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A b stra ct

The Chukchi Sea is a complex transition zone between the Pacific and Arctic Oceans 

that has been experiencing dramatic change in recent decades due to shifting sea ice 

cover and increasing temperatures. We examine summer mesozooplankton communities 

of the Chukchi Sea in Alaskan and Russian waters during summers 2004, 2009, 2010 

and 2012 within the scope of the RUSALCA (Russian-American Long Term Census of 

the Arctic) program. Community structure was highly variable between the study years, 

but was overall tightly correlated to water mass properties, with bottom temperature 

being the most significant factor influencing communities. Zooplankton biomass was 

dominated by the large copepod Calanus glacialis, while abundance was dominated by 

small shelf species of copepods, such as Pseudocalanus spp. and Oithona similis. The 

“cold” summers of 2009-2012 had nearly twice the biomass and abundance of zooplankton 

compared to the oceanographically “warm” summer of 2004. We discuss the implications 

of the inter-annual variability of planktonic communities within the Chukchi Sea, and the 

possible effects of longer-term climate change.

We then look at distribution and population structure of an ecologically important 

species complex within the zooplankton, Pseudocalanus spp, and evaluate the implica­

tions of a warming climate for this group of copepods. While numerically dominating 

the communities, Pseudocalanus spp. has been historically understudied at the species 

level due to very subtle morphological differences between the species. Our approach 

used a combination of microscopic identification as well as a novel species-specific PCR 

identification method to discriminate between the four species found in the Chukchi Sea. 

Our results suggest that shifting oceanographic patterns and climate warming will have 

unequal impact on this group of organisms, arising from species-specific life histories and 

tolerance to environmental conditions.

These recent observations on zooplankton are then placed into a historical con­

text through comparison to data collected throughout the past half-century (1946-2012).
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Despite significant challenges associated with the highly variable spatial coverage and 

methodology of the available datasets, significant trends were detected. In addition to 

high levels of inter-annual variability, we demonstrate significant increases in zooplankton 

biomass and abundance in recent years compared to historical studies, as well as shift­

ing distribution ranges for several key species. This signal was most pronounced within 

the copepods, particularly Calanus glacialis, which appears to be indirectly benefiting 

from warming of the region. While summer zooplankton communities of the Chukchi Sea 

have been primarily Bering-Pacific in character for as long as our records exist, continu­

ing warming and ice loss are increasing the influence of Bering-Pacific fauna within the 

Chukchi region.
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1 In trod u ction

Zooplankton are critical components of the world oceans, providing an essential link from 

the ocean’s dominant primary producers to the upper levels of the food web. Monitor­

ing zooplankton communities provides us with critical insight on the state of the pelagic 

ecosystem, as well as the implications for consumers, such as fish, birds, mammals and hu­

mans. Most planktonic species are characterized by short generation times and react very 

rapidly to shifts in the physical environment compared to organisms in other marine and 

terrestrial habitats. Additionally, since plankton drift passively with currents, distinct 

planktonic communities and individual species can serve as useful markers of currents and 

water mass types. Thus, plankton are ideal first sentinels of climate change, suggesting 

the importance of zooplankton community surveys to document on-going climate-related 

ecosystem shifts (Richardson, 2008).

Although the effects of climate change are globally evident, within the Arctic Ocean 

climate-related changes have been among the most apparent (IPCC, 2013). As the mul­

tiyear ice pack rapidly disappears, all organisms and biological processes that directly or 

indirectly rely on sea ice are affected. At present, considerable debate exists as to whether 

these changes will lead to a more or less productive Arctic (Arrigo and van Dijken, 2015; 

Lee et al., 2012). The Pacific Arctic Region (PAR) has been experiencing dramatic 

rates of change in recent decades, even when compared to adjacent regions of the Arctic 

Ocean. The mean average temperature of water flowing through the Bering Strait region 

has increased 1°C in just the past decade (Luchin and Panteleev, 2014; Woodgate et al., 

2010) and the sea ice extent is at historical lows (W ood et al., 2015). As the seasonal ice 

cover continues to contract and weather patterns shift, a “new normal” climate may be 

emerging for the Pacific Arctic region (Wood et al., 2015). The complex oceanography 

of the region, which shapes the biological communities, may also be altered. Monitoring 

planktonic communities of this region is essential to understand and quantify the changes 

that are occurring.
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This dissertation focuses on zooplankton communities within the Chukchi Sea, 

which is an important transition zone between the Pacific and the Arctic Oceans. Al­

though likely similar to other Arctic shelf seas during winter, during the summer months 

the Chukchi Sea becomes a flow-through system, composed of a complex mixture of north­

ward flowing water masses from the Pacific Ocean through the Bering Strait. These water 

masses bring in vast quantities of fresh water, nutrients and biomass into the Chukchi 

Sea, which may be deposited on the shelf or even carried out to the Arctic Basin (Greb- 

meier and Harvey, 2006). During the ice-free season, production on the Chukchi Sea shelf 

can be exceedingly high, and surpass that of all other Arctic shelf seas (Grebmeier and 

Maslowski, 2014; Kosobokova and Pertsova, 2012). For these reasons, the Chukchi Sea 

plays a critical role in the overall heat, energy and biomass budget of the Arctic Ocean.

Relatively little research has been done historically within the Chukchi Sea com­

pared to more accessible regions of the Arctic, due to its remoteness and extensive ice 

cover, which prevented access by all but large ice-breaking vessels. Nevertheless, a signif­

icant number of isolated studies have been done within Chukchi Sea, dating back to the 

beginning of the last century. Zooplankton researchers from the Soviet Union conducted 

these earliest studies, and despite being largely quantitative in nature, they noted the 

strong relationships between zooplankton distribution and oceanography (i.e. Virketis, 

1952). Unfortunately, very few of these Soviet studies ended up published in western lit­

erature, and many were never made publically available. In the second half of the century, 

a number of sampling programs emerged in the US, shedding light on the distribution 

and composition of zooplankton in the US sector of the Chukchi Sea (Johnson, 1953; 

Wing, 1974). In the 1980’s, the Inner Shelf Transfer and Recycling (ISHTAR) Program 

was launched. This program spanned a number of consecutive years and covered a broad 

area within the Southern Chukchi, allowing for the first estimates of inter-annual variabil­

ity and biomass contribution of the region (Springer et al., 1989) . However, the majority 

of these studies remained isolated in their spatial coverage and methodology, which pre­

vents a broad synthesis of the biology of the region. Additionally, with the exceptions 

of the 1970 “Mayak” expedition (Pavshtiks, 1984) and the 1988 joint US-USSR Bering
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& Chukchi Seas expedition (BERPAC) all of the historical studies have been limited to 

either one side the political border. As a result, very little contemporary information 

exists from the Russian side of the Chukchi Sea.

In recent years, efforts within the US sector of the Chukchi Sea region have intensi­

fied, driven in part by prospects of oil and gas exploration, as well as increasing interest 

in effects of climate change. The Russian-American Long Term Census of the Arctic 

(RUSALCA) program, launched in 2004, was the first modern attempt to address the 

knowledge gap resulting from studying just one side of the geo-political border and to 

establish a long-term interdisciplinary monitoring program in the entire central/western 

Chukchi Sea region. The initial expedition in August 2004 covered a broad region from 

the Bering Strait to Wrangel Island, and provided a much-needed baseline study, describ­

ing the distribution of zooplankton communities over both political sides of the Chukchi 

Sea during that year (Hopcroft et al., 2010).

Chapter 2 expanded on this initial effort by examining zooplankton communities 

during three additional RUSALCA sampling years (2009, 2010, 2012). The physical 

oceanography and distribution of water masses in the region was significantly different 

during each of the study years; additionally, the summer of 2004 was oceanographically 

much warmer than the subsequent cruises. This provided the opportunity to assess how 

variations in climate and oceanography are reflected in the zooplankton communities 

within the Chukchi Sea. Zooplankton data obtained during the 4 RUSALCA years was 

used to quantitatively describe the distinct planktonic communities within the Chukchi 

Sea. Their connections to water mass distribution and physical parameters were also 

illuminated, and an assessment of inter-annual variability observed in this region and the 

possible implications of longer-term climate change was provided. This manuscript was 

published in Polar Biology journal (Ershova et al., 2015a) and co-authored by Russell 

Hopcroft and Ksenia Kosobokova. While E.E. is the primary author on this manuscript in 

all regards, R.H. and K.K. designed the sampling program in 2004, as well as collected and 

processed the 2004 data and provided insightful comments and edits during preparation

3



of the manuscript.

The biology of individual key species is often overlooked in ecosystem research, 

however is essential for understanding the large-scale picture. Chapter 3 focused closely 

one of the more important genera within the Chukchi zooplankton communities, the 

copepod genus Pseudocalanus. Four species of this genus are found in the Pacific Arctic 

(Frost, 1989; Questel et al., 2016); however, despite their essential role in the ecosystem, 

very little research has been done on the species-specific aspects of their biology and 

ecology, with most studies grouping them as Pseudocalanus spp. Much of the confu­

sion surrounding Pseudocalanus results from the morphological ambiguity of the species, 

with differences between species being very indistinct, particularly at juvenile stages. I 

developed a molecular identification method (species-specific PCR), which allowed for 

relatively rapid and inexpensive routine identification of the four species that we observe 

in the region. This method was then used to describe the species-specific distribution 

and relative contribution of these species in the Chukchi Sea during three RUSALCA 

years. Additionally, to assess their relative contribution to secondary production, as 

well as reproductive potential in the Arctic environment, we examined the reproductive 

rates of the co-occurring species, both in in-situ (Hopcroft and Kosobokova, 2010) and 

in laboratory controlled environments. Incubating reproducing females at different tem­

peratures allowed assessment of their relative responses to the range of the temperatures 

that we observe in this region, as well as making inferences about their relative success 

under climate change scenarios. This chapter has been submitted for publication to the 

Journal of Plankton Research. It was co-authored by Jennifer Questel, Russell Hopcroft 

and Ksenia Kosobokova. E.E. is the primary author in all regards. J.Q. contributed by 

providing her sequences for creation of the species-specific primers and helping to design 

the PCR protocol. R.H. and K.K. contributed by designing and carrying out the in-situ 

egg production experiments in 2004, as well as providing comments on revising the text 

and figures during manuscript preparation.
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Moving beyond the scope of the RUSALCA program, in Chapter 4 I used his­

torical data on zooplankton to describe long-term patterns and trends in the Chukchi 

Sea, associated with changes in climate that we observed in the region. This effort in­

cluded incorporating all available historical datasets on zooplankton collected within the 

Chukchi Sea, dating as far back as the 1940’s, as well as a number of modern sampling 

efforts, including the four RUSALCA expeditions described in Chapter 2. Many of the 

older datasets analyzed have not been publically available prior to this work, or were 

buried in Russian literature. This synthesis was a challenging endeavor due to the ir­

regular nature of the data: inconsistent methods of collections and processing, variable 

spatial and seasonal coverage and very different taxonomic resolution. “Standardizing” 

the data inevitably led to the loss of much resolution. However, despite these challenges, 

and the inherent faultiness of such a patchy dataset, I was able to show consistent pat­

terns of change within the Chukchi Sea zooplankton communities over the last seven 

decades. This manuscript has been published in Oceanography journal as part of the 

special synthesis issue on RUSALCA (Ershova et al., 2015b) and co-authored by Russell 

Hopcroft, Ksenia Kosobokova, Kohei Matsuno, R. John Nelson, Atsushi Yamaguchi, and 

Lisa Eisner. E.E. was the primary author; K.N. and R.H. contributed by providing guid­

ance and constructive criticism during the writing process; K.M., R.J.N., A.Y. and L.E. 

contributed by providing their datasets to use in the analysis.

The final concluding section of the dissertation summarizes the main findings from 

the three preceding chapters, as well some overarching conclusions. The limitations of this 

project are considered and future directions of research are suggested to further expand 

our knowledge of the marine pelagic ecosystems of this region.
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2 Inter-annual variability  o f  sum m er m esozoop la n k ton  com m u n ities  o f  the 

w estern  C hukchi Sea: 2004 — 20121

2.1 A b stra ct

The Chukchi Sea shelf is a complex transition zone between the Pacific and Arctic Oceans, 

on which climate variation may have a profound impact. We examined summer zooplank- 

ton community structure of the western Chukchi Sea in Alaskan and Russian waters dur­

ing 2004, 2009, 2010 and 2012 within the ongoing Russian-American Long-term Census 

of the Arctic program. The four study years were very different both in water mass 

properties and in zooplankton community structure. A “warm” year with an early ice 

retreat and highest water temperatures occurred in 2004, whereas the years 2009-2012 

were “cold” with a later-than-average ice retreat and colder average water temperatures 

during the sampling period. The extent and prominence of different water masses (Bering 

Sea-Anadyr Water, Alaska Coastal Current, Siberian Coastal Current, Resident Chukchi 

Water) within the Chukchi Sea varied between years, which was in turn reflected within 

the zooplankton communities. Community structure was highly correlated with water 

mass properties, with bottom temperature being the most significant factor influencing 

communities. The “cold” summers of 2009-2012 had nearly twice the biomass and abun­

dance of zooplankton compared with the “warm” summer of 2004. Biomass was domi­

nated by the large copepod Calanus glacialis believed to originate from the Bering Sea, 

and abundance was dominated by small shelf species of copepods, such as Pseudocalanus 

spp., Acartia spp. and Oithona similis. We discuss the implications of the inter-annual 

variability of planktonic communities within the Chukchi Sea and the possible effects of 

longer-term climate change.

1Published as E. A. Ershova, R. R. Hopcroft, K. N. Kosobokova (2015) Inter-annual variability of sum­
mer mesozooplankton communities of the western Chukchi Sea: 2004-2012. Polar Biology 38(9):1461- 
1481. DQI:10.1007/s00300-015-1709-9
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2.2 In trod u ction

The Chukchi Sea is a marginal Arctic sea that serves as the transitional zone between the 

Pacific and Arctic Oceans. While sharing many common features with other Arctic shelf 

seas, it differs by being an inflow system, with most of the water masses arriving directly 

from the Pacific Ocean via the Bering Sea (Carmack and Wassmann, 2006). Unlike its 

Atlantic equivalent, the Barents Sea, it has a wide, shallow (<50 m deep) shelf with a very 

gentle slope that stretches all the way to the Arctic shelf break, which in combination 

with other factors creates a very different ecosystem. Also, unlike the Barents Sea, where 

incoming warm Atlantic water discourages extensive ice formation, the Chukchi region 

remains completely ice-covered during the winter, while waters entering through Bering 

Strait have near-freezing temperatures (Hunt et al., 2013).

The amount of Pacific water entering the Chukchi Sea annually is estimated at ~1 

-  1.2 Sv (Woodgate et al., 2012) with the strongest flow occurring during the summer 

months (Coachman et al., 1975; Woodgate et al., 2012). Several distinct water masses 

compose the Chukchi Seawater during the summer, named for the currents that carry 

them. The Alaska Coastal Current (Alaska Coastal Water, ACW ) brings in seasonally 

warmer (up to 12°C), reduced-salinity (<  31) coastal water from the southeastern Bering 

Sea shelf along the coast of Alaska (Springer et al., 1984). Anadyr Water (AW), which 

originates on the continental slope of the Bering Sea (Coachman et al., 1975), is a flow 

of nutrient-rich, cold (0 -  10°C) and saline (32.3 -  33.3) oceanic water. A water type 

with intermediate properties that originates on the Bering Sea shelf (BSW) separates 

the two water masses; it mixes with AW to form Bering Shelf -  Anadyr Water (BSAW) 

(Coachman et al., 1975). Together, these water masses carry with them large quantities 

of nutrients, phytoplankton and zooplankton and make the Chukchi Sea one of the most 

productive regions of the Arctic (Grebmeier and Maslowski, 2014). The annual primary 

production of the Chukchi region is estimated to be 42 Tg C year 1, or almost 15% of 

all primary production in the Arctic Ocean (Sakshaug, 2004).
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The significant reduction in sea ice thickness, extent and timing of coverage that 

has been recorded across the entire Arctic in recent decades has been most pronounced 

in its Pacific sector (IPCC, 2013). The Chukchi Sea pelagic ecosystem, which is finely 

tuned to the seasonal ice formation and retreat, is now experiencing a dramatic change 

with shifting sea ice cover. Models and some observations suggest an average increase 

in primary production, mainly driven by the increased area of open water, across the 

entire Arctic with greatest change in the Chukchi/Bering Sea area (Arrigo and van Di- 

jken, 2011). Alternately, others believe that nutrient limitation will ultimately restrain 

primary productivity in the Arctic, with little or no increase in annual production (Lee 

et al., 2012). Some studies suggest that the Arctic planktonic communities are nearing 

a threshold favoring a regime shift (a.k.a. tipping point) (Duarte et al., 2012). Shifts 

from diatom-dominated to picoplankton-dominated communities, driven by ocean warm­

ing and sea ice reduction, have already been recorded for several regions in the central 

Arctic Ocean, and some studies suggest that such a regime shift may occur within the 

foreseeable future (Arrigo and van Dijken, 2011; Li et al., 2009; Tremblay et al., 2012). 

A protracted ice-free summer period within the Chukchi region could potentially benefit 

advected Pacific zooplankton species, permitting them to play a larger role in the sum­

mer planktonic communities and facilitate a northward shift of their ranges, likely at the 

expense of “resident” Arctic species.

A number of studies focusing on zooplankton communities of the Chukchi region 

have been done sporadically beginning with the middle of the twentieth century (for 

a review, see Hopcroft et al., 2010). These efforts have recently intensified, fueled by 

interest in both climate change and the extraction of oil and gas reserves (e.g., Questel 

et al., 2013). Notably, most historical and contemporary studies have focused on smaller- 

scale areas and have been spatially limited to either Russian or US waters, but for several 

decades, sampling has been confined to US waters (e.g., Eisner et al., 2012; Lane et al., 

2008; Matsuno et al., 2011; Springer et al., 1989). The Russian-American Long-Term 

Census of the Arctic (RUSALCA) program, established in 2004, is a unique attempt to 

investigate a much wider territory —  from the Bering Strait to north of Wrangel Island
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on both sides of the political border —  over a long-term time period (Hopcroft et al., 

2010).

In this study, we describe the summer zooplankton communities of the western 

Chukchi Sea, illuminating the poorly described Russian section. We examine the inter­

annual variability within the plankton communities, which are strongly shaped by phys­

ical drivers (e.g., Eisner et al., 2012; Hopcroft et al., 2010). This effort contributes solid 

snapshots for monitoring climate-related change within the region, placing them into per­

spective with past, ongoing and future surveys. Such observations will enable us to better 

discriminate systematic environmental change from the natural year-to-year variability.

2.3 M eth od s

Three 3-week interdisciplinary cruises with emphasis on ecosystem components have been 

carried out within the framework of the RUSALCA program: August 4-25, 2004, Septem­

ber 4-27, 2009 and September 2-24, 2012. Plankton was also collected on a shorter 

oceanographic expedition August 1-11 2010 (Fig. 2.1). The initial sampling area in 

2004 included 34 stations that sampled the Chukchi Sea on both sides of the US-Russian 

border from the Bering Strait northward to Herald Canyon (Hopcroft et al., 2010). The 

expeditions in 2009-2012 repeated sampling of the transects established in 2004. During 

2009, many additional sections in the East Siberian Sea and surrounding Wrangel Island 

were also sampled, for a total of 60 stations. In 2012, due to poor weather conditions 

and sea ice, only 25 stations were sampled. In 2010, only the two southern study lines 

were occupied, plus an additional short transect in the East Siberian Sea, for a total of 

16 stations.

Zooplankton samples were collected using vertically hauled 150 ^m double-ring 

nets of 60 cm mouth diameters, sampling entire water column to within 3-5 meters of 

the ocean floor. While we recognize that the system often consists of different water 

masses overlaying each other, collecting stratified samples was not logistically possible. 

Total volume of water through the nets was measured using General Oceanics or Ocean
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Longitude (°W)

Figure 2.1: Locations of sampling stations and holozooplankton biomass (estimated from 
the 150-^m vertical ring net) overlain on sea surface temperatures (SST, °C) averaged 
over a mid-cruise 7-day interval

Test flow meters, which were positioned at the mouth of each net and rigged not to 

spin during descent. Additionally, larger and rarer taxa were collected in 2009 and 2012 

with obliquely towed flow-metered 505 ^m Bongo nets, sampling at 2 knots (1 m s-1 ) 

to a depth near the bottom. Samples were collected during both the day and night. 

Upon retrieval, one of the samples from each net was preserved in 95 % molecular-grade 

ethanol, while the other 150-^m sample was preserved in 10 % formalin, and the 505-^m 

sample was live-sorted immediately for fragile gelatinous organisms on a light table prior 

to formalin preservation.

Fresh gelatinous specimens were keyed to species and measured, and then ctenophores 

were discarded, as they are known to quickly disintegrate in preservatives. The large (5 

cm) specimens were weighed using a scale; the weight of the smaller individuals was 

predicted from taxa-specific weight-length relationships of the same or similar species 

(Table 2.1). To reduce the inflated importance of cnidarians and ctenophores result­

ing from their low carbon content, we normalized their biomass through division by 4 

(Kosobokova and Hopcroft, 2010), in order to make their dry-weight (DW) more com­

parable with that of crustacean zooplankton (i.e., typically carbon is 10 % of dry-weight 

in gelatinous species vs. 40 % in crustaceans), while retaining the units of biomass most 

common in zooplankton literature (Bamstedt, 1986; Larson, 1986).
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Table 2.1: Length-weight relationship of gelatinous zooplankton species; D W  dry-weight, 
TL total length, BD bell diameter

Species Regression equation Units Source
Bolinopsis infundibulum DW =  0.062TL2.34 mm Kasuya et al. (2000)

mg
Mertensia ovum DW =  0.104TL2.12 mm Percy (1989)

mg
Beroe ovata DW =  0.018TL2.69 mm Kremer et al. (1986)

mg
Cyanea capillata DW =  0.006BD2 721 cm g Bailey et al. (1995)
Aeginura grimaldii (mor- DW =  5.04BD112 mm Bailey et al. (1995)
phologically similar to mg
Aeginopsis laurentii)
Hydrozoan jellyfish DW = mm Matthews and Hes-

0.00194TL3.05 mg tad (1977)

At each station, oceanographic data were collected with a Seabird 911 +  CTD 

equipped with an oxygen sensor, transmissometer and fluorometer (Pickart et al., 2010; 

Pisareva et al., 2015), with all data binned into 1-m intervals during post-processing. 

