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Abstract
Proper design of foams requires an understanding of the response of the ma­

terials to stress. This thesis, based on finite element analysis, provides numerical 
solutions in modeling the yield behavior of Kelvin foams.

The FEA model, representing a complicated unit cell, was calculated and 
meshed. C ++ programs were designed and implemented to generate meshes 
for unit cells. Finite element analyses were performed for many cases. Multiple 
methods were employed for the determination of yield points which form yield 
surfaces. Comparisons between several results have been made. Our FEA 
results, Zhang’s function and Gibson’s theory show good agreements except 
some differences under hydrostatic loading. A conclusion can be made: besides 
the void fraction and the yield strength of the wall material, the structure of 
foams also has a significant effect on the yield behavior of foams. Yield surfaces 
normalized by the uniaxial tensile strength of foams are more reasonable.
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Chapter 1

Introduction
Materials with a porous structure are increasingly used in engineering applica­
tions. Aluminum, paper and polymeric honeycombs and foams are used as cores 
for high-performance sandwich panels; plastic and metal foams absorb energy 
in packaging and safety padding; and natural cellular materials — particularly 
woods — are widely used in structures (Gibson, 1989). A proper design requires 
the knowledge of the response of these materials to multiaxial states of stress.

Porous structures are usually made of repetitive, representative micro-units 
called unit cells. There are two kinds of microstructures for porous structures: 
closed cells and open cells. We distinguish foams, which have three-dimensional, 
polyhedral cells from honeycombs, with their two-dimensional, prismatic cells.

The yield behavior of the closed cell structure has been widely studied (Tver- 
gaad, 1990), which is greatly facilitated by the development of the so called 
Gurson’s model (Gurson, 1977). Based on a single unit cell that statistically
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represents an aggregate of voids and matrix, Gurson derived an approximate 
yield criterion of void containing (cellular material) metals using a simple rigid- 
plastic material model and the upper bound theorem of plasticity. In Gurson’s 
model, the yielding of the matrix of the unit cell is described by the von Mises 
yield criterion and the plastic dilatation of the porous material is solely due to 
the presence of void and its growth. Later studies by Lee and Oung (2000) and 
Jeong (1995) contributed further to the development of more general yield sur­
faces, characterizing the pressure-dependency of the materials. Lee and Oung 
studied the influence of the pressure-dependency of the matrix of a unit cell 
on the yield criteria and the related flow rules of a class of glassy polymers. 
In their model, the yielding of the matrix obeys the modified von Mises yield 
criterion (Raghava et ah, 1973) and the plastic dilatation of the glassy poly­
mers is the result of both the void growth and the pressure-dependency of the 
matrix. Because of the complicated geometry, the modeling of the linear elas­
tic behavior of open cell structures such as foams, and the failure studies of 
the open cell structure are still in their infancy. An examination of the yield 
behavior of the open cell materials under multiaxial loads was carried out by 
extending, using dimensional arguments, the analysis for honeycombs (Gibson 
et ah, 1989). Honeycombs are always anisotropic, while open cell materials 
can be isotropic or anisotropic depending on the strut (the component of the 
unit cell) orientations in the materials. In Gibson’s model, the open unit cell 
was simplified as a three dimensional frame structure. A yield function was
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obtained approximately by analyzing the development of the plastic hinges in 
the honeycomb (two dimensional unit cell) first and then extended to the three 
dimensional frame (foams). The extension of the yield behavior of honeycombs 
by Ashby and Gibson may not be applicable to some open cell microstructures 
such as the ones discussed later in the current thesis. Contrast to yielding, an­
other competing failure mechanism of the open cell materials is buckling, which 
is related to the bending stiffness and the orientation of each strut composing 
the unit cell frame. Gibson’s (1989) four strut mode is a good starting point 
to observe the buckling behavior of the open cell materials but not necessary 
a sophisticated model to describe the failure surface. Recently, Deshpande and 
Fleck (2001) have done research on the multiaxial yield behavior of ploymer 
foams theoretically and experimentally.

“In real engineering design, the stress state is often a complex one. Only lim­
ited experimental data exist on the multiaxial deformation of polymeric foams. 
The presence of experimental scatter and the paucity of tensile loading states 
in studies have made it very difficult to establish unambiguously the shape of 
the yield surfaces” (Deshpande 2001). With the development of computer tech­
nology, the numerical method, finite element method, has become widely used 
in recent years. Compared to experimental method, the numerical method may 
be less costly, more suitable and practical for very complicated geometry and 
boundary conditions.

In this thesis, a well-known porous structure -  open-cell Kelvin foam is used.
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A representative unit cell is chosen for the analysis, and geometrical calculations 
for the very complicated unit cell have been done. Due to the complex geometry 
of the unit cell and a great amount of meshing needed for the analysis, C++ 
programs for generating unit cell meshes were designed and implemented. They 
greatly simplified the meshing of the unit cell and can be reused for other unit 
cells in future studies. Finite element analyses for many cases (different void 
fractions and different loads) were performed and many numerical results were 
acquired. And finally, comparisons between numerical simulation and some 
existing analytical results were conducted. Most of the analytical and numerical 
calculations for geometries were done by using Mathematica. The commercial 
finite element code ABAQUS (Hibbit, Karlsson & Sorensen Inc., 1999), which is 
available at the Arctic Region Supercomputing Center, was used in this study.



