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A bstrac t

Pacific salmon form distinct, locally adapted populations because of the spatial and 

temporal precision with which they home to their natal streams. Local adaptation is recognized 

as an important component underlying the productivity and sustainability o f salmonid 

populations, yet there remains uncertainty of the scale at which it occurs. This uncertainty was 

addressed by analysis of demographic, genetic, and experimental data collected from seasonally 

structured brood lines o f Pink Salmon that spawn in Auke Creek, Alaska. An extensive 

background of research on this system has indicated that the timing of the adult and juvenile 

migrations is closely aligned with fitness and productivity in this stream; this background 

provided a framework for synthesizing the results of the analyses to address these questions: ( 1 ) 

W hat ecological factors influence productivity of the freshwater and marine life history stages; 

(2) Do these factors suggest a mechanism for evolution o f migration time; (3) W hat are the 

consequences o f disrupting fine-scale local adaptation o f migration time? Freshwater 

productivity appeared to be influenced primarily by competition for spawning habitat, rather than 

variability in environmental conditions. M arine productivity, conversely, was associated with 

physical processes that influence survival o f juveniles in the nearshore environment. Consistent 

with these findings, genetic evolution of earlier migration time, which was observed in both 

adults and juveniles over two generations, appeared to be driven by earlier vernal warming of the 

nearshore environment. Despite these environmental changes and resulting selection against late- 

migrating fish, recruitment to Auke Creek has remained stable, thereby indicating that seasonal 

structure of migration time has supported sustained productivity in a changing climate. 

Experimental relaxation of natural barriers to gene flow that maintain the seasonal structure 

resulted in intermediate adult migration times in two generations o f hybrid fish. These patterns 

were consistent with an additive genetic basis for migration time and suggest that ecological 

outbreeding depression is a post-zygotic mechanism that maintains adaptive variation of 

migration time in Auke Creek. Collectively, these results provide evidence that fine-scale local 

adaptation can enhance productivity o f salmonid populations while providing resilience to 

climate change.
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Introduction

The scale o f  local adaptation

Local adaptation is a process in which natural selection augments the intrapopulation 

frequency of traits that confer a survival or reproductive advantage in a local environment. An 

important consequence of local adaptation is that resident genotypes display, on average, higher 

Darwinian fitness in their local environment than genotypes originating from other habitats. 

Primary pre-requisites for local adaptation include sufficient genetic variation of fitness traits, 

restricted gene flow between diverging populations or demes, sufficient effective population size 

to mitigate stochastic genetic changes, and genotype-by-environment interactions of fitness traits 

(Kawecki and Ebert 2004). Genotype-by-environment interaction is a phenomenon in which 

different genotypes respond to environmental variation in different ways. W hen such an 

interaction is associated with fitness, it can prevent any single genotype from having the highest 

fitness across all environments. Spatial or temporal heterogeneity in environmental conditions 

promotes the maintenance of polymorphisms that show genotype-by-environment interaction, 

provided that frequency-dependent selection is operating within a population (Hedrick et al.

1976; Hedrick 1986). Frequency-dependent selection also increases the frequency o f rare alleles 

that improve fitness in habitats in which most individuals perform poorly, thereby enabling 

variant strategies which capitalize on niches that are generally less favorable (Karlin and 

Campbell 1981). This is a mechanism by which adverse effects o f high population density may 

be alleviated by the staggering of resource use in time or space.

Pacific salmon (Oncorhynchus spp.) are excellent subjects for the study o f local 

adaptation because of their tendency to form local populations with distinct adaptive traits across 

diverse habitats ranging from temperate regions to the Arctic. In addition, Pacific salmon display 

high fidelity of homing and migration timing, which enables them to locate their ecological niche 

in a vast adaptive landscape and enhances reproductive isolation among populations (Quinn 

2005). Pacific salmon exhibit substantial variation o f fitness traits within and among populations 

including body morphology and meristics, life history characteristics, embryonic development 

rate and migration time, homing ability, and disease resistance (reviewed e.g. by Taylor 1991; 

Quinn 2005; Garcia de Leaniz et al. 2007; Fraser et al. 2011). Effective management o f Pacific
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salmon stocks requires consideration of the adaptive variation that underlies population structure 

(Ricker 1972; Spangler et al. 1981). Given the great value o f salmon in commercial fisheries 

(Woodby et al. 2005) and in subsistence fisheries essential to many indigenous people (O’Neil 

2007), as well as their unique and vital ecological roles (e.g. Gende et al. 2002; Hocking and 

Reynolds 2011), it is important to understand the mechanisms that create and maintain 

population structure and the consequences o f its deterioration.

M ost empirical evidence of local adaptation in salmonids has been gathered from 

comparative studies that examined correlations between fitness traits and environmental 

characteristics. Other evidence of local adaptation has been gathered by examining differences in 

traits among populations or demes in a common environment (i.e. common garden experiments), 

observations of the performance of transplanted populations in non-native habitats and of 

domesticated stocks in the wild, and studies of genetic components of resistance to diseases and 

parasites (Garcia de Leaniz et al. 2007). Local adaptation in salmonids has been most commonly 

demonstrated by trait divergence o f populations spawning in separate habitats (Woody et al. 

2000; Hodgson and Quinn 2002; M eier et al. 2011). M ost reports o f sympatric temporal 

divergence are confounded by differences in spawning or rearing locations (Tallman 1986; 

Tallman and Healey 1991; Hendry et al. 2002; Fillatre et al. 2003), or do not demonstrate genetic 

differences between demes (Hendry et al. 1999).

Seasonal differences in life history schedules

In Pacific salmon, population-specific variation in migration and spawning time is 

presumed to be the consequence of adaptations by populations to local conditions and to have a 

basis in genetic variation (see reviews in Groot and Margolis 1991; Taylor 1991). This is 

supported by the high estimates of heritability of timing of adult migration and spawning that 

have been demonstrated in Pink (O. gorbuscha), Chinook (O. tshawytscha), and Sockeye (O. 

nerka) Salmon (Smoker et al. 1998; Quinn et al. 2000; Hard 2004; Dickerson et al. 2005; Crozier 

et al. 2011). Furthermore, salmon spawning streams and their associated nurseries often vary 

seasonally in environmental conditions critical to spawning success and juvenile survivorship, 

particularly in Pink Salmon. Critical environmental conditions that vary within spawning seasons 

include abiotic factors such as stream temperature and flow regimes (M ueter et al. 2005; Geiger 

et al. 2007) and biotic factors such as predation and the density o f spawning adults within the
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stream (Fukushima et al. 1998; Mortensen et al. 2000). One important consequence o f local 

adaptation of spawning segments to seasonal conditions is that it enables more niches to be filled 

within spawning habitats. In streams that exhibit high spawner densities during the adult 

migration period, partitioning o f resource exploitation (e.g. by structuring o f the timing o f life 

history events) can reduce intraspecific competition, thereby elevating the carrying capacity of a 

population (Gharrett et al. 2013). In this manner, local adaptation may augment the average 

productivity o f individual populations.

Genetic variation of migration and spawning time that is structured by seasonal 

environmental differences within a spawning habitat gives rise to distinct life history strategies, 

each of which is tailored to the environmental conditions that are typical of a particular time and 

location. The portfolio effect hypothesis, a concept that underscores the importance o f adaptive 

variation, asserts that a rich diversity of life history traits confers increased resilience to climatic 

fluctuations by enhancing the likelihood that some individuals within a population will carry 

traits that are well-suited to future environmental regimes (Hilborn et al. 2003; Greene et al. 

2010). This concept indicates that the capacity o f populations to respond to inexorable climatic 

shifts is, in part, dependent upon genetic variation that is structured by local adaptation. Hence, 

an understanding o f the mechanisms that create and maintain fine-scale differences in the timing 

o f life history events (i.e. phenology) may yield insight into the means and extent to which 

salmonid populations will respond to climate changes.

In salmon populations for which migration time is temporally structured, local 

adaptation increases the allele frequencies of traits that optimize the likelihood of surviving and 

reproducing in a given environment, thereby enhancing average fitness within populations. Fine- 

scale temporal structure is only maintained when gene flow between seasonally distinct 

spawning segments is sufficiently constrained. A potential consequence of the deterioration of 

barriers to gene flow is reduced fitness o f F 1 or later hybrids. This phenomenon is known as 

outbreeding depression. Outbreeding depression can manifest from both disruption of gene by 

environment interactions and deterioration o f epistatic allele complexes (Lynch 1991; Edmands 

2007). Experiments in which barriers to gene flow were artificially removed have demonstrated 

that interbreeding between genetically distinct populations can have detrimental fitness 

consequences (Gharrett et al. 1999; Gilk et al. 2004). These studies examined hybrids between
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populations separated by temporal or spatial barriers o f sufficient size to preclude gene flow. The 

consequences o f removing fine-scale barriers to gene flow, such as those that maintain adaptive 

differences between seasonally distinct spawning segments, have yet to be evaluated, but could 

yield insight into the scale at which local adaptation occurs.

Project objectives

The primary purpose o f this study was to examine how local adaptation creates and 

maintains temporal structure in seasonally distinct spawning segments o f Pink Salmon that home 

to Auke Creek, Alaska and to evaluate the consequences of such structure to the sustainability 

and productivity o f salmonid populations. Specifically, my research objectives were (1) to 

identify biotic and abiotic environmental components of lifetime fitness that could drive local 

adaptation of phenology; (2 ) to describe how locally adaptive variation in phenology has enabled 

evolution o f migration time in a changing climate; and (3) to evaluate whether the removal o f a 

natural barrier to gene flow between early- and late-spawning fish would disrupt local adaptation 

and cause declines in fitness. These goals were achieved by analysis o f multiple data sets that 

have been collected at or near Auke Creek Research Station, a permanent weir and salmon 

hatchery that is operated by the U.S. National M arine Fisheries Service. These data sets included 

measurements of environmental variables, complete daily counts of migrating adult and juvenile 

Pink Salmon, observations o f a genetic marker, and experimental data. An extensive background 

o f research on Auke Creek Pink Salmon provided the basis for the hypotheses and conclusions in 

this paper.

Chapter 1 explores abiotic and biotic determinants of reproductive success and survival at 

various life stages o f Pink Salmon that spawn in Auke Creek. A substantial body o f theory and 

empirical evidence pertaining to this and other salmonid populations suggests that abiotic 

environmental characteristics, such as stream temperature and flows, along with biotic factors, 

such as intraspecific competition and predation, influence fitness of salmon at specific life 

history stages. These variables, which exhibit interannual variation in Auke Creek, would 

potentially explain a significant portion of the variation in recruitment among brood years. 

Annual counts of migrating juveniles and adults conveniently divide the life cycle of Auke Creek 

Pink Salmon into freshwater and marine components. These annual counts were used to describe 

the population dynamics o f the freshwater and marine environments. Deviations o f observed
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abundances of spawners and juveniles from those estimated by models of the population 

dynamics provided two indices o f fitness: freshwater productivity and marine survival. These 

indices were likely to reflect interannual variation in environmental conditions. Environmental 

covariates were constructed by estimating indices of habitat quality during the appropriate life 

history periods. Available indices of habitat quality were based on direct measurements of 

temperatures of Auke Creek and Auke Bay and estimates of stream flows of Auke Creek derived 

from measurements o f precipitation and air temperature. Furthermore, daily counts o f Coho 

Salmon smolts and Dolly Varden charr outmigrating from Auke Creek in the spring provided 

indices o f predator density encountered by juvenile Pink Salmon in the nearshore marine 

environment. A generalized additive modeling (GAM) framework was used to elucidate 

functional relationships between the indices of fitness and the environmental covariates. 

M ultivariate parametric models, based upon the functional relationships expressed by the GAMs, 

were compared with one another through an information theoretic approach.

Chapter 2 evaluates mechanisms underlying recent changes in the seasonal structure of 

Pink Salmon that home to Auke Creek. The adult migration is divided into two sympatric 

spawning segments whose median spawning dates have been historically offset by 

approximately two weeks, largely reflected in differences in genetic architecture (Smoker et al. 

1998, Gharrett et al. 2013). New evidence indicates that, in recent years, there has been a 

reduction in the size of the late-spawning segment and an overall truncation of the adult 

migration period, which potentially reflects a response to a warming trend (0.34 °C per decade) 

that has been observed in Auke Creek over the past 40 years (Taylor 2008). Furthermore, 

observations of a genetic marker, which was experimentally elevated in late-run fish from the 

odd-year brood line, suggest that these changes reflect contemporary evolution (Kovach et al. 

2012). W hile it is evident that the demography o f this population shifted dramatically between 

the adult migrations o f 1989 and 1991 as a consequence o f anomalously poor fitness o f late-run 

fish, the specific life history stage in which this fitness decline first occurred remains unknown. 

The purpose of this chapter was to use census and genetic data collected from outmigrating fry 

during each odd-broodyear outmigration from 1984-1992 to determine the life history stage at 

which the genetic changes occurred. Furthermore, these data were synthesized with 

environmental data collected at Auke Creek in order to determine whether environmental factors
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in the freshwater or marine environment have contributed to these changes. Finally, daily counts 

o f adult Pink Salmon collected at the Hugh Smith Lake weir in Southeast Alaska were examined 

to look for shifts in adult migration time parallel to those at Auke Creek. Congruent migratory 

shifts between Pink Salmon spawning in the Hugh Smith Lake system and Auke Creek would 

support the hypothesis that environmental processes operating at large spatial scales have caused 

the recent demographic changes in Auke Creek. Importantly, because Hugh Smith Lake lies 

more than 250 miles southeast o f Auke Creek, the absence o f a parallel response between these 

two systems would not necessarily confirm that large-scale climatic forcing does not underlie 

recent demographic changes; the local environmental signatures of large-scale climate patterns 

may simply differ among habitats separated by substantial distances.

Chapter 3 evaluated the consequences of removing a partial barrier to gene flow between 

the early- and late-spawning segments. Two generations o f experimental hybrids between these 

spawning segments were reared at the Auke Creek hatchery and released to sea to complete their 

life cycle. Observations o f fitness traits in hybrids relative to experimental controls can yield 

information regarding the genetic structuring o f Auke Creek Pink Salmon and the extent to 

which these spawning segments are locally adapted to distinct environmental regimes. 

Depending on the nature o f differences between subpopulations, signatures o f outbreeding may 

not manifest until the second generation o f hybridization (Lynch 1991; Edmands 1999). Hence, 

Chapter 3 evaluated the consequences o f hybridization over two generations. Specifically, 

marine survival was evaluated by using log-linear models to look for difference among 

experimental lines. Parentage analysis was used to determine the number of returning adult Pink 

Salmon per full-sib family, and these data were used to construct Bayesian hierarchical models 

that compared family-specific marine survival among hybrid and control lines. Bayesian mixed 

effects models were used to quantify components of variation of adult migration time and to 

demonstrate phenotypic shifts resulting from hybridization. Finally, a line-cross analysis was 

used to evaluate the genetic architecture of adult migration time, thereby providing a 

complement to the mixed effects models.
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C h ap te r 1 - Ecological factors influencing lifetim e fitness of P ink  Salm on (O ncorhynchus
gorbuscha) in an  A laskan s tream 1

A bstrac t

An understanding o f lifetime fitness can provide insight into ecological processes that 

influence productivity in populations o f anadromous Pacific salmon (Oncorhynchus spp.). We 

used a 29-year time series of local environmental data and complete censuses of migrating adult 

and juvenile Pink Salmon (O. gorbuscha) collected at Auke Creek, Alaska to examine ecological 

factors that influence reproductive performance in fresh water and survival in the nearshore 

marine environment. The importance of ecological factors to each life history stage was 

quantified by using an information-theoretic approach to select linear models based on 

parsimony. Freshwater productivity appeared to be influenced primarily by competition for 

limited spawning habitat in this small stream (323 m long) and less so by indices o f water quality 

(e.g. stream temperature and flow) that were o f putative importance to success o f spawning and 

embryo development. Furthermore, we observed a temporal trend o f declining freshwater 

productivity, which may be related to observed declines in spawning substrate quality and in the 

duration o f the adult migration. M arine survival was highly variable among brood years and 

appeared to be influenced by densities of nearshore predators and by physical conditions in the 

nearshore marine environment; warm sea-surface temperatures during nearshore residency were 

associated with higher marine survival rates, whereas high stream flows late in the fry 

outmigration period were associated with reduced marine survival. Collectively, these 

observations confirm that predation, physical factors that contribute to early marine growth of 

fry, and dynamic, hydrological characteristics of the estuary are important to lifetime fitness of 

salmon.

1 Manhard, C.V., J.E. Joyce, W.W. Smoker, and A.J. Gharrett. Ecological factors influencing lifetime fitness of Pink 
Salmon (Oncorhynchus gorbuscha) in an Alaskan stream. Formatted for submission to the Canadian Journal o f  
Fisheries and Aquatic Sciences
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In troduction

The life history o f anadromous Pacific salmon (Oncorhynchus spp.) involves movements 

within and between marine and freshwater habitats, and the ability of these habitats to support 

reproduction or survival is a composite of ecological factors that vary seasonally and 

interannually. Successful deposition o f fertilized embryos and survival o f those embryos during 

the freshwater stage determines the production of fry, and survival during the marine stage 

determines the number of adults that return as spawners. Hence, the ecological factors that 

comprise lifetime fitness in a salmonid population may be partitioned by dividing its life history 

into freshwater and marine stages, and examining each o f these stages separately.

Freshwater productivity is probably influenced by the stream conditions encountered by 

spawning adults in many salmonid populations. Inadequate stream flows and high stream 

temperatures can impose high levels of stress on migrating salmon, thereby causing pre­

spawning mortality (Fukushima and Smoker 1997). Additionally, depending on the location and 

hydrology of the stream, low flows and high temperatures may delay stream entry of early- 

migrating spawners (Shapovalov and Taft 1954; Sheridan 1962; Jonsson 1991). One potential 

consequence of delayed stream entry is temporal compression of the migration and consequent 

increases in spawner density. High densities of spawning adults may exacerbate the effects of 

low flows and high temperatures by causing rapid depletion of dissolved oxygen within the 

stream and corresponding increases in mortality among unspawned adults (Murphy 1985). 

Furthermore, in streams with limited spawning substrate, high spawner densities may be 

associated with increased intraspecific competition and reduced reproductive success (Essington 

et al. 2000; Gharrett et al. 2013).

