominated by E. parm a  will be discussed with 

the results o f the multivariate community analysis.

Excluding the nearshore stations, the variable “Days w ith M IZ” in the Chukchi shelf range 

was 1-14 days, which is most likely a very short period o f time to have a significant influence on 

benthic biomass. Stations with slightly above average “Days w ith M IZ” wrapped around the south 

o f the Hanna Shoal area, which is an important passageway for Bering Sea water coming through the 

Central Chanel (Weingartner et al., 2005). Summer sea ice encountered in this area may be transient 

flows remnant from break up, and in the same way benthic biomass in this area may be benefiting 

from lateral advection of allochthonous organic matter from the south (Grebmeier et al., 2015; 

Soreide et al., 2013). Moreover, recent research has highlighted the potential importance of 

phytoplankton under the ice, at distances exceeding 100 km from the ice edge, potentially reducing 

the importance of a MIZ directly above benthic hotspots (Arrigo et al., 2014; Lowry et al., 2014).

O f the four stations sampled directly on Hanna Shoal in the Chukchi Sea (45, 46, 108 and 

109; Figure 3.1), only station 109 had above average “Days with M IZ”. Past research has 

characterized the Hanna Shoal area as an important summer feeding ground for Pacific Walrus, who 

rely on lingering sea ice as resting platforms in the summer months (Grebmeier et al., 2006b, 2015; 

Jay  et al., 2012; W ood et al., 2015). Over the past decade the reduction o f sea ice over Hanna Shoal 

has forced changes in foraging behavior of Pacific Walrus, forcing large numbers to commute from 

the Hanna Shoal’s feeding grounds to the northern Chukchi Sea coast to rest (Jay et al., 2012). It is 

likely that the reduced number of days with MIZ over Hanna Shoal in our data set is due to the 

inability o f passive microwave sensors to discriminate open water from sea ice at concentrations 

below 15% (Comiso and Nishio, 2008). This limitation in the detectability of low sea ice 

concentrations w ith passive microwave sensors along w ith the course resolution (25 km2 grid size), 

should be noted as an important limiting factor when relating changes in sea ice with ecosystem 

characteristics and processes at a local scale (1-10 km2). Despite the variable “Days with M IZ” not 

accounting for the possible persistence of smaller ice flows over Hanna Shoal, the stations over 

Hanna Shoal in the five-year period of this analysis had a slower sea ice retreat than neighboring 

stations, which is consistent with the pattern described for this area (Frey et al., 2015; Martin and 

Drucker, 1997; W ood et al., 2015).
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The variable “Date of sea ice return” was only marginally a significant predictor of total 

infaunal biomass and number of taxa in the Chukchi Sea; therefore the significance of those results 

may be disregarded. In contrast, the “Date of sea ice return” was a moderate predictor of epifaunal 

biomass and number o f taxa in the Beaufort Sea. The epifauna in the Beaufort Sea have a strong 

depth gradient, showing an increase in biomass and number o f taxa from shore towards the shelf 

break (Ravelo et al., 2015). The larger biomass near the shelf break in the Beaufort Sea and later date 

o f sea ice return may be driven by the same environmental forces that are also associated with 

bathymetry. Therefore, there is also little evidence o f a causal relationship between increased 

biomass and later sea ice return in the Alaskan Beaufort Sea (See discussion below on community 

analysis).

3.5.2 Multivariate community correlations

In the Chukchi Sea, the variables “Days covered by sea ice” and “Date o f sea ice return” 

were significant drivers of benthic community composition for both epifauna and infauna. Even 

though the pattern of high and low station biomass and number o f taxa differ between the epifauna 

and infauna for the Chukchi Sea shelf, this result shows the importance o f winter sea ice cover and 

sea ice return as integrators o f relevant environmental changes for benthic commuity structure as a 

whole. The area over the shelf with the least number o f “Days covered by sea ice”, between Pt. 

Hope and Pt. Barrow, corresponds to an area o f recurring w inter polynyas (Figure 3.2D) (Cavalieri 

and Martin, 1994; Stringer and Groves, 1991). In some areas in the Arctic, polynyas have been 

considered local hotspots for benthic biomass, by promoting high phytoplankton production that is 

tightly coupled with benthic biomass (Graeve et al., 1997; Piepenburg, 2005; Roy et al., 2014). In 

addition, wind driven polynyas are an important source o f dense water formation o f the Chukchi 

Sea, creating vertical mixing that can reach the benthos in shallow waters (Smith et al., 1990; W insor 

and Chapman, 2002). Smaller sediment particles (silts and clay) may become entrained in shallow 

areas under polynyas, leaving behind coarser sediments (i.e., sand) (Eicken et al., 2005). The benthic 

communities found within this region are highly dominated by the sand dollar Echinarachnius parm a  

(Ambrose et al., 2001; Feder et al., 1994; Ravelo et al., 2014). E chinarachniusparma  is a suspension 

feeder that shows preference for intermediate sandy sediments and avoids finer silt and clay 

sediments (Harold and Telford, 1982; Telford et al., 1983). Past studies have linked the presence of 

E. parm a  with the ACC and specifically with the areas with sandy sediments along the Alaskan 

Chukchi coast (Feder et al., 1994; Grebmeier et al., 1989; Ravelo et al., 2014). The combination of
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coarser sediment grain size due to the action of the swift ACC and coastal polynyas, along with the 

potential enhanced primary production in the early spring and re-suspension of particles in the 

winter months, may provide the optimal environment for E. parm a  to thrive.

The onset o f freeze-up on Arctic shelves determines, along with the end o f any late season 

or fall water column productivity, important oceanographic changes, such as dense water formation 

(through brine rejection in the formation o f sea ice) and destabilization of the water column. In the 

present analysis, the variable “Date of sea ice return” was a driver for epifaunal and infaunal 

community biomass by both feeding guilds and taxonomic composition in both regions (Table 3.4). 

As an inflow shelf, water masses entering the Chukchi Sea have a significant effect on the shelf 

ecosystem by transporting warm er water, nutrients and pelagic organisms into the region (Carmack 

and Wassmann, 2006; W oodgate et al., 2005). In areas w ith warm er water, such as the Central 

Channel and ACC water masses in the Chukchi Sea, fall freeze-up may take longer because more 

time is required for the ocean to lose heat (Mahoney, 2012; Stroeve et al., 2012; Woodgate et al., 

2010). A  distinct epibenthic assemblage in the Chukchi Sea, dominated by crustaceans and with 

higher diversity indices, has been linked to the influence o f this Central Channel water (Ravelo et al., 

2014). Through the present analysis we can infer that, along w ith the potential enhanced nutrient 

load, the relatively higher temperature of the Central Channel water mass that is influencing benthic 

commuity structure in the Chukchi Sea is reflected in the later date of sea ice return.

In contrast, benthic assemblages in the Alaskan Beaufort Sea follow depth and longitudinal 

gradients (Carey and Ruff, 1977; Frost and Lowry, 1983; Ravelo et al., 2015). Partial sea ice cover 

over the shelfbreak along with favorable easterly winds may promote upwelling events in this region 

(Schulze and Pickart, 2012). An increase in upwelling intensity and frequency in the past decades has 

been driven mainly by changes in large-scale atmospheric circulation patterns (Pickart et al., 2013). 

Upwelling of nutrient rich water in the spring, in addition to fall upwelling aided by the delayed 

pack-ice advance over the shelf, may explain the relatively higher benthic biomass and number of 

taxa on the shelf break (Ravelo et al., 2015). The sea ice regime in the Beaufort Sea is tightly linked 

with the clockwise rotating motion of the Beaufort Gyre driven by the prevailing easterly winds 

(Reimnitz et al., 1994). The slightly later sea ice return on the outer shelf of the Alaskan Beaufort Sea 

shelf is more likely a consequence o f the later formation of pack ice off-shelf in recent years, and not 

related to upwelling o f warm  w ater (Markus et al., 2009; Schulze and Pickart, 2012). Therefore, even

117



though sea ice formation and benthic assemblages in the Beaufort Sea correlate well, different 

processes are producing the similarity in these patterns.

In the Beaufort Sea, the ice edge retreated consistently and rapidly from east to west over the 

study area from 2007-2011 (Figure 3.5A). The intrusion of warm  and fresh water from the 

Mackenzie River contributes significantly to the melting of sea ice over the in the Beaufort Sea shelf, 

and can delay the onset of freezing in the fall (Carmack et al., 2015). The process o f freshwater 

induced break up can be enhanced by the prior fragmentation of ice flows by strong wind driven 

forces on the Beaufort Gyre in the early summer (Greskowiak, 2014). Recent research has linked an 

increase in strong easterly wind events over past decades with increased intrusion of Mackenzie shelf 

waters further into the Alaskan Beaufort Sea shelf and promoting an earlier sea ice retreat 

(Macdonald et al., 1999; Pickart et al., 2013). Alaskan Beaufort Sea epibenthic communities vary 

following a longitudinal gradient, showing two significantly different communities in the east and 

western most areas o f the shelf (Ravelo et al., 2015). The dominance o f the brittle star species 

Ophiocten sericeum  in the eastern Alaskan Beaufort shelf is one example of the influence o f the 

Mackenzie River in the east. Ophiocten sericeum  is found in small numbers in other areas o f the Pacific 

Arctic, but often dominates in areas highly influenced by riverine input, such as in the Laptev and 

Kara Seas (Fetzer and Deubel, 2006; Piepenburg and Schmid, 1997). The declining influence of 

Pacific originated waters over the Alaska Beaufort Sea shelf is also evidenced by the absence o f the 

dominant Chukchi Sea brittle star, Ophiura sarsii east o f 148°W (Ravelo et al., 2015). In this case, the 

sea ice melt over the Alaskan Beaufort shelf and the pattern in species distribution can both be tied 

to larger processes influencing the water mass distribution, as well as the direction and intensity of 

Mackenzie River inflow in the region.

A  community strongly represented by suspension feeders, which depend on vertical export 

for food, could indicate an area of strong benthic—pelagic coupling, as opposed to a community 

dominated by scavengers or predators. In the Beaufort Sea region epibenthic suspension feeders 

accounted for nearly 40% of the total biomass, while in the Chukchi Sea this feeding guild 

represented only 10% of the total biomass. In the Beaufort Sea, the same environmental variables 

that were strong drivers of community taxa were weak drivers o f the community feeding guilds. 

Therefore, the sea ice variables defined in this analysis show little relation with the export of food to 

the benthos. In the Chukchi Sea, the sea ice variables had equal or slightly better correlation with 

epibenthic feeding guilds than community taxa for both benthic groups (infauna and epifauna). The
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classification o f community organisms by feeding guilds is accompanied by a reduction in the 

number o f “community components” . In our analysis, benthic organisms had a much finer 

taxonomic resolution in the Beaufort Sea (genus and species) than those in the Chukchi Sea (family 

and genus) (Figure 3.B). The large reduction in “community components” when reclassifying the 

community by feeding guilds in the Beaufort Sea may be the cause for the reduction in the 

correlation value of sea ice drivers w ith community feeding guilds. In the Chukchi Sea, sea ice 

variables were already modest predictors o f commuity structure, therefore reducing the number of 

“community components” may have not affected the correlation in the same way as in the Beaufort 

Sea. The different level o f classification in each region, while not the main culprit, may have aided to 

the different outcomes these analyses produced in the Chukchi and Beaufort Seas.