Chlorophyll samples were collected by Niskin bottles on the CTD rosette every 5 m 

from the surface to bottom, filtered at low pressure onto G F /F  filters and analyzed 

fluorometrically (Lee et al., 2007).

The formalin-preserved samples were processed in the laboratory to determine com­

munity composition, abundance and biomass. The entire samples were scanned for large 

and uncommon species, which were identified and measured. The remainder of the sam­

ple was then split using a Folsom splitter such that there were about 100 individuals of 

the most common species in the terminal split. Increasingly larger splits were scanned for 

rarer taxa; a minimum of 400 individuals were examined from each sample, with 500-600 

typically identified. All organisms were measured using a computer-assisted measurement 

system (ZoopBiom software, Roff and Hopcroft, 1986), and the dry-weight (DW) of each 

specimen was predicted from a length-weight regression relationship known for the same 

species, or a morphologically similar organism (Hopcroft et al., 2010). Copepods were 

staged and keyed to species; juveniles within some genera (such as Pseudocalanus spp. 

and Acartia spp.), which are morphologically undistinguishable, were grouped together.
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The species complex Calanus glacialis/ marshallae, which is also undistinguishable mor­

phologically, was considered to be C. glacialis within our region (Nelson et al., 2009). 

Meroplankton was grouped to the macrotaxa or to the family level (in the case of shrimp 

larvae). Copepod nauplii were counted only in 2009, 2010 and 2012. Here and hereafter, 

the copepods C. glacialis, Neocalanus spp., Metridia spp. and Eucalanus bungii are re­

ferred to as “large copepods” ; all other copepods are considered “small copepods” . Only 

the 150-^m net samples are discussed in detail in this paper; however, the 505-^m net 

samples were included in the overall species lists with biomass values from the 505-^m 

nets only presented for the live-sorted gelatinous organisms.

Water masses were separated by cluster analysis using Euclidean distances on the 

normalized temperature and salinity values. Surface (averaged for 0-10 m), bottom 

(averaged for 10 m above sea floor), and midwater layers (10-10 m above sea floor) at 

each station were examined separately to partially account for the complex-stratified 

oceanography of the region and to determine where multiple water types may be present 

at a single location. The resulting groups (surface and bottom only) were plotted on 

a T -S  diagram for quantitative separation and on a map of the study area. Increasing 

the surface and bottom depth intervals to 15-20 m thickness resulted in an identical 

separation of clusters, but slightly lower correlations to biological data. The midwater 

layer was not included in analysis because it was highly auto-correlated to the bottom 

and surface layers. High-resolution satellite SST data were extracted from the NOAA 

website at http://w w w.esrl.noaa.gov/psd/. The R packages “maps” , “mapplots” and 

“ggplot2” were used to create figures and plots (Becker and Wilks, 2013; Gerritsen, 2013; 

Wickham, 2009).

Differences in total abundance and biomass, as well as abundance and biomass of 

taxonomic groups and individual species between years, were examined using ANOVA 

with station location as a blocking factor. Significant interactions between years were 

established using the Tukey’s HSD test. Due to different spatial coverage during the 4 

years, only the southern Chukchi domain (three southern transects) was included in this
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analysis. Full domain community patterns were explored using the “vegan” package in R 

(Oksanen et al., 2015). Both the abundance and biomass datasets were examined inde­

pendently for the stations pooled from all years. The datasets were power-transformed 

(fourth root), and the Bray-Curtis similarity index was calculated for all stations for 

each year. All taxonomic categories that contributed at least 3 % after transformation 

to any sample were included in the analysis; categories that were employed only during 

some of the years (e.g., copepod nauplii, crab megalopa) were excluded from analysis. 

Hierarchical cluster analysis using average linkage was carried out, and qualitative sepa­

ration of groups was established by overall similarity (30-35 %), the SIMPROF routine 

(significance at a  =  0.05) (Clarke and Gorley, 2005) and subjective biological interpreta­

tion. These resulting groups were super-imposed on 2D and 3D plots of nonparametric 

multidimensional-scaled (nMDS) datasets and spatial plots of the study area. The cor­

respondence between zooplankton community patterns and physical data were explored 

using the BIOENV routine (Clarke and Ainsworth, 1993), which establishes correlations 

between these two data matrices. The significance of these correlations was established 

using Mantel’s test of associations (Mantel, 1967).

2.4 R esu lts

2.4.1 W ater masses

August 2004 was the warmest sampling period, with an average sea surface temperature 

(SST) across the sampled domain of 6.3 °C and with water as warm as 8 °C entering the 

Herald Canyon region (Fig. 2.1). The coldest temperatures were observed in September 

2012, averaging only 3.4 °C, nearly three degrees colder than 2004. The warm waters 

of the Alaska Coastal Current (ACW ), and the resultant temperature gradient across 

the shelf, were most pronounced in 2010 and 2012, while in 2009, the surface water 

temperatures were the most uniform.

Cluster analysis of surface and bottom water properties (Temperature and Salinity) 

within each year splits them into 11 distinct groups; these were subsequently grouped
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into six water types, as recognized by the literature characterizations (i.e. Eisner et al., 

2012) (Fig. 2.2). While this approach is an oversimplification, particularly within the 

surface waters, which are influenced by melting, mixing and radiative forcing, it provides 

us with a broad-scale picture of the physical environment within our study. The fresh and 

warm Alaska Coastal Water (ACW , red) was the most recognizable assemblage, which 

includes three cluster groups: extremely warm low-salinity water, present only in 2004 

and at one station in 2010; colder low-salinity water present only in 2012 (and one station 

in 2004, which was most likely an outlier); and colder higher-salinity water visible in all 

years except 2009. ACW  waters were most pronounced in 2004, when they were found 

in surface waters across the entire offshore section of the southern Chukchi, and even as 

far north as eastern Herald Canyon. The higher-salinity and colder Bering Sea-Anadyr 

Water (BSAW, green) was present in bottom waters throughout the southern Chukchi 

and as far north as 72 °N in Herald Canyon in 2004 and 2009. An intermediate water 

type, most likely a mixture of ACW  and BSAW (BSAW /ACW , light blue) (Pisareva 

et al., 2015), was found within the surface waters of the southern Chukchi during all 

years, particularly in 2009, when it reached far north into the Herald Canyon. Resident 

Chukchi Winter Water (W W , purple) was the dominating bottom  water type in western 

Herald Canyon and was typically overlain by BSW /BSAW  or lower-salinity melt water 

(dark blue). The surface waters of the northernmost stations (in 2009) and the stations 

surrounding Wrangel Island (in 2004 and 2012) also contained a very cold, low-salinity 

water type most likely resulting from ice melt (melt water, dark blue). The very low- 

salinity (<27), cold waters of the Siberian Coastal current (SCW, orange) were visible 

along the Siberian coast in 2009 and 2010 and farther offshore in 2012.

2.4.2 Z oop la n k ton  taxa

Total holozooplankton abundance estimated by the 150-^m nets varied across a wide 

range: from 400 individuals (ind) m -3 to 25,000 ind m-3 . Abundance averaged ~3000 

±  2500 ind m -3 in 2004 and 2012; in 2009 and 2010, it was almost three times higher, 

averaging ~  8000 ±  6500 ind m -3 , mainly due to the extremely high abundance of small
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Figure 2.3: Inter-annual variability in mean biomass (mg DW m-3 ) of major zooplankton 
groups across the Southern Chukchi Sea (southern 3 sampling sections), black bars - 
standard error

copepods during those 2 years (copepod nauplii are excluded from all counts). The total 

holozooplankton biomass varied by almost two orders of magnitude across the studied 

domain during the four study years, with the minimum observation being around 8 mg 

dry-weight (DW) m-3 and the maximum 360 mg DW m-3 (Fig. 2.1). The lowest biomass 

(averaged across the entire domain) was observed in 2004, averaging 44 ±  31 mg DW 

m-3 (here and henceforth values are mean ±  SD); biomass was somewhat higher in 2010, 

averaging 63 ±  35 mg DW m -3 . During 2009 and 2012 years, the observed biomass was 

relatively similar, averaging ~75 ±  40 mg DW m-3 . Across the southern Chukchi domain, 

which was common for all four cruises, difference in overall biomass was significant, with 

lower values observed in 2004 than in 2009 and 2012 (ANOVA, p <  0.05, Tukey’s HSD); 

abundance was significantly higher in 2009 than in 2004 and 2012 (Table 2.3).

A total of 82 unique taxa from 13 taxonomic groups were encountered during the 

four study years (Table 2.2). The majority of these were advected subarctic Pacific
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Table 2.2: Species encountered during RUSALCA 2004-2012 cruises in the Chukchi Sea; 
Species marked in bold were estimated using the 505-^m net; obs, species were observed 
during the cruise, but not noted (or counted) within the samples; “—” , species not ob­
served; “+ ” <  0.01; NA, no data available; a, Biomass standardized through division by 
4; b, Arctic species

Abundance (ind m-3) Biomass (mg DW m-3)

2004 2009 2010 2012 2004 2009 2010 2012
Amphipoda

Gammaridae 0.05 0.06 + 0.4 0.14 0.11 + 0.13
Apherusa glacialisb - obs - 0.02 - obs - 0.06
Monoculodes sp. - obs - obs - obs - obs
Hyperiidae - 0.1 - 0.01 - + - +
Hyperoche sp. - 0.14 + 0.03 - 0.2 + 0.05
Themisto libellula 0.03 0.05 0.2 0.05 + 1.4 4.8 0.48
T. pacifica/abyssorum 0.04 0.01 0.01 0.03 0.07 0.02 + 0.07
Hyperia galba - - - + - - - +
Scina borealis - - - + - - - +
Sum 0.12 0.36 0.21 0.14 0.2 1.73 4.81 0.66

Appendicularia
Fritillaria borealis 85.09 308.5 1470.3 2.61 0.01 0.03 0.11 +
Oikopleura vanhoeffeni 256.6 27.95 375.1 63.64 4.12 0.14 1.76 5.34
Sum 341.69 336.45 1845.4 66.26 4.13 0.17 1.88 5.34

Chaetognatha
Eukrohnia hamata 0.43 + 8.68 - 0.34 0.05 0.23 -
Parasagitta elegans 5.69 109.16 40.52 23.72 4.77 17.15 3.97 11.22
Sum 6.12 109.17 49.19 23.72 5.11 17.2 4.2 11.22

Cladocera
Evadne nordmanni 11.35 - 196.85 - 0.04 - 1.55 -
Podon leuckarti 14.51 - 103.85 0.25 0.06 - 0.57 +
Sum 25.85 - 300.7 0.25 0.1 - 2.12 +

Copepoda
Acartia hudsonica 2.52 14.19 7.28 11.26 0.01 0.05 0.04 0.04
Acartia longiremis 199.43 67.12 507.2 101.67 0.41 0.14 0.72 0.16
Acartia tumida + 0.36 - - + + - -
Calanus glacialis 35.67 144.72 78.67 263.73 6.7 24.55 14.14 35.03
Calanus hyperboreusb - 0.08 - - - 0.06 - -
Centropages abdominalis 190.23 78.24 135.91 64.31 0.5 0.48 0.53 0.27
Epilabidocera amphitrites - 0.01 0.2 0.02 - + 0.03 +
Chiridius obtusifrons - 0.04 - + - + - +
Aetideidae - 0.01 0.19 + - + + +
Eucalanus bungii 14.62 7.8 146.64 3.02 1.33 0.43 3.37 0.3
Paraeuchaeta glacialis b + + - + + 0.01 - +
Eurytemora herdmani 5.69 16.95 1.09 22.26 0.03 0.1 0.01 0.09
E. pacifica + 0.07 - - + + - -
Jaschnovia brevisb - 0.05 - 0.32 - + - 0.01
J. tollib 0.32 - - - 0.01 - - -
Mesocalanus tenuicornis + - - - + - - -
Metridia longab - 1.36 - - - 0.28 - -
M. pacifica 39.75 71.6 367.48 11.29 1.41 1.81 10.01 0.15
Microcalanus pygmaeus 8.18 2.17 32.09 1.88 0.01 + 0.05 +
Neocalanus cristatus 0.94 0.06 0.27 0.75 6.38 0.36 1.75 5.19
N. flemingeri 7.09 2.4 7.84 2.59 4.5 0.28 4.21 1.46
N. plumchrus 2.1 0.29 0.23 0.11 1.42 0.22 0.14 0.07
Pseudocalanus acuspesb 38.55 78.72 34.5 31.79 0.51 0.77 0.41 0.34



Table 2.2 — continued from previous page
Abundance (ind m-3) Biomass (mg DW m-3)

2004 2009 2010 2012 2004 2009 2010 2012
P. mimus - 3.24 26.22 1.72 - 0.03 0.25 0.01
P. minutusb 71.81 8.21 46.33 9.8 0.89 0.11 0.84 0.17
P. newmani 92.8 141.23 41.66 22.59 0.55 0.72 0.23 0.12
Pseudocalanus spp. 1606.62 4150.74 1739.67 1655.06 4.51 9.45 4.61 4.3
Scolecitrichidae - 0.3 - 0.05 - 0.01 - +
Spinocalanus sp. - 0.03 - - - + - -
Tortanus discaudatus - 0.06 - 0.02 - + - +
Harpacticus sp. - 7.24 6.24 0.03 - 0.03 0.02 +
Microsetella norvegicab 19.26 59.72 550.89 14.94 0.09 0.42 2.92 0.09
Oithona similis 701.95 2471.66 1721.77 490.42 0.77 3.37 2.65 0.66
Triconia borealis 65.02 12.96 87.71 6.85 0.1 0.02 0.29 0.01
Calanoid nauplii NA 618.91 1119.95 289.55 NA 0.43 1.27 0.25
Sum 5106.56 9969.49 8670.02 5018.02 30.14 44.16 48.49 48.73

Ostracoda
Boroecia sp.b 0.01 0.03 - - + + - -

Polychaeta
Tomopteris sp. + + - + 0.01 + - +

Ctenophora (505 ^m net)
Beroe abyssicola N A - N A + N A - N A 0.04“
Beroe cucumis N A + obs 0.01 N A 0.05“ obs 1.71“
Mertensia ovum obs 0.06 obs 0.31 obs 0.82“ obs 1.56“
Bolinopsis infundibulum obs + obs 0.01 obs 0.60“ obs 0.37“
Sum N A 0.06 N A 0.33 N A 1.48 N A 3.67

Decapoda and other crustacea
Cumacea - 0.13 - - - 0.21 - -
Hippolytidae - 0.31 0.23 0.1 - 0.02 0.21 0.1
Eualus gaimardii - 0.05 - 0.03 - 0.06 - 0.02
Pandalidae - 0.02 - 0.03 - 0.03 - 0.34
Sum 0 0.5 0.23 0.16 0 0.31 0.21 0.45

Euphausiidae
Thysanoessa inermis 0.14 0.02 - 0.13 0.44 0.19 - 0.6
T. raschii 0.03 0.34 0.05 0.36 0.08 2.89 0.46 1.81
Thysanoessa juveniles 6.12 5.09 63.13 9.14 0.66 1.55 0.12 3.85
Sum 6.3 5.46 63.17 9.62 1.17 4.63 0.58 6.27

Cnidaria
Aeginopsis laurentiib - 4.89 - 0.31 - 0.48“ - 0.07“
Aglantha digitale 5.35 5.63 44.76 1.89 0.95“ 0.20“ 0.51“ 2.00“
Aurelia aurita - + - - - 0.01“ - -
Eumedusa birulaib - 0.02 0.1 + - 0.05“ 0.01“ 0.01“
Euphysa flammea 0.06 0.01 - - 0.08“ + - -
Melicertum octocostatumb 0.01 0.01 - 0.09 0.01“ 0.02“ - 0.01“
Obelia longissimab 0.4 0.16 2.49 0.03 + 1.00. 0.13 +
Catablema/Halitholis b + 0.01 + 0.12 0.02“ 0.03“ 0.01“ 0.64“
Plotocnide borealisb - 0.4 - 0.29 - + - 0.01“
Polyorchis penicillatus + - - - 0.02“ - - -
Rathkea octopunctatab 11.6 0.12 15.56 0.06 0.02“ + 0.03“ +
Sarsia tubulosa + 0.06 - + 0.02“ 0.15“ - +
Dimophyes arcticab - + - - - + - -
Bougainvillia superciliarisb - - 0.01 - - - 0.01 -
Sum (150 yU,m) 17.43 11.31 62.92 2.8 1.2 0.95 0.69 2.74

Cnidaria (505 ^m)
Cyanea capillata N A + N A 0.02“ N A 0.10“ N A 1.96“
M itrocom ella polydiade- N A N A + N A N A 0.80“
mata
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Table 2.2 — continued from previous page
Abundance (ind m-3) Biomass (mg DW m 3)

2004 2009 2010 2012 2004 2009 2010 2012
Catablema vesicarium  /  
Halitholis cirratus N A + N A 0.04“ N A 0.01“ N A 0.07

Sarsia tubulosa N A 0.01“ N A + N A 0.02“ N A 0.01
Eum edusa (= C a ly cop sis )  
birulai N A + N A + N A + N A +

Chrysaora m elanaster N A - obs + N A - obs 1.16
Aeginopsis laurentiib N A 1.40“ N A 0.09“ N A 0.15“ N A 0.18
Aglantha digitale N A 0.75“ N A 0.38“ N A 0.04“ N A 0.11
Sum (505 yU,m) N A 2.16 N A 0.53 N A 0.32 N A 4.29

Meroplankton
Bipinnaria - 0.32 12.5 1 - + 0.02 +
Echinodermata larvae 795.56 46.03 1437.76 19.38 0.37 0.05 0.29 +
Bivalvia larvae 148.31 217.77 1730.72 49.38 0.05 0.12 2.72 0.02
Cirripeda larvae 1235.55 102.68 1181.63 39.57 5.28 1.49 2.03 0.58
Decapoda zoea 0.31 0.04 0.08 0.24 0.21 0.04 + 0.02
Fish larvae 0.2 + 0.1 0.01 0.88 0.25 0.02 0.51
Actinula (anenome larvae) 0.24 0.16 - 0.3 0.3 0.13 - 0.06
Pagurus zoea 0.32 0.6 0.52 0.28 0.11 0.09 + +
Polychaete larvae 81.85 70.28 642.19 3.56 0.81 0.37 2.31 0.05
Pilidium (nemertine larvae) - - 3.12 - - - + -
Sum 2262.35 437.89 5008.63 113.74 8.01 2.49 7.4 1.29

Mysidae
Mysis oculata + 0.02 - 0.01 0.04 0.02 - 0.01
Neomysis awatschensis - obs - - - obs - -

Pteropoda
Clione limacina - 0.22 0.42 0.15 - 0.03 0.04 0.42
Limacina helicina - 101.94 76.97 0.45 - 1.45 0.27 +
Sum 0 102.16 77.39 0.6 0 1.48 0.31 0.43

“

“

“
“
“

species, which are shared with the Bering Sea. However, a number of species, including 

the majority of the observed hydrozoan jellyfish and some copepods (marked by asterisks 

in Table 2.2), are generally not found south of the northern Bering Sea/Chukchi region 

and can therefore be considered resident Arctic species. Copepods dominated both com­

munity biomass and abundance (Table 2.2; Fig. 2.3) —  large copepods, mainly Calanus 

glacialis (Fig. 2.4), dominated the biomass at most locations, while small copepods dom­

inated the abundance. Other large copepods, such as Metridia pacifica, Eucalanus bungii 

and Neocalanus spp., were present mainly in Bering Sea waters, with numbers declining 

to the north and toward the Siberian coast (Figs. 2.4; 2.7). Small copepods, such as Pseu­

docalanus spp., Oithona similis and Acartia spp. were common throughout the study 

region, but were particularly abundant near the coasts (Figs. 2.8; 2.9; 2.6). Study year 

2009 stood out by significantly higher (2-3 times) average abundance of small copepods:
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juvenile Pseudocalanus spp. and O. similis (Fig. 2.3; Table 2.3). Warm-water euryha- 

line copepods, such as Eurytemora herdmani and Centropages abdominalis (not shown), 

were generally only found in Alaska coastal waters; in 2009, however, these species were 

found throughout the southern Chukchi domain (Fig. 2.5). The pelagic harpacticoid 

copepod Microsetella norvegica was a prominent member of zooplankton communities 

in the Herald Canyon region and around Wrangel Island and was mostly absent from 

Bering Sea and Alaskan waters (Fig. 2.5). The presence of a number of Arctic taxa in 

2009 (i.e., Calanus hyperboreus, Metridia longa, Chiridius obtusifrons) was largely due to 

the extended sampling region during that year.

A number of other non-copepod groups were also of high importance. Hydrozoan 

jellyfish, such as Aeginopsis laurentii and Halitholis cirratus, was common within waters 

around Wrangel Island and along the Siberian coast; A. laurentii was particularly abun­

dant in 2009 (Fig. 2.8) and H. cirratus in 2012 (not shown). Aglantha digitale, on the 

other hand, was widespread throughout the study region during all years, particularly in 

waters influenced by Alaska Coastal Water, and was especially abundant in 2010 (Fig. 

2.8). Other groups contributed variably across the area and between the studied years. 

Pteropods (Limacina helicina and Clione limacina) were extremely numerate in 2009 

and 2010, especially near the Alaskan coast, but were rare in 2012 and completely absent 

in 2004 (Table 2.2; Fig. 2.7). Similarly, cladocerans were completely absent from the 

zooplankton in 2009. The larvacean Oikopleura vanhoeffeni (Fig. 2.7) was an important 

contributor in terms of abundance in 2004 (particularly in the Herald Canyon region) and 

in 2010 (Table 2.2). Despite much lower overall numbers in 2012, the much larger size of 

the individuals resulted in an exceptionally high biomass of this species during that year 

(significantly higher than in all other years) (Table 2.3). It is noteworthy that in 2009, the 

biomass and abundance of larvaceans were extremely low. The predatory chaetognath 

Parasagitta elegans (Fig. 2.7) was present at all sampling locations; its abundance (and 

biomass) was highest in 2009, especially in Herald Valley and around Wrangel Island. 

