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ABSTRACT

The Prince of Wales flying squirrel ( Glsabrinus griseifrons), a forest 

associated species, is endemic to several islands in the Alexander Archipelago of 

Southeast Alaska. Mitochondrial and nuclear markers were examined to assess the 

genetic uniqueness of this subspecies and its geographic extent and to investigate gene 

flow among island and mainland populations of flying squirrels. Data from both sets of 

markers are congruent, and agree with the subspecific designation. The data also indicate 

that the Prince of Wales subspecies is isolated from other populations in Southeast 

Alaska, but that there may be gene flow among islands on which it occurs. This island 

lineage is likely the result of a founder event after the retreat of the Pleistocene ice sheets. 

The fact that this subspecies is isolated and divergent from mainland populations has 

potential implications for the design and planning of timber harvests on these islands.
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INTRODUCTION

Before the explosion of molecular methods in recent years, investigations into 

microevolutionary processes such as gene flow and population differentiation in animals 

were somewhat difficult in the field, requiring painstaking care in documenting 

individual movements, mating, and character states of multiple quantitative traits. DNA 

sequencing, allozyme and restriction fragment length polymorphism scoring, and nuclear 

microsatellite typing have all contributed to making these types of studies easier (Avise, 

1994). DNA markers may be particularly valuable in identifying isolated stocks or 

populations; the recognition that certain populations may be unique may lead to 

management for the maintenance of distinct genetic lineages (Waples, 1991; Moritz, 

1994).

My study uses two of these techniques to investigate population divergence and 

gene flow among flying squirrels ( Glaucomys sabrinus) on the islands of the Alexander 

Archipelago in Southeast Alaska. The Prince of Wales flying squirrel (G. s. griseifrons) 

is endemic to several islands, and was originally described on the basis of the pelage 

coloration of two specimens (Howell, 1934). The new ten-year forest plan mandates the 

US Forest Service to manage and conserve endemics in the Tongass National Forest, 

which includes much of the archipelago (USDA, 1997). Until recently there has been 

little investigation of the distribution, differentiation, or taxonomic status of mammalian 

endemics. In Chapter 1 ,1 expand a preliminary study (Demboski et al., 1998) of the 

distribution and extent of molecular divergence of this subspecies using mitochondrial 

DNA sequences. Chapter 2 explores the history of colonization and gene flow among the 

islands of the archipelago using microsatellite markers. Conservation and management of 

this island endemic is addressed in light of the information gathered from this molecular 

data.
I conducted all laboratory and analytical work described in these chapters, with 

technical support from the Institute of Arctic Biology Core DNA Sequencing
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Chapter 1

Reduced genetic variation in insular northern flying squirrels ( sabrinus) along
the north Pacific coast1

ABSTRACT

Nearshore oceanic archipelagos are valuable laboratories that could provide 

insight into evolutionary processes such as founder effects and incipient speciation. The 

Alexander Archipelago of Southeast Alaska is an example of such a complex, yet few 

biological investigations have been conducted here. For the past fifty years, the region 

has experienced intense anthropogenic disturbances (particularly timber harvesting), 

causing habitat fragmentation and potential disruption of biotic communities. As part of 

a series of studies of mammals endemic to Southeast Alaska, we examined mitochondrial 

DNA sequences from 118 flying squirrels to investigate genetic diversity across 

Southeast Alaska. Mitochondrial sequence divergence is in agreement with the 

subspecific designation of the Prince of Wales flying squirrel ( sabrinus

griseifrons). This island lineage may be the result of an early Holocene founder event, 

because 52 of 53 animals on Prince of Wales Island and ten islands to the west had 

identical cytochrome b sequences, and all individuals examined for control region (n=21) 

were also identical. In contrast, substantial polymorphism and little genetic structure 

were found in populations across the rest of Southeast and Interior Alaska. Because 

flying squirrels in the Pacific Northwest are associated with old-growth forest, forest-use 

plans should aim to conserve this unique lineage of island squirrels.

‘Bidlack, A. L. & Cook, J. A. (submitted). Reduced genetic variation in insular northern flying squirrels 

( Glaucomys sabrinus) along the North Pacific Coast. Animal Conservation.
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INTRODUCTION

Archipelagos play a prominent role in conservation because they often harbor 

endemic species, which are especially susceptible to extinction (Diamond, 1989), and 

they may offer refuge for species that are threatened or extinct on the mainland due to 

predation, competition or habitat loss. Considerable attention has been paid to loss of 

diversity on remote oceanic archipelagos, like the Hawaiian and Galapagos islands, 

because of their unique flora and fauna. Less research has focused on nearshore oceanic 

archipelagos, though similar evolutionary forces shape these ecosystems. Often these 

islands harbor endemic taxa and unique combinations of plants and animals not found on 

the mainland (e.g., Cook & MacDonald, in press); they also provide opportunities to 

explore metapopulation dynamics, such as colonization and extinction (e.g., Lomolino, 

1994; Giles & Goudet, 1997; Conroy, Demboski & Cook, 1999). In particular, founder 

events can impact the genetic variation found in island populations and lead to divergent 

evolutionary lineages. With the exception of Ranta et al. (1999), conservation on these 

nearshore archipelagos has received little attention in the literature.

High numbers of nominal endemic species and subspecies occur along the North 

Pacific Coast of North America. Twenty four taxa of mammals are considered endemic 

to Southeast Alaska, with 12 others largely confined to the region (MacDonald & Cook, 

1996). Southeast Alaska has a dynamic history of glaciations, oceanic transgressions, 

isostatic rebound and ecosystem change (Ager, 1983; Mobley, 1988; Mann & Hamilton, 

1995; Barrie & Conway, 1999), which has contributed to the biogeographic patterns we 

see today. Many endemics are spread over the Alexander Archipelago, consisting of over 

2,000 named islands (Figure 1). This complex landscape has been further fragmented by 

extensive timber harvests and road building during the past 50 years (Durbin, 1999). 

Rudimentary inventory work has led to uncertainty over the distribution and abundance 

of endemic taxa. Recent work is shedding light on the phylogeography of mammals in 

the region and highlighting the need to incorporate information on endemics and 

evolutionary processes on islands into management plans (Cook et al., in press).
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Northern flying squirrels ( Glaucomys sabrinus) are highly associated with old- 

growth forest in the Pacific Northwest (Carey, 1995; Carey, 1996; but see Rosenberg, 

1992). They consume and disseminate spores of ectomycorrhizal fungi that are 

symbiotic with many temperate forest plant species, and they are important prey items of 

many avian and mammalian predators (Maser, Maser & Trappe, 1985; Maser et al., 1986; 

Carey et al., 1999). The Prince of Wales flying squirrel (G. s. griseifrons) has been the 

focus of conservation concern (Demboski, Cook & Kirkland, 1998a) because Prince of 

Wales Island in the Alexander Archipelago of Southeast Alaska has been heavily 

deforested and extensive future timber harvests are planned (Table 1).