The present analysis builds on two previous studies seeking to understand the driving forces, 

seasonally variable and permanent, influencing benthic commuity structure in the Alaskan Chukchi 

and Beaufort Seas. From those studies we learned that epibenthic commuity structure was strongly 

driven by gradients in longitude and depth (Ravelo et al., 2014; 2015). Infaunal organisms were 

strongly driven by sediment grain size, in addition to depth and position (Grebmeier et al., 1989). 

Variables such as depth, latitude and longitude are often used as proxies for environmental variables 

that have a direct influence on benthic organisms (McArthur et al., 2010). In many cases, these 

proxies have higher correlation values than biologically relevant variables, such as bottom water 

temperature, and indicators o f food supply and quality (Post et al., 2006). However, if  these 

surrogates do not have a clear relation with the local environmental patterns (i.e., changes in water 

mass, upwelling zones and polynyas) with clear biological meaning, the pursuit for understanding 

patterns of benthic communities and potential effects o f climate change remains unresolved (Bluhm 

et al., 2009; Roy et al., 2014). For the two previous studies using these epibenthic data, the indirect 

determinants of commuity structure could be linked to the spatial distribution of important water 

masses and seasonal oceanographic features in each region (Ravelo et al., 2014; 2015). For the 

present study we ran the analysis of environmental drivers separately for seasonally variable and 

relatively permanent variables for each region. We confirmed that in situ measurements o f water 

masses and local food availability alone were very weakly correlated with benthic community data 

(Table 3.5). The cause of these weak correlation values may be related to the nature of the NE 

Chukchi and Alaska Beaufort Seas, where bottom water characteristics are constantly subject to 

short-term changes in the direction and location of water masses, as well as upwelling events,
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especially in the open water season. In other regions with more homogeneous water mass influence, 

such as the northern Bering Sea and southern Chukchi Sea, “point in tim e” measurements may 

reflect better the seasonal conditions these organisms experience. However, the wide range of 

bottom water characteristics organisms experience throughout the year in Arctic shelf systems must 

be significant and remains difficult to encompass with a single value.

The advantage o f using sea ice as a proxy for biologically relevant environmental drivers is 

that seasonal changes in sea ice can be directly linked with water mass dynamics (dense water 

formation, vertical mixing, particle resuspension, stratification, light attenuation and seafloor 

scouring, etc.) that are relevant to benthic organisms (Barnes et al., 1984; Eicken et al., 2005; Frey et 

al., 2011; W insor and Chapman, 2002; W oodgate et al., 2005). Furthermore, sea ice, unlike depth 

and position, responds to environmental changes over time. M any o f the effects o f climate change in 

the Arctic are reflected in the changes in sea ice characteristics and its seasonality. Even though the 

the loss of summer sea ice extent or overall sea ice thickness (other than in the nearshore areas) may 

not directly affect benthic organisms, changes in water temperature, direction and intensity o f wind- 

driven currents, increases in upwelling and riverine influence, changes in nutrient regimes, etc., do 

directly affect benthos, and sea ice may provide a quantitative w ay o f assessing those effects.

3.6 Summary

From the five years o f sea ice data included in this analysis, important inter-annual variability 

in the location of the formation and retreat of sea ice was observed in the Chukchi Sea; while the 

Beaufort Sea shelf showed a temporal trend of progressively earlier sea ice retreat from east to west. 

The large spatial and temporal variability o f sea ice formation and retreat in the Chukchi Seas shown 

in our analysis concurs w ith the established knowledge o f the complex interactions between the 

prevailing winds, water circulation and input o f warm water that affect sea ice dynamics in these 

regions (Frey et al., 2015; Reimnitz and Kempema, 1984; Smith et al., 1990; Stringer and Groves, 

1991). Furthermore, many other regionally important factors that have not been included in this 

analysis may be playing much larger roles than the ones listed above. For example, in the Chukchi 

Sea system, open water production provides over 95% of the annual organic carbon; in addition 

phytodetritus advected northward adds to the latitudinal supply of carbon to the benthos, 

decoupling to some extent the impact o f less water column production in the North Chukchi Sea 

(Arrigo and van Dijken, 2015; Grebmeier et al., 2015). As a consequence, sea ice variables in the 

Chukchi Sea had less predictive power than the Beaufort Sea shelf. The benthic organisms included
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in this study are long lived and many are relatively immobile (Bluhm et al., 1998; Carroll et al., 2009; 

Gage, 2003). Therefore, the organisms collected at each station were not a “snapshot” of the 

communities found at that time and under those environmental conditions, but rather a time- 

integrated representation o f the favorable conditions that allowed for those organisms to persist in 

that location. Passive microwave derived sea ice variables provide a means o f including quantitative 

values that represent integrated large-scale seasonal environmental conditions. This study illustrates 

how the inclusion o f sea ice variables can enhance our understanding o f the complex interplay of 

environmental forces that create the myriad o f habitats that allow the patchy distribution, the 

hotspots for biomass and diversity o f Alaska Arctic benthic communities.
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Table 3.1. Defining attributes of the six sea ice variables created for this analysis.

Variable D efin ition

D ate  o f  sea ice return T he date sea ice co ncen tra tion  increased to  >15%

D ate  o f  sea ice retreat T he date sea ice co ncen tra tion  decreased to  <15%

Days w ith  no  sea ice N u m b er o f  days w ith 0%  sea ice co ncen tra tion  (from  the D a te  o f  sea ice 
re treat and un til the D ate  o f  sea ice return)

Days covered by sea ice N u m b er o f  days w ith sea ice co ncen tra tion  >85%

Days w ith  M IZ  (m arginal ice zone) N u m b er o f  days w ith sea ice + / -  15%  (from  the D ate  o f  sea ice retreat 
and until sea ice co ncen tra tion  becam e consistently  zero)

Average seasonal sea ice co ncen tra tion  T he sea ice concen tra tion  from  M ay to  O c to b er
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Table 3.2. Range, mean and standard deviation for each sea ice variable in the Chukchi and Beaufort Sea shelf 
regions. Standard deviation (sd)

Variable
Chukchi Sea 

R ange M ean (sd) Range

B eaufort Sea

M ean (sd)

D ate  o f  sea ice retreat June 11 - A ug 7 July 9 (14 days) July 6 -July 19 July 15 (4 days)

D ate  o f  sea ice re turn N o v  4 - D ec 6 N o v  10 (45 days) O c t 14 - N o v  1 O c t 25 (5 days)

Days w ith  no  sea ice 74 - 166 119 (21) 27 - 113 88 (28)

Days covered by sea ice 117 - 208 174 (22) 176 - 203 197 (6)

Days w ith  M IZ 0 - 56 8 (9) 0 - 53 13 (17)

Average seasonal sea ice 
concen tra tion 14%  - 40% 27%  (7) 38%  - 44% 41%  (1)
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Table 3.3. Adjusted R2 values for significant linear regressions between sea ice variables and Chukchi Sea 
epifauna and infauna, and Beaufort Sea epifauna.

Region R esponse
variable D esc rip to r variable T otal

Biom ass
N u m b er o f  

Taxa

E pifauna Days w ith  M IZ 0.17** x

C hukchi Sea Days w ith  M IZ 0.11* 0.12*
Infauna

D ate  o f  sea ice re turn -0.06- -0.11*

Days w ith  M IZ -0.13** -0.27***

B eaufort Sea E pifauna D ate  o f  sea ice re turn 0.31*** 0.6***

A verage seasonal sea ice 
co ncen tra tion x 0.04-

•0.1 *0.05 **0.01 ***0.001
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Table 3.4. Multivariate correlations between sea ice variables and benthic communities classified by taxa and 
feeding guilds

Region E xplanatory
Variables Class. Corr.

value Sig. (%)
N u m b er o f  

variables 
selected

Selected Variables

Taxa 0.38 0.1 3 Days covered by sea ice, D ate  o f  sea 
ice re turn , Days w ith M IZ

C hukchi

E pifauna
Feeding
guilds 0.4 0.1 2 Days covered by sea ice

Sea

Infauna
Taxa 0.38 0.1 2 Days covered by sea ice, D ate  o f  sea 

ice re turn
Feeding 0.37 0.1 3 Days w ith M IZ , Days covered by
guilds sea ice, D ate o f  sea ice re turn

T axa 0.53 0.1 2 D ate o f  sea ice re turn , D ate  o f  sea
B eaufort
Sea E pifauna

Feeding 0.22 guilds 0.22 0.3

ice re treat
D ate o f  sea ice re turn , D ate  o f  sea 
ice re treat2
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Table 3.5. BioEnv analyses for the Chukchi Sea and Beaufort Sea regions with different combination on 
variables included

Region R esponse
Variables

E xplanatory
Variables
Included

Corr.
value Sig. (%)

N u m b er o f  
variables 
selected

Selected Variables

Seasonal 0.3 0.1 2 T O C , B w  salinity

E pifauna P erm anen t 0.37 0.1 2 Longitude, D ep th

C hukchi
All 0.53 0.1 4

Longitude, Sedim ent grain size 2 
phi, Days covered by sea ice, 
T O C

Sea
Seasonal 0.41 0.1 3 T O C , B w  salinity, C /N

Infauna P erm anen t 0.43 0.1 3 D ep th , L ongitude, L atitude

All 0.56 0.1 5
D ep th , B w  tem perature, 
Sedim ent grain size 2 phi, T O C , 
D ate  o f  sea ice re turn

Seasonal 0.35 0.1 5
Sed phaeop igm ents, B w 
tem perature, Sed ch la /p h aeo , B 
w  salinity, Sed organic m atter

B eaufort
Sea E pifauna

P erm anen t 0.51 0.1 2 D ep th , Longitude

All 0.59 0.1 3 D ate o f  sea ice re turn , L ongitude, 
D ep th
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Figure 3.1. Benthic sample stations. In the Chukchi Sea study region, stations were sampled for epifauna and 
infauna in 2009 and 2010 and epifauna stations in the Beaufort Sea study region were sampled in 2011.
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Figure 3.2. Sea ice variables, benthic biomass and number of taxa in the Chukchi Sea. Interpolation of mean 
values of each sea ice variable for the Chukchi Sea (2004-2009 and 2005-2010 depending on the year of 
biological sample collection), total station epifauna biomass (kg wet weight/100m2) and infaunal biomass (g 
wet weight/m2) for stations sampled in 2009 and 2010. A. Date of sea ice retreat. B. Date of sea ice return. C. 
Days with no sea ice. D. Days covered by sea ice. E. Days with MIZ (marginal sea ice zone, defined in 
methods). F. Average seasonal sea ice concentration. Sea ice interpolations determined by Inverse Distance 
Weighting with ArcMap. Values (biomass circle sizes and sea ice color gradient) represented by Jenks’ Natural 
Breaks.
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Figure 3.3. Sea ice variables, benthic biomass and number of taxa in the Beaufort Sea. Interpolation of mean 
values of each sea ice variable for the Beaufort Sea shelf (2006-2011) and total epibenthic station biomass (kg 
wet weight/100m2) sampled in 2011. A. Date of sea ice retreat. B. Date of sea ice return. C. Days with no sea 
ice. D. Days covered by sea ice. E. Days with MIZ (marginal sea ice zone). F. Average seasonal sea ice 
concentration. Average seasonal sea ice concentration. Sea ice interpolations determined by Inverse Distance 
Weighting with ArcMap. Values (biomass circle sizes and sea ice color gradient) represented by Jenks’ Natural 
Breaks.
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A) B)