Cirripeda larvae were also common during all years throughout the studied region and 

were particularly abundant during the two summer surveys (2004 and 2010) (Fig. 2.7).
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Figure 2.4: Abundance of large copepods (ind m 3) across the Southern Chukchi Sea; 
cross symbol species absent at this location
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Pseudocalanus spp.
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Figure 2.5: Abundance of small copepods (ind m 3) across the Southern Chukchi Sea; 
cross symbol species absent at this location
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Figure 2.6: Abundance of copepods (ind m-3 ) across the Southern Chukchi Sea; cross 
symbol species absent at this location
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Figure 2.7: Abundance of other taxa (ind m-3 ) across the Southern Chukchi Sea; cross 
symbol species absent at this location
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Figure 2.8: (a), (b) Abundance of gelatinous species (ind m-3 ) across the Southern 
Chukchi Sea; cross symbol species absent at this location; (c) total biomass (mg DW
m 3) of gelatinous plankton in the Chukchi Sea as estimated by 505-^m nets
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Table 2.3: One-way ANOVA results for the southern Chukchi Sea domain during all years for (a) total holozooplankton (b) taxonomic 
groups (c) individual copepod species; *** p <  0.001; ** p <  0.01; * p <  0.05. Significant interactions (p <  0.05) via Tukey HSD 
test; bold italic indicates significance at p =  0.1 level

Abundance (ind m-3) Significant interactions Biomass (DW m-3) Significant interactions2004 2009 2010 2012 p 2004 2009 2010 2012 p
(a) Total 3295.6 10605.1 7944.5 3218.8 *** 2009 > 2004, 2012 46.1 78.5 62 86.2 * 2004 < 2009, 2012
(b)
Large copepods 116.2 237.6 601.3 287.5 ** 2010 > 2004, 2009 29.9 33.7 33.7 53.6 NS none
Small copepods 2823.1 9672.8 4938.6 2825.2 *** 2009 > 2004, 2010, 7.6 20.7 13.6 7 *** 2009 > 2012, 2004

2012
Chaetognaths 4.2 58.5 49.2 26 NS none 3.2 9.2 4.2 12 * 2012 > 2004
Larvaceans 277.3 432.3 1845.4 60.4 *** 2010 > 2004, 2009, 1.9 0.1 1.9 5.5 ** 2012 > 2004, 2009,

2012 2010
Cnidarians 22.5 1.8 68.3 3.9 *** 2010 > 2004, 2009, 1.7 0.4 0.7 2.9 * 2012 > 2009, 2010

2012
Euphausiids 9.2 5.7 63.2 14 * 2010 > 2004, 2009 1.5 8.1 0.6 4.4 ** 2009 > 2004, 2010
Pteropods 0 196.2 77.4 0.8 * 2009 > 2004 0 3.7 0.3 0.1 NS none
Cladocerans 43.1 0 300.7 0.6 NS none 0.2 0 2.1 0 NS none
Amphipods 0.1 0.2 0.2 0.3 NS none 0.1 2.6 4.8 0.6 NS none
Decapods 0 0 0.2 0.1 NS none 0 0 0.2 0.1 * 2010 > 2004, 2009
(c)(c)
Calanus glacialis 20.9 98.6 78.7 270.3 *** 2012 > 2004, 2009, 5.7 27.8 14.1 44.7 ** 2012 > 2004, 2010;

2010 2009 > 2004
Metridia pacifica, 55.3 126.1 367.5 9.9 *** 2010 > 2004, 2009, 2.3 4.5 10 0.1 ** 2010 > 2004, 2012

2012
Neocalanus flemingeri 10.7 1.3 7.8 1.6 * 2004 > 2009, 2012 6.8 0.4 4.2 1.1 ** 2004 > 2009, 2012
Pseudocalanus spp. 1356.3 5103.1 1888.4 1756.3 ** 2009 > 2004, 2010, 5.2 13.5 6.3 5 ** 2009 > 2004, 2010,

2012 2012
Oithona similis 946.6 4154.5 1721.8 665.2 *** 2009 > 2004, 2010, 1 5.3 2.6 0.9 *** 2009 > 2004, 2010,

2012 2012
Eurytemora herdmani 7.4 42.6 1.1 42 * 2009 > 2004, 2010 0 0.2 0 0.2 ** 2009 > 2004, 2010



As with copepods, the presence of a number of Arctic jellyfish species in 2009 was largely 

due to the extended sampling region during that year.

When properly accounted for (in 2009 and 2012), ctenophores and large jellyfish 

were important contributors to the community biomass, resulting in a 2-10 % average 

increase in the biomass estimated by preserved samples. At several stations, particularly 

in 2012, the normalized biomass of large gelatinous taxa was over 40 mg DW  m -3 and 

exceeded copepod biomass (Fig. 2.8). The ctenophore Mertensia ovum (Fig. 2.8) was 

the most abundant species, particularly in 2012, when it occurred at nearly every station 

and contributed an average of 2 mg DW  m -3 to the overall holozooplankton biomass 

(and up to 10 mg DW  m -3 ). In 2009, we only encountered M. ovum above 69 °N, but its 

average contribution to biomass across the entire area was nevertheless high at 0.8 mg 

DW m -3 . The ctenophores Bolinopsis infundibulum and Beroe cucumis (not shown) were 

less common, occurring at 15-25 % of the stations sampled, but due to their large size 

and weight, their average contribution to biomass is also substantial during both years 

(Table 2.2). The large scyphomedusan Cyanea capillata was also common in 2012, with 

smaller individuals (up to 20 cm) occurring throughout the collections and contributing 

an average of 2 mg DW m-3 to the biomass (Table 2.2); in 2009, we only observed this 

jellyfish at three stations.

2.4.3 C om m u n ity  stru ctu re

Twelve station groups were identified by cluster analysis for all years (Fig. 2.9a). The 

nMDS ordination largely reinforces (Fig. 2.9c) the results of cluster analysis, with im­

provement in stress from 0.21 to 0.14 when increasing from two to three dimensions. Gen­

erally, the stations separate by year, with several exceptions. Specifically, the Chukchi 

communities in 2009 clustered together with the Chukchi/SCW stations in 2012; the 

ACW-influenced communities in 2012 were grouped together with most of the stations 

of the southern Chukchi in 2009. Overall, 2004 was more similar to 2010, and 2009 to 

2012, and it is notable that the former two cruises took place in August, and the other
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Figure 2.9: Zooplankton abundance. (a), (b) Cluster analysis and (c) nMDS ordination 
plot (first two axes) for combined 2004, 2009, 2010 and 2012 stations in the Chukchi Sea. 
Bottom temperature overlaying nMDS plot indicates strong relationship with community 
structure. Solid colors connect clusters that were significant at a  =  0.05 level; same colors 
indicate 35 % similarity

two in September. A strong cross-shelf (east to west) gradient in community structure 

of the southern Chukchi was evident in 2004, 2010 and 2012, with an ACW-influenced 

community along the Alaskan coast being replaced by Bering Sea communities farther 

offshore and by Siberian coastal/Chukchi communities closer to the Siberian Coast. In 

2009, there was no distinct separation of communities across the southern Chukchi using 

either biomass or abundance, with several stations (dark purple) being most similar to 

the Siberian communities in 2010. Stations on the east edge of Herald Canyon were gen­

erally characterized by Bering Sea/Chukchi communities, yet the western stations were 

more similar to the SCW stations.

b.
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In terms of species composition (Fig. 2.10), the ACW  communities were the most 

recognizable assemblage, characterized by the presence of several of warmer-water eu- 

ryhaline taxa: the cladocerans Evadne nordmanni and Podon leuckarti; the copepods 

Pseudocalanus newmani, Acartia hudsonica, Centropages abdominalis and Epilabidocera 

longipedata. The Bering Sea communities were dominated by shelf species, such as the 

copepods Pseudocalanus spp., Oithona similis, Acartia spp., cirriped larvae as well as 

the more oceanic copepods Calanus glacialis, Metridia pacifica, Neocalanus spp., and 

Euclanus bungii. The communities associated with the Chukchi Winter Waters, while 

sharing a large number of advected Pacific species with the Bering Sea communities, were 

characterized by a lower overall biomass of copepods, particularly C. glacialis, and by the 

increased presence of Arctic taxa, such as several hydrozoan jellyfish species, as well as the 

copepod Microsetella norvegica. Several other Arctic and ice-associated species, such as 

the copepods Metridia longa and Jaschnovia spp., and the amphipod Apherusa glacialis 

also occurred within these communities. The SCW assemblages (2009 and 2010) were 

similar to the Chukchi communities, but with a reduced presence of Pacific taxa. Large 

copepods were nearly absent from these communities, with biomass dominated by small 

copepods and adult euphausiids. Interestingly, in 2010, these communities contained a 

number of entrained warm-water neritic species, such as the copepods P. newmani and 

C. abdominalis, while in 2009, they were nearly absent. While the copepod C. glacialis 

was present in all communities during all years, the distribution of developmental stage 

of this species reveals patterns suggesting multiple origins (Fig. 2.11). Within BSAW, 

the C. glacialis population consisted mainly of C5 copepodites, while within the resident 

Chukchi/Siberian Coastal Waters, subadult C5’s were scarce or absent, and the popula­

tion consisted mainly of young C1-C4 copepodites. Younger copepodites also dominated 

within the ACW  C. glacialis populations.

We found the community structure within each year to be strongly correlated with 

environmental parameters via the BIOENV routine. Bottom temperature was the most 

important variable during most years (with the exception of 2012, when surface temper­

ature was the highest-correlated variable) (Table 2.4 —  as also apparent from the nMDS
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Table 2.4: Pearson’s correlations between environmental variables and transformed abun­
dance data in the Chukchi Sea. All results presented are significant at a  =  0.05 level. 
Best correlations highlighted in bo ld . T temperature, S salinity, btm bottom layer, surf 
surface layer, dist distance from Bering Strait, Depth station depth

2004 q 2009 q 2010 q 2012 q
1 S.btm 0.5690 dist 0.4653 T.btm 0.6985 T.surf 0.5570
2 T.btm, 0.6454 T.btm, 0.5435 Depth, 0.7370 T.surf, 0.5468

S.btm dist T.btm T.btm
3 T.btm, 0.6287 T.btm, 0.5933 T.btm, 0.7599 T.surf, 0.5406

S.btm, S.btm, Depth, T.btm,
T.surf dist T.surf S.surf

temperature overlay, Fig. 2.9c). Other variables that improved the model included bot­

tom salinity, surface temperature and salinity, station depth, and distance from Bering 

Strait (Table 4). Using biomass and abundance matrices produced very similar results. 

Including more than three parameters or other variables (Fluorescence, Chlorophyll, Oxy­

gen) produced no significant (<3 %) improvement in correlations. Bottom temperature 

also had a strong inverse relationship to prosome length in several copepod species, such 

as C. glacialis, M. pacifica, Pseudocalanus acuspes and P. newmani (r2 =  0.36, 0.28, 

0.35, 0.25, respectively) (Fig. 2.12).

2.5 D iscussion

While the relationship between zooplankton communities and water masses within this 

region has been well documented by studies beginning as early as the 1930 s (e.g., Ku­

likov, 1992; Pavshtiks, 1984; Stepanova, 1937), no prior study has encompassed as many 

different water masses (ACW , BSAW, SCW, W W ) within a single survey. Furthermore, 

repeated sampling over several years allowed us to observe the spatial variability of these 

relationships and their spatial manifestations. Within our study, four broad community 

types were identified: Alaska Coastal, Bering Sea (Pacific), Chukchi/Arctic and Siberian 

Coastal in broad agreement with study by Hopcroft et al. (2010) based on only 2004 data. 

Within these assemblages, the Alaska Coastal communities were the most identifiable, 

marked by the presence of a number of warm-water euryhaline taxa. In two of the study 

years (2004 and 2010), a marked boundary in both the physical properties and zooplank-
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ACW BSAW SCW WW  Arctic

Pseudocalaus  spp. juv. Oithona sim ilis Acartia longirem is 
Cirripeda larvae Oikopleura vaenhoeffeni Fritellaria borealis Pseudocalanus newm ani C entropages abdom inales  
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Figure 2.10: Results of cluster analysis of species composition (columns) and stations 
(rows) in the Chukchi Sea. Text labels along axes indicate correspondence to water 
mass types; column names indicate cluster number (as defined in Fig. 2.9). Numbers in 
parentheses indicate number of stations per cluster and years observed

ton communities separated these communities from adjacent BSAW waters; in 2012, this 

boundary was weaker, and in 2009, it was nearly absent, with species characteristic of 

the ACW  found in diluted numbers across the entire southern Chukchi shelf. The bound­

ary between Bering Sea oceanic and shelf communities, as described by Springer et al. 

(1989) and Hopcroft et al. (2010) for 2004, was variable and often obscured by mixing 

and layering of water masses of different origins. As a result, shelf and oceanic Bering 

water properties and communities were grouped into a broad BSAW category, which car­

ries both oceanic and shelf zooplankton species in varying proportions, presumably as
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Figure 2.11: Distribution of developmental stages of Calanus glacialis in the Chukchi Sea 
during 2004, 2009 and 2012 cruises

influenced by corresponding water masses.
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An important transitional zone be­

tween Pacific and Arctic communities was 

formed in Herald Canyon. Most of the 

plankton observed on the eastern side of 

the canyon was strongly influenced by 

Bering Sea communities, with more resi­

dent Chukchi and Siberian coastal groups 

appearing to the west, accepting that our
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Figure 2.12: Prosome length of C5 Calanus
glacialis versus bottom temperature across patterns when two water masses co-occur 
all Chukchi Sea stations in 2004, 2009 and at a single station. The northward bound-
2012

ary, where Arctic zooplankton communi­

ties begin to replace Pacific communities, was visible in the deeper northernmost stations 

in 2009. Siberian coastal communities were characterized by lower biomass compared 

with the adjoining Chukchi Sea and were similar to those found in other shallow river- 

influenced Arctic seas, dominated by small neritic copepods (Pseudocalanus spp., O.
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similis, M. norvegica), hydrozoan jellyfish, and chaetognaths (Pavshtiks, 1994).

The very low numbers of the copepod C. glacialis in the SCW and resident Chukchi 

communities strongly suggest that most of the C. glacialis population in the shallow 

Chukchi Sea was advected from the Bering Sea rather than the Arctic basins, and thus was 

not composed of resident individuals. This point is further reinforced by the distribution 

of copepodite stages of C. glacialis (Fig. 2.11), suggesting that during all the years, 

there were at least two distinct populations with different timing of life historiesacross 

the Chukchi Sea. A Pacific population presumably advected from the Bering Sea shelf 

and dominated by late copepodite stages IV -V  was the main contributor to community 

biomass within the offshore section of the Southern Chukchi and the eastern side of 

Herald Canyon. In contrast, a resident Arctic population, composed of mainly early 

stages copepodite stages I-III and some adults, was found in the W W  and SCW. This 

observation is consistent with results of population genetics, which also show two distinct 

haplotypes present in the Pacific Arctic: a Bering Sea haplotype which follows the Bering 

Sea water into the Chukchi Sea and a resident lineage, which is found throughout the 

marginal Arctic seas (Nelson et al., 2009). The latter may also sometimes be carried 

into the southern Chukchi by the SCW and even into the northern Bering Sea during 

occasional wind-driven current reversals.

The heightened presence of adult euphausiids in the East Siberian waters during 

2009 and 2010 is also noteworthy. Surveys of marine mammals along the Chukotka coast 

show that this area may be an important feeding area for bowhead whales, which are 

known to actively prey upon euphausiids (Moore et al., 1995, 2010). Euphausiids are 

also active swimmers that are able to successfully avoid plankton nets; their increased 

presence in net tows may indicate reduced fitness in the cold and freshened waters of the 

Siberian Coastal Current.

While the primary members of the zooplankton communities remained the same 

between years, there was strong variability between years on the absolute and relative
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contribution to the communities by different taxa. For example, larvaceans, which were 

a very prominent component of the system in 2004 and 2012 (up to 40 % of total biomass 

at some stations), were nearly absent in 2009. Concurrent surveys in the northeastern 

Chukchi in 2009 also indicated extremely low larvacean abundance in that area (Questel 

et al., 2013) compared with 2012 (Hopcroft et al., 2014). Moreover, while our average 

abundance of Oikopleura vanhoeffeni in 2004 was two times higher than that of 2012, 

the biomass was significantly higher in 2012, due to the much larger sizes of the animals 

encountered. Most likely, this is the result of the combined effect of overall lower water 

temperature observed during 2012 (whereby slower growth at lower temperature results 

in larger body size) and later timing of that cruise (thus encountering individuals at a 

later stage of their life cycle).

Abundance of other taxa, such as pteropods (completely absent in 2004), hydrozoan 

medusae and other gelatinous species, also showed very strong variability in contribution 

to communities during the different study years. Such year-to-year shifts from crustacean- 

dominated communities to communities with a higher contribution of gelatinous taxa may 

have important implications for the higher trophic levels. Jellyfish are predators of both 

zooplankton and fish larvae and can be detrimental to fish populations, which in turn are 

exploited by marine mammals (Brodeur et al., 2008, 2002). Since very few higher trophic 

levels can prey on gelatinous plankton, it also often represents a trophic “dead end” in 

the pelagic system.

The biomass and abundance values (42-80 mg DW  m -3 , 3000-8000 ind m -3 ) we 

observed within our study during the 4 years are comparable to estimates obtained by 

other historical and contemporary studies, some of which overlap our study in temporal 

and spatial coverage.The survey with the most comparable cross-shelf coverage ISHTAR 

(Springer et al., 1989) reported an average biomass of ~ 2 -5  g DW m -2 (~40-100 mg DW 

m -3 ) for the northern Bering Sea/southern Chukchi region, which is close to the range 

that we observed in our work, although our study uses different methods to arrive at 

biomass estimates. Older surveys, while imperfectly comparable due to different sampling
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techniques, generally report both biomass and abundance values within a similar range 

(see review in Hopcroft et al., 2010). The most recent estimates for the Eastern Chukchi 

(Matsuno et al., 2011)are also comparable, averaging 28-36 g W W  m-2 (assuming DW 

to be ~  10-15 % of W W ). Interestingly, concurrent work in the northeastern Chukchi 

(Questel et al., 2013) found much lower overall biomass (~16 mg DW  m -3 ) from 150-^m 

nets in 2009 than we observed within our study, while the same study in 2010 reports much 

higher abundance and biomass values than were recorded by us during the same time 

period (101 mg DW m -3 /16,000 ind m -3 ). The observed communities in 2012, however, 

are directly comparable, with similar biomass (66 mg DW m -3 ) and an exceptionally 

high contribution of C. glacialis (Hopcroft et al., 2014). These observed differences may 

indicate that different processes are responsible for shaping zooplankton communities in 

the east and west Chukchi regions. Compared to other Arctic shelf systems, the biomass 

values observed in the Chukchi sea (2-5 g DW m -2 ) are higher than that in most other 

regions, with the exception of the much deeper Barents Sea inflow system; biomass with 

the Barents Sea is reported to be 1-10 g DW m -2 , with estimates usually closer to the 

upper range (5-10 g DW m -2 ) (Hunt et al., 2013). Biomass of summer zooplankton within 

the non-inflow shelf systems, such as the Laptev, Kara and White seas, is significantly 

lower, being of the order of ~ 1 -2  mg DW m-2 (Kosobokova and Pertsova, 2012).

It is important to note that while our results are presented as “snapshots” , the 

Chukchi Sea is a highly dynamic system, where detectable seasonal change may occur 

over only a few weeks (Questel et al., 2013). It is not uncommon for wind activity to 

slow down or even reverse currents (Weingartner et al., 1999), as we observed during the 

2009 cruise (Pisareva et al., 2015). Fronts of different water masses may also advance 

seasonally (Weingartner et al., 2013), replacing the community type present at a specific 

geographic location. These processes, which may have occurred on smaller timescales 

than the duration of the cruises, may have obscured the patterns observed. Nevertheless, 

the strong relationships between environmental factors and community structure during 

all years indicate that communities are very strongly structured by physical processes 

within the water column.
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Inter-annual comparisons were also confounded by the slightly different seasonality 

of the cruises, including different timings relative to the spring breakup. The study years 

2004 and 2010 both were sampled in early August, with the zooplankton communities 

observed during those years markedly different from those observed in 2009 and 2012 

when sampling occurred in September. For example, meroplankton abundance was an 

order of magnitude higher in the two summer surveys; many meroplankton groups are 

only found in the plankton over a period of days or weeks before settling out to the 

benthos. Relatively large changes in community structure can occur over such timescales 

(Questel et al., 2013). Trophic interactions within the zooplankton communities may also 

play a large role in seasonal successions. The extremely high biomass of the chaetognath 

Parasagitta elegans observed in both September cruises (2009 and 2012), which at some 

stations exceeded the biomass of its prey, may indicate the transition of zooplankton 

communities from summer to autumn, when copepod production slows down, but the 

higher trophic levels are still capitalizing on the abundant food.

Indices of climate variability, such as the Pacific decadal oscillation (PDO), provide 

us with an opportunity to observe the effect that longer-term climate change may have on 

an ecosystem. PDO-related anomalies have been studied extensively within the Bering 

Sea, with zooplankton and fish communities visibly responding to changes in temperature 

and ice cover (Hunt et al., 2011). Namely, colder years with later ice retreat seem to 

benefit the shelf populations of large copepod C. glacialis, while abundances of small 

copepods and cnidarians decrease during cold years (Eisner et al., 2014). The Chukchi 

Sea’s thermal regimes should reflect the conditions observed in the same years in the 

Bering Sea, as well as the shifts in zooplankton communities (Coyle et al., 2011; Eisner 

et al., 2014). Our 2004 survey was the only “warm” (positive PDO) year during our study 

period; it was also the year with the lowest observed biomass in the Chukchi Sea. The 

coldest year, 2012, was also the year with the highest biomass of advected C. glacialis 

across the Chukchi Sea, as also observed to the Northeast (Hopcroft et al., 2014). We 

did not observe a decrease in the numbers of small copepod species in 2009-2012, as was 

observed for the same period in the Bering Sea (Eisner et al., 2014); on the contrary, 2009
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stands out by an almost twofold increase in small copepod abundance. This is indicative 

of the fact that the faster-growing small copepod populations may be more responsive to 

local conditions than to processes upstream.