Chapter 2 

Unit Cell of Open Foams Using the 
Kelvin Model

2.1 Open foams using the Kelvin model
In this thesis, we consider a perfectly ordered foam whose geometry is based 
on the regular tetrakaidecahedron shown in Figure 2.1. We refer this ideal­
ized structure as an open-cell Kelvin foam following the classic work on soap 
froth geometry (Thomson, 1887). The Kelvin cell is the only polyhedral bubble 
known that fills space form a dry soap foam (one that contains very little 
liquid) with perfect order; i.e., all cells have identical shape and orientation, 
only their positions differ. Other polyhedra that fill space, such as cubes, do 
not satisfy the minimal energy conditions embodied in Plateau’s laws (Plateau, 
1873). The basic model consists of 36 struts which construct flat faced 14-hedra

5
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Figure 2.1: A 14-hedra of the flat faced Kelvin BBC foam

(tetrakaidecahedra), six squares and eight hexagons. These 14-hedra pack in a 
body-centered cubic (BCC) arrangement. All 14-hedra have the same size with 
cubic symmetry. The stiffness of the resulting cellular solid has cubic symme­
try. Figure 2.2 shows a projection in one of the three axial directions. All three 
projections from three axial directions are identical.

2.1.1 Unit cell for foams using the Kelvin model
2.1.1.1 U nit cell

A unite cell is a repetitive, representative unit that makes up the microstructure. 
The foam using the Kelvin model can be further considered to be made of smaller 
unit cells. The unit cell is composed of 12 half-lengthed and 6 complete struts. 
Figure 2.3 shows a typical cubic unit cell including the struts and the void.
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Figure 2.2: The projection of the 14-hedra of the Kelvin BCC foam

Generally, the void fraction (/) is used to characterize a unit cell. It is 
defined as the volume of the void divided by the volume of the entire unit cell 
and is related to the relative density (<f>) of the unit cell,

0 = 1  -  / ,  (2.1) 

such that (j) =  1.0 for solid matrices and </> =  0.0 for void matrices.

2.1.1.2 Calculations of coordinates of end points of struts
Figure 2.4 shows struts of the unit cell and some imaginary lines for calculation. 
The angle between the plane MNOPQR and the plane which includes line AM 
and line MR is a. Suppose the length of one strut is 1,

|  =  arcsin(^);
A S = %  S T =  %



8

Figure 2.3: The unit cell for foams using Kelvin model

a = 2 arcsin( AS/ST) = 2arcsin(-y|) = 109.471°;
x A = ̂  ^  cos a; yA =  \  + \ \  zA = ̂  sin a;

-  x C0SQ;; vf =  ^f =  x s in a ;
x# = xf cos 120° — i/p sin 120°; y E = Xp\  

xc =  x A cos 120° - yA sin 120°; yc =  x A sin 120° + yA cos a; ^sin a;

x D = x Fcos 240° -  yFsin 240°; yD = x Fsin 240° + cos 240°; zF  ^sina; 

x E =  x A cos 240° - yA sin 240°; yE = x A sin 240° + yA cos 240°; =  ̂  sin a;

x G = x F  cos(-60°) — yF sin(— 60°); yG =  x F sin(— 60°) + yF  cos(— 60°);
zG = — ̂  sin a;

x h  =  x F  cos 60° - yF sin 60°; yH =  x F  sin 60° + yF  cos 60°; = ̂  sin a;

X/ =  x A cos 60° — yA sin 60°; y/ =  x A sin 60° +  yA cos 60°; ^ s i n  a;
x j  =  XFCOsl80o-t/FSinl80°; y j =  x Fsin 180°+yF cos 180°; z j  = - ^ s i n a ;
x k  ~  x Acos 180°— sin 180°; yK =  x Asin 1 8 0 ° cos 180°; zK =  - ^ s i n a ;
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Figure 2.4: Outline of a unit cell with struts and some imaginary lines
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x L =  XFCOs300°-yFsin300°; yL = xF sin300o+yF cos300°; zL — - ^ s i n a .  
We get the coordinates of the above 12 points:
,4(1.0104, 0.75, 0.40830), £(0.1443, 1.250, 0.4083), C(-1.1547, 0.50, 0.4083), 
£(-1.1547, -0.50, 0.4083), £(0.1443, -1.2531, 0.408), £(1.0104, -0.75, 0.4083), 
G(1.1547, -0.50, -0.4083), £(1.1547, 0.50, -0.4083), /(-0.1443,1.250, -0.4083), 
J(-1.0104, 0.75, -0.4083), £(-1.0104, -0.75, -0.4083), £(-0.1443, -1.250, -

0.408).
x m  2 5 U m  " 2 ' x m  0.0, 

x q  = 0 \VQ= -1 ; ZQ =  0.
The vector M A may be represented as:

m A =  [mai,ma2,ma3\ =  [xA - x M,y A- y M,zA-  =  [ - ^ c o s a ,  ±, ^ s i n a ] .
The vector may be represented as:

=  [mqx,mq2, mq3] =  [xQ -  x M, yA ~ Vm , z a -  zM\ =  [ - ^ ,  - § ,  0].
Therefore, the angle P between M A  and M(A is:

cos /3 = max ■ mqx +  ma2 ■ +  ma3 ■ mq3

\Jma\ + ma2 + ma\ ■ +  mgf +
P =  125.264°,
P i =  180 -  p =64.736°.