Figure 3.4. Statistically significant linear regressions between sea ice variables and benthos (stations biomass 
or number of taxa) in the Chukchi and Beaufort Seas. A. Chukchi Sea total epifaunal biomass (square-root 
transformed) regressed against Days with MIZ (marginal ice zone, ln transformed). B & C. Chukchi Sea total 
infaunal biomass (square-root transformed) regressed against Days with MIZ (marginal ice zone, ln 
transformed) and Date of sea ice return. D & E. Chukchi Sea total infaunal total taxa regressed against Days 
with MIZ (marginal ice zone, ln transformed) and Date of sea ice return. F & G. Beaufort Sea region 
epifaunal biomass (square-root transformed) regressed against the sea ice variables Date of sea ice return and 
Number of days with MIZ (marginal ice zone, ln transformed). H-J. Beaufort Sea region number of epifaunal 
taxa regressed against the sea ice variables Date of sea ice return, number of days with MIZ (marginal sea ice 
zone, ln transformed) and Average seasonal sea ice concentration (ln transformed).
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G) H)

Figure 3.4. (cont.). Statistically significant linear regressions between sea ice variables and benthos (stations 
biomass or number of taxa) in the Chukchi and Beaufort Seas. A. Chukchi Sea total epifaunal biomass 
(square-root transformed) regressed against Days with MIZ (marginal ice zone, ln transformed). B & C. 
Chukchi Sea total infaunal biomass (square-root transformed) regressed against Days with MIZ (marginal ice 
zone, ln transformed) and Date of sea ice return. D & E. Chukchi Sea total infaunal total taxa regressed 
against Days with MIZ (marginal ice zone, ln transformed) and Date of sea ice return. F & G. Beaufort Sea 
region epifaunal biomass (square-root transformed) regressed against the sea ice variables Date of sea ice 
return and Number of days with MIZ (marginal ice zone, ln transformed). H-J. Beaufort Sea region number 
of epifaunal taxa regressed against the sea ice variables Date of sea ice return, number of days with MIZ 
(marginal sea ice zone, ln transformed) and Average seasonal sea ice concentration (ln transformed).
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Figure 3.4. (cont.). Statistically significant linear regressions between sea ice variables and benthos (stations 
biomass or number of taxa) in the Chukchi and Beaufort Seas. A. Chukchi Sea total epifaunal biomass 
(square-root transformed) regressed against Days with MIZ (marginal ice zone, ln transformed). B & C. 
Chukchi Sea total infaunal biomass (square-root transformed) regressed against Days with MIZ (marginal ice 
zone, ln transformed) and Date of sea ice return. D & E. Chukchi Sea total infaunal total taxa regressed 
against Days with MIZ (marginal ice zone, ln transformed) and Date of sea ice return. F & G. Beaufort Sea 
region epifaunal biomass (square-root transformed) regressed against the sea ice variables Date of sea ice 
return and Number of days with MIZ (marginal ice zone, ln transformed). H-J. Beaufort Sea region number 
of epifaunal taxa regressed against the sea ice variables Date of sea ice return, number of days with MIZ 
(marginal sea ice zone, ln transformed) and Average seasonal sea ice concentration (ln transformed).

I)
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Figure 3.5. Approximate location of sea ice edge (shaded areas) and general direction of retreat (A) and 
formation (B) (dashed lines) for the years 2005 to 2010. The prevalent water mass trajectories and general 
direction are depicted by colored lines and arrows. A. The timeframe for observed edges for the Chukchi Sea 
was 1-10 of June and for the Beaufort Sea was 5-25 of July; the white in the background represents sea ice. B. 
The timeframe for observed edges for the Chukchi Sea was 3-20 of November and for the Beaufort Sea was 
6-18 of October; the blue in the background represents open water. Figures designed by Marc Oggier
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3.7 Appendix

Table 3.A. Feeding guild classification and number of taxa in each group for the Chukchi Sea epifauna and 
infauna, and the Beaufort Sea epifauna. “X” denotes no taxa in that category.

F eeding guilds C hukchi Sea B eaufort Sea

Foo d  source Feeding m ode F oo d  type /size E pifauna Infauna E pifauna

E piben th ic
P reda to r

m acrofauna X X 1

zo oplankton 3 3 7

Suspension /  Filter 9 27 24

Surface

C hem osynthetic O m nivorous X 2 X

D eposit 1 27 2

D etritus 1 6 1

H erb ivorous
m acrofauna 2 5 3

m icrofauna X 6 4

O m nivorous
m acrofauna 2 2 3

m icrofauna 2 5 9

P reda to r
m acrofauna 23 6 55

m eiofauna X 3 X

Scavenger m acrofauna X 1 1

Suctorial parasite m acrofauna 1 X 1

Suspension /  Filter X 12 3

Subsurface
P reda to r

m acrofauna 2 5 2

m eiofauna 1 8 2

D eposit X 16 X
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Figure 3.A-1. Regional daily average of sea ice concentration for the Chukchi Sea study region: average sea ice 
concentration and standard deviation for 2005, 2010 and the five-year average (2005 to 2009 and 2006 to 
2010, depending on the year the station was sampled).
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Figure 3.A-2. Regional daily average of sea ice concentration for the Beaufort Sea shelf study region: average 
sea ice concentration and standard deviation for 2007, 2011 and the five year average.
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Figure 3.B. Snapshot of sea ice animation extracted from supplementary materials.
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CHAPTER 4: Growth and production of the brittle stars O phiura s a rs ii and O phiocten 
sericeum  (Echinodermata: Ophiuroidea) in the Alaskan Arctic1

Abstract

The slow growth and high longevity o f polar marine species is largely determined by low 

temperatures and the extreme seasonality of food supply, which in turn define the energy turnover 

o f the Arctic marine system. The general objective o f this study was to determine the population 

growth pattern o f the dominant shelf brittle star species O. sarsii and O. sericeum  through age 

determination, individual production, and total turnover rates (P:B) in the Alaskan Arctic. In the 

summer o f 2013, O. sarsii were collected in the northeastern Chukchi Sea (depth range 35 to 65 m), 

while O. sericeum  were collected in the central Beaufort Sea (depth range 37 to 200 m). Growth 

curves for both species had similar shapes, showing initial fast growth, with an inflection period 

followed by a second phase o f fast growth. Changes in the allocation o f energy, aided by a possible 

change in diet, m ay be the mechanisms responsible for the observed age dependent growth rates. 

Asymptotic age was higher in O. sarsii than O. sericeum; however, both species had significantly higher 

maximum ages than temperate region congeners. Individual production was higher for O. sarsii than 

for O. sericeum  by nearly an order o f magnitude throughout the size spectra. Both species had equally 

low P:B ratios, similar to Antarctic species, but much lower ratios than tropical species. Such 

characteristics would suggest that the dense brittle star assemblages that characterize the Arctic shelf 

systems could have a recovery time from disturbance on the order of decades.

1Ravelo AM, Konar B, Bluhm B, Iken K (In prep) Growth and production of the brittle stars Ophiura sarsii 
and Ophiocten sericeum (Echinodermata: Ophiuroidea) in the Alaskan Arctic. Prepared for submission to Marine 
Biology
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Across the Arctic, brittle star assemblages can occur in high densities and account for a 

significant fraction of the total epibenthic biomass (Piepenburg 2000; Piepenburg 2005). O ff the 

northeast Greenland coast, for example, brittle stars account for more than 95% of the epibenthic 

abundance (Piepenburg and Schmid 1996). The highly productive waters of many Arctic shelves 

promote areas o f high brittle star abundance and biomass through tight benthic-pelagic coupling 

(Ambrose et al. 2001; Bluhm et al. 2009; Ravelo et al. 2014; Ravelo et al. 2015). Although brittle stars 

are important prey for crab and demersal fish, relatively low predator abundance and generally small 

fish size may be factors contributing to the high density of brittle stars in many Arctic regions (Tyler 

1972; Aronson 1989; Packer et al. 1994; Rand and Logerwell 2010; Divine et al. 2015). The 

importance of these brittle star assemblages for carbon remineralization was recorded in the NE 

Chukchi Sea and central Beaufort Sea, where brittle stars were responsible for 25 to 41% of the total 

benthic respiration (Ambrose et al. 2001; Renaud et al. 2007).

On the Alaskan Arctic shelves, the two most abundant brittle star species are Ophiura sarsii 

and Ophiocten sericeum  (Frost and Lowry 1983; Bluhm et al. 2009; Ravelo et al. 2014; Ravelo et al. 

2015). Throughout the Alaskan Arctic, these two species only overlap in their distribution in the 

productive area of the western Beaufort Sea shelf and upper slope (Ravelo et al. 2014; Ravelo et al.

2015). The large bodied O. sarsii, with a maximum disc diameter o f 40 mm, is a circumpolar species 

found as far south in the Pacific as 35° N (Piepenburg 2000). Throughout the Chukchi Sea shelf and 

western Beaufort Sea slope, O. sarsii outnumbers all other brittle star species, and locally all other 

epibenthic taxa, accounting for up to 71% of the average epibenthic abundance with 34 ind./m2 per 

station (Ravelo et al. 2014). In the highly productive northeast Chukchi Sea, with an average biomass 

estimate for epibenthos o f 62.7 g  w et wt./m 2, brittle stars (mainly O. sarsii) accounted for 39% of 

that biomass (Ravelo et al. 2014). However, east of 148° W  on the Beaufort Sea shelf, O. sarsii is not 

present and the dominant brittle star species is Ophiocten sericeum  (Ravelo et al. 2015). The smaller- 

bodied O. sericeum , with a maximum disc diameter of 18 mm, is a circumpolar species found in 

various habitats north of 40° N and it is especially abundant on interior shelves, such as the central 

Beaufort shelf and Laptev Sea (Piepenburg et al. 1997; Piepenburg 2000; Roy et al. 2015; Ravelo et 

al. 2015). On the central Beaufort Sea shelf, the average abundance of epibenthic invertebrates per 

station was 4 ind./m2, with O. sericeum  accounting for nearly 40% of the total abundance o f this 

region (Ravelo et al. 2015). Despite the wide distribution o f these brittle star species, the local

4.1 Introduction
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dominance over all other epibenthic taxa, the importance in carbon remineralization and the role as 

prey to fish and crabs, little is known of temporal stability, growth and production for these species 

in Arctic waters (Piepenburg 2000).

The life history of species is reflected in how fast they grow; accordingly, long-lived species 

tend to grow slower than short-lived species. The longevity and growth pattern o f the inhabitants of 

a region can provide information regarding the carrying capacity, biological interactions, and stability 

o f the marine system they inhabit (Carroll et al. 2011a; Dolbeth et al. 2012). For brittle stars, the 

determination o f growth and age is possible through the measurement and quantification o f growth 

bands in skeletal structure o f their arm ossicles (Gage 1990a). Growth bands provide an accurate 

way o f directly determining the age and growth structure of a population, as opposed to indirect 

growth estimates through modal analysis of size (disc diameter in brittle stars). The latter may be a 

faster alternative, but disc diameter is an inferior proxy for age, as it may vary within the same age 

class due to within-cohort variation o f gonad development or arm regeneration (O’Connor and 

McGrath 1980; Skold et al. 1994). More importantly, size may underestimate the true population age 

structure and provide inaccurate growth estimates, due to the stacking of many age classes into few 

size categories, especially in larger specimens w ith slower growth rates (Fujita and Ohta 1989).