While warm years such as 2004 may be examined as somewhat representative of 

what will happen to zooplankton communities as climate warms and sea ice retreats, for 

any permanent shift to occur within the plankton communities, such conditions must be 

maintained. The extent of variability observed within our study and other studies in the 

Chukchi (e.g. Hopcroft et al., 2014; Questel et al., 2013) indicates that the system is highly 

flexible and responsive to year-to-year shifts in climatic forcing. While a longer warm- 

water summer period, as observed in 2004, may provide an opportunity for boreal Pacific 

species to play an increased role in summer communities within the Chukchi Sea, during 

the winter and spring, the Northern Bering Sea remains at least partially ice-covered, 

and waters entering and within the Chukchi Sea during the winter have near-freezing 

temperatures. Thus, advected species are unlikely to survive the winter and establish 

permanent populations with the Chukchi (Wassmann et al., 2015). This is in contrast 

to the North Atlantic inflow system of the Barents Sea, where year-round above-freezing 

conditions may allow for permanent range expansion of southern species with warming 

water temperatures (Hunt et al., 2013; Kwasniewski et al., 2012).

Small copepods, such as Pseudocalanus spp. and Oithona similis, may play a 

proportionately larger role in a warmer Chukchi, although other local factors such as food 

availability may be more important in determining their ultimate success. Although a 

prolonged ice-free period may increase primary production and potentially benefit some 

zooplankton groups and higher trophic levels, a decrease and/or mismatch in sea ice 

algae production may affect Arctic species that are tuned to the spring ice algae bloom. 

Furthermore, an overall increase in productivity may be accompanied by a shift to smaller 

phytoplankton species (Arrigo and van Dijken, 2011), which may cycle more production 

within the microbial loop and be detrimental to herbivorous species that specialize on 

large phytoplankton cells. Since body size is inversely related to temperature (Hop et al.,
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2006) (and as observed for several species within our study, Fig. 2.12), a downward 

shift in zooplankton size distribution even within species would be expected. Smaller 

zooplankton may be less effectively preyed upon by vertebrate predators, with significant 

consequences to many higher trophic levels (e.g., Kwasniewski et al., 2012).

2.6 C on clu sions

The structure, biomass and productivity of zooplankton communities within the Chukchi 

Sea clearly reflect variations in physical properties of the water column, as well asseasonal 

differences and intensity of downstream productivity and Pacific water transport. While 

our results are snapshots of an extremely dynamic system, broad patterns are never­

theless emergent and together with other concurrent studies and historical data may be 

used to infer the fate of the pelagic communities both upstream and downstream of the 

studied region. Here, we establish spatial and inter-annual variability of summer plank­

ton communities across a broad area within the Chukchi Sea, which is strongly shaped 

by different water masses. Future surveys, including those during “warm” years, should 

seek to capture more of the seasonal and inter-annual dynamics of the system and their 

responses to progressive climatic forcing.
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3 P op u la tion  stru ctu re  and p ro d u ctio n  o f  four sibling species o f  P s e u d o ­

calanus  spp. in the C hukchi Sea1 

3.1 A b stra ct

Copepods of the genus Pseudocalanus are important members of zooplankton communi­

ties in temperate and polar shelf regions, but few studies have focused on their species- 

specific biology due to the very subtle morphological differences between the species. We 

assess the distribution, population structure and production of four co-occurring species 

of Pseudocalanus across the Chukchi Sea during 2004, 2009 and 2012. Our approach 

used a combination of microscopic identification and species-specific PCR to discrimi­

nate between the species. Currently the arctic P. acuspes dominates the genus (50-90%), 

with the relative distribution of species closely linked to water mass distribution and 

variations in physical properties, making Pseudocalanus important indicators of water 

mass origin. Although the temperate P. newmani had a significant presence throughout 

the Chukchi Sea, its stage distribution suggests that they recruit poorly in cold waters. 

Direct temperature-manipulation experiments further suggest that the reproductive ac­

tivity of the two temperate species is inhibited at low temperatures, while the arctic P. 

acuspes exhibits reduced fitness and lower reproductive capacity when temperatures are 

increased to 10°C. Our results suggest that shifting oceanographic patterns and climate 

warming will have unequal impact on this genus, arising from species-specific differences 

in life histories and tolerance to environmental conditions.

3.2 In trod u ction

The Chukchi Sea shares many features with other shallow Arctic Shelf seas, including 

ice-cover throughout a large portion of the year. However, in the summer months (June- 

September) it is dominated by advective processes and becomes largely Pacific in char­

acter. The unique hydrography of the Chukchi Sea, as well as its role as both an Arctic

1Submitted to Journal of Plankton Research as E. A. Ershova, J. Questel, K. N. Kosobokova, R. 
R. Hopcroft. Population structure and production of four sibling species of Pseudocalanus spp. in the 
Chukchi Sea.
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and seasonally sub-arctic habitat, result in unique patterns within the zooplankton com­

munities (Eisner et al., 2012; Ershova et al., 2015a; Hopcroft et al., 2010; Questel et al., 

2013). Copepods of the genus Pseudocalanus are common members of planktonic ecosys­

tems of the Chukchi Sea, as they are in temperate, sub-polar and polar seas throughout 

the northern hemisphere. Despite a comparatively small body size, their extremely high 

abundance together with high production rates (Hopcroft and Kosobokova, 2010; Liu and 

Hopcroft, 2008) make them one of the most important components of shelf zooplankton 

communities. Within the Chukchi Sea, Pseudocalanus spp. can contribute up to 50­

90% of mesozooplankton abundance and 10-15% of zooplankton biomass (Ershova et al., 

2015a). Five of the seven species of this genus are reported from the Pacific Arctic region. 

Pseudocalanus acuspes and P. minutus are circumpolar species, shared with all Arctic 

and sub-Arctic shelf seas; they are also common in the northern Bering Sea, which is 

oceanographically similar to the Chukchi Sea. Pseudocalanus newmani and P. mimus, 

on the other hand, are temperate species that are common throughout the North Pacific 

and are considered expatriates in the Arctic. While some studies have also reported P. 

major in the Chukchi Sea (i.e. Matsuno et al., 2011) its occurrence has never been con­

firmed by taxonomists or other research groups with more intensive efforts in the region; 

even if present, this species likely plays a miniscule role in the overall community.

Closely related species can often share a very similar morphology, but differ sub­

stantially in their biology, thus playing distinctive roles within an ecosystem. There are 

numerous examples among high-latitude planktonic copepods, including Pseudocalanus 

spp., of congeneric species exhibiting distinct behavior and life history and contributing 

unequally to secondary production (e.g. Conover, 1988; Miller and Clemons, 1988; Renz 

et al., 2008). Studies on species-specific biology of high-latitude organisms become par­

ticularly important in light of the rapid climate-related changes in their environment, 

which may shift conditions to favor some species while being detrimental to their close 

relatives. With longer ice-free seasons (W ood et al., 2015), increasing water tempera­

tures (Luchin and Panteleev, 2014) and observed shifts in phytoplankton communities 

(Arrigo and van Dijken, 2011), the Chukchi Sea is adapting to a “new normal” climate

50



(W ood et al., 2015), forcing changes in the pelagic system (Ershova et al., 2015b). One 

expectation of climate related change is that there will be shifting prominence of closely 

related species. As Chukchi Sea conditions become more “boreal” for longer periods of 

the season cycle, the advected warm-water species, such as P. newmani and P. mimus, 

may have an opportunity to play an increased role in their communities. This may occur 

at the expense of the “resident” arctic P. acuspes and P. minutus, whose life history is 

thought to be closely linked to seasonal ice retreat and ice-associated production.

Despite the wide distribution and the foundational role of Pseudocalanus spp. in 

pelagic ecosystems, comparatively little is known about their species-specific biology and 

ecology. Species-specific studies are generally hampered by very subtle morphological dif­

ferences between the species, particularly at juvenile stages, when they become virtually 

indistinguishable (Frost, 1989). Molecular studies on this genus suggest that even adults 

are systematically misidentified (Aarbakke et al., 2011; Bucklin et al., 2015). The mito­

chondrial cytochrome oxidase I (COI) gene is a commonly-used barcoding tool to identify 

cryptic species. In recent years multiple molecular protocols were developed using COI 

to discriminate between several co-existing Pseudocalanus species, shedding some light 

on their distribution, abundance, and population genetics (Aarbakke et al., 2014, 2011; 

Bucklin et al., 2015). However, with the exception of a handful of studies published 

within the last year (Bailey et al., 2015; Cleary et al., 2015; Questel et al., 2016), most 

of this research has been restricted to the Atlantic sector (Aarbakke et al., 2014; Bucklin 

et al., 2001, 2015; Grabbert et al., 2010), while the majority of researchers still only focus 

on adult females, which may poorly represent the entire species population.

In this work, we examined species-specific aspects of Pseudocalanus spp. in the 

Chukchi Sea during summers of 2004, 2009 and 2012 within the framework of the Russian- 

American Long Term Census of the Arctic (RUSALCA) program. The present study is 

the first to examine the species-specific distribution, population structure, and production 

of all four Pseudocalanus spp. in the Pacific Arctic using a species-specific polymerase 

chain reaction (ssPCR) to discriminate between species.
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3.3 Methods

3.3.1 P h ysica l environm ent

Three expeditions occurred within the RUSALCA framework: August 4-25, 2004, Septem­

ber 4-27, 2009 and September 2-24, 2012 (Fig. 3.1). The thermal characteristics of the 

region, distribution and properties of the water masses and overall patterns in zooplank- 

ton communities in the Chukchi Sea during the three expeditions are described in detail 

elsewhere (Ershova et al., 2015b; Pickart et al., 2010; Pisareva et al., 2015a,b). Overall, 

2004 was the warmest of the three study years, with an average surface temperature 

(SST) of 6.3°C over the sampled stations, and with surface waters as warm as 10-12°C 

present along the Alaska Coast and the entrance of the Herald Valley region. The years 

2009 and 2012 were markedly colder, with the coldest SST observed in September 2012, 

averaging only 3.4°C. The warm and fresh water of the Alaska Coastal Current (Alaska 

Coastal Water, ACW ) was constrained to the eastern shelf in 2012, resulting in a strong 

temperature gradient from east to west. In 2004 this water mass type also occupied the 

surface waters of a number of stations in the southwestern Chukchi (Fig. 3.1). During the 

2009 expedition the ACW  was diverted by northerly winds onto the western shelf region 

and into Herald Valley (Pisareva et al., 2015b). Bering Sea Anadyr Water, characterized 

by colder temperatures and oceanic salinity, was found on stations through the central 

Chukchi and on the eastern side of Herald Canyon. Cold and fresh Siberian Coastal Wa­

ter (SCW) was present in 2009 and 2012 near the coast of Siberia and around Wrangell 

Island. Cold and saline resident Chukchi Winter Water (W W ), usually overlain by ice 

Melt Water (MW ) was constrained to the northern Chukchi region in 2004 and 2009; in 

2012 it was also observed in the southern sampling domain at the stations approaching 

the Siberian coast (Pisareva et al., 2015a) (Fig. 3.1).

3.3.2 P lan k ton  co llection  and processin g

Zooplankton samples were collected using 150-^m double ring nets of 60cm mouth di­

ameter. The nets were hauled vertically over the entire water column from within 3-5
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Figure 3.1: Map of Chukchi Sea region with station locations in 2004, 2009 and 2012. 
Small black dots indicate stations where quantitative zooplankton samples and CTD 
data were collected; large black dots indicate stations where molecular identification of 
Pseudocalanus spp. was obtained; white squares indicate stations where egg production 
experiments were carried out. Color overlays indicate water mass types present at the 
stations (based on Pisareva et al., 2015a): BSAW -  Bering Sea Anadyr Water; ACW  -  
Alaska Coastal Water; W W  -  Winter Water; SCW -  Siberian Coastal Water

meters of the seafloor to the surface. The average depth over the entire sampling area was 

40-50m. The total volume of water filtered through the nets was measured using General 

Oceanics or Sea-gear flow meters, which were positioned at the mouth of each net, and 

rigged not to spin during descent. Upon retrieval, one of the samples was preserved in 

10% formalin and the other in 95% molecular-grade ethanol.

The formalin preserved samples were processed in the laboratory to determine com­

munity composition, abundance and biomass (see Ershova et al., 2015a). Pseudocalanus 

spp. adult females were identified to the species level; all juveniles and adult males were 

simply classified as Pseudocalanus spp. All individuals were separated into copepodite 

stages (C 1-C 5/A F /A M ) and measured using a computer measurement system (Zoop- 

Biom software, Roff and Hopcroft, 1986). Typically, a minimum of 80-100 individuals 

were enumerated per station. The dry weight (DW) of each organism was predicted from 

a length-weight regression relationship for this genus (Liu and Hopcroft, 2008). Total
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abundance and biomass were calculated by scaling the subsample counts of each cope- 

podite stage with the total volume filtered by each net. Pseudocalanus nauplii were

excluded from analysis because they are generally extruded by 150-^m nets.

Oceanographic data was collected at each station with a Seabird 911+ CTD equipped 

with an oxygen sensor, transmissometer and fluorometer (e.g. Pickart et al., 2010), with 

all physical data binned into 1-m intervals during post processing. Due to the frequent 

layering of distinct water masses at a single location, surface (averaged for 0-10m), bot­

tom (averaged for 10m above sea floor), and mid-water temperature (10m-10m above sea 

floor) and salinity values at each station were examined as separate variables. Chlorophyll 

a samples were collected by Niskin bottles on the CTD rosette every 5 m from the surface 

to bottom, filtered at low pressure onto G F /F  filters, and analyzed fluorometrically (Lee 

et al., 2007; Yun et al., 2016, 2014). Mean mixed-layer as well as maximum chlorophyll

values were used in the analysis.

3.3.3 s sP C R  identification

Species-specific primers were designed for each of the 4 species of Pseudocalanus spp. 

using 710-base pair (b.p.) cytochrome oxidase I (COI) consensus sequences obtained from 

Questel et al. (2016). The forward primer was common for each species (PseudoF, 5 ’- 

TTCGAATAGAGYTAGGHM VAGY-3’) (Questel et al., 2016); the reverse primers were 

selected from different sites along the COI gene at regions that were conserved within a 

species, yet allowed enough sequence variability between them (a minimum difference of 

2 b.p.). Primers were selected using CodonCode Aligner (www.codoncode.com/aligner) 

and were examined for annealing temperature compatibility and primer dimer formation 

using online tools from Fisher Scientific. The species-specific primers were as follows, 

with numbers in the primer names indicating the location along the consensus sequence.

• acuspes238R; 5’-AGAGGAGGGTATACAGTTCACC-3’

• newmani522R; 5 ’-CACCCCCACCAACATCRTAG-3’
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• minutus398R; 5 ’-C G CAA AC AR AG G TATTTG G TCT-3’

• mimus93R; 5 ’-ACYAGCCAGTTACCAAAACCC-3’

The resulting amplification products for each species were of different lengths and were 

thus distinguishable using gel electrophoresis (Fig. 3.2).

IQ K lb p

P.newmani

P. minutus

P. acuspes

P.mimus

P iim e r d im er

Figure 3.2: Example of species-specific sPCR results with all four species of Pseudocalanus 
spp. present

Species-specific abundance and population structure was examined at 27 stations 

(Fig. 3.1). Stations were selected to represent the different water mass and community 

types that we observed during the 3 study years (Ershova et al., 2015a). Between 100-200 

individuals of Pseudocalanus spp. were randomly selected from each station for molecular 

identification, with a minimum of 15 and typically 20-30 individuals of each copepodite 

stage selected per station. Insufficient numbers of adult males occurred within most sam­

ples to reach such thresholds. The stage, sex (for C5’s and adults) and prosome length of 

each individual was recorded. To evaluate the accuracy of routine visual identifications, 

of adult females were keyed to species based on prosome length and head shape (Frost, 

1989). The copepods were soaked in distilled water for 20-30 minutes, and then trans­

ferred to individual wells on a 96-well plate, containing 16^l of distilled water. The plates 

were microwaved for 2 minutes to remove any remnants of ethanol. PCR master mix, 

including a mix of the 5 primers, was added to bring the total reaction volume to 25 ^l.
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No DNA extractions were done, and the PCR reactions were run with intact copepods 

in tubes, (Grabbert et al., 2010). The amplification protocol was: 94 °C (40 sec); 60 °C 

(40sec); 69 °C (50 sec) for 35 cycles. The amplified DNA was electrophoresed on a 2% 

agarose gel, soaked in ethidium bromide solution and visualized under UV light. One 

negative and four positive controls for each species, confirmed by sequencing, were run 

with each 96-well plate. After confirming the morphological and morphometric differ­

ences between adult females of different species by obtaining results on ~300 females, 

for expediency we only ran PCR on those females that had ambiguous characteristics. 

The abundance of each species at each station was calculated by overlaying the relative 

contribution of each species and stage from molecular identification onto the quantitative 

data obtained from the formalin-preserved samples.

3.3.4 E gg p ro d u ctio n  experim ents

Pseudocalanus spp. are sac-spawners that carry egg-clutches attached to their first ab­

dominal segment until hatching. We measured egg production rates at 20 stations in 2004, 

28 stations in 2009 and 12 stations in 2012 (Fig. 3.1) using established methods (Hopcroft 

and Kosobokova, 2010). For each experiment, 50-120 Pseudocalanus spp. females were 

placed individually into 70 mL polystyrene culture flasks containing 50-^m filtered sea­

water collected at the same station, then incubated at temperatures close (within 1-2°C) 

to ambient for 48 hours. Females were monitored every 24 hours for newly produced 

egg clutches; all reproducing individuals were removed and preserved individually. The 

remaining females were preserved together at the end of each experiment.

In the laboratory, preserved females were identified to species and the eggs were 

counted from each clutch. Prosome length of each female was measured, and its dry 

weight was estimated from length. Eggs were assumed to have a constant weight within 

each species, as predicted from mean diameters known for each species in this habitat 

(Hopcroft and Kosobokova, 2010). Egg production rate (EPR) was calculated for each 

species as the total number of eggs produced per day by all the females of that species
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in the experiment; EPR was averaged over 2 days. To standardize egg production to 

female size, we calculated specific egg production (SEP) for each species, dividing the 

weight of the produced eggs (assuming 0.14 pg C ^m -3 ; Ki0rboe and Sabatini, 1994) by 

the female’s mean body weight for each female within each experiment. Production rates 

were adjusted for temperature by standardizing SEP to 0°C using a Q i0 value of 1.43 for 

in-situ sac-spawning adult copepods (Hirst and Bunker, 2003).

3.3.5 S econ d ary  p rod u ction

Secondary production was calculated as Pi =  gi x B i, where Pi was the production 

(^g DW m -3 day-1 ), gi was the growth rate and B i was the biomass (^g DW -3 ) of 

copepodite stage i. Growth rate (gi) for copepodite stages C1-C5 was calculated at each 

station as gi =  log(W i +  1 /W i) /D i , where W  was the mean dry weight (^g) obtained from 

length-weight regression relationship, and D  was the developmental time in days from i to 

i +  1 for this group of species (Liu and Hopcroft, 2008), adjusted for temperature using a 

Q 10 of 2.6 for food-satiated sac-spawing juveniles (Hirst and Bunker, 2003). While other 

estimates for developmental times of different species of Pseudocalanus exist in literature, 

those selected best reflect the conditions and species composition of the Pacific Arctic. 

For adult females, gi =  SEP obtained at each station (or neighboring stations when 

experiments were not carried out at a location). Overall production for each species 

at each station was obtained by summing the production for each stage. This overall 

production estimate excludes production by naupliar stages, which can be significant 

during recruitment pulses (Renz et al., 2007).

3.3.6 T em p era tu re -con tro lled  egg p ro d u ctio n  experim ents

We conducted temperature-controlled egg production experiments to assess the responses 

of the different species of Pseudocalanus using collections from the Gulf of Alaska in mid- 

September 2013 and from the northeast Chukchi Sea in early October 2013. A minimum 

of 60-90 females from each location were placed into 500 mL flasks (20-30 females per 

flask) containing filtered seawater and a food mixture and incubated at temperatures of
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0, 3, 7, and 10°C. The food mixture consisted of frozen cultures of Pavlova spp. and 

Isochrysis galbana, and a live culture of Thalassiosira weissflogii (cultured at 20°C in F /2  

medium on a 12 hour light/dark cycle). They were provided at a cell count ratio of 5:5:1, 

with a final phytoplankton concentration of ~0.4 ^g C mL-1 that is considered to be 

above the limiting food concentration for Pseudocalanus (Corkett and McLaren, 1978).

After allowing the females to acclimatize to the new conditions (~5-7 days), they 

were transferred to individual 70 mL flasks containing filtered sea-water and the phyto­

plankton mixture and incubated for an additional 7-10 days. The flasks were mixed by 

inversion 2-3 times a day to keep the algal cells suspended; every 72 hours the water was 

replaced with fresh seawater and food mixture. Females were examined twice a day for 

new clutches; once a female produced a clutch she was removed from the experiment. 

Prior to female preservation in 4% formalin, some egg clutches were gently removed with 

a probe. These eggs were counted and left to hatch in 10 mL of filtered seawater at the 

temperatures that they were produced. Eggs were monitored every 12 hours for hatching 

with the number of successfully hatched nauplii, stillborn nauplii and unhatched eggs 

recorded. At the conclusion of the experiment all remaining females were preserved in 

formalin.

Processing of females and egg clutches in the laboratory was similar to that de­

scribed in the previous section. Egg production rates were calculated from the average 

number of eggs produced by all the living females in the experiment per day; rates were 

obtained for each 2-day period of the experiment. SEP rates were adjusted to temperature 

using a Q 10 of 2.6 for food-satiated sac-spawing juveniles (Hirst and Bunker, 2003).

3 .3 .7  Statistical analysis

All statistical analyses were carried out in R. Differences in abundances, population 

structure (mean developmental stage) and egg production rates between years and species 

were compared using two-way ANOVA, with station-region used as a blocking factor. 

Significant interactions (p <  0.05) between categories were examined using the Tukey
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HSD test. Mean stage of each species at each station was calculated when a minimum 

of 10 individuals of this species was identified at the station. For this reason, we do 

not show population structure of P. mimus, as there were very few stations where this 

criterion was met. The relationship of species abundances, size distributions and egg 

production rates to physical parameters were examined using multiple linear regression, 

with the best model selected using AIC (Akaike Information Criterion).

The distribution patterns of Pseudocalanus species complex were explored using 

cluster analysis and non-parametric multi-dimensional scaling (nMDS) using the R pack­

age “vegan” (Oksanen et al., 2013). We investigated abundance matrices for pooled 

stages of 4 species (4 categories), as well as for each species divided into 3 groups: “early 

juveniles” (C1-C3), “sub-adults” (C4-C5) and “adults” (adult females and males) (i.e. 

