
THE BEHAVIOR OF TELLURIUM DURING COPPER ORE PROCESSING AT THE AMERICAN

SMELTING AND REFINING COMPANY (TUCSON, AZ)

RECOMMENDED:

APPROVED:

By

Amy E. Josephson

Dr. Rainer J. Newberry
\k/ —

Dr. Thomas P. Trainor

Dr. Sarah M. Hayes 
Advisory Committee Chair

Dr. Thomas K. Green
Chair, Department of Chemistry and Biochemistry

Dr. Paul W. Layer 
Dean, College of Nat

Dean of the Graduate School

and Mathematics

... (%.(ZwJ-2Mk
Date /





By

Amy E. Josephson, B.S.

A Thesis Submitted in Partial Fulfillment of the Requirements 

for the Degree of

Master of Science 

in

Environmental Chemistry

University of Alaska Fairbanks 

August 2016

THE BEHAVIOR OF TELLURIUM DURING COPPER ORE PROCESSING AT THE AMERICAN

SMELTING AND REFINING COM PANY (TUCSON, AZ)

APPROVED:

Sarah M. Hayes, Committee Chair 

Rainer J. Newberry, Committee Member 

Thom as P. Trainor, Committee Member 

Thom as K. Green, Chair

Departm ent o f Chemistry and 

Biochemistry 

Paul W. Layer, Dean

College o f Natural Science and 

M athematics 

Michael A. Castellini, Dean o f the Graduate 

School



Abstract

Essentially all tellurium (Te), an element used in solar panels and other high technology 

devices, is recovered as a byproduct of copper mining. Recent increases in demand have 

sparked questions of long-term supplies of Te (crustal abundance ~3 pg-kg"1). As part of a larger 

study investigating Te resources, this project examines the behavior of Te during Cu ore mining, 

smelting, and refining at the American Smelting and Refining Company (Tucson, AZ) as a first 

step toward optimizing Te recovery. Mass balance calculations estimate that only 4 ± 1% of the 

Te in the ore reports to the Cu anodes, while 60 ± 30%, 0.8 ± 0.2% and 5.8 ± 0.4% is lost in the 

tailings, slag, and dust, respectively. The uncertainties reported are the standard deviation of 

analytical measurements, but due to heterogeneity of Te distribution in the ore, the actual 

uncertainty is likely higher. Microprobe data shows that Te in the concentrate is mainly present 

as telluride minerals, but substitution into sulfides most likely also occurs. X-ray fluorescence 

(XRF) mapping showed that Te is collocated with S in the raw anode slimes, pressed anode 

slimes, and dore furnace soda slag. X-ray absorption spectroscopy (XAS) was used to examine 

Te speciation in anode slimes. It was found that Te oxidizes during the Cu ore smelting process, 

with 44% Te4+ in the flash furnace SO 2 filter. Te also showed 32% Te4+ in the raw and pressed 

anode slimes. The dore furnace soda slag and dust filter showed the most oxidation of Te at 

57% Te4+ and 60% Te6+ respectively. These results indicate several points in the extraction 

process that could be examined further to determine if additional Te might be recovered from 

the overall process.
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Chapter 1 Introduction

1.1 What is Tellurium?

Tellurium (Te) is a rare metalloid and semi-conductor, with an average crustal 

abundance of 3 pg-kg-1 [1]. Tellurium has an atomic number of 52 and an atomic mass of 127.6 

g-mol-1 and occurs in group 16, underneath sulfur (S) and selenium (Se), of the periodic table. 

Because of this, it is often assumed that Te will behave similarly to S and Se in the natural 

environment [2], but recent literature has challenged this assumption [3]. Like S, Te has four 

naturally occurring oxidation states: native Te (Te0), telluride (Te 0-2-), tellurite (Te4+), and 

tellurate (Te6+).

Tellurium was first discovered in 1782 by Baron Franz Joseph Muller von Reichenstein. 

Muller discovered the element when he extracted it from a bluish-white ore of gold. At first he 

believed the metal to be antimony (Sb), but upon further examination decided that it was not 

Sb and, therefore, must be a new element. His discovery was mostly forgotten until Martin 

Heinrich Klaproth read Muller's paper on the gold ore to the Academy of Sciences in Berlin in 

1798. At this meeting it was decided to name the element tellurium, meaning earth [4].

As the industrial importance of Te increases, there is a need for improved understanding 

of the effects of Te on organisms and the environment. Compounds that exhibit greater 

solubility tend to demonstrate greater toxicity [5]. Soluble Te is highly toxic to most 

microorganisms and is also considered toxic to humans [6]. Tellurite is reported to be slightly 

more toxic than selenite and arsenite, and ten times more toxic than tellurate. The main target 

sites for human toxicity are the nervous system, kidneys, skin, and fetus. The symptoms of 

tellurium exposure is often characterized by a garlic like smell on the breath that is caused by 

the formation of (CH3)2Te [5]. While, there are concerns about Te toxicity, acute poisoning is 

rare, and presently, Te is not considered to be carcinogenic [6].

1.2 Tellurium End Uses and Market

Tellurium has been used for industrial purposes since 1917, when it was first used in the 

production of rubber (Figure 1.1). Tellurium, when added to rubber and elastomers in either its
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elemental form or as ethyl telluric (diethlydithiocarbamate, TDEC), aids in the curing process 

[7]. While it was in rubber that Te was first used, this application no longer dominates the 

market. In fact, this end-use accounts for less than 5% of the total Te consumed today [8 ].

1917 1975 2001 2010

Year

Figure 1.1 End-uses of Te from 1917 to 2010. It is important to note that the 9% electronic end 
use in 2001 grew to 70% (30% thermoelectric, 40% photovoltaic) in 2010 [8-10].

Another end use for Te today is in metallurgy, where Te is use as an alloying agent with 

iron, steel, and other metals to improve machining characteristics [7]. Tellurium is often 

included in low-carbon steels, resulfurized steels, and leaded steels. In lead alloys (Pb, 0.05% 

Te, 0.06% Cu) the addition of small mass fractions of Te can result in higher fatigues strength 

and increases in recrystallization temperatures. This allows for lead alloys to be used in 

sheathing communication and power cables, particularly in corrosive marine environments.

This alloy is also used as a reactor shield and for the containment of hot wastewater in the 

nuclear industry. Tellurium can also be used in copper alloys where it greatly improves the 

m achinability of the copper with only minimal decreases in its thermal and electrical 

conductivity [7]. As recently as the early 2000's this was primary industrial use of Te, but 

metallurgy currently accounts for only 15% of the Te consumed [8].

As a metalloid, Te exhibits both metal and non-metal properties, making it a natural 

semiconductor. At room temperature, Te has a thermal energy gap of 0.32 to 0.38 eV. One of 

Te's unique properties is that its energy gap temperature coefficient is positive, which differs
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from majority of semi-conductors which have a negative energy gap [11]. This allows for Te to 

be a p-type semiconductor [12], and makes Te an unparalleled material in the fields of 

thermoelectrics and photovoltaics.

Approxim ately one-third of Te consumed in 2010 was used in the production of 

thermoelectric materials such as bismuth telluride (Bi2Te3) [13]. Thermoelectric-based devices 

use differences in temperature to produce electricity. The use of Te in thermoelectric devices is 

based off the physics of the Peltier effect, Seebeck effect, and Thompson effect which all help 

define the relationship between electromotive force and temperature gradient between two 

dissimilar metals. These thermoelectric are used as coolers in devices where temperature 

stabilization is critical, including lasers, thermal detectors [7], and medical instruments [1]. A 

small fraction of refrigerators and microrefrigerators also use Te bearing semiconductors.

Currently, the number one end-use of Te is in photovoltaic (PV) cells, accounting for 40% 

of industrial Te consumption in 2010 [13]. Tellurium is a major component of thin-film CdTe PV 

cells. Cadmium-Telluride PV cells are more than 50% Te by weight and must be synthesized 

with the use of high-purity grade Te [7]. Tellurium application in the semiconducting layer of 

solar cells can produce some of the highest power conversions seen in solar cells to date [7].

The energy payback time (EPBT) for CdTe solar cells is estimated to be 1.0 to 1.1 years. This is 

much less than that of traditional silicon based solar cells, which range from 1.5 to 2.5 years 

and can be as high as 4.4 years in some environments [14]. Recent growth in this industry has 

stressed the current supply of Te and created uncertainty about feasibility of large-scale CdTe 

PV deployment [15].

Historic changes in the end-uses of Te, shown in Figure 1.1, have been accompanied by 

historic price volatility. Since the mid 1970's the market price of Te has significantly increased, 

sometimes with dramatic fluctuations, especially during the past 15 years [1]. During this 

period, the price of Te ranged as low as $32.9/kg in 2003 to as high as $349/kg in 2011. Since 

2011, the price of Te has dropped dramatically and sold for $112/kg in 2013 and increased 

slightly to $117/kg in 2014 (Figure 1.2) [16, 17].

3



400 

I *  300
4—>

"  200 
M—o
cu u

•5= 100 
Q_

0
1920 1935 1950 1965 1980 1995 2010 

Year

Figure 1.2 The price of Te from 1917 to 2014 in dollars per kg. As the graph depicts, since 1975, 
the market price of Te has experienced substantial volatility [8 ].

One possible explanation for the historic fluctuations in Te prices is the increase in 

demand for Te from the manufacturers of CdTe PV cells, coupled with the increase in demand 

from China where Te is needed for metallurgy [18]. First Solar, the main producer of CdTe PV's 

[1] was founded in 1999, and began sales in 2002. By 2005, they had installed enough CdTe 

PV's to produce 25 MW. Since 2005 their sales have dramatically increased, with over 10 GW 

of electricity produced by First Solar panels worldwide. In 2006 they sold $13.5 million worth of 

CdTe PV's. However, since 2012 they have been averaging ~$3.3 billion in sales (Figure 1.3)

[19].
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Figure 1.3 First Solar sales from 2006 to 2014 [19]

Another factor potentially contributing to market volatility is the lack of transparency in 

the Te market, due to minimal truly open markets for Te. The majority of Te is sold through 

long-term supply contracts, which allows the speculative bubbles in Te price such as those seen 

in 2008 and 2011. Speculative price bubbles are caused by a perceived supply limit, which 

causes many consumers to stock up on Te. After it has been realized that there was not a true 

supply limit, the market adjusts, leading to a rapid decrease in the price. The price volatility of 

Te poses a significant threat to both the producers and consumers of Te. It effects the 

producers because they are unsure if it will continue to be profitable to produce Te, and it 

effects the consumers because they cannot afford to manufacture their products if the price 

become too high [20].

1.3 Global Supply o f Tellurium

There are three main potential sources for Te production: (1) gold, silver telluride 

deposits, (2) the direct mining of Te, and (3) copper ore deposits. Most of the Te present in the 

earth's crust occurs as telluride minerals associated with precious-metal-bearing deposits. 

However, these deposits are not a significant source of commercially available Te, in part, 

because the modern processes used for gold and silver extraction do not allow for the recovery 

Te [1].

One of the reasons the direct mining of Te is not widely practiced is that the 

concentration of Te would have to be significantly greater than 200 mg-kg-1 for the mining
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operation to be profitable, such concentrations in large volumes of rock have only been 

reported at a few locations and most of these are currently mined for gold [21]. There are 

three locations where Te is mined as the primary product—the Dashuigou and Majiagou 

epithermal deposit located in southwestern China, the Kankberg volcanogenic massive sulfide 

deposits in Sweden [1], and Moctezuma mining district in Mexico [22]. The direct mining of Te 

only accounts for 10-15% of the global production of Te [1].

Nearly all Te on the market today is a byproduct of copper (Cu) ore smelting (~75%) and 

to a lesser extent iron (Fe) ore smelting (~10%) [8]. This has made the production of Te more 

dependent on Cu demand and production rather than the demand of Te. This relationship is 

further complicated by the fact that Te can only be extracted from the anode slimes of copper 

ore that have been recovered by pyrometallurgical processes (also known as electrorefining), 

which is typically only applied to high grade copper sulfide ores [1]. Approximately two-third of 

the world's Cu production is recovered by pyrometallurgy [23]; however, this percentage is 

expected to continue to decrease as technological advances are made in solvent extraction 

electrowinning (SX-EW) [24]. The increase use of SX-EX of Cu raises concerns about the ability 

of the Cu market to continue to produce the world's needed Te [25].

Tellurium production has historically been volatile. This is due in part to the byproduct 

extraction tying Te production to the demand and production of Cu rather than the demand for 

Te. However, careful examination of the correlation between the production of Cu and Te over 

the years shows that the production of Te does not always have a direct correlation to that of 

Cu (Figure 1.4). From about 1930 to 1980 an increased Cu production led to an increase in the 

production of Te, but after 1980, Cu production continued to increase while Te's production 

decreased. This could be in part because the demand for Te decreased in the late 1980's due to 

the decreased need for Te in metallurgy [26]. Another possible explanation for the increase in 

Cu production without a noticeable increase in Te production is the steady increase of the 

production of Cu by SX-EW (Figure 1.5) [24].
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Year

Figure 1.4 Approximate world's production of Te and Cu from 1930 to 2003. Although the 
production of Te and Cu can be closely tied, more recent years do not show a direct correlation 
between the production of Te and Cu. Data for production since 2003 has been withheld by the

USGS to avoid publishing propriety data [16, 17].

1970 1975 1980 1985 1990 1995 2000

Year

Figure 1.5 Percentage of Cu produced by SX-EX. Since the mid 1980's there has been a steady 
increase in the percentage of Cu produced by SX-EX [24].

1.4 Tellurium Scarcity and Criticality

The global production of PVs has grown from 0.202 GW in 1999 [15] to 68 GW in 2011 

[22], demonstrating the growth in demand for high efficiency PV cells, a promising alternative 

energy source [14]. Photovoltaics currently supply only 0.1% of the world's electricity; 

however, it is estimated that this will grow to 2.5-25% by 2050, depending on the model used 

[14]. Thin-film PV cells, such as CdTe PV cells, are predicted to play a major role in the growth
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of solar energy production [18]. In 2009, CdTe PV cell accounted for about ten percent of PV 

sold, and this is expected to grow to 20-25% by 2020 [14]. Cadmium-telluride PVs are of 

interest in implementation of PVs as an energy source because they are currently the cheapest 

to produce, costing $0.74/watt peak (Wp). However, the concern about long-term supply and 

price volatility of Te presents a significant potential barrier for the production and continued 

implementation of CdTe PV cells [18].

It is estimated that it takes approximately 400 tonsa of Te to manufacture the PVs 

needed to produce one GW of electricity [27]. Since the world's current production for Te is 

estimated to be 450-500 tons [20], substantial increases in Te production are required to allow 

for the predicted growth in the production of CdTe PV cells. Te supply concerns coupled with it 

application in emerging renewable energy applications has led some organizations such as the 

American Physical Society (APS), U.S. Department of Energy (DOE), and the European 

Commission Joint Research Centre (JRC), to name Te as an "energy critical element" (ECE) [27­

29]. The APS applies the term ECE to elements meeting two requirements: (1) the element is 

critical to the production of one or more energy related technology that has the ability to 

impact the way energy is produced, transmitted, stored, or conserved and (2 ) the element does 

not have a well-established market because it has not been widely extracted or traded in the 

past [27].