The effects o f low temperatures and the seasonality of food supply are reflected in the 

slower growth rate and larger body size of polar benthic invertebrates compared with lower latitude 

taxa (Brey and Clarke 1993; Bluhm et al. 1998; Sejr et al. 2002; Blicher et al. 2007). This also seems 

to hold true for brittle stars within the sub-family Ophiurinae in Antarctica and the Southern Ocean, 

where species examined revealed decreasing growth rate and increasing age with increasing latitude 

(Dahm 1999). The ongoing climate-associated changes on Pacific Arctic shelves that are particularly 

relevant to Arctic benthic organisms include the increase in water temperature and changes in water 

column primary productivity (Woodgate et al. 2010; Arrigo and van Dijken 2015). These changes 

may affect the metabolic rate, growth and production o f benthic organisms, which in turn can alter 

benthic production and energy transfer to higher trophic levels. Currently, our sparse knowledge of 

these population parameters for Arctic benthic species, particularly brittle stars, limits our ability to 

model the energy flow through the Alaskan Arctic benthos and from making solid projections for 

future climate scenarios (Hoover 2013, Whitehouse et al. 2014).
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Accordingly, the purpose o f this study was to fill in this gap o f knowledge, with the general 

objective o f determining the population growth patterns through growth bands, size structure, 

productivity and total turnover rates of O. sarsii and O. sericeum  in the Alaskan Chukchi and Beaufort 

seas. Given the high density o f brittle stars in the Alaskan Arctic and subsequent potential for 

negative intra-specific interactions, such as competition for space and cannibalism, a faster growth 

rate in early stages after recruitment m ay allow a survival advantage as opposed to slower growing 

recruits. Therefore, we hypothesized 1) the growth curves o f O. sarsii and O. sericeum  have similar 

shapes, with an initial period of fast growth that decreases gradually with increasing body size until 

achieving asymptotic size at similar maximum ages. Because O. sarsii dominates in the highly 

productive Chukchi Sea region and is absent on the less productive eastern central Beaufort shelf, it 

is possible that the less productive region is not capable of sustaining a larger species with a higher 

energetic demand, such as O. sarsii. Therefore, the high densities o f O. sarsii may not only be a 

function o f the highly productive system in which it dominates, but also a product of high individual 

production (P) values. W ith this in mind, we formulated the following hypotheses, 2) O. sarsii has 

higher individual production values compared w ith O. sericeum  individuals o f the same size, and 3) O. 

sarsii has a higher P:B ratio than O. sericeum .

4.2 Methods

4.2.1 Study regions

The Chukchi Sea is an inflow shelf, bordered longitudinally by land masses and with the 

Bering Strait as the geographic feature that defines its southern limit. This southern connection 

makes the Chukchi Sea the only conduit o f Pacific-origin water into the Arctic Ocean (Carmack and 

Wassmann 2006). The northeastern Chukchi Sea is highly productive, w ith integrated water column 

primary production of up to 500 m g chl/m2 (Grebmeier et al. 2015). The nutrient rich water 

originates in the Pacific and Bering Sea and is then transported northward through the Bering Strait. 

This water movement supports high seasonal primary production on the Chukchi shelf, which in 

conjunction w ith low zooplankton grazing pressure translates into high deposition o f organic matter 

to the benthos (Grebmeier et al. 2006; Grebmeier et al. 2015).

In contrast, the central Beaufort Sea has a shallow and narrow interior shelf that slopes 

down to the Canadian Basin (>3,000 m) in less than 100 km wide (Jakobsson et al. 2012). Along the 

slope from the west, inflowing modified Pacific water enters the Beaufort Sea though Barrow
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Canyon and Atlantic water from the Arctic-wide cyclonic boundary current below the 200 m isobath 

(Carmack and Macdonald 2002; Nikolopoulos et al. 2009). The high benthic biomass on the 

Chukchi Sea shelf thereby extends into the western Beaufort Sea, supported by the inflow o f highly 

productive waters of Pacific and Bering Sea origin (Logerwell et al. 2011; Ravelo et al. 2014). On the 

Canadian Beaufort Shelf, with the exception o f areas of upwelling, low water column primary 

production is mostly limited by nutrients and light availability, resulting in a total annual estimate 

ranging from 12 to 16 g  C/m2 for this region (Naidu 1974; Carmack et al. 2004). A long w ith in situ 

and advected components o f marine production, this region receives terrestrial carbon related to 

riveriene inflow and coastal errosion (Goni et al. 2013). The seasonal discharge o f many rivers, 

particularly the Colville and the Mackenzie Rivers, can affect large areas of the shelf with terrigenous 

organic matter, inorganic sediments and reduced salinity (Macdonald et al. 1999; Carmack and 

Wassmann 2006).

4.2.2 Sample collection

In both the Chukchi and Beaufort seas, brittle stars were collected using a 3.05 m plumb- 

staff beam trawl (PSBT) with a 7 mm mesh and a 4 mm codend liner (Gunderson and Ellis 1986); 

however, a modified version (PSBT-A) was used on very soft sediment stations in the Beaufort Sea 

(Abookire and Rose 2005). The trawl time ranged from 1 to 5 minutes on the seafloor at a vessel 

speed o f 1 to 1.5 knots and the distance trawled ranged from 63 m to 383 m. Ophiura sarsii were 

collected at 20 stations in the NE Chukchi Sea at water depths ranging from 35 to 65 m during the 

August 2013 COMIDA-CAB Hanna Shoal cruise (Chukchi Sea Monitoring In Drilling Area- 

Chemical And Benthos). Sampling sites in the Chukchi Sea were selected by random generation 

using a hexagonal tessellation approach to ensure sites were randomly yet evenly distributed through 

the Hanna Shoal study area (Figure 4.1; Ravelo et al. 2014). Ophiocten sericeum  were collected in 

August during the 2013 US-Canada Transboundary cruise in the central Beaufort Sea at 17 stations, 

w ith water depths ranging from 37 to 200 m (Bell et al. 2016). Sampling sites in the Beaufort Sea 

were in part chosen to repeat previously sampled locations by other research projects and additional 

sampling stations were selected at a spacing approximately 0.5° latitude and 0.25° longitude with the 

goal to cover the majority of the along-shelf extent o f the central Beaufort Shelf (Figure 4. 1).
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4.2.3 Age, size frequency and organic mass determination

At each station, all brittle stars were counted and a total weight recorded. For O. sarsii, 115 to 

350 individuals were haphazardly selected from each station and disc diameters were measured. 

These measured individuals were then frozen and later processed at the University of Alaska 

Fairbanks (UAF). For O. sericeum, 95 to 380 individuals were collected from each station and then 

immediately frozen, due to time constraints in the field, and later processed at UAF. For both 

species, brittle star disc diameter was measured from the base o f one arm to the opposite interradius 

(Hyman 1955), w ith an accuracy of 0.1 mm using digital calipers when possible and ImageJ software 

when the individuals were too small or fragile for handling (Abramoff et al. 2004).

Subsamples of the brittle stars used for size frequency distributions that showed no evidence 

o f damage or regenerated arms were used for aging and organic mass (OM) content analysis. 

Regenerated arms can be easily distinguished by changes in coloration and/or size o f the regenerated 

portion of the arm. To ensure an even representation o f all sizes, 10-12 individuals were haphazardly 

selected for every 1 mm body size increment. Individuals at the extremes o f the size spectrum 

(largest and smallest) were collected in addition to the described size frequency samples to increase 

the size range for aging and OM samples.

The determination of growth and age was performed through the measurement and 

quantification o f annual growth bands in skeletal structure of the arm ossicles (Gage 1990a). Each 

arm ossicle is composed of a central articulating condyle and four surrounding fossae. The skeletal 

structure of the ossicle is composed o f a three-dimensional meshwork called stereom. Changes in 

the microstructure of the stereom, from high density to low density, can be seen in a band pattern 

throughout the fossae (Figure 4.2). The seasonal periodicity of the stereom density was 

demonstrated with a temperate ophiuroid species, where high density stereom corresponded to slow 

growth typical o f w inter months and low density stereom corresponded to fast growth typical of 

summer months (Wilding and Gage 1995). Combining the two seasonal changes in stereom density 

would represent one year of growth and because the band patterns are consistent throughout the 

fossae, total age can be determined (Gage 1990b; W ilding and Gage 1995; Dahm and Brey 1998; 

Gage 2003). Evidence from other ophiuroid age studies indicate that as individuals grow, the 

stereom of the central part of the ossicle develops over the fossa, concealing the early growth bands 

o f the larger individuals and, therefore, an age correction is necessary (Dahm and Brey 1998). Age 

correction was applied following the back calculation method described in Dahm and Brey (1998):
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the first band o f the smallest sized individuals, those with clearly no overgrown bands because the 

size of the visible band is greater than the concealing area, determined the size o f the first growth 

band or age 1 (VB1max). W henever the first visible growth band in larger individuals was larger than 

VB1max this was an indication that one or more age bands were hidden by the partly overgrown 

fossa. Successively, depending on the size o f the first visible growth band (exceeding VB2max, 

VB3max or VB4max, etc.) w ith increasing individual size, more growth bands were added to the 

total count (2, 3 or 4, etc.).

The ossicles used for aging came from the base o f four arms of each individual sampled (the 

fifth arm and disc were used for OM determination). Tissue was removed by soaking each arm in 

5% sodium hypochlorite at 60°C for 10 to 60 minutes (depending on the size of the arm) and later 

washed with distilled water. The process of selecting and preparing the ossicles o f each individual in 

the sample took place in three steps. First, up to ten ossicles from each individual, with no 

anomalous calcium carbonate growth or fossae damage, were selected using a dissecting scope. The 

ten ossicles were dyed using Alizarin red, after which the single best ossicle was selected, based on 

the clarity to distinguish growth bands, using a Leica stereo microscope w ith 6.3:1 zoom. Finally, the 

selected ossicle was mounted on a stub, and coated with gold for microstructure examination using a 

scanning electron microscope (SEM) at the Advanced Instrumentation Laboratory, UAF (Gage 

1990a; Gage 1990b).

Ossicle growth measurements (using ossicle radius, R) were taken along a transect o f the 

upper right or left fossa, determined by a 45° angle from the vertical axis that runs through the 

center of the ossicle (Figure 4.2A). Growth bands were measured along the same longitudinal axis 

from the center of the ossicle to where the stereom changed from fine pores to large pores (winter 

to summer season transition) (Figure 4.2B). All measurements were performed directly on each SEM 

image using ImageJ. Accuracy o f growth band determination and count were assessed three times by 

the same person. First, growth bands were marked on all images, in a second round growth bands 

marked were reassessed and growth band extent was measured. A  third quality control assessment 

was performed for each image before all measurement values were compiled.

Two growth models were applied to the corrected size-at-age data using the Virtual 

Handbook to Population Dynamics, which uses the iterative Fit by Excel-Solver based on the
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NEWTON nonlinear fitting algorithm (Brey 2001). The models used were the Special von 

Bertalanffy growth function

(1) D D = D D m( l - e K(t-t°) )

and the Gompertz growth function:

e -K(t-t*)
(2) D D =  DDme - e  ( ;

where DDt is the size at age t  (in mm disc diameter), DDm is the asymptotic size (in mm), K  

is a growth constant per year, and to is the age at size zero (in years), while t* is the age at the 

inflection point o f the curve (in years).

Because o f the difficulty of obtaining brittle stars with all arms intact, only one complete arm 

was used for OM content analysis in addition to the central disc. Total arm organic mass was 

calculated by multiplying the weight o f the single arm processed by five. Arms were severed at the 

edge of the main disc with a scalpel to obtain only the disc organic mass content. The single 

complete arm and the disc were processed separately to obtain the OM weight. Disc and the single 

arm of each specimen were dried in an oven at 60° C for a minimum of 24 hours, after which they 

were incinerated for 10-12 hours in a muffle furnace at 500° C. All weights were recorded with a 

precision of 10 |ag on a microscale. Organic mass value for each specimen was calculated as ash-free 

dry mass as follows:

(3) OM=[DDW+(5ADW)]-[DAW+(5AAW)]

where DDW  and AD W  are the disc and single arm dry weight, respectively; DAW  and 

AAW  are the disc and arm ash weight, respectively.