Demboski, Jacobsen & Cook (1998b) provided a preliminary assessment of 

geographic variation in northern flying squirrels in Southeast Alaska using sequences of 

the mitochondrial cytochrome b gene. They characterized animals representing three 

subspecies from Alaska (G.s. griseifrons, G.s. zapheus, G.s. yukonensis), and found that 

animals from Prince of Wales Island, and eight smaller islands to the west of Prince of 

Wales (the POW complex), shared two diagnostic base pair mutations. Because the 

control region of the mitochondrial genome evolves at a higher rate than cytochrome b, it 

usually provides greater resolution of recent evolutionary and population-level events 

(e.g., Thomas et al., 1990; Encalada et al., 1996; Pope, Sharp & Moritz, 1996; Good et 

al., 1997). We examined control region sequences from flying squirrels from the Pacific 

Northwest and expanded Demboski et al.’s (1998b) data set by adding complete 

cytochrome b sequences for animals from an additional four islands and three mainland 

areas. We investigate colonization history, founder effects and genetic diversity in flying 

squirrels along the north Pacific coast, and discuss the impact of current land uses on the 

endemic Prince of Wales flying squirrel.

MATERIALS AND METHODS

Heart tissue housed in the Alaska Frozen Tissue Collection at the University of 

Alaska Museum from 118 specimens (representing 15 islands and eight mainland



6

populations) was used for DNA extraction. Voucher specimens associated with these 

tissue samples are also housed in the University of Alaska Museum. Specimens, 

including many provided by marten trappers, were sampled from 22 locations (sample 

sizes in parentheses): Prince of Wales I. (21), Tuxekan I. (2), Suemez I. (6), Orr I. (2), 

Heceta I. (4), El Capitan I. (6), Barrier Islands (12), Kosciusko I. (3), Dali I. (1), 

Revillagigedo I. (4), Wrangell I. (1), Etolin I. (1), Mitkof I. (9), Chilkat Peninsula (2), 

Skagway (1), Haines (1), Juneau (3), Rudyerd Bay (1), Cleveland Peninsula (20), Yukon 

Territory (1), Interior Alaska (15), and Washington state (2). Extraction followed a 

protocol modified from Miller, Dykes & Polesky (1988). Partial (792 base pairs) and 

complete (1140 base pairs) cytochrome b gene sequences of 86 animals (n=49 partial; 

n=37 complete) were amplified using primers MVZ 04/05, 16/37, and 14/23 (Smith & 

Patton, 1993). 350 base pairs from the 5’ end of the mitochondrial control region were 

obtained from 43 of these 86 individuals using primers TDKD (5’ -  CCT GAA GTA 

GGA ACC AGA TG; Kocher et al., 1993) and CTRL-L (5’ -  CAC YWT YAA CWC 

CCA AAG CT). Control region sequences were obtained from an additional 34 animals 

which were not sequenced for cytochrome b. Sequences were amplified by polymerase 

chain reaction on a Perkin-Elmer 2400 thermocycler using standard protocols (Lessa & 

Cook, 1998). Both forward and reverse strands were sequenced on an ABI 373 

Automated Sequencer and translated and aligned with Sequence Navigator Version 1.0.1 

(ABI). All amplifications included negative controls. Control region and cytochrome b 

sequences have been deposited in GenBank.

RESULTS

Cytochrome b and control region sequences show a division between the POW 

complex and other populations, amplifying and clarifying the preliminary conclusions of 

Demboski et al. (1998b). All cytochrome b sequences (but one) from individuals from 

the POW complex (n=53) are identical. The single sequence that differs is from southern 

POW; it is identical except that it has one additional base pair transition. All 53
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individuals are characterized by two synonymous base pair changes (one transition, one 

transversion). Cytochrome b sequences from animals from nearshore islands (Wrangell, 

Etolin, Mitkof and Revillagigedo) and mainland sites (Juneau, Skagway, Haines, Chilkat 

Peninsula, Cleveland Peninsula and Rudyerd Bay) differ from those of the POW complex 

by at least these two base pair changes.

Excluding the divergent Washington sequences, there are 24 variable sites in the 

control region (of 350 base pairs). These comprise a total of 22 haplotypes. All control 

region sequences from the POW complex (n=21) are identical and comprise a distinct 

haplotype. Similarly, all five individuals from Mitkof Island share a single haplotype, 

although this haplotype also occurs on the Cleveland Peninsula. In contrast to the 

genetically monotypic POW complex samples, two other populations from the Cleveland 

Peninsula and Interior Alaska with similar sample sizes (n > 14) include seven haplotypes 

each (Table 2). Even populations for which we were able to sequence only a few 

animals, such as Juneau, Revillagigedo Island, and Chilkat Peninsula, were variable in 

control region sequences. Only a single individual was examined for Etolin and 

Wrangell islands, Rudyerd Bay, Haines, and Skagway.

DISCUSSION

Mitochondrial sequences identify a reciprocally monophyletic clade on the POW 

complex of islands. This finding demonstrates a genetic uniqueness consistent with the 

original description of G. s. griseifrons, which was based on a morphological assessment 

of two specimens (Howell, 1934). Given the near genetic homogeneity of the POW clade 

and low but consistent level of divergence from mainland populations, our analysis 

indicates that the POW populations have not experienced recent genetic exchange with 

the mainland populations. Colonization of islands often results in loss of genetic 

diversity, with subsequent differentiation between the original and founder populations 

induced by genetic drift or differential selective regimes (Mayr, 1942).
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Glaciers covered much of Southeast Alaska repeatedly during the Pleistocene, 

with subsequent retreat and revegetation. Continental shelf and nunatak refugia along the 

North Pacific Coast have been hypothesized on the basis of pollen records and plant 

macrofossils (Warner, Mathewes & Clague, 1982; Peteet, 1991), vertebrate fossils 

(Heaton, Talbot & Shields, 1996), disjunct populations of extant taxa (Worley & Jaques, 

1973; Ogilvie, 1989; Heusser, 1989), and phylogeographic breaks in vertebrate and plant 

taxa (Wheeler & Guries, 1982; Zink & Dittman, 1993; O’Reilly et al., 1993; Byun, Koop 

& Reimchen, 1997; Soltis et al., 1997). Despite the large amount of paleobotanical, 

archaeological, geological, molecular, and morphological data that have been collected, 

no concrete evidence exists for the presence of unglaciated areas with persistent 

populations of vertebrates during maximum glaciation. If substantial periglacial refugia 

existed, it seems doubtful that forest-associated species (e.g., flying squirrels) would have 

persisted in Southeast Alaska during the last glacial maximum. Pollen records and plant 

macrofossils indicate only alpine tundra-like vegetation shortly after maximum glaciation 

in Haida Gwaii (Queen Charlotte Islands) and areas in the Alexander Archipelago 

(Heusser, 1989; Mann & Hamilton, 1995).

Given this evidence, it seems unlikely that the POW haplotype is due to isolation 

in a northern coastal refugium that persisted since the last interstadial period (ca. 35,000 

yr. BP). Furthermore, divergence between the POW haplotype and the mainland is 

shallow (~ 0.03%). In contrast, there is some evidence that the POW complex and Haida 

Gwaii supported refugial populations of ermine ( erminea). Cytochrome b

sequences indicate a 1.2-3.0% split for ermine populations from the POW complex 

(including Haida Gwaii) and populations from elsewhere in Beringia and southern North 

America (Fleming & Cook, submitted). We suspect that the distinctive haplotype that is 

shared among flying squirrel across the POW complex may be due to a founder event 

early in the Holocene, after the retreat of the glacial ice. Alternatively, the POW 

haplotype may have arisen elsewhere along the coast and recolonized following 

deglaciation. Sampling design for both flying squirrels and ermine may have failed to
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detect the POW haplotype elsewhere, and particular effort should focus farther south 

along the west coast of British Columbia.