These issues have led many experts, individuals, and governments to question if global 

Te supplies will be able to support growing demand of Te for the production of PVs and other 

end uses. In answer, multiple studies have concluded that the absolute availability of Te is not 

the limiting factor but rather the fluctuations and possible increases in the price of Te that will 

likely limit the implementation of CdTe PV cells [14, 15, 22, 30, 31]. While increasing Te 

production would resolve the issue of Te scarcity, this is not a simple or easy solution because 

the production of Te is interdependent with and relies on the Cu industry [14].

There are three primary issues limiting Te byproduct production from Cu: (1) Not all Cu 

extraction operations recover Te, (2) Te extraction efficiencies are low, and (3) an increasing 

amount of Cu is extracted using SX-EW technology that does not recover Te. It is estimated

a All uses of "ton" in this work refer to a metric ton or 1000 kg.
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that if every mine employing electrorefining decided to extract Te as a byproduct the global 

production of Te as a byproduct of Cu electrorefining can be increased to about three times the 

current production [7, 31]. The second limitation to Te production as a Cu byproduct is that 

overall extraction efficiencies are low. As a specific example, the extraction of Te from Cu 

anode slimes have been reported as low as 30-40% even though it should be possible to 

achieve a 80-90% Te extraction efficiency [31]. Third, the demand of Cu has grown at a 

relatively steady rate of three percent per year in the past 100  years; however, the sources of 

Cu have changed. Currently only about 65% of Cu is produced by pyrometallurgical extraction 

electrorefining. The remaining the Cu is either produced by SX-EW  or is a product of Cu 

recycling, neither of which allows for the production of Te [25].

1.5 Current Copper Extraction Process

About 80% of the world's copper production is found in Cu-Fe-S minerals, such as the 

porphyry deposits of chalcopyrite [23]. Since the majority of Te is extracted as a byproduct of 

Cu mining, it is key to understand the chemical and physical process that make up the 

pyrometallurgical Cu extraction prior to examining the behavior of Te within that process. The 

Cu extraction process can be unique to each mining operation based on parent ore mineralogy, 

technological evolutions, and government sanctioned environmental regulations [32].

However, there are three principle steps in Cu ore processing: mining, smelting, and refining, as 

is illustrated in Figure 1.6.
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Figure 1.6 Simple systemic of the Cu mining, smelting, and refining process. The mine tailings, 
slag, slimes, and gas impurities are all consider to be waste products.

1.5.1 Copper Mining

Ore is extracted from the ground at the mine site. For most open pit mines, the ore 

grade is about 0.5% to 2% copper, which is too low for the ore to be smelted economically; 

therefore, the Cu in the ore must be concentrated at the mine before it is transferred to the 

smelter. The ore is first ground to a particle size of ~250 |am (60 mesh). After grinding, the Cu- 

bearing minerals are concentrated and separated from the non-Cu-bearing minerals, also 

known as gangue minerals, by a process called froth flotation. During froth flotation, pulverized 

ore is treated with reagents, called collectors, causing Cu-bearing minerals to repel water.

These collectors work because their polar ends will attach to the sulfide mineral surface while 

the nonpolar hydrocarbon end will extend outward cause the mineral to repel water. The most 

common sulfide collectors are xanthates such as potassium amyl xanthate, sodium ethyl 

xanthate, and sodium isopropyl xanthate. As air bubbles are released from the bottom of the 

tank, causing the Cu-bearing sulfide minerals float to the top while the gangue minerals sink. 

The concentrate is typically about 30% Cu by mass, recovers about 90% of Cu in the ore, and 

represents only 1-2 % of the ore material originally taken out of the ground. The minerals that
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sink to the bottom are known as the mine tailings and are discarded at the mine. The 

concentrate is then transported to the smelter where it is further refined [23].

1.5.2 Copper Smelting

At the smelter, Cu ore is processed to produce Cu anodes. There are three furnaces 

used to produce Cu anodes from the Cu concentrate: flash furnace, converter, and anode 

furnace. The first step in the smelting process is to heat the concentrate to >1200° C in the 

flash furnace in the presence of oxygen gas (O2 ) and silica minerals. In the furnace, the silicates 

react with the iron oxide (FeO) to produce an iron rich slag (Fe2SiO4 ), which is discarded or sold. 

During the oxidation of sulfide minerals, sulfur dioxide (SO 2 ) gas is produced. This gas is 

harmful to the environment and must be collected and separated from dust and aerosol

particles. Therefore, SO 2 (g) is then cleaned and converted to sulfuric acid prior to sale or use on

site. The flash furnace partially oxidizes S and Fe and produces a Cu-rich matte (Cu2S-FeS), 

which will be further processed in the converter furnace. Equations 1.1 and 1.2 give a 

summary of the chemical processes of the flash furnace.

8CuFeS2 + 13 O 2 ^  4Cu2S-2FeS + 6FeO + 10SO2 Equation 1.1

2FeO + SiO2 ^  Fe2SiO4 Equation 1.2

The Cu-rich matte is then moved into a converter furnace where it is further oxidized to 

continue separation of Cu from Fe and S. Liquid matte is added to the converter though a large 

central mouth. The converter is then rotated, which forces oxygen into the matte. The 

conversion of matte into crude copper takes place in two steps: (1) the Fe elimination step 

(Equation 1.3) and (2) the blister copper formation step, which produces Cu that is 98-99% pure 

(Equation 1.4).

2FeS + 3 O2 + SiO2 ^  Fe2SiO4 + 2SO2 + heat Equation 1.3

Cu2S + O2 ^  2Cu0 + 2SO 2 + heat Equation 1.4

The iron silicate wastes from the converter furnace (Fe2SiO4 ) is recycled in the flash furnace 

because it can contain up to eight percent Cu. Like the flash furnace, the SO 2 (g) is purified and 

sold or used on site.
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The blister copper is then treated in an anode furnace with a non-oxidizing gas (such as 

methane) to remove excess oxygen and then is poured into copper anode molds. The 98-99% 

pure Cu anodes will have minor impurities such as gold (Au), silver (Ag), platinum group 

elements (PGE), Se, and Te. These molds are then sent to the refinery where these impurities 

are removed [23].

1.5.3 Copper Refining

At the refinery, Cu anodes are purified to produce Cu cathodes that are 99.9% pure. 

Copper cathodes are produced by dissolving the Cu anodes in a CuSO4-H2SO4 electrolyte 

solution prior to electrochemically plating Cu onto either steel or copper cathodes (Figure 1.7). 

Impurities such as Au, Ag, PGE, Se, and Te do not dissolve in the electrolyte solution and sink to 

the bottom to make up the anode slimes [23].

Raw anode slimes, primarily composed of CuSO4-5H2O, are subjected to a high pressure, 

high temperature acidic leach to liberate the Cu. After the Cu is removed, the pressed anode 

slimes are further processed for the recovery of the precious metals (Au, Ag, and Pt group) and 

sometimes Se and Te [33].

Figure 1.7 The electrochemical dissolution of Cu anodes in an electrolyte solution. Impurities 
such as Au, Ag, Pt, Pb, Te, and Se do not dissolve and sink to the bottom and become part of

the anode slimes [34].
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1.6 Tellurium Byproduct Recovery

The mass balance of Te during the mining and smelting process has previously been 

calculated for a 1970's Russian Cu mining operation (Figure 1.8). This study found that the 

majority of the Te in the original ore did not report to the anode slimes; almost 90% of the Te 

was lost at the mine during the initial concentration process. Since this study was performed 

before the invention of modern flash furnaces, this mine used a reverberatory furnace, which 

did not allow convertor slag recycling. At the smelter, 1.9% of the Te was lost to the furnace 

slag and 2.6% to the gas cleaning off the furnace. The slag from the convertor removed 

another 2.4% and 1.3% of the Te was found in the gas cleaning product. A total of 3.2% Te 

reported to the copper anode slimes were it was refined into pure Te metal and sold [7].

Figure 1.8 Mass balance of Te for a Russian Cu mine and smelter in the 1970s [7].

1.6.1 M ineralogy o f Tellurium in Ore Deposits

Tellurium most often occurs as telluride minerals in copper and gold deposits. In the 

natural environment, Te has chalcophile tendencies, meaning it is found with sulfide containing 

minerals such as pyrite (FeS2) and chalcopyrite (CuFeS2). Currently, Te has not been detected in 

rock-forming silicates, however, this may be because the detection limits of analytical methods 

for Te (in mg-kg-1) do not allow for the detection of Te rather than the lack of Te in siliates.

From a present day economic viewpoint, the most important occurrence of Te is with
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chalcopyrite [2]. This is because the majority of commercially available Te is produced as a 

byproduct of copper mining, mainly the mining of porphyry copper deposits and associated 

skarns [1]. However, more Te by mass is associated with Au-Ag telluride deposits [2], from 

which Te is rarely recovered [35].

Most naturally occurring sources of Te occur as a telluride; however, there are a few 

rare tellurite minerals (Table 1.1). Although several tellurate minerals have been described 

[36], it is believed that tellurates will only occur under exceptional climatic conditions . An 

examination of an Eh-pH diagram (Figure 1.9) shows that Te6+ will only occur in highly oxidizing 

conditions. However, oxidized tellurium has also been found in the environment [37]. Unlike 

sulfite and selenite, tellurite is stable even in oxidizing conditions. Because of their stability, Au- 

Ag tellurides can accumulate in placer deposits with gold and other heavy minerals [2]. There is 

some evidence that tellurium can substitute into the matrix of sulfide minerals as evidenced by 

SIMS data from the Emperor Mine in Fiji where Te has been measured without Au [38]. 

Tellurium can also occur as native tellurium, and, as mixed S-Te minerals, such as goldfieldite or 

tetradymite [39].

Table 1.1 Examples of some Te bearing minerals
Name: Chemical Formula:
Sylvanite (Au1-x, Ag1 -x)Te4

Calaverite AuTe2

Krennerite (Au,Ag)Te2

Petzite Ag3AuTe2

Cervelleite Ag4TeS
Tsumoite BiTe
Wehrlite Bi3Te 2

Tellurobismuthite Bi2Te 3

Tetradymite Bi2Te 2S
Altaite PbTe
Goldfieldite Cu1 2(Te,Sb,As)4 S 13
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F ig . 5 .  J3h-pH d iagram  fo r p a r t o f  the system  Tfe-O-H.
T h e activity  o f  d issolved  Te =  10- t , Sec text fo r d iscussion

Figure 1.9 Eh-pH diagram of Te aqueous species [40].

Few studies have quantified bulk Te concentrations in copper ore deposits. In an 

analysis of chalcopyrite from continental porphyry deposits [41], a range of 0 -  220 mg-kg-1 Te, 

with an average of 19.6 mg-kg-1 was determined. Yano (2012) found that the concentration of 

Te correlates with the concentration of silver (Ag), bismuth (Bi), lead (Pb), and gold (Au), 

suggesting that Te occurs in chalcopyrite as nanoparticles of telluride minerals rather than in 

the lattice of chalcopyrite [41]. Reich (2013) found trace amount of Te (~5 mg-kg-1) associated 

with the pyrite constituent of porphyry copper deposits [42].

1.6.2 Behavior o f Tellurium during Copper Concentration

Knowledge about the behavior of Te during copper ore concentration is limited to the 

behavior of Au and Ag tellurides which have been studied because of the precious metals 

associated with Te. Gold tellurides are known to readily float during froth flotation; however, 

the presence of heavy metal salts will decrease the tendency for Au tellurides to float with 

chalcopyrite [43].
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1.6.3 Behavior and M ineralogy o f Tellurium in Cooper Anodes and Anode Slimes

The Te concentrations in Cu anodes typically range from 5 to 400 mg-kg- 1 . Tellurium in 

the anode can occur in a variety of forms. The principle form is as telluride (>85%), in solid 

solution in the Cu matrix (3-9% Te) and, in high Te anodes, as an oxide phase. The principle 

telluride phases found in Cu anode include Cu2 (Se,Te) and (Ag,Cu)2 (Se,Te), where Te substitutes 

for Se in the crystal structure. Tellurium occurring in solid solution in the Cu matrix can range 

from 15 to 92 mg-kg-1 , with higher concentrations of Te in the Cu anode leading to more Te in 

solid solution. In high Te anodes, minor amounts of Te can also be found in the Cu-Pb-As-Sb-Bi 

oxide phase [44].

Currently, little is known about the mineralogy and speciation of Te in the anode slimes. 

However, this is an active area of research mainly because of the importance of the slimes in 

the recovery of precious metals [7]. Copper anode slimes typically have a Te concentration of 

1% to 5% Te [45]. Because of their fine grain size (<10 |am), heterogeneous nature, and soft, 

and sometimes amorphous, structure, the anode slimes are difficult to characterize. Therefore 

it is necessary to use multiple techniques and complex sample preparation to determine the 

mineralogy of the anode slimes [46].

As the Cu anode is electrochemically dissolved in the CuSO4 -5H2O electrolyte solution, 

many of the impurities in the anode, such as Ag, Ni, Pb, As, and Sb, also dissolve [44]. However, 

the majority of the Te remains largely unaffected. The telluride inclusions in the Cu anode drop 

into the anode slimes, with just a minor amount of Te oxidization. Unlike Te in the Cu2 (Se,Te) 

or (Ag,Cu)2 (Se,Te) phase, Te that exists in solid solution in the Cu matrix will dissolve with the 

anode and oxidize. However, this Te typically reprecipitates out to form the complex oxidate 

phase, which is a Cu-Ag-Pb-Au- sulfate-arsenate-antimonate-selenite-tellurite compound. In 

microprobe studies performed on a Cu anode as it electrochemically dissolves, the 

backscattered electron image shows the majority telluride phase as a spheroidal, ring-like, or 

irregular mass in the porous slime matrix (Figure 1.10) [47]. Due to the high mean atomic mass, 

these particles appear bright on the image. The oxidate phase appears less bright, is optically 

transparent, and has an irregular shape. The ability of Te to dissolve, oxidize, and then
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reprecipitate is one of the reasons that the removal of Te from the anode slimes during 

decopperization is often low and inconsistent.

Figure 1.10 Backscatted electron microscope image of a Cu anode slime as it dissolves 
electrochemically. Particle 3 is the oxidate phase and particle 4 is (Ag,Cu)2 (Se,Te) [47].

1.6.4 Extraction o f Tellurium as a Copper Byproduct

The process used to extract byproducts from the anode slimes is dependent on the 

mineralogy, speciation, and chemical composition of Au, Ag, PGE, Te and Se in the slimes. Since 

this can differ from each mine based off the differences in the parent ore and the exact Cu 

extraction process used, the processing of the slimes differs and is possibility unique for each 

mining operation [32]. However, there are a few main steps employed by most refineries 

(Figure 1.11) [48]. Because of their consistently high economic value, the current byproduct 

extraction process has been optimized for the extraction of precious metals often found in the 

slimes and not for the extraction of Se and Te [7]. The exact efficiency of recovery of Te from 

the anode slimes varies, and has been reported to average 30-40% for Cu refineries in Europe 

[31]. It has been estimated that increasing the efficiency of Te extraction from the slimes to 

around 80% has the potential to double the global production of Te [7].
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Figure 1.11 Processing of Te from raw anode slimes to pure Te metal [32, 48-50].