Embryos that are successfully deposited and fertilized are subjected to both abiotic and 

biotic sources of mortality, which, along with genetic factors, determine the number of juveniles 

that emerge from the gravel in spring. M ortality during embryonic development is often very 

high, and survival from deposition to emergence is thought to commonly range from 1 0 -2 0 % in 

salmon, but may be as low as 1% in some years (reviewed by Heard 1991). A potential abiotic 

determinant o f embryonic survival is stream flow. Although moderate levels o f stream flow are 

necessary for developing salmonid embryos (Gibson and M yers 1988; Cowan 1991), high stream 

flows can scour the streambed and sweep embryos out o f the gravel (M ontgomery et al. 1996;
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but see Fukushima et al. 1998). Several studies have demonstrated a negative correlation 

between embryonic survival and high stream flows (Thorne and Ames 1987; Scrivener and 

Brownlee 1989). Density-dependent effects associated with high spawner densities may also 

manifest during the embryonic development period. A primary biotic source of embryonic 

mortality is disturbance o f redds o f early-spawning salmon by the activity (e.g. redd digging, 

superimposition) of subsequent spawners (McNeil 1964; Fukushima et al. 1998). Consequently, 

factors that contribute to high spawner densities should increase embryonic mortality.

For juvenile salmon that successfully outmigrate from their natal stream, rapid growth 

probably maximizes survival during early marine residency (e.g. M ortensen et al. 2000; Beamish 

et al. 2004). Growth opportunities ultimately determine the size that salmon attain after the early 

marine period, and there are two stages in which size may influence marine survival. The first 

stage occurs during the early marine period when larger juvenile salmon may be less vulnerable 

to predation (Parker 1971; Hargreaves and LeBrasseur 1986), presumably because larger fish 

exceed the size range of many gape-limited predators and have faster swimming speeds. The 

second stage occurs in late fall and winter of the first marine year, when increased energy 

reserves of larger fish likely enhance their probability of surviving the fall and winter (Beamish 

and M ahnken 2001). The importance o f early growth, when coupled with the strong positive 

correlation between water temperature and growth rate o f juvenile salmonids, Pink Salmon in 

particular (Mortensen et al. 1991), suggests that juveniles that have access to warm water should 

benefit from increased marine survival. However, because high predator densities often coincide 

with environmental conditions that are favorable for growth, the relationship between thermal 

conditions and juvenile survival may involve trade-offs between predator avoidance and 

enhanced growth (Mortensen et al. 2000).

Stream discharge can influence primary productivity by stratifying the w ater column in 

the nearshore marine environment. Although strong stratification reduces fluxes of nutrients to 

the surface waters by inhibiting vertical mixing of the water column, it also constrains 

phytoplankton to the photic zone (Royer et al. 2001). In high-latitude estuaries, stratification may 

increase primary productivity by facilitating optimal light exposure in advance of nutrient 

depletion (Gargett 1997). Consequently, enhanced stream flows during early spring may provide
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favorable mixed layer conditions, thereby fueling primary production in the nearshore marine 

environment that is critical to early growth of juvenile salmon.

Because o f their simple life history, Pink Salmon (O. gorbuscha) are an excellent species 

for modeling the factors that underlie fitness o f anadromous salmonids. Because adults nearly 

always reach maturity in their second year o f life throughout their natural range (Anas 1959; 

Bilton and Ricker 1965), Pink Salmon populations have non-overlapping generations. Adults in 

coastal populations typically enter their natal stream in late summer and spawn in or just above 

the intertidal zone near the stream mouth. Embryos develop and hatch within the gravel beds of 

the stream during the fall and w inter months and fry emerge during early spring. Juvenile Pink 

Salmon lack a protracted freshwater period; fry outmigrate to the nearshore marine environment 

shortly after emerging from the gravel. Juveniles form schools in the nearshore marine 

environment and live there for several weeks before moving further offshore in late spring. 

During this early life-history phase, growth is fueled by predation on epibenthic organisms and 

zooplankton (Mortensen et al. 2000). Pink Salmon usually range in the North Pacific Ocean for 

15 to 18 months prior to maturation and their anadromous migration to their natal stream to 

spawn (reviewed by Heard 1991).

From time series o f census data collected at the permanent salmon weir at the National 

Oceanographic and Atmospheric Administration (NOAA) Auke Creek Research Station and of 

environmental data that reflect habitat quality at critical life history periods, we modeled the 

importance o f biotic and abiotic factors to lifetime fitness o f Pink Salmon. These census data 

included daily counts of both immigrant adults in summer and emigrant juveniles in spring, 

which conveniently divide the life history into freshwater and marine components. We 

quantitatively modeled relationships between abundances of adults and juveniles throughout the 

time series. Residuals from abundance-based models were in turn modeled as functions of 

indices o f habitat quality in order to determine environmental components o f lifetime fitness.

The primary questions that these analyses address are (1) Are compensatory or depensatory 

processes evident in the population dynamics at different life history stages? and (2) Which 

environmental factors are most important to lifetime fitness?
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M ethods

Census data source

Study site - Auke Creek, a short (323 m), steep outlet stream that flows from Auke Lake 

to the estuary o f Auke Bay (Figure 1.1), is a migratory corridor and spawning ground for Pink 

Salmon. In accordance with the strict 2-year life cycle o f Pink Salmon, genetically distinct even- 

and odd-year brood lines inhabit Auke Creek. W ithin each brood line, time of return of spawning 

adults has followed a bimodal distribution; migration into Auke Creek o f ‘early’ spawners 

typically occurs between mid and late August, whereas migration o f ‘late’ spawners typically 

occurs between early and mid-September (Taylor 1980; Figure 1.2). Although a few o f the Pink 

Salmon homing to the Auke Lake system spawn in the intertidal area and in Lake Creek, a 

tributary o f Auke Lake, most spawn in the spatially limited (< 600 m2) habitat o f Auke Creek. 

Located at the demarcation line separating the intertidal and upstream habitats is Auke Creek 

Research Station, a permanent weir and salmon hatchery that is operated by the U.S. National 

Marine Fisheries Service. The weir allows for censuses o f upstream-spawning adults and 

outmigrating fry. Censuses o f outmigrating fry have been made at Auke Creek since 1972, but 

censuses prior to 1980 were made with less accurate fyke nets rather than the permanent 

counting structure used in later years. In addition to uncertainty about the quality o f early 

juvenile censuses made with nets, there is uncertainty about censuses of wild adults made prior 

to 1983 because o f substantial releases o f unmarked experimental fish from the Auke Creek 

hatchery in the 1970s and early 1980s. Consequently, only censuses o f naturally-spawning adult 

salmon made after the fall o f 1983 were included in this study. The time series o f adult census 

data includes each adult migration period from 1984-2012, and the juvenile census data include 

each fry outmigration period from 1983-2013. Together, these census data were used to construct 

separate models o f the population dynamics o f Auke Creek Pink Salmon in the freshwater and 

marine environments over 29 brood years.

A bundance-based models o f  productivity

Freshwater productivity - The relationship between the number o f fry that outmigrated in 

spring and the number of adults that returned to Auke Creek during the previous summer was 

analyzed in order to explore the freshwater population dynamics. Studies o f Auke Creek Pink 

Salmon have suggested that resource limitation may manifest in the form o f competition for

15



limited spawning substrate within the stream and juvenile mortality that is directly imposed by 

spawning adults (Fukushima and Smoker 1997; Fukushima et al. 1998; Gharrett et al. 2013). The 

Ricker model (Ricker 1954) captures such a relationship. It produces a dome-shaped relationship 

between recruits and spawning stock, which results from the compensatory effect that spawners 

exert on juvenile production as the spawning stock increases. The form of the Ricker model is 

given by:

Jt = St-iexp  ( a  -  St-1 /K ) exp(£t ) 

where the number of outmigrating fry in the spring of the tth year (Jt) is related to the number of 

wild adult spawners from the previous summer (St-1) by parameters that are intrinsic to the 

population and describe its productivity (a )  and carrying capacity (K). This model can be 

rewritten by dividing both sides by the number of adult spawners and taking the natural 

logarithm of both sides:

los { l ' / S t_1) = a - S ‘~1/K + s t

£t ~  N(0, a 2)

The residual errors (s), which are assumed to be log-normally distributed (Hilborn and W alters 

1992), provide an index o f interannual variability in freshwater productivity that is likely due to 

environmental factors.

Marine productivity  - W e explored marine-phase population dynamics with models of the 

relationship between number of adults that returned to Auke Creek in summer and the number of 

fry that outmigrated in the spring of the previous year. In contrast to the freshwater phase, in 

which a density-dependent relationship between fry and spawners is supported by theory and 

empirical observations, the population dynamics of the marine phase are less well understood. 

Because we did not have strong a priori expectations about this relationship, we used a linear 

model in which the response was log transformed to normalize the residuals:

log(5 t) =  b + f i * J t_ 1  + et 

£t ~ N(0, a 2)

where the abundance of wild adult spawners in the summer of the tth year is S t, the model 

intercept is b, and the abundance of wild outmigrating fry from the spring of the previous year, 

J t-1, is related to the abundance o f adults by the parameter p . The residual errors (s) provided an 

index of interannual variability in marine productivity that likely had an environmental basis.
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Environm entally-based models o f  productivity

The residuals from the abundance-based models provided an opportunity to evaluate how 

environmental factors (e.g. stream conditions, predator abundance) influence freshwater and 

marine productivity o f Auke Creek Pink Salmon. The residuals from each abundance-based 

model were treated as separate response variables, which were modeled as functions of 

covariates that were of hypothetical ecological importance to relevant life history stages. The 

goal of this modeling approach was to determine the most parsimonious model that could be 

constructed from the available environmental covariates. Given that we did not have a priori 

expectations about the relationships between the environmental covariates and residuals, a 

Generalized Additive M odeling (GAM) framework was used to explore these relationships. The 

GAM framework allows for response variables to be modeled as smooth functions of parameters, 

thereby accommodating a wide variety of response distributions and allowing the data to dictate 

an appropriate functional relationship. To accomplish this, the ‘m gcv’ package in R  (R Core 

Team 2015) was used to determine whether any non-linear relationships existed. The ‘gam ’ 

function estimates the degrees of freedom for each term as part of the model-fitting algorithm by 

minimizing the Generalized Cross Validation (GCV) o f the entire model, which is represented as 

the effective degrees of freedom (edf) in the model output. An edf for a parameter that is close to 

1  suggests that a non-linear relationship does not exist and that the smooth term can be replaced 

by a parametric linear term (Wood 2001). Based on the functional form that was specified by the 

GAM, a non-linear or linear parametric model was fit for each covariate and subsequently tested 

for significance with parametric tests (F-tests). Finally, an information theoretic approach based 

on A kaike’s Information Criterion was used to select the suite o f covariates and interactions that 

minimized the information loss and, therefore, comprised the most parsimonious model. The 

relative probability PR that the ith model minimized the information loss was estimated as:

where AICmin corresponded to the model with the lowest AIC score (Burnham and Anderson 

2 0 0 2 ).
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Covariates o f  freshw ater productivity

M edian adult migration date - Daily counts o f migrating wild adults were used to 

quantify interannual variability in adult migration time (i.e. stream entry date). Delays in stream 

entry may lead to density-related factors constraining freshwater productivity, such as egg 

retention and redd superimposition (Fukushima et al. 1998). To examine this, the median 

migration date was calculated each year in order to provide an index of the annual timing of the 

adult salmon migration. This index was expected to covary negatively with freshwater 

productivity due to increased spawner densities in years in which migration was delayed.

Stream temperature - Daily measurements of stream temperature that have been collected 

at the Auke Creek weir were available for the time series. The first half of the adult migration, 

which enters the stream in August, frequently experiences high stream temperatures (Figure 1.2). 

The potentially deleterious influence of high stream temperatures on early-migrating fish was 

evaluated by estimating an index o f the mean stream temperature experienced by the first 50% of 

adults to pass Auke Creek weir. Each early-migrating fish was assumed to have a stream life of 

seven days, based on observations o f stream life in Auke Creek (Fukushima and Smoker 1997). 

The mean stream temperature Ttj  experienced by the ith fish within the j th spawning season was 

estimated by averaging stream temperatures over a period spanning from the date the fish passed 

the weir to seven days after that date:

_ T t + Tt+ 1  + Tt + 2 + Tt + 3  +  Tt + 4 + Tt + 5  +  Tt+e + T t + 7  

= 8  

An index of the average stream temperature experienced by early-migrating adults in the j th

spawning season was then estimated by averaging Ttj  across nj returned adults:

y nj f . .
T = h = 1 h l
J Uj

This index was expected to covary negatively with freshwater productivity because reduced 

spawning success has been observed during years of high stream temperatures in Auke Creek.

Stream flow  - Although measurements of stream flow rates in Auke Creek were not 

available during the span of the salmon abundance time series, daily measurements of 

precipitation at Auke Bay were available from the Auke Bay Laboratories Climatological Series 

(ABLCS). Daily stream flow measurements that were collected at Auke Creek from 1962-75
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(U.S. Geological Survey) were used to model stream flows in late summer and early fall (July- 

October) as a linear function o f precipitation over the previous 16 days (Supplementary 

Materials; Table S1). The model was then used to reconstruct stream flows during autumn from 

1984-2012. Low stream flows, which are commonly encountered by the first half o f the adult 

migration (Figure 1.2), may be associated with declines in spawning habitat quality (Murphy 

1985; Fukushima et al. 1998). In order to evaluate this, an index o f the average stream flow rate 

experienced by early-migrating salmon during each spawning season was estimated with the 

approach that was detailed for stream temperature. This index was expected to covary positively 

with freshwater productivity due to enhanced spawning success in years o f high stream flow.

The embryo incubation period, which typically begins in late August or September, is 

marked by heightened stream flows and frequent freshets (Figure 1.2). An index o f stream flows 

during the initial incubation period was estimated as the mean stream flow rate between 1  

September and 31 October each year. This index was expected to covary negatively with 

freshwater productivity due to scouring o f embryos during years o f high stream flow.

Covariates o f  m arine productivity

Juvenile outmigration date - Daily counts o f migrating Pink Salmon fry were used to 

quantify interannual variability in the date at which fry entered Auke Bay. The date o f their peak 

outmigration may influence the quality o f habitat encountered by fry (Mortensen et al. 2000).

The median outmigration date was calculated each year in order to provide an index of the 

annual timing of the fry outmigration. This index was included in the environmentally-based 

models of marine productivity.

Predator abundance - Daily counts o f two other salmonid species that migrate from 

Auke Creek in spring, Coho Salmon (O. kisutch) smolts and Dolly Varden (Salvelinus malma) 

charr, were available for the time series. These species prey upon Pink Salmon fry (Mortensen et 

al. 2000), and they typically migrate into Auke Bay shortly after the peak o f the fry outmigration 

(Supplementary Materials; Figure S1). The timing and magnitude o f these predator migrations 

may influence survival o f Pink Salmon fry. This possibility was examined by estimating separate 

indices o f abundance for each predatory species. An index o f predator abundance was estimated 

as the number of predators that had passed the Auke Creek w eir prior to the end of the fry 

outmigration, which was defined as the first date on which 95% of outmigrating fry had left the
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stream. Counts o f predators were extended two weeks past this date to include predators entering 

Auke Bay during the initial marine residency period o f the latest outmigrating fry. Indices of 

predator abundance were expected to covary negatively with marine productivity.

Nearshore sea-surface temperature - Daily measurements of sea-surface temperature of 

Auke Bay, which were available over the time series from the ABLCS (Figure 1.3), were used to 

estimate an index o f growth opportunity related to the temperature o f Auke Bay. An annual 

index o f the temperature o f Auke Bay during the typical fry outmigration period (Supplementary 

Materials; Figure S1) was estimated by averaging sea-surface temperatures between 15 March 

and 15 May. This index was expected to covary positively with marine productivity due to more 

favorable growth conditions in years of warmer nearshore temperatures.

Stream flow  - M easurements of air temperature and precipitation, which were available 

over the time series from the ABLCS, were used to reconstruct daily stream flows o f Auke Creek 

during spring (March-May) under a modeling framework similar to that described for autumn 

stream flows (Supplementary Materials; Table S2). The hydrology o f the nearshore environment 

o f Auke Bay (Figure 1.1) depends on freshwater input from the Auke Lake system, as well as its 

other major tributaries, which include W aydelich Creek and Auke Nu Creek. Additional 

freshwater input from the Mendenhall River and Fish Creek, which both discharge into marine 

waters in nearby Fritz Cove, also influences the nearshore environment o f Auke Bay. Since 

stream flow in these other systems is likely determined by similar environmental factors, Auke 

Creek was assumed to be a proxy for the aggregate freshwater influx into Auke Bay. An index of 

freshwater influx in advance of and during the typical extent of the primary plankton bloom 

(Bienfang and Ziemann 1995) was estimated by averaging stream flows between 1 March and 30 

April. This index was expected to covary positively with marine productivity due to more 

favorable mixed layer conditions in years of high freshwater influx and corresponding high food 

availability. Another index, reflecting the period o f high and variable stream flows that occur late 

in the nearshore residency period (Figure 1.3), was estimated by averaging stream flows between 

1 May and 31 May. This index was expected to covary negatively with marine productivity due 

to offshore displacement o f fry or their planktonic prey during years o f high stream flows.
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Results

Abundance-based model o f  freshw ater productivity - Census data from wild Pink Salmon 

were used to examine the relationship between the abundances of outmigrating fry and spawning 

adults across 29 brood years. Annual censuses varied substantially over the time series; the 

abundance o f spawning adults ranged between 1,500 and 28,000, while the abundance of 

outmigrating fry ranged between 12,000 and 243,000. The abundance-based model o f freshwater 

productivity (Figure 1.4) revealed that there was a positive, density-dependent relationship (R 2 = 

0.542, P  = 5.371*10-6) between the abundances o f spawning adults and outmigrating fry and 

estimated that the carrying capacity (K) o f Auke Creek was 16,224 adults during the time series. 

Individual analyses of each brood line had similar results, so the data were combined to increase 

power. Temporal plots of residuals from the abundance-based model did not reveal any trends of 

first- or second-order autocorrelation, and statistical tests of autocorrelation, performed with the 

‘a c f  function in R, did not reveal any significant autoregressive coefficients through five orders.

Environmentally-based model o f  freshwater productivity  - Relationships between 

environmental conditions in Auke Creek and freshwater productivity were examined by 

modeling the residual errors from the abundance-based model as a function of hypothetical 

indices of habitat quality. The indices included the median adult migration date, mean stream 

temperature and flow experienced by spawners, and mean stream flow during early embryo 

incubation. Adult migration year was included as a covariate to account for temporal trends. 