Arbogast (1999) reported a major break (4.3-7.2%) between eastern (Maine to 

Alaska) and western (California to Washington) clades of G. sabrinus based on partial 

cytochrome b sequences. He suggested that these were separated in refugia south of the 

ice sheets during the last glaciation. He found < 2% sequence divergence within the 

eastern clade, and suggested a rapid westward expansion across the continent following 

the retreat of the Laurentide and Cordilleran ice sheets. Our control region sequences 

indicate little geographic structuring along the mainland, suggesting a rapid expansion 

into Southeast Alaska and/or high levels of gene flow throughout the region. Sequences 

from the POW complex of islands show a much different pattern, with near monomorphy 

across eleven islands.

The extremely low level of variation across populations on the eleven POW 

complex islands (a single autapomorphic change in one individual) suggests the 

possibility of a severe bottleneck in the ancestral population (Nei, Maruyama & 

Chakraborty, 1975). The mutations diagnostic for the POW complex would have 

accumulated concurrently or prior to the bottleneck, resulting in the distinct island 

haplotype. Alternatively, lineage sorting of the POW and mainland haplotypes may have 

occurred, although this seems unlikely given the relatively brief period (< 13,500 years) 

since the retreat of the glacial ice and the assumed large size of mainland populations.

Our sampling of 39 individuals from the mainland and nearshore islands did not reveal 

the POW haplotype. A third possibility is a selective sweep of the mitochondrial genome 

in the POW complex populations. Examining nuclear loci, such as microsatellites, may 

help to assess this possibility because a selective sweep would not be expected to affect 

these independent markers.

BIOSCIENCES LIBRARY
UNIVERSITY OF ALASKA FAIRBANKS
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Conservation Implications

The Tongass National Forest covers 6.8 million ha in Southeast Alaska and the 

current ten-year forest plan mandates the management and conservation of endemic taxa 

within the Tongass (United States Department of Agriculture, 1997). Flying squirrels 

have been managed as a single phylogenetic unit; however, mitochondrial DNA 

sequences identify a distinct island clade of flying squirrels within the Tongass. An 

evolutionarily significant unit (ESU; Ryder, 1986) is defined as a population that has 

been historically (and reproductively) isolated from other such populations and, hence, a 

lineage with distinct evolutionary potential (Waples, 1991; Moritz, 1994). The Prince of 

Wales flying squirrel fits this definition of an ESU, and therefore careful management is 

needed. Flying squirrels are associated with old-growth forest (Carey, 1995; Carey,

1996), yet habitat favored by this species has been heavily harvested and fragmented. Up 

to 46% of the old-growth on Forest Service land has been cut on some islands (Table 1; 

USDA, 2000), and much of the private land throughout Southeast Alaska (220,000 ha) 

has been logged (Durbin, 1999). An additional 200 million board feet of timber from 

old-growth forests is currently scheduled to be harvested from four islands within the 

range of G. s. griseifrons between the years 2000 and 2010 (Table 1). While there are 

substantial areas of old-growth forest in Southeast Alaska that are largely protected from 

timber harvests (e.g., Admiralty Island), most of these areas are not within the range of G. 

s. griseifrons.

This study is one of several concurrent studies of endemic mammals in the 

Alexander Archipelago. Molecular work is revealing a more dynamic picture of faunal 

colonization and differentiation in Southeast Alaska than previously thought, with both 

paleoendemics and neoendemics possibly present (Cook et al., in press). These 

biogeographic investigations provide insight into incipient speciation, gene flow, and 

founder effects, and reveal patterns relevant to conservation. The pronounced signal of a 

founder event on the POW complex highlights the value of documenting intraspecific 

diversity across nearshore archipelagos, particularly when large-scale anthropogenic
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disturbance may impact insular endemic populations. We suggest that G. griseifrons, 

like some other Alexander Archipelago taxa, may be on a distinct evolutionary path. 

Current land use plans in the region do not adequately address the management or 

conservation of genetic diversity in this north Pacific coast endemic.
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Figure 1. Distribution of flying squirrels in Southeast Alaska, including the type locality 
for G s. griseifrons (□). Lightly shaded islands do not have flying squirrels or have not 
been inventoried. Inset map shows North American range of G. sabrinus. Numbers on 
map represent selected sample localities: (1) Mitkof I., (2) Etolin I., (3) Wrangell I., (4) 
Rudyerd Bay, (5) Revillagigedo I., (6) Barrier Island group, (7) Dali I., (8) Suemez I., (9) 
Heceta I., (10) Orr I., (11) El Capitan I., (12) Tuxekan I., (13) Kosciusko I., and (14) 
Interior Alaska. Other sampling localities indicated by name.
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Table 1. Timber harvests* on POW complex islands with G.s. griseifrons', ROG, 
remaining old-growth habitat; H, harvested area; OGH, percentage of old-growth 
harvested to date; PTH, proposed timber harvest in million board feet (MMBF). 
Information is for USDA Forest Service land only.

Island Area ('hat ROG Cha) H ('ha')_________ OGH (%)_______PTH CMMBFI

Barrier Islands < 1000 498.4 0 0 0

Dali 65,820 26,046.6 1464.7 5.3 0

El Capitan <1000 484.2 27.3 5.3 0

Heceta 18,900 8497.0 6028.6 41.5 0

Kosciusko 48,220 20,420.3 7170.6 26.0 17

Orr 2335 1135.5 780.4 40.7 0

Prince of Wales 577,750 261,777.3 80,774.5 23.6 121-141

Suemez 15,012 8249.5 493.2 5.6 30

Tuxekan 8520 3572.1 3079.3 46.3 20

*as of April 2000



Table 2. Distribution of control region haplotypes in G. sabrinus in Southeast and Interior Alaska.

Subspecies
Sample
Locations

Haplotypes

A B C D E F G H I  J K L M N O P  Q R S  T U V  Total

G.s. griseifrons

POW Complex <

G.s. zapheus

G.s.yukonensis

Total:

POW I. 6

Dali I. 1

El Capitan I. 2

Heceta I. 2

Kosiusko I. 2

Orr I. 2

Suemez I. 2

Tuxekan I. 2

Barrier Is. 2

Mitkof I.

Etolin I.

Wrangell I. --

Revillagigedo I.

Rudyerd Bay --

Juneau

Chilkat Pen.

Cleveland Pen. --

Skagway

Haines

Interior AK
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Chapter 2

Nuclear and mitochondrial perspectives on an island endemic of the Alexander 
Archipelago, Alaska: the Prince of Wales flying squirrel ( sabrinus

griseifrons)2

ABSTRACT

The Alexander Archipelago of Southeast Alaska has experienced intense 

anthropogenic disturbance in the form of timber harvesting, but there have been few 

investigations of the endemic fauna of the region. The Prince of Wales flying squirrel 

(Glaucomys sabrinus griseifrons) is an old-growth associated species endemic to the 

archipelago. Previous work showed this subspecific designation was consistent with a 

distinct mitochondrial lineage on eleven islands (the Prince of Wales [POW] complex). 