Before the recovery of the precious metals, the anode slimes are first treated to 

remove Cu, which accounts for ~5 -  20% by mass of the anode slimes [32]. The 

decopperization step also generally involves the removal of Te as well [49]. The most 

common method employed today for decopperization is autoclaving (using high 

pressure and temperature) in an oxidizing environment and sulfuric acid (H2SO4 ) [33]. 

Autoclaving allows for the removal of nearly 100% of the Cu in the slimes [32].

However, the amount of Te dissolved during autoclaving is inconsistent and often low 

due to refractory Te compounds in the slimes and the ability of Te to dissolve, oxidize, 

and then reprecipitate [47]. Tellurium is separated from Cu through cementation with 

Cu (Equations 1.5 -  1.7). Elemental Te (Te0 ) is then extracted from the Cu2Te by alkaline 

leaching and electrowinning (Figure 1.12). After the removal of Cu and some Te, 

autoclaving produces a product known as the pressed slimes [49].

Cu2Te (s) + 2O 2 + 2H2SO4 ^  2CuSO4 + H2TeO 3 + H2O Equation 1.5

2H2TeO 3 + O2 ^  2H2TeO 4 Equation 1.6

H2TeO 4 + 5Cu0 + 3H2SO4 ^  Cu2Te +3CuSO4 + H2O Equation 1.7
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Figure 1.12 Recovery of Te from leach after autoclave decopperization [49].

As a substantial fraction of the Te remains in the pressed slimes, many refineries will 

also extract Te from the soda slag of the dore furnace. The dore furnace is the furnace where 

the pressed slimes are further processed for the extraction of the precious metals [50]. The 

dore furnace produces a sodium carbonate (Na2CO3 ) rich slag containing sodium tellurite 

(Na2TeO 3 ). This soda slag is then pulverized and water leached under slightly acidic conditions 

(pH=5.5) to precipitate tellurium oxide (TeO2 ) (Equation 1.8), which is then dissolved in an acid, 

usually H2SO4 , to produce tellurous acid (H2TeO 3 ) (Equation 1.9). Tellurous acid is treated with 

SO 2 (g) to produce Te0 (Equation 1.10) [48].

Na2TeO 3 + H2SO4 ^  NaSO4 + TeO 2 + H2O Equation 1.8

TeO 2 + H3O+ + OH - ^  H2TeO 3 +H2O Equation 1.9

H2TeO 3 + 2SO2 + H2O ^  Te 0 + 2 H2SO4 Equation 1.10

1.7 Research Objectives

In order for CdTe based PVs to substantially contribute to solving growing global energy 

demands, a stable affordable source of Te is required [14, 16]. One way to increase Te 

resources available to industry is to optimize byproduct recovery of Te from Cu extraction. This
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requires a fundamental understanding of Te behavior during the Cu extraction process. The 

American Smelting and Refining Company (ASARCO) is currently the only domestic producer of 

Te, which is why we have collaborated with them to examine Te behavior during Cu extraction. 

The specific aims of this project at the ASARCO Mission and Ray Mine, Hayden Smelter, and 

Amarillo Refinery are as follows:

1. Calculate the mass balance of Te though the Cu extraction process to identify key points 

in the extraction process to target for optimization of Te extraction

2. Analyze Te's mineralogy and bonding environment in waste products and anode slimes 

to facilitate development of Te extraction strategies.

In order to address these aims, samples from throughout the ASARCO process from ore to dore 

furnace soda slag were collected. Elemental composition of each sample was analyzed by 

inductively coupled plasma mass spectrometry (ICP-MS) and wavelength dispersive x-ray 

fluorescence (WD-XRF). These concentrations were used to calculate the mass balance of Te at 

the mine and smelter.

The Te mineralogy and bonding environment of Te were examined with several 

different techniques. Micro-focused x-ray fluoresce (^-XRF) maps were collected on thin- 

sections to determine collocated elements, and the UAF electron microprobe (EMPA) was used 

to determine Te bearing gains in the concentrate and slime samples. The speciation of S and 

Te, as concentration allowed, were examined by x-ray absorption spectroscopy (XAS). The 

speciation of S is of interest in this project because S, like Te, is a group 16 element and can 

exhibit the same oxidation states as Te, and was used to lend insight into Te behavior when Te 

concentrations were too low to be directly determined.
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Chapter 2 Site Description

The site selected for this project was the American Smelting and Refinery Company 

(ASACRO), a copper production facility based out Tucson, Arizona. ASACRO is currently the only 

domestic producer of Te [16]. There are three sites for ASARCO Cu production: (1) the mines, 

which include the Mission Mine complex and Ray Mine, (2) the Hayden Smelter, and (3) the 

Amarillo Refinery [51].

2.1 The Mines

There are two main mine sites at which ASARCO mines Cu ore, the Mission Mine 

complex and the Ray Mine. The Mission Mine consist of two mills, the Mission Mine North and 

Mission Mine South [51]. It is located 32 km southwest of Tucson, AZ in the Pima mining 

district. The Pima mining district consists of a porphyry Cu and skarn orebody with an average 

grade of 0.62% Cu [52]. Mining at the Mission complex began in 1916 [51]. The Mission Mine 

also contains carbonate and sulfide minerals, e.g. Zn, Pb, and Mo sulfides [53]. The Ray Mine is 

located 113 km north of Tucson, near Hayden, AZ. Mining at the Ray mine began in 1911. Like 

the Mission Mine complex, the Ray Mine also hosts a porphyry Cu deposit, but unlike Mission 

Mine, Ray Mine contains no skarn [54]. The mined ore is concentrated on site before it is 

transported to the smelter.

For this project, ore samples, as well as blast samples from hornfels, diposide-, 

wollastonite-, and garnet-rich ores from the Mission Mine were obtained. Samples of the 

concentrate from the Mission Mine North, Mission Mine South, and the Ray Mine were 

collected, and the flotation head and tails from the Mission North were also collected.

2.2 The Sm elter

The concentrate from the Mission Mine complex and the Ray Mine, as well as some 

third party mines, are processed at the Hayden Smelter. The Hayden Smelter is located in 

Hayden, AZ, near the Ray Mine. The Hayden Smelter processes approximately 27,400 tons of 

concentrate a day. Figure 2.1 shows that schematic of the Cu extraction process at Hayden 

Smelter [51]. For this project, the following samples have been obtained: concentrate, the filter
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from the flash furnace, the filter from the converter, and the slag from the flash furnace 

(indicated by stars in Figure 2.1).

Figure 2.1 The ASARCO Hayden Smelter diagram. The stars shows the products for which
samples were obtained [51].

2.3 The Refinery

From the Hayden Smelter, the Cu anodes are transported to the Amarillo Refinery which 

is located 14 km northeast of Amarillo, TX. The Amarillo Refinery produces refined Cu cathode, 

silver bars, gold bars, crude nickel sulfate (NiSO4), Se, Te, Pt sponge, and palladium (Pd) sponge. 

Sample analyzed from the refinery include: raw anode slimes, pressed anode slimes, dore 

furnace soda slag and the dore furnace gas filter.
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Chapter 3 M ethods

3.1 Sam ple and Standard Collection, Preparation, and Preservation

Samples were collected from ASARCO mines, mills, smelter, and refinery at various steps 

in the copper extraction process (Table 3.1), including: hand samples of ore, blast hole cuttings, 

mill heads, mill tails or mine tailings, and concentrate from the Mission complex, including both 

the north and south mills (Sahuarita, AZ). Concentrate samples were also obtained from the 

Ray mine (Hayden, AZ). Smelter samples were acquired from the Hayden Smelter (Hayden, AZ) 

and refinery samples were obtained from the Amarillo Refinery (Amarillo, TX).

Table 3.1 List of ASARCO sample numbers, description, location, and date collected.
Sam ple #: Sam ple Description: Sam ple Location: Date:
335 Garnet (andradite) skarn Mission Mine 4/10/2012
335-Cp Chalcopyrite separate of sample 335 Reichardt Building 12/2013
338 Hornfels Mission Mine 4/10/2012
338-Py Pyrite separate of sample 338 Reichardt Building 12/2013
342 Hornfels blast hole Mission Mine 4/10/2012
343 Diposide blast hole Mission Mine 4/10/2012
344 Diopside blast hole Mission Mine 4/10/2012
345 Garnet blast hole Mission Mine 4/10/2012
346 North Mission Mine concentrate Mission Mine 4/10/2012
347 South Mission Mine concentrate Mission Mine 4/10/2012
348 Red Hill Pit Mission Mine 4/10/2012
349 Dore furnace soda slag Amarillo Refinery 3/29/2012
350 Dore furnace dust Amarillo Refinery 3/29/2012
351 Flash furnace dust Hayden Smelter 4/10/2012
352 Ray Mine concentrate Ray Mine 3/22/2012
353 Convertor dust Hayden Smelter 4/12/2012
354 Raw slimes Amarillo Refinery 4/12/2012
355 Pressed slimes Amarillo Refinery 4/12/2012
416 North Mission Mine flotation head Mission Mine 3/2013
417 North Mission Mine flotation tail Mission Mine 3/2013
418 North Mission Mine concentrate Mission Mine 3/2013
467 Flash furnace slag Hayden Smelter 2/10/2014

Samples were air dried, many prior to their receipt from ASARCO and stored under 

ambient conditions prior to analysis. For ICP-MS, WD-XRF, and bulk XAS analysis, samples and
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reference materials were ground to a particle size of <10 |am using a McCrone Micronizing Mill 

located at the University of Alaska Fairbanks (UAF) Advanced Instruments Laboratory (AIL). In 

the micronizing mill, samples were ground in ethanol for at least 10 minutes using corundum 

grinding elements. For micro-focused XRF and electron probe microanalysis, thin sections were 

prepared by embedding unground sample in EPOTEC 301-2FL epoxy and curing under a vacuum 

for three days, prior to sectioning to 30 |am, polishing on both sides, and then mounting on 

quartz slides by Spectrum Petrographics (Vancouver, WA).

All reagents used were ACS grade or better. Reference materials were obtained from a 

variety of different sources as outlined in Table 3.2.

Table 3.2 Sources o : S and Te reference compounds
Reference: Formula: Source: ID or location: Reference:
Ammonium
Sulfate

(NH4 )2SO4 Sigma Aldrich A2939 this study

Anglesite PbSO4 Sigma Aldrich 10011KE Hayes 2014 
[55]

Barite BaSO4 UAF Museum of the 
North

AK-1417-G-1 this study

Copper Sulfate 
Pentahydrate

CuSO4 -5H2O Fishers Chemical this study

Chalcocite Cu2S Wards Scientific 14023 this study
Chalcopyrite CuFeS2 Wards Scientific 49-5864 this study
Covellite CuS Excalibur Mineral 

Corporation
Butte, Montana this study

Goslarite ZnSO4 -7H2O Mallinckrodt V076116 Hayes 2014
Gypsum CaSO4 -2H2O Wards Scientific Alberta, Canada Hayes 2014
Iron (III) Sulfate FeSO4 Fishers Chemical 040692 Hayes 2014
Molybdenite MoS Wards Scientific 491686 this study
Pyrite FeS2 Wards Scientific Unknown Hayes 2014
Pyrrhotite SX

1-eF Wards Scientific 46E4699 this study
Sodium Sulfite Na2SO 3 Sigma Aldrich S-8018 Hayes 2014
Sodium Sulfate Na2SO4 Sigma Aldrich 117K0004 Hayes 2014
Troilite FeS Excalibur Mineral 

Corporation
Alta Mine, 
California

Hayes 2014

Sodium Tellurate Na2TeO 4 Alfa Aesar AH41778-18 this study
Sodium Tellurite Na2TeO 3 Alfa Aesar AA75106-18 this study
Tellurium oxide TeO 2 Alfa Aesar 12284 this study
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Table 3.2 continuec
Reference: Formula: Source: ID or location: Reference:
Native Te Te Excalibur Mineral 

Corporation
USA this study

Calaverite AuTe2 Excalibur Mineral 
Corporation

Cresson Mine, 
USA

this study

Copper Telluride Cu2Te Alfa Aesar 44077 this study
Tellurobismutite Bi2Te 3 Excalibur Mineral 

Corporation
Boliden, Sweden this study

Pilsenite Bi4Te 3 Excalibur Mineral 
Corporation

Hope, B.C. 
Cananda

this study

Tsumoite BiTe Excalibur Mineral 
Corporation

Bjorkdalsgruvan,
Sweden

this study

3.2 Elem ental Analysis

3.2.1 Inductively Coupled Plasma Mass Spectrometry

Inductively coupled plasma mass spectrometry (ICP-MS) is a commonly used technique 

for the measurement of trace elements in environmental samples because of low parts per 

trillion (ng-kg-1) detection limits, small amount of sample required (<100 mg) [56], good 

precision and accuracy, essentially simultaneous analysis of several elements, and minimal 

interferences leading to a high degree of selectivity [57]. The Agilent 7500ce ICP-MS (Agilent 

Technologies, Santa Clara, CA) located at UAF AIL was used for the analysis of Te and other 

trace elements in the ASARCO samples.

Figure 3.1 shows an instrument diagram of the ICP-MS. In an ICP-MS, the torch creates 

a plasma that can atomizes and ionizes the sample. Argon (Ar) gas is used to generate the 

plasma because the high ionization energy of Ar (1580 kJ/mol), which is higher than all other 

elements with the exception of helium (He), neon (Ne), and fluorine (F). This means that the 

analyte atoms are completely ionized in the plasma by collisions with Ar+, excited Ar atoms, or 

energetic electrons. The ions and plasma will then travel through a series of cones used to 

steer and condition the ion beam as well as facilitate the decrease in pressure required to 

prevent collisions between the analyte ions and gas molecules. The first of these is the 

sampling cone, which has a 1 mm opening and will only allow for a fraction of the plasma to
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pass through it. Next, the plasma will pass through a skimmer cone, which has a negatively 

charged extraction lens placed behind. This lens serves to attract the positively charged ions 

from the plasma. These ions will then travel though a collision cell that will contain either He 

gas, or H2 gas that reduces interferences and guides the ions to the mass separator [58]. Ions 

are then separated by their mass-to-charge (m/z) ratio by a quadrupole mass analyzer. Once 

the quadrupole has separated the ions, an electron multiplier produces a mass spectrum of the 

ion counts vs. m/z. This spectrum is then used to calculate the concentration of analyte [57].

Figure 3.1 Sample path for ICP-MS analysis [58].

One of the major disadvantage to using ICP-MS is that only aqueous samples may be 

introduced into the instrument. In geochemical samples, this poses a problem because many 

naturally occurring samples do not readily dissolve. This leads to some potential barrier in ICP- 

MS sample preparation including incomplete dissolution and increased sample preparation 

costs. Other areas of concern for ICP-MS analysis include matrix effects, drift, and memory. 

Matrix effects is when an element is effected by the presence of other dissolved solids or acids. 