(2 .2)



2.1.1.3 Calculations of coordinates of eight vertices of the cubic unit 
cell in the specific axial system

A plane in 3-D space is described as Ax + B y  +  0. All the six planes
of the unit cell are represented as following:

Plane I'. A\X +  B\y -|- C\z -I-1 = 0, 
which is through points A and B, and is perpendicular to plane I I  and plane 

I I I  (to be discussed soon).
Plane I I ' .  A2X +  B 2I1 +  C2Z + 1  = 0, 
which is through points C and D, and is perpendicular to plane I  and plane 

I I I .

Plane I I I ' .  A$x + B^y +  C^z + 1 =  0,
which is through points E and F, and is perpendicular to plane I  and plane

I I .

Plane IV '. A2X +  B 2y + C2Z +  = 0,
which is through point G and H, and is parallel to plane I I .

Plane V : A$x +  B%y + C$z +  D§ — 0,
which is through point I and J, and is parallel to plane I I I .

Plane VI\ Plane one: A ix  +  B iy  +  C\Z +  D6 = 0, 
which is through points K and L, and is parallel to plane I .

Substitute the coordinates of points A, B, C, D, E, F, G, H, I, J, K and 
L into the foregoing equations and use the geometrical relationships (parallel 
and perpendicular), we get the coordinates of 8 vertices of the cubic unit cell

11



(assume the length of an entire strut is 1):
Vertex 1(0, 0, 2.41424), Vertex 2(1.9245, 0, 0.680414), Vertex 3(0.96225, 

1.66667, -0.680414), Vertex 4(-0.96225, 1.66667, 0.680414), Vertex 5(-0.96225, 
-1.66667, 0.680411), Vertex 6(0.96225, -1.66667, -0.680414), Vertex 7(0, 0, - 
2.041424), Vertex 8(-1.9245, 0, -0.680414).

And the size of the cubic unit cell is 2.589107.
In Figure 2.3, if the length of an entire strut is 1, then the size of the cubic is 

2.589107. If we assume that the size of the cubic unit cell is 1, then the length 
of an entire strut is 0.38623. A Mathematica program is written to obtain these 
results.

12



Chapter 3

Unit Cell Meshing

3.1 Geometrical characteristics of the unit cell
3.1.1 Component of the unit cell
The unit cell is very complicated. However, we can further divide it into six U 
frames. In other words, we can construct six U frames and then assemble them 
together for getting a unit cell. Figure 3.1 shows the two-dimensional profile of 
a U frame of the unit cell.

3.1.2 The meshing of a unit cell
To see whether different meshes influence the numerical results significantly, we 
adopted two meshes different not only in the number of elements but also in 
the combination of elements. One has 168 elements (60 6-node element and

13



14

108 8-node elements), the other has 264 elements (60 6-node elements and 204 
8-node elements). Figure 3.1 shows one way to mesh a U frame. Comparisons 
between the numerical results from the two distinct meshing ways will be done 
later.

3.2 CH—|- codes for generating meshes
Constructing meshes is a very important but time consuming step in the finite 
element analysis. Different meshes could affect the time needed for doing the 
analysis and sometimes it could determine whether the simulation will be suc­
cessful or not. For models that are not complicated, manual meshing or using 
a preprocessing package such as Computer Aided Engineering (CAE) software 
can be adequate. But the unit cell studied here is a very complicated one, as we 
need to perform analyses on the unit cells with various void fractions. Therefore, 
automatic mesh generation using computer programs is necessary to generate 
meshes very conveniently and efficiently. Most importantly, good design and 
implementation of codes can make them easily reused in future FEA studies. 
Three C ++ classes were designed and implemented for the generation of the 
meshes. They are the node class, the element class, and the u_frame class. 
Their interfaces are described in the following:

class node 

{
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1 3  5 7

Figure 3.1: A mesh strategy of a U frame
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public:

node( ); //constructor

node(int n); //constructor, n is the node number

void set_number(int n);

void set_xcoor(float x);

void set_ycoor(float y);

void set_zcoor(float z);

int get_number( );

float get_xcoor( );

float get_ycoor( );

float get_zcoor( );

private:

int number; //node number

float xcoor, ycoor, zcoor; //node coordinates 

>;
class element 

{
public:

element( ); //constructor

element(int n); //constructor, n is the element number 

set_number(int n); 

set_node(int i, int n);
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get_number( ); 

int get_node(int j); 

private: 

int number;

int nodel, node2, node3, node4, node5, node6, node7, node8;

>;
class u_frame 

{
public:

u_frame( ); //constructor

u_frame( ); //constructor

void set_length_size(float 1, float s); //set length & size 

int node_number(int i); //get node number

float node_coor(int n, int i); //get node coordinates 

int element_number(int i); //get the element number

int element_node(int n, int i); //get element information

void disp_x(float dx); //displacement in x direction

//displacement in y direction 

//displacement in z direction 

//rotation with respect to x axis

//rotation with respect to y axis

//rotation with respect to z axis

void disp.y(float dy); 

void disp.z(float dz); 

void rotate_x(float rx) 

void rotate_y(float ry) 

void rotate_z(float tz)
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private:

float length; //length of an entire strut

float size: //size of the cross section of the struts

node u.node[NODENUMBER];

element u_element[ELEMENTNUMBER];

void calculate_coor( ); //calculate coordinate of nodes 

void build_elements( ); //build elements usingusing nodes

};