None o f the five covariates exhibited a non-linear relationship with the residual errors (ed f ~ 1), 

so parametric linear models were used. Computation o f Pearson’s correlation coefficients 

revealed moderately significant correlation (P < 0.10) between some pairs o f covariates 

(Supplementary Materials; Table S3). General linear models were constructed with all possible 

combinations of non-correlated covariates, and interactions were included where theory 

supported them (Supplementary Materials; Table S5). The model with the lowest AIC value 

included the year o f adult migration (Figure 1.5), which exhibited a significant, negative linear 

relationship with the residual errors (R2 = 0.148; P  = 0.039). Comparisons o f this model with the 

other models indicated that there were three bivariate models that had AIC values that were 

nearly as low. These models, which separately included discharge during the incubation period,
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discharge during the adult migration period, and temperature during the adult migration period, 

ranged between 0.37 and 0.43 times as likely to minimize the information loss.

Abundance-based model o f  marine productivity - Census data from wild Pink Salmon 

were used to examine the relationship between the abundances of returned adults and 

outmigrating fry across 29 brood years. The abundance o f outmigrating fry exhibited a 

significant, positive relationship with the abundance of returned adults and explained a moderate 

portion o f its variability (R 2 = 0.317, P  = 0.002). Individual analyses o f each brood line had 

similar results, so the data were combined to increase power. A plot of the observed data and 

predicted values from the model indicated that the relationship between abundances of adults and 

fry was curvilinear, with some evidence o f depensation over the time series (Figure 1.6). There 

were no patterns of first- or second-order autocorrelation evident in plots of residuals from this 

model against brood years. This observation was supported by statistical tests of autocorrelation, 

which did not produce any significant autoregressive coefficients across five orders.

Environmentally-based model o f  marine productivity  - Relationships between 

environmental conditions encountered by fry and subsequent abundances of returned adults were 

examined by modeling the residual errors from the abundance-based model of marine 

productivity as a function of indices of habitat quality in the nearshore marine environment. The 

indices included median outmigration date, Coho Salmon smolt and Dolly Varden charr 

abundances, mean sea-surface temperature of Auke Bay during the spring algal bloom, and 

stream flows o f Auke Creek during the spring bloom and late-nearshore residency period. Year 

o f fry outmigration was included as a covariate to account for temporal trends. Generalized 

additive models did not reveal a significant non-linear relationship between the residual errors 

and any o f the covariates (ed f ~ 1), so parametric linear models were used. Moderately 

significant correlations (P < 0.10) existed between some pairs o f covariates (Supplementary 

Materials; Table S4). General linear models o f marine productivity were constructed with each 

possible combination o f non-correlated covariates, and interactions were included where they 

were supported by theory (Supplementary M aterials; Table S6 ). The model with the lowest AIC 

value included sea-surface temperature during the spring bloom, which exhibited a significant, 

positive linear relationship with the residual errors, and stream flow during the late-nearshore 

residence period, which exhibited a significant, negative linear relationship with the residual
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errors. However, there were two other models that had AIC values that were nearly as low.

Those models, which separately included Dolly Varden and Coho Salmon abundance as 

covariates in addition to stream flow and sea-surface temperature, were 0.99 and 0.41 times as 

probable to minimize the information loss, respectively. In those models (Figure 1.7), the 

abundance o f Dolly Varden and Coho Salmon each exhibited a weak, negative association with 

the residuals. Together, these indices of habitat quality and predator abundance explained a large 

portion o f the environmentally-based variation in marine productivity (R2 > 0.500; P  = < 0.001). 

The inclusion of these environmental covariates in the abundance-based model of marine 

productivity improved the fit of the model; together, the abundance of wild fry and the selected 

environmental covariates accounted for more than two thirds of the interannual variability in the 

abundance of returned adults.

D iscussion

Recruitment o f juvenile Pink Salmon to Auke Bay is determined by the abundance of 

spawners during the previous fall, the fecundity and reproductive success of those spawners, and 

the survival o f embryos and alevin. The Ricker model provided a good approximation o f the 

relationship between abundances of outmigrating fry and adult spawners. The model accounted 

for more than half of the variation in juvenile recruitment and estimated the carrying capacity as 

16,244 spawners in Auke Creek (Figure 1.4). This suggests that density limitation controls fry 

production in Auke Creek. Throughout this 29-year time series, runs of spawning adults have 

averaged nearly 1 0 , 0 0 0  fish and have exceeded the estimated carrying capacity in more than 

20% of years. Furthermore, the majority o f these fish spawn within an expanse o f habitat 

between the weir and Auke Lake that is less than 300 meters long. Consequently, large numbers 

of fish engaged in spawning within a limited space probably hinders successful deposition and 

survival of embryos in some years. Indeed, high levels of egg retention and redd superimposition 

have been observed in association with high spawner densities in Auke Creek (Fukushima and 

Smoker 1997; Fukushima et al. 1998).

Based on observations of this and other salmon populations, the two environmental 

variables that were hypothesized to have the greatest influence on freshwater productivity were 

stream discharge and temperature during the spawning season. Among the models of freshwater
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productivity with the lowest AIC values were two models that separately included stream 

discharge and temperature during the spawning season. However, the confidence intervals of the 

coefficient estimates for discharge and temperature were very wide in those models, and the 

signs of the coefficients were inconsistent with expectations. Collectively, there was minimal 

support for an influence o f either o f those environmental covariates on freshwater productivity.

The inability of our study to detect a significant, deleterious effect of high stream 

temperature or low discharge was unanticipated, given that poor stream conditions in Auke 

Creek have been linked to low spawning success in some brood years (Taylor 2008). In a study 

o f Pink Salmon spawning in Auke Creek during a single season, sustained stream temperatures 

in excess o f 15 °C were associated with egg retention levels in early-migrating fish that were 

abnormally high relative to those reported in other Pink Salmon populations. Furthermore, low 

stream flows were associated with shortened stream life of females, presumably because of 

delayed stream entry and reduced oxygen supply (Fukushima and Smoker 1997). W hile stream 

conditions described seasonal variation in freshwater productivity in those studies, they failed to 

capture interannual variation in this trait in our study. One possible explanation for this is that 

pre-spawning mortality of early-migrating adults in years of poor stream conditions may leave 

more unseeded spawning habitat for late-spawning adults. Under this hypothesis, gains in 

freshwater productivity later in the season would partially offset losses in productivity earlier in 

the season, thereby stabilizing the aggregate productivity among years.

W hile this study detected no evidence of an association between freshwater productivity 

and interannually variable environmental conditions in Auke Creek, a significant, negative 

temporal trend in freshwater productivity was detected (Figure 1.5). None o f the available 

indices of water quality exhibited a significant temporal trend over the 29-year time series 

(Supplementary Materials; Table S3), which suggests that the decline in fry production may be 

related to the amount of spawning habitat in Auke Creek. The recent history of Auke Creek 

provides a possible explanation for this trend. Improvement of spawning beds in this stream in 

1963 transformed much o f the streambed upstream of the weir from primarily large cobble, 

boulder, and bedrock to gravel substrate. These modifications likely created about 1,000 m 2  of 

new spawning habitat in Auke Creek. However, since the improvement of the spawning beds, 

periodic floods have washed away substantial amounts of gravel, causing the streambed to
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gradually revert toward its natural state (Taylor 2008). These changes in streambed composition 

have probably reduced the amount o f available spawning habitat over the past 40 years. 

Alternatively, the trend in fry productivity may be more related to significant declines in the 

duration of the adult migration, which have been observed in both brood lines over a 40-year 

span (Kovach et al. 2012). Staggering o f the use o f limited habitat over the spawning season is 

thought to enhance the carrying capacity o f this population (Gharrett et al. 2013) and, 

consequently, temporal compression of the adult migration may have contributed to declines in 

fry production.

Recruitment of spawning adults to Auke Creek is determined by the abundance of 

outmigrating fry during the previous spring and their marine survival rates. Our hypothesis was 

that, because spawning habitat limits the number of fry that migrate into the marine environment 

each spring, competition for resources in the nearshore environment is probably minimal, and a 

linear model should capture the marine population dynamics effectively. W hile a linear model 

provided a reasonable fit to the data (Figure 1.6), juvenile abundance accounted for less than a 

third o f the variability in adult recruitment (R2 = 0.317). This suggests that there is a substantial 

amount of interannual variability in marine survival arising from environmental factors. It is 

possible that some of this variability may be attributable to the harvest of returning Auke Creek 

Pink Salmon in the commercial fishery. The influence o f the commercial fishery in Southeast 

Alaska on individual stocks is difficult to determine because the harvest is not terminal and 

includes mixtures o f Pink Salmon stocks that are biologically and geographically diverse (Piston 

and Heinl 2011). Furthermore, the fishery is primarily conducted by spatially dispersed purse 

seiners. Although harvest rates o f Auke Creek Pink Salmon are unknown in this fishery, the total 

annual catch o f Pink Salmon in Northern Southeast Alaska has commonly exceeded 10 million 

fish and has varied substantially over the past 30 years (Supplementary Materials; Figure S2). 

Collectively, these characteristics suggest that, while substantial commercial harvest probably 

occurs, its effects are more likely to be stochastic than deterministic. Hence, the ecological 

effects that we report here have been resolved in spite of background noise originating from the 

commercial fishery.

The early marine period is a critical stage for Pacific salmon. This stage is characterized 

by rapid growth (LeBrasseur and Parker 1964; Healey 1979) and high mortality (Parker 1968;
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Hartt 1980) relative to the aggregate marine period. A potentially important determinant o f early 

marine survival is the degree of synchrony between the emergence of fry and the rapid increase 

in zooplankton abundance that follows the primary plankton bloom (Pitcher and H art 1982). In 

Auke Bay, the dates of initiation and peak biomass of the estuarine primary plankton bloom are 

relatively invariant (Bienfang and Ziemann 1995); consequently, the degree o f synchrony 

between fry emergence and food availability is probably determined by the timing of peak fry 

outmigration. In spite o f this, we failed to detect an association between median migration time 

and marine survival. W hile the median migration date ranged between 1 April and 1 May over 

the time series, its coefficient o f variation was only 0.07, suggesting that, aside from a few 

anomalous years, there was minimal interannual variability in the median date of fry 

outmigration. For example, 80% of the median migration dates occurred within a two week 

window. This could reflect the action of strong stabilizing selection, which has enabled fry to 

consistently time their migrations within a narrow range that typically coincides with optimal 

productivity.

Because predation is likely a large component of mortality of fry during their initial 

marine residency, we hypothesized that abundance indices of two migratory predators (Dolly 

Varden charr and Coho Salmon smolts) would covary negatively with early marine survival. 

Some support for this was provided by the fact that two o f the three most parsimonious models 

o f marine productivity separately included Dolly Varden and Coho Salmon abundance, which 

each exhibited a negative association with productivity. Between the two models that included 

predator abundance, the model with Dolly Varden abundance was better supported. This 

observation may be explained by body size differences. Because multiple size classes of Dolly 

Varden migrate from Auke Creek after overwintering in Auke Lake, whereas Coho Salmon 

outmigrate exclusively as smolts, Dolly Varden inhabiting Auke Bay in spring are generally 

larger than Coho Salmon smolts and may have a higher predatory capacity. Although Dolly 

Varden and Coho Salmon abundance were included in two o f the most parsimonious models, the 

relationships between these predator indices and marine productivity were weak, and a much 

longer time series would likely be required to observe significant associations. An important 

consideration is that the presence of other predators in Auke Bay may diminish the influence of 

individual species. A survey of several fish species present in Auke Bay revealed that, in
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addition to Coho Salmon smolts and Dolly Varden charr, three sculpin species (Great Sculpin, 

Myoxocephaluspolyacanthocephalus; Pacific Staghorn Sculpin, Leptocottus armatus; and 

Buffalo Sculpin, Enophrys bison) frequently had remains o f Pink Salmon fry in their stomachs 

(Mortensen et al. 2000). The influence o f individual species may be further reduced if  fry 

abundance buffers against predation rates (i.e. depensation). This idea is supported by the fit of 

the abundance-based model, which provided some evidence o f depensatory mortality. 

Furthermore, the coefficient o f variation o f the annual number o f outmigrating Pink Salmon 

(0.57) was approximately twice as large as that o f Coho Salmon (0.28) over this time series, 

suggesting that interannual fluctuations in Pink Salmon abundance may overwhelm Coho 

Salmon abundance.

As we predicted, sea-surface temperatures in Auke Bay during early marine residency 

exhibited a significant, positive association with marine survival (Figure 1.7). In addition to its 

direct influence on growth o f fry (Mortensen et al. 2000), sea-surface temperature may also 

indirectly influence growth o f fry by modulating the dynamics o f their nearshore prey. For 

example, the abundance and size o f calanoid copepods, an energetically dense food source for 

fry, is related to water temperatures in Auke Bay. W armer waters in Auke Bay during spring are 

associated with increased growth rates and egg production of copepods when primary production 

is high (Bienfang and Ziemman 1995), thereby providing another mechanism by which warm 

temperatures may enhance growth o f fry. Studies o f tagged juvenile Pink Salmon from Auke 

Creek have demonstrated that marine survival is correlated with growth rate during the nearshore 

residency period (Mortensen et al. 1991), and a mechanism linking early marine growth to 

survival is provided by the previously detailed critical-size hypothesis (Parker 1971; Hargreaves 

and LeBrasseur 1986).

Research has demonstrated that marine survival of Alaskan salmon stocks tends to covary 

positively with freshwater discharge, suggesting that the interaction between mixed layer 

conditions and plankton dynamics is an important determinant of early marine survival (Mueter 

et al. 2005). Based on this, we hypothesized that high stream flows o f Auke Creek during the 

typical extent of the primary plankton bloom would favor increased plankton production in Auke 

Bay and that marine survival would therefore covary positively with stream flow. However, our 

analysis failed to detect a significant association between stream flow and marine survival during
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this time period. In Auke Bay, the peak biomass o f phytoplankton during the bloom invariably 

exceeds that which would be required to saturate grazing zooplankton (Bienfang and Ziemann 

1995). Consequently, environmental factors that contribute to interannual variability o f the 

spring plankton bloom might be uncoupled from zooplankton abundance in the nearshore 

environment. This could explain our inability to detect an association between stream flows in 

early spring and marine survival.

In contrast to early spring, we observed that stream flows late in the fry outmigration 

period exhibited a significant, negative association with marine survival (Figure 1.7). The late 

outmigration period is characterized by steadily increasing stream flows. Furthermore, stream 

flows in late spring are highly variable among years (Figure 1.3). Riverine freshwater input can 

have a dramatic impact upon dynamic hydrological features in estuaries such as river plume 

fronts, which may be important to juvenile salmon (De Robertis et al. 2005; Burla et al. 2010). In 

addition to providing an interface between fresh and saline waters for newly emergent salmon 

acclimating to the marine environment, river plume fronts can concentrate zooplankton and 

potentially provide feeding opportunities for fry (Morgan et al. 2005). It follows that high stream 

flows and corresponding offshore displacement of the plume could cause a shift in the estuarine 

distribution o f juvenile salmon. A study in Prince W illiam Sound reported that dispersal o f Pink 

Salmon fry from the shallow nearshore habitat to offshore waters occurred in association with 

nearshore declines in zooplankton abundance and resulted in a five-fold increase in predatory 

mortality (Willette 2001). The distribution o f salmon fry in estuaries likely reflects a trade-off 

between the protected, shallow nearshore habitat and the energetically rich offshore waters, and 

the presence of nearshore fronts may present an opportunity to realize the benefits of both 

habitats. Tagging studies conducted in Auke Bay, which demonstrated that nearshore residence 

time o f juvenile Pink Salmon from Auke Creek varied both seasonally and among brood years 

(Mortensen 2000), provide some support for this hypothesis. Unfortunately, the determinants, 

characteristics, and variability of freshwater fronts in Auke Bay have not been explored in detail, 

and without information of this nature, this hypothesis remains largely speculative.
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Conclusions

Our results indicate that freshwater productivity o f Auke Creek Pink Salmon is primarily 

influenced by spawning habitat availability rather than interannual fluctuations in water quality. 

Auke Creek supports large numbers o f migrating adults (mean ~ 10,000) that spawn primarily in 

a short expanse o f habitat ju st above the intertidal zone. This creates opportunity for competition 

for limited spawning habitat and negative interactions between spawning adults and developing 

eggs (i.e. intraspecific mortality). An additional facet o f the characteristic pattern o f this 

spawning migration is that, since spawning occurs within several hundred meters of the stream 

mouth, limited in-stream migration time probably reduces exposure to stressful stream 

conditions. The life history characteristics o f Auke Creek Pink Salmon are archetypical o f this 

species, which suggests that productivity of other populations may be limited primarily by the 

area and composition o f the streambed near the tidal interface and less so by water quality. 

However, it is less sensible to generalize our results to other Pacific salmon species, which often 

exhibit life characteristics that differ dramatically from Pink Salmon. Another important factor to 

consider is that our study of freshwater productivity examined only freshwater conditions.

Pacific salmon grow rapidly in the marine environment prior to returning to fresh water, and this 

accumulation of body mass ultimately contributes to the amount of energy that is channeled into 

reproductive output (e.g. Bagenal 1969; Tamate and M aekawa 2000). Consequently, growth 

conditions in the marine environment may be an important component of salmon fecundity, and 

there is a possibility that some of the environmentally-based variation in freshwater productivity 

that our models failed to account for is attributable to interannual variation in oceanic conditions.

In contrast to the freshwater phase, our results suggest that marine productivity of Auke 

Creek Pink Salmon is more related to local environmental conditions in the nearshore 

environment than habitat availability. This is consistent with an increasingly well supported 

hypothesis, which asserts that adult recruitment is determined largely by early marine survival 

(e.g. Karpenko et al. 1998; Beamish et al. 2004; Farley et al. 2007). One o f the underpinnings o f 

this hypothesis is that predation on fry, which is thought to be size-selective, is a critical 

component o f early marine survival. Our results supported that idea and indicated that local 

environmental factors that condition the vulnerability of fry to predators had a greater influence 

on early marine survival than predator abundance itself. Pink Salmon fry migrate into Auke Bay
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immediately after emerging from the gravel, which is a ubiquitous trait of both Pink and many 

Chum Salmon populations. The absence o f a protracted feeding stage prior to marine entry may 

render fry from these species particularly vulnerable to predation compared to other salmonid 

species, such as Sockeye and Coho Salmon, which generally rear in fresh water over one or more 

summers prior to outmigrating. Additional support for the importance of the nearshore stage was 

provided by observations from the Southeast Coastal M onitoring project, which demonstrated 

that annual catch per unit effort (CPUE) o f juvenile Pink Salmon was significantly correlated 

with the annual commercial harvest o f Pink Salmon in Southeast Alaska (a proxy for adult 

recruitment) over a 13-year monitoring period (Orsi et al. 2012). The CPUE data were obtained 

from offshore surveys conducted in the seaward migratory corridor o f Icy Strait, which indicated 

that much o f the marine mortality o f juvenile Pink Salmon was sustained during the nearshore 

residence period.