Individuals from this island complex were reciprocally monophyletic to those of the 

mainland and nearshore islands, and all individuals but one from the POW complex were 

identical. To obtain a nuclear perspective on this lineage and to investigate genetic 

diversity among the islands, we examined six microsatellite loci in 233 flying squirrels 

across Southeast and Interior Alaska. Individuals were sampled from nine populations 

from seven island and two mainland localities. Island populations showed lower 

heterozygosity and allelic diversity than mainland populations. Analyses of the 

microsatellite data revealed significant differences between the POW complex 

populations and those of the mainland and nearshore islands, congruent with the 

mitochondrial data. The six POW complex populations were genetically very similar, 

suggesting current or recent gene flow among these islands. Our data confirm

2Bidlack AL, Cook JA (in prep) Nuclear and mitochondrial perspectives on an island endemic of the 

Alexander Archipelago, Alaska: the Prince of Wales flying squirrel ( sabrinus griseifrons).

Prepared for submission to Molecular Ecology.
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mitochondrial DNA results indicating that G. griseifrons is genetically isolated from 

mainland populations and suggest that the flying squirrels of the POW complex may be 

diverging from those populations. To protect this evolutionary potential, knowledge of 

genetic variability and population structure in this subspecies should be used in planning 

future timber harvests.

INTRODUCTION

Northern flying squirrels ( Glaucomys sabrinus) occur from interior Alaska down 

to California, and from the Washington coast to Maine, occupying temperate and boreal 

coniferous forests (Inset; Figure 2). Arbogast (1999) reported a major break (4.3 - 7.2%) 

between eastern (Alaska to Maine) and western (Washington to California) clades of G. 

sabrinus based on partial mitochondrial cytochrome b sequences. The contact zone 

between these two lineages is thought to be in northern Washington, possibly along the 

Cascade range (Arbogast pers comm.). Arbogast (1999) suggested that these lineages 

may have been separated in forested refugia during the Pleistocene full glacial advances. 

Phylogeography and population genetics of this species in the Pacific Northwest may 

provide insight into post-glacial ecosystem change, and genetic differentiation and 

incipient speciation due to founder events and isolation.

Demboski et al. (1998a) and Bidlack & Cook (submitted) focused on the 

colonization history of flying squirrels in Southeast Alaska (Figure 2). This region is 

biogeographically complex, consisting of over 2,000 named islands of the Alexander 

Archipelago stretching from Glacier Bay near Juneau to Misty Fiords National 

Monument just north of the Canadian border. Glacial cycles had a great impact on the 

flora and fauna of the region, with species turnover occurring as fluctuating temperature 

regimes caused faunal movement along the coast between habitats in Beringia and the 

lower latitudes of North America (Klein 1965; MacDonald & Cook 1996). The 

archipelago is a center of endemism for several taxa and the potential site of isolated 

glacial refugia (Klein 1965; Cook & MacDonald in press). This region of the north
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Pacific coast is also part of the largest remaining expanse of temperate old-growth forest 

worldwide. Northern flying squirrels are thought to be dependent on old-growth forest in 

the Pacific Northwest because of their heavy dietary reliance on fungi and their use of 

mature trees and snags as nesting sites (Maser et al. 1986; Carey 1996). In the past fifty 

years this naturally fragmented system has experienced intense anthropogenic 

disturbance, mainly in the form of logging and associated road-building activities (Durbin 

1999).
Cytochrome b gene and control region sequences identify a distinct lineage on 11 

islands (the POW complex) in the Alexander Archipelago which share near genetic 

uniformity (43 of 44 individuals) for 1590 base pairs (Demboski et al. 1998a; Bidlack & 

Cook submitted). These individuals share unique base pair changes from squirrels of the 

mainland and nearshore islands. This reduction in genetic variation across populations of 

this island clade suggests they experienced a severe bottleneck, perhaps as the result of a 

founder event to the POW complex after the retreat of the glacial ice (around 13,000 yr. 

BP). This mitochondrial lineage coincides with the endemic Prince of Wales flying

squirrel (G. s. griseifrons).
While the mitochondrial DNA (mtDNA) data suggest no recent gene flow 

between POW complex populations and mainland and nearshore island populations, 

these data reveal little about relationships among the POW islands. Further investigation 

using biparentally-inherited nuclear markers may give more insight into the colonization 

of the POW complex and levels of genetic differentiation on this group of islands. 

Microsatellite loci are thought to evolve more rapidly than mtDNA and often provide 

finer resolution of population-level dynamics (Bruford & Wayne 1993; Schlotterer & 

Pemberton 1994). These markers also provide an alternate view to the maternally 

inherited mitochondrial DNA; often, phylogenetic breaks are identified with mtDNA that 

do not show up in nuclear data because gene flow is male-mediated (e.g., Paetkau et al. 

1998). We examined six microsatellite loci among animals from nine populations to 

investigate genetic diversity among populations in Southeast Alaska, and to compare
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levels of genetic diversity between island and mainland populations. We investigate 

whether nuclear data provides an evolutionary signal similar to mtDNA in flying 

squirrels of the POW complex and whether microsatellites shed light on the colonization 

of this island complex. Lastly, we discuss our data in light of the management and 

conservation of this north Pacific coast endemic.

MATERIALS AND METHODS

Samples and DNA Extractions

We analyzed 233 animals from nine populations (Figure 2). Individuals were 

sampled from El Capitan, Heceta, Suemez, and Tuxekan islands (part of the POW 

complex), from Naukati Bay and Polk Inlet on POW, from two other Southeast localities, 

Mitkof Island and Helm Bay on the Cleveland Peninsula, and finally from Interior 

Alaska, around Fairbanks. Samples were the result of field inventories by the University 

of Alaska Museum or were obtained from marten trappers as incidental mortalities.

Heart tissue associated with these voucher specimens, stored at -70° C in the Alaska 

Frozen Tissue Collection, was used for DNA extraction. Whole DNA extraction 

followed a protocol modified from Miller et al. (1988).

Microsatellite Amplification

We used six polymorphic microsatellite loci specifically developed for northern 

flying squirrels: FS1, FS2, FS8, FS10, FS12 (Zittlau et al. 2000), and FLS6 (Wilson 

2000; Table 3). Loci were amplified in 10 p.L reactions containing -50-100 ng DNA, 

1.25X Perkin-Elmer PCR Buffer solution, 0.2 mM dNTPs, 1.0 unit Perkin-Elmer Taq 

polymerase, either 4.4 mM (FS1 and FS8) or 3.1 mM (FS2, FS10, FS12, FLS6) MgCl2, 

and either 0.4 t̂M (FS1, FS2, FS8, FLS6) or 0.3 |iM (FS10 and FS12) of each dye- 

labeled primer. All microsatellite loci were amplified on a Perkin-Elmer 9700 

thermocycler; protocols are listed in the Appendix. PCR products and GS350 size 

standard (Perkin-Elmer) were electrophoresed through a 6% polyacrylamide gel on an
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ABI 373 automated sequencer. Loci from a certain individual was run on each gel to 

standardize allele scoring. Samples were scored using ABI Genescan and Genotyper 

software.