12 categories). As most researchers consider adult female abundances representative of 

the entire sub-adult population, we also investigated the patterns observed if only adult 

female abundances were employed (4 categories). Abundances were log-transformed and 

the Bray-Curtis similarity index was calculated for all stations during each year. Hier­

archical cluster analysis using average linkage was carried out and qualitative separation 

of groups was established by overall similarity (~65-70%). These resulting groups were 

superimposed on 2D plots of (nMDS) plots and spatial plots of study area. The relation­

ships to physical factors were explored by establishing correlations to species abundances 

and environmental factors to the nMDS ordination, and via the BIOENV routine (Clarke 

and Ainsworth, 1993), which establishes the best set of correlations between two data 

matrices sharing samples or variables. Significance of these correlations was established 

using a permutation test (n=10000) at p <  0.05.

3.4 R esu lts

3.4.1 M olecu lar identification

A total of 4300 individuals were identified using ssPCR. Failure rate (the number of 

individuals that failed to produce a distinct band) ranged from 0 to 50% per station,
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Figure 3.3: Density distribution of size frequencies for all developmental stages (C1- 
Adults) of 4 species of Pseudocalanus spp. in the Chukchi Sea. Shaded curve represents 
the density plot for each stage with all species pooled

and was highest in the oldest (2004) samples. Some reactions resulted in double band­

ing (bright P. acuspes and faint P. mimus bands); sequencing these individuals always 

confirmed that they belong to P. acuspes. All four species of Pseudocalanus were identi­

fied successfully using this method. The results of molecular identification revealed that 

within adult females approximately 95% of P. minutus and 90% of P. acuspes and P. 

newmani were identified correctly based on morphology only. Within the misidentified 

individuals, small P. minutus were usually mistaken for P. mimus, and small P. acuspes 

and large P. newmani were confused where their size ranges overlap (Fig. 3.3). Of the 

12 P. mimus females that were identified using ssPCR, only 5 were identified correctly 

using morphology only, the remaining 7 were mistakenly identified as P. minutus or P. 

acuspes.

The estimated probability function (Fig. 3.3) revealed that each species, with the 

exception of P. mimus, has a distinct size mode at each stage. However, the size classes 

overlapped significantly, particularly between P. acuspes and P. newmani, and increas­

ingly so at younger stages. Pooling the species at each stage produced an indistinctly 

bi-modal distribution for the older individuals (C4 to adults); however at younger stages
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Table 3.1: Abundance (ind m 3), biomass (mg DW m 3) and overall contribution (%) of 
4 species of Pseudocalanus spp. in the Chukchi Sea in 2004, 2009 and 2012

2004 2009 2012 p-
value

Significant interactions

P. acuspes
Mean abundance 630 1998 1784 0.05 2009 >  2004
Mean biomass 1.6 5.1 4.7
% Total abundance 51 64.4 87

P. minutus
Mean abundance 232 372 171 0.15 none
Mean biomass 0.7 1.2 0.6
% Total abundance 18.8 12 8.3

P. newmani
Mean abundance 295 714 92 0.01 2009 >  2012
Mean biomass 0.8 2.7 0.3
% Total abundance 23.9 23 4.5

P. mimus
Mean abundance 79 15 3 0.01 2004 >  2009, 2012
Mean biomass 0.2 0.1 <0.1
% Total abundance 6.4 0.3 0.2

Total abundance 1236 3099 2050 0.03 2009 >  2004
Total biomass 3.3 9.1 5.6

it resulted in a near-normal distribution without any distinct peaks.

3.4.2 A b u n d a n ce  and d istribu tion

Pseudocalanus acuspes had highest abundance and biomass during the 3 years, compos­

ing 50-90% of all Pseudocalanus in the region (Fig. 3.4, Table 3.1). Mean abundance and 

biomass of P. acuspes was over three times higher in 2009 and 2012 than in 2004 (p < 

0.05). Despite the similar values observed for this species in 2009 and 2012, P. acuspes 

played a much larger role relative to other species in 2012, composing nearly 90% of the 

Pseudocalanus population. On the other hand, abundance and biomass of P. newmani 

were highest in 2009 and drastically lower in 2012 (p <  0.05), accounting on average 

for only 4% of the Pseudocalanus observed during 2012 (Fig. 3.4, Table 3.1). Although 

overall occurrence of this species was lower in 2004 than in 2009 (NS), its relative con­

tribution to abundance and biomass of Pseudocalanus was comparable. There were no 

significant differences between years in abundance of P. minutus; however, in 2004 its
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proportional contribution was ~2 times greater than in 2009 or 2012. P. mimus was the 

rarest of all species during all 3 years, but showed a significantly higher presence in 2004 

than in 2009 and 2012 (Fig. 3.4, Table 3.1).
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Figure 3.4: Pseudocalanus spp. abundance (ind m 3) (a) and relative contribution of 
species at each station (b) for four species of Pseudocalanus spp. in 2004, 2009 and 2012

3.4.3 S pecies-specific  p op u la tion  stru ctu re

No spatial or inter-annual differences in population structure were observed for the P. 

acuspes population, which generally consisted of all developmental stages, with the mean 

stage being 2.9-3.1 (Fig. 3.5). Adults rarely exceeded 10% of the population. On the 

other hand, the mean stage of the P. newmani population was significantly higher than
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Figure 3.5: Relative contribution of early stage juveniles (C1-C3), late stage juveniles 
(C4-C5), and adults (A F /A M ) for three Pseudocalanus species in the Chukchi Sea in 
summer during (a) 2004, (b) 2009 and (c) 2012; (d) shows median stage of each species 
per cruise

that of P. acuspes during all 3 years, especially in 2004 and 2012, when it was 3.8-4.0. 

No significant differences in stage distribution were observed between the years. The P. 

minutus population was heavily skewed towards later-stage juveniles (C4-C5’s) in 2009 

and 2012; in 2004 there was a sharp contrast between the southern stations, which were 

dominated by adults and later-stage juveniles, and the northern stations, which were 

almost entirely composed of early stages. The stations near the Siberian coast in 2009 

and 2012 were notable in their almost complete absence of adults and later stages for 

both P. acuspes and P. minutus (Fig. 3.5).

3 .4.4 C om m u n ity  stru ctu re  and relationsh ip  to  physical factors

Abundances of P. newmani and P. mimus showed a high positive correlation to temper­

ature and salinity, with surface measurements producing the strongest relationship (p < 

0.01, r2 =  0.46 and 0.65, respectively). Abundance of P. minutus correlated with bottom
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Figure 3.6: Abundance of younger (C1-C4) (a) and older (C5-adults) (b) of Pseudocalanus 
acuspes, P. minutus and P. newmani plotted vs. temperature. Different symbols indicate 
stations sampled during different years. Trendlines insignificant for for P. minutus and 
P.acuspes in (b)

salinity (p <  0.01, r2 =  0.35), the relationship to temperature was statistically insignif­

icant. When these environmental factors were incorporated into the multiple regression 

model with year as a categorical variable, differences in abundance between years became 

insignificant (with the exception of P. mimus, where 2004 >2009). In contrast, overall 

abundance of P. acuspes, while significantly different between years, was not significantly 

correlated to physical factors. The results were somewhat different when population 

structure was taken into account. Abundance of young copepodites (C1-C4) of P. acus- 

pes showed a significant relationship to both temperature and salinity (p <  0.05, r2 =  

0.25), with higher abundances occurring at lower temperatures and higher salinities; but 

no such relationship was observed for adults plus sub-adults of this species (Fig. 3.6). 

While overall abundance of P. minutus was not significantly related to temperature, ju­

veniles of this species (C1-C4) correlated negatively to bottom temperature, as well as
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bottom salinity; separating population into adults/sub-adults and juveniles resulted in 

an increased r2 of 0.42 for the juveniles. Incorporating copepodite data did not improve 

the models for P. newmani or P. mimus.
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0.1) (Fig. 3.7). Among

Figure 3.7: Multivariate analysis of log-transformed abundance the four species, abun
of 4 species of Pseudocalanus in the Chukchi Sea in 2004, 2009 n c n

i / \ i - i  • t  i • r dance of P. acuspesand 2012; (a) nMDS plot with vectors indicating correlations of
species and variables to axes; colors represent station groupings was strongly and sig- 
at 65% similarity; dotted line indicates clusters at 70% similar­
ity; (b) station clusters overlaid on map of study area nificantly correlated with

MDS Axis 1, while P.

newmani and P. minutus were driving Axis 2. Axis 2 was strongly driven by bottom 

temperature (r =  0.88, p <  0.05), while bottom salinity was the main factor driving Axis 

1 (r =  0.85, p <  0.05). The groups identified by cluster analysis and nMDS corresponded 

exactly to the water mass types present at these stations (Fig. 3.1), confirming that the 

relative abundance of Pseudocalanus species was shaped by physical parameters and wa-
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ter mass distribution. The BIOENV routine predicted that the relative Pseudocalanus 

distribution was best correlated to all four variables, resulting in a Spearman's correlation 

of 0.48. Using overall species abundance (4 categories) produced similar, but slightly less 

robust results. On the other hand, when only adult female abundance was used and the 

copepodite stages were grouped as Pseudocalanus spp., no spatial structure or correlation 

to physical variables was observed.

3.4.5 Size stru ctu re

Since size is one of the main features routinely used to identify Pseudocalanus spp., we 

examined the distribution of size variability and its relationship to physical parameters 

(Fig. 3.8). In P. acuspes and P. newmani, prosome length of each stage correlated 

negatively to water temperature (p <  0.01, r2 =  0.25-0.6), except for C1 and C2 of P. 

newmani where the number of observations was low. In P. minutus, the relationship 

was significant only for C2; no relationship could be established for C1 or older stages 

(C3-adults). No relationships were observed to salinity or chlorophyll for any species.

3.4.6 E g g -p rod u ction  rates

Daily specific egg production rates (SEP) (Fig. 3.9) were significantly higher for P. 

acuspes in 2004, when they averaged 15%, than in 2009 and 2012, when they were 8­

9% (ANOVA, p <  0.05). For P. newmani, production rates were significantly higher 

in 2004 (14%) than in 2009 (7%); the differences between 2004 and 2012 (9%) were 

insignificant. Insufficient observations were obtained for P. minutus in 2009 and 2012 to 

compare their production between years. No significant differences in production rates 

were found between species; P. newmani displayed comparable SEP values to P. acuspes 

and P. minutus at all stations where they co-occurred.

SEP of P. newmani showed a strong positive correlation to log-transformed chlorophyll- 

a (p <  0.001, r2=0.43); a weaker relationship was observed for P. acuspes (p <  0.01, 

r2 =  0.31) and P. minutus (p <  0.05, r2 =  0.19) (Fig. 3.10). Standardization of SEP
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Figure 3.8: Prosome length vs. integrated temperature for all developmental stages of P. 
acuspes, P. minutus and P. newmani (pooled data for all years). Each point represents 
the mean size at a station where at least 5 individuals of this species and stage were 
observed. Lines show linear trends with 95% confidence interval. Only significant trends 
are shown

to 0°C using a Qi0 value of 1.43 (Hirst and Bunker, 2003) improved the model for P. 

newmani (r2 =  0.48); however, no significant improvement was observed for P. acuspes. 

For P. minutus, standardizing the SEP values to temperature made the relationship to 

chlorophyll non-significant; on the contrary, SEP values of this species showed a slight 

negative relationship to temperature (including temperature in the model improved r2 to 

0.21). The differences in production rates between years for P. acuspes and P. newmani 

remained significant even after accounting for chlorophyll and temperature.

67



(a) 2004

i J l

" S i

3 00.3 0.1
no
reproduction

□ P. minutus■ P. acuspes■ P. newmani

(b) 2009
j  I

l-I-A 
>  
■ 11

3 00.3 0.1
no
reproduction

□ P. minutus■ P. acuspes■ P. newmani

(c) 2012

a. 3 00.3 0.1
no
reproduction

□ P. minutus■ P. acuspes■ P. newmani

-1 7 0  -165 -180  -175  -1 7 0  -1 6 5 -1 8 0  -175  -170  -165

Longitude (°W )

Figure 3.9: Daily specific egg production (SEP) of P. acuspes, P. minutus and P. newmani 
in the Chukchi Sea in 2004, 2009 and 2012. Diamonds represent at SEP of 0; empty bars 
indicate no experimental data for this species at this location

3.4.7  T em p era tu re -con tro lled  egg p ro d u ctio n  experim ents

Within the Chukchi Sea, the females were mainly identified as P. acuspes and P. newmani, 

with insufficient P. minutus obtained to estimate egg production rates. Clutch size for 

P. acuspes was significantly lower (by ~5 eggs) at 10°C than at 0 and 3°C (p <  0.01). No 

significant differences in clutch size were observed for P. newmani. Average Qio-adjusted 

SEP of P. acuspes remained fairly constant at 0-7°C; but was slightly lower at 10°C, 

mainly due to smaller clutches produced by females. In contrast, SEP of P. newmani 

was lowest at 0°C, and highest at 3°C, with a small decrease in production observed at 

the highest temperatures (Table 3.2). Hatching success rates were variable within both 

P. acuspes and P. newmani, ranging from ~70-100%. Significantly lower hatching rates 

were observed for P. newmani at 0°C (Table 3.2), but no significant differences were 

observed between the other temperatures or for P. acuspes.

The females obtained from the Gulf of Alaska belonged primarily to P. mimus, with 

a smaller presence of P. newmani. Reproduction of P. mimus was extremely low at the 

coldest temperatures (0 and 3°C); at 0°C females nearly ceased reproducing. P. newmani 

exhibited lower reproduction rates at 0°C than individuals of this species collected in
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Table 3.2: (a) Daily specific egg production (%) of Pseudocalanus spp. in the Chukchi 
Sea and Gulf of Alaska at 0, 3, 7 and 10°C (Q i0-corrected to 5°C); mean ±  sd, (number 
of females); and (b) Hatching success rate (%) of P. acuspes and P. newmani in the 
Chukchi Sea at 0, 3, 7 and 10°C ; mean ±  sd, (number of clutches)

(a)
0°C 3°C 7°C 10°C p-value Significant interactions

Chukchi Sea
P. acuspes 14±4 15±4 14±2 10±1 NS none

(38) (30) (31) (29)
P. newmani 6±2 13±3 12±1 12±2 < 0.01 0 < 3, 7, 10°C

Gulf of Alaska
(53) (39) (42) (46)

P. newmani 3±0 10±2 11±1 14±1 < 0.01 0 < 3, 7, 10°C; 10 > 3,
(26) (21) (22) (18) 7°C

P. mimus 0±0 5±1 10±1 10±1 < 0.01 0 < 3, 7, 10°C; 3 < 7,
(36) (50) (41) (31) 10°C

(b)
0°C 3°C 7°C 10°C p-value Significant interactions

P. acuspes 77±23 72±24 90±10 91±7 NS none
(8) (8) (14) (7)

P. newmani 60±22 72±28 88±12 89±11 < 0.01 0, 3 < 7, 10°C
(9) (23) (24) (35)

the Chukchi Sea; however, rates were higher than those observed for P. mimus. At 3 

and 7°C, reproductive rates of P. newmani from the Gulf of Alaska were comparable to 

those obtained for P. newmani and P. acuspes from the Chukchi Sea, with highest rates 

observed at 10°C (Table 3.2).

3 .4.8 S econ d ary  p rod u ction

Table 3.3: Secondary production, P (mg DW  m -3 day-1 ) and productivity, P /B  (Pro­
duction/Biomass) for three species of Pseudocalanus in 2004, 2009 and 2012, mean value 
(25%-75% quartiles)

P. acuspes P. newmani P. minutus
Year P P /B P P /B P P /B
2004 0.09 (0.03-0.16) 0.061 0.06 (0.01-0.09) 0.075 0.04 (0.01-0.06) 0.057
2009 0.17 (0.07-0.31) 0.031 0.10 (0.003-0.1) 0.037 0.03 (0.01-0.05) 0.027
2012 0.13 (0.05-0.21) 0.025 0.01 (0.003-0.01) 0.040 0.02 (0.01-0.02) 0.033

Total secondary production by Pseudocalanus spp. was estimated to be about 1.3 

times higher in 2009 than in 2004 and 2012, however differences were not statistically
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Chlorophyll A (mg m-3)
Figure 3.10: Daily specific egg production (SEP) in relation to maximum in-situ chloro­
phyll for (a) P. acuspes and (b) P. newmani

significant (Table 3.3). It is notable that although the biomass of Pseudocalanus spp. 

in 2012 was almost double that of 2004, production was nearly equal due to warmer 

temperatures and significantly higher daily production rates (ANOVA, Tukey HSD Test, 

p <  0.05) observed in 2004 (Table 3.3). Similarly, differences in secondary production 

observed between 2009 and 2004 were much less pronounced than the differences in 

abundance or biomass. Of the three species, contribution to secondary production was 

highest by P. acuspes during all three expeditions (ANOVA, Tukey HSD Test, p <  0.05). 

On the other hand, P. newmani had significantly higher daily production rate than the 

other two species (ANOVA, Tukey HSD Test, p <  0.05) during all three study years.

3.5 D iscussion

This study is the first to detail species-specific production and distribution of four species 

of Pseudocalanus in the Pacific Arctic using a molecular method to discriminate between 

species. While other studies have implemented ssPCR to distinguish between two co­

occurring species of Pseudocalanus (Aarbakke et al., 2011; Bucklin et al., 2015), this is 

the first to provide a method to discriminate between all 4 sympatric species found in the 

Pacific Arctic. Our results confirm their morphological ambiguity and the high variability
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in body size at all developmental stages, making size alone a poor predictor of species 

identity.

All four species were found within the Chukchi Sea; all but P. mimus were im­

portant contributors to zooplankton abundance and biomass. The arctic P. acuspes was 

the dominant Pseudocalanus species during all years and at most stations in terms of 

abundance, biomass, and production. However, abundance of its younger stages declined 

in warmer waters, and its reproductive output was slightly reduced at 10°C compared to 

lower temperatures, suggesting that this species could be negatively affected by warming 

of the region. The temperate P. newmani was present at nearly every station sampled 

and was more abundant in 2009, than 2004, despite the colder temperatures observed 

during 2009. Its reproductive activity was also comparable to that of P. acuspes and 

P. minutus at all but the lowest temperatures, and overall daily production rates were 

highest among the three species. Despite its southern origin, P. newmani seems to be 

well-adapted to the Chukchi environment in the summer months. The temperate P. 

mimus, on the other hand was practically absent from the communities in all years but 

2004. This species is common in the Gulf of Alaska and the outer domain of the Bering 

Sea (Bailey et al., 2015; Napp et al., 2005), where they are the dominant species of Pseu- 

docalanus. Their near absence in the Chukchi, and by inference, in the rest of the Pacific 

Arctic during most years suggests they have a lower tolerance for cold temperatures; this 

is also inferred by their elevated presence in the oceanographically-warmer summer of 

2004 and by the extremely low reproductive rates observed for this species in the Gulf of 

Alaska at 0 and 3°C.

Even when data on seasonal dynamics of a species are not available, examining the 

developmental stage composition of a copepod population can provide important insight 

into the life history of a species. A continuously reproducing and growing population 

will be expected to have a lower mean stage than a population whose recruitment is 

paused or inhibited, due to the latter being dominated by longer-living later stages and 

adults. Although the production of the temperate P. newmani is comparable to that
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of P. acuspes and P. minutus, the prevalence of older copepodite stages of P. newmani 

suggests that recruitment may be arrested compared to the two Arctic species. This is 

further reinforced by the higher egg mortality of this species observed at 0°C temperatures 

that are typical for the Arctic environment. Additionally, our study emphasizes the 

importance of incorporating all life stages of a species into ecosystem studies, rather than 

just the adults. Distribution and abundance of adult females -  the only Pseudocalanus 

developmental stage identified to species in most zooplankton community studies -  failed 

to reveal the same strong patterns of association to water masses that we observed for 

the entire population (Fig. 3.7). The same species may also respond differently to 

environmental factors over the course of its life cycle. Varying tolerance over different 

ontogenetic stages to changing temperatures, salinity and CO2 levels has been observed 

for several groups of marine crustaceans (Byrne, 2011; Miller et al., 2013). The negative 

correlations to temperature that we observed for earlier stage juveniles of P. acuspes and 

P. minutus, but not adults and sub-adults, suggest that the earlier stages may be more 

vulnerable to climate-related increases in temperature.

The egg production rates that we observed in our study, particularly during the two 

colder years (2009 and 2012), are in the lower range or significantly lower than most those 

observed at lower latitudes for Pseudocalanus spp. in the North Pacific (Halsband-Lenk 

et al., 2005; Lee et al., 2003; Napp et al., 2005). On the other hand, spring-time estimates 

of Pseudocalanus spp. reproduction in the southeastern Bering Sea (Vidal and Smith, 

1986) report SEP rates of around 4-5.5%, which is substantially lower than we observed 

in Chukchi Sea in the summer at comparable temperatures. Egg production rates and 

daily production rates in 2009 and 2012 were similar to values obtained for P. acuspes in 

the Baltic Sea at substantially higher temperatures but lower salinity (Renz et al., 2007), 

where SEP of females was 1-13% and maximum daily production rates were estimated to 

be around 3% day- 1. It should be noted that our estimates of production are snapshots 

in time, and assume consistent isochronal development across all species present, which 

is likely not the case. A study on the life cycles and population dynamics of temperate P. 

elongatus and arctic P. acuspes in the North Sea has shown that these two species differ
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dramatically in their life history, with the faster growing P. elongatus completing up to 

4-5 generations per year, and the larger and slower growing P. acuspes never exceeding 

1-2 generations (Renz et al., 2008). This resulted in an almost 8-fold lower secondary 

production by P. elongatus despite comparable abundance values (Renz et al., 2008). The 

smaller-bodied P. newmani may also have faster developmental times than P. acuspes 

and P. minutus, as has been demonstrated for some populations of P. newmani off the 

coast of Japan (Lee et al., 2003), which suggests a likely underestimation of production 

rates for this species. Alternatively, if the advected population of P. newmani experiences 

arrested development in the Arctic environment, as their population structure suggests, 

then our production estimates may be too high.

Closely related and morphologically similar co-occurring species can nevertheless 

differ significantly in their biology and life history. Within the North Pacific system, 

the ecologically important Neocalanus plumchrus and N. flemingeri, which were only 

recently separated into two species (Miller and Clemons, 1988) are a notable example. 