Drift is seen when the instrument response to an element varies over time and is often the 

result of changes in instrument parameters. Memory problems occur in cases where the 

sensitivity is decreased because the previous sample remains in the instrument.

There are three main calibration strategies that can be applied to ICP-MS: external 

calibration, internal standardization, and standard additions. External calibration uses solutions
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of known concentrations to make a calibration curve that can be used to relate signal 

intensities to the concentration in unknown samples. Internal standardization is the consistent 

addition to the sample of an internal standard, a solution that contains one or more elements 

not present in the sample. A good internal standard will contain elements that are closely 

matched in mass and first ionization potential of the analytes. However, the application of 

internal standardization is difficult for environmental samples because it cannot always be 

assumed that the samples does not contain the elements in the internal standard and it can be 

difficult to find an internal standard recipe that will match the masses of the range of elements 

of interest. Lastly, standard additions is the addition of the known spike to the unknown 

samples. This is the most expensive calibration strategy because it requires at least two 

measurements for every sample. Ideally, the spike solution should contain significantly, roughly 

five times, more analyte than the sample [56]. Standard additions is the best method of 

calibration to correct for significant matrix effect problems; however, this correction is best 

applied to rotational matrix effects, which is where the size of the signal for the analyte is 

affected by other constituents in the solution. This will affect the slope of the calibration line 

but not its intercept. Translational matrix effects, which affect the intercept of the calibration 

and are caused by concomitant substance in the solution, must be corrected with background 

removal [59].

3.2.1.1 M ethod Developm ent o f Sodium Peroxide Sinter

In order to dissolve geomedia for ICP-MS analysis, a sample preparation method capable 

of complete and consistent sample dissolution is critical [60]. Currently, the standard 

geochemical method is wet chemical digestion using a mixture of concentrated hydrofluoric 

acid (HF), nitric acid (HNO3 ), and hydrochloric acid (HCl) and perchloric acid (H G O 4 ). However, 

this method is hazardous because of the risks associated with concentrated acids, especially the 

human health risks associated with HF and the explosive nature of HClO4 . Although routine at 

many contract labs, an acid digest procedure is not suitable for the university laboratory 

environment.
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Sodium peroxide (Na2O2) sinter presents an attractive alternative to traditional four acid 

chemical digestion because, although Na2O2 is a strong oxidizer, the overall risks are considered 

lower [60]. Multiple studies have evaluated the accuracy of using Na2O2 for dissolving samples 

and compared the peroxide sinter technique with other methods [56, 60, 61]. In particular, 

Meisel et al. (2002), demonstrated the method suitability for a variety of normal silicate rock 

through the analysis of several standard reference materials (SRM). The results indicate that 

peroxide method is both precise (within 5% standard deviation) and accurate for most 

elements for normal rocks [61].

For Na2O2 method development, matrix matched Te-containing SRM were selected. 

These are the National Institute of Standards and Technology (NIST) 2780 Hard Rock Mine 

Waste and the Natural Resources Canada, CCU-1d, a copper mine concentrate, with 5 and 36.7 

± 7.4 mg kg-1 Te, respectively. It should be noted that the NIST 2780 Te values were reported 

for informational purposes only. As discussed later, the concentrations of trace elements of 

interest, especially Te, were reliably measured using the peroxide sinter method. Ten replicate 

measurements of each SRM were performed and yielded results that differed from reported 

values by less than 10% for Te. Thus, this method was deemed appropriate for use in this study

3.2.1.2 Sam ple Preparation fo r  ICP-MS

Samples were prepared for ICP-MS analysis using the sodium peroxide sinter method 

outlined in Meisel, 2002 [61]. Briefly, in a glassy carbon crucible 100 ± 1 mg of sample and 600 

± 5mg of Na2O2 were mixed together. The crucible was then placed in a preheated muffle 

furnace at 480 °C for 30 minutes. After heating, the crucible was removed from the furnace 

and allowed to cool to room temperature (approximately 30 minutes). Crucible and clinker 

were then placed in a 250 mL bottle and then 10 g of 18 MQ water was added to the crucible 

and allowed to react. The reaction often produced small amounts of gas and took about 10 

minutes to go to completion, as indicated by the ceasing of bubble formation. At this point the 

sample and crucible were stored until analysis. On day of analysis 2 g of 13% HNO3 and 2 g of 

35% HCl were added to the bottle that contained the crucible. Ultrapure water was then added
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to bring the total solution mass up to 100 g, prior to final dilution (10x and 500x) and analysis by 

ICP-MS [61].

3.2.1.3 ICP-M S Elem ental Analysis

Calibration of the ICP-MS for these analyses involved the use of external calibration, 

internal standards, and standard addition. External standards used during this procedure to 

calibrate instrument response with concentrations of elements of interest. The concentrations 

of the external calibration curve for high concentration elements were 500, 250, 50, 10, 5, and 

0.1 ng^kg-1 for Ca, Ti, and Zn. Lower concentration elements were calibrated at 50, 25, 5, 1, 0.5, 

and 01 ng^kg-1 for As, Ba, Bi, Cd, Cr, Au, Mn, Ni, Pb, Pd, Pt, Se, Ag, Te, and V. A mixture of 

internal standards was added to each sample and standard containing 100 ^g-kg-1 of Ge 72, Y 

89, Rh 103, and Ir 193. These internal standards were used to constrain calibration curves and 

check for instrument drift. Each external calibration curve was constrained by the internal 

standard that gave the best calibration (R2 closest to 1, for all elements R2>0.98). Appropriate 

method and reagent blanks were also measured. During data collection, quality control 

measures included calibration checks of a mid-calibration standard, blank measurements, and 

SRM solutions were measured every 10-12 samples.

Standard additions were used to account for matrix effects from the samples and 

instrumental drift, which were found to be significant during early data collection. A spike 

solution would ideally contain 5x predicted sample concentration [59]. The higher 

concentration elements (Ca, Zn, Pb, Ti, Mn, Bi, and Ba) were diluted 500x. An additional 500x 

dilution of sample was made by diluting 0.5 g of sample and 0.5 g spike solution to a final total 

mass of 10 g. The 500-fold dilution spike solution contained 100 mg-kg-1 Ca and Zn, 10 mg-kg-1 

Pb, Ti, and Mn, 5 mg-kg-1 Bi, 2 mg-kg-1 Ba, and 0.2 mg-kg-1 As and Ag. Lower concentration 

elements (V, Cd, Cr, Bi, Ni, Se, Te, As, Au, Pt, Pd, and Ag) were diluted 10x. In addition a 10x 

sample was prepared with 0.5 g of sample and 0.5 mL a spike solution diluted to a total mass of 

10 g. The ten-fold dilution spike solution contained 3 mg-kg-1 V, 1.5 mg-kg-1 Cd and Cr, 1 mg-kg-1 

Bi, Ni, Se, Te, and As, and 0.2 mg-kg-1 Au, Pt, Pd, and Ag. Spike concentrations were selected to
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be 5x the expected sample concentration, although this was not always the case due to sample 

heterogeneity.

During ICP-MS analysis, measurements of an acid blank, a calibration check, and of NIST 

2780 or CCU-1d were was taken every 10-12 samples though out the run to assure the 

precision and accuracy of results. All measurements were taken in three gas modes: hydrogen, 

helium, and no gas in the collision cell. The data reported here was collected using hydrogen, 

and was used because it gave the most accurate and precise quantification of Te.

3.2.2 Wavelength Dispersive X-Ray Fluorescence

Wavelength dispersive x-ray fluorescence (WD-XRF) is an excellent method for 

quantitative elemental analysis of major elements. It is often the method of choice for 

quantifying elements in solid samples because it can be done relatively quickly, it is 

nondestructive technique, and is substantially less costly than analysis by ICP-MS [56].

However, the W D-XRF has a higher detection limit than ICP-MS [in the low parts per million 

(mg-kg-1)] and general requires at least 10 grams of sample [57]. Wavelength dispersive x-ray 

fluorescence can be employed to measure both major elements (Na, S, Mg, Al, Si, P, K, Ca, Ti, 

Mn, Fe etc.) and minor elements (Sr, Zr, Cr, Ni, Cu, Zn, Ba, etc.) simultaneously. A wavelength 

dispersive spectrometer (WDS) was selected for this study over energy dispersive spectrometer 

(EDS), because of lower detection limits and higher accuracy and precision [62].

When an atom is hit by a beam of x-ray radiation with energy higher than its ionization 

potential, a core electron may be ejected from the atom, and the hole will be filled by an 

electron from a higher shell. This movement of the electron from greater potential to lower 

potential may also yield a fluorescent photon with a characteristic energy unique to both the 

transition of the electron and the emitting element. Emission of fluorescent x-rays in not the 

only possible result of x-ray sample interaction, but is the most probable result for high atomic 

number (Z) elements. X-ray intensity is proportional to elemental concentration in the sample, 

and thus can be used to quantify elements in the sample. This wavelength of this radiation can 

be calculated by using Equation 3.1.

,  hc
A=y  Equation 3.1
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Where X is the wavelength, h is Plank's constant (6.626 x 10-34 m2-kg-s-1), c is the speed of light 

(3.00 x 108 m-s-1), and E is the energy of the absorbed radiation in joules.

In order to be detected by a WD-XRF, fluorescent x-rays generated in the sample must 

satisfy the diffraction condition, scatter off the detector crystal in order to reach the detector. 

The angle of the detector crystal and position of the detector are determined by Bragg's Law 

(Equation 3.2).

2dsin0=nX Equation 3.2

These photons are then detected by a scintillation counter. In a wavelength dispersive analysis, 

characteristic radiation emitted from the sample is selected on the basis of wavelength. Since 

the count rate is related to the amount of analyte in the sample, this information establishes 

the elemental composition of the sample and quantifies the concentration of those elements 

(Figure 3.2) [63].

3.2.2.1 Sam ple Preparation and Analysis o f W D-XRF

Samples for W D-XRF analysis were prepared as pressed pellets by mixing 12.5 g of 

sample (ground in a steel ball mill) with 1.25 g of PXR-225 (a binding agent) and 7 mL of Vertrel 

XF (a lubrication agent) for four minutes. The sample, binder, and lubricant ratio has been 

optimized for samples that contain over 50% sulfide minerals and results in the sample being
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diluted by 9%. The sample was then pressed in a 37mm metal cup to approximately 20,000 psi 

for 2 minutes.

Wavelength dispersive x-ray fluorescence data was collected on a four kilowatt 

PanAlytical Axios (Westborough, MA) located in AIL at UAF. The instrument was equipped with 

a LiF 220 crystal, a scintillation detector, and a 150 |am collimator. The energy was set to 60 keV 

and the current was 66 mA. For Te, the Ka line was measured at 18.2° 20 for 188 seconds, 

while the background was measured at 17.9° 20 and 18.7° 20 for 60 and 40 seconds 

respectively. X-ray fluorescence data was analyzed using PANalytical software, SuperQ (version 

4.0Q; 4.1251.3). Spectrum were initially identified with IQ+ (a feature of the software) and 

then confirmed by manual inspection.

3.3 Mass Balance Calculations

Mass balance calculations were used to determine Te behavior, distribution, and losses 

during Cu extraction. The mass balance at the mine was calculated using Te concentrations 

determined by peroxide sinter ICP-MS for samples Mission Mine samples collected April 2012 

(samples 416 -  418) and the flux numbers reported by ASARCO for April 2012. For the Hayden 

Smelter, the mass balance was calculated using ICP-MS concentrations for smelter samples 

(351, 353, and 467) and flux numbers for March 2010. Mass balance calculations for Te were 

modeled after bismuth mass balance calculations supplied by ASARCO. The amount of Te in 

each product and waste product was calculated by Equation 3.3.

concentration of Te (mg-kg-1) x amount produced (kg) = amount of Te (mg)

Equation 3.3

The amount of Te was then normalized to 100% in the ore so that the data could be reported as 

percentages. The error associated with the mass balance calculations was calculated by 

propagation of uncertainty as outlined by Harris (2010) [58].

3.4 X-Ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) was used to examine the speciation of Te and S 

[64]. Synchrotron radiation is needed for XAS in environmental samples because the high
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intensity source of x-rays (five to ten orders of magnitude brighter than x-rays produced from a 

sealed or rotation anode tube) is needed to measure the absorption of the x-rays at the 

element's characteristic absorption energy in environmental samples. X-ray absorption 

spectroscopy has been used to study the geochemistry of environmental samples since the 

1980's and is now widely used in the field of low temperature geochemistry to probe the 

speciation of specific elements with low matrix interferences [65, 66].

In a transmission XAS experiment, a monochromatic x-ray beam, which is scanned in 

energy during the experiment, impinges upon the sample. Some of these x-rays will be 

absorbed by atoms of the element of interest within the sample and cause the ejection of a 

core electron. The amount of x-ray absorption is quantified by comparing the intensity of the 

incident beam to the energy of the transmitted beam. The energy of the transmitted beam can 

be related to the incident beam by Equation 3.3.

I = I 0e"wx Equation 3.3

Where I is the energy of the transmitted beam, I0 is the energy of the incident beam, |j. is the 

mass absorption coefficient, p is the density of the sample, and x is the thickness of the sample.

In the case of low concentration samples, fluorescence geom etry is preferred to take 

advantage of inherent sensitivity of fluorescent geometry. Fluorescence photons, of 

characteristic energy, are produced when a valance electron fills that core hole created by the 

absorption of the incident x-ray and ejection of a core election (Figure 3.3). The fluorescence 

XAS spectrum exhibits the same shape as a function of excitation energy as the absorption 

spectrum, meaning the spectra collected using both detection methods can be used 

interchangeably.
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Figure 3.3 Possible energy transitions elements can undergo that will cause the release of a
photon [67]

The XAS spectrum is generally divided into the x-ray absorption near edge structure 

(XANES) and the extended x-ray absorption fine structure (EXAFS). The phenomena recorded in 

the XANES region is caused by long range electronic transitions within the atom and multiple 

scattering of released photons by the atoms surrounding the atom of interest [66] and is 

sensitive to the oxidation state and mineral phase of the absorbing element [64]. The XANES 

spectrum is caused by the electron transition happening within the atom and multiple 

scattering of released photons by the atoms surrounding the atom of interest [66]. The EXAFS 

region lends insight into the local structure and bonding environment of the absorbing element. 

It can be used to determine the coordination number, bond lengths, and identity of neighboring 

atoms [64]. The unique patterns of the EXAFS are a result of the single and multiple scattering 

of photoelectrons released by neighboring atoms [66].

3.4.1 Bulk S XAS

3.4.1.1 Bulk S XAS Collection

Sulfur speciation can be readily probed with known S XAS (also known as NEXAFS for 

near-edge x-ray absorption fine structure) because of a 12 eV separation of sulfide (S2 -) and 

sulfate (SO4 2 -) oxidation states. Linear combination fits (LCFs) are commonly used for this type 

of analysis. However, in order to achieve good fits, the sample must consist of a mixture of 

pure compounds for which reference spectra are available. Linear combination fits can be used
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to quantify the ratio of oxidized to reduced species present in the sample. The measurement of 

S XAS is more complicated than that of heavier elements because low energy x-rays are readily 

absorbed by air necessitating S XAS experiments to be performed in a He atmosphere.