An important implication of our results is that ecological factors, such as competition for 

limited spawning substrate and estuarine conditions during the fry outmigration period, have 

shaped the characteristic bimodal spawning migration o f Auke Creek Pink Salmon and conferred 

distinct life history adaptations in early- and late-spawning salmon. Adaptation o f embryonic 

development trajectory is evident in embryos of early spawners, which face higher levels of 

mortality due to redd superimposition by late spawners (Fukushima et al. 1998). In order to 

increase their survival probabilities, early-spawned embryos have evolved to complete epiboly, a 

shock-resistant developmental stage that confers resistance to redd superimposition, faster than 

their late-spawned counterparts (Joyce 1986). Indeed, the bimodal spawning migration may be 

maintained largely by dispersive selection against eggs that are deposited in advance o f the late- 

spawning segment, but without sufficient time to reach epiboly (Smoker et al. 1998; Gharrett et 

al. 2013). Furthermore, early-spawned embryos compensate for warmer stream temperatures 

during incubation, thereby increasing the likelihood that fry emerge concordantly with the vernal 

warming o f Auke Bay (Hebert et al. 1998). The adaptive significance o f developmental 

compensation is supported by the relationship between sea-surface temperature and early marine 

survival that we demonstrated. Given the dynamic nature of Auke Creek and Auke Bay, it is 

likely that neither spawning segment possesses a consistent lifetime fitness advantage. Instead, 

the existence of temporal structure and diverse life history traits likely buffers against interannual
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fluctuations in environmental conditions, thereby providing some stability to the productivity of 

Auke Creek Pink Salmon.
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Figures

Figure 1.1 - Map o f Auke Bay, Alaska. The position o f the Auke Creek w eir is depicted by a 
bold line.
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Figure 1.2 - Observed stream temperature and reconstructed stream flow o f Auke Creek during 
late-summer and fall (1984-2012). Daily means (solid black lines) and 95% prediction intervals 
(dotted black lines) are depicted for each environmental attribute. The historic mean abundance 
of spawning pink salmon in the stream on each day is depicted by a gradation scheme. The daily 
abundance of spawners is based on a stream life of seven days.
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F igure 1.3 - Observed temperature o f Auke Bay and reconstructed stream flow o f Auke Creek 
during late-winter and spring (1983-2011). Daily means (solid black lines) and 95% prediction 
intervals (dotted black lines) are depicted for each environmental attribute. The historic mean 
abundance o f Pink Salmon fry (1000s) in Auke Bay on each day is depicted by a gradation 
scheme. The daily abundance of fry was based on a nearshore residency period of fifteen days.

40



Figure 1.4 - Abundance-based model o f freshwater productivity o f Auke Creek Pink Salmon (R2 
= 0.542; P  = 5.371*10-6). The shaded region depicts the 95% confidence interval.

F igure 1.5 - Environmentally-based model o f freshwater productivity o f Auke Creek Pink 
Salmon (R2  = 0.148; P  = 0.039). The response variable was the residuals from the abundance- 
based model o f freshwater productivity. The model included year o f adult migration. The shaded 
region depicts the 95% confidence interval.

41



Figure 1.6 - Abundance-based model o f marine productivity o f Auke Creek Pink Salmon (R2  = 
0.317; P  = 0.002). The shaded region depicts the 95% confidence interval.
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Figure 1.7 - Univariate plots depicting the relationship between marine productivity and each of 
the environmental covariates that were supported by the most parsimonious models. In each plot, 
the response variable is the residuals from a model o f marine productivity that was based on the 
other covariates. Hence, these plots capture the relationship between a given covariate and 
marine productivity after other important environmental sources o f variation have been 
accounted for. The shaded regions depict the 95% confidence intervals.
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C h ap te r 2 - Evolution of phenology in a salm onid population: a poten tial adaptive response
to clim ate change 1

A bstrac t

An important issue in evolutionary research is whether wild populations can evolve at 

rates sufficient to keep pace with climate change. M any populations have responded to climate 

change through shifts in the timing o f life history events, but it is often unclear whether these 

phenological changes represent phenotypic plasticity or genetic adaptation. One o f the first 

demonstrations o f contemporary evolution o f phenology in a wild salmonid population was 

provided by monitoring o f experimentally manipulated allozyme marker alleles in a temporally 

structured population o f pink salmon (Oncorhynchus gorbuscha). The marker alleles, which 

were changed by selective breeding o f late-spawning salmon, were stable during the first four 

generations o f monitoring before exhibiting abrupt changes in adult salmon in a single 

generation. These observations suggested that recent trends toward earlier migration time in this 

stream have a genetic basis. Here, we extend that research by using observations o f the late 

marker alleles in juvenile salmon to demonstrate that these genetic changes in migration time 

were caused by a strong selective event during the oceanic phase. The selective event appeared 

to be driven by early warming o f the nearshore marine environment and consequent increased 

survival o f early-migrating fry relative to late-migrating fry. These results suggest that a trend 

towards warmer spring sea-surface temperatures has conferred an adaptive advantage to earlier- 

migrating fish. Despite rapid evolution o f phenology, this population has maintained historic 

levels o f adult recruitment. Collectively, these results indicate that local adaptation o f phenology 

may support resilience to climate change in temporally structured populations.

1 Manhard, C.V., J.E. Joyce, and A.J. Gharrett. Evolution of phenology in a salmonid population: a potential 
adaptive response to climate change. Formatted for submission to Oikos.
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In tro d u c tio n

An understanding o f the mechanisms that drive phenotypic change is essential to 

predicting whether wild populations can respond adequately to periodic environmental 

fluctuations and persistent climatic trends. O f particular importance to population persistence is 

whether evolution in response to new selective pressures can occur swiftly enough to prevent 

irreversible declines in abundance or genetic vitality. The importance o f evolutionary rates has 

long been recognized and, accordingly, the topic has been examined by numerous studies, many 

o f which have reported microevolution in contemporary populations (Losos et al. 1997,

Svensson 1997, Hendry and Kinnison 1999, Carroll et al. 2007). Collectively, these studies 

suggest that patterns o f microevolutionary change in response to changing environmental 

conditions may be apparent over relatively short time series. However, evidence o f adaptive 

microevolution in response to temporal environmental variability remains scarce, primarily 

because it is generally difficult to determine whether an observed phenotypic change is the 

consequence o f phenotypic plasticity, which is characterized by environmentally-induced 

variation o f a given genotype, or genetic adaptation, which is characterized by differential fitness 

o f distinct genotypes in a given environment (Gienapp et al. 2008). Genetic monitoring, a 

technique in which neutral molecular markers that are associated with phenotypes are tracked 

through time in order to identify adaptive genetic changes in relation to a changing environment, 

provides a means o f distinguishing between adaptive and plastic responses. Hansen et al. (2012) 

proposed that, in order to convincingly demonstrate adaptive genetic change based on molecular 

markers, a researcher must ensure that ( 1 ) the monitored traits exhibit sufficiently high 

heritability; (2) the traits are relevant to specific selective agents; (3) the traits are monitored over 

time; (4) selection is tested; (5) shifts in traits are consistent with the expected response to 

environmental changes; and (6 ) replacement by a genetically different population has been ruled 

out.

One mechanism by which plants and animals may respond to a changing environment is 

by shifting the timing o f life history events, known as phenology, in order to track optimal 

environmental conditions in time (Bellard et al. 2012). Adaptive phenology arises because 

temporal environmental variability often creates windows that are optimal for reproduction and 

growth, and failure to time life history stages with their appropriate windows can have
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deleterious fitness consequences (Visser and Both 2005, M iller-Rushing et al. 2010). Phenology 

is o f primary importance for migratory species, such as Pacific salmon (Oncorhynchus spp.), 

which must initiate an array o f physiological, morphological, and behavioral changes at precise 

times during their life cycle (reviewed by Groot and Margolis 1991, Taylor 1991). The precision 

with which salmonids time migration can produce variability o f phenology within populations, 

which is maintained by adaptation to seasonal environmental conditions (Smoker et al. 1998, 

Quinn et al. 2000, Fillatre et al. 2003, Gharrett et al. 2013). For example, investigations into the 

locus Ots C locklb, a circadian rhythm gene that may be associated with detection o f seasonal 

changes in day length, have demonstrated latitudinal allele frequency clines that ranged from 

weak in pink (O. gorbuscha) and coho (O. kisutch) salmon to strong in Chinook (O. 

tshawytscha) and chum (O. keta) salmon, thereby revealing a possible fingerprint o f local 

adaptation o f phenology (O ’M alley et al. 2010). Comparisons o f seasonally distinct migratory 

groups o f Chinook salmon that spawn in the same river, which demonstrated significant genetic 

divergence at three circadian clock genes, but not neutral markers, provided additional evidence 

o f local adaptation o f phenology (O ’M alley et al. 2013). The tight coupling o f salmonid ecology 

and phenology, along with the generally high heritability o f phenological traits in salmonids 

(median h 2 = 0.51; Carlson and Seamons 2008), suggests that salmonid populations can respond 

to periodic environmental fluctuations or persistent climatic trends through microevolution of 

phenological traits.

Pink salmon that spawn in Auke Creek, Alaska provide an example o f a population that 

exhibits genetically determined variability in phenological traits. The Auke Creek pink salmon 

population is comprised o f even- and odd-year brood lines, whose complete genetic segregation 

is maintained by the strict two-year life cycle that pink salmon exhibit throughout their natural 

range (Heard 1991). W ithin each brood line, spawning adults return to Auke Creek in two 

distinct segments; ‘early’ spawners typically return between mid- and late August, whereas 

migration o f ‘late’ spawners typically occurs between early and mid-September (Taylor 1980). 

The structuring o f the adult spawning run is maintained by the high heritability o f migration time 

within each spawning segment (h2 = 0.4; Smoker et al. 1998). Moreover, early- and late-run pink 

salmon exhibit genetically based differences in embryonic development rate, a phenological trait 

that influences juvenile outmigration timing (Hebert et al. 1998).
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Experimental manipulations o f a neutral marker locus have provided the basis for genetic 

monitoring o f the Auke Creek pink salmon population. Artificial breeding was used to change 

the allele frequencies o f an isolocus pair in late-migrating fish in 1979. The marking event led to 

significant differences between the early- and late-spawning segments at the late-migration 

marker locus (LMML) in the odd-year brood line, which persisted throughout the 1980s 

(Gharrett et al. 2001). An absence o f genetic differences at the LMML was first observed in 

adults returning to Auke Creek in 1991, and observations o f subsequent spawning runs in 1993, 

2001, and 2011 confirmed that the allele frequencies at the LM M L no longer differed 

significantly between pools o f early- and late-migrating fish, thereby suggesting that the 

temporal structure o f the odd-year brood line has decreased in extent. Furthermore, significant 

changes in the frequency o f the marker alleles were observed throughout the entire brood line in 

1991, which indicated that the observed demographic changes were the result o f anomalously 

low fitness o f late-migrating fish from broodyear 1989 (Kovach et al. 2012). W hile that study 

produced evidence o f natural selection against late-migrating fish, an important factor that must 

be considered is that extensive hatchery propagation occurred in Auke Creek during the 1970’s. 

Hatchery juveniles were often unmarked, making it difficult to evaluate the demographic 

consequences o f propagation. There exists the possibility that preferential use o f late-migrating 

fish as broodstock artificially inflated the late-spawning segment. Consequently, the declines in 

the abundance o f late-migrating fish in the 1980s may represent a return to a natural population 

state. Nonetheless, observations o f the genetic marker can provide insight into the mechanisms 

underlying evolution o f phenology.

From a combination o f census and genetic data collected from outmigrating juveniles 

during the 1980s and early 1990s, we evaluated the ecological basis o f changes in the temporal 

genetic structure o f the odd-year brood line. Additionally, daily census data collected from pink 

salmon that spawn within the Hugh Smith Lake system in Southeast Alaska were examined in 

order to determine whether environmental processes operating over large spatial scales have 

produced changes in run composition similar to those observed in Auke Creek. Importantly, 

because Auke Creek and Hugh Smith Lake are separated by several hundred miles, the 

signatures o f large-scale climate change may differ at these two locations. Hence, the absence of 

a parallel response in these systems would not necessarily indicate that the recent demographic
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changes at Auke Creek are localized in nature. The primary questions that these data addressed 

were (1) Have juvenile Auke Creek pink salmon exhibited changes in the LM M L and, if  so, are 

the changes indicative o f enhanced gene flow between spawning segments, selection against 

late-run fish, or both? (2) Is the anomalously poor fitness o f late-run fish from broodyear 1989 

the result o f poor reproductive success or low marine survival? (3) Do environmental factors that 

are relevant to lifetime fitness provide evidence o f an ecological mechanism o f evolution? and 

(4) Has the distribution o f migration time o f pink salmon homing to the Hugh Smith Lake system 

exhibited a shift toward earlier dates and decreased duration as has been observed in Auke 

Creek?

M ethods

F ield  and  laboratory methods

Study site - Auke Creek, a 323-m outlet o f Auke Lake that drains into Auke Bay, Alaska 

(Figure 2.1), is a migratory corridor and spawning habitat o f pink salmon which has produced 

returns o f adults that ranged from 1,500 to 28,000 fish over the past 40 years. W ithin each o f the 

genetically isolated odd- and even-year lineages, migration o f spawning adults has historically 

followed a bimodal distribution consisting o f two distinct segments o f fish that are separated by 

approximately two weeks (Taylor 1980). The U.S. National Marine Fisheries Service operates 

Auke Creek Research Station, a permanent fish-counting weir and experimental salmon hatchery 

located at the head o f tidewater, which enables complete censuses o f spawning adults and 

outmigrating juveniles.

Genetic marking o f  late-migration timing - A selective mating experiment was conducted 

in 1979 with the goal o f incorporating a putatively neutral genetic marker into the late-spawning 

segment o f the odd-year brood line in Auke Creek (Lane et al. 1990). During the spawning 

migration o f 1979, skeletal muscle samples were collected from 3,906 pink salmon that entered 

Auke Creek after 15 September and, therefore, represented the latest-migrating fish that year. 

Each sample was subsequently genotyped by electrophoretically screening the malate 

dehydrogenase (MDH-B1,2*) isolocus pair (A llendorf and Thorgaard 1984). Adults (n = 407) 

which had a n M DH-B1,2*70  allele but not an MDH-B1,2*130  allele were artificially spawned, 

and the resulting embryos were incubated in the Auke Creek Hatchery. Genetically marked
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juveniles (n = 178,219) were released into Auke Creek between 7 April and 7 May in 1980 to 

coincide with the peak o f outmigration o f wild fry. Interbreeding between experimentally- 

marked returning adults and wild adults during the spawning period o f 1981 produced changes in 

the allele frequencies o fM DH-B1,2*  in the late-spawning segment; the frequency o f the 70* 

allele increased from 0.027 in 1979 to 0.134 in 1983, and the frequency o f the 130* allele 

decreased from 0.022 in 1979 to 0.010 in 1983. M onitoring o f migrating adults revealed that 

allele frequencies a tM DH-B1,2*  were stable and differed between samples o f early- and late- 

migrating fish in each odd brood year from 1983 to 1989, thereby demonstrating that the 

experimental manipulations effectively marked genetic material that is correlated with late- 

migration time.

Census and genetic data  - During each spring from 1984-1992, daily counts were made 

o f all pink salmon fry that passed the Auke Creek weir during their downstream migration. Daily 

samples o f fry (typically 10-20 fish) were collected for genotype determination. Genotyping was 

accomplished by using starch gel protein electrophoresis to resolve allozyme banding patterns at 

the LMML (M D H -B1,2*).

Auxiliary environmental data  - The Auke Bay Laboratories Climatological Series is a 

data set consisting o f daily environmental records that have been maintained at the Auke Bay 

Marine Station since February 1963. These data include measurements o f stream temperatures of 

Auke Creek and sea-surface temperatures o f Auke Bay. Seasonal variation in stream temperature 

is associated with differences in freshwater productivity between early- and late-spawning adults 

(Fukushima and Smoker 1997), and interannual variation in sea-surface temperature is important 

to marine survival o f juveniles (Manhard, Chapter 1). Hence, these environmental data may 

provide evidence o f an ecological mechanism underlying phenological changes.

Auxiliary biological data  - Parallel shifts in phenology were evaluated with a 32-year 

time series o f daily counts o f pink salmon that home to the Hugh Smith Lake system (Figure

2.1). Hugh Smith Lake, located southeast o f Ketchikan on mainland Southeast Alaska, covers a 

surface area o f approximately 3.2 km 2  and reaches a maximum depth o f 120 m. The lake empties 

into the Boca de Quadra inlet via Sockeye Creek, a 50 m long stream that serves as a migratory 

corridor for pink, coho, and sockeye (O. nerka) salmon migrating upstream to Hugh Smith Lake 

and its inlets. The two major inlets o f Hugh Smith Lake are Buschmann Creek, which flows
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northwest 4 km to the head o f the lake, and Cobb Creek, which flows north 8  km to the southeast 

head o f the lake. Located at the outlet o f Hugh Smith Lake is a permanent salmon weir, which 

has been operated from mid-June to November by the Alaska Department o f Fish and Game 

(ADF&G) since 1982. The majority o f pink salmon that enter Sockeye Creek spawn upstream of 

the weir, presumably in the major inlet streams and their tributaries (S. Heinl, ADF&G; personal 

communication). Although this w eir is operated to monitor sockeye and coho salmon 

populations, complete daily counts o f adult pink salmon migrations have been opportunistically 

documented since 1982. During that time period, annual migrations o f adults have typically 

ranged from 4,000 to 20,000 fish.

Statistical m ethods

Graphical and  statistical comparisons o f  temporal patterns - Because the M D H- 

B1,2*130  allele underwent relatively small manipulative changes and exhibited allele 

frequencies close to zero, it provided minimal power for detecting genetic changes.

Consequently, the statistical methods that we used to characterize the temporal patterns o f the 

LM M L included only th e M DH-B1,2*70  allele, which we refer to as the late-migration marker 

allele (LMMA). Temporal patterns o f the LM M A frequencies were monitored during five odd- 

year juvenile outmigration periods (1984-1992). Graphical comparisons o f five-day running 

averages o f frequencies o f the LM M A were made among brood years to describe interannual 

changes in genetic differences between spawning segments. A two-sample test o f equality of 

proportions, in which juveniles were classified as early or late migrants based on whether they 

were sampled at the w eir before or after the historical median outmigration date (20 April), was 

used to determine whether early- and late-migrating fry exhibited significant genetic differences 

at the LMMA. Only data from the calendar dates that included the first and last 100 fish sampled 

during each migration period were included in the test.