The mass specific growth rate, MSGR (1/y), was calculated using the size-mass relationship 

and the parameters of the von Bertalanffy growth function:

(4) MSGR= bK(DDm - DD;)/DD;

where K is the growth parameter o f the von Bertalanffy growth function, DDm is the 

maximum or asymptotic size, DD; is the mean-diameter o f size class i (determined by the best fitted 

growth model for each species), and b is the slope of the size mass relationship.
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The organic mass production for each size class (i), P i (g AFDM/y/m2), was calculated as:

(5) P= M SG R lOMlN,

where OM i and N i are the mean individual organic mass and the number o f individuals in 

size class i standardized to m2, respectively. The total annual production results in:

(6) P = T P

The total P:B (1/y) ratio was calculated from total production across all size classes (P, g 

AFDM/y/m2) and the average biomass (g AFDM/m2) o f all stations. Because biomass in the field 

was measured in w et weight, a conversion factor was applied from the individual w et w eight to 

organic mass, using the same subsample of the population used to determine individual OM. For O. 

sarsii, the conversion factor was 0.120421 g  OM per g  w et weight (N = 260), while for O. sericeum  the 

conversion was 0.143318 g  OM per g  w et weight (N = 137).

4.3 Results

4.3.1 Age and growth

Out of the 256 O. sarsii ossicle samples imaged, 150 were clear enough to measure and 

quantify growth bands. O f the remaining 106 samples not included in the age analysis, 11% had 

anomalous calcium carbonate growth covering parts o f the fossae, 72% had unclear growth bands, 

and 17% had other issues (i.e., edge of the fossa was damaged or the fossa edge was tilted back). 

From the 147 O. sericeum  samples imaged, 98 were clear enough to measure and quantify growth 

bands. O f the remaining 49 samples that did not allow growth band quantification, 30% had 

anomalous calcium carbonate growth covering at least parts o f the fossae, 64% had unclear growth 

bands, and 6% had other issues (as above). Outliers for both species were excluded for having 

significantly higher or lower numbers of growth bands in comparison with individuals o f similar disc 

diameter (see SEM image examples in Figure 4.A and B). For O. sarsii, eight samples, ranging from 

14 to 19 mm DD, were excluded from growth parameter calculations as outliers, reducing the total 

sample size to 142 samples. For O. sericeum , four samples, ranging from 2 to 13 mm DD, were 

excluded from growth parameter calculations as outliers, reducing the total sample size to 94 

samples.
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Corrected ages in O. sarsii ranged from 1 to 27 years. Age correction for O. sarsii resulted in 

the addition up to nine years to the visible growth bands o f the largest individuals (Figures 4.3A and 

4.3C). The corrected ages of O. sericeum  ranged from 2 to 20 years. Visible age band readings were 

adjusted by adding up to six years in the largest individuals (Figure 4.3B and 4.3D). Body size-at-age 

determination was possible given the significant linear relation between body size and ossicle radius 

for both species (p < 0.05). For O. sarsii, increase in body size explained 98% of the increase in 

ossicle radius (Figure 4.4A). For O. sericeum , the increase in body size explained 97% of the increase 

in ossicle radius (Figure 4.4B).

The two growth models (Gompertz and specialized von Bertalanffy) had very high and 

similar R2 for both species (Figure 4.5). However, for O. sarsii the Gompertz model resulted in the 

lower residual sum of squares, while for O. sericeum, the best fit resulted from the von Bertalanffy 

model (Table 4.1). According to the best fit model for each species, the asymptotic size was 40 mm 

for O. sarsii and 20 mm O. sericeum  (Table 4.1, Figure 4.5). The growth rate computed with the best 

fit model for each species were very similar (O. sarsii, K = 0.077 and O. sericeum  K = 0.065). The age 

at size 0 (von Bertalanffy model) was very similar for both species (O. sarsii, to = 0.65 and O. sericeum 

to = 0.50), while the age o f inflection point o f the Gompertz model was greater for O. sarsii (14 

years) than for O. sericeum  (10 years) (Table 4.1).

4.3.2 Individual production and turn-over rates

Body size of O. sarsii ranged from 1.8 to 30.9 mm and the mode o f the population was 8.2 

mm (N = 6,478) (Figure 4.6A). For O. sericeum, body size ranged from 1.1 to 14.9 mm disc diameter 

and the mode o f the population was 2.9 mm (N = 3,683) (Figure 4.6B). The size distribution of 

both species appeared to be multimodal, with peaks including a large range of sizes. The very smaller 

sizes were absent or sparse from the population subsample, likely in part due to the trawl mesh size.

A  total o f 260 O. sarsii individuals were used for organic mass determination, ranging from

2.4 to 32.2 mm disc diameter. The following equation determined the organic mass to body size 

relationship with an R2 = 0.95 (Figure 4.7A).

(7) OM=2X10-4DD2'3953
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For O. sericeum , a total of 137 individuals were used for organic mass determination, ranging 

from 1.9 to 14.6 mm disc diameter. The following equation determined the organic mass to body 

size relationship with an R2 = 0.97 (Figure 4.7B).

(8) OM=8X10-6DD3'4564

The average station biomass for O. sarsii was 5.69 g  w et wt./m 2 (sd: 4.41, range: 0.48 - 16.55) 

or 0.69 g  OM/m2 after conversion (N = 20 stations). The average abundance per station in the study 

region was 392 ind./100m2 (sd: 451, range: 22 - 1,543). From the mass specific growth rate (MSGR), 

the total annual organic mass production and the production to biomass ratio amounted to 0.13 

g/y/m2 and 0.20/y, respectively (Table 4.2). Individual production increased with body size until it 

peaked at size class 23.3 mm and later remained constant at slightly lower values until the largest size 

class recorded (Figure 4.8A).

For O. sericeum, the average station biomass was 0.96 g  w et wt./m 2 (sd: 1.35, range: 0.06 - 

3.78) or 0.1413 g  OM/m2 (N = 14 stations). The average abundance per station in the study region 

was 680 ind./100 m2, (sd: 1066, range: 11 - 4,030). From the MSGR, the total P and P:B amounted 

to 0.02 g/y/m2 and 0.11 y-1, respectively (Table 4.2). Individual production increased steadily with 

body size, until size class 10.2 mm where it remained relatively constant until the last size class 

recorded (Figure 4.8B).

4.4 Discussion

4.4.1 Age and growth

This analysis is the first to report on the age and growth o f brittle stars from the Arctic. 

While the annual periodicity of growth bands has been validated for other high latitude 

echinoderms, this validation has not been undertaken for ophiuroids. From previous studies on the 

temperate ophiuroid Ophiura ophiura, strong evidence relates these bands to annual periodicity, where 

individuals collected in the winter months had a narrow band formed by high density stereom at the 

edge of their fossae, and specimens collected during the summer months had a wide band formed 

by low density stereom at the edge o f this growth zone (Wilding and Gage 1995). In the present 

study, the vast majority of ossicles imaged had the edge of the fossae conformed by large pores (low 

density stereom). Considering all samples in this study were collected in mid to late August, these 

brittle stars would have been exposed to the high open water primary production season for a few
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months (Arrigo et al. 2014; Ravelo et al. in review). These results confirm that O. sarsii and O. 

sericeum , like other brittle star species, deposit low density stereom during the highly productive open 

water season o f the Alaskan Arctic, though validation o f the periodicity o f growth increments 

remains necessary. Techniques such as mark-recapture or tank experiments using tetracycline or 

calcine staining, used to validate growth mark increments of fish, mollusks, sea urchins and other 

fauna, could be considered in future research focused on brittle stars (Gage 1991).

As was the case for other brittle star species, the number o f visible growth bands in O. sarsii 

and O. sericeum  had to be corrected due to overgrowth o f the central stereom over the earlier growth 

bands (Dahm 1996; Gage et al. 2004). The age correction method used in this study was based on 

the back calculation method described for other ophiuroid species by Dahm and Brey (1998). W ith 

over 400 measured samples to assess and correct for age for both species combined, this method 

proved time consuming and somewhat subjective. The low number of replicate individuals for each 

visible growth band increment prevented testing the statistical significance of the corrected ages. 

Despite the shortcomings o f this aging method, the estimated asymptotic sizes (40 mm DD for O. 

sarsii and 20 mm DD for O. sericeum) agreed with the maximum sizes recorded in the literature for 

both species (40 mm DD for O. sarsii and 18 mm DD for O. sericeum; Piepenburg 2000). This result, 

along with the high correlation of the growth models applied to the corrected age data, support the 

validity o f back calculations o f size at age applied to the size at age data. By increasing the number of 

individuals per size class sampled, future analyses could statistically corroborate the back calculated 

age increments; however, the increase in processing time and cost o f a larger sample size may be 

substantial.

Based on the growth patterns o f other brittle star species, we hypothesized that O. sarsii and 

O. sericeum  would have similarly shaped growth curves, characterized by initial fast growth that 

decreases gradually with increasing body size, until achieving asymptotic size at similar maximum 

age. While the first part o f this hypothesis was supported, both O. sarsii and O. sericeum  had similarly 

shaped growth patterns; the growth curves did not follow the predicted size at age pattern for 

corrected and visible growth bands. Rather, growth o f O. sarsii and O. sericeum  followed an apparent 

oscillatory pattern, with an initial period of fast growth (approximately eight years), followed by a 

reduction in growth, resembling an inflexion period (four to five years) and, finally, a second period 

o f accelerated growth with no clear asymptotic age. Despite the high correlation values of the
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growth models applied, the predicted growth did not conform well to the distribution of size by age; 

as a result growth was simultaneously over and under-estimated by the model outputs (Figure 4.5).

The growth pattern observed for both species could be a result of a combination of 

development strategies associated to predation pressure, the high seasonality o f food supply and low 

temperatures also observed in other polar marine invertebrates (Clarke 1980; Brey 1991). The 

allocation o f energy to fast growth in early life stages allows the smaller individuals of the population 

to escape high predation pressure (Gage 1990b). For example, significantly higher predation 

pressure was reported for the smaller sizes o f O. sarsii (3-13 mm DD) by the flatfish American plaice 

(H ippoglossoidesplatessoides) in the north Atlantic even when larger size classes were available (Packer 

et al. 1994). As prey o f fish and crab, larger brittle stars must allocate energy to arm regeneration due 

to cropping during non-fatal attacks; however, smaller brittle stars may be consumed entirely 

(O’Connor et al. 1986; Packer et al. 1994; Skold and Rosenberg 1996; Divine et al. 2015). The 

combination of predation pressure on smaller sizes and the high seasonality o f food supply for 

Arctic brittle stars could favor the allocation o f energy exclusively to growth early in life. Alongside, 

reproductive processes require energetic expenses that results in reduced energy allocation to 

somatic growth in adults; therefore, it  is common for marine invertebrates to experience reduced 

somatic growth w ith the onset of gonadal development and spawning (Brey 1991; Storero et al. 

2010; Stevenson and Mitchell 2016).