A whole unit cell consists of six U frames. We need to put six meshed U frames 
together to get the mesh of an entire unit cell. Therefore, extra work must 
be done such as rearranging all the node and element numbers and deleting 
redundant nodes. A few functions are designed to deal with these problems to 
accomplish the following tasks:

1. Make the node number continuous;

2. Get rid of the redundant nodes;

3. Update the element information based on the above node changes;

4. Set the boundary for the unit cell.

Figure 3.2 is the flow chart for generating FEA meshes used by ABAQUS.



Figure 3.2: Flow chart of mesh construction



3.3 Unit cell meshes generated by C + +  codes
Figure 3.3 to Figure 3.10 are the meshes generated by the C ++ programs for 
the unit cells with /  = 0.55, /  = 0.60, /  =  0.65, /  =  0.70, /  =  0.75, /  = 0.80, 
/  =  0.84, and /  =  0.90, respectively, each with 168 elements. Figure 3.11 to 
Figure 3.13 show another version of meshes generated for the unit cells with 
/  =  0.80, /  =  0.84, and /  =  0.90, each with 264 elements.

20



Figure 3.3: The mesh of the unit cell with /  =  0.55 and 168 elements
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Figure 3.4: The mesh of the unit cell with /  =  0.60 and 168 elements



Figure 3.5: The mesh of the unit cell with /  =  0.65 and 168 elements



Figure 3.6: The mesh of the unit cell with /  =  0.70 and 168 elements



Figure 3.7: The mesh of the unit cell with /  =  0.75 and 168 elements



Figure 3.8: The mesh of the unit cell with /  =  0.80 and 168 elements
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Figure 3.9: The mesh of the unit cell with /  =  0.84 and 168 elements



Figure 3.10: The mesh of the unit cell with /  =  0.90 and 168 elements



Figure 3.11: The mesh of the unit cell with /  = 0.80 and 264 elements



Figure 3.12: The mesh of the unit cell with /  =  0.84 and 264 elements



Figure 3.13: The mesh of the unit cell with /  = 0.90 and 264 elements



Chapter 4

Numerical Solutions

4.1 Boundary conditions and material properties
4.1.1 M aterial properties
In the studies of the unit cell, the fundamental material properties needed are 
those of the solid material (the matrix) that make up the porous materials. 
Although the macroscopic properties of the porous materials could be measured, 
there are very little data in open literature for the matrix material properties. In 
this study, the Young’s modulus of the solid material (polyurethane) is estimated 
to be 22,777.8 psi and the yield strength (<j0) is estimated to be 1,500 psi (Table 
2, Triantafillou et al., 1989).
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Table 4.1: Eight boundary conditions (displace controls)
Case Dx Dy Dz Dx : Dy : D z

1 0.00 0.00 0.30 0.00 : 0.00 : 1.00
2 0.08 0.08 0.08 1.00 : 1.00 : 1.00
3 0.42 0.00 -0.42 1.00 : 0.00 : -1.00
4 0.04 0.07 0.08 1.00 : 1.75 : 2.00
5 -0.08 0.00 0.308 -1.00 : 0.00 : 3.85
6 0.30 0.00 -0.20 1.00 : 0.00 : 0.667
7 0.075 0.12 0.03 1.00 : 1.60 : 0.40
8 0.04 0.16 0.02 1.00 : 4.00 : 0.500

4.1.2 Loads applied on the unit cell
Two types of boundary loads, stress and displacement, can be applied on the 
models. Under stress control, the stress is applied gradually until yielding occurs 
in the model. Under displacement control, the displacement is applied gradually 
until yielding takes place in the model. The disadvantage of the stress control 
is that the shape of the unit cell can not be maintained when a uniformly dis­
tributed stress is applied to it. In our studies, we need to know the deformation 
of the unit cell and two different kinds of stress versus strain curves for the 
analysis. Therefore, in order to better simulate the deformation of the unit 
cells in the foam, the displacement control is taken in the numerical simulation. 
Table 4.1 shows the loads for eight various cases used in our studies. D x is the 
displacement in the x  direction, Dy is the displacement in the y direction, D z 

is the displacement in the z direction.
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Z

Dz

Figure 4.1: The boundary conditions of the unit cell

4.1.3 Constraints
The constraints used are as follows. The top, right and front surfaces of the 
unit cell have displacement loading. The other three surfaces of the unit cell 
are constrainted to be flat by rollers. This preserves the shapes of these faces 
but allows deformations to occur while taking into consideration the effect of 
the interaction of the neighboring unit cells. Figure 4.1 shows the outline of the 
unit cell and boundary conditions. For simplicity, solid struts are ignored.



4.2 An ABAQUS input file
The ABAQUS input data file is a text file which provides information nec­
essary to perform the finite element analysis. It mainly includes node sets, 
node subsets, element sets, element subsets, element types, material properties, 
boundary conditions and constraints, and processing and output information 
control commands. The following is an example of an input data file (kelvin.inp 
for one case) used in our finite element analyses. Six node sets which include 
xpositive, xnegative, ypositve, ynegative, zpositive, znegative are for the nodes 
on the six surfaces of the unit cell, respectively.