Statistical Analyses

Descriptive statistics on number of alleles per population, percentage of 

polymorphic alleles, and expected (assuming Hardy-Weinberg equilibrium) and observed 

heterozygosity were obtained using GDA version 1.0 (Lewis & Zaykin 2000). Tests for 

Hardy-Weinberg equilibrium and genotypic linkage disequilibrium across loci were run 

in GENEPOP version 3.2 (Raymond & Rousset 1995a). For loci with four or fewer 

alleles, a complete enumeration method (Louis & Dempster 1987) was used to estimate 

P-values for each locus in each population to test for deviations from Hardy-Weinberg 

equilibrium. For loci with four or more alleles, P-values were estimated using a Markov- 

chain method with 1000 iterations, following the algorithm of Guo & Thompson (1992). 

Fisher exact tests for linkage disequilibrium per locus pair per population were performed 

using a Markov chain. Differences between island and mainland populations in expected 

and observed heterozygosity (He and H0, respectively) were investigated using a one-way 

ANOVA, while differences in heterozygosity between all population pairs were tested 

using Tukey’s test of honestly significant differences (HSD). Both analyses were 

performed in the software package STATISTICA (StatSoft Inc. 1995). Differences in 

microsatellite allele frequencies among all population pairs were tested in GENEPOP 

using an unbiased estimate of the P-value of the Fisher exact test for each locus 

(Raymond & Rousset 1995b). Significance across all multiple comparisons in this study 

was adjusted using a sequential Bonferroni correction (Rice, 1989) with an initial P-value 

of 0.05.
Analogs of Fst among population pairs were calculated using GENEPOP 

(weighted analysis of variance of allele frequencies, 6; Weir & Cockerham 1984) and 

differences from zero tested by bootstrapping across 1000 replicates using GDA. The a
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level was set to 0.01 and was not corrected for multiple comparisons because a larger 

confidence interval could not be used reliably with six loci (P. Lewis pers. comm.). The 

program GeneClass version 1.0.02 (Comuet et al. 1999) determined the probabilities of 

assigning individuals to populations using a Bayesian approach to detect immigrants 

using multi-locus genotypes (Rannala & Mountain 1997).

The program PHYLIP (version 3.57c; Felsenstein 1995) was used to run the next set 

of analyses. Allele frequencies were used to create 1000 replicate data sets in SEQBOOT. 

These data sets were then used to create 1000 genetic distance matrices (Nei’s [1972] 

genetic distance [Ds] between populations) in GENDIST, which were imported into 

NEIGHBOR to create 1000 neighbor-joining trees. All trees were used in the program 

CONSENSE to produce a consensus tree with bootstrap values. PAUP* (Swofford 1999) 

was used to create a single unrooted Ds tree on which to represent bootstrap values.

Shared allele distance (Z)sa) between individuals (Bowcock et al., 1994) were 

calculated using the program of J. Brzustowski

(http://www.biology.ualberta.ca/jbrzusto/index.html) and distances were used to construct a 

distance phenogram in the Fitch program of PHYLIP.

RESULTS

The average number of alleles per locus ranged from 1.8 on Mitkof Island to 4.7 

in Helm Bay, and all populations with the exception of Mitkof and Suemez islands had 

100% allelic polymorphism (Table 4). The population from Heceta Island contained one 

unique allele for FS1, while Mitkof Island and Interior Alaska each had one unique allele 

for FS2. Interior Alaska also had unique alleles for FS10 (1), FS12 (3) and FLS6 (2).

For locus FS10, all POW complex populations shared a 201-base pair allele not found in 

other populations (Table 5).

Probability tests for Hardy-Weinberg equilibrium indicated a significant departure 

from equilibrium in loci FS1 and FS12 in the population from Heceta Island and in locus 

FS2 from Mitkof Island (P = 0.05; 3 out of 54 cases, 5.6%). There was no linkage

http://www.biology.ualberta.ca/jbrzusto/index.html
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disequilibrium detected among locus pairs across populations. One-way ANOVAs 

indicated that mainland populations (Helm Bay and Interior Alaska) had significantly 

higher observed and expected heterozygosities (P < 0.001) than island populations (Table 

4; Figures 3 & 4). Mitkof Island showed a reduction in the number of alleles per locus, 

and was the only island to have significantly lower levels of observed heterozygosity (P < 

0.05) than five other island populations with the Tukey HSD multiple comparisons test 

(Table 4; Figure 4). Although Mitkof Island is near the mainland and is relatively large 

compared to several other islands we examined (e.g., El Capitan Island), the small sample 

size (n = 17) for this island may nonetheless have resulted in lower measures of 

variability. The Tukey HSD test using expected heterozygosities resulted in no 

significant differences between population pairs. Across the POW complex, the most 

common alleles per locus were identical (Table 5).

Within the POW complex, the number of loci with significant differences in allele 

frequencies between populations (after sequential Bonferroni correction [P < 0.0014]) did 

not exceed two (out of six). However, between islands of the POW complex and other 

populations, and among the Mitkof I., Helm Bay and Interior populations, the number of 

loci with significant differences in allele frequencies between populations ranged from 

four to all six loci (Table 6). 0 ranged from 0.003 to 0.111 and was not significantly 

different from zero in seven population pairs from the POW complex (after sequential 

Bonferroni correction [P < 0.0014]). Pairwise 0 values between the POW complex and 

the other three populations were much higher, ranging from 0.185 to 0.702 (Table 6). 

Likewise, results from GeneClass indicate genotypic similarities among the POW 

complex populations, with the Mitkof I., Helm Bay and Interior populations being more 

clearly defined (Table 7). Individuals from these three latter populations had a low 

frequency of being misassigned. In contrast, individuals from the POW complex 

populations often had nearly equal probabilities of being assigned to other populations 

within the complex.
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Phenograms constructed from Dsa and Ds show the POW complex populations 

clearly defined and separated from the other three populations (Figures 5 and 6). In 

Figure 5, all POW complex animals group together but do not form island-specific 

clades. The individuals from Mitkof Island form a monophyletic clade within the 

intermixed group of individuals from Interior Alaska and Helm Bay. A long branch 

separates the POW complex from the other three populations in Figure 6 with very high 

bootstrap support (99.9%); these island populations are clustered tightly together. A very 

long branch leads to the Mitkof Island population, indicating this population is highly 

differentiated from the others in allele frequencies.

DISCUSSION

The Alexander Archipelago experienced many cycles of glaciation during the 

Pleistocene, coupled with oceanic transgressions, isostatic rebound, and ecosystem 

change (Ager 1983; Mobley 1988; Mann & Hamilton 1995; Barrie & Conway 1999). 

These cycles had a great impact on the fauna of the region, and mammal species that 

occur in the archipelago today may be a mixture of neoendemics drawn from both 

Beringia and southern North America and paleoendemics that persisted in refugia 

through the last glacial maximum (Cook et al. in press). Flying squirrels are probable 

post-glacial colonizers of the archipelago; despite the numerous hypotheses concerning 

glacial refugia in Southeast Alaska (Worley & Jaques 1973; Heusser 1989; Heaton et al. 

1996), no concrete evidence exists for the presence of forested refugia spanning the 

glacial maximum. Cytochrome b sequences show less than 3% divergence among 

animals from Maine to Alaska (Arbogast 1999), suggesting rapid post-glacial 

colonization across northern North America and into Southeast Alaska.