Later studies demonstrated that these two species differ significantly in their reproductive 

strategy and life history, capacity to store lipids, and vertical habitat (Saito and Tsuda, 

2000; Tsuda et al., 1999). Few studies have focused on species-specific life history of 

Pseudocalanus, although the example of P. elongatus and P. acuspes in the North Sea 

(Renz et al., 2008), show that the differences between species may be dramatic. Recent 

findings further suggest that different species of Pseudocalanus may have different feeding 

strategies, with P. acuspes diet consisting significantly of heterotrophic flagellates, and 

P. minutus and P. newmani feeding predominately on pelagic diatoms (Cleary et al., 

2015). The much stronger relationship of reproductive activity to in situ chlorophyll 

concentrations for P. newmani compared to P. acuspes supports these observations. P. 

acuspes and P. minutus are also believed to depend on sea-ice production (Conover et al., 

1986; Runge and Ingram, 1991); the common occurrence of these species in the Bering 

Sea (Bailey et al., 2015) is likely a direct consequence of the Arctic-like ice dynamics 

that occur in that region. Pseudocalanus acuspes and P. minutus are also generally 

much larger in size, and richer in lipids, than their temperate counterparts (McLaren
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et al., 1989), which has direct implications for higher trophic levels which rely upon these 

organisms as a food source.

Distribution of Pseudocalanus spp. in the Chukchi Sea is closely related to oceanog­

raphy and water mass distribution, making them important indicator organisms of water 

mass types, as well as potential markers of climate-related change in the communities. 

Patterns of Pseudocalanus distribution (Fig. 3.7) are remarkably similar to those observed 

for the entire zooplankton community (Ershova et al., 2015a), as well as the water mass 

types present at these stations (Fig. 3.1). It is notable that despite strong inter-annual 

variability, the stations grouped by water mass types, rather than by year. Nevertheless, 

the overall distribution, abundance and production patterns of Pseudocalanus spp. were 

markedly different during the oceanographically warm summer of 2004 from the colder 

summers of 2009 and 2012. Daily productivity of Pseudocalanus, driven by higher tem­

peratures and a favorable food environment, was highest during 2004, despite the lowest 

overall abundances observed during that year. However, not all inter-annual differences 

observed can be attributed simply to thermal conditions. For example, despite ~50% of 

the variability in P. newmani abundance being accounted for by temperature and salin­

ity -  with higher abundances observed at warmer temperatures -  this species was most 

abundant during 2009 rather than the warmer 2004. It is likely that the spreading of the 

Alaska Coastal Current over the western Chukchi shelf and into Herald Valley during the 

time of the 2009 expedition (Pisareva et al., 2015b) resulted in the increased presence 

of this species. The lower abundances of Pseudocalanus spp. observed during 2004 may 

reflect a number of different factors, such as a higher mortality due to predation or lower 

abundances and recruitment in the Bering Sea during that year. Alternatively, 2004 may 

simply reflect an earlier seasonal state, since the 2004 expedition occurred in August, 

while the years 2009 and 2012 were sampled in September. Pseudocalanus respond very 

rapidly to the surrounding environment, as seen from their instantaneously increased 

reproductive rates associated with higher food availability, as well as the strong relation­

ship of body size to water temperature. Overall, temperature appears to be the main 

factor influencing Pseudocalanus spp. production and distribution (Liu and Hopcroft,
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2008; McLaren and Corkett, 1978). This is manifested through direct effects, such as 

temperature-dependent growth and reproduction, as well as indirectly, through temper­

ature controlled sex ratios (Lee et al., 2003), growth inhibition through temperatures 

outside of the species’ preferred thermal range (Klein Breteler et al., 1995; Lee et al., 

2003), and effects on the overall pelagic ecosystem.

The on-going reduction in sea ice extent and timing of coverage in the Arctic Ocean 

has been particularly pronounced within the Pacific sector (IPCC, 2013; W ood et al., 

2015). As the ice free summer becomes longer, and waters become warmer within the 

Chukchi Sea region, we expect to observe a shift in the biological communities. A sig­

nificant increase in overall zooplankton biomass has already been observed over the past 

century (Ershova et al., 2015b), and several Pacific species within the fish communities 

(Wassmann et al., 2015) may have extended their ranges northward. Since life cycles 

of P. acuspes and P. minutus may be highly dependent on sea ice algae production, 

reduction in winter ice extent in the Bering Sea may result in a range contraction of 

these species, decreasing their advected biomass into the Chukchi Sea. Furthermore, a 

longer ice-free summer in the Chukchi may continue to negatively impact these two arc­

tic species, which may be stressed by the increasing temperatures, while benefiting the 

advected Pacific species. On the other hand, at present P. acuspes successfully inhabits 

many temperate seas in the north Atlantic and does not appear to be particularly stressed 

by temperatures up to 13°C in some locations (Ershova et al., 2016). The reduced ability 

of P. newmani and P. mimus to accumulate and store lipids (Aarbakke et al., 2011; 

Bucklin et al., 2015; McLaren et al., 1989) will likely prevent them from establishing 

self-sustaining populations in the Arctic due to seasonal ice-cover and limited primary 

production during the winter months, thus restricting them to the summer months. Most 

likely, a combination of abiotic, biotic, and oceanographic factors will determine who will 

be the “winners” and “losers” in the Chukchi Sea under climate change scenarios.
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3.6 C on clu sions

The distribution of the four species of Pseudocalanus in the Chukchi Sea is tightly linked 

to water mass distribution and thermal regimes in the region, making this assemblage 

important markers of water mass origin, as well as potential sentinels of climate change. 

The contribution and northward penetration of the two temperate species, P. newmani 

and P. mimus, is expected to increase with warming temperatures and increasing inflow 

from the Pacific during the summer months, although it is unlikely that they will establish 

self-sustaining populations in the Arctic. Shifting oceanographic and climate patterns 

may have unequal impacts on the different species, as determined by their individual 

life histories and tolerance to environmental conditions. Studying species-specific biology 

of closely related species, such as Pseudocalanus spp. may provide researchers with 

important insights on ecosystem shifts under climate change scenarios.
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4 L on g -term  changes in sum m er zoop la n k ton  com m u n ities  o f  the w estern  

C hukchi Sea, 1945-20121 

4.1 A b stra ct

The Chukchi Sea pelagic ecosystem, which is finely tuned to the seasonal ice formation 

and retreat, has been experiencing dramatic oceanographic change related to shifting 

sea ice cover and increasing temperatures over the last decades. We examine historical 

datasets on zooplankton communities in the central Chukchi Sea during the time period 

spanning 1946-2012. Analysis is confounded by differences between years in terms of 

spatial coverage, seasonal variability, and methodology; nonetheless, trends remain de­

tectable when a sufficient number of study years are compiled. In addition to high levels 

of inter-annual variability, we demonstrate significant increases in zooplankton biomass 

and abundance in recent years compared to historical studies, as well as shifting distribu­

tion ranges for several key species. This signal is most pronounced within the copepods, 

particularly Calanus glacialis, which appears to be indirectly benefiting from warming 

of the region. While summer zooplankton communities of the Chukchi Sea have been 

primarily Bering-Pacific in character for as long as our records exist, continuing warming 

and ice loss are increasing the influence of Bering-Pacific fauna within the Chukchi region.

4.2 In trod u ction

The Chukchi Sea is an important transition zone between the Pacific and Arctic Oceans, 

being a significant source of heat, fresh water, and organic carbon for the latter. The Pa­

cific water entering the Bering Strait is rich in nutrients, phytoplankton and zooplankton 

and is responsible for the exceptionally high productivity of the Chukchi Sea compared to 

other Arctic shelf seas (Kosobokova and Pertsova, 2012). This environment is changing 

rapidly as manifested by sea ice concentrations consistently below the long-term mean for 

the last decade (W ood et al., 2015), a longer ice-free summer period, and above-average

1Published as E. A. Ershova, R. R. Hopcroft, K. N. Kosobokova, K. Matsuno, R. J. Nelson, A. 
Yamaguchi, L. Eisner (2015) Long-term changes in summer zooplankton communities of the western 
Chukchi Sea, 1945-2012. Oceanography 28(3):100-115, D01:10.5670/oceanog.2015.60
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sea surface temperatures during most months. The environmental conditions within the 

region are presumed to propagate to the marine biological communities within this region, 

although proof of such change is so far elusive.

Planktonic communities in particular may serve as useful “beacons of climate 

change” (Richardson, 2008) due to their relatively short life cycles, rapid response in 

growth rates to changing temperatures, and dependence on ocean currents for dispersal. 

These attributes make them 2-3 times more responsive to climate-related changes than 

terrestrial communities (Richardson, 2008). A growing body of literature for many regions 

of the Arctic demonstrates the close relationship of zooplankton community structure to 

water column properties and water mass distribution (summarized in Wassmann et al., 

2015). This relationship is particularly pronounced within the Chukchi Sea, where several 

incoming Pacific water masses of different origin carry distinct planktonic communities 

(Eisner et al., 2012; Hopcroft et al., 2010), that dilute or displace the resident Arctic shelf 

communities. With the higher frequency of warmer summer temperatures during recent 

years and a longer ice-free period, one would expect that Pacific species will be trans­

ported farther north into the Arctic and will remain in the plankton for longer periods of 

time, potentially competing for resources with resident Arctic species. A longer summer 

period and warmer waters may also lead to phenological shifts in plankton life history as 

has been reported for many plankton groups in various parts of the world (Richardson, 

2008). Many Arctic and sub-Arctic species have life cycles that are finely tuned to the 

ice break up and seasonal phytoplankton blooms. An earlier ice retreat would potentially 

be damaging to these species and provide a competitive edge to organisms that are more 

opportunistic in their life history traits.

Unfortunately, historical time-series for pelagic communities do not exist within the 

Chukchi Sea. A number of sporadic, spatially isolated and methodologically inconsistent 

surveys have been conducted throughout the past century, beginning with the 1940’s, but 

many remain unpublished and buried in national journals and institutional reports. Most 

of these studies were confined to one of the two sides of a strongly enforced political border,
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with most early work done in Russian waters and the more recent studies being restricted 

to US waters. Sampling efforts have intensified significantly in the past 2 decades, fueled 

by interest both in climate change and the development of natural resources, but only 

recently have coordinated time-series begun to emerge (Grebmeier, 2012).

In the current work we present an outline and analysis of the modern and his­

torical data available on zooplankton communities in the central and western Chukchi 

Sea region; examine the extent of variability within the communities; and explore some 

underlying mechanisms that may be responsible for driving these patterns. A central hy­

pothesis is that within the earlier sampling years (1946-1976), the plankton communities 

of the Chukchi Sea are overall less “Pacific” in character and are more typical of Arctic 

shelf seas. Secondarily, we also anticipate phenological shifts have occurred in key species 

as a direct result of warmer temperatures and an earlier ice retreat. There are many 

challenges involved in such an attempt, the greatest being the highly variable spatial 

coverage and methodology of the historical and contemporary data. Documenting tem­

poral or climatological trends is further complicated by the lengthy time gaps within the 

historical data, with several decades lacking any observations. Recent work done within 

the Chukchi Sea has repeatedly shown that planktonic communities exhibit an extremely 

high level of variability -  spatially, seasonally and inter-annually (Ershova et al., 2015; 

Matsuno et al., 2011; Questel et al., 2013). Thus, one of the central challenges when 

examining a time series, such the one analyzed in this study, will be discerning natural 

variability vs. climate-mediated long-term change.

4 .3  M e th o d s

4.3.1 D escr ip tion  o f  datasets

We accumulated reports and publications on expeditions to the Chukchi during the 1900s 

and obtained later datasets directly from colleagues to build an extensive compilation of 

zooplankton studies conducted in the Central and Western Chukchi, along with matching 

physical oceanographic data, when available (Supplementary table 4.S1, Figure 4.1). We
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Figure 4.1: Monthly mean sea surface temperature in the Chukchi Sea during sampling 
years. The black line shows sea ice extent, and black dots indicate zooplankton stations 
sampled. The white triangles on the 1976 and 2011 maps indicate concurrent expeditions
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have intentionally excluded studies that were confined to the shelf break (i.e. the Shelf 

Basin Interaction (SBI) program Grebmeier and Harvey, 2006, the Burton Island expedi­

tion, etc.) to avoid encompassing the distinct Arctic Basin communities (e.g/ Kosobokova 

and Hopcroft, 2010). Our compilation incorporated 28 expeditions reaching as far back 

as 1946 (on the Russian icebreaker “Severnyj Poljus” ), and as recent as September 2012 

(Russian Long-Term Census of the Arctic, RUSALCA). Most of the recovered datasets 

were spatially confined to either the US or Russian waters, with the notable exceptions 

of the 1976 expedition on RV “Mayak” (Pavshtiks, 1984), the 1988 BERPAC (Joint US- 

USSR Bering-Pacific Expedition) (Kulikov, 1992) survey and 4 RUSALCA expeditions 

(2004-2012) (Ershova et al., 2015). Overall, spatial coverage was highly variable between 

cruises, with several expeditions covering the entire Chukchi domain from the Bering 

Strait to 72°N and beyond, while other were confined to only the Southern Chukchi 

region or a small localized sampling region (i.e. WEBSEC 70, TT221). Most of the 

sampling efforts took place in the mid-summer months (July-August), however, several 

expeditions occurred in September, and one (TT221) took place in June, which is oceano­

graphically early spring within the Chukchi Sea region. With the exception of September 

1946, most sampling occurred when the areas was accessible by non-icebreaking vessels 

with ice cover less than 50 %.

4.3 .2  E n vironm ental data

Physical data (temperature and salinity) was compiled for most datasets (see Table 4.1) 

from cruise reports, the US National Ocean Data Center (NODC) or directly supplied 

by colleagues. Historical sea surface temperature and sea ice data were obtained from 

the Met Office Hadley Centre (http://www.m etoffice.gov.uk/hadobs/hadisst/); modern 

SST data were obtained from NOAA at http://w w w.esrl.noaa.gov/psd/. Sea ice extent 

was defined as less than 15 % ice cover. Due to the frequent two-layer nature of water 

masses within this region, average surface (0-10 m) and bottom (10 m layer above bottom) 

temperature and salinity were calculated for each station. Bottom and surface waters at 

each station were then categorized into water mass types using cluster analysis, as well
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as subjective interpretation using literature values. Cluster analysis was performed using 

Euclidean distances of normalized values using the R library vegan (Oksanen et al., 2015). 

This method of water mass identification is approximate and may be somewhat inaccurate 

(particularly for the surface waters), but it provides a useful broad-scale approximation 

of the water masses present in the area historically.

4 .3 .3  C lim atic  indices

Within the North Pacific, variations in atmospheric indices such as the Pacific Decadal 

Oscillation (PDO) and Arctic Oscillation (AO) influence conditions in the marine envi­

ronment as well as the biological communities that inhabit it (Hare and Mantua, 2000; 

Mantua et al., 1997). To examine the potential relationship of these indices to plank­

ton variability in the Chukchi Sea, we obtained a 6-month average of each index for 

the winter months prior to each sampling year (November-April). Mean monthly val­

ues were obtained from the Joint Institute for the Study of the Atmosphere and Ocean 

(JISAO) (http://research.jisao.washington.edu/pdo/) and the NOAA National Centers 

for Environmental Information (https://www.ncdc.noaa.gov/teleconnections/ao/).

4 .3 .4  S tandarization  and subsetting  o f  b io log ica l data

The zooplankton data was highly variable in quality, with taxonomic resolution being 

vastly different (see Supplementary Table 4.S1). Many studies identified only the cope- 

pods to species or genus level, and grouped all remaining organisms into broad taxonomic 

categories (i.e. “Amphipods” , “Cnidaria” ). High-resolution data (with 50+ taxonomic 

categories identified) was only available within the 2004-2012 RUSALCA expeditions, the 

“Dyson” 2007 expedition, the 2009-2011 “Laurier” expeditions, and the 1946 “Severnyj 

Poljus” expedition. Taxonomy was aligned using the Arctic Register of Marine species 

(Sirenko et al., 2015), and World Register of Marine Species (WoRMS Editorial Board, 

2015) to establish synonyms and remove suspicious identifications. The species complex 

Calanus glacialis/  Calanus marshallae, which is often indistinguishable morphologically, 

was considered to be primarily C. glacialis based on results from molecular analysis (e.g.

88

http://research.jisao.washington.edu/pdo/
https://www.ncdc.noaa.gov/teleconnections/ao/


Nelson et al., 2009, John Nelson, pers. com.) and therefore simply referred to as C. 

glacialis within this analysis. The group “Large copepods” included Calanus glacialis, 

Metridia spp., Neocalanus spp., and Eucalanus bungii; the other copepod species were 

grouped into “Small copepods” . While our dataset covers a span of nearly 7 decades, it 

inherently represents a patchy time-series, with large decadal gaps in the sampling years 

(1955-1970, 1992-2004).

The most complex problem in comparing zooplankton datasets was accounting for 

differences in the sampling gear used to obtain the samples, with the pore size of the 

mesh and mouth opening of the nets being of greatest concern. The type of sampling gear 

used to collect plankton samples is known to greatly influence the biomass, abundance 

and composition in the resulting data (Skjoldal et al., 2013). Most American studies 

historically employed coarse 500-^m nets (0.5 to 1m mouth diameter), while Russians 

used Juday nets (~170-^m, 0.37m mouth diameter) or Nansen nets (333-^m, 0.7m mouth 

diameter). The 500-^m nets under-sample the small organisms, such as small copepods 

and meroplankton, that generally constitute >90 % of total abundance within this region, 

while the 170-^m Juday nets may under-represent the larger, rarer and faster swimming 

species. Abundance values were always converted to ind m-3 . It is notable that average 

abundances reported for each expedition highlight that the coarse-mesh nets report an 

abundance of ~  100-400 ind m -3 , while the fine mesh nets provide a value closer to 

~1500-9000 m-3 (Supplementary Table 4.S1). For this reason, we only directly compare 

abundances of the large, widespread copepods, which are generally common enough to be 

well-represented by the fine mesh nets, but large enough for most stages to be captured 

by coarser nets. These large copepods are also the least likely to be misidentified. Species 

characteristic for the Alaska Coastal Water (ACW ) communities were defined as coastal 

neritic species present in the Alaska Coastal Current in the Gulf of Alaska, and absent 

or very rarely observed elsewhere in the Chukchi Sea (Coyle et al., 1996; Ershova et al.,

2015). While the list of these species is substantial, only those species large enough to be 

sampled adequately by the more commonly used coarser mesh nets (333^m and 500^m) 

were included to create the distribution maps for this community type.
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While biomass estimates within this habitat are reported to be similar (i.e. within 

a factor of 1.5-2) across the range of the mesh sizes (150-500 ^m) considered in this study 

(Questel et al. 2013), the methods for calculating zooplankton biomass varied during each 

expedition: most commonly, studies measured wet weight (W W ) of the total sample 

(displacement volume); others measured W W  of individual groups; some used linear 

measurements to predict dry weight (DW) or W W  from length-weight regressions. We 

converted all available biomass values to mg DW  m -3 using existing equations converting 

W W  to DW for different groups of organisms (Ki0rboe, 2013). When biomass data was 

not available, we used averaged biomass for each taxonomic category from published 

data (Ershova et al., 2015), which was then multiplied by the abundance values. Average 

yearly biomass was calculated for the sampling region south of 71°N and east of -180°W 

to maximize comparability between cruises.

We established temporal trends of overall biomass and abundance of key species 

using linear mixed effects models. Relationships of biomass and abundance to variations 

in the physical environment (temperature, salinity, water mass type, bottom depth, at­

mospheric indices) were also explored using mixed modeling. Fixed factors in the models 

included year, month, water temperature, salinity, bottom depth, water mass type present 

at each stations and mean AO and PDO signals for each year (6 month winter average); 

the random factors included station location (averaged to a 1°by 1°grid). We also included 

the gear used (net type) as a blocking factor. Abundance and biomass values were log 

transformed to account for unequal variance. Mixed modeling was performed in R using 

the lme4 (Bates et al., 2015) and nlme (Pinheiro et al., 2015) libraries. Significance was 

defined as p <  0.05. The data were examined for spatial correlation using R package 

geoR (Ribeiro and Diggle, 2015) and autocorrelation between years and was found to 

meet the assumptions of independence over space and time. The best model was selected 

using AIC (Akaike Information Criterion) using the R package bbmle (Bolker and Team, 

2014). Multiple comparisons were estimated using the R library lmerTest (Kuznetsova 

et al., 2015). The relationships between zooplankton community structure and physical 

data for each dataset were explored using the BIOENV routine (Clarke and Ainsworth,
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1993) from the R library vegan (Oksanen et al., 2015). This method establishes the 

best subset of environmental variables, so that the Euclidean distances of scaled environ­

mental variables have the maximum correlation with the Bray-Curtis dissimilarity index 

of the community abundance data for each station (Oksanen et al., 2015). Community 

matrices contained log-transformed abundance of all species that contributed at least 3 

% to transformed abundance. Ambiguous species and broad taxonomic categories were 

excluded from the analysis. The environmental matrix included normalized temperature 

and salinity for the bottom and surface 10 m layers. The significance of these correlations 

was established using Mantel’s test of associations (Mantel, 1967).

4.4  R esu lts

4.4.1 P h ysica l environm ent

Overall, temperature and ice conditions during the sampling periods were variable, with 

colder conditions observed during the earlier sampling years (Figure 4.1). The ice edge 

during the period of sampling extended to at least 70°N during all years prior to 1992. 

The sea surface temperature also averaged less than 0-2°C at these latitudes. September 

1986 was the warmest year of the pre-2000’s sampling time period, with surface water 

temperatures of the sampling region averaging 7°C and the sea ice edge being north of 

72°N in the eastern Chukchi. June 1988 was the coldest sampling period, with near­

freezing temperatures and most of the Chukchi Sea still completely ice covered. This 

dataset reflects oceanographic spring, rather than summer conditions in the Chukchi. The 

climatic indices (PDO and AO) for the examined time span are shown in Supplementary 

Figure 4.S1.

The strong east-to-west gradient in SST across the Chukchi Sea shelf, associated 

with the Alaska Coastal Current, is visible during some of the sampling periods, while in 

others the warm surface water is smeared across the entire Chukchi domain (2004, 2007), 

or weakly pronounced (2009, July 1986, 1991). The datasets collected in the 2000’s are 

variable in terms of sea surface temperatures, but the sea ice extent was always observed
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Table 4.1: Summary of Chukchi Sea water mass characteristics concurrent with zooplank­
ton sampling

Water Mass Temperature Salinity
Alaska Coastal Water (ACW ) >5 26-32
Bering Sea/Anadyr Water (BSAW) 0-5 31-33
Melt Water (MW) <2.5 26-30
Siberian Coastal Water (SCW) 0-5 20-27
Winter Water (W W ) <0 31-33
M W /SC W 2.5-6 26-29
ACW /BSAW 2.5-10 29-32.5

much farther north (north of the plotted sampling region in 2004, 2007, 2009 and 2010). 