To date no information exists on the size at maturity for Arctic brittle stars, including O. 

sarsii and O. sericeum; however, gametogenic analysis o f the deep sea brittle star Ophiomusium lymani, 

showed that developed gonads were only present in individuals larger than the mid-size classes 

(Gage and Tyler 1982). While ophiuroids present many developmental strategies (i.e. planktotrophic 

and direct development), for species with planktonic larva, the number and size of the ova are 

directly related to the size o f the individual (Hendler 1975). Therefore, allocating most energy to 

gonad production after a certain body size would optimize the reproductive outcome, which is 

especially important in regions, such as the Arctic shelves, w ith extreme seasonality in food supply. 

W ith increasing size, brittle stars may be able to allocate energy to both reproduction and growth, 

w ith a transitional period (the inflection in the growth curve) in which predation pressure is reduced 

and gonad production may be favored over somatic growth.
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A shift in diet o f organisms after the inflection phase (beyond 10 mm DD) may also 

contribute to the second phase of fast growth in both species. In deep-sea echinoids, stable isotope 

analysis traced different food sources in their somatic and reproductive tissue, suggesting a partition 

in the allocation o f resources for growth and reproduction (Stevenson and Mitchell 2016). Though 

size-related shifts in diet have not been reported for Arctic brittle stars, O. sarsii and O. sericeum  are 

non-specialized predator/scavengers at trophic level 2.7 and 2.9 respectively (Iken et al. 2010; 

Divine et al. 2015); therefore, an increase in body size would allow for an increase in prey size and 

overall energy yield (Macdonald et al. 2010).

Increased longevity and slow growth are characteristic o f many polar invertebrate species, 

including echinoderms (Brey and Clarke 1993; Ambrose et al. 2006; Gusev and Jurgens-M arkina 

2012). Our results, along with being the first records of age for Arctic brittle stars, concur w ith the 

trend o f higher maximum ages o f polar versus subpolar, temperate and tropical species (Dahm 1993; 

Gage 2003; Skold et al. 2001). The Antarctic brittle star Ophiurolepis gelida  is the oldest aged brittle 

star at 33 years (after age correction) and 21 mm disc diameter (Dahm and Brey 1998). This 

maximum age is considerably higher than that o f all other aged sub-Antarctic species (Dahm 1996). 

Maximum ages for the two sub-Arctic congeners of O. sarsii, Ophiura albida and Ophiura ophiura, were 

nine years at 9 mm and 15 mm disc diameter, respectively (Dahm 1993), which is considerably 

younger than the maximum 27 years found in our study. Compared w ith the maximum age o f 20 

years for O. sericeum  (14 mm disc diameter), the sub-Arctic Ophiocten gracilis had a considerably lower 

maximum age of seven years at 10 mm disc diameter (Gage 2003). Recent analysis o f growth rates 

along a latitudinal gradient showed a strong linear relationship between echinoid growth rates and 

temperature, with polar species growth falling significantly below the projected linear trend (Peck

2016). The high seasonality o f food availability in polar regions has also been discussed as a major 

contributor to the reduced growth rate of benthic invertebrates inhabiting these regions (Brey and 

Clarke 1993; Blicher et al. 2007). Though the mechanisms for the increased longevity o f polar 

organisms is not entirely clear, the combination o f slow growth rates, larger body size and delayed 

maturity are known to play an important role in the extended life span of polar marine invertebrates 

(Portner et al. 2007).

4.4.2 Individual production and turn-over rates

W ith broadcast-spawning species such as O. sarsii and O. sericeum  the expectation is to have a 

population formed by many small sized individuals and a gradual decrease in numbers of larger
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individuals (Gage 2003). In the present study, the lack of very small-sized individuals for both 

species may be due to the use of a trawl net w ith a 4-mm codend liner, which should exclude 

individuals with a disc diameter smaller than 4 mm. Some smaller sized individuals may still be 

retained with the accumulation of fine mud and silt in the trawl mesh, but not quantitatively 

sampled. This is especially true for regions heavily influenced by riverine input, such as the central 

Beaufort shelf, where O. sericeum  samples were collected (Naidu 1974; Whitefield et al. 2015). 

Therefore, the absence of smaller sized individuals in the size frequency distributoin (especially for 

O. sarsii) could more likely be interpreted as a methodological bias and less so as the absence of new 

recruits.

In populations where recruitment is either very low or very infrequent and lifespans are long, 

the size distribution usually would show extreme negative skewness (Ebert 1983). This is not the 

case for the populations o f O. sarsii and O. sericeum  sampled in this study. Despite the lack of smaller 

sizes, the size frequency distribution o f the two species shows a clear positive skewness. Though a 

modal analysis was not performed, small modal peaks, spanning 2-3 mm of body size, can be 

observed throughout the size frequency distribution o f the two species. These smaller modal peaks 

may be representing recruitment events; however, defining size classes through size frequency 

distributions is difficult for slow growing species with large individual variability in growth due to 

the staking o f size classes (Fujita and Ohta 1990). Another pattern observed in the size distribution 

o f both species is the presence of larger modal peaks, spanning 5-10 mm of body size. The sizes 

w ith low frequency that are delineating the larger modes could represent particular periods o f very 

low recruitment for both species. Interestingly, the sizes with the lowest frequency for both species 

(13-15 mm for O. sarsii and 10-11 mm for O. sericeum) correspond to individuals o f approximately the 

same 13-18 age range.

In particular, for the Pacific Arctic, the lack o f long-term and/or seasonal studies focused on 

meroplankton has limited our understanding o f the supply side o f benthic standing stock (Hopcroft 

et al. 2008). W ithout this information, it is difficult to relate the low or high frequencies of certain 

size classes in our size distributions to the periodicity of low recruitment events. High density of 

ophioplutei o f O. sericeum  in the Kara Sea in early September correlated well with the high density of 

adults found in that region (Fetzer and Deubel 2006). However, ophiuroid larvae were not found in 

high densities during a three-year sampling effort in our Beaufort Sea study region (C. Smoot, pers. 

comm.) or in the Chukchi Sea shelf (E. Ershova, pers. comm.), though those cruises all happened in
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late summer, perhaps after the recruits had settled. In addition, there is evidence that successful 

recruitment in polar environments can be sporadic (Brey et al. 1995; Blicher et al. 2007). The large 

Antarctic brittle star, Ophionotus victoriae, despite showing consistent tim ing o f reproduction among 

years, had large inter-annual variation in reproductive effort over three years (Grange et al. 2004). 

Increasing this uncertainty, a study reviewing the gonad development and larval density of O. sericeum 

off northeast Greenland found that larval production occurred at a biannual rate (Thorson 1950; 

Pearse 1965). Consequently, it is possible that the sample collection performed in the Kara Sea 

encountered a large spawning event (Fetzer and Deubel 2006), and does not represent consistent 

annual reproductive effort. W ithout long-term time series data o f meroplankton abundance, and 

gonad development in adults, it is impossible to determine the inter-annual variability in spawning 

and recruitment, especially if  low spawning events occur many years apart. In addition to 

reproductive periodicity, high mortality o f larvae and/or of newly settled recruits may also be an 

important factor contributing to the multimodal population size structure. The periodicity of 

reproduction effort and/or successful recruitment events is a key component for understanding the 

stability of these populations and energy allocations within these populations.

Annual production for O. sarsii peaked with individuals ranging 22-24 mm DD. These size 

classes, along with the 6-9 mm DD range, contributed most to population production. For O. 

sericeum , the smallest (< 4 mm DD) and largest (> 10 mm DD) size classes contributed the most to 

the production o f the population. The pattern observed for O. sericeum  agrees with that observed for 

the boreal species Ophiura ophiura and O. albida, where the contribution o f production was related to 

the high density o f smaller individuals and the high individual organic mass values in the larger size 

classes (Dahm 1993). The low frequency of smaller size classes o f O. sarsii in our samples may be 

responsible for the intermediate sizes contributing a larger fraction of the population production. 

Had the smaller size classes been adequately represented in our samples o f O. sarsii, the total value of 

population production may have been substantially greater. Furthermore, gonadal production and 

arm regeneration, though neglected in this study, certainly would subtract energy from growth, 

especially in the larger size classes. Considering we purposely excluded individuals with signs o f arm 

regeneration, our values for growth and production may not reflect the extra energy cost many 

individuals experience in natural populations. This is especially true for large individuals with body 

sizes out o f the target range of predators, who nevertheless remain vulnerable to attacks with their
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easily-severed arms. Therefore, it must be noted that the values of annual production presented here 

may underestimate to some degree total brittle star production.

In support o f the second hypothesis, O. sarsii has higher individual production values 

compared w ith O. sericeum  individuals of the same size. For both species, organic mass increased with 

increasing body size following the same exponential trend, also described for other brittle star 

species (Packer et al. 1994; Dahm 1993; Gage 2003). However, for a given size or age class, the 

individual production of O. sarsii was nearly an order of magnitude greater than the individual 

production of O. sericeum  suggesting species-specific physiological characteristics; however, the 

magnitude o f this difference may be enhanced by regional differences in productivity regimes in 

which each species was collected. Regional environmental forces can have a significant influence on 

benthic organism growth rates and production (Carroll et al. 2011a; Carroll et al. 2011b). Ophiura 

sarsii were collected in the highly productive northeast Chukchi Sea, where integrated water column 

chlorophyll a  can reach 500 mg/m2 (Grebmeier et al. 2015). Conversely, O. sericeum  were collected on 

the less productive central Beaufort Sea shelf and upper slope, close to the Mackenzie River, with an 

annual primary production estimate o f up to 16 g  C m-2 (Carmack et al. 2004). This difference in 

water column productivity is also reflected in the benthic community biomass. The northeast 

Chukchi Sea benthic hotspots can reach > 4,000 g  w et wt./m 2 in biomass for infauna and 644 g  wet 

wt./m 2 for epifauna (Ravelo et al. 2014; Grebmeier et al. 2015; Denisenko et al. 2015). In contrast, 

the central Beaufort shelf epibenthic community, though diverse, has a recorded maximum biomass 

o f 58 g  w et wt./m 2 (Ravelo et al. 2015). Furthermore, high densities of both brittle star species are 

found on the shelfbreak of the Beaufort Sea in the vicinity of Barrow Canyon (Ravelo et al. 2015). 

This area sustains high benthic biomass and has been identified as a hotspot for feeding whales due 

to its high water column productivity (Okkonen et al. 2011). Individual production values match our 

knowledge of the productivity regimes o f the NE Chukchi Sea and eastern Beaufort Sea. Future 

research assessing the individual production values o f both species from individuals collected in the 

western Beaufort Sea region could provide insight into the differences in physiology and/or system 

carrying capacity for each species.

Our third hypothesis was supported by our results, in that O. sarsii had a higher turnover rate 

than O. sericeum. Both total annual production and P:B estimates for both species were comparable 

to values reported for Antarctic brittle star species and considerably lower than values reported for 

subpolar species. A  comparison of biomass, annual production and P:B ratios for different regions
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shows this relationship for Antarctic and sub-Antarctic species as well (Table 4.2, updated from 

Table 4.5-26 in Dahm (1996)). As discussed above, environmental factors have a large influence on 

population abundance, biomass, growth and productivity. To date, changes in growth rate and 

productivity for the same brittle star species along temperature and food supply gradients has not 

been tested. Considering the near pan-Arctic shelf distribution and locally high densities o f O. sarsii 

and O. sericeum , these species could be used as models for assessing the influence o f different 

environmental characteristics on benthic population dynamics.