Sulfur K-edge spectra for samples and reference materials were collected at the 

Stanford Synchrotron Radiation Lightsource (SSRL) on beam line 4-3. All measurements of the 

samples were made with a 2 mm vertical slit and a passivated implanted planar silicon (PIPS) 

detector. Fluorescence geom etry was used to measure all references and samples. The energy 

of the incident x-ray beam was scanned for the pre-edge region (2240 eV to 2800 eV, with a 

step size of 5 eV), for the edge region (2,240 to 2450 with 0.15 eV steps), and for the post-edge 

region (2500 to 2800 eV at 0.5 eV steps).

3.4.1.2 S XAS Data Analysis

The XAS spectra for sulfur were averaged and analyzed using SixPACK (version 1.00)

[68]. Sulfur energy was calibrated using sodium thiosulfate by setting E0 to 2472.02 at the 

maximum of the first peak. To optimize the fits, background was removed by the parameters 

listed in Table 3.3 using linear pre-edge fit and a quadratic post-edge fit.

Table 3.3 Background removal parameters for S XAS analysis
Sample: Pre-Edge: Norm alization:
349: ACR Slag -200 to -20 40 to ~330
351: Presscake -200 to -20 35 to ~330
353: Baghouse Feed -200 to -20 35 to ~330
354: Raw Slimes -200 to -20 35 to ~330
355: Pressed Slimes -200 to -20 35 to ~330
Aluminum Sulfate -200 to -20 35 to ~105
Ammonium Sulfate -200 to -20 35 to ~105
Anglesite -200 to -20 35 to ~105
Barite -200 to -25 40 to ~105
Chalcanthite -200 to -25 40 to ~105
Chalcocite -200 to -25 30 to ~330
Chalcopyrite -200 to -20 40 to ~105
Covellite -200 to -25 30 to ~105
Goslarite -200 to -20 35 to ~105
Gypsum -200 to -20 35 to ~105
Melanterite -200 to -20 35 to ~105
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Table 3.3 continued
Sample: Pre-Edge: Norm alization:
Molybdenite -200 to -25 40 to ~105
Pyrite -200 to -10 35 to ~105
Pyrrhotite -200 to -25 20 to ~105
Sodium Sulfite -200 to -20 35 to ~330
Thenard ite -200 to -20 35 to ~330
Troilite -200 to -25 40 to ~330

3.4.1.3 S Linear Combination Fitting

After the background was removed, LCFs were performed to determine the individual S 

components of the system. A library of 17 S reference spectra (Figures 3.4 and 3.5; Table 3.3) 

was initially used to fit each sample spectrum, but fits were eventually constrained by the 

sample's chemical composition (known from ICP-MS and W D-XRF results), which limited the 

possible S species to sulfides (covellite, chalcopyrite, chalcocite, and trolilite), disulfides (pyrite), 

and sulfate (barite and chalcanthite). The fits were performed using the cycle fitting function 

within the LCF module within SixPACK. The fits were constrained to non-negative fits only but 

were not forced to a sum of one. The final fits were selected based on statistics (low reduced 

X2) and knowledge of chemical composition. These fits should be interpreted as a guide for the 

types of sulfur present in the samples (e.g., sulfides, disulfides, sulfates) rather than a specific 

indicator of a particular species being present.
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Figure 3.4 XAS spectra for reduced and partially oxidized sulfur reference samples.
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Figure 3.5 XAS spectra for fully oxidized sulfur reference samples.

3.4.2 Bulk Te XAS
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3.4.2.1 Bulk Te XAS Collection

Tellurium K-edge spectra for samples and reference materials were collected at the SSRL 

on beam lines 4-1 and 11-2. The measurements of reference spectra TeO 2, native Te, Na2TeO4, 

Na2TeO 3, and AuTe2 as well as the raw and pressed slimes and the dore dust and soda slag were 

made with a 2 mm vertical slit. Reference materials Na2TeO4, Na2TeO3, Cu2Te, Bi2Te3, Bi4Te3, 

and BiTe and the flash furnace dust measurements were made with a 0.5 mm vertical slit. 

References were collected in transmission geometry with ion chambers filled with Ar gas, while 

samples were collected in fluorescence geometry with either a lytle detector or 100-element 

Ge detector. All experiments were performed at a temperature of 70 K (using liquid nitrogen to 

cool the chamber). The x-ray excitation energy was scanned for the pre-edge region (31,580 eV 

to 32,900 eV, with a step size of 5 eV), for the edge region (31,580 to 31,800 at 0.5 eV steps), 

and for the post-edge region (31,850 to 32,900 eV at 1 eV steps).

3.4.2.2 Te XAS Data Analysis

The XAS spectra for Te were averaged and analyzed using SixPACK (1.00) [68]. Tellurium 

energy was calibrated using tellurium oxide (TeO2) by setting E0 to 31,814 eV at the maximum 

of the first derivative. To optimize the fits, background was removed by the parameters listed 

in Table 3.4 using linear pre-edge fit and a quadratic post-edge fit.

Table 3.4 Background removal parameters for Te XAS analysis
Sample: Pre-Edge: Norm alization:
Flash Furnace Dust -200 to -50 100 to ~800
Raw Slimes -200 to -50 100 to ~800
Pressed Slimes -200 to -50 100 to ~800
Dore Furnace Slag -200 to -50 100 to ~800
Dore Furnace Dust -200 to -50 100 to ~800
Na2TeO 4 -200 to -50 100 to ~800
Na2TeO 3 -200 to -50 100 to ~800
TeO 2 -200 to -50 50 to ~800
Native Te -200 to -50 50 to ~800
AuTe2 -200 to -50 50 to ~800
Cu2Te -200 to -50 50 to ~800
Bi2Te 3 -200 to -50 50 to ~800
Bi4Te 3 -200 to -30 100 to ~800
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Table 3.4 continued
Sample: Pre-Edge: Norm alization:
BiTe -200 to -50 50 to ~800

3.4.2.3 Te Linear Combination Fitting

After the background was removed, LCFs was performed to determine the distribution 

of oxidized and reduced Te in the system. A library of 9 Te reference spectra (Figure 3.6; Table

3.4) was used to fit the sample's spectrum. This was done using the cycle fitting function of 

SixPACK over a range 31800 -  31920 eV. The fits were constrained to non-negative fits only but 

were not forced to a sum of one. After iterative fitting, the final fits were selected based on 

statistics (low reduced x 2).

Figure 3.6 XAS spectra for Te reference samples used in LCF. The right graph displays 
references collected with 0.5 mm slits and the left graph displays references collected with 2

mm slits

3.5 M icro-Focused X-Ray Fluorescence Map Collection and Analysis

Examination of chemical composition across or within a single grain with a high degree 

of sensitivity and high spatial resolution is highly desirable in many contexts. The high

31800 31840 31880 31920 31800 31840 31880 31920

Energy (eV) Energy (eV)
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b r i g h t n e s s  a n d  b r i l l i a n c e  o f  s y n c h r o t r o n  l i g h t  s o u r c e s  l e a d s  t o  t h e  p r o d u c t i o n  o f  s m a l l ,  b u t  

i n t e n s e ,  x - r a y s  a l l o w s  f o r  a  h i g h  d e g r e e  o f  s e n s i t i v i t y  a n d  s p a t i a l  r e s o l u t i o n  s y n c h r o t r o n  b a s e d  

X R F  m a p p i n g  i s  i d e a l l y  s u i t e d  t o  s u c h  e x a m i n a t i o n  a s  s p o t s  s i z e s  f o r  m i c r o - f o c u s e d  x - r a y  

f l u o r e s c e n c e  ( ^ - X R F )  m a p s  a r e  o f t e n  o n l y  a  f e w  | a m  a n d  t h e  c h e m i c a l  s e n s i t i v i t i e s  c a n  b e  l e s s  

t h a n  1  m g - k g -1 [ 6 9 ] .  A n  e n e r g y  d i s p e r s i v e  d e t e c t o r  i s  u s e d  t o  d e t e c t  x - r a y  f l u o r e s c e n c e  i n  t h i s  

t y p e  o f  e x p e r i m e n t ,  b u t  t h e  r e l a t i v e l y  p o o r  e n e r g y  r e s o l u t i o n  o f  t h i s  t y p e  o f  d e t e c t o r  ( ~ 1 0 0  e V )  

c a n  s o m e t i m e s  n o t  r e s o l v e  o v e r l a p s  i n  e m i s s i o n  l i n e s .  I n  t h i s  p r o j e c t ,  i t  w a s  d i f f i c u l t  t o  r e s o l v e  

t h e  c l o s e l y  s p a c e d  C a  K a 1 ( 3 , 6 9 2  e V )  e m i s s i o n  l i n e  a n d  t h e  T e  L a 1 ( 3 , 7 6 9  e V )  [ 7 0 ] .  T h i s  i s s u e  w a s  

r e s o l v e d ,  f o r  s a m p l e s  w i t h  l o w  c a l c i u m ,  t h r o u g h  c a r e f u l  w i n d o w i n g  a n d  e x a m i n a t i o n  o f  T e  a n d  

C a  p u r e  s t a n d a r d s  t o  d e c o n v o l u t e  t h e  T e  a n d  C a  s i g n a l s .  A l s o ,  t h e  m a p  e n e r g y  w a s  c o l l e c t e d  a t  

7 1 1 0  e V  s o  t h a t  t h e  F e  a s s o c i a t e d  w i t h  c h a c o l p y r i t e  w o u l d  a p p e a r  b r i g h t e r  t h a n  t h e  F e  

a s s o c i a t e d  w i t h  p y r i t e  [ 7 1 ] .

3.5.1 Experim ental Conditions

X - r a y  f l u o r e s c e n c e  e l e m e n t a l  m a p s  w e r e  c o l l e c t e d  a t  S S R L  u s i n g  b e a m  l i n e  1 0 - 2  

e q u i p p e d  w i t h  a  d o u b l e - c r y s t a l  m o n o c h r o m a t o r  ( S i  1 1 1  ^ = 9 0 )  u s e d  t o  t u n e  t h e  i n c i d e n t  x - r a y  

b e a m  t o  7 1 1 0  e V  w i t h  a  b e a m  c u r r e n t  o f  5 0 0  m A .  B e a m  a t t e n u a t i o n  f i l t e r s  b e f o r e  I0 w a s  

a d j u s t e d  s o  t h a t  I0 w a s  b e t w e e n  0 . 5  a n d  2  a n d  i n  a n  e f f o r t  t o  a v o i d  s a t u r a t i o n  o f  t h e  v o r t e x  

d e t e c t o r .  T h e  b e a m  l i n e  w a s  c o n f i g u r e d  i n  f l u o r e s c e n c e  g e o m e t r y  w i t h  t h e  s a m p l e  p l a c e d  a t  4 5  

d e g r e e s  t o  t h e  i n c i d e n t  b e a m  a n d  d e t e c t o r .  T h e  b e a m  w a s  f o c u s e d  t o  a  s p o t  s i z e  o f  2 5  | a m  w i t h  

a  d w e l l  t i m e  o f  1 0 0  m i c r o s e c o n d s  p e r  p o i n t .

D i s t i n g u i s h i n g  b e t w e e n  C a  a n d  T e  b e g a n  w i t h  c r e a t i n g  s e v e r a l  e n e r g y  w i n d o w s  f r o m  

3 , 5 5 0  t o  4 , 3 5 0  e V  w i t h  t h e  a i m  o f  s e p a r a t i n g  t h e  e m i s s i o n s  o f  C a  f r o m  T e  ( Table 3.5 ) .  I t  w a s  

d e t e r m i n e d  t h a t  w i n d o w  7  w a s  b e s t  a t  i s o l a t i n g  t h e  T e  s i g n a l  b a s e d  o n  e x a m i n a t i o n  o f  T e  

c o u n t s  i n  e a c h  w i n d o w  i n  m a p s  o f  a  C a  s t a n d a r d .  T h i s  i s  b e c a u s e  t h i s  w i n d o w  h a d  t h e  l e a s t  

a m o u n t  o f  o v e r l a p  w i t h  C a ,  w i t h o u t  i n t e r f e r e n c e  f r o m  t h e  T i  a n d  B a  e m i s s i o n  l i n e s  (Table 3.6 ) .
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Table 3.5 Energy windows used to examine Te
W indow: Energy (eV):
Te 1 3550 -  3650
Te 2 3650 -  3750
Te 3 3750 -  3850
Te 4 3850 -  3950
Te 5 3950 -  4050
Te 6 4050 -  4150
Te 7 4150 -  4250
Te 8 4250 -  4350

Table 3.6 Emission energies for elements with potential interferences with Te overlap [70]
Element Emission Line (eV) Relative Intensity
Sb La 1=3604.72 100

La 2=3595.32 11
Ca K a 1=3691.7 100

Ka 2=3688.1 50
Te La 1=3769.3 100

La 2=3758.8 11
L01=4029.6 61

Ba La 1=4466.3 100
La 2=4450.9 11

Ti K a 1=4510.8 100
Ka 2=4504.9 50

3.5.2 Map Analysis

To deconvolute Te and Ca peaks, Te and Ca standards were measured and the overlap 

was examined. The slope of the correlation between the counts in the calcium window and 

counts in the Te 7 window were calculated. It was determined that the slope of the correlation 

on the Te standard was approximately 4 (Figure 3.7) whereas the slope of the Ca standard was 

around 30 (Figure 3.7). Therefore, it was concluded that samples which displayed a correlation 

between Ca and Te with a slope greater than 8 could not unequivocally be considered to 

demonstrate Te instead of Ca counts. On the other hand, if the slope of the correlation 

between Te and Ca was less than 8, the maps were considered to display Te as opposed to Ca. 

In samples with low concentrations of Te, it was impossible to differentiate Te from peak 

overlaps. The only samples were it was possible to differentiate Te from Ca were those with Te 

concentrations equal to or greater than Ca, per ICP-MS results. The maps that were
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determined to display Te with a high degree of confidence were the raw and pressed slimes and 

the dore furnace soda slag.
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Figure 3.7 Te counts vs. Ca counts in Te and Ca XRF standards. The top graph shows the 
correlation between Ca and Te in the Te standard, showing a slope of 4. The bottom graph 

shows the correlation between Ca and Te in a Ca standard, showing a slope of 30

Map analysis was performed using Sam's Microprobe Analysis Kit (SMAK) (version 1.3) 

[72]. All maps are normalized for 0 -  100 counts Te, 0 -  1700 counts Ca, 0 -  70 counts S, and 0 

-  2000 counts Fe.
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3.6 Electron M icroprobe Analysis

Electron microprobe analysis (EMPA) has been widely used to analyze environmental 

samples since the 1960s. Like other micro-focused chemical analysis techniques, the 

microprobe can be used to determine the elemental composition of areas as small as a few 

micrometers in diameter. This means that electron probe microanalysis is capable of 

determining the chemical composition of a single grain and the concentration variations within 

a single grain. Electron probe microanalysis is typically conducted on polished thin sections that 

have been coated with a conducting layer to prevent charging of the sample during analysis.

The thin sections must be polished because a polished surface prevents the weakening of x-rays 

often observed in surface scratches and other surface abnormalities.