Overall late-marker allele frequency - Interannual patterns in the overall (population- 

wide) frequency o f the LM M A in the odd-year brood line can provide insight into whether allele 

frequency changes are most likely caused by increased gene flow between spawning segments or 

reduced fitness o f the late-spawning segment. Gene flow between spawning segments within the 

stream should have caused the frequency o f the LM M A to decline within the late-spawning 

segment, but remain stable overall. Conversely, reduced fitness o f the late-spawning segment
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should have caused a reduction in the overall frequency o f the LMMA. Estimating the overall 

frequency o f the LM M A and its statistical certainty is complicated by the variation o f daily 

return numbers and unequal sample representation throughout the migratory periods. These 

issues were addressed with a parametric bootstrap algorithm that resampled alleles at the LMML 

( 1 , 0 0 0  iterations) in running five-day pools o f genetic samples collected throughout each o f the 

juvenile outmigrations. The algorithm divided the migration distribution each year into n five 

day periods, beginning on the first date in which genetic samples were collected. W ithin each ith 

period, the maximum likelihood frequency o f the LM M A (f ) was estimated from the genetic 

samples that were collected during that period. Each iteration o f the algorithm began with a 

random draw o f alleles (xi) from a binomial distribution:

x t ~  Bin( f i ,  a{)

where at was the number o f alleles that were sampled within a period ( 2  * the number of 

genetically sampled fish). In each year, the overall frequency o f the LM MA (f) was estimated as:

z r = i ^ 2  N t
r _  ____ Ul

where Ni was the census number o f outmigrating juveniles that were observed during a period. 

The bootstrap simulation provided a point estimate and 95% confidence interval for the overall 

LM M A frequency during each year o f genetic monitoring.

Stock separation algorithm - A stock separation algorithm (Pella and M ilner 1987), 

which used allele frequencies o f the LMML in collections o f early- and late-migrating adults 

from 1983 as a baseline, estimated the total number o f fish that belonged to the early and late 

segments in each adult and juvenile migration. The baseline consisted o f 564 adults collected on 

10 and 18 August and 161 adults collected on 21 September, which represented the unmarked 

early segment and the marked late segment respectively. Statistical replication o f the stock 

separation algorithm was accomplished with a non-parametric bootstrap simulation that 

resampled alleles (2 0 , 0 0 0  iterations) in both the baseline and in running five-day pools o f fish.

On each iteration o f the bootstrap simulation, an expectation-maximizing algorithm estimated the 

proportion o f fish that belonged to each segment by comparing running five-day averages of 

allele frequencies o f genetic samples to allele frequencies o f the baseline. The estimated 

proportion o f fish from each segment was then multiplied by the census number o f fish that were
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observed on that date to produce daily estimates o f the number o f early and late fish. This 

process was repeated on each day o f the migration period. These daily estimates were used to 

construct plots o f the migration distribution o f the early and late segments each year. The 

bootstrap simulation provided point estimates and 95% confidence intervals for the annual 

numbers o f fish from each segment, dates o f migration mid-points o f each segment, and temporal 

differences between the two segments. Furthermore, the bootstrap simulation provided point 

estimates and 95% confidence intervals for the number o f juveniles produced per spawner 

(freshwater productivity) and the number o f returned adults per outmigrating juvenile (marine 

survival) in each segment. Comparisons o f freshwater productivity and marine survival between 

spawning segments and among brood years provided insight into the ecological mechanisms 

underlying demographic changes in Auke Creek during the genetic monitoring period.

Environmental conditions - Graphical depictions o f environmental conditions during the 

genetic monitoring period were used to provide a qualitative evaluation o f potential ecological 

mechanisms. Demographic plots o f the daily number o f adults from each segment that were 

engaged in spawning in Auke Creek were constructed with the estimates from the stock 

separation algorithm and under the assumption that the average stream life was seven days 

(Fukushima and Smoker 1997). Thermal-gradient plots o f stream temperatures were 

superimposed over the demographic plots to depict the conditions encountered by early- and 

late-spawning adults.

The initial marine residence period, which typically occurs in the nearshore environment, 

is critical to the survival o f juvenile salmon (e.g. Beamish and M ahnken 2001, Farley et al.

2007). Observations o f tagged juvenile pink salmon in Auke Bay have demonstrated that the 

duration o f this residence period varies seasonally and interannually. For instance, in one year, 

the duration o f nearshore residency ranged from twenty-nine days in fry tagged on 1 April to 

seven days in fry tagged on 13 May (Mortensen et al. 2000). Given the uncertainty in the 

duration o f nearshore residency, we focused on the first few days in Auke Bay, where juveniles 

are likely most susceptible to mortality from predation and starvation. Demographic plots o f the 

number o f juveniles from each segment that were residing in the nearshore habitat o f Auke Bay 

on each day were made with estimates from the stock separation algorithm and included only 

fish that had outmigrated from Auke Creek within a week o f that date. Thermal-gradient plots of
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sea-surface temperatures, which were superimposed over the demographic plots, provided a 

graphical depiction o f the conditions that juveniles encountered during their first week in the 

nearshore environment.

M igration o f  Hugh Smith p in k  salmon - Daily counts o f migrating adult pink salmon from 

the Hugh Smith Lake system (1982-2013) were used to produce graphical depictions o f the 

typical migration distribution in the even- and odd-year brood lines. Temporal trends in the time 

and duration o f the migration were quantified over the 32-year time series by estimating general 

linear models. The time o f migration in a given year was defined as the median adult migration 

date, whereas the duration o f the migration period was defined as the number o f days separating 

the dates on which first 5% and 95% of the adult migration passed the weir. Estimates o f trends 

in these migration characteristics enabled us to evaluate whether there have been changes in 

migration time in the Hugh Smith Lake system that parallel those observed in Auke Creek.

Results
Graphical and  statistical monitoring o f  the late-marker allele - Daily samples of 

juveniles revealed that, during each o f the four odd-year juvenile outmigrations from 1984-1990, 

there was a rapid increase in the LM M A frequency near the mid-point o f the migration (Figure

2.2). In each o f these outmigration periods, the LM M A frequency was approximately 6-7 percent 

higher in juveniles sampled from the late segment than in the early segment, which was a highly 

significant difference (P << 0.001). A substantial decline in the LM M A frequency was first 

evident in outmigrating juveniles during the spring o f 1992. Although there remained a 

significant difference in the LM M A frequency between samples o f early- and late-migrating 

juveniles (P = 0.021), the frequency was only 2 percent higher in late-migrating fish, which was 

an appreciable decline from previous brood years.

The temporal characteristics o f the LM M A in adult pink salmon were described 

previously (Kovach et al. 2012). W e briefly present those results here so that comparisons can be 

made between adults and juveniles. Returning adults exhibited patterns in the LM M A that were 

similar to those observed in juveniles during the monitoring period. In each o f the three odd-year 

adult migrations from 1985-1989 a substantial increase in the LM M A frequency occurred after 

the mid-point o f the migration (Figure 2.3), and the frequency o f this allele was 6-7 percent
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higher in late-migrating adults than in early-migrating adults, which was a significant difference 

in each instance (P << 0.001). However, beginning in the adult migration o f 1991, there was a 

marked decline in the magnitude o f the increase in this allele over the migration period, and the 

allele frequencies o f samples o f early- and late-migrating adults were nearly identical that year 

(P = 0.820).

The results o f the bootstrap analysis demonstrated that the overall frequency o f the 

LM M A declined substantially in adults that returned to Auke Creek in 1991 after being relatively 

stable during the previous three migration periods (Figure 2.4). Similarly, the overall frequency 

o f the LM M A declined substantially in juveniles that outmigrated from Auke Creek in 1992 

relative to the previous four outmigration periods, in which the overall frequency o f this allele 

was relatively stable.

Patterns in population demography - The stock separation algorithm produced estimates 

o f early and late components o f the juvenile outmigration. During the four odd-broodyear 

outmigration periods from 1984-1990, the late-migrating segment accounted for an estimated 51­

6 8 % of the total fry abundance. Beginning in the outmigration o f 1992, the proportion o f late- 

migrating fry declined to only 12% of the total fry abundance. Bootstrap replication produced 

point estimates and standard errors for marine survival and freshwater productivity in the early- 

and late-migrating segments o f each odd-brood year from 1983-1989 (Figure 2.5). In each o f the 

four brood years, marine survival o f late-migrating fry was significantly lower than that o f early- 

migrating fry. This discrepancy was particularly pronounced in broodyear 1989, where the 

survival rate o f late-migrating fry was only 1.4 percent. This survival rate was lowest o f the four 

brood years and was less than one tenth o f the survival rate o f early-migrating fry from the same 

brood year. Conversely, freshwater productivity o f late-migrating adults was significantly higher 

than that o f early-migrating adults in each odd-brood year from 1983-1987 (Figure 2.5). 

Broodyear 1989 was distinct in that the mean bootstrap estimate o f freshwater productivity of 

late-migrating adults was similar to that o f early-migrating adults. However, aspects o f the 

sampling design produced a high standard error for the estimated freshwater productivity o f the 

late run that broodyear.

Environmental conditions - The estimated temporal distributions o f spawning activity in 

the early and late segments indicated that, while the median migration dates o f the two segments
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were separated by 19, 11, and 15 days during the first three years o f monitoring, there was some 

overlap in their distributions (Figure 2.6). In the fourth year o f monitoring, the early and late 

segments shared the same median migration date and the temporal distributions o f spawning 

activity were indistinct. Seasonal stream temperature patterns varied substantially among years. 

During 1985 and 1991, stream temperatures dropped below 14 °C in mid-August, which was in 

advance o f peak spawning activity. Conversely, stream temperatures did not fall below 14 °C 

until 1 September in 1987 and 15 September in 1989, and early-migrating fish were therefore 

exposed to potentially stressful average temperatures o f 15.4 and 15.8 °C in 1987 and 1989 

respectively. The 1989 adult migration was unique in that it was bimodal; an initial pulse o f fish 

began entering the stream on 4 August, and a second pulse began entering the stream in large 

numbers on 21 August. The combination o f high stream temperatures and early stream entry 

caused adults from the first pulse to experience an average temperature o f 16.5 °C during their 

stream life. W ith the exception o f the anomalously warm year in 1989, late-migrating fish did 

not enter Auke Creek in large numbers until temperatures had dropped below 14 °C and 

therefore experienced average stream temperatures that ranged between 12.0 and 13.3 °C in each 

o f those years. In 1989, however, late-migrating fish experienced an average stream temperature 

o f 14.2 °C despite a late median migration date that occurred on 8 September.

The estimated migration distributions o f juveniles indicated that the median outmigration 

dates o f the early and late segments differed by 12 and 15 days in 1984 and 1986, whereas they 

differed by only 6 and 7 days in 1988 and 1990. This was reflected in the initial marine residency 

periods o f the early and late segments, which exhibited considerably higher overlap in the last 

two years o f monitoring as compared to the first two years (Figure 2.7). Because o f their earlier 

outmigration dates, early juveniles encountered cooler temperatures in Auke Bay than juveniles 

from the late segment in all observed years. The outmigrations o f 1986 and 1990 are particularly 

noteworthy because o f the contrasting temperature profiles experienced by early- and late-run fry 

in those years. In 1986, sea-surface temperatures remained below 5 °C through April, which 

caused early-run fry to experience an average temperature o f 5.4 °C. Late-run fry, conversely, 

began to enter Auke Bay in peak numbers during a warming event in the beginning o f M ay and 

experienced an average temperature o f 8.8 °C. The thermal advantage experienced by late-run 

fry in 1986, which was largest o f the first four years o f monitoring, may have diminished the
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survival advantage o f early-run fry; the survival rate o f late-run fry was 60% of that observed in 

early-run fry that year, which was the highest relative survival rate estimated over the monitoring 

period. During the spring o f 1990, an early warming period that began on 15 April coincided 

with the peak outmigration o f the early segment. Consequently, early fry experienced an average 

sea-surface temperature o f 7.0 °C during their first week in Auke Bay. Conversely, the peak 

outmigration o f the late segment that spring coincided with a period o f cooling sea-surface 

temperatures, and late fry experienced an average temperature o f 7.7 °C. Although late fry 

experienced a positive temperature discrepancy relative to early fry in 1990, the discrepancy was 

substantially smaller than in the first three years o f monitoring. The absence o f a pronounced 

thermal advantage o f late-run fry in 1990 may have enhanced the survival advantage o f early-run 

fry. This was supported by the fact that the survival rate o f late-run fry was only 8 % of that 

observed in early-run fry, which was the lowest relative survival rate over the monitoring period.

M igration o f  Hugh Smith p ink  salmon - Annual plots o f the temporal distribution o f adult 

pink salmon migrating into the Hugh Smith Lake system revealed little evidence of 

multimodality in the even- or odd-year brood line, thereby suggesting that the migration into this 

system typically occurs in a single, primary pulse (Figure 2.8). General linear models o f the 

temporal characteristics o f the adult migration detected a significant trend towards earlier median 

migration dates (P = 0.04) and a moderately significant trend toward shorter adult migration 

periods (P = 0.06) in the even-year brood line (Figure 2.9). In the odd-year brood line, negative 

slopes were estimated for both the date and duration o f the adult migration, but neither was 

statistically significant.

Discussion

One o f the few documented instances o f microevolution in a wild population came from a 

study o f pink salmon that spawn in Auke Creek, Alaska, which used a neutral genetic marker to 

demonstrate that changes in the temporal characteristics o f the adult spawning migration were 

due to genetic evolution (Kovach et al. 2012). Here, we expanded this research by incorporating 

observations o f the same genetic marker, which were collected from juvenile pink salmon during 

their spring seaward migration. During the first four years o f genetic monitoring, the patterns of 

the LMM A in juveniles paralleled those that were observed in adults. Both life history stages
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exhibited a pronounced increase in the frequency o f the LM MA beginning near the midpoint of 

the migration, and fish sampled from the early and late segments o f the migration displayed 

significantly different allele frequencies, thereby demonstrating considerable genetic structure in 

both life history stages (Figures 2.2, 2.3). The presence o f parallel seasonal patterns o f this allele 

in adults and juveniles demonstrates that the phenology o f these two life history stages is tightly 

coupled and indicates that natural selection upon one stage would likely produce an evolutionary 

response in the other. W hile the fingerprint o f the LM MA was strong in juveniles outmigrating 

during spring o f 1990, the adult migration o f 1991 was the first instance after genetic monitoring 

began in which a mid-season increase in the LM M A frequency or significant allelic differences 

between samples o f early- and late-run fish was not observed. Similarly, the magnitude o f the 

mid-season increase in the LM M A frequency declined considerably in the juvenile outmigration 

o f the following spring (1992). Hence, it appears as though this population experienced genetic 

changes in phenology at two different life history stages and that this evolutionary event first 

occurred during the oceanic phase o f broodyear 1989. Subsequent observations o f this 

population in 1993, 2001, and 2011, which also failed to demonstrate a fingerprint o f the LMMA 

in late-run fish, suggests that these genetic changes have persisted over multiple generations 

(Kovach et al. 2012).

W hile it is evident that microevolution occurred in this population during the period of 

genetic monitoring, the potential driving forces are numerous and may include natural selection, 

genetic drift, and gene flow. Environmental conditions that modulate stream entry date can 

create opportunity for gene flow between spawning segments in some years. In order to address 

this possibility, we used a bootstrap approach to evaluate the overall frequency o f the LMM A in 

juveniles from the odd-year brood line under the expectation that gene flow alone would cause 

allele frequency changes within spawning segments while producing minimal changes in the 

brood line as a whole. W e observed that the overall frequency o f the LM M A (Figure 2.4) was 

stable during the first four years o f genetic monitoring, before undergoing a substantial decline in 

1992, which was consistent with the pattern observed in adults. Collectively, these results 

indicate that gene flow between spawning segments is probably not a primary driver o f the 

observed changes.
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The plausibility o f genetic drift and interpopulation gene flow as drivers of 

microevolution have also been evaluated in this population. Estimates o f the effective population 

size (Ne) can yield insight into expected changes due to genetic drift. Observations o f genotype 

data over 23 microsatellite loci produced estimates o f N e in the odd-year brood line that ranged 

between 788 and 6005 adults, depending on the estimation method and observed time frame 

(Kovach et al. 2013a). This range o f possible N e values suggests that we might expect a change 

o f 0.003-0.007 in the LM M A frequency due to genetic drift alone. However, the observed 

change between the adult migrations o f 1989 and 1991 was substantially higher than this range 

(ALMMA = 0.020). Observations o f another putatively neutral control locus, which exhibited 

minimal genetic change during the monitoring period, provided additional evidence that genetic 

drift was not nearly strong enough to produce the observed genetic changes (Kovach et al. 2012). 

Gene flow was evaluated with LM MA frequencies from nearby pink salmon populations in an 

island-continent model. The model estimated that the migration rate (m) necessary to produce the 

observed genetic changes ranged from 0.69-0.85 (Kovach et al. 2012), which was substantially 

higher than estimates o f straying rates o f Auke Creek pink salmon (m = 0.02-0.04; M ortensen et 

al. 2002) and gene flow between proximate populations and Auke Creek (m = 0.0015; Gharrett et 

al. 2001). These results suggest that gene flow from other populations was probably inadequate 

to produce the observed changes. Hence, the most probable cause o f the genetic changes was a 

natural selection event in brood year 1989, which resulted from relatively low survival o f late- 

run fish during their oceanic phase.

The stock separation algorithm, which produced estimates o f the number o f early- and 

late-run fish during the adult and juvenile migrations, presented an opportunity to examine 

freshwater productivity and marine survival o f each spawning segment during the genetic 

monitoring period (Gharrett et al. 2013). Bootstrap estimates revealed that freshwater 

productivity o f late-run fish was significantly higher than that o f early-run fish during the first 

three years o f genetic monitoring (Figure 2.5). This is consistent with the ecology o f this 

population, in which redds o f early-run fish incur heavy mortality due to scouring and 

mechanical disturbance by spawners arriving later in the season (Fukushima et al. 1998). Indeed, 

early- and late-run fish exhibit different life history characteristics, including stream life 

(Fukushima and Smoker 1997) and embryonic development patterns (Joyce 1986), which are
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probably adaptations to spawner densities. Despite these life history adaptations, early-run fish 

generally appeared to have lower fitness in the freshwater environment.

Poor spawning efficiency has been observed in association with high stream temperatures 

(> 15 °C) during the adult migration in Auke Creek (Fukushima and Smoker 1997).

Furthermore, it is thought that stream temperatures must be sufficiently low (typically < 14 °C; 

Velsen 1987) during and after the spawning period in order for embryos to survive and develop. 