❖HEADING

perfect plastic analysis for open cell Kelvin foams

❖RESTART, WRITE, FREQ=1

❖NODE

9991, 2.0, 2.0, 2.0 

❖NODE, NSET=T0P, INPUT=zpositive 

❖NODE, NSET=B0T, INPUT=znegative 

❖NODE, NSET=RIGHT, INPUT=ypositive 

❖NODE, NSET=LEFT, INPUT=ynegative 

❖NODE, NSET=FR0NT, INPUT=xpositive 

❖NODE, NSET=REAR, INPUT=xnegative 

❖NODE, NSET=NALL, INPUT=nodes

❖ELEMENT, TYPE=C3D8, ELSET=F0AM8, INPUT=ele8ment

35



*ELEMENT, TYPE=C3D6, ELSET=F0AM6, INPUT=ele6ment 

♦ELSET, ELSET=FOAM 

F0AM8, F0AM6

*SOLID SECTION, ELSET=FOAM, MATERIAL=EL 

♦MATERIAL, NAME=EL 

♦ELASTIC, TYPE=ISOTROPIC 

22777.8, 0.3 

*PLASTIC 

1500.0, 0.0 

♦BOUNDARY 

REAR, 1 

LEFT, 2 

BOT, 3 

♦EQUATION 

2
FRONT, 1, 1.0, 9991, 1, -1.0 

2
RIGHT, 2, 1.0, 9991, 2, -1.0 

2
TOP, 3, 1.0, 9991, 3, -1.0 

*STEP, INC=1000, NLGEOM 

♦STATIC
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0.08, 2 .0 , , 0.1 
♦BOUNDARY 

** case 2 
9991, 3, , 0.08 
9991, 1, , 0.08 
9991, 2, , 0.08 
♦EL PRINT 

S, MISES 

E

PE

♦NODE PRINT

U

RF

♦NODE FILE 

U, COORD 

RF

♦END STEP
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4.3 Numerical results
4.3.1 Loading path
By definition, a macroscopic normal stress can be expressed in terms of the 
reaction force,

where E* is the macroscopic stress; Ais the area of the surface in a certain 
direction, and i  =  1, 2, 3; Fj is the reaction force on surface Ai which can be 
extracted from the ABAQUS output file (*.fil) through ABAQUS interfaces. 
The macroscopic shear stresses are zero in our finite element models because 
of the constraints we used. It is easy to calculate the macroscopic equivalent 
stress (Ee9„) and the mean stress (Em),

The following is a Fortran code used for getting the mean and equivalent 
stresses.

(4.1)

+ ^2 + S 3). (4.3)

C LOADING TRACK IN MACRO-STRESSES FOR KELVIN OPEN CELL FOAMS



PROGRAM PERT

IMPLICIT REAL*8 (A-H.O-Z)

CHARACTER*80 FNAME 

CHARACTER*80 OUTFILE

DIMENSION ARRAY(513), JRRAY(513), RB(5,41), LRUNIT(2,1) 

DIMENSION DISPX(200),DISPY(200),DISPZ(200)

EQUIVALENCE (ARRAY(1) , JRRAY(l))

C FILE INITIALIZATION

WRITE(*,*) ’INPUT FILE NAME(jobname):’

READ(*,*) FNAME

WRITE(*,*) ’OUTPUT FILE NAME(jobname):’

READ(*,*) OUTFILE 

WRITE(*,*) ’WAITING...’

C READ VALUES FROM FILE OUTPUT ON UNIT 8 

C WRITE RESULT TO UNIT 6 

OPEN(6,FILE=OUTFILE)

NRU=1

LRUNIT(1,1)=8 

LRUNIT(2,1)=2 

L0UTF=1

CALL INITPF(FNAME,NRU,LRUNIT,LOUTF)

JUNIT=8



CALL DBRNU(JUNIT)

C LOOP ON ALL RECORDS IN RESULTS FILE

TT=1500.0 !strut yield strength

DO 100 Kl=l,9999999

CALL DBFILE(0,ARRAY,JRCD)

IF(JRCD .NE. 0) GO TO 110 

KEY=JRRAY(2)

C GET REACTION FORCE FROM .fil 

IF(KEY.EQ.104) THEN 

NODE=JRRAY(3)

IF(NODE.EQ.9991) THEN 

F1=ARRAY(4)

F2=ARRAY(5)

F3=ARRAY(6)

C CALCULATION AND OUTPUT

WRITE(*,*) FI,F2,F3 

SM=(F1+F2+F3)/3/TT 

SP1=F1/TT-SM 

SP2=F2/TT-SM 

SP3=F3/TT-SM

SEQ=SQRT(3/2*(SP1*SP1+SP2*SP2+SP3*SP3)) 
WRITE(6,120) SM,SEQ
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END IF 

END IF 

100 CONTINUE 

110 CONTINUE 

CL0SE(6)

120 FORMAT(5X,5X,2E15.6)

STOP

END

The simulation results of the FEA can be presented by the macroscopic stresses: 
Eegu versus £ m representing loading path or loading curve. Figure 4.2 is the 
loading path for the unit cell with /  =  0.84 and : D y : 1.00 :
4.00 : 0.50. It should be noted that the macroscopic stresses are normalized 
by the yield strength of the wall material. At first the curve follows a straight 
line while stresses are increasing. Then, beginning at a critical point (point 
Py in Figure 4.2), the loading path deviates from the straight line and changes 
direction significantly. In other words, from a macroscopic point of view, the 
loading path is composed of elastic and plastic parts and the point at which the 
loading path deviates is called the transition point.