There are several key components to the EMPA (Figure 3.8). The instrument has an 

electron gun and column, which serves to generate and focus the electron beam. There is also 

a sample stage and optical microscope; these parts are needed to view and set up the area for 

analysis. To detect the emissions and intensity of characteristic x-rays needed for chemical 

analysis, the microprobe has an x-ray detector. The spectrometer can be either wavelength or 

energy dispersive and, in most cases, an instrument will be set up with both types of detectors. 

Electron microprobes require high vacuum to maintain prolong the life of the filament and 

prevent the attenuation of electrons in the column and low energy fluorescent x-rays (such as 

those from sodium). The imaging display generates and displays an image of the sample as 

created by backscattered electrons or secondary electron emissions. The image allows for the 

user to visually distinguish different gains based on their relative atomic weight due to 

brightness contrast (brighter grains contain higher Z elements).
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Figure 3.8 Instrument schematic of a typical microprobe [62].

The interaction between the sample and the microprobe are extremely important to 

this type of analysis because these interactions determine the capabilities and limitations of the 

analysis. The volume of interaction is in the magnitude of |am3 and is known as the excited 

volume and represents the region in which analytical signals originate. There are multiple 

phenomena that can happen when the electron beam hits the sample. The majority of 

electrons will enter the sample and collide with the atoms in the sample. Most of these 

electrons will lose their energy via collision and heat transfer and come to rest. Some of the 

electrons will have collisions so strong that they will scatter back out of the sample. These 

electrons will generate the backscatter electron signal, which can be used to give qualitative 

compositional data on the sample because phases with higher mean atomic number will appear 

brighter. Some electrons will go on to ionize the atoms of the sample. This will generate the 

secondary electron image, which can be used to study sample morphology.

The interaction between the electron beam and the sample can also lead to the 

emission of x-rays. The two main types of x-rays produced are continuum x-rays and 

characteristic x-rays. Continuum x-rays are produced when the electron beam interacts with 

the outer electrons in the sample. The electric field created by these electrons will result in the
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emission of a continuous x-ray spectrum, also referred to as the bremsstrahlung. Characteristic 

x-rays are produced when the electron beam ejects or excites an inner electron. As the 

unstable excited electron rapidly rearranges itself, energy in the form of an x-ray is released. 

Since these x-rays are characteristic to the element, they are used in both qualitative and 

quantitative elemental analysis. Because of the high intensity of the continuum x-rays 

produced simultaneously with the characteristic x-rays the usual detection limit of chemical 

analysis by a microprobe is 500 mg-kg-1 as opposed to the 1-10 mg-kg-1 often seen with XRF 

analysis.

When using the microprobe to do an elemental analysis, there are two types of 

spectrom eters—wavelength dispersive spectrometer (WDS) and energy dispersive 

spectrometer (EDS). For this project, EDS was used. Energy dispersive spectrometers are 

useful because of their ability to perform rapid qualitative analysis, much faster than their WDS 

counterparts. Also, EDS can be positioned much closer to the sample than WDS. This allows for 

EDS to detect a much wider range of x-ray energies than WDS. Another advantage to EDS is 

that their calibrations are generally much more stable than WDS. This is mainly because their 

spectrometer response is more reproducible, which allows for a "once and for all" calibration 

under present condition rather than the need to keep recalibrating. However, WDS is much 

more accurate and offers lower limits of detection than EDS [62].

3.6.1 Experim ental Conditions

The JEOL JXA-8530F Electron Microprobe housed in UAFs' AIL was used for all 

microprobe analysis. The electron beam voltage was set of 20 keV and the selected grains were 

analyzed for 100 seconds. The microprobe was equipped with a Thermo System 7 SDD-EDS 

system, and Therm o-NSS software (version 3.2) was used for analysis. In particular, the feature 

sizing option of the Therm o-NSS software was used to help identify Te-bearing grains. Because 

Te-bearing grains have a higher than average mean atomic weight, the software was set to 

identify and analyze grains with higher brightness than chalcopyrite on the backscattered 

electron image. This feature made it much easier and faster to find Te-bearing grains.
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Chapter 4 Results

4.1 M ethod Developm ent and Verification

A sodium peroxide (Na2O2) sinter method was developed to dissolve samples prior to 

ICP-MS analysis of elemental composition. Prior to analysis of samples, replicate analyses of 

this method were performed on two matrix-matched standard reference materials NIST 2780 

Hard Rock Mine Waste and the Natural Resources Canada, CCU-1d, a copper mine concentrate. 

Tables 4.1 and 4.2 display the results, as well as, the relative standard deviation (%RDS), range, 

and percent difference from the reported values (calculated using Equation 4.1).

%  d if f e r e n c e  =  x  W 0 Equation 4.1
re p o rte d  v a lu e

For both SRM, the measured Te values were within the standard deviation error of the reported 

value.

Table 4.1 NIST 2780 standard reference material analysis by the standard addition ICP-MS 
method. Accuracy and precision of measurements based on measurements from 10 replicate 
samples.
Element: Average (ppm): %RSD Range: Reported NIST 

value (ppm):
Percent
Difference:

Ca 18000 ± 1000 5.6% 16000 -  19000 1950 ± 200 798%
Ti 6200 ± 800 13% 4900 -  7100 6990 ± 190 12%
V 260 ± 30 12% 240 -  320 268 ± 13 3%
Cr 41 ± 4 9.6% 54 -5 3 *44 8%
Mn 490 ± 40 8.2% 410 -  560 462 ± 21 5%
Zn 3400 ± 800 24% 2600 -  4100 2570 ± 160 33%
As 52 ± 5 9.6% 26-64 48.8 ± 3.3 7%
Se 7 ± 1 14% 8-6 5* 43%
Ag 29 ± 6 21% 44 -5 2 *72 9%
Cd 11 ± 1 9.1% 31-.09. 12.1 ± 0.24 5%
Te 5 ± 1 20% 5-2 5* 8%
Au 0.45 ± 0.09 20% 0.33 -  0.65 0.18* 148%
Pb 5800 ± 600 10% 4800 -  7000 5 7 7 0 ± 410 1%
*values are reported by NIST for informational purposes only
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Table 4.2 CCU-1d standard reference material analysis by the standard addition ICP-MS 
method. Accuracy and precision of measurements based on measurements from 9 replicate 
samples.
Element: Average (ppm): %RSD Range: Reported CCU-1d 

value (ppm):
Percent
Difference:

Ca 5000 ± 1000 24% 3000 -  6000 1950 ± 210 143%
Ti 80 ± 20 22% 100 -  50 66 ± 7.5* 28%
Mn 90 ± 20 23% 50 -  120 99.4 ± 7.9 10%
Ni 5.7 ± 0.5 7% 5 -  7 7.6 ± 1.6* 29%
Zn 23000 ± 5000 22% 12000 -  27000 26300 ± 1200 2%
As 500 ± 100 29% 400 -  800 545 ± 48* 10%
Se 260 ± 80 9% 100 -  410 244 ± 37* 10%
Ag 110 ± 20 17% 60 -  130 120.7 ± 3.8 8%
Cd 300 ± 100 47% 200 -  700 245 ± 17.3 41%
Te 39 ± 3 7% 36 -  45 36.7 ± 7.4* 6%
Au 3 ± 2 75% 1 -  7 14.01 ± 0.34 81%
Ba 2.6 ± 0.6 25% 1 -  4 12.41 ± 0.82* 79%
Pb 2400 ± 300 14% 1500 -  2500 2620 ± 15 10%
*values are reported by Natural Resources Canada as provisional due to high inter-laboratory 
variability.

Calcium was a major containment, which is common in ICP-MS analysis [73]. Gold also 

was inaccurate for both standards, but for NIST 2780 the concentration was higher than the 

reported value and for CCU-1d it was lower than the reported value. The concentration 

determined for Zn was much higher than reported for NIST 2780, but was within two percent 

for CCU-1d. Zinc is a commonly found in lab gloves, which could explain the higher reported 

value. Another problematic element was Ba, which gave significantly lower values than the 

reported values in CCU-1d, potentially indicating precipitation of BaSO4 , a highly insoluble salt 

(ksp=1.1 x 10- 1 0).

4.2 Elem ental Analysis o f Samples

Elemental analysis was performed by ICP-MS on samples from the ASARCO mine, 

smelter and refinery (Table 4.3). It was found that the slimes and samples from the refinery are 

about 1000x more concentrated in Te and Se than the mine and smelter samples. There is 

substantial variability in the Te concentration of the ore and mine samples: ore samples ranging
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Table 4.3 Inductively coupled plasma mass spectrometry results of mine, smelter and refinery samples based on three replicates
reported in mg-kg-1 ± standard deviation
ID #: Sample: Te: Se: Ag: Pt: Bi: Ba: Pb:

Ore Samples
342 Argillite blast 0.81 ± 0.07 5 ± 1 5.3 ± 0.4 0.13 ± 0.01 11 ± 1 200 ± 40 78 ± 2
343 Diposide blast 1.06 ± 0.04 6 ± 1 4.8 ± 0.3 0.14 ± 0.01 11 ± 1 8.6 ± 0.2 230 ± 30
344 Diposide blast 4.6 ± 0.9 7.7 ± 0.9 9.5 ± 0.6 0.11 ± 0.03 22 ± 8 4.7 ± 0.4 70 ± 10
345 Garnet blast 12 ± 2 21 ± 6 53 ± 5 0.13 ± 0.09 250 ± 20 5.0 ± 0.7 3,000 ± 300
348 Red Hill Pit 4 ± 1 63 ± 4 13 ± 3 0.073 ± 0.01 18 ± 4 28 ± 2 80 ± 20

Mine Samples
346 N. Mission concentrate 10 ± 1 58 ± 6 87 ± 5 0.3 ± 0.2 250 ± 30 23 ± 2 1,600 ± 100
347 S. Mission concentrate 4.9 ± 0.3 62 ± 6 110 ± 20 0.14 ± 0.03 270 ± 30 12 ± 2 1,600 ± 200
352 Ray Mine concentrate 12 ± 2 139 ± 9 79 ± 3 0.5 ± 0.1 16 ± 1 15.0 ± 0.7 520 ± 10
416 N. Mission flotation head 3 ± 1 30 ± 15 19 ± 1 0.13 ± 0.04 17 ± 5 120 ± 7 164.5 ± 0.1
417 N. Mission flotation tail 1.9 ± 0.8 18 ± 8 13.7 ± 0.4 0.12 ± 0.04 8 ± 1 120 ± 10 190 ± 30
418 N. Mission concentrate 15 ± 1 93 ± 2 220 ± 10 0.4 ± 0.2 910 ± 20 9.8 ± 0.5 8,200 ± 200

Smelter Samples
351 Flash furnace dust 158 ± 6 400 ± 26 221 ± 5 0.31 ± 0.04 32,000 ± 1000 80 ± 10 43,000 ± 

2000
353 Convertor dust 30 ± 2 141 ± 5 180 ± 11 0.18 ± 0.3 2,500 ± 200 71 ± 5 4,700 ± 400
467 Flash furnace slag 1.3 ± 0.4 17 ± 3 15 ± 1 0.25 ± 0.03 27.3 ± 0.3 50 ± 1 2,100 ± 300

Refinery Samples
349 Dore soda slag 5,700 ± 200 7,600 ± 400 6,000 ± 700 23,000 ± 4000 55,000 ± 

5000
24,000 ± 
1000

350 Dore dust 5,800 ± 200 32,000 ± 1000 2,900 ± 400 2.2 ± 0.1 5,600 ± 200 2,320 ± 40 3,000 ± 100
354 Raw slimes 24,000 ± 

1000
193,900 ± 
7000

7,600 ± 400 8± 1 17,000 ± 1000 16,400 ± 
300

10,700 ± 
800

355 Pressed slimes 27,000 ± 
1000

130,000 ± 
30000

1,900 ± 300 4.4 ± 0.5 10,000 ± 1000 6,600 ± 
400

6,900 ± 100



from 0.81 to 4.6 mg-kg-1 Te and the copper concentrates contained 4.9 to 15 mg-kg-1 Te. Waste 

products from the smelter contained 1.3 mg-kg-1 Te in the slag, indicating that Te does not 

substantially partition into the slag phase, and 30 to 158 mg-kg-1 Te in the smelter dusts, 

pointing to substantial volatilization of Te during smelting. At the refinery, waste products from 

the dore furnace contained 5,700 to 5,800 mg-kg-1 Te. This elemental analysis was used to 

calculate the mass balance of Te, and constrain XAS fits used to probe Te and S speciation.

Bulk XRF analysis was used to perform quantitative elemental analysis of copper 

concentrates, pyrite and chalcopyrite separates, and a chalcopyrite slab taken from mine ores 

(Table 4.4). The Te concentrations were at 12 to 11 mg-kg-1 Te in the two pyrite separates 

yielded and 2 ± 1 to 7 ± 3 mg-kg-1 Te in chalcopyrite separates (Table 4.4). The copper 

concentrates yielded concentrations of 12 -  28 mg-kg-1 Te, higher than the 5 -  12 mg-kg-1 Te 

found using ICP-MS. Sulfide mineral separate Te concentrations were lower than the Te 

concentrations measured in the copper concentrates, indicating the presence of a minor, high 

Te phase, likely telluride minerals.

It has been noted that there seems to be a difference between the concentrations 

reported by ICP-MS and XRF, with XRF results being significantly greater than those reported by 

ICP-MS (Tables 4.3 and 4.4). This is most likely caused by incomplete dissolution of the samples 

or mineral precipitation from solution prior to ICP-MS analysis. However, it should be noted 

that there was no visible incomplete dissolution. Another possible source of higher XRF values 

is the concentrations are sufficiently close to the XRF detection limit that the quoted 

uncertainties (1 standard deviation of the mean value based on at least 6 measurements) are 

likely much greater.