These observations indicate that exposure to high stream temperatures in 1989 (Figure 2.6) may 

have caused poor freshwater productivity in the initial pulse o f early-run adults. This idea was 

supported by the fact that the outmigration o f early-run juveniles during the following spring was 

late and truncated relative to previous years, thereby indicating that few offspring were produced 

from the first pulse o f spawners. Interestingly, the two spawning segments produced similar 

numbers o f fry per spawner in 1991, which was a substantial departure from the previous three 

years. The median migration date o f the late run coincided with peak abundances o f early-run 

spawners that year, and it is possible that the relatively poor freshwater productivity o f late-run 

spawners resulted from competition with early-run spawners. W ithout their characteristic fitness 

advantage in the freshwater environment, late-run fish from broodyear 1991 appeared to incur 

further demographic declines.

W e observed consistently higher marine survival o f early-run fish relative to late-run fish 

during each year o f the genetic monitoring period (Figure 2.5). In order to understand the basis 

o f these differences, it is necessary to consider the ecological factors that determine marine 

survival o f pink salmon in this system. Juveniles transition from Auke Creek to the estuarine 

environment o f Auke Bay shortly after emerging from the gravel. This early marine residence 

period, which is characterized by high and variable mortality, is a primary determinant o f marine 

survival (Manhard, Chapter 1). M uch o f our understanding o f the early marine ecology o f Auke 

Creek pink salmon came from a study that examined how physical conditions, plankton 

abundance, and predator densities influenced survival and growth o f juveniles in Auke Bay over 

four brood years (Mortensen et al. 2000). The study observed that the primary factor controlling 

growth was temperature and found minimal evidence that prey abundance limited growth during 

the middle o f the outmigration period. However, growth rates o f the earliest migrants appeared to 

be limited by both low temperatures and prey abundance, while the latest migrants, which
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entered Auke Bay in May, exhibited declines in growth rates despite encountering favorable sea- 

surface temperatures and high zooplankton densities (Figure 2.10). This pattern may have been 

caused by heavy grazing by early-run fry or other competitors (e.g. juvenile herring, capelin) and 

resultant changes in the size composition o f zooplankton. Substantial declines in the quality of 

prey would likely constrain the growth potential o f late-run fry and potentially cause some of 

them to starve. Another important observation from that study was that the abundance of 

predators o f juvenile pink salmon [e.g. coho salmon (O. kisutch), Dolly Varden trout (Salvelinus 

malma), sculpin (family Cottidae)] was relatively low in early spring before increasing 

dramatically in late April and throughout May. Predation is likely a large component o f early 

marine mortality o f pink salmon, and a primary mechanism linking early marine growth to 

survival is provided by the size-selective mortality hypothesis, which asserts that larger fry are 

less vulnerable to predators, potentially because o f their increased swimming speed and because 

their girth provides protection against gape-limited predators (Parker 1971, Hargreaves and 

LeBrasseur 1986). Late-run fry are smaller than early-run fry throughout the nearshore residence 

period (Mortensen et al. 2000) because o f their shorter marine growth period and, potentially, 

because they are at a disadvantage in competing with earlier migrants for food. Collectively, our 

knowledge o f the early marine ecology o f Auke Creek pink salmon suggests that the latest 

outmigrating fry may suffer higher mortality from starvation and size-selective predation than fry 

that enter Auke Bay during the middle o f the outmigration period.

W e have established the oceanic phase as the period in which substantial genetic changes 

initially occurred, and we have demonstrated that, while early-migrating fish consistently 

exhibited higher marine survival during this stage, the lifetime fitness difference between these 

spawning segments was probably mitigated by higher freshwater productivity o f late-run fish 

during the first three years o f monitoring. Furthermore, we have presented evidence that the 

consistently higher marine survival o f early-run fry reflects a size advantage that results from 

being on the leading edge o f the migration. The magnitude o f this size advantage is probably 

modulated by seasonal sea-surface temperature patterns which influence the growth o f juvenile 

salmon, as well as their planktonic prey. Hence, size-dependent mortality is a potential 

temperature-mediated mechanism by which genetic changes in migration time may occur. 

Demographic plots o f the fry outmigration in the spring o f 1990 indicated that there was
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considerable overlap in the nearshore residence periods o f early- and late-migrating fry (Figure 

2.7). Additionally, because o f a period o f early warming in Auke Bay that coincided with the 

peak outmigration o f early-run fry, late-run fry appeared to experience a relatively small thermal 

advantage that spring. Hence, there was potential for anomalously high size-selective predation 

on late-run fry from broodyear 1989. This is supported by the observation that marine survival of 

early-run fish was more than ten times that o f late-run fish in broodyear 1989, which was 

substantially larger than in the previous years o f monitoring.

Our results suggest that early warming o f Auke Bay favored higher fitness o f early- 

migrating fry in the spring o f 1990. Significant trends toward earlier migration times in both 

brood lines (Kovach et al. 2012) and warmer spring sea-surface temperatures in Auke Bay 

(Figure 2.11) have been observed in this system over the past four decades, and the ecological 

mechanism that we detailed provides a potential link between these trends. Because low sea- 

surface temperatures limit growth o f early-migrating fry, we might expect earlier vernal warming 

to cause the optimal growth window to occur earlier in spring. Furthermore, although we do not 

have information on trends in zooplankton phenology in Auke Bay, trends toward earlier onsets 

o f spring zooplankton blooms have been observed in other systems (Edwards and Richardson 

2004, Thackeray et al. 2010), and earlier zooplankton blooms would likely reinforce a shift in the 

optimal window. Observations o f tagged juveniles have provided some evidence that the growth 

rates o f the latest migrants are limited by prey availability, which supports the idea that a shift in 

the optimal growth window could cause changes in phenology. However, the coupling o f the 

phenology o f the marine and freshwater stages suggests that fitness gains from exploitation of 

more favorable growth conditions in early spring would be met with fitness losses from exposure 

to stressfully warm stream conditions early in the spawning season. Hence, we might expect the 

migration distribution to become truncated rather than merely shifted in time. This idea is 

consistent with the significant trends toward truncated adult migration periods that have been 

observed in both brood lines over the past four decades (Kovach et al. 2012).

Thus far we have provided evidence o f evolution o f phenology o f Auke Creek pink 

salmon, which may have resulted from warming sea-surface temperatures. Given that these 

climatic changes are probably linked to processes operating over a large spatial scale, it is 

possible that parallel responses are occurring in other salmon populations. The Hugh Smith Lake
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system is located approximately 270 miles southeast o f Auke Creek (Figure 2.1) and supports a 

pink salmon population on which daily counts have been made over a 32 year period, making it 

one o f the best available sources for evaluating temporal trends in pink salmon migrations. While 

the Hugh Smith Lake system consists o f a considerably larger expanse o f riverine habitat than 

Auke Creek, it supports runs o f spawning adults that are comparable in size. Hence, natural 

selection arising from competition for spawning habitat may be weaker in this system. This was 

evident in the fact that, unlike the characteristic multimodal migration at Auke Creek, the 

migration into Hugh Smith Lake typically occurred in a single pulse (Figure 2.8). Despite this 

apparent lack o f temporal run structure, we observed significant trends towards earlier and 

truncated migrations in the even-year broodline (Figure 2.9), which paralleled those observed at 

Auke Creek. The odd-year broodline exhibited insignificant trends toward earlier and truncated 

migrations, but the powers o f those tests were low (median migration date = 0.06; migration span 

= 0 .2 2 ), indicating that a much longer time series would be required to produce a reasonable 

chance o f detecting significant trends in this brood line. Our demonstration o f parallel 

phenological changes in a geographically separate system suggests that other salmonid 

populations may evolve earlier life history schedules in order to exploit warming conditions. 

Indeed, the literature concerning phenological changes in anadromous salmonids is growing, and 

earlier migration times have now been documented in Auke Creek coho salmon (Kovach et al. 

2013b), Columbia River steelhead trout (O. mykiss: Robards and Quinn 2002), Bristol Bay 

sockeye salmon (O. nerka: Quinn et al. 2007), and Atlantic salmon (Salmo salar) in Northern 

Ireland (Kennedy and Crozier 2010).

Depending on the species and location, different patterns o f phenological change in 

response to climate warming might be expected in salmonid populations. Expected 

environmental changes include increasingly stressful stream temperatures in late summer, which 

should favor later adult migration times, and earlier vernal warming, which should favor earlier 

fry outmigration times. The pattern o f phenological change in a given population is influenced 

by the relative strength o f selection at these two critical life history stages, along with the 

phenotypic plasticity o f traits associated with migration time. Because pink salmon do not have 

an extended freshwater growth period prior to outmigrating, they are probably more vulnerable 

to size-selective predation than species such as coho and sockeye salmon, which typically reside
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in freshwater for one or more years. Consequently, environmental factors that condition 

vulnerability to predation in pink salmon (e.g. temperature, food availability) should have a large 

bearing on fitness, so that selection o f juvenile outmigration time is particularly strong. 

Furthermore, pink salmon generally spawn in the lower reaches o f coastal streams and therefore 

have a relatively short in-stream migration. This life history characteristic reduces the duration of 

exposure to stressful stream conditions prior to spawning, potentially reducing the relative 

strength o f selection against early adult migration time. Another important consideration is that, 

in lower latitude salmonid populations, where spawning adults frequently encounter stream 

temperatures that are close to their thermal threshold, high levels o f pre-spawning mortality (i.e. 

fish kills) and poor survival o f embryos likely results in intense selection against early migrating 

fish. Auke Creek is located close to the latitudinal center o f the North American range o f pink 

salmon and these events are less frequent than in lower latitude streams, such as those o f the 

Pacific Northwest. Finally, and possibly most importantly, the pattern o f phenological change in 

a given population is, in part, an outcome o f the amount o f adaptive life history variation that it 

supports. In Auke Creek pink salmon, both brood lines harbor fine-scale genetic variation in 

phenology, and it is this genetic structure that has provided the basis for contemporary evolution. 

In populations where this adaptive variation does not exist, the limited scope o f phenotypic 

plasticity may provide the only means o f shifting phenology in response to climate change.

Conclusions

W e have presented an example o f microevolution o f phenology in a wild population, 

which meets all o f the criteria necessary to demonstrate adaptive genetic change (Hansen et al. 

2012). Despite apparently strong natural selection against late-run fish and resulting 

demographic changes, the odd-year brood line has exhibited sustained levels o f adult recruitment 

over the past 17 generations. Similarly, the even-year brood line, which has exhibited parallel 

changes in phenology, has also sustained its recruitment levels over the same time period 

(Kovach et al. 2013b). This suggests that fine-scale local adaptation o f phenology has supported 

sustained productivity o f Auke Creek pink salmon in the face o f a rapidly changing climate and 

underscores the importance o f biocomplexity to the resilience o f wild populations (Hilborn et al. 

2003, Greene et al. 2010). Heritable variation in phenology has been demonstrated in wild 

populations over a wide range o f taxa, and individuals within these populations often possess
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traits that are locally adapted to environmental conditions characteristic o f their life history 

schedules (e.g. birds: M 0 ller 2001, Sheldon et al. 2003; fish: Hendry et al. 1999, Quinn et al. 

2000; plants: W eis and Kossler 2004, Hall and W illis 2006). Our results suggest that the pace of 

contemporary evolution may be sufficiently high to enable some o f these populations to adapt to 

climate change without suffering from significant declines in productivity and emphasize the 

importance o f tailoring management programs to recognize and conserve genetic diversity.
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Figure 2.1 - Maps o f the Auke Lake (top panel) and Hugh Smith Lake (bottom panel) systems. 
The locations o f salmon weirs are denoted by bold black lines.
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F igure 2.2 - Five-day running averages o f the frequency o f the late-migrating marker allele in juvenile pink salmon sampled 
throughout the duration o f each odd-broodyear outmigration from 1984-1992. M edian outmigration dates are indicated by a dashed 
line.



Figure 2.3 - Five-day running averages o f the frequency o f the late-migrating marker allele in 
adult pink salmon sampled throughout the duration o f each odd-year migration period from 
1985-1991. Median migration dates are indicated by a dashed line, and the 1983 late-marker 
allele frequencies are depicted for early (circle) and late (triangle) fish.
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Figure 2.4 - Annual bootstrap estimates (20,000 iterations) o f the overall frequency o f the late- 
migrating marker allele (MDH-B1,2*70) in migrating adult (solid circle) and juvenile (open 
circle) pink salmon at Auke Creek. Errors bars are the 95% confidence intervals o f each 
estimate.
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Figure 2.5 - Bootstrap estimates (20,000 iterations) o f marine survival and freshwater productivity (emigrating fry per spawner) over 
four brood years o f early- (open circle) and late- (closed circle) migrating pink salmon. Error bars are the 95% confidence intervals of 
each estimate. Shading emphasize the comparison o f runs within each brood year.
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F igure 2.6 - Stream temperatures experienced by spawning pink salmon from the early (solid 
line) and late (dashed line) subpopulations during the genetic monitoring period. Subpopulation 
assignment was made with a stock separation algorithm that used allele frequencies at the late- 
marker locus, and abundance estimates are based on a stream life o f seven days. Three-day 
running averages o f Auke Creek temperatures (°C) are depicted by a gradation scheme.
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Fry outmigration date

Figure 2.7 - Sea-surface temperatures experienced by juvenile pink salmon from the early (solid 
line) and late (dashed line) subpopulations during the genetic monitoring period. Subpopulation 
assignment was made with a stock separation algorithm that used allele frequencies at the late- 
marker locus, and abundance estimates include only fish that were in the first seven days o f their 
marine residency. Three-day running averages o f Auke Bay sea-temperatures (°C) are depicted 
by a gradation scheme.

76



77

F igure 2.8 - Running five-day averages o f the proportion o f the adult pink salmon migration that passed the Hugh Smith Lake weir on 
each day o f a given year. Individual years were selected to represent the beginning, middle, and end o f the 32-year time series. The 
even- and odd-year brood lines are depicted on the left and right columns respectively.
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F igure 2.9 - Temporal trends in the median date and duration o f the adult migration for odd- (closed circles, solid line) and even- 
(open triangles, dashed line) year pink salmon homing to the Hugh Smith Lake system.
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F igure 2.10 - Estimated growth rates with standard error bars for Auke Creek pink salmon 
during their nearshore residence period. Estimates were obtained from a previous tagging study 
that monitored four brood years (Mortensen et al. 2000).
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Figure 2.11 - Temporal trend in spring sea-surface temperature o f Auke Bay (1975-2011). Sea- 
surface temperatures were averaged over the period o f 1 March - 30 June. The shaded area 
depicts the 95% confidence interval.
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C h ap te r 3 - Local adap ta tion  of phenology revealed in out crosses betw een spaw ning
segm ents of a salm onid popu la tion 1

A bstrac t

Local adaptation has been demonstrated in spatially or temporally distant animal 

populations but seldom in proximate populations. To address the scale o f local adaptation in 

Pacific salmon (Oncorhynchus spp.), two generations o f hybrids between temporally separated 

spawning segments were made in a population o f pink salmon (O. gorbuscha) and compared 

with controls to test for declines in marine survival that resulted from outbreeding depression and 

to evaluate the genetic architecture underlying adult migration time. Marine survival was 

generally similar between control and hybrid lines, which suggested that the effect of 

outbreeding upon marine survival was minimal at such a fine scale o f genetic divergence. In 

contrast, Bayesian mixed-effects models revealed that adult migration times in hybrid lines were 

intermediate to those o f controls and additive sources o f genetic variation were significant, which 

indicated that these spawning segments exhibit additive genetic differences in migration time. 

Similarly, a line cross analysis revealed that an additive model best described the genetic 

architecture o f adult migration time. The implications o f these results are that (1) local adaptation 

can facilitate genetic divergence o f life history traits between proximate subpopulations; (2 ) 

artificial relaxation o f natural barriers to gene flow can cause maladaptive shifts in life history 

traits; and (3) wild populations may harbor fine-scale adaptive variation that supports 

productivity and sustainability.

1 Manhard, C.M., J.J. Hard, M.D. Adkison, W.W. Smoker, and A.J. Gharrett. Local adaptation of phenology 
revealed in out crosses between spawning segments of a salmonid population. Formatted for submission to
Molecular Ecology.
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In troduction

Genetic variation in breeding time has been demonstrated in populations spanning a wide 

range o f taxa. Individuals within these populations often have life history traits that are locally 

adapted to environmental conditions characteristic o f their breeding time (e.g. birds: M 0 ller 

2001; Sheldon et al. 2003; fish: Smoker et al. 1998; Hendry et al. 1999; Quinn et al. 2000; 

plants: Weis and Kossler 2004; Hall and W illis 2006). Fidelity o f breeding time constrains gene 

flow between population segments, which facilitates genetic divergence through local adaptation, 

provided the effects o f divergent selection exceed those o f genetic drift and gene flow, and there 

is sufficient genetic variability in the traits under selection (Kawecki and Ebert 2004). By 

optimizing fitness in individuals that breed at different times, local adaptation staggers the use o f 

resources over time, which may increase the carrying capacity o f resource-limited populations 

(Gharrett et al. 2013). Additionally, local adaptation promotes genetic variation o f phenology, 

which can enable populations to sustain productivity during climate changes (Greene et al. 2010; 

Schindler et al. 2010). Hence, local adaptation is likely an important component o f the 

productivity and sustainability o f populations that support genetic variation in breeding time.

Because o f their characteristic ability to home to spawn in their natal habitat with high 

temporal precision and the wealth o f life history variation that they exhibit over their extensive 

range, anadromous Pacific salmon have been the focus o f many studies on local adaptation 

(Fraser et al. 2011). The high fidelity with which salmon typically home enables adaptation to 

local niches within heterogeneous ecological landscapes, while constraining gene flow between 

diverging salmon populations. This pattern o f population divergence due to local adaptation is 

probably the primary means by which many genetically distinct populations have come to exist 

in each o f the anadromous Pacific salmon species (Carvalho 1993). Indeed, local adaptation is 

well documented in salmonid populations separated by large geographic distances (Taylor 1991). 

However, with the use o f stock transfers and hatchery propagation to enhance salmon fisheries or 

rehabilitate wild salmon populations, there is concern that introgression o f non-adapted genetic 

material into wild populations will cause a decline in the number o f locally adapted populations, 

thereby reducing diversity that is a crucial buffer against inexorable environmental changes 

(Waples 1991; Eldridge and Naish 2007; Naish et al. 2008). Furthermore, interbreeding between
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locally adapted populations can reduce fitness in hybrids, a phenomenon known as outbreeding 

depression (Lynch 1991; Gharrett et al. 1999; Edmands 1999; Gilk et al. 2004).