4.3.2 Equivalent stress versus equivalent strain curve
The equivalent strain can be calculated as
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Em /  Go

Figure 4.2: The loading path for the unit cell with /  =  0.84 under loading case 
8
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Eequ

Figure 4.3: The tensile response of the unit cell with /  =  0.84, case 4, g Y f \  i s  
the yield point by using ep =  0.2% (plasticstraigYf 2 is the yield point by 
using £p =  0.5%

where =  =1̂;I is the initial size of the unit cell; A is the change in I. 

For each FEA case, displacements of all nodes for every increment are 
recorded to find Eij. Figure 4.3 is the equivalent stress versus equivalent strain 
curve acquired from FEA results for the unit cell with /  =  0.84, case 4 ( :
D y : D z =  1.00 : 1.75 : 2.00). The vertical axis is normalized using a0, the 
yield strength of the wall material of the foam (1,500 psi).



4.3.3 M ean stress versus mean strain curve
It is well-known that for hydrostatic loading, the equivalent stress versus equiv­
alent strain curve is not availabe because the equivalent stress is alway equal to 
zero. In order to get the yield points of the foams under hydrostatic load cases, 
we use the mean stress versus mean stain curve. The mean strain is defined as

£11 + £22 + £33 £m =  g , (4.5)

where ea (i =  1,2,3) is defined as the previous section.
Figure 4.4 is a mean stress versus mean strain curve for the unit cell with 

/  = 0.84.

4.3.4 Yield points
There are a few ways to decide the yield point of the foam: the transition point 
method on the loading path curve (Oung, 1999), back extrapolation (Desh- 
pande, 2001), and 0.2% ep method for uniaxial tests on solid materials. The 
transition point method overestimates the yield strength. It tells the point that 
most of the entire unit cell fails, not the initial yield point. Back extrapolation 
has been used in experiments (Deshpande, 2001). It needs to know the fracture 
point of the material test, so is not good for non-metallic foams. In this thesis, 
we mainly use the 0.2% ep method to get the yield points for getting yield sur­
faces. In addition, in order to understand the behavior of different methods in

44
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8m

Figure 4.4: The tensile response of the unit cell with /  =  0.84 under hydrostatic 
load case. o Y f \ is the yield point by using e p = 0.2%, o Y f i  is the yield point 
by using ev — 0.5%
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finding the yield surfaces, we employed the transition point method (shown in 
Figure 4.2) for the unit cell with /  =  0.84, 0.2% method and 0.5% ev method 
(in Figure 4.3 and Figure 4.4) on two foams with /  = 0.84 and /  =  0.92. The 
yield point in Figure 4.2 is the point at which the foam starts to be at fail­
ure. The yield points in Figure 4.3 and Figure 4.4 are the initial yield points 
of the foam. Figure 4.5 shows two groups of yield points for the unit cell with 
/  =  0.84 from 0.2% ev method and 0.5% ep method. According to this figure, 
we see that they are very close except some difference on a couple of points near 
the axis of the normalized mean stress. Therefore in this thesis, only one of 
these two methods (0.2% ep method) is mainly chosen for taking yield points. 
More details of difference in results from these three methods will be discussed 
later.

4.3.5 Yield surfaces
For a unit cell with a certain void fraction / ,  by applying different ratios of 
external loads, displacements or forces ( D: D y : on it, we can get a series 
of loading paths. There is a yield point for each loading path. By connecting all 
the yield points, we can get a curve called the yield surface: a surface in stress- 
space describing the combination of stresses which cause yield failure. Figure 
4.6 shows the FEA yield surface for the unit cell with /  =  0.55 using the 0.2% 
ep method. The yield surfaces of other models can also be determined by using 
the same method. Figure 4.7 to Figure 4.13 show the FEA results from other
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1.2

□ *1 -

"0.2%-method" □
"0.5%-method" *

0.8  - *P

CD

0.6 -

0.4 -

0.2 -

0.5 1.5 
X m  / G y f

2.5

Figure 4.5: Two kinds of yield results for the unit cell with /  =  0.84 from 0.2% 
ep method and 0.5% ep method. &y f  is the uniaxial tensile yield strength of the 
foams
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2m  /  Go

Figure 4.6: The FEA yield surface for the unit cell with /  =  0.55 

unit cells with void fractions /  =  0.60,0.65,0.70,0.75,0.80,0.84,0.92.