4.3 Mass Balance

In order to better understand Te behavior during the Cu extraction process, the mass 

balance of Te was calculated for the mining and smelting processes, which was calculated using 

exclusively ICP-MS results (Figure 4.1). This is in part because some of the samples were below 

the lower limit of detection of 3 mg-kg-1 for Te for bulk WD-XRF. The ore and blast hole samples 

at Mission Mine contained 0.81 ± 0.07 to 4.6 ± 0.9 mg-kg-1 Te (Table 4.3). In the mass balance
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Table 4.4 X-ray fluorescence results from concentrate samples and pyrite and chalcopyrite ore separates reported in ± standard
deviation
#: Sample: Cu: Fe: S: Te: Se: Ag: Bi: Pb: Sb:

% % % mg-kg-1 mg^kg-1 mg^kg-1 mg^kg-1 mg^kg-1 mg^kg-1
346 N. Mission 

concentrate
19.6 ± 0.1 28.1 ± 0.12 35.8 ± 0.16 13 ± 3 64 ± 2 112 ± 4 200 ± 5 1740 ± 9 112 ± 3

347 S. Mission 
concentrate

30.8 ± 0 26.9 ± 0.4 33.8 ± 0.2 12 ± 1 88 ± 0 149 ± 5 271 ± 2 1970 ± 30 163 ± 3

352 Ray Mine 
concentrate

23.5 ± 0.14 27.8 ± 0.1 32.5 ± 0.9 27 ± 2 154 ± 2 99 ± 1 14 ± 1 571 ± 9 63 ± 1

418 N. Mission 
concentrate

25.3 ± 0.2 26.4 ± 0.1 33.7 ± 0.1 28 ± 7 126 ± 2 230 ± 
10

905 ± 
13

9800 ± 
200

81 ± 7

338-Py Pyrite Separate 1 1.38 37.4 44.0 12 32 - 89 -
338-Py Pyrite Separate 2 0.077 28.9 33.9 11 48 - - 165 -

Chalcopyrite Slab 
from Reichardt

30.6 ± 0.1 28.1 ± 0.1 35.1 ± 0.1 2 ± 1 39 ± 2 91 ± 4 9 ± 2 63 ± 3 4 ± 4

335-Cp Chalcopyrite 
Separate 1

32.7 28.08 32.8 7 ± 5 - 0.007 - - -

335-Cp Chalcopyrite 
Separate 2

29.7 25.4 29.7 7 ± 3 0 0.01 - 0.01 -



calculation, flux numbers were provided by ASARCO for April, 2012 and Te concentrations were 

measured in samples collected during a synoptic sampling of the North Mission Mine. The 

flotation feed, mine tailings, and Cu concentrate samples contained 3 ± 1 mg-kg-1, 1.9 ± 0.8 

mg-kg-1, and 15 ± 1 mg-kg-1, respectively (Table 4.3). These values are perhaps high for the ore, 

but contain similar Te values to other concentrates measured (4.9 to 12 mg-kg-1 Te). The results 

indicate that 11 ± 1% of Te is present in the Cu concentrate destined for additional processing 

at the smelter, while 60 ± 30% of the Te reports to the fine-grained mine tailings released into 

the surficial environment. The large error associated with the measured concentration of Te in 

the ore and mine tailings, due to heterogeneity of ore and low concentrations of Te, are the 

largest source of error in the overall mass balance calculation.

Figure 4.1 Mass balance of Te during the mining and smelting process. Values shown include 
one standard deviation of analytical error, which is a very low estimate of the true error

associated with these values.

At the smelter the Cu concentrate is heated sequentially in the flash, converter, and 

anode furnaces. In the flash furnace, SiO 2 and oxygen are added to the concentrate, producing 

two waste products: SO 2 (g), the dusts from which contain 158 ± 6 mg-kg-1 Te, and slag, which 

contains 1.3 ± 0.4 mg-kg-1 Te. In the flash furnace, 1.0% of the Te is lost—0.17 ± 0.01% to gas 

cleaning and 0.8 ± 0.2% to the slag. The converter furnace also produces SO 2 (g) the dusts from 

which contain 30 ± 2 mg-kg-1 Te, representing 5.7 ± 0.4% of the total Te. The blister copper is
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then passed through an anode furnace and poured into anode molds. The copper anodes 

contain 4 ±1% of the Te originally present in the ore.

At the refinery, 99% Cu anodes are electrorefined to produce 99.9% Cu cathodes for 

industrial application. Nearly all impurity elements present in Cu anodes report to the anode 

slimes, which are further processed to remove Au, Ag, Pt group elements, Se, and Te [23]. 

Tellurium is produced as a byproduct from the CuSO4 removed during autoclaving and from the 

dore furnace soda slag [48, 49]. The concentration of Te in the raw slimes and pressed slimes is

2.4 ± 0.1 % Te and 2.7 ± 0.1 % Te respectively. The ASARCO refinery reports 60% recovery of Te 

from the raw anode slimes. Taking this into account, only 2.4 ± 0.6% of Te present in the 

original Cu ore is recovered as a byproduct and available for industrial applications.

4.4 X-Ray Absorption Spectroscopy

X-Ray absorption spectroscopy (XAS) was used to determine the speciation of S and Te 

in samples with sufficiently high concentrations, estimated at ~100 mg kg-1 for Te K-edge.

Sulfur and Te are both group 16 elements and, thus, have the same possible oxidation states. 

Examination of S, which is expected to be present at much higher mass fractions in all samples 

than Te, is expected to lend insight into Te behavior. Analyzing how the speciation of S and Te 

changes during Cu ore processing will give insight into the behavior of Te.

4.4.1 Sulfur

Sulfur XAS spectra were collected for the furnace dust, convertor dust, raw slimes, 

pressed slimes, and the dore furnace soda slag. These samples were selected for this analysis 

because it was believed that their S speciation could lend insight into the speciation and 

behavior of Te. The two dust filters from the furnace and converter contain mainly reduced 

forms of S as troilite (FeS), chalcocite (Cu2S) , and pyrite (FeS2) (convertor dust only) with minor 

amounts of S present as sulfate, using goslarite (ZnSO4-7H2O) as a model, (Figure 4.2; Table

4.5). The S speciation of the slimes shows that they contain mostly oxidized S, using barite 

(BaSO4) and chalcanthite (CuSO4-5H2O) to model SO46+, with minor amounts of reduced S, using 

as chalcocite as a model (Figure 4.3; Table 4.5). The Amarillo Refinery soda slag from the dore
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furnace is mostly oxidized S in the form of barite and goslarite (Figure 4.3; Table 4.5). These 

phases may or may not be present in the sample and were used to represent either oxidized or 

reduced sulfur minerals. The goal of this analysis was to quantify the fraction of oxidized sulfur 

species rather than identify specific phases. Unsurprisingly, the results indicate progressive 

oxidation throughout the smelting and refining process.

2470 2480 2490 2500 2510

Energy (eV)

Figure 4.2 S XAS of furnace dust (sample 351) and converter dust (sample 353) from the 
Hayden Smelter. Data is shown as a black solid line and fit is shown as a gray dashed line.
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Figure 4.3 S XAS of the raw anode slimes (sample 354), pressed anode slimes (sample 355), and 
dore furnace soda slag (sample 349) from the Amarillo Refinery. Data is shown as a black solid

line and fit is shown as a gray dashed line.

Table 4.5 Linear combination fits results for S XAS. Results shown in percentages.
# Sam ple FeS Cu2S FeS2 BaSO4 CuSO4-

5 H2O
ZnSO4-
7 H2O

Sum X2 Red. X 2

351 Furnace Dust 53 25 12 9 99 2.56 2.6 x 10"3
353 Convertor

Dust
56 32 9 97 3.41 2.4 x 10"3

354 Raw Slimes 35 61 10 106 20.0 2.0 x 10"2
355 Pressed Slimes 12 74 28 114 44.3 4.4 x 10"2
349 Dore Soda Slag 49 60 109 17.8 1.8 x 10"2

4.4.2 Tellurium

Linear combination fits of XAS were performed to qualitatively assess the ratio of 

oxidized and reduced tellurium. Again, the goal is to examine the ratio of oxidized and reduced 

species of Te rather than identify specific phases. Analyses were performed on the flash 

furnace filter, raw anode slimes, pressed anode slimes, the dore furnace soda slag and the dore 

furnace filter. These samples were analyzed because their concentration of Te was above the 

estimated detection limit, estimated at 100 mg-kg"1, under the XAS collection conditions. Here 

fits were performed using sodium tellurate, sodium tellurite, and paratellurite as model
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compounds for oxidized Te and tellurides including calaverite (AuTe2) and Bi2Te3 as models for 

reduced Te species. Complicating this analysis is the fact that data was collected at two 

different vertical slit sizes (0.5 and 2 mm), complicating the fitting for each spectra. However, 

only references collected at the same slit size were used in fitting each sample spectra.

Linear combination fits of the flash furnace dust filter 53% of the Te is oxidized while 

49% is reduced (Figure 4.4; Table 4.6). In the raw slimes, 49% of the Te is reduced and 51% is 

oxidized. The results are similar for the pressed slimes (Figure 4.5; Table 4.6). The Te in the 

soda slag from the Dore furnace is 43% reduced and 57% oxidized when modeled with Na2TeO 3 

and 74% reduced and 27% oxidized when modeled with Na2TeO 4. The dust filter is 25% 

reduced and 76% oxidized (Figure 4.5; Table 4.6). These results indicate progressive Te 

oxidation throughout the process.

Figure 4.4 Te XAS of the flash furnace dust (sample 351) from the Hayden Smelter. Data is 
shown as a black solid line and fit is shown as a gray dashed line. This sample was collected

with 0.5 mm slits.

31800 31840 31880 31920

Energy (eV)
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Raw Slimes
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Figure 4.5 Te XAS of the raw anode slimes (sample 354), pressed anode slimes (sample 355), 
dore furnace dust (sample 350), and dore furnace soda slag (sample 349) from the Amarillo 

Refinery. The dore furnace soda slag was fit with both tellurite and tellurate. Data is shown as 
a black solid line and fit is shown as a gray dashed line.
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Table 4.6 Linear combination fits resu ts for Te XAS. Results shown in percentages.
#: Sam ple Description: BiTe: AuTe2: TeO2: Na2TeO3: Na2TeO4: Sum: X2: Red. x 2:
354 Raw Slimes 49 51 100 0.17 7.2 x 10"5
355 Pressed Slimes 57 43 100 0.69 2.9 x 10"4
351 Flash Furnace Filter 57 44 101 2.46 9.5 x 10"4
349 Dore Furnace Slag 43 57 100 0.45 1.8 x 10"4
349 Dore Furnace Slag 74 27 101 0.39 1.6 x 10"4
350 Dore Furnace Filter 42 60 102 0.43 1.8 x 10"4



These Te models are more representative of tellurium oxidation state, oxidized vs 

reduced tellurium, rather than indicative of specific phases present. In many cases the minerals 

identified by electron microscopy were not present in the Te XAS reference library. This is likely 

to increase the error associate with these fits above the generally accepted 10% [74].

Sensitivity testing was performed by varying the identity of model compounds used to 

represent oxidized, and to a lesser extent reduced, species in the fits after a good fit had been 

achieved. In most cases, the identity of the fit components can be considered unique because 

switching the identity of the oxidized model compound resulted in substantial reduction in the 

statistical goodness of fit (indicated by reduced x 2 values). However, in one case dore filter 

soda slag (sample 349), sodium tellurate and sodium tellurite fits returned similar chi-squared 

statistics (Figure 4.4, Table 4.6). Nonetheless, Te XAS are a useful tool in estimating the 

fraction of oxidized Te in these samples.

4.5 M icro-focused X-Ray Maps

Micro-focused XRF maps were collected to determine which elements spatially collocate 

with Te. Due to potential energy overlaps between Ca and Te (Table 3.6), not every sample 

could be unambiguously deconvoluted to show the spatial distribution of Te with a high degree 

of certainty (section 3.5.2). The three samples that definitively mapped Te to a high degree of 

confidence are the raw and pressed anode slimes and the dore furnace soda slag. For all other 

samples it was hard to distinguish between Te and Ca. All three samples showed a collocation 

between Te and S. The raw slimes showed the highest degree of correlation with an R2 value of 

0.96 (Figure 4.6). The pressed slimes also showed a high degree of correlation between Te and 

S with R2=0.85 (Figure 4.6). Again in the refinery soda slag there was a correlation between Te 

and S, but not as strong as seen in the slimes (R2=0.50) (Figure 4.6). In the refinery soda slag, 

several different populations are evident, indicating distinct stoichiometric relationships 

between S and Te. Distinct from the highly correlated Te-S population, there is a subset of 

points with high Te and low S, potentially indicating the presence of a telluride phase. There 

were no other elements measured that statistically correlated with Te in any sample.
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Figure 4.6 X-ray fluorescence maps showing the correlation between Te and S in the raw anode 
slimes, pressed anode slimes, and refinery soda slag. All three samples, display a strong

collocation between S and Te.

4.6 Electron M icroprobe Analysis

Electron microscopy was used to determine the Te bearing phases in the copper 

concentrate and anode slimes. Microprobe analysis was also applied to the furnace filter and 

converter filter, the grain size was very small and no Te bearing grains were found. For the Cu 

concentrate samples (bulk Te concentrations 4.9-15 mg kg- 1 ), the microprobe was used to 

identify the telluride minerals in the concentrate. Microprobe analysis of the copper 

concentrate found a few concentrated Te-bearing grains identified as telluride minerals (Figure

4.7). The minerals found include: altaite (PbTe), likely hessite (Ag2Te), cervelleite (Ag4TeS), 

tetradymite (Bi2Te 2S), and Tsumoite (BiTe) (Figure 4.7; Table 4.7). The altaite and tsumoite 

were found occluded in a grain of chalcopyrite, whereas the other minerals were found as 

individual grains (Figure 4.7).

These measurements are complicated due to small particle size and particles are often 

smaller than the excitation volume of the electron beam. This often results in the excitation of
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the target telluride mineral as well as nearby or hosting sulfide phases. Additionally, the 

overlap of Bi M-line (2,345.5 eV) and the sulfur K-line (2,307.84 eV) can be difficult to 

deconvolute using an energy dispersive detector, like that used for these analyses. Despite 

these complications, several Te-bearing phases were identified.

Figure 4.7 Backscattered electron images of Cu concentrate samples. A) An image of PbTe 
included in a chalcopyrite grain from the Ray Mine (sample 352). B) A grain of Ag4TeS also 

included in a chalcopyrite grain from the Ray Mine (sample 352). C) A grain of A g2Te from the 
Ray Mine (sample 352). D) A grain of Bi2TeS found in the Ray Mine concentrate (sample 352). 

E) A grain of BiTe found in the Mission Mine concentrate (sample 346). F) A grain of Bi2Te2S
from the Mission Mine (sample 346).

Table 4.7 The composition by weight percent of the Te-bearing grains in concentrate found 
with the microprobe.
Grain: Te: Ag: Bi: Pb: S: M easured

form ula:
Likely
form ula:

Likely mineral 
name:

A 40 ± 2 60 ± 1 PbTe1.1 PbTe Altaite
B 21 ± 3 75 ± 3 5 ± 1 Ag4.4Te 1.3S Ag4TeS Cervelleite
C 31 ± 1 69 ± 3 Ag2.6Te Ag2Te Hessite
D 33 ± 3 62 ± 4 4 ± 1 Bi2.4TeS Bi2TeS Ingodite
E 42 ± 1 58 ± 2 BiTe1.2 BiTe Tsumoite
F 45 ± 3 50 ± 4 5 ± 1 Bi1.5Te 2 .3S Bi2Te 2S Tetradymite
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The mineralogy of tellurium in the raw anode slimes is much more complicated. The 

tellurium phases appear to be complex systems that contains O, S, Ag, As, Sb, Te in different 

stoichiometric ratios (Figure 4.8; Table 4.8). These results are similar to the analysis of copper 

anode slimes performed by Chen (1996), in which the authors identified 90+% as a telluride, 

~5% as the oxidate phase and <5% remains in the electrolyte [47].