2004, 2007 and 2010 stand out as particularly warm years, with SST in the Southern 

Chukchi region exceeding 10-12°C.

4.4.2 D escr ip tion  o f  w ater m asses
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Figure 4.2: Temperature-salinity plot of water masses 
sampled concurrent with zooplankton collections in the 
Chukchi Sea, 1946-2012 (top/bottom  10 m proper­
ties). ACW  =  Alaska Coastal Water. BSAW =  Bering 
Sea/Anadyr Water. M W  =  Melt Water. SCW =  
Siberian Coastal Water. W W  =  Winter Water

Five broad water mass types 

were identified as previously 

described in literature (Alaska 

Coastal Water (ACW ), Bering 

Sea/Anadyr Water (BSAW), 

Winter Water (W W ), Melt Wa­

ter (M W ), Siberian Coastal Wa­

ter (SCW )) (i.e. Eisner et al., 

2012; Pickart et al., 2010; Pis­

areva et al., 2015), as well as 

two water types with interme­

diate properties (BSAW /ACW , 

M W /SC W ) (Figure 4.2, Table 

4.1). It is notable that our char­

acterization of BSAW is based 

on its typical summer proper-

0
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Figure 4.3: Distribution of water masses sampled in the Chukchi Sea, 1946-2012. Upper 
color on each symbol represents surface water type (top 10 m average), and lower color 
represents bottom water type (bottom 10 m average). ACW  =  Alaska Coastal Water. 
BSAW =  Bering Sea/Anadyr Water. M W  =  Melt Water. SCW =  Siberian Coastal 
Water. W W  =  Winter Water
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ties, such that the seasonal timing of warming in the Bering Sea will strongly influence 

our ability to recognize this water type in the Chukchi Sea.

Overall, water mass distribution follows similar patterns from the oldest to the 

most recent study years (Figure 4.3). The warm and fresh ACW  is the spatially most 

variable water mass among expeditions. During some years, ACW  is found across almost 

the entire southern Chukchi domain (as observed in RUSALCA 2009); in others -  it 

is completely absent, or limited to 1-2 coastal stations. During some years the ACW  

reached as far north as 71-72°N (e.g. during RUSALCA). Several Russian datasets fail 

to capture the ACW  completely, because they sampled too far from the Alaskan coast. 

The colder and salty BSAW was present during every sampling year within the southern 

and central Chukchi Sea, and was found as far north as 70-71°N during most study years. 

BSAW was frequently found underlying the warmer and fresher ACW.

The very cold and salty W W , which forms in the fall and winter months as brine 

is expelled during sea ice formation, was found in the bottom waters north of 70°N 

during colder years and north of 72°N during the warmer years. Winter waters were 

generally overlaid by M W  or advected Pacific water (ACW  or BSAW). Fresh and cold 

SCW was only visible in datasets approaching close to the Russian coast, and only during 

some expeditions (SEVERNYJ POLJUS 1946; LOMONOSOV 1953; BERPAC 1988; 

RUSALCA 2009-2012). In September 2012 this water type was found in the central 

Chukchi, well away from the Siberian coast; it is possible that this water is in fact ice 

melt water, rather than belonging to the SCW.

4.4 .3  P h ysics shaping p lan k ton ic com m u nities

Within each individual year, bottom temperature was most commonly the strongest factor 

shaping community structure, although in some years this was surface temperature (Table 

4.2). Including salinity improved the model in several instances. Salinity was the most 

important factor during 1949, both cruises in 1986, and June 1988. The relationship 

between physical properties of the water column and community structure was generally
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Table 4.2: Pearson correlations (p) of variables determined via BIOENV analysis relating 
species abundance and physical parameters. T.surf/S.surf =  surface temperature/salinity. 
T .btm /S.btm  =  bottom temperature/salinity

Cruise/Ship Year Month Env. parameters (p)
“NEREUS” 1947 July T.btm, 0.56
“CEDARWOOD” 1949 August S.surf, 0.498
“LOMONOSOV” 1953 August T.surf, 0.2
“LOMONOSOV” 1954 August T.btm, 0.25
HX74 1985 Aug-Sept T.btm, S.btm, 0.41
HX85 1986 July S.surf, S.btm, 0.66
HX88 1986 Aug-Sept S.btm, 0.45
BERPAC 1988 August T.btm, 0.45
TT221 1988 June S.surf, 0.43
HX128 1989 July T.btm, 0.38
“OSHORO-MARU” 1991 July T.btm, 0.34
“OSHORO-MARU” 1992 July T.btm, 0.39
RUSALCA 2004 August T.btm, S. btm, 0.65
“OSHORO-MARU” 2007 August T.surf, S.btm, 0.48
“OSHORO-MARU” 2008 July T.surf, S.surf, 0.28
RUSALCA 2009 September T.btm, S. btm, 0.6
RUSALCA 2010 August T.btm, 0.7
RUSALCA 2012 September T.surf, 0.55

very pronounced, with Spearman’s correlations being 0.4-0.7.

4 .4 .4  A n n u al b iom ass

Average yearly biomass in the southern Chukchi domain (south of 71°N and east of 

180°W) ranged from 10 to 140 mg DW  m-3 (average for all years ~65 mg DW m -3 ); 

with variability between stations within some years spanning 4 orders of magnitude (0.5­

700 mg DW m-3 ) (Supplementary Table 4.S2). Substantially lower biomass ( <  50 mg 

DW m-3 ) was observed during most of the earlier study years (pre-1980), with the notable 

exception of 1954, when the biomass, driven by the high presence of large copepods, was 

significantly above average on several stations (overall mean 85 mg DW m -3 ). Notably, 

this was also a year with warmer summer temperatures and a reduced ice extent compared 

to other years of that time period (Figure 4.1). During the later sampling years (1991­

2012) the observed biomass was relatively similar, averaging 50-100 mg DW  m -3 . The 

best fitting mixed model as determined by AIC included Year, Month, Water mass and
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PD O /A O  index. When examined over the entire southern sampling region, the increase 

in biomass observed over the seven decades was highly significant (p <  0.01) (Figure

4.4), with an average increase of 10 mg DW m-3 per decade. Stations containing BSAW 

or BSA W /ACW  had significantly higher biomass (by an average of 20-30 mg DW m-3 ) 

than stations containing other water mass types. Stations containing SCW had the lowest 

biomass of all water masses (Supplementary Table 4.S2). Mean PDO signal accounted 

significantly (p <  0.05) for some additional variability in biomass, with higher biomass 

observed during the cold-phase PDO years. The years sampled earlier in the summer 

(July) had significantly higher biomass than those sampled in August-October; the only 

spring cruise (TT221 in 1988) had substantially lower biomass than when sampled in 

August that same year (Supplementary Table 4.S2).

Given the strong associa­

tion between water masses and 

planktonic communities, as well <? 

as the substantial differences in 

biomass between water masses, 

we will structure subsequent bi­

ological characterization around 

the water mass types.
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Figure 4.4: Mean log-transformed biomass vs. year 
sampled in the Chukchi Sea. Each symbol repre­
sents one cruise; bars represent 95% confidence interval. 
Black dashed line indicates fitted linear trend over av­
eraged data. Red dashed line indicates long-term mean

tained ACW  at least in the sur­

face layer. While this definition 

introduces a certain degree of

noise due to the nature of depth-integrated plankton data in a vertically layered physical
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Table 4.3: List of mesozooplankton species characteristic for the Alaska Coastal Waters

Species Typical body length (^m) Included in distribution
(all stages) map (Figure 4.6)

Evadne nordmanni 500-1200 yes
Podon leuckarti 150-1200 yes
Acartia hudsonica 250-1000 no
Eurytemora spp. 300-1000 no
Centropages abdominales 400-1400 yes
Pseudocalanus newmani 300-1000 no
Epilabidocera longipedata 2000-4000 yes
Tortanus discaudatus 1000-3000 yes

environment, it allows us to broadly compare these communities between years. Typi­

cally, communities inhabiting ACW  were dominated by small copepods (Pseudocalanus 

spp., Acartia spp., Oithona spp.), meroplankton (mostly barnacle and bivalve larvae) and 

cladocerans, which were common during some years and nearly absent in others (Figure

4.5). Large, heavy Pacific copepods were absent or scarce within these communities; as 

a result, total biomass was generally lower than observed in Bering Sea waters (Supple­

mentary Table 4.S2). Other taxa (chaetognaths, larvaceans) were present variably. The 

communities identified in ACW  waters within the study year 2012 (RUSALCA) stood 

out by an unusually high biomass of large copepods and a near absence of meroplankton. 

The elevated biomass of large copepods is likely a consequence of the presence of signif­

icant volumes of BSAW very close to the Alaskan coast and the layering of ACW  and 

BSAW. The absence of meroplankton, on the other hand, could be due to the late timing 

of the cruise and the abnormally cold temperatures that were observed during that year.

Overall, the distribution of species characteristic for ACW  (Table 4.3, Supplemen­

tary Figure 4.S2) corresponds closely to the stations where ACW  was present, although 

one of the species (Centropages abdominalis), while most common in ACW , was also 

present in smaller numbers in other water masses. Similar to water mass distribution, 

the distribution of ACW-specific taxa is highly variable year to year; during some years 

these organisms are localized to a few stations near the Alaskan coast while in others 

they are found throughout the entire Chukchi domain.
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Some species, such 

as the hydrozoan jel­

lyfish Aglantha digi- 

tale were largely con­

fined to the ACW  dur­

ing most years, al­

though in some years 

they occurred across 

the entire Chukchi do­

main (Supplementary 

Figure 4.S3). Septem-

Figure 4.5: Relative contribution to biomass of different taxo- ber l 970 (W EBSEC) 
nomic groups in the Chukchi Sea during several of the study
years (only years sampled by 100-200 .̂m mesh nets reported st° °  out among a 
due to undersampling of smaller taxa by coarser nets) the sampling years by

A. digitale dominating

the plankton communities both in absolute numbers and biomass, exceeding even the 

copepods. Data from others years contain very few cases of this species or no records at 

all (which could be due to sampling or identification bias -  in some datasets all jellyfish 

were grouped into a broad “Cnidaria” category).

4 .4 .6  B erin g  Sea (B S A W ) C om m unities

BSAW and BSA W /ACW  were the most common water masses observed during each year 

sampled, and contained the highest zooplankton biomass (Supplementary table 4.S2). 

These waters were dominated by large Pacific copepods (Figure 4.5), which typically 

composed 50-80 % of the total biomass. Of the four most important large copepod 

taxa, Calanus glacialis and Metridia pacifica are shelf species, while Neocalanus spp., 

and Eucalanus bungii are more characteristic of oceanic Anadyr waters. The abundance 

of M. pacifica, E. bungii and Neocalanus spp. within BSAW was extremely variable, 

spanning up to three orders of magnitude within a single expedition, as well as year
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Figure 4.6: Interannual variability of Pacific copepod species abundance in the Chukchi
Sea during 1946-2012. Each symbol represents one cruise; bars indicate 95% confidence
interval. Dashed line shows fitted linear trend over averaged data

to year (Figure 4.6). Generally, the distribution of these species follows the pathway 

of the BSAW, with decreasing abundances to the north and to the west (Figure 4.7). 

The timing of each expedition played a critical role in the abundances observed as the 

advection of these species is closely linked to their life cycles in the Bering Sea. For 

example, in 1986 and 1988, Metridia pacifica was nearly absent in the plankton in the 

earlier months (July and June), but was highly abundant just 2 months later (September 

and August). The best fitting mixed model describing of all three species as determined 

by AIC included Year, Month and Bottom temperature (Supplementary Tables 4.S3- 

4.S6). There is a slight but significant (p <  0.01) trend of increasing abundance of all 

three species in Bering Sea waters over the study period. Abundances of these copepods,
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especially Eucalanus bungii, also correlated positively (p <  0.01) to water temperature 

observed during each cruise (Figure 4.8). Both surface and bottom water temperatures 

were significant factors, with the best model containing bottom  temperature. There was 

no correlation of abundance to salinity or station depth, and the inclusion of the AO- or 

PDO-index for each year did not improve the model for any of the species.

Calanus glacialis was the most important contributor to biomass during every cruise 

sampled (Figure 4.5) with the exception of September 1970 (when biomass was dominated 

by the hydrozoan jellyfish Aglantha digitale). Abundance of Calanus glacialis was typ­

ically less variable than the Pacific oceanic species, with the standard deviation within 

each cruise generally spanning only a single order of magnitude (Figure 4.6). The factors 

for the best fitting mixed model describing C. glacialis abundance included Year, Month 

and PD O /A O . There is a significant (p <  0.01) trend of increasing average abundance 

of this species in the Chukchi Sea within Bering Sea waters (~10 ind m -3 /  decade). 

The inclusion of temperature or salinity as a factor in the model did not account for 

any additional variability between years; however, a significant relationship (p <  0.01) 

between C. glacialis abundance and PD O /A O  signal (6-month winter average) (Figure

4.9) was observed in BSAW waters, with higher abundances during the lower-PDO years 

and the higher AO years.

4 .4 .7  R esiden t C hukchi (W W ) C om m unities

Winter water communities were defined as those stations containing W W  in at least the 

bottom layer. These waters are typified by “resident” Chukchi communities composed of 

species that can overwinter and/or reproduce beneath the winter sea ice. These species 

are shared with other Arctic shelf seas, but are not generally found in Bering Sea waters 

(Ershova et al., 2015). These assemblages have a much lower contribution of copepods 

to overall biomass (generally <  50 %), and a high biomass of gelatinous taxa, such 

as chaetognaths and larvaceans (Figure 4.5). During the summer months a very high 

contribution of meroplankton (mainly barnacle larvae) was also observed; in contrast,
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Figure 4.7: Abundance (ind m-3) of (a) Eucalanus bungii, (b) Metridia pacifica, and (c) 
Neocalanus spp. in the Chukchi Sea during 1946-2012. o =  stations where taxon was 
present (<  1 ind m-3). x =  stations where taxon was not found
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Figure 4.8: Relationship of mean abundance of (a) Eucalanus bungii, (b) Metridia pacifica, 
and (c) Neocalanus spp. to mean temperature in BSAW (each symbol represents one 
cruise) in the Chukchi Sea during 1946-2012. Bars indicate standard deviation (not on 
log scale). Dashed line indicates fitted linear trend over averaged data

during the two September cruises meroplankton was nearly absent. Some of the shelf 

Arctic species characteristic for these communities include a number of “Arctic” copepod 

species (e.g. Microcalanus pygmaeus, Metridia longa); ice-associated taxa, such as the 

copepod Jaschnovia brevis and the amphipod Apherusa glacialis, as well as a number 

of hydrozoan jellyfish that have a benthic polyp stage and are therefore limited in their 

spatial distribution (e.g. Halitholis cirratus, Catablema visicarium, Plotocnide borealis, 

Aeginopsis laurentii).

Large Bering Sea copepods are scarce within these communities, although they 

are present in small numbers, particularly during the recent sampling years. Average 

abundance north of 70°N and east of 175°W for Eucalanus bungii, Neocalanus spp. and 

M. pacifica suggest a limited trend of increasing abundance during the later years (Figure

4.10) (significant for Neocalanus spp., p <  0.001; non-significant (p =  0.2) for M. pacifica 

and E. bungii). While Chukchi Winter Waters contain a significant presence of Calanus 

glacialis (Figure 4.5), the developmental stage distribution (Figure 4.11) suggest that 

they belong to a different population than the one carried into the Chukchi with Bering 

Sea waters (see below).
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PDO index (6-month winter average)

Figure 4.9: Relationship of mean abundance of Calanus glacialis to the Pacific
Decadal Oscillation (PDO) signal (six-month winter average) in the Chukchi Sea dur­
ing 1946-2012. Bars indicate 95% confidence interval

4 .4 .8  C alanus glacia lis  stage d istribu tion  and sh ifting p h en o log y

Stage distribution of C. glacialis is a good indicator of the overall seasonal state of the 

zooplankton community. Fall communities are mainly dominated by 5th stage cope- 

podites (C5), while earlier in the summer the community is typically composed of C3-C4 

stages. There is a strong significant relationship of mean developmental stage to surface 

temperature (p <  0.01, r2 =  0.4), and the communities sampled during the “warm” sum­

mers of 1954, 1992 and 2004 (July/August) are as far along in their development as those 

sampled over a month later during the “cold” years 2009 and 2012. This implies that 

yearly variability in seasonal succession can be quite significant, which further confounds 

year-to-year comparisons of communities. It is notable that our stage data also suggests 

there are likely two or more distinct populations present in the area (Figure 4.11). Bering 

Sea waters during late summer generally contain mostly late-stage copepodites (C4-C5’s), 

while the C. glacialis population within resident Chukchi waters (W W ) is composed of
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(a) Eucalanus bungii (b) Metridia pacifica (c) Neocalanus spp.

Year

Figure 4.10: Mean abundances of (a) Eucalanus bungii, (b) Metridia pacifica, and (c) 
Neocalanus spp. in the Chukchi Sea north of 70 °N and east of 175 °W. Bars indicate 95 
% confidence interval. Solid lines indicate fitted linear trend. Dotted line in (c) indicates 
fitted trend with one outlier removed

young C1-C3 stages. Since these populations likely respond differently to environmental 

factors, more elaborate patterns are probably obscured in regions where these populations 

overlap. The “young” state of the Chukchi C. glacialis community of around Wrangel 

Island in September 1946 (mean stage 1.6) compared to 2004, 2009 and 2012 during the 

same time of year (mean stage 2.2-2.7) is suggestive of a shift in phenology; however, 

data from one early year is insufficient to reach any definite conclusions.

4.5 D iscussion

4.5.1 C om m u n ity  stru ctu re  and inter-annual variability

Our results represent the first quantitative examination of the changes that have occurred 

in pelagic communities in the Chukchi Sea over a 70-year period. While overall water 

mass distribution patterns remained similar over the study years, the degree of pene­

tration of these water masses may have changed, with either higher volumes of Bering 

Sea water entering the Chukchi Sea during the summer months (Woodgate et al., 2012), 

or summer BSAW becoming identifiable sooner in the year, and therefore appearing to 

penetrate further. Despite strong inter-annual variability, overall community structure 

(proportional contribution of taxa) within each respective water mass also remained rel­

atively similar over the examined period (Figure 4.5), with strong correlations observed 

between biological communities and the physical environment (Table 4.2). Although
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Figure 4.11: Distribution of mean copepodite stages of Calanus glacialis in the Chukchi 
Sea during 1946-2012 (copepodite data is only available for this subset of cruises)

only temperature and salinity were available as environmental factors for the historical 

datasets, recent studies find strong correlations only to these two variables even when a 

larger suite (Chlorophyll, nutrients, oxygen, etc.) is available (Questel et al., 2013). Our 

data demonstrate that during some years the patterns and differences between commu­

nities in different water masses are highly pronounced (i.e. 1949, 2004), while in others 

they are weaker or much more subtle (i.e., 2012) (Figure 4.5).

Differences between communities are often shaped by the presence or absence of 

rarer “indicator” species, while the most common and numerous groups are generally 

found across the entire sampling domain. The different taxonomic resolution as well as 

sampling methodology between the assembled datasets makes it difficult to establish these 

subtle differences, although they are apparent on a year-to-year basis. Trends are further 

complicated by the fact that some of the most abundant and ecologically important 

species (e.g. Calanus glacialis, Aglantha digitale) may have more than one population 

present in the area, as suggested by developmental stage distribution as well as genetic 

analysis (Nelson et al., 2009). The obvious trends that we observe even when most 

taxonomic detail is removed from the data suggest that patterns would be even stronger
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if consistent higher-resolution taxonomy were available. While some patterns remain 

visible throughout most years, the system exhibits extremely high variability in biomass, 

abundance and community composition. This inherent variability can easily lead one 

to confuse inter-annual differences with long-term change in zooplankton communities 

when based on only a few study years (i.e. Matsuno et al., 2011). Variable timing of the 

cruises also contributes to variability, since the seasonal progression within planktonic 

communities in this region can take place extremely rapidly (Questel et al., 2013). Our 

data suggest that highest biomass was present in July and then declined later in the fall; 

perhaps reflecting changing transport volumes of Pacific water through the Bering Strait.

4 .5 .2  C lim atic  oscilla tions and regim e shifts

Responses of ecosystems to climate change are often not linear, but are characterized 

by “tipping points” that occur once a certain threshold is reached (Duarte et al., 2012). 

Once such a point occurs, the system shifts into a new stable state, which may remain 

even if the physical changes are reversed. However, due to the scarcity of time-series 

that span a sufficiently long period of time, it is very difficult for researchers to discern 

between permanent systematic change and climate-related oscillations. Abrupt changes 

in climatological indexes such as the PDO, NAO and AO are often associated with regime 

shifts in the pelagic environment, which may or may not be reversible. Within the North 

Pacific, such abrupt shifts, characterized by marked changes within all levels of the marine 

ecosystem occurred in 1977, 1989 and 2000 (Brodeur et al., 2008; Hare and Mantua, 

2000). One of the most prominent changes within the plankton was the steep increase 

in jellyfish biomass, primarily Chrysaora melanaster, in the Bering Sea during the 1990, 

and then its rapid decline after 2000 (Brodeur et al., 2008). These events coincided with 

climatic oscillations in the Bering Sea from warmer (pre-1989) to cooler, and back to 

warmer (post-2000) conditions. Within some sections of the North Atlantic, the pelagic 

community also experienced a shift from a sub-Arctic to a more temperate type in the 

1990’s; it remains unclear whether these patterns represent a permanent shift (Beaugrand 

et al., 2009) driven by globally warming temperatures, or are associated with shifts in
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the climatic indexes within the region (Greene et al., 2013).

Our results indicate a clear shift towards higher biomass and abundance of zooplank- 

ton over the time frame of 1946-2012; however, the low resolution of our data makes it 

unclear whether these changes are gradual (linear trend), or if there was a shift towards 

higher biomass sometime in the 1970-1980’s. The high correlation of zooplankton biomass 

and abundance, particularly Calanus glacialis, to AO- and PDO-indices indicates that 

the system quickly responds to changes in the environment. The relationship between C. 

glacialis and climate variability is documented for the Bering Sea shelf, where sequential 

colder (negative PDO) years generally have much higher biomass of C. glacialis (Eisner 

et al., 2014). The patterns that we observe for this species in the Chukchi, including a 

negative correlation of zooplankton biomass to PDO signal, likely reflect a diluted sig­

nal of these processes in the Bering Sea. The long-term shifts in plankton biomass are 

also clearly reflected in the higher trophic levels. For example, a significant increase in 

planktivorous birds has been observed in the northeastern Chukchi since the 1970’s (Gall 

et al., 2016).