4.3.6 Comparisons between results from different meshes 
of a unit cell

It is well known that meshing is a very important step in finite element analysis. 
It not only takes the large part of time for an entire numerical simulation, but 
also determines whether the FEA will be successful or not. A good mesh may 
greatly facilitate the whole analysis. There are different ways to mesh a model 
(unit cell), some are good, some bad. For good meshes, FEA results should
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2m  /  Go

Figure 4.7: The FEA yield surface for the unit cell with /  = 0.60
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Figure 4.8: The FEA yield surface for the unit cell with /  =  0.65
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Figure 4.9: The FEA yield surface for the unit cell with /  = 0.70
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Figure 4.10: The FEA yield surface for the unit cell with /  =  0.75
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Figure 4.11: The FEA yield surface for the unit cell with /  = 0.80
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Figure 4.12: Two FEA yield surfaces for the unit cell with /  =  0.84, dotted 
-  obtained by using the 0.2% ep method; thick solid -  obtained by using the 
transition point method
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Figure 4.13: The FEA yield surface for the unit cell with /  = 0.92
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Table 4.2: The details of two kinc s of meshes for t re unit cellMesh Total Nodes Total Elements C3D8 Element C3D6 Element
1 432 168 108 60
2 720 264 204 60

show good consistency for the same FEA case. To make sure the FEA results 
are accurate, two types of meshes for the unit cells were used for the simulations. 
Table 4.2 shows the details of these two kinds of meshes. C3D8 element and 
C3D6 element in ABAQUS are used here. C3D6 element is a 6-node linear 
triangular prism, C3D8 is an 8-node linear brick. Figure 4.14 and Figure 4.15 
show the FEA results from two different meshes for the unit cells with /  =  0.80 
and /  =  0.90 with nearly identical results. Therefore, the two meshes we used 
are practical for the unit cells.
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Xm /  Co

Figure 4.14: FEA loading paths from two different meshes for the unit cell with 
/  =  0.80, solid -  mesh 1 with 168 elements; dotted -  mesh 2 with 264 elements
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Figure 4.15: FEA loading paths from two different meshes for the unit cell with 
/  =  0.90, solid -  mesh 1 with 168 elements; dotted -  mesh 2 with 264 elements



Chapter 5

Comparisons between existing 
analytical models, experimental 
data and numerical models

5.1 Analytical models
Gibson et al. (1989) modeled the the elastic buckling, plastic yield and brittle 
fracture of cellular solids under multiaxial stresses to develop equations de­
scribing their yield surfaces. A yield function was approximately obtained by 
analyzing the development of the plastic hinges in the honeycomb (2-D cell) 
first and then extended to the 3-D frame (foams). The yield function was then 
truncated by a fast brittle fracture criterion in the tension side and an elastic 
buckling limit criterion in the compression side to form a failure criterion of the
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foams.

°d ,—  = ±7
3/2

1 -
3a;,

ĥ/s \PS J

The constant 7 is obtained as:

(5.1)

7 [1 -0 .009  (p’/ft)] = 0.3. (5.2)

For all interested values of p*/Ps (less than about 0.3), 7 ~  0.3. The yield 
criterion for foams under multiaxial stresses is:

—  =  ±0.3 ( —
3/2

1 3(Jri
_a y s ( p * / p s

(5.3)

where <jd is the equivalent stress, <jys is the yield stress of the solid cell 
wall material, p* is the density of the bulk material, as is the density of the 
solid cell wall material, am is the mean stress. In terms of void fraction / ,  the 
normalized equivalent stress and the normalized mean stress ^  (ct0 is the
yield strength of the wall material), the above equation can be described as 
following:

equ
(Jo

= ± 0 .3 ( 1 - / ) 3/2 1 -
3£r

(Jo (1 -  / ) (5.4)

Lee and Zhang (2002) studied the plastic behavior of foams with an open- 
celled structure. They developed an approximate continuum plasticity model 
within the framework of the upper bound theorem of plasticity to describe the
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yield behavior of foams, and derived the microscopic velocity field for the unit 
cell, which satisfies the incompressibility and the kinematic boundary condi­
tions. From the microscopic velocity fields, a macroscopic yield function is 
developed for foams under multiaxial stresses and includes the effects of the 
hydrostatic stress due to the presence of void and its grow,

<f> = y  \2êqu \ 92
(j0 J 3 x 4562 (74 -  123/ +  4 9 /2)

1 -
4562E2M

46a02 ( ^ - I | i /  + 75/2)_

(5.5)

(5.6)

where /  is the void fraction.

5.2 Comparisons of yield surfaces
Figure 5.1 to Figure 5.8 show FEA yield surfaces and analytical ones for unit 
cells with void fraction /  = 0.65, 0.70, 0.75, 0.80, 0.84, 0.92. In Figure 5.6 and 
Figure 5.7, the FEA yield surfaces are acquired by the 0.5% ep method and the 
transition point method, respectively. Note that we normalized the equivalent 
stress and mean stress by using the uniaxial yield tensile strength of the foam 
(oy/r). g yf can be taken from the FEA yield surfaces in which the equivalent 
stress and mean stress are normalized by the yield strength of the wall material. 
It is the intersection of the yield surface and the line with a slope of 3. It is 
because that for the uniaxial load test, the equivalent stress is three times that
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X m  / G y f