Colonization ability has primarily structured the distribution of mammals over the 

archipelago (Conroy et al. 1999) and new species appear to be colonizing islands of the 

archipelago (e.g., Felis concolor, Alces alces\ MacDonald & Cook 1996). Flying 

squirrels are known from only 15 islands in the southern portion of the archipelago



28

(Figure 2), suggesting they may not be adept over-water dispersers. Our molecular data 

indicates that limited over-water dispersal ability and isolation on islands has shaped the 

genetic diversity of flying squirrel populations in Southeast Alaska.

POW Complex

The microsatellite distinctiveness of POW complex populations from other 

squirrels in Southeast Alaska coincides with the distinct mitochondrial haplotype present 

only on these islands, originally described by Demboski et al. (1998a) and further 

characterized by Bidlack & Cook (submitted). The POW clade apparently corresponds to 

the original subspecific designation of G. s. griseifrons (Howell 1934), which was based 

on the pelage coloration of two specimens from Prince of Wales Island. Congruence of 

mitochondrial and nuclear data suggests that the extremely low level of genetic diversity 

on these islands is not the result of either a selective sweep of the mitochondrial genome 

or lineage sorting of the mitochondrial haplotypes.

The agreement of the nuclear with the mitochondrial data also eliminates the 

possibility that this pattern of differentiation is an artifact of sex biased gene flow. Based 

on mitochondrial sequencing, Talbot & Shields (1996) reported an ancient lineage of 

brown bears ( Ursusarctos) present on Admiralty, Baranof, and Chichagof islands of the 

Alexander Archipelago. They suggested that these bears had been isolated from the 

mainland for 550,000 - 700,000 years, and used this as support for a possible glacial 

refugium in Southeast Alaska. Paetkau et al. (1998) examined microsatellite variation in 

brown bears throughout Alaska and found that bears on these islands were not distinct 

from those of the mainland, nor did they cluster together as a genetically separate group. 

These authors suggested that the mitochondrial results did not reflect the current level of 

gene flow among the bears of Southeast Alaska, and that this was probably due to male- 

mediated gene flow undetectable using mtDNA alone. In contrast, our nuclear and 

mtDNA data for flying squirrels indicate the POW complex has been isolated from the 

mainland populations, with apparently no recent gene flow between them.
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All six POW complex populations are highly related. Pairwise 0 values are low 

(less than 0.15), indicating low to moderate levels of differentiation between populations 

(Table 6). Populations most closely related (according to pairwise 0 values) are from El 

Capitan, Tuxekan, and Heceta islands and Naukati Bay on Prince of Wales Island. Polk 

Inlet and Naukati Bay are also closely related and, though 67 km apart, are both located 

on Prince of Wales Island. This may indicate substantial levels of gene flow across this 

island. Both males and females are promiscuous, and males travel long distances during 

the breeding season in the Pacific Northwest (Wilson 2000). Across all population pairs 

few loci have significant differences in allele frequencies. The two islands that differ 

most using these indices are Suemez and Heceta (Table 6), although the results from 

GeneClass (Table 7) and the pattern seen in the Das phenogram (Figure 5) suggest that 

these islands are still highly associated with the others of the POW complex.

What could account for the extremely low level of mtDNA diversity on these 

islands, as well as the distinct microsatellite signature? The assumed low over-water 

dispersal capability of flying squirrels and the wide straits separating POW from 

nearshore islands and the mainland suggest that the POW population is the result of a 

single founder event. The fact that all squirrels from eleven islands share a distinct 

mitochondrial haplotype, with only one additional base pair change in one individual 

(Bidlack & Cook submitted), suggests a severe bottleneck in the POW population after 

the POW haplotype was established. The outer islands are not differentiated in 

microsatellite allele frequencies from POW itself, indicating that these islands may have 

been recently colonized. There is no way of conclusively determining if the squirrels of 

the outer islands are the result of recent colonizations, or if there is current gene flow 

among all the islands of the POW complex. The lowest pairwise 0 value is 0.003 

between the Naukati Bay and Tuxekan Island populations, which are separated by an 

oceanic strait less than 100 m wide. This strait freezes over in some winters and marten 

have been seen crossing the ice (S. McCoy pers.comm.), but it is not known if flying 

squirrels will cross open ice as well. We did not analyze gene flow (estimated Nm)
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between populations because of the potential problems associated with estimating gene 

flow from estimates of Fst (0) using small numbers of loci and individuals (Whitlock & 

McCauley 1999).

Our data, combined with that of Demboski et al. (1998a) and Bidlack & Cook 

(submitted), indicate that the POW complex lineage is isolated from the mainland and is 

diverging genetically from those populations. This clade may be on a separate 

evolutionary path and may represent an example of incipient speciation.

Levels o f Genetic Diversity on Islands

Island populations have been extensively compared against mainland populations 

for differences in genetic diversity and level of inbreeding. Most studies of allozymes 

and DNA variation have found that island taxa have fewer alleles, lower heterozygosity, 

lower sequence diversity, fewer polymorphic alleles and a higher level of inbreeding than 

mainland taxa (e.g., Kilpatrick 1981; Gilbert et al. 1990; Lade et al. 1996; Estoup et al. 

1996; Frankham 1997, 1998; Eldridge et al. 1999). Reduced genetic diversity in insular 

populations is generally attributed to an original founder event, which reduces the 

number of alleles coming from the source population, and subsequent bottleneck effects, 

caused by stochastic population fluctuations affecting small populations. Insular 

populations of flying squirrels along the north Pacific coast are consistent with other 

observations of lower genetic diversity in island populations, with fewer microsatellite 

alleles, fewer polymorphic alleles, and lower heterozygosity. Mitkof Island has a 

particularly striking lack of diversity, with two monomorphic loci and an observed 

heterozygosity of 0.128 (Table 5; Figure 4).

Mitkof Island

The population from Mitkof Island possesses little microsatellite variation 

compared with the other island populations we examined, and this low genetic diversity 

suggests a recent bottleneck or a series of bottlenecks following an older founder event.
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All alleles found in the Mitkof Island population are found in the Southeast mainland 

population we studied (Helm Bay), except for the FS2-113 allele (Table 5) found in three 

individuals. Alleles for two loci are fixed, and two other loci show lower allelic diversity 

than in other populations. The Mitkof Island population is monophyletic and is allied 

with individuals from Helm Bay and Interior Alaska (Figure 5); however, this population 

is well differentiated (Figure 6) with pairwise 0 values between Mitkof Island and other 

populations being relatively high, ranging from 0.604 to 0.702. Likewise, all six loci 

show significant differences in allele frequencies from other populations (Table 6).

Bidlack & Cook (submitted) found no mitochondrial variation (1590 base pairs) in five 

individuals sequenced from this island, although unlike squirrels from the POW complex, 

the Mitkof Island haplotype was shared with mainland populations. Reduced 

microsatellite diversity and the shared mitochondrial haplotype with the mainland suggest 

a recent founder event. In contrast, the fixation of two microsatellite loci, the presence of 

a unique microsatellite allele, and significant allelic divergence from Helm Bay indicate 

an older event. Our Southeast Alaska mainland sampling is limited and the comparison 

of the Mitkof Island population with that of Helm Bay may not be valid. However, 

nuclear and mitochondrial data from all nine populations suggests that the colonization of 

Mitkof Island is probably more recent than the founding of the POW population.