Outbreeding depression manifests through two different mechanisms that can occur 

independently or jointly. Outbreeding between populations from different local environments 

can depress fitness by disrupting fitness-related genotype-by-environment interactions (Edmands 

2007). This mechanism, which is termed ecological outbreeding depression, acts on first and 

subsequent generations o f hybrids (Lynch 1991). Alternatively, outbreeding between genetically 

isolated populations can disrupt complexes o f genes at epistatic loci, leading to a decline in 

fitness. Epistatic gene complexes can arise through jo int selection for multiple loci during local 

adaptation and random drift (Lynch 1991). Populations may evolve different epistatic gene 

complexes under similar selection pressures because random drift participates in determining the 

genetic material that is available for co-adaptation (Lenski and Travisano 1994) and because 

favorable allele combinations are maintained by natural selection. Epistatic outbreeding 

depression typically does not manifest until the second generation or later (Emlen 1991) because 

epistatic gene complexes are maintained in the gamete contributed by each parent.

Pink salmon that home to Auke Creek, Alaska provide an excellent model system for 

examining adaptive divergence between isolated populations. The strict 2-year anadromous life 

cycle o f pink salmon (Anas 1959; Turner and Bilton 1968) has resulted in genetically distinct 

odd- and even-year brood lines in Auke Creek. In a study o f two generations o f hybrids between 

the even- and odd-brood lines, reduced survival relative to controls was observed in F 2  hybrids 

only, which indicated that outbreeding depression had resulted from disruption o f epistatic gene 

complexes (Gharrett et al. 1999). Similarly, more pronounced outbreeding depressive effects 

were observed in the second generation o f hybridization between pink salmon from Auke Creek 

and spatially distant (~1000 km) Pillar Creek, Kodiak, Alaska (Gilk et al. 2004). These studies 

demonstrated that large temporal and spatial barriers have enabled populations o f salmon to 

diverge, most likely through some combination o f local adaptation and genetic drift, and that 

removal o f such barriers can have detrimental effects on overall fitness. However, there has been 

a dearth o f investigations into fine-scale adaptive differences that may arise between proximate 

salmon populations.
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This study attempts to provide insight into the scale at which local adaptation occurs by 

examining out crosses between pink salmon from temporally distinct subpopulations that spawn 

in the same habitat at Auke Creek, but do so at different times during a spawning season. 

Comparisons were made between controls and two generations o f hybrids between these 

subpopulations in order to look for evidence o f outbreeding effects on two traits that contribute 

to lifetime fitness: marine survival and adult migration time. W hile ecological outbreeding 

depression may be evident in F 1 hybrids, epistatic outbreeding depression does not usually occur 

until the second generation o f hybridization. Hence, contrasts o f marine survival between 

controls and hybrids over two generations provided the opportunity to investigate whether 

outbreeding has disrupted genotype-by-environment interactions or co-adapted gene complexes 

that have been structured by local adaptation. Also o f interest was the degree o f variability of 

outbreeding effects on marine survival among families. Higher variability o f marine survival 

among families would be expected to increase the variance o f family size. This is important 

because effective population size (Ne), a measure o f the ability o f a population to perpetuate its 

genetic variation into subsequent generations, generally decreases as variance o f family size 

increases (Crow and Kimura 1970). To address this possibility, parentage analysis was used to 

estimate family-specific marine survival rates, and variation in those rates was compared 

between controls and hybrids. Adult migration time was compared between controls and hybrids 

within each generation o f this experiment in order to determine whether this life history trait has 

been shaped by local adaptation to the seasonally distinct environmental regimes encountered by 

the early- and late-spawning segments. Because adult migration time is closely coupled with 

fitness in salmon (Dickerson et al. 2005; Scheuerell et al. 2009) and highly heritable in the Auke 

Creek pink salmon population (Smoker et al. 1998), hybrids may exhibit maladaptive shifts in 

this trait. In addition, a line cross analysis was performed in the second generation o f this 

experiment in order to investigate the primary sources o f genetic variation underlying adult 

migration time. The primary questions that these data addressed are (1) Does outbreeding 

depression result in reduced marine survival o f F 1 or F 2  hybrids relative to their respective 

control lines? (2) Do variances o f family-specific marine survival rates differ between control 

and hybrid lines? (3) Does outbreeding result in a shift in adult migration time, such that hybrids 

exhibit migration times intermediate to early- and late-spawning controls? and (4) To what
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extent does additive genetic variation contribute to adult migration time and are other sources of 

genetic variation (e.g. dominance) important?

M ethods 

F ield  m ethods

Auke Creek, a short (323 m) outlet steam of Auke Lake that drains into Auke Bay, is a 

spawning ground and migratory corridor o f a temporally structured population o f pink salmon. 

Genetically isolated even- and odd-year brood lines exist at Auke Creek, and within each brood 

line there are temporally separate early- and late-spawning segments whose peak migration dates 

have been separated historically by about two weeks (Taylor 2008). Located at the mouth of 

Auke Creek and at the head o f tidewater are a permanent counting weir and experimental salmon 

hatchery, which are operated by the U.S. National Marine Fisheries Service. Early- and late- 

migrating pink salmon were collected at the weir and artificially spawned at the hatchery in the 

summers o f 2005 and 2006 to create F 1 hybrid and control lines, which were propagated into the 

F 2  generation by artificially spawning returning F 1  progeny that were collected at the weir in 

2007 and 2008. The breeding design was structured to enable the development rates o f hybrids to 

be compared with those o f early and late controls (Echave 2010). In order to minimize 

environmental effects, each control line was incubated in the same thermal regime as its hybrid 

counterpart; since early and late controls were spawned on separate days, this required the 

creation o f separate early and late hybrid lines. The run source (i.e. early vs. late) o f each 

experimental cross was defined by the run source o f the female parent. For instance, an early- 

female by late-male cross was considered an early hybrid. The first generation breeding design 

was accomplished by using gametes collected from early-run males and females (22 August 

2005; 3, 4, and 5 August 2006) to produce early controls in each brood year; semen collected 

from the early-run males in 2005 was also cryopreserved to create late hybrids in the odd-brood 

line with eggs collected from late-run females on 7 September 2005. W e did not produce a late 

hybrid line in the even-brood line because cryopreservation o f semen from early-run males in 

2006 failed. W e used cryopreserved semen collected from late-run males two brood years prior 

(11 September 2001; 6 and 9 September 2002) and eggs collected from early- and late-run 

females on the aforementioned dates to produce early hybrids and late controls in each brood
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year. Because o f our failure to produce late hybrids in 2006, we did not release a corresponding 

late control line in the even-brood line.

Identical methods were used to rear first and second generation progeny. Each full-sib 

cross was equally divided between two randomly selected compartments within stacks of 

modified vertical incubation trays (FALTM; Marisource, Milton, WA). Control and hybrid 

embryos were incubated in separate stacks at the Auke Creek hatchery in ambient temperature 

water that was pumped from the creek and treated twice a week with dilute formalin (1:6000 in 

static water) for 1 hour to inhibit growth o f fungus and bacteria. The source water was delivered 

to the stacks by a single PVC pipe, which was split into two separate pipes o f approximately one 

foot in length just prior to entering the incubation stacks in order to ensure that embryos o f 

controls and hybrids incubated in a common environment. Developing embryos were incubated 

until they were ~5% yolk by weight, whereupon the fish were anesthetized by immersion in an 

aqueous M S-222 (Tricaine M ethanesulfonate) solution (100 mg/liter) for approximately 3 

minutes. Anesthetized fish were immediately marked with an experiment-identifying adipose fin 

excision and contrasting pelvic fin excisions to distinguish controls from hybrids. Controls and 

hybrids were concurrently released into Auke Creek in April, at the peak o f natural pink salmon 

outmigration, and all returning adults were collected at Auke Creek w eir during late summer, as 

they migrated into the stream, and examined for the absence o f an adipose or pelvic fin to 

determine if  they belonged to one o f our experimental lines. All marked fish were removed from 

the population, and unmarked fish were returned to Auke Creek above the weir. Tissue samples 

were obtained from each marked adult by clipping the axillary process at the base o f the 

remaining pelvic fin. During the summers o f 2007 and 2008, marked adults were tagged with 

numbered FloyTM (Floy Tag Inc., Seattle, WA) tags and held captive until full maturity. A 

randomly selected sample o f those fish was used as broodstock for the second generation 

crosses. M arked fish that were not chosen as broodstock were euthanized by cranial concussion 

followed by exsanguination.

Laboratory methods

Tissue samples from experimental broodstock and their returned progeny were stored in 

numbered vials o f preservative solution (Seutin et al. 1991) and refrigerated at -22 °C. We 

isolated total genomic DNA with DNeasy Blood and Tissue kits (QIAGEN, Inc., Valencia, CA).
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Five microsatellite loci (O gola  [Olsen et al. 1998]; OkilO  [Smith et al. 1998]; 0ne102  [Olsen et 

al. 2000]; One109 [Olsen et al. 2000]; and OtsG311 [Williamson et al. 2002]) were chosen to 

unequivocally assign parental pairs to progeny. Amplification and separation o f target fragments 

o f microsatellite loci were accomplished with methods that are detailed in the supplementary 

materials.

Statistical m ethods

Parentage - M icrosatellite genotype information was used to assign parental pairs to 

returning adults with PROBMAX (Version 1.2; Danzmann 1997), which uses exclusion analysis 

based on known parental mating combinations. Parentage assignment was confirmed when the 

genotype o f an individual was consistent with those o f a prospective parental pair for all five loci 

(10/10 alleles). In instances where a near perfect match (9/10 alleles) was observed between an 

individual and a pair o f parents, an additional pair o f microsatellite loci (Ots103 [Small et al. 

1998] and Ots208 [Greig et al. 2003]) was used to confirm the assignment o f those parents. 

Hence, a threshold o f 13/14 alleles (92.9%) over seven loci was used for parentage assignment. 

Parentage information was used to confirm that returning adults belonged to our experiment, to 

determine the experimental line to which each returning adult fish belonged, and to assign fish to 

their respective full-sib families.

M arine survival - Log-linear analysis o f first and second generation marine survival was 

conducted in SYSTAT (SYSTAT Software, Inc. 2004) to quantify interactions between run, 

cross, and survival. A statistical power analysis was conducted in R  (R Core Team 2015) with 

the package ‘pw r’ to determine the minimum proportionate decrease in marine survival that 

would be needed to observe a statistically significant difference between controls and hybrids, 

given our release numbers.

Family-specific marine survival - A Bayesian hierarchical analysis was used to quantify 

family-specific marine survival in the first and second generation. The hierarchical framework 

has the advantage o f enabling families with small release numbers to absorb some o f the 

inferential strength o f families in which many fry were released. In order to simplify the 

computations, the control and hybrid experimental lines in each brood year were treated as 

independent experiments, which were modeled separately. The computational load was further 

reduced by including only families in which 100 or more fry were released in the hierarchical
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models. The Bayesian approach produces posterior distributions o f parameters o f interest, which 

enables straightforward comparisons o f parameters between experiments. Samples from the 

posterior distribution o f each parameter were drawn with the Markov chain M onte Carlo 

(MCMC) algorithm, which was performed by using the package ‘R2W inBUGS’ (Sturtz et al. 

2005) to call WinBUGS (Lunn et al. 2000) from R. The likelihood o f observing y tj  returned 

adults from the ith family and within the j th experimental line followed a binomial distribution:

where p tj  is the marine survival proportion o f n tj  released fry from a family. The hierarchical 

framework specifies that the marine survival proportions o f individual families are drawn from a 

common distribution that is specific to a given experimental line. This assumption is based on 

the idea that, within an experimental line, offspring from different families should exhibit marine 

proportions that are similar because o f experimental treatment, but different because o f 

environmental and genetic effects that contribute to marine survival. Specifically, the logit (i.e. 

log-odds ratio) o f the survival proportion o f each family (ltj ) followed a normal distribution:

where the hyperparameters that govern the distribution o f the logits are the mean (uy) and the 

inverse (ry) o f the variance, which WinBUGS accommodates as the variance parameter in 

normal distributions. Non-informative, yet proper priors were used for the hyperparameters ^y 

and Ty. A normal zero-mean prior with a large variance was used for ^y, and a gamma prior with 

parameters that yield a large variance was used for Ty:

lij ~  N (^ j,X j)

p j ~  N (p  = 0, a 2 = 1 x  106)

Tj ~  G am (a  = 0.001, = 0.001)

The overall mean survival proportion o f the j th experimental line (py) and its standard deviation

on the logit scale (oy), were calculated as functions o f and Tj:

e x p & j)
^  1  + e x p (^ j)
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Comparisons o f the posterior distributions o f the param eterp j  among experimental lines 

provided a complement to the log-linear analysis. Because the parameter oj  provided an index of 

variation in survival among families, comparisons o f its posterior distributions among 

experimental lines enabled us to evaluate whether we could expect outbreeding to cause a 

decline in N e . In order to determine an appropriate burn-in period, two separate chains with 

slightly different starting values were constructed for each model, and convergence was 

evaluated by the Gelman-Rubin convergence diagnostic R (Gelman and Rubin 1992), which 

compared variance within and between chains. A thinning interval o f 10 was used for each 

model in order to reduce autocorrelation among posterior samples. Plots o f posterior predictive 

probabilities, which were calculated for each family within each experimental line, were 

constructed to determine whether each hierarchical model adequately captured the variation in 

marine survival.

Adult migration time - Components o f variation o f adult migration time o f first and 

second generation experimental lines were quantified with linear mixed-effects models under a 

Bayesian framework. This modeling framework was robust to our migration time data, which 

were unbalanced because o f unequal marine survival among families. Additive genetic 

components o f variation arising from covariance among siblings were estimated as random 

effects, while components o f variation arising from experimental treatment (e.g. type o f cross) 

were estimated as fixed effects. Samples from the posterior distribution o f each effect were 

drawn with the MCMC algorithm, which was conducted in R  with the package ‘M CM Cglmm’ 

(Hadfield 2010). This analysis was performed separately for the early and late experiments in 

each generation in order to avoid confounding the effects o f run source with those o f cross. The 

adult migration data were comprised o f incomplete and non-equivalent experimental blocks, 

which precluded reliable estimation o f a block effect or o f sire-by-dam interaction.

Consequently, those terms were not included in the model. The linear mixed-effects model that 

describes all pertinent fixed and random effects on adult migration time within a brood year 

(2005, 2006, 2007, or 2008) and run (early or late) was:

Yijkl = M +  Q +  D[j + S[k + Eijki

w herey j k l  is the Julian date o f weir passage (i.e. migration time) o f an individual. The overall 

mean migration time is ^ , Ct is the fixed effect o f the ith cross (hybrid or control), D j  is the
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random effect o f the j th dam within the ith cross, S ik is the random effect o f the k th sire within the 

ith cross, and £ykl is the residual random error associated with the lth replicate o f the j th dam and k th 

sire within the ith cross. Non-informative, yet proper priors were used for the fixed and random 

effects. A normal, zero-mean prior with a large variance was selected for Ct :

Ct ~  N fa  = 0 , a 2 = 1  x  1 0 10)

The inverse-gamma is the classical prior distribution for variance components, but this prior can 

cause inefficient sampling o f the posterior distribution o f small variances. To address this, a 

method known as parameter expansion (Gelman et al. 2008; Browne et al. 2009) was used to 

give more flexibility to the M CMC algorithm by partitioning each random effect R t into two 

independent components:

Rt = a%  

a ~  N ( 0 ,1000)

T)t ~  N (0 , o 2 )

~  In vG a m (0 .5 ,0.5)

Each model was run for 500,000 iterations with a burn-in period o f 20,000, and a thinning 

interval o f 50 was used to reduce autocorrelation among posterior samples. Convergence was 

tested by comparing two chains that were run with different starting values, and posterior 

predictive probabilities were estimated in order to evaluate model performance. A useful feature 

o f the MCMCglmm function is that it enables computations o f the posterior distribution of 

functions o f variance components. For instance, the proportion o f variation that is attributable to 

covariance among maternal (PD) and paternal (Ps ) siblings can be calculated as functions o f the 

posterior values o f the variance components:

P = ° iJ
+ £ijkl

Sik
Ps =

Dij + Sik + Z-ijkl

This gives the posterior distributions o f meaningful parameters that describe how additive 

genetic components contribute to adult migration time. In each model, the statistical significance 

o f the fixed effect o f cross was evaluated simply by determining whether the 95% Bayesian 

credible interval o f its posterior distribution included zero. However, since variance components
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are constrained by their prior distribution to exceed zero, the interpretation o f their statistical 

significance was not as straightforward. One method o f interpreting variance components is to 

use the deviance information criterion (DIC), which is a Bayesian metric that counterbalances 

the gain in inferential strength penalized against the added complexity o f incorporating an 

additional model term. Since smaller DIC values are indicative o f a better model fit, the 

difference in the DIC between a full model and one with the variance component o f interest 

removed (ADIC) was calculated and included in the model summary. In general, a ADIC value 

o f five is considered substantial, and a ADIC value o f greater than ten is adequate to rule out the 

model with the higher DIC (Spiegelhalter et al. 2002).

Line cross analysis - Because returning F 1 fish carried a mark that denoted the type of 

cross but not the run source, some F 1 hybrids (early control x late control) were produced in the 

second generation o f the odd-broodline experiment. Consequently, F 1 and F 2  hybrid lines were 

reared with early and late control lines that year (Supplementary Materials; Table S2). The 

existence o f F 1 hybrids presented the opportunity to use a line cross analysis to evaluate the 

genetic architecture underlying adult migration time. Line cross analyses provide a framework 

for revealing the underlying genetic causal components o f phenotypic differences between 

subpopulations for traits o f interest. A line cross analysis is conducted by comparing 

experimentally reared lines consisting o f differing fractions o f genetic material from each o f the 

subpopulations under observation. Adopting the nomenclature o f Lynch and W alsh (1998), the 

early and late control lines are referred to as the parental lines (P 1 and P 2  respectively). The types 

o f genetic parameters that can be estimated in a line cross analysis are determined by the number 

o f lines, and the four lines present in the second generation o f the odd-broodline experiment (P 1 , 

P 2 , F 1 , and F 2 ) provide sufficient degrees o f freedom to test for composite additive and 

dominance effects. The jo int scaling procedure described in Lynch and W alsh (1998) was used 

to perform the line cross analysis. This procedure involves first testing the fit o f a null model 

with additive effects only. If  the additive model is rejected by a chi-square test, a higher order 

null model with additive and dominance effects can be tested. A statistical power analysis was 

performed for the null model with a bootstrap simulation. New data were simulated by drawing a 

new mean for each line from a normal distribution with mean and variance equal to the weighted 

mean o f the line (Zj) and its standard error respectively; the null model was then re-fit with the
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new data. The statistical power was estimated as the percentage o f times in which the null model 

was rejected over 10,000 iterations. The statistical power analysis was conducted over different 

scenarios in which the number o f full-sib families present in each line ranged from 1  to 1 0 0 .