The premise for our second and third hypotheses was that the higher energetic demand of 

the larger O. sarsii excluded this species from inhabiting the Mackenzie influenced central Beaufort 

Sea. However, the absence o f O. sarsii from the central Beaufort Sea may not only be attributed to 

low system production. Comparison with presence/absence data from 1970’s trawl surveys reveal a 

distribution shift may have occurred for these two species over the past 40 years (Frost and Lowry 

1983). Surveys performed from 2011 to 2014 in the central Beaufort Sea confirmed the absence of 

O. sarsii east o f 148°W; where, in the 1970’s this species was found as far as 141° W  (Carey et al. 

1974; Frost and Lowry 1984; Ravelo et al. 2015). This temporal change in distribution may be driven 

by long-term changes in wind driven water mass patterns along with the large influence o f the 

Mackenzie River over the region (Whitefield et al. 2015). Long-term atmospheric data indicate that 

an increase in the prevalence and intensity of easterly winds in the central Beaufort shelf region has 

occurred over the past 40 years, causing more persistent and prolonged reversals of water flow from 

the Chukchi Sea entering the Beaufort Sea (Hufford 1973; von Appen and Pickart 2012; Pickart et 

al. 2013). Through these changes, not only is the transport o f O. sarsii larvae from the Chukchi Sea 

population limited to the western Beaufort Sea, but it also favors the transport o f O. sericeum  larvae 

towards the west. Along with the reduction in transport o f high nutrient waters from the Chukchi 

Sea into the Beaufort Sea shelf, an extensive intrusion o f the Mackenzie inflow into the central 

Beaufort Sea has been observed in recent decades (Whitefield et al. 2015; Ravelo et al. in review). 

Furthermore, Ophiocten sericeum  often dominates in interior shelves, such as in the Laptev and Kara 

Seas, characterized by riverine sources of carbon and reduced primary production (Piepenburg and 

Schmid 1997; Fetzer and Deubel 2006; Goni et al. 2013). W ith increased freshening o f the central 

Beaufort Sea shelf, this system may be transitioning into a more ideal environment for the less 

productive O. sericeum  and less suitable for more productive species such as O. sarsii. 

Environmentally driven distribution shifts from more to less productive taxa can have large
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implications for higher trophic levels and energy flow throughout the marine system. Future studies 

linking environmental conditions w ith the survival strategies of dominant, pan-Arctic species such as 

O. sarsii and O. sericeum, may shed light on how different environmental conditions shape benthic 

communities, as well as how benthic systems may be changing under current and predicted climate 

scenarios.

4.5 Conclusion

The information presented through this research increases our understanding of the 

population dynamics of O. sarsii and O. sericeum , two of the most representative species o f the Arcic 

shelf benthos. This study has demonstrated that the largest individuals were at least a decade older 

than temperate region congeners, therefore agreeing with the knowledge that polar species have 

slower growth rates and live longer than temperate region species.

The growth pattern of both O. sarsii and O. sericeum  showed an inflection in growth, possibly 

related to life history mechanisms aimed to escape predation, optimize energy allocation to 

reproduction and increase energy intake with body size. Due to large variability in the size o f age of 

the populations of both species, clear cohorts were not distinguishable from the size frequency data. 

However, large modal peaks spanning 5-10 mm of body size were quite clear and may be marked by 

low recruitment years. To complete our understanding o f the stability of these brittle star 

populations over time, information is needed regarding the supply side o f recruitment.

The two species investigated in this analysis differed greatly in maximum body size, 

maximum age and individual production values. The intrinsic physiological characteristics o f each 

species are likely the cause of such differences. However, the difference between the two species 

may be enhanced by bottom up controls on growth and production specific to the region where 

each species was collected. In the Alaska Arctic, O. sarsii dominates the Chukchi Sea and western 

Beaufort Sea and is not present east of 148° W  were O. sericeum  dominates the shelf system. 

Therefore, the marked difference in the geographic distribution o f the two species may be a 

consequence o f their differences in energetic requirements, where unlike O. sericeum , O. sarsii is not 

able to successfully recruit in areas o f lower productivity, higher terrigeneous sedimentation and 

fresh water input. Further research into the influence o f water masses on larval distribution may 

shed light regarding the he current geographic distribution o f the two species.
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T a b le  4 .1 . G r o w th  m o d e ls  fo r  O. sa rsii a n d  O. sericeum . P a ra m e te rs  f o r  e a c h  m o d e l  a re , D D ®  is th e  a sy m p to tic  
size (m m  d isc  d ia m e te r) , K  th e  g ro w th  ra te  p e r  year, t* th e  in f le c tio n  p o in t  o f  th e  G o m p e r tz  cu rv e  a n d  to th e  
age a t s ize  0 (years) o f  th e  v o n  B e r ta la n ffy  m o d e l. T h e  g o o d n e s s  o f  fit fo r  e a c h  m o d e l  is e x p re s s e d  in  R 2 a n d  
R SS (re sid u al s u m  o f  sq u a re s  =  Sum (S-S ')2) va lues .

M odel D D ® K t* o r to R2 RSS
G om pertz 40 0.077 14.00 0.91 817.99

Ophiura
sarsn von

Bertalanffy 48 0.030 0.65 0.88 1099.53

Ophiocten
G om pertz 23 0.085 10.00 0.95 69.44

senceum von
Bertalanffy 20 0.065 0.50 0.96 57.63
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Table 4.2. Published values for production, biomass and turnover rate of other brittle star species along with 
values from this study, updated from Dahm (1996) (Table 5-26). All weights are AFDW (ash free dry mass), 
where P is the annual production (g/m2/y), B is the average biomass (g/m2), P:B is the turnover rate (1/y) 
and mean body mass (mg of AFDW). (*) indicate averages of values published for several study sites.

M ean
Region Species Study region body

mass
P B P:B Source

Ar
cti

c Ophiura sarsii Chukchi Sea 30.00 0.13 0.69 0.20 this study

Ophiocten sericeum B eaufort Sea 3.00 0.02 0.14 0.11 this study

Astrotoma agassizii
W eddell and 

Lazarev Seas* 690.00 0.02* 0.28* 0.05* D ahm  (1996)

An
tar

cti
ca

Ophioceres incipiens W eddell and 
Lazarev Seas* 20.00 0.11* 0.52* 0.20* D ah m  (1996)

Ophionotus victoriae W eddell and 
Lazarev Seas* 210.00 0.07* 0.39* 0.19* D ah m  (1996)

Ophiumlepis
brevirima

W eddell and 
Lazarev Seas* 90.00 0.05* 0.37* 0.14* D ahm  (1996)

Ophiurolepis gelida W eddell and 
Lazarev Seas* 30.00 0.30* 0.20* 0.14* D ahm  (1996)

Amphiura chiajei N o rth  A tlantic - 
Irland 177.47 49.62 139.32 0.36 M unday and 

K eegan (1992)

A mphiurafiliformis N o rth  A tlantic - 
Irland 30.00 31.50 21.00 1.50 O 'C o n n o r e t al. 

(1986)

A mphiurafiliformis Sw eden - 
G ullm arsfjord 21.00 2.59 5.63 0.42 Skold et al. (1994)

Te
mp

era
te 

to 
Su

b-A
rct

ic

Ophiocten gracilis N o rth  A tlantic - 
Rockall T rough 0.75 X X 0.73 Gage and Tyler 

(1982a)

Ophiocten gracilis N o rth  A tlantic - 
Rockall T rough X 0.26* 0.30* 0.86* G age (2003)

Ophiomusium
lymani

N o rth  A tlantic - 
Rockall T rough 1010.14 X X 0.33 Gage and Brey 

(1994)

Ophiothrix fragilis N o rth  A tlantic - 
Bristol 42.80 31.43 17.30 1.82 G eorge and 

W arwick (1985)

Ophiura albida N o rth  Sea 5.13 0.35 1.12 0.32 D ahm  (1993)

Ophiura ljungmani N o rth  A tlantic - 
Rockall T rough 1.96 X X 0.54 Gage and Tyler 

(1981)

Ophiura ljungmani N o rth  A tlantic - 
Rockall T rough 0.25 X X 1.26 Gage and Brey 

(1994)
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Ophiura ophiura N o rth  Sea 2.85 0.53 1.21 0.43 D ahm  (1993)

Ophiura ophiura N o rth  A tlantic - 
B ristol 79.06 0.55 0.81 0.68 W arwick et al. 

(1978)

Ophiura ophiura N o rth  A tlantic - 
B ristol 7.87 0.11 0.24 0.50 W arwick and 

G eorge (1980)

Su
b-A

nta
rct

ic

Ophionotus hexactis South G eorgia 48.75 3.39 7.45 0.45 M orison (1979)

Tr
op

ica
l

Amphioplus
coniortodes

A tlantic - 
F lorida 21.04 2.41 1.07 2.26 Singletary (1971)

Micropholis
gracillima

A tlantic - 
F lorida 23.15 2.90 1.30 2.23 Singletary (1971)

tysne 
ic 

io 
mi

iOoph 
limi

A tlantic - 
Florida 70.82 5.60 2.41 2.33 Singletary (1971)
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Figure 4.1. Collection sites for brittle stars, July-August 2013. Specimens of Ophiura sarsii were collected in the 
northeastern Chukchi Sea, and specimens of Ophiocten sericeum were collected in the central Beaufort Sea.
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Figure 4.2. Scanning electron microscope image. A. O. sarsii ossicle with the 45° angle (white line) illustrating 
the longitudinal axis used to measure ossicle radius and count growth bands. Ossicle radius R (black line) was 
used to define the linear relation between ossicle and body size. All visible growth bands are highlighted and 
illustrate the intercept with measurement axis. Measurement of the first visible growth band that intercepts 
with measurement axis is labeled VB1 (red line). B. Magnified view of growth bands showing transition 
between fine pore stereom and large pore stereom on the fossae.
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Figure 4.3. Ossicle radius (pm) as a function of the visible growth band of Ophiura sarsii (A) and Ophiocten 
sericeum (B). Body size (measured in disc diameter, mm) as a function of the corrected age of O. sarsii (C) and 
O. sericeum (D). For O. sarsiiN =142 and for O. sericeum N =94.
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(N — 150) and (B) Ophiocten sericeum (N — 98).
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Figure 4.5. Fitted growth curves for body size (disc diameter, mm) as a function of corrected size at age data 
for (A) Ophiura sarsii and (B) Ophiocten sericeum. Gompertz growth curve (GPZ) marked with dashed line and 
von Bertalanffy growth curve marked with dotted line.
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Figure 4.6. Absolute size frequency distribution for a representative subsample of the population of (A) 
Ophiura sarsii collected in the NE Chukchi Sea (N = 6,478) and (B) Ophiocten sericeum (N = 3,683) collected in 
the central Beaufort Sea.
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Figure 4.7. Organic mass content as a function of body size (disc diameter, mm) for (A) Ophiura sarsii (N 
—260) and (B) Ophiocten sericeum (N — 137). Ash free dry mass (AFDM) in g.
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Figure 4.8. Distribution of size and age classes for the standardized abundance of the sampled population 
(bars, ind/100m2) and individual production (line, g AFDM/y) for (A) Ophiura sarsii and (B) Ophiocten sericeum. 
Size and age classes were defined by the best fitted growth models for each species. Size as disc diameter in 
mm and age in years (y).
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4.6 Appendix

Figure 4.A. Images illustrate the top right fossae of two specimens of O. sarsii determined as outliers for age 
and growth analysis. These two images ilustrate the extreeme difference in growth rates of the two specimens. 
The specimen on the left had an estimated age after correction of 23 years (18.18 mm DD) and the specimen 
on the right an estimated age of 13 years after correction (18.04 mm).