4 .5 .3  Shifting b iogeograp h ica l boun daries

In many regions of the world’s oceans species have been shifting their geographical ranges 

as the climate warms and ocean currents change. One of the most pronounced examples 

of such a range shift in the plankton has been observed in the Northeast Atlantic using the 

Continuous Plankton Recorder, which has been collecting data since the 1930’s. Within 

this region, the warm-water copepod assemblage containing Calanus helgolandicus has 

shifted northwards by more than 10 degrees latitude over the past 50 years and continues 

to move poleward at a rate of ~22km/year (Beaugrand et al., 2009). In the Arctic Ocean, 

similar reports include the northward shift of the Atlantic amphipod Themisto compressa, 

previously not found in Arctic waters and now observed successfully reproducing there 

(Kraft et al., 2013). A large number of Bering Sea fish species has also shifted their range 

northward over the last 2 decades (Wassmann et al., 2015).
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The difference in coverage and the spatial and temporal scarcity of our data make 

it difficult to say conclusively the degree to which biogeographical shifts are occurring for 

the Chukchi zooplankton. The transit time of water flowing from the Bering Strait to the 

north-western Chukchi Sea (Herald Canyon) is estimated to be 4-6 months (Berline et al., 

2008; Woodgate et al., 2005), and can vary significantly depending on wind conditions 

(Winsor and Chapman, 2004), position in the water column, and bathymetry (Berline 

et al., 2008). Variability in flow time will influence the composition and quantity of Pa­

cific zooplankton reaching the shelf break of the Chukchi Sea by the end of the summer, 

with shorter lived species having a chance to travel farther north in favorable conditions. 

Additionally, an earlier onset of “summer” conditions in the Bering Sea and increased 

inflow of warm Pacific water (Woodgate et al., 2012) together with a longer summer ice- 

free period should result in advected species developing earlier in the season and carried 

farther north, thus playing a role in the local communities for a longer period of time. 

Currently, the limited stage distribution data that we have available is too scarce to say 

conclusively whether any phenological shifts are taking place in the resident Chukchi Sea 

communities or advected Bering Sea communities. However, the distribution maps for 

the Pacific copepods M. pacifica and Neocalanus spp. are certainly suggestive of their 

displacement northward. While these species were observed at a few individual stations 

above 70°N during the early sampling years, they are generally present at more or less 

every station during the 1990-2000 period (Figure 4.7), with a trend of increasing abun­

dance at higher latitudes during the later years. Plankton surveys in the central Arctic 

Basin have reported a presence of these species in the high Arctic plankton communities, 

although they are usually found in very small numbers (e.g. Kosobokova and Hopcroft, 

2010). While it is unlikely that these Pacific organisms are able to survive and reproduce 

in the cold and nutrient-poor waters of the Arctic, an increasing inflow of these species 

could have significant local impact for the plankton feeding predators within the region.
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4.5 .4  T h e  fate o f  C hukchi Sea zoop lan k ton

The Chukchi Sea is an advection-dominated system, with the majority of the water masses 

composing it arriving directly from the North Pacific via the Bering Strait. Therefore, a 

significant proportion of the zooplankton communities within this region are “in transit” , 

as opposed to being produced locally. Most of the Pacific plankton transported through 

the Bering Strait does not make it to the deep Arctic Ocean (Wassmann et al., 2015), 

due to a generally shorter life span of these species and failure to reproduce in the near­

freezing Arctic waters. The shock of sub-zero temperatures and scarcity of available food 

together with their reduced ability to store lipids are likely to contribute to mortality and 

make many expatriated species unlikely to survive the Arctic winter.

One of the large knowledge gaps remaining for the Chukchi region is the lack of 

understanding of processes that take place in the biological communities during the winter 

months, when the sea is completely covered with ice and water temperatures are below 

zero from surface to bottom. To date, no sampling efforts exist that examine the system 

during the peak of winter (January-March). While summer communities are largely 

affected by warming temperatures and a longer ice-free period, we assume that during 

winter the system “resets” itself and communities revert from being mainly Pacific to 

mainly Arctic in character. This is partially confirmed by the scarcity of Pacific species 

within the W W  communities. The vast majority of the planktonic biomass transported 

into the Arctic from the North Pacific remains within the Chukchi Sea, becoming food 

for the local fish, bird, marine mammal and benthic communities. Bowhead whales alone 

are estimated to consume 1/3 of the zooplankton biomass advected through the Bering 

Strait (Wassmann et al., 2015). The presence of advected Pacific euphausiids on the 

Chukchi and Beaufort shelves (Ashjian et al., 2010; Moore et al., 2010), as well as in 

the Siberian Coastal current (Moore et al., 1995), can drive the seasonal migrations of 

whales in this area, as they composed 60-90 % percent of stomach contents in bowhead 

whales. Nonetheless, the Chukchi’s euphausiids are considered primarily an expatriate 

population (Berline et al., 2008).
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The majority of Bering Sea Calanus glacialis, which represent the bulk of biomass 

transported through the Bering Strait, most likely does reach far past the Chukchi shelf 

break. The younger C. glacialis found in resident Chukchi waters likely represent a 

distinct “local” population shared with adjacent Arctic shelf seas; alternately, they may 

be produced by overwintering females that were advected during the previous summer. 

However, the sharp boundary between the Pacific/Bering and Arctic haplotypes (Nelson 

et al., 2009), the absence of the Pacific haplotype within the Canada Basin, and the 

strong pattern observed in distribution of developmental stages (Figure 4.11) together 

suggest that the majority of the advected Pacific population of C. glacialis are unable to 

survive the Arctic winter and reproduce in the Arctic. Preliminary results of population 

genetics of this species suggest that there is a single population of this species within the 

Arctic Basin (Agata Weidmann, personal communication).

4 .6  Sum m ary and fu ture d irection s

While our results are far from a conclusive time series, they present the first evidence 

of change within planktonic communities within the western Chukchi Sea over the last 

70 years. A significant increase in zooplankton biomass, mostly driven by the advected 

copepod Calanus glacialis, was observed within the southern Chukchi, which likely reflects 

increasing inflow of biomass-rich Pacific water during the extended summer months. A 

trend is also observed suggesting a northward shift of Pacific species into the Chukchi 

Sea, which may be driven by a longer ice-free period and extended warmer summer 

temperatures combined with a shifting phenology favoring earlier development of species. 

While summer zooplankton communities of the Chukchi Sea have been primarily Pacific 

in character for as long as our records report, continuing warming and ice loss may further 

increase the influence of Pacific fauna within the Chukchi region. Our data show that 

the success of the key advected species is largely correlated with water temperature, so 

increases in abundance of these species with future warming are expected. Our findings 

are consistent with numerous other studies reporting climate related changes propagating 

from the environment to the biological communities, both within the Pacific Arctic region

110



and in other parts of the Arctic. To become robust, future sampling efforts need to be

directed towards creating a continuous time series, with consistent methods and sampling

periods to better understand and predict the distribution of communities in a changing

Chukchi Sea.
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Figure 4.S1: Mean six-month winter index values for the Pacific Decadal Oscillation 
(PDO) and the Arctic Oscillation (AO). Black dots indicate years where zooplankton 
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Table 4.S1: Summary of datasets used in study. Taxonomic resolution: L (low) - <30 species; M (medium) -  30-50 species; H (high) 
>50 species. Methods of calculating biomass: (1) Biomass from abundance data using mean weights from literature (2) Length-weight 
regressions (3) W W  converted to DW (4) Preserved W W  with correction for weight loss

EXPEDITION/ Ship Year Month #  of 
stns

Mesh size CTD
Data

Mean
SST

Taxon.
Resol.

Biom.
Meth.

Mean 
biomass 
(mg DW
m-3 )

Mean
abund.
(ind
m-3 )

Published/available in

Severnyj Polyus 1946 Sept 36 167yU,m Juday NO 2.16 H 1 23.7 1621 Markhaseva et al. (2005)
Nereus 1947 July 14 500yU,m YES 2.14 M 1 13.5 2500 Johnson (1953)
Cedarwood 1949 August 21 1̂50yU,m YES 2.20 H 2 28.7 1068 Unpublished
Lomonosov 1953 August 19 333yU,m YES 3.27 L 3 10.35 254 Unpublished
Lomonosov 1954 August 21 333yU,m YES 3.41 M 3 84.75 2986 Unpublished
WEBSEC/ CGC Glacier 1970 Sept-Oct 39 570yU,m YES 3.24 M 1 17.7 114 Ingham et al. (1972)
Mayak 1976 August 25 167yU,m Juday NO 4.93 L 3 46.3 4104 Pavshtiks (1984)
OSCEAP/ ’’Discoverer” 1976 August 25 333yU,m NO 4.93 M 1 41.6 537 Unpublished
OSCEAP/ ’ Surveyor” 1977 July 7 333yU,m NO 3.64 M 1 49.1 1212 Unpublished
ISHTAR HX74/ “Alpha Helix” 1985 Aug-Sept 16 505yU,m YES 4.72 L 4 141.9 415 Springer et al. (1989)
ISHTAR HX85/ “Alpha Helix” 1986 July 38 505^m YES 4.24 M 4 84.4 252 Springer et al. (1989)
ISHTAR HX88/ “Alpha Helix” 1986 Aug-Sept 38 505yU,m YES 5.39 H 4 57.1 247 Springer et al. (1989)
BERPAC/ “Akademik Korolev” 
ISHTAR TT221 /

1988 August 32 505^m YES 3.92 M 4 33.1 147 Kulikov (1992)

“Thomas Thompson” 
ISHTAR HX128 /

1988 June 24 505^m YES 1.5 L 4 13.4 225.5 Unpublished

“Alpha Helix” 1989 July 42 505^m YES 3.62 M 4 106.7 337 Unpublished
Oshoro-Maru 1991 July 27 333^m YES 5.0 M 3 117.5 1616 Matsuno et al. (2011)
Oshoro-Maru 1992 July 34 333yU,m YES 4.7 M 3 76.4 1110 Matsuno et al. (2011)
RUSALCA/ “Khromov” 2004 August 34 Bongo 150^m YES 6.3 H 2 49.7 5762 Hopcroft et al. (2010)
Oshoro-Maru 2007 August 31 333^m YES 8.9 M 3 91.7 1728 Matsuno et al. (2011)
“DYSON” 2007 Sept 25 505/150 yU,m YES 9.6 H 1 175/57 64/1348 Eisner et al. (2012)
OSHORO-MARU 2008 July 28 333^m YES 3.4 M 3 119.2 2771 Matsuno et al. (2011)
“Laurier” 2009 July 5 Bongo 150^m NO 4.9 H 2 76.4 4061 Unpublished
RUSALCA/ “Khromov” 2009 Sept 60 Bongo 150^m YES 3.2 H 2 72.1 8967 Ershova et al. (2015)
“Laurier” 2010 July 16 Bongo 150^m NO 5.4 H 2 170 16313 Unpublished
RUSALCA /  “Khromov” 2010 August 17 Bongo 150^m YES 5.6 H 2 70.7 14070 Ershova et al. (2015)
“Laurier” 2011 July 23 Bongo 150yU,m NO 5.5 H 2 126.6 12327 Unpublished
RUSALCA /  “Khromov” 2011 July 9 Bongo 150^m NO 5.5 H 2 98.1 2359 Unpublished
RUSALCA/ “Khromov” 2012 Sept 25 Bongo 150yU,m YES 2.6 H 2 85.4 3224 Ershova et al. (2015)



Table 4.S2: (a) Summary and (b) comparisons between least squares means for factors 
(only significant comparisons reported) for the mixed model log(Biom ass) ~  Y ear  +  
M onth  +  P D O  +  W aterm ass +  Gear +  1| Facet

(a) Factor Estimate Standard
Error

DF t-value p-
value

Intercept - -22.542 2.548 451 -8.847 ***
Year - 0.012 0.001 451 9.344 ***
PDO index - -0.095 0.027 451 -3.484 **
Month August 1.435 0.074 362.5 19.52 ***

July 1.659 0.078 366 21.23 ***
June 0.756 0.115 536.7 6.58 ***
September 1.442 0.075 391 19.33 ***

Water ACW 1.182 0.078 193.2 15.19 ***
mass
(bottom/ BSAW 1.487 0.048 66.3 30.72 ***
surface) BSAW/ACW 1.431 0.052 83.8 27.6 ***

BSAW/SCW 1.452 0.156 363 9.33 ***
BSAW/WW 1.190 0.255 576.5 4.66 ***
SCW 0.778 0.171 302.4 4.56 ***
WW 1.318 0.077 275.6 17.2 ***
WW/BSAW 1.292 0.094 349.3 13.67 ***
W W /SCW 1.105 0.151 516.4 7.32 ***

(b) Factor A Factor B Estimate Error p-value
(differ-
ence)

Month August July -0.2 0.058 ***
August June 0.7 0.097 ***
July June 0.9 0.104 ***
July September 0.2 0.060 ***
June September -0.7 0.100 ***

Water ACW BSAW -0.3 0.081 ***
mass
(bottom/ ACW BSAW/ACW -0.2 0.074 ***
surface) ACW SCW 0.4 0.182 *

BSAW SCW 0.7 0.174 ***
BSAW WW 0.2 0.085 *
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Table 4.S3: Mixed model results of Calanus glacialis abundance in BSAW. Best model 
reported as predicted by AIC (a) Results and (b) comparisons between least squares 
means for month (only significant comparisons reported) for the model log(Abundance +  
1) ~  Year  +  M onth  +  P D O  +  (Gear) +  llFacet

(a) Factor Estimate Std. Error df t-value p-
value

(Intercept) - -17.50 3.14 402.00 -5.57 ***
Year - 0.01 0.00 402.00 5.98 ***
PDO index - -0.11 0.03 386.50 -3.30 **
Month August 1.32 0.06 51.30 22.58 ***

July 1.60 0.08 130.40 19.26 ***
June 1.14 0.11 257.10 10.51 ***
September 1.16 0.07 81.00 17.24 ***

(b) Estimate Std. Error df t-value p-value
August - July -0.30 0.08 396.50 -3.39 ***
August - 
September

0.20 0.07 400.70 2.25 *

July - June 0.50 0.12 373.50 3.75 ***
July - Septem­
ber

0.40 0.09 387.40 5.03 ***

Table 4.S4: Mixed model results of Metridia pacifica abundance in BSAW. Best model 
reported as predicted by AIC (a) Results and (b) comparisons between least squares 
means for month (only significant comparisons reported) for the model log(Abundance +  
1) ~  Year  +  M onth  +  Surface.Tem p  +  (Gear) +  llFacet

(a) Factor Estimate Std. Error df t-value p-
value

(Intercept) -26.97 6.30 372.70 -4.28 ***
Year 0.01 0.00 372.70 4.40 ***
Mean Bottom 0.37 0.07 371.00 5.22 ***
Temperature
Month August 1.03 0.10 117.00 10.34 ***

July 0.72 0.13 212.00 5.45 ***
June 0.07 0.18 315.00 0.40
September 1.05 0.12 170.00 8.97 ***

(b) Estimate Std. Error df t-value p-value
August - July 0.30 0.12 362.50 2.57 *
August - June 1.00 0.17 363.80 5.50 ***
July - June 0.70 0.18 356.00 3.69 ***
July - Septem- -0.30 0.14 363.80 -2.37 *
ber
June - -1.00 0.17 367.70 -5.90 ***
September
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Table 4.S5: Mixed model results of Eucalanus bungii abundance in BSAW. Best
mixed model reported as predicted by AIC (a) Results and (b) comparisons between 
least squares means for month (only significant comparisons reported) for the model 
log(Abundance +  1) ~  Y ear  +  M onth  +  Bottom .Tem p  +  (Gear) +  llFacet

(a) Factor Estimate Std. Error df t-value p-
value

(Intercept) - -24.65 4.74 323 -5.19 ***
Year - 0.01 0.00 323 5.10 ***
Mean Bottom 
Temperature

- 0.46 0.06 323 7.82 ***

Month August 0.83 0.08 107.5 10.62 ***
July 0.28 0.12 220.5 1.46 *
June 0.83 0.18 335.9 0.69 ***
September 0.95 0.10 175.5 10.06 ***

(b) Estimate Std. Error df t-value p-value
August - July 0.50 0.10 360.1 5.51 ***
July - June -0.5 0.16 368.8 -3.28 **
July - Septem­
ber

-0.7 0.12 361.8 -5.70 ***

June - 
September

-0.1 0.18 372.4 -0.66 ***

Table 4.S6: Mixed model results of Neocalanus spp. abundance in BSAW. Best model 
reported as predicted by AIC (a) Results and (b) comparisons between least squares 
means for month (only significant comparisons reported) for the model log(Abundance +  
1) ~  Year  +  M onth  +  (Gear) +  1lFacet

(a) Factor Estimate Std. Error df t-value p-
value

(Intercept) - -10.24 3.62 370.8 -3.43 ***
Year - 0.01 0.00 371.4 3.53 ***
Mean bottom - 0.19 0.05 368.8 3.53 ***
temperature
Month August 0.58 0.05 122.0 10.88 ***

July 0.42 0.08 204.9 6.71 ***
June 0.50 0.14 217.5 3.61
September 0.21 0.07 227.7 2.96 ***

(b) Estimate Std. Error df t-value p-value
August - 0.40 0.07 364.5 5.35 ***
September
July - Septem- 0.30 0.13 363.1 3.56 ***
ber
June - 0.30 0.15 312.6 2.31 *
September
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5 Conclusions

The preceding chapters present new insights on the structure of zooplankton communities 

in the Chukchi Sea, as well as evidence of on-going change within these communities. I 

found that the zooplankton community structure in the Chukchi Sea was closely tied 

to physical parameters and water mass distribution. These patterns occurred for both 

contemporary as well as historical surveys, and were consistent with other recent studies 

from the region (Eisner et al., 2012; Matsuno et al., 2011; Questel et al., 2013).

In Chapter 2, I described the inter-annual variability in composition, biomass, and 

productivity of zooplankton communities within the Chukchi Sea. These communities 

are dominated by a relatively low diversity of copepods, euphausiids, pteropods and 

larvaceans, along with predatory medusae and chaetognaths. Community composition 

clearly reflected variations in physical properties of the water column, as well as the in­

tensity of downstream productivity and Pacific water transport. For the four RUSALCA 

expedition years -  2004, 2009, 2010 and 2012 -  I identified four broad zooplankton com­

munity types across a broad region of the Chukchi Sea associated with water mass types: 

Alaska Coastal, Bering Sea-Anadyr, Resident Chukchi and Siberian Coastal Communi­

ties. I found that although water masses shared common characteristics between years, 

inter-annual variability in community structure was greater than differences between wa­

ter mass types. For future expeditions, more consistent seasonal timing, more consistent 

resampling of stations and use of depth-stratified sampling to separate the frequently- 

overlaid water masses would help future resolve spatial and long-term patterns.

In Chapter 3, I provided detailed examinations of the distribution, population struc­

ture and production of four sibling species of Pseudocalanus spp. in the Chukchi Sea 

during three RUSALCA sampling years. Since only adult females of Pseudocalanus are 

distinguishable morphologically, I developed and implemented a novel molecular method 

(species-specific PCR) to discriminate between the species at juvenile stages, which dom­

inate the population. I found that the distribution of the four species of Pseudocalanus
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in the Chukchi Sea is tightly linked to oceanography and thermal regimes in the region, 

making this assemblage important markers of water mass origin, as well as potential 

indicators of climate change. My results emphasize the importance of including all devel­

opmental stages when accounting for species abundances, rather than only those of adult 

females. The observed spatial and inter-annual distributions of species, as well as results 

of direct temperature-manipulation experiments on reproduction of Pseudocalanus spp., 

suggest that shifting oceanographic patterns and climate warming will have unequal im­

pact on this group of organisms. Currently, the arctic P. acuspes dominates the genus 

contribution (50-90 %) within the Chukchi Sea; however, the contribution and northward 

penetration of the two temperate species, P. newmani and P. mimus, is expected to 

increase with warming temperatures and increasing inflow from the Pacific during the 

summer months. My results highlight how species that are very similar morphologically 

may nevertheless play different roles in an ecosystem.

In my final chapter ( Chapter 4 ), I examine the long-term changes that may have 

occurred in the zooplankton communities within the Chukchi Sea, associated with the 

dramatic changes in climate that have been observed in the region over the past century. 

Despite the patchiness and variable quality of the available data, my results indicate a 

significant increase in zooplankton biomass within the southern Chukchi region, mostly 

driven by the advected copepod Calanus glacialis. This increase likely reflects increas­

ing inflow of biomass-rich Pacific water during the extended summer season. A trend is 

also observed suggesting a northward shift of Pacific species into the Chukchi Sea, likely 

driven by a longer ice-free period and extended warmer summer temperatures, as well as 

a shifting phenology favoring earlier development of species. While these results are far 

from a conclusive time series, they present the first evidence of change within planktonic 

communities within the western Chukchi Sea over the last 70 years. Although summer 

zooplankton communities of the Chukchi Sea have contained Pacific species for as long as 

observations exist, continued warming and sea ice loss could further increase the influence 

of Pacific fauna within the Chukchi region. I showed that the success of several of the key 

advected species is largely correlated with water temperature. My findings are consistent
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with numerous other studies reporting climate related changes propagating from the en­

vironment to the biological communities, such as the significant increase in planktivorous 

birds that was observed in this region compared to reports from the 1970’s (Gall et al.,

2016). However, despite the observed trend of increasing zooplankton biomass in the 

region, it is likely that the trend may level out or reverse with continued warming as was 

the case in 2004.

Unequivocally, the Chukchi Sea is currently in a state of rapid transition. The 

changes in the physical environment are influencing the biological systems within the 

region, as manifested within the zooplankton communities, both on short- and long­

term scales. These changes are often best observed at the species level, as responses 

to environmental stressors by different organisms within the same communities may be 

vastly different. To become robust, future sampling efforts need to be directed towards 

creating a continuous time series, with consistent methods and sampling periods to better 

understand and predict the distribution of communities in a changing Chukchi Sea.
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