Conservation Implications

Over 80% of the Alexander Archipelago is contained within the bounds of the 

Tongass National Forest. In the past fifty years this region has experienced intense 

anthropogenic disturbance, mainly in the form of logging and associated road-building 

activities. Up to 46% of the original old-growth forest has been cut from some islands, 

and further cuts are proposed that may impact forest-associated species (United States 

Department of Agriculture 2000). Until recently, there was little recognition of the 

potential impacts these activities may have on mammals of the region, especially on those 

primarily associated with old-growth forest. Additionally, very little inventory work had
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been conducted across the archipelago to document species distributions. However, the 

new 10-year forest plan (USDA 1997) mandates the management and conservation of 

endemic taxa. Recently, G. 5. griseifrons was listed by the IUCN as endangered, based 

on the projected rate of logging and the lack of significant areas of protected old-growth 

habitat within its limited range (Demboski et al. 1998b).

Our molecular data suggest that squirrels of the POW complex fit the definition of 

an evolutionarily significant unit (ESU; Ryder 1986), or a population (or set of 

populations) that has been historically (and reproductively) isolated from other such 

populations. An ESU is a lineage with distinct evolutionary potential, and reciprocal 

mitochondrial monophyly and significant allelic divergence at nuclear loci have been 

listed as criteria for determining ESU status (Waples 1991; Moritz 1994). The base pair 

changes seen in the mitochondrial sequences (Demboski et al. 1998; Bidlack & Cook 

submitted), unique microsatellite alleles, and changed microsatellite frequencies in the 

POW complex indicate past and continuing differentiation from mainland populations.

Island species apparently are more prone to extinction than their mainland 

counterparts (Diamond 1989), with nearly 80% of vertebrate extinctions since 1600 being 

island taxa (Reid & Miller 1989). Many island extinctions can be traced to the 

interaction of extrinsic factors (e.g., introduction of novel predators, overhunting, loss of 

habitat, and disease) with intrinsic factors such as small population size (Quammen 

1996). However, the role that a lack of genetic variation plays in extinction probabilities 

may be substantial (Newman & Pilson 1997; Frankham 1997; Saccheri et al. 1998). All 

individuals from the POW complex share a common mitochondrial haplotype, and 

populations from these islands have lower heterozygosities than mainland populations for 

the six nuclear loci we examined. The increased risk of extinction on islands, combined 

with the low level of genetic variability in this subspecies and further habitat disturbance 

due to logging activities, may result in the loss of this evolutionarily distinct lineage.

The Prince of Wales flying squirrel has a distinctive history of colonization and 

isolation from other northern flying squirrels in Southeast Alaska. Our study provides a



33

preliminary account of the genetic diversity within and among island populations. Future 

work should focus on categorizing populations from more islands in the POW complex 

and from mainland British Columbia and Southeast Alaska to shed light on the origins of 

the POW complex populations. Patterns of population differentiation should be 

monitored to assess the impacts of habitat fragmentation and modification. Such a 

framework would provide managers with information on unique island populations that 

could be incorporated into the planning process for proposed timber harvests. Levels of 

variation of flying squirrel populations from other islands in the archipelago such as 

Revillagigedo, Wrangell, and Etolin islands should also be assessed, given the 

pronounced signal of a founder event on Mitkof Island. The characterization of a unique 

island lineage of flying squirrels in Southeast Alaska emphasizes the need for research 

into the population structure and genetic diversity of other old-growth associated 

endemics along the north Pacific coast. Patterns of endemism may emerge that current 

land use plans in Southeast Alaska do not adequately address.
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Figure 2. Maps of Southeast Alaska. Detailed map (left) includes sample localities 
(underlined) except for Interior Alaska; darker shaded area is distributional extent of s. 
griseifrons (POW Complex). Larger map (right) shows distribution of northern flying 
squirrels in the Alexander Archipelago and British Columbia (shaded); inset map shows 
range of G. sabrinus.
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Figure 5. Phenogram based on shared allele distances (D J  among individuals.
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Figure 6. Unrooted neighbor-joining tree of Nei’s (1972) Ds between populations 
superimposed on a map of Southeast Alaska. Numbers indicate bootstrap support (% 
out of 1000 replicates) of closest node.
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Table 3. Microsatellite loci, repeat type, primer sequences, size range and number of 
alleles.

Locus Repeat type Primers Size range in bp Number of alleles
GS1 GT F: GCTGCCC1CATITIATCCCC 

R: GCTTCGTGTGTATATGTGTGTGTG

93-99 4

GS2 GT F: AACATTCTCGCCACATCTAA 

R: CTACACCCCCAGCCCTACAA

101-113 7

GS8 GT F: ATGCCATCTCCCCTCTC 

R: GCTGTGCTTCCAACCTGT

214-222 5

GS10 GT F: CTATGCTGAGGAGGAGTGGTG 

R: CGTTTATGTGAAGAGCCTTG

191-201 4

GS12 GT F: GTCTCTTGAGTTAGGTGCCC 

R: CCTTTCTTCTCTCCTCCCC

104-116 7

FLS6 CCCT F: TCGGACCTCTTGTTCGTCACC 

R: CAGCTTCCCATGGCCAAGGC

152-196 12
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Table 4. Descriptive statistics. Islands in boldface are part of POW Complex. Number 
of alleles per locus (A), proportion of polymorphic loci (%P), expected heterozygosity 
under Hardy-Weinberg equilibrium (He), observed heterozygosity (H0) averaged over six 
loci.

Population A %P Hef H0t+

Polk Inlet (POW I.) 3.167 100 0.355 0.320

Naukati (POW I.) 3.000 100 0.426 0.386

Suemez I. 3.000 83.3 0.278 0.286

El Capitan I. 3.667 100 0.417 0.444

Heceta I. 3.500 100 0.410 0.326

Tuxekan I. 3.167 100 0.391 0.383

Mitkof I. 1.833 66.7 0.247 0.128*

Helm Bay 4.667 100 0.624 0.644

Interior Alaska (Fairbanks) 4.5 100 0.595 0.580

fHeof mainland populations significantly higher than island populations a tP  = 0.001. 
nH0 of mainland populations significantly higher than island populations at <0.001.
* H0 of Mitkof Island significantly lower than all island populations except Suemez.
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Table 5. Microsatellite allele frequencies. Table shows locus sizes in base pairs (first 
column) and number of individuals examined at each locus in each population.

Locus

Population 
Polk Naukati Suemez El Cap Heceta Tuxekan Mitkof Helm Int. AK

FS1 21 28 28 24 23 30 17 31 29

93 0.024 0.000 0.018 0.000 0.022 0.000 0.588 0.484 0.517

95 0.048 0.107 0.000 0.083 0.130 0.050 0.000 0.048 0.121

97 0.928 0.893 0.982 0.917 0.826 0.950 0.412 0.468 0.362

99 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000

FS2 20 30 27 24 23 30 13 29 29

101 0.100 0.183 0.185 0.125 0.000 0.100 0.654 0.138 0.948

103 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.052

105 0.000 0.000 0.019 0.021 0.022 0.000 0.000 0.034 0.000

107 0.825 0.734 0.555 0.770 0.891 0.833 0.000 0.638 0.000

109 0.075 0.083 0.241 0.063 0.087 0.067 0.000 0.121 0.000

111 0.000 0.000 0.000 0.021 0.000 0.000 0.231 0.069 0.000

113 0.000 0.000 0.000 0.000 0.000 0.000 0.115 0.000 0.000

FS8 21 30 27 24 23 30 16 31 29

214 0.429 0.317 0.130 0.188 0.152 0.200 0.000 0.145 0.190

216 0.000 0.000 0.000 0.000 0.000 0.000 0.938 0.419 0.000

218 0.500 0.566 0.851 0.604 0.761 0.533 0.062 0.259 0.379

220 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.145 0.345

222 0.071 0.117 0.019 0.208 0.087 0.267 0.000 0.032 0.086
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Table 5. (cont.)