185



Figure 4.B. Images illustrate the top left fossae of two specimens of O. sericeum. The image on the left 
corresponds to a 8 years old individual after age correction at 8.8 mm DD, which is a growth rate consistent 
with other individuals of the same size. The image on the right illustrates an individual with either a very fast 
growth rate with 2 growth bands visible (age after correction this individual would be 5 years old) or this 
specimen is one of the many individuals in which not all growth bands are clearly discernable and therefore 
true age cannot be determined.
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SUMMARY AND CONCLUSION

This analysis took place on the Alaskan Arctic shelves, where epibenthic invertebrates are a 

key element of the marine ecosystem. This research describes the patchy spatial distribution of 

epibenthic invertebrate communities across two Arctic shelves connected by ocean currents, the 

northeastern Chukchi and Beaufort Seas. Though this patchy distribution has been previously 

described in these seas, my research presents a novel examination o f the epibenthos with extensive 

coverage throughout the Alaskan Arctic. Accordingly, my research demonstrated that communities 

throughout the Chukchi and Beaufort Sea shelves show large scale spatial patterns dominated by 

few, or even a single taxonomic group. Also, in both regions, areas o f high and low abundance and 

biomass could be correlated with changes in taxonomic composition and environmental 

characteristics. Clusters o f stations with high faunal similarity were best represented by either 

crustaceans or echinoderms, with the mid-depth regions of the Beaufort Sea represented by both 

major groups. This segregation highlights the importance o f the specific environmental conditions 

necessary to provide the ideal habitat for each community. Ecosystem changes, such as increases in 

bottom water temperature, result in species and community distribution shifts, as well as increased 

presence o f temperate species on Arctic shelves (Kortsch et al., 2012; Mueter and Litzow, 2008). 

Species range expansions into the Arctic and persistence over w inter seasons have the potential to 

profoundly affect Arctic community compositions, by introducing new predation pressure and/or 

competition for resources. Through our knowledge o f the physiological requirements o f epibenthic 

taxa, it is possible to some extent to predict who will be the winners and losers o f the future Arctic 

ecosystem. However, because there is not one single Arctic benthic community, projecting how the 

environmentally induced changes w ill affect epibenthic communities over large spatial scales 

becomes challenging.

In both Alaskan Arctic regions, epifauna communities at neighboring sample sites and 

within similar depths tended to be similar in taxonomic composition. This suggests that large scale 

environmental patterns are a major influence on the patterns o f commuity structure. In the Chukchi 

Sea, communities varied following the trajectory o f the major water masses in the region. 

Specifically, areas under the influence o f the Bering Sea-Anadyr waters were dominated by various 

crustaceans and had the highest diversity values. Conversely, areas dominated by echinoderms were 

subject to known highly dynamic seasonal forces, such as w ind driven current reversals and polynyas 

(Winsor and Chapman, 2002; Woodgate et al., 2015). The depth gradient in the Beaufort Sea was a
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strong determinant o f commuity structure, likely because changes in bathymetry reflect important 

environmental processes varying with depth. Significantly different communities from nearshore to 

offshore and from east to w est throughout the Beaufort Sea could be associated with various 

environmental forces, such as landfast ice, riverine input and water masses. Similarly, areas o f high 

and low epibenthic biomass could be associated with large-scale environmental patterns. Areas with 

the highest epifaunal abundance and biomass in the Chukchi and Beaufort seas were dominated by 

echinoderms, particularly brittle stars. In both regions, brittle star dominated areas were located on 

each side of Barrow Canyon, highlighting the connectivity that exists between regions through high 

nutrient water masses (Brugler et al., 2014). The high brittle star biomass area in the Chukchi Sea 

coincides w ith an area o f dense water formation due to recurrent w ind driven polynyas during the 

ice covered season (Winsor and Chapman, 2002). These persistent environmental conditions may be 

creating a less favorable environment for other organisms, such as crustaceans, and therefore brittle 

stars escape the impacts o f predators or potential competitors for resources (Aronson, 1989; Packer 

et al., 1994). In this way, environmental forces are not only creating adequate habitats for the 

community present, but are likely influencing biological interactions by excluding other organisms 

from those areas.

Through multivariate statistics, it is possible to visualize the spatial patterns o f commuity 

structure and quantitatively match major environmental forces that contribute to those patterns. 

However, the quantitative match between community patterns and environmental drivers suffers 

from our limited ability to capture the complexity o f the physical environment w ith the easily 

measurable variables. This limitation becomes especially evident when indirect variables describing 

location, such as latitude, longitude and depth are the strongest predictors o f commuity structure. In 

both regions, longitude was the strongest determinant o f epibenthic commuity structure, while 

biologically relevant variables (bottom water temperature, salinity, sediment organic matter, etc.) 

added little to the correlation values. This lack of explanatory power is likely in part because most of 

the biologically relevant variables are point in time measurements o f the environment. Though these 

variables are measured in situ and provide an accurate view o f the environmental conditions the 

organisms experience at the time of collection, the large seasonal changes that occur on Arctic 

shelves are not well reflected by these measurements.

One Arctic environmental characteristic that integrates large-scale environmental forces, 

acting in unison in space and time, is sea ice (Barber et al., 2015). In an effort to find additional
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explanatory variables of epibenthic commuity structure, I used passive microwave sea ice 

concentration data to compute variables describing sea ice phenology and duration. The six 

parameters considered in this analysis were: Date of sea ice retreat, Date o f sea ice return, Number 

o f days covered by sea ice, Number o f days w ith no sea ice, Number of days w ith a marginal ice 

zone and Average sea ice concentration from May to October. Through these variables I was able to 

capture the documented different behavior o f sea ice in the Chukchi and Beaufort Sea regions 

(Mahoney, 2012), highlighting the large differences in the physical environment o f each region. 

Using multivariate analyses, the sea ice variables that had the strongest predictive power of 

epibenthic community biomass were the Number o f days covered by sea ice in the Chukchi Sea; 

while in the Beaufort Sea the Date of sea ice retreat and Date o f sea ice return were selected as the 

best predictors of commuity structure. In the Chukchi Sea, large inter-annual variability in the 

regional pattern o f the formation and retreat o f sea ice reduced the explanatory power o f the sea ice 

variables for epibenthic commuity structure. Despite this caveat, this analysis provided yet another 

view of the complex interactions between the prevailing winds, water circulation and input of warm 

water that affect sea ice dynamics in this region. In contrast, in the Beaufort Sea, these sea ice 

variables integrated well the local recurring and seasonally variable drivers of epibenthic commuity 

structure, such as the influence of the Mackenzie River, the jet-stream current and upwelling events. 

The regular periodicity of these environmental forces and their strong effect on both the seasonality 

o f sea ice and epibenthic communities resulted in high correlation values for sea ice and epibenthic 

community patterns.

In summary, though sea ice variables alone were not consistent predictors of epibenthic 

commuity structure across regions, they did provide a means for including quantitative values that 

represent integrated large scale environmental conditions. My research also highlights the complex 

interplay o f the environmental forces that create the multitude o f habitats that allow the patchy 

distribution of taxa, the hotspots for biomass, and varied diversity of Alaskan Arctic epibenthos. 

However, the detection of drivers o f benthic commuity structure is far from complete and further 

research should focus on including more measures o f environmental characteristics as well as of 

biological interactions.

As stated above, brittle star standing stock hotspots, mainly Ophiura sarsii and Ophiocten 

sericeum , are common throughout the Alaskan Arctic. The distribution of these two brittle star 

species in the study area, while extensive, only overlaps in the western Beaufort Sea shelf and upper
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slope. The regions where each species dominates differ greatly in oceanographic features and 

productivity regimes (Carmack et al., 2004; Grebmeier et al., 2015). Throughout the Chukchi Sea 

shelf and western Beaufort Sea slope, O. sarsii outnumber all other brittle star species, and locally all 

other epibenthic taxa. On the central Beaufort Sea shelf, O. sericeum  accounted for nearly 40% of the 

total abundance o f this region. Despite the prevalence o f brittle stars throughout the Arctic, 

information regarding the age, growth, and productivity is lacking. In this first account of Arctic 

brittle star age, I found that the largest individuals o f both species could live several decades and 

were markedly older than temperate region congeners. Inter-annual variability in the width of the 

annual growth marks suggests an environmental influence on the amount of growth that can be 

achieved by these individuals each year. Given the longevity o f brittle stars in Arctic regions, annual 

growth could be used as a retrospective indicator o f varying environmental conditions, similar to 

analysis performed using other Arctic fauna (Carroll et al., 2011; von Biela et al., 2011). Linking 

growth and individual production o f brittle stars and other long-lived region-specific taxa to specific 

environmental conditions can help make solid projections of the productivity o f the system under 

future climatic scenarios in the Arctic.

The distinct distribution patterns and differences in standing stock o f the two brittle star 

species can be linked to differences in the total water column production of each region. Ophiura 

sarsii dominate in the highly productive northeast Chukchi Sea, where integrated water column 

chlorophyll a can reach 500 mg/m2 (Grebmeier et al., 2015). Conversely, O. sericeum  dominate on the 

less productive central Beaufort Sea shelf and upper slope, close to the Mackenzie River, w ith an 

annual primary production estimate of up to 16 g  C m -2 (Carmack et al., 2004). This spatial 

relationship suggests different energetic requirements for each species and therefore a strong 

bottom-up control on the populations. Despite both species having equally low turnover rates, 

individual production was higher for O. sarsii than for O. sericeum  by nearly an order of magnitude for 

equal body sizes. W ith regard to future scenarios, local changes in the oceanography and 

productivity regime throughout the Alaskan Arctic could therefore result in large changes in benthic 

production just through shifts in species distribution. For both species, the growth curves had 

similar shapes, showing initial fast growth, with an inflection period followed by a second phase of 

fast growth. As w ith many echinoderm species, changes in the allocation o f energy, from growth to 

reproduction, may be the mechanisms responsible for the observed age dependent growth rates of 

the two brittle star species (Brey, 1991; Lawrence, 1987). The allocation of energy exclusively to
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somatic growth during the first 10 years after settlement may be related to the higher predation 

pressure on the smaller size individuals. Afterwards, once surpassed the critical size, gonad 

production and somatic growth may be accomplished. The longevity o f these species, along with the 

large fraction of the populations o f large body size, indicate that these brittle star assemblages do not 

experience short term fluctuations in population size. W ith observed and projected increasing water 

temperatures in the Arctic regions (Comiso, 2012), the potential introduction of new predators and 

increase in predation pressure cold increase the top-down control on these populations, with 

subsequent repercussions for the energy flow o f the Arctic marine system.

Overall, my research has served to increase our understanding o f the spatial patterns of 

epibenthic communities and the influence o f environmental forces in the Chukchi and Beaufort 

Seas. This research has also highlighted areas in which more research is needed, especially 

considering the amplified effect o f climate change in the Arctic marine environment (Comiso, 2012). 

Our current ability to model epibenthic community patterns and make future predictions is limited 

by the complexity o f the ecosystems they inhabit and the number of biologically relevant drivers we 

have available for these analyses. Furthermore, understanding the stability and resilience o f the 

Arctic ecosystems is not possible w ithout a clear understanding o f the biological-environmental 

interactions that exist in these systems combined with individual life histories and physiological 

tolerance ranges. Considering the longevity and slow growth o f Arctic benthic invertebrates, 

presumably a long time must pass for the substantial biomass found on Arctic shelves to 

accumulate. This becomes especially important w ith current and projected resource development on 

Arctic shelves, where the recovery time after disturbance o f these communities should take special 

consideration in any environmental impact assessments.
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