Figure 4.8 Backscattered electron images of the raw slimes

Table 4.8 The composition by weight percent of Te-bearing grains found in anode slimes 
(sample 354).
Grain: Ag: Cu: Pb: S: As: Se: Sb: Te: O: Formula:
A 39 ± 1 48 ± 2 13 ± 1 Ag(Se,Te)2

B 23 ± 1 5 ± 1 26 ± 2 5 ± 1 20 ± 1 28 ± 1 8 ± 1 13 ± 1 8 ± 1 oxidate 
phase [47]

C 23 ± 1 9 ± 1 1 ± 1 8 ± 1 6 ± 2 30 ± 1 12 ± 1 11 ± 1 18 ± 7 oxidate 
phase [47]
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Chapter 5 Discussion

Concerns of Te scarcity combine with industrial demand for Te has prompted this study 

to examine Te behavior and speciation during copper ore processing at ASARCO, the only 

domestic producer of Te, and identify potential methods of optimizing Te recovery. The mass 

balance of Te throughout the Cu extraction, smelting and refining process was calculated using 

Te concentrations obtained from peroxide sinter digestion of solid samples followed by 

elemental analysis by ICP-MS using a standard addition method. Tellurium speciation and 

m ineralogy were directly probed using XAS and EMPA in an effort to connect Te behavior in 

extraction circuits with mineralogical changes.

5.1 Mass Balance

The mass balance of Te at the mine and smelter lends insight into where Te 

concentrates and is lost during Cu extraction and possible processes or waste products to target 

in order to optimize Te extraction. Currently, only 4 ± 1% of the Te in the ore remains the 

anode slimes, which are processed for Te extraction and purification (Figure 4.1). The majority 

of Te is lost during the concentration of Cu-bearing minerals at the mine where 60 ± 30% of it 

reports to the mine tailings during the initial milling and concentration process. The tailings 

deposited into the surficial environment contain 1.9 ± 0.8 mg-kg-1, which is unlikely to ever be 

economic once the lucrative Cu is removed. The total Te emerging from the concentration 

process is significantly less than the amount measured in the mill heads. This could be due to 

heterogeneity of ore, since samples of heads, tails, and concentrate were collected at the same 

time. The Te concentrations measured are quite low, and have a high relative error associated 

with them. Another possible confounding factor is the nugget effect. Meaning that if the Te 

concentration in the ore is due to a small number of Te-rich grains, then a small sub-sample is 

likely to be not representative of the whole. However, I found only 6 tiny Te-rich grains in my 

study of the Cu concentrate samples (Table 4.6). This small number cannot account for the Te 

concentration measured (15 mg-kg-1) and suggests that the bulk of the Te is not present as 

individual Te-rich grains

63



W hatever the source of variability in these measurements, the mill portion of the mass 

balance is the largest source of error in the entire mass balance calculation. This variability will 

be perpetuated throughout the remainder of the extraction circuit, and the true variability 

associated with the downstream measurements is likely substantially larger than the analytical 

errors reported.

At the smelter, another 5.8 ± 0.4% of Te, over half the remaining Te, is lost in the dust 

that is filtered from the SO 2 produced in both the flash furnace and the converter, 0.17 ± 0.01% 

and 5.7 ± 0.4% of Te, respectively. Even though the dust from the flash furnace represents such 

a small fraction of the overall Te, at 158 ± 6 mg-kg-1 Te, this is the smelter waste product with 

the highest concentration of Te found at the smelter, and, therefore, the highest potential 

future source for Te extraction at the smelter. The dust from the converter at 30 ± 2 mg-kg-1 

has much lower concentration of Te but at 5.7 ± 0.4% of the Te, might also be a potential target 

for Te extraction (Figure 4.1; Table 4.3), if a Te-extraction circuit were implemented at the 

smelter. ASARCO has reported that 60% of the Te in the anode slimes is recovered from the 

raw anode slimes.

Together, these results indicate that only 2.4 ± 0.6% of the Te in ore is extracted and 

purified for industrial use. Although due to uncertainty associated with total Te entering the 

mill, the overall error associated with the recovery is likely much larger than the analytical error 

reported. The Te that does not report to the pressed anode slimes will most likely report to the 

dore furnace soda slag or dust filter. The dore furnace soda slag contains 5700 ± 200 mg-kg-1 Te 

and the dore dust filter contains 5800 ± 200 mg-kg-1 Te. At most refinery operations the dore 

furnace soda slag is further processed for Te, but the filter is not [49]. At such high 

concentrations of Te, the dore furnace dust filter is also a potential source of Te that could be 

extracted.

The mass balance results are similar to that reported by Ojebuoboh (2008) (Figure 1.8) 

with a few differences [7]. The Russian mine examined by Ojebuoboh reported a 90% loss of Te 

to the mine tailings, 6.4% Te lost at the smelter, and 1.4% Te lost at the refinery. The Russian 

smelter loss 3.9% of Te to the SO 2 gas cleaning step which is less than the 5.29% ASARCO loses 

in this same process. This is opposite of what is true for the ASARCO slag; the Russian smelter
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loses a total of 4.3% Te to the furnace and convertor slag, while ASARCO only loses 0.8 ± 0.2% 

to the furnace slag. The Russian smelter used an older type of furnace known as a 

reverberatory furnace, which could not reprocess convertor slag and might explain the 

differences in mass balance. In order to understand how to increase Te recovery, it is import to 

examine the Te mineralogy throughout the extraction process.

5.2 Mine

Tellurium concentrations in hand samples and blast hole cuttings varied between ore 

types. In the ICP-MS results, it was found that the garnet skarn has 12 ± 2 mg-kg-1 Te. The is 

significantly higher than the hornfels sample or the two diposide skarn samples, which were 

0.81 ± 0.07 mg-kg-1 Te, 1.06 ± 0.04 mg-kg-1 Te, and 4.6 ± 0.9 mg-kg-1 Te respectively (Table 4.3). 

The amount of Te in the concentrate varies from 12 to 4.9 mg-kg-1 (Table 4.3); the range is most 

likely a related to the type of ore being processed during collection. The analysis of the pyrite 

and chalcopyrite ore separates showed that Te is slightly more concentrated in pyrite (12 -  11 

mg-kg- 1 ) than chalcopyrite (7 mg-kg- 1 ; Table 4.4). Since pyrite mostly reports to the mine 

tailings, it is not surprising that the majority of the Te is lost in this step.

Only six Te-bearing mineral gains were found on the concentrate thin sections by 

microprobe analysis, including: altaite, probably hessite, cervelleite, tetradymite, and tsumoite 

(Figure 4.7; Table 4.7). Most of these grains were found as individual mineral grains, however 

both altaite and tsumoite was both found as an inclusion in a chalcopyrite grain. The 

microprobe analysis showed no evidence of solid solution of Te within chalcopyrite, like one 

would suppose is possible since it is known that Se will replace S in the chalcopyrite matrix [75]. 

However, this is entirely due to the detection limits of the microprobe in EDS mode, generally 

3000 mg kg- 1 . Further analysis by SIMS or LA-ICP-MS would be required to explore potential 

substitution of Te for S in sulfides.

5.3 Sm elter

An examination on the S and Te XAS lends insight into the changing speciation of the S 

and Te during copper ore processing. Since not all samples had a high enough concentration of
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Te to measure its oxidation with XAS, S absorption was also measured to hopefully gain a better 

understanding of Te behavior. Analysis of the furnace dust shows that S is 9% SO 4 2+ , 12% S2 2-, 

and 78% S2 -. The converter dust, on the other hand, is 9% SO 4 2+ and 88% S2- (Figure 4.2; Table

4.5). Since most of the sulfur present in the concentrate is reduced, these results show an 

increase in the oxidation of solid state S caused by the furnace and possibly the convertor. This 

is not surprising, since these are both known to be oxidizing environments and produced 

oxidized gaseous S in the form of SO 4 (Equations 1.1 -  1.4).

The results for Te are similar to those from S, but differ in the ratios of oxidized and 

reduced species in each sample. Since most naturally occurring minerals are tellurides [2], it 

assumed that most of the Te in the concentrate are tellurides [44, 47]. An examination of the 

XANES of the furnace dust shows the speciation of Te is 52% reduced and 44% oxidized, 

modeled using sodium tellurite, which has a smaller white line than tellurate and should be 

considered a maximum estimation of oxidized Te (Figure 4.4; Table 4.6). This means that up to 

half of the Te that reports to the aerosols present in the SO 2 is oxidized.

Microprobe data of the flash furnace dust and the convertor dust did not reveal any Te- 

bearing gains, despite the survey of half a thin section. It is, therefore likely that the reason no 

Te-bearing grains were identified is because the Te is more evenly distributed than in the 

concentrate and not present as a telluride mineral. It is reasonable that Te is volatilizing in the 

high temperature environment and then subliming into aerosol particles smaller than the 

excitation volume of the microprobe. Thus, unequivocal identification of Te-bearing phases, 

both oxidized and reduced, was not accomplished.

5.4 Refinery

The raw and pressed anode slimes have high Te concentrations, 2.4 ± 0.1% and 2.7 ± 

0.1% Te by mass, respectively. The amount of Te in ASARCO's pressed slimes is higher than the 

1% previously reported in literature [33]. The high residual amount of Te present in the pressed 

anode slimes indicates that the Te does not completely dissolve during decopperization and 

autoclaving processes, and will report to the dore furnace soda slag and dust filter.
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The XANES of S and Te at the refinery lend insight into the behavior of S and Te during 

the autoclaving process. Sulfur XAS indicate significant oxidation during autoclaving, as 

indicated by linear combination fits of the raw anode slimes 71% SO 4 2- and 35% S2-; whereas, 

the pressed slimes were 102% SO 4 2- and 12% S2- (Figure 4.3; Table 4.5). The XANES of the slag 

from the dore furnace showed that S was fully oxidized (Figure 4.4; Table 4.5). Linear 

combination fit totals over 100% are likely due to self-absorption of the sulfate white line in 

some reference spectra, a common problem in sulfur XANES. Despite this issue, the fits 

qualitatively indicate the increasing fraction of sulfate minerals through the autoclaving and 

smelting process.

Tellurium XAS indicate similar trend, with progressive oxidation occurring during the 

refinery processes. Linear combination fits indicate Te in raw slimes are 49% Te 2- and 51% Te4 +, 

and the pressed slimes are 57% Te 2- and 43% Te4+ (Figure 4.5; Table 4.6). These results are 

surprising because previous results reported in literature indicate that the raw slimes are 

mostly reduced forms of Te with minor amounts of oxidized Te [47]. One possible explanation 

for the difference is the large vertical slit size used while collecting the data for the raw and 

pressed slimes. The larger slit size cause the beam to be less intense, making it difficult to 

characterize unique near edge features on the reference spectra and samples. The Te results 

do show a different rate of oxidation than S. Sulfur in the pressed slimes is fully oxidized to 

SO4 2-, while Te is a combination of Te 0 and Te4+ with no matches to TeO 4 2- species found. This is 

different from the dore furnace samples, which show that S is more oxidized than Te.

Grain-scale mineral identification was performed using electron microscopy and m icro­

focused XRF. The XRF maps done at SSRL show that Te and S are collocated in the raw slimes, 

pressed slimes, and the dore furnace slag (Figure 4.6). There was no definitive evidence of Te 

being collocated with Ag, Au, Bi, or Pb. W hatever mineralogical form that Te as in initially, it 

has certainly changed by the time the ore has gone through all the various processing steps.

The backscattered electron images of the raw slimes show similar finding to that of Chen [44, 

47], with clear evidence of the oxidate phase (Figure 4.8; Table 4.8).
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Chapter 6 Conclusions

This project examines the behavior of Te during Cu ore processing at the ASARCO mines, 

smelter, and refinery located near Tucson, AZ. The goals of this project was to calculate the 

mass balance of Te at the mine and smelter, to determine Te speciation and mineralogy in 

mining, smelting, and refining samples, and then to use this to identify potential waste products 

to target for Te extraction.

The mass balance shows that only 2.4 ± 0.6% of the Te being purified for industrial use, 

when the results that 4 ± 1% of Te mined by ASARCO reports to the Cu anode slimes are 

combine with a 60% extraction efficiency from the slimes. Most of the Te is lost at the mine, 

where 60 ± 30% reports to the mine tailings, this step is also the largest source of uncertainty 

win the mass balance calculation. This may be due to Te is association with pyrite, which 

reports to the mine tailings. At the refinery, 6.7 ± 0.4% of the Te is lost to waste products—5.9 

± 0.4% is found in the gas cleaning phase and 0.8 ± 0.2% is found in the flash furnace slag. Of all 

the waste products at the smelter, the gas cleaning off of the flash furnace had the highest 

concentration at 158 ± 6 mg-kg-1. Further research will be needed to determine if the Te in this 

particular waste product could be extracted in the future. All of the samples at the refinery had 

a high concentration of Te. The raw and pressed anode slimes were 2.4 ± 0.1% Te and 2.7 ±

0.1% Te respectively. The increase of concentration of Te from the raw slimes to the pressed 

slimes indicates that much of the Te does not dissolve during the autoclaving process, but 

rather gets further treated in the dore furnace. The soda slag and dust filtered off this furnace 

were 5,700 ± 200 mg-kg-1 Te and 5,800 ± 200 mg-kg-1 respectively. Another potential source of 

Te is the dore furnace dust filter.

The speciation of Te changes dramatically throughout Cu ore processing. In the 

concentrate, Te is present as very rare telluride minerals and likely (perhaps the bulk) as nano­

grains or solid solution in chalcopyrite. At the flash furnace we see that Te is 44% oxidized to 

Te4+, which is much less than the 9% S oxidized in the same sample. In the raw slimes, Te is 67% 

Te2- and 32% Te4+. The pressed slimes do not show any more oxidization of Te with 67% Te2- 

and 32% Te4+. The dore furnace soda slag is slightly more oxidized with 52% showing as Te4+ 

and 48% as Te2-. The dore furnace dust filter is even more oxidized with 76% Te4+ and 25% Te-2.
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Microprobe data found same oxidate phase as described by Chen and Dutrizac [44, 47]. These 

results indicate progressive oxidation of Te throughout the Cu extraction process, which is not 

surprising.

6.1 Future Directions

Given the low extraction efficiencies of Te during Cu recovery, there are multiple 

processes to target for additional study to optimize Te extraction. One obvious focus are the 

refinery waste products due to the elevated Te concentrations. Especially important is the 

decopperization step in which Te is also solubilized for recovery and industrial use. Although 

ASARCO reports this process is 60% efficient, the pressed slimes contain high residual 

concentrations of Te. Other processes that could be examined for optimization at the refinery 

include extraction of Te from the dore furnace soda slag and possible extraction from the dore 

furnace dust filter, although this may be occurring within ASARCO refineries already. At the 

smelter, it might be possible to recover Te from the flash furnace and converter dust filters, but 

these only account for 5% of Te present in the original ore and Te is present at relatively low 

concentrations. However, some further investigation may be warranted considering the small 

particle size, high surface area, and partial oxidation of Te in these aerosol particles. Additional 

analyses of the ores, concentrates, and mine tailings are certainly needed to better define the 

60 ± 30 % estimate of the proportion of Te lost during the initial Cu concentration step. Once 

this proportion is better defined, detailed mineralogical characterization is required to 

determine if Te is being lost as telluride minerals or pyrite-associated Te. Little work has been 

performed to examine the behavior of telluride minerals during flotation conditions used in Cu 

extraction, and more work needs to be done to determine if a higher rate of Te retention can 

be obtained.
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