Locus

Population 
Polk Naukati Suemez El Cap Heceta Tuxekan Mitkof Helm Int. AK

FS10 21 29 27 24 23 30 17 29 29

191 0.786 0.672 0.907 0.521 0.696 0.583 0.000 0.690 0.569

193 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.310 0.397

195 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034

201 0.214 0.328 0.093 0.479 0.304 0.417 0.000 0.000 0.000

FS12 21 30 28 24 23 30 17 30 29

104 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.167 0.259

106 0.024 0.083 0.000 0.104 0.087 0.050 1.000 0.367 0.052

108 0.976 0.917 1.000 0.896 0.674 0.950 0.000 0.466 0.310

110 0.000 0.000 0.000 0.000 0.217 0.000 0.000 0.000 0.034

112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.138

114 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.190

116 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017

FLS6 21 29 28 24 23 30 17 31 29

152 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.138

156 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.121

160 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.190

164 0.000 0.000 0.000 0.000 0.000 0.000 0.794 0.016 0.276

168 0.024 0.207 0.054 0.083 0.109 0.183 0.000 0.048 0.103

172 0.048 0.000 0.000 0.042 0.000 0.000 0.000 0.258 0.069

176 0.262 0.138 0.214 0.063 0.326 0.267 0.206 0.210 0.086

180 0.214 0.121 0.054 0.021 0.022 0.067 0.000 0.194 0.017

184 0.000 0.017 0.000 0.063 0.000 0.017 0.000 0.145 0.000

188 0.024 0.103 0.018 0.125 0.022 0.067 0.000 0.048 0.000

192 0.428 0.414 0.606 0.540 0.521 0.382 0.000 0.017 0.000

196 0.000 0.000 0.054 0.063 0.000 0.017 0.000 0.032 0.000
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Table 6. Pairwise measures of microsatellite differentiation. Above diagonal: analog of 
Fst (0; Weir & Cockerham 1984) across all loci; values not significantly different from 
zero in bold face ( P< 0.01). Below diagonal: number of loci (out of six) with significant 
differences in allele frequency distributions; all pairwise comparisons were adjusted by a 
sequential Bonferroni correction (P < 0.0014).

1 2 3 4 5 6 7 8 9
1. Polk Inlet (POW) - 0.007 0.084 0.052 0.056 0.029 0.661 0.193 0.355

2. Naukati (POW) 0 - 0.072 0.007 0.038 0.003 0.604 0.187 0.319

3. Suemez I. 1 2 - 0.106 0.093 0.111 0.702 0.269 0.384

4. El Capitan I. 1 0 2 - 0.042 0.006 0.618 0.212 0.345

5. Heceta I. 1 1 2 2 - 0.041 0.628 0.194 0.350

6. Tuxekan I. 0 0 2 0 1 - 0.630 0.212 0.360

7. Mitkof I. 6 6 6 6 6 6 - 0.357 0.375

8. Helm Bay 5 5 5 5 5 5 5 - 0.185

9. Interior Alaska 6 6 6 6 6 6 5 4 _
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Table 7. Results from GeneClass program; number of individuals assigned to particular 
populations. Rows do not add up to number of specimens examined per population 
because some animals were assigned to more than one population, or assigned to none.

1 2 3 4 5 6 7 8 9
1. Polk Inlet POW) 2 6 1 3 1 4 0 4 0

2. Naukati (POW) 5 11 0 7 2 7 0 0 1

3. Suemez I. 2 12 8 3 5 1 0 0 0

4. El Capitan I. 0 4 1 15 0 3 0 1 0

5. Heceta I. 1 4 0 6 8 1 0 1 0

6. Tuxekan I. 0 6 1 8 6 8 0 0 0

7. Mitkof I. 0 0 0 0 0 0 14 1 0

8. Helm Bay 0 0 0 0 0 0 0 28 0

9. Interior Alaska 0 0 0 0 0 0 0 0 28
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CONCLUSIONS

Research concerning mammals on nearshore oceanic archipelagos may provide 

insight into evolution on islands, metapopulation dynamics, founder effects and incipient 

speciation. This research provides a preliminary assessment of genetic variation in 

northern flying squirrels ( Glaucomys sabrinus) in Southeast Alaska. Mitochondrial 

sequences identify an distinct island lineage on Prince of Wales Island and 10 islands to 

the west (Chapter 1). This lineage coincides with the subspecific designation (G. s. 

griseifrons) originally based on morphology (Howell, 1934). Given the reciprocal 

mitochondrial monophyly of mainland and nearshore populations and POW complex 

populations, it is unlikely that there has been recent gene flow across the straits that 

separate these clades. The glacial history of Southeast Alaska and the level of divergence 

in the mitochondrial DNA suggests that the POW complex is the result of a founder event 

after the retreat of the Cordilleran ice sheet (-13,000 BP).

Microsatellite variation in nine populations in Southeast Alaska is investigated in 

Chapter 2. The data, like that from the mitochondrial sequences, indicate that POW 

complex populations are isolated from those of the mainland and nearshore islands. This 

suggests that the genetic signal we see in the mitochondrial DNA is not due to sex-biased 

gene flow, a selective sweep of the mitochondrial genome, or lineage sorting. 

Microsatellite allele frequencies also suggest the POW complex populations are closely 

related to each other. The mtDNA data shows that all individuals but one from the POW 

complex are identical for 1590 base pairs. This, combined with our microsatellite data, 

suggests a distant founder event to Prince of Wales Island, a severe population bottleneck 

(or bottlenecks), and subsequent colonization of the outer islands.

The POW complex is distinct and probably isolated from other populations in 

Southeast Alaska. The criteria for identifying an Evolutionarily Significant Unit (ESU) 

include reciprocal mitochondrial monophyly and significant nuclear allelic divergence 

(Moritz, 1994). This insular clade of flying squirrels qualifies as an ESU according to
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these criteria, and may be on a separate evolutionary path. Documenting intraspecific 

diversity across nearshore archipelagos may be particularly valuable when these areas are 

affected by large scale anthropogenic disturbances. Northern flying squirrels are 

associated with old-growth forest in the Pacific Northwest (Carey, 1996), but the 

Alexander Archipelago has been highly impacted by timber harvesting activities over the 

past 50 years (Durbin, 1999). The characterization of the POW complex may impact the 

planning of future timber harvests on islands of the archipelago, as further habitat 

disturbance and increased risk of extinction on islands (Diamond, 1989) may result in the 

loss of this evolutionarily distinct lineage.
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