Figure 5.1: Yield surfaces for the unit cell with /  =  0.65, the FEA surface 
obtained by using the 0.2% ev method

of the mean stress, aequ = 3erm.
Two ways are used to get yield surfaces for the unit cell with /  =  0.84. It 

shows that the yield surface by using the 0.2% ep method is closer to Gibson’s. 
So mainly we use this method in this thesis.
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Figure 5.2: Yield surfaces for the unit cell with /  =  0.70, the FEA surface
obtained by using the 0.2% ev method
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Figure 5.3: Yield surfaces for the unit cell with /  =  0.75, the FEA surface
obtained by using the 0.2% ep method
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Figure 5.4: Yield surfaces for the unit cell with /  =  0.80, the FEA surface 
obtained by using the 0.2% ep method
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Figure 5.5: Yield surfaces for the unit cell with /  — 0.84, the FEA yield surface
obtained by using the 0.2% ev method
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Figure 5.6: Yield surfaces for the unit cell with /  =  0.84, the FEA yield surfaces
obtained by using the 0.5% ep method
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Figure 5.7: Yield surfaces for the unit cell with /  =  0.84, the FEA yield surface
obtained by using the transition point method
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Figure 5.8: Yield surfaces for the unit cell with /  =  0.92, the FEA yield surface
obtained by using the 0.2% ev method



Chapter 6

Discussions and conclusions

The goal of this work is to get a better understanding of the yield behavior of 
foams and to verify Lee and Zhang’s theoretical analysis. A kind of very com­
plicated foams using the Kelvin model was selected to investigate. Numerical 
simulations of the yield behavior of the foams have been conducted using the 
commercial FEA code ABAQUS. C++ programs were developed to generate 
three dimensional meshes for unit cells with various void fractions. It greatly 
facilitated the FEA. Yield surfaces based on FEA were acquired and compared 
with those obtained from the analytical models and available experimental data. 
We can make the following conclusions:

(1) Bending is the main mode of deformation of the unit cell under the 
loading cases we applied. Figure 6.1 to Figure 6.4 are four contours of the 
equivalent plastic strain (PEEQ in ABAQUS) for the unit cell /  =  0.92 under 
loading case 3 ( D x = 0.42, D y =  0.0, D z =  —0.42). They show the development
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Viewport: 1 Model: Model-1 Module: Visualization

Figure 6.1: The contour of the equivalent plastic strain for the unit cell /  = 0.92 
under loading case 3 ( D x =  0.42, Dy — 0.0, D z =  -0.42), FEA increment 4, no 
plastic deformation occurs

and distribution of the plastic zone. It can be seen clearly that the plastic de­
formation first occur at joints (intersections); the plastic deformation is mainly 
due to bending and stress concentration. As the loading increases, the plastic 
deformation expands around the joints, and then axial loading also contribute 
to further deformation, and eventually the necking emerges around the joints 
on the struts which are almost parallel to the direction of the tension load after 
deformation.

(2) Void fraction /  and the yield strength of a foam wall (or strut) material
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Viewport: 1 Model: Model-1 Module: Visualization

Figure 6.2: The contour of the equivalent plastic strain for the unit cell /  =  0.92
under loading case 3 ( Dx =  0.42, Dy =  0.0, Dz =  —0.42), FEA increment 5,
plastic deformation first occurs
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Viewport: 1 Model: Model-1 Module: Visualization

Figure 6.3: The contour of the equivalent plastic strain for the unit cell /  =  0.92
under loading case 3 ( Dx =  0.42, Dy — 0.0, Dz =  —0.42), FEA increment 12,
plastic deformation expands
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Viewport: 1 Model: Model-1 Module: Visualization

Figure 6.4: The contour of the equivalent plastic strain for the unit cell /  =  0.92
under loading case 3 (Dx =  0.42, Dy =  0.0, Dz =  -0.42), FEA increment 21
(the last one), plastic deformation expands and necking occurs



are not the only factors that affect the yield function of a foam. The geometry 
and the structure of the foam also have a great effect on its yield behavior. 
Comparisons between yield surfaces normalized by the uniaxial tensile strength 
of the foams show good agreements for foams with a certain void fraction /  but 
different structure of unit cells. It can been seen from Figure 5.1 to Figure 5.4. 
In Lee and Zhang’s paper, comparisons between yield surfaces normalized by the 
yield strength of the strut materials are not very clear and distinct. Therefore it 
is much more reasonable to do comparisons between yield surfaces normalized 
by the uniaxial strength of foams.

(3) Comparisons show that Gibson’s, Zhang’s theoretical results, and our 
FEA data have good agreements, especially in the area of pure shear -  the 
area close to the axis of normalized equivalent stress shown in Figure 5.1 to 
Figure 5.8. At the end of hydrostatic end close to the axis of the normalized 
mean stress, it seems that Gibson’s results are overestimated, Zhang’s results 
are conservative, and Fleck’s results are even more conservative. Several factors 
could be attributed to the discrepancies: the rigid-plastic material model is used 
in the theoretical derivation, the undeformed geometry is used such that large 
deformation is not considered, the approximations were made in obtaining the 
velocity field and the plastic energy dissipation rate in Lee and Zhang’s model.

(4) It is apparent from Figure 5.7 that the FEA yield surface obtained by 
using the transition point method is very close to Fleck’s experimental data. 
These methods predict the yield points at which the foams are at failure and
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not the initial yield.
The current study does not include the instability analysis and elastic and 

plastic buckling which may cause the difference between yielding under tensile 
loading and that under compressive loading.

In the future, the derived yield function will need to be improved. For 
simplicity, some empirical parameters may be considered to be added into the 
yield function after acquiring enough numerical and experimental results. The 
instability analysis and buckling effects should be considered.
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