Results

Log-linear analysis o f  marine survival - W e captured 176 marked pink salmon from 

broodyear 2005 at the Auke Creek weir during the 2007 adult migration and 122 marked fish 

from broodyear 2006 during the 2008 migration. Parentage analysis conclusively linked 169 

(96%) and 112 (92%) first generation progeny to parental pairs from 2005 and 2006 respectively. 

Type o f cross (control or hybrid) was determined for each experimental fish, and all cross 

designations were concordant with documented fin excision marks. Based on the number of 

released fry and recovered adults (Supplementary Materials; Table S1), the marine survival 

proportions o f experimental fish from broodyear 2005 (0.38%) and broodyear 2006 (0.32%) 

were each less than one tenth o f the marine survival proportion o f wild pink salmon fry from the 

same brood year. In broodyear 2005, marine survival was 0.12% lower in hybrids than in 

controls and 0.20% lower in late- than in early-run fish, and the log-linear analysis (Table 3.1) 

revealed significant interaction between survival and run source (P = 0.001), survival and type of 

cross (P = 0.042), and among survival, run source, and type o f cross (P = 0.046). Conversely, 

marine survival was only 0.05% lower in hybrids than in controls from broodyear 2006, and the 

log-linear analysis did not reveal a significant interaction between survival and type o f cross (P = 

0.465).

Pink salmon adults from second generation crosses were captured at the Auke Creek weir 

during the summers o f 2009 and 2010. During those migration periods we captured 826 and 552 

marked adults from broodyears 2007 and 2008 respectively. Parentage analysis conclusively 

linked 803 (97%) and 541 (98%) F 2  progeny to parental pairs from 2007 and 2008, respectively. 

However, there was uncertainty regarding run source (early or late) o f broodstock used for the 

second generation crosses, and some o f the returned experimental fish from the first generation 

that were used as broodstock did not have distinct pelvic fin marks that were necessary to 

determine type o f cross. Consequently, some crosses that were created in the second generation 

were not relevant to the log-linear analysis. In total, 606 and 521 experimental fish from
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broodyears 2007 and 2008 were used to analyze marine survival (Supplementary Materials;

Table S2). The marine survival proportion o f experimental fry from broodyear 2007 (1.53%) was 

approximately one fifth o f that observed in wild fry, and in broodyear 2008 (1.39%) it was less 

than one tenth o f that observed in wild fry. In broodyear 2007, marine survival was 0.14% higher 

in hybrids than in controls and 0.18% higher in late- than in early-run fish, but the log-linear 

analysis (Table 3.1) did not reveal significant interaction between survival and run source (P = 

0.161), survival and type o f cross (P = 0.270), or among survival, run source, and type o f cross 

(P = 0.752). In broodyear 2008, marine survival was 0.13% lower in hybrids than in controls, but 

the log-linear analysis did not reveal a significant interaction between survival and type o f cross 

(P = 0.383).

Hierarchical model o f  fam ily survival - Family-specific marine survival proportions from 

194 families from broodyear 2005 and 112 families from broodyear 2006 were used in the 

Bayesian hierarchical analysis o f first generation marine survival (Table 3.2). The hierarchical 

models produced estimates o f the posterior distributions o f the mean survival proportion (pj ) and 

logit-scale deviation (cj) o f each experimental line. The param eterp j  enabled comparisons of 

survival among experimental lines and therefore provided a complement to the log-linear 

analysis, while Cj  provided an index o f among-family variance in marine survival. Comparisons 

o f the posterior distributions o f Cj  among experimental lines enabled us to evaluate whether we 

could expect outbreeding to cause a decline in N e . In broodyear 2005, 95% Bayesian credible 

intervals (BCI) indicated that the marine survival percentage (p  x 100) o f early controls (0.45 -  

0.77%) exceeded that o f early hybrids (0.09 -  0.36%); although the mean survival percentage o f 

late controls was lower than that o f late hybrids, the large overlap in credible intervals (controls 

0.08 -  0.32% vs. hybrids 0.12 -  0.60%) suggested that these two lines had similar survival 

percentages. In broodyear 2006, early controls (0.19 -  0.38%) and early hybrids (0.18 -  0.47%) 

had similar marine survival percentages. W ith the exception o f the early control line from 

broodyear 2005, the posterior distributions o f p j  overlapped substantially among all F 1 

experimental lines. In broodyear 2005, the logit-scale standard deviation o f marine survival was 

similar between early controls (0.03 -  0.63) and early hybrids (0.04 -  1.64), and between late 

controls (0.05 -  1.60) and late hybrids (0.03 -  1.75). Similarly, in broodyear 2006, the logit-scale
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standard deviation did not differ between early controls (0.11 -  1.08) and early hybrids (0.03 -

0.93).

In the second generation o f the experiment, family-specific marine survival proportions 

from 65 families from broodyear 2007 and 69 families from broodyear 2008 were used in the 

Bayesian hierarchical analysis (Table 3.3). In broodyear 2007, Bayesian credible intervals 

indicated that mean marine survival percentages were similar between early controls (1.13 -  

1.64%) and early hybrids (1.06 -  1.77%), and between late controls (1.01 -  2.18%) and late 

hybrids (1.13 -  1.89%). Similarly, in broodyear 2008, early controls (1.08 -  1.51%) and early 

hybrids (0.75 -  1.53%) had similar marine survival percentages. Collectively, the posterior 

distributions o fp j  overlapped substantially among all F 2  experimental lines. In broodyear 2007, 

the logit-scale standard deviation o f family-specific marine survival was similar between early 

controls (0.07 -  0.49) and early hybrids (0.03 -  0.61), and between late controls (0.03 -  0.76) 

and late hybrids (0.25 -  0.75). In broodyear 2008, early controls (0.25 -  0.61) and early hybrids 

(0.13 -  0.97) had similar logit-scale standard deviations.

Mixed-effects m odel o f  migration time - Data from 169 returned adults from broodyear 

2005 and 112 adults from broodyear 2006 were used in the analysis o f migration time o f adults 

from the first generation o f this experiment (Table 3.4). Samples (n = 9,600) were drawn from 

the posterior distributions o f three parameters o f interest: the fixed effect o f cross (C ) and the 

random effects o f dam (D j) and sire (Sik). In broodyear 2005, the mean posterior estimate of 

adult migration date was 3.6 days later in early hybrids relative to early controls, and 3.8 days 

earlier in late hybrids relative to late controls (Figure 3.1). Bayesian credible intervals (95%) 

indicated that the effect o f cross was significant in both the early (0.8 -  6.5) and late (-6.2 -  -

1.5) experiments o f this brood year. Similar results were observed in broodyear 2006 (Figure

3.1), where the mean posterior estimate o f adult migration date was 10 days later in early hybrids 

relative to early controls, and the effect o f cross was significant (6 . 6  -  13.6). Bayesian credible 

intervals o f the random effects o f dam and sire in both experiments from broodyear 2005 were 

broad and included zero, and only the inclusion o f the dam term from the late experiment 

produced a moderate change in DIC (-6.7). In the early experiment from broodyear 2006, only 

the inclusion o f the sire term produced a large change in DIC (-19.2), and the BCI o f P s  (6.4 -
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56.9%) suggested that the sire term explained a significant amount o f the variation in migration 

time.

Data from 606 returned adults from broodyear 2007 and 521 adults from broodyear 2008 

were used in the analysis o f migration time o f second generation adults (Table 3.5). As was done 

in the first generation, samples (n = 9,600) were drawn from the posterior distributions o f C i, D j ,  

and S ik. In broodyear 2007, the mean posterior estimate o f adult migration date was 4.4 days later 

in early hybrids relative to early controls and 4.9 days earlier in late hybrids relative to late 

controls (Figure 3.2). Bayesian credible intervals indicated that the effect o f cross was significant 

in both the early (1.6 -  7.5) and late (-9.7 -  -0.3) experiments. Similar results were observed in 

broodyear 2008 (Figure 3.2), where the mean posterior estimate o f adult migration date was 7.4 

days later in early hybrids relative to early controls, and the effect o f cross was significant (4.8 -

10.1). In broodyear 2007, large changes in DIC accompanied the inclusion o f the dam term in the 

early experiment ( - 1 1 .1 ) and the sire term in the late experiment (-14.4), and the BCI o f Pd  in the 

early experiment (2 . 0  -  28.9%) and P s  in the late experiment (2 . 8  -  32.8%) suggested that these 

terms explained a significant amount o f the variation in migration time. In the early experiment 

o f broodyear 2006, only the inclusion o f the sire term produced a large change in DIC (-9.3); the 

BCI o f Vs, however, had a lower limit close to zero (0.0 -  29.9%).

Line cross analysis - A line cross analysis was conducted to evaluate migration time of 

adults from the second generation odd-broodline experiment. The number o f families that had at 

least one returning adult ranged from 6  in the P 2  line to 37 in the F 2  line. The weighted mean 

Julian dates o f migration in the F 1 and F 2  lines were similar and approximately intermediate to 

those o f the P 1 and P 2  lines (Supplementary Materials; Table S3). The estimated additive 

composite effect from the additive null model was significant (a!_ = -3.460; SE = 0.537). The 

chi-square test o f the additive null model was not significant (P  = 0.352) and, hence, a higher 

order model that incorporated directional dominance was not tested.

Discussion

Local adaptation is recognized as an important driver o f genetic divergence between 

populations, but the spatial and temporal scale at which it occurs has not been thoroughly 

investigated. To address this, we looked for evidence o f local adaptation in two generations of

95



experimental hybrid lines created by outbreeding pink salmon from early- and late-spawning 

subpopulations that home to Auke Creek, Alaska. Specifically, we looked for evidence of 

outbreeding effects in hybrid lines by examining two components o f lifetime fitness: marine 

survival and adult migration time. Adult migration time, which would be expected to be 

optimized to the different environmental regimes encountered by early- and late-spawning fish, 

is probably closely related to reproductive success in this population (Fukushima et al. 1998; 

Smoker et al. 1998; Gharrett et al. 2013). Control lines, created by crossing individuals from the 

same spawning segment, served as a reference from which outbreeding effects could be resolved. 

The magnitude and pattern o f outbreeding effects across two generations o f hybridization 

provided an indicator o f the genetic architecture underlying local adaptive differences between 

these subpopulations.

M arine survival - Reduced survival o f experimental fish relative to wild fish was 

observed in both generations, which was consistent with hatchery and marking effects observed 

in prior experiments at Auke Creek (e.g. Lane et al. 1990). Various aspects o f the culturing 

process might adversely impact developing fry and consequently reduce survival in the marine 

environment. In addition, the comparatively benign hatchery environment may favor survival to 

emigration o f many embryos that would have perished during exposure to the harsher natural 

environment. Hence, delayed mortality may reduce marine survival. To account for this, controls 

and hybrids were reared under identical incubation conditions and released at the same time, 

which gave each fish an equal opportunity to prepare for the marine environment. Therefore, any 

discrepancies in marine survival rates between controls and hybrids were most likely the result of 

differential performance in the marine environment rather than experimental treatment.

The log-linear analysis o f marine survival revealed that marine survival o f even-year 

broodline F 1 hybrids between early- and late-run pink salmon was similar to that o f controls. The 

power o f this test, however, was low (0.11). An F 1 hybrid marine survival rate o f 0.17%, 

approximately 0.6 o f that observed, would be required for this test to attain a power o f 0.8. In 

contrast, marine survival o f F 1 hybrids was significantly lower than controls in the odd-year 

brood line. The reason for this unexpected result appears to be the anomalously high marine 

survival o f early controls from broodyear 2005. Consistent with this, the posterior distributions 

o f line-specific survival, which were estimated as part o f the Bayesian hierarchical model of
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family survival, had considerable overlap among five o f the six experimental lines from the first 

generation; only the early controls from the odd-year brood line exhibited positive divergence 

(Tables 3.2, 3.3). The mechanisms contributing to the anomalously high marine survival rate in 

this experimental line are unknown and, although considerable care was taken to eliminate 

systematic differences in survival arising from experimental treatment, the possibility that 

experimental biases underlie this observation cannot be eliminated. The lack o f similarly high 

marine survival in the two other control lines, relative to their hybrid counterparts, suggests that 

we have no reasonable basis for concluding that one generation o f outbreeding between the early 

and late subpopulations influenced the likelihood o f surviving the marine stage. This is not a 

surprising result, given that previous studies conducted on local adaptation in highly segregated 

pink salmon populations revealed that depression o f marine survival generally did not occur in 

the first generation o f hybridization (Gharrett et al. 1999; Gilk et al. 2004). Furthermore, 

although early- and late-run juveniles transitioning to the nearshore marine environment 

generally encounter seasonal differences in growth conditions and predator abundance 

(Mortensen et al. 2000), differences in traits that confer adaptation to the marine environment 

have not yet been characterized in these subpopulations. Hence, there is no theoretical basis to 

support the potential for ecological outbreeding depression o f marine survival, and this is the 

mechanism that would be most likely to cause depression o f this trait in first generation hybrids.

In the second generation experiments, the log-linear analysis did not reveal a significant 

difference in marine survival between controls and F 2  hybrids in either the odd- or even-year 

brood line but, once again, the statistical power was low. In order to attain a power o f 0.8, an F 2  

hybrid marine survival rate o f approximately 1 % would have been required in both brood lines; 

this value was only 0.63 and 0.77 o f that observed in the odd- and even-year brood lines 

respectively. Similar to the first generation, the posterior distributions o f line-specific marine 

survival from the Bayesian hierarchical models had extensive overlap among all six second- 

generation experimental lines. Collectively, the results o f these analyses did not provide evidence 

o f effects o f outbreeding on marine survival in F 2  hybrids. These results contrast those of 

experiments on populations o f pink salmon separated by large temporal or spatial barriers to 

gene flow, which revealed significantly lower marine survival in F 2  hybrids than in controls 

(Gharrett et al. 1999; Gilk et al. 2004). Those experiments detected reduced survival almost
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exclusively in the second generation, which suggested that outbreeding had disrupted local 

adaptation primarily by the segregation o f co-adapted gene complexes (i.e. epistatic outbreeding 

depression). This hypothesis was particularly well supported in the experiment that examined 

hybridization between the even- and odd-year brood lines; because individuals from the two 

brood lines spawn in the same habitat and are likely to encounter, on average, similar 

environmental conditions, there was little reason to expect hybridization to disrupt genotype-by- 

environment interactions. However, without regular exchange o f migrants, natural selection and 

genetic drift may drive the formation o f distinct co-adapted gene complexes within those isolated 

populations. Conversely, there is opportunity for interbreeding between the early- and late- 

spawning segments o f Auke Creek, depending on annual environmental characteristics (e.g. 

stream flow and temperature) that determine the date o f creek entry o f adults. Regular exchange 

o f migrants probably constrains the development o f distinct co-adapted gene complexes 

(Edmands 1999), which could explain why experiments that examined local adaptation at large 

scales o f genetic isolation yielded results that differed from those o f this experiment, which 

examined local adaptation at a fine scale.

Fam ily survival - Although two generations o f outbreeding did not produce evidence of 

differences in family survival between controls and hybrids, outbreeding between spawning 

segments may still have an impact on population viability if  outbreeding effects manifest 

differently among hybrid families. That is, if  marine survival o f some families is impacted by 

outbreeding more so than others, an increase in variance o f family size and a corresponding 

decline in Ne could occur. To address this, posterior inference o f family-specific marine survival 

proportions was made within the framework o f the previously outlined Bayesian hierarchical 

models. The Bayesian hierarchical models o f first- and second-generation marine survival 

indicated that, while some brood years appeared to display more variability in family survival 

than others, there was no apparent association between variability in family survival and type of 

cross (i.e. control or hybrid). This observation was supported by the posterior distributions o f an 

index o f among-family variance in marine survival (oy), which had considerable overlap among 

experimental lines. Hence, the results o f this analysis did not provide any evidence o f increased 

variance o f marine survival in hybrids between the early- and late-spawning segments.
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Adult migration time - Adult migration time was examined over two generations o f out 

crosses to look for evidence o f local adaptive differences between early- and late-run pink 

salmon. Analysis o f causal components underlying variation in adult migration time was 

accomplished with Bayesian mixed-effects models. The results o f the first and second generation 

analyses were consistent; the posterior distributions o f migration time o f controls and hybrids 

were distinct in each o f the six contrasts. Since the families from each experiment were reared in 

a common environment, these results indicate that there is a genetic basis for the differences in 

adult migration time between controls and hybrids. In both generations, the pattern o f migration 

time observed among different crosses was consistent with initial expectations based on local 

adaptation o f this trait: hybrids returned to Auke Creek later than controls in the early experiment 

o f both brood lines, and hybrids returned earlier than controls in the late experiment o f the odd- 

year brood line (Figures 3.1, 3.2). Sire and dam components o f variance were more pronounced 

in the second generation than in the first; three out o f the six variance components that were 

estimated in the second generation experiments accounted for a significant amount o f phenotypic 

variation in migration time, indicating that additive genetic effects contribute to variation in this 

trait. The discrepancies between generations probably resulted from differences in sample size. 

Poor marine survival o f first generation fish resulted in few returned adults (Supplementary 

Materials; Table S1). Consequently, the analysis o f first generation migration time was based on 

relatively few observations. This was evident in the Bayesian credible intervals (BCI) o f the dam 

and sire components in the first generation, which were generally broad (Table 3.4), thereby 

reflecting low statistical certainty in the estimates o f these variance components. For example, 

the BCI o f the percentage o f phenotypic variation explained by covariance among paternal 

siblings (Ps ) ranged from near zero to over 50% in broodyear 2006. This is not surprising, given 

that estimates o f additive genetic effects are often associated with high standard errors, which 

may require many observations to compress them (Falconer and M ackay 1996). In contrast to the 

first generation, higher marine survival rates in the second generation resulted in more returned 

adults (Supplementary Materials; Table S2), and there were more observations available for 

estimating additive genetic variance components. This was evident in the fact that BCIs for these 

variance components were generally narrower in the second generation than in the first (Table

3.5).
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Our results demonstrate intermediate phenotypic expression o f adult migration time in 

hybrids relative to controls over two generations o f outbreeding and indicate that there is a strong 

genetic basis for this trait. Furthermore, the pattern o f trait expression was consistent with genes 

influencing migration time in an additive manner. This is reinforced by the fact that, when large 

numbers o f observations were available, significant dam and sire components o f variation in this 

trait were detected. The line cross analysis provided further support o f this observation by 

demonstrating that significant additive composite effects contribute to adult migration time and 

suggesting that a model with only additive effects was sufficient to explain the genetic 

architecture underlying this trait. However, the power o f a line cross analysis is, in part, a 

function o f the number o f families that are included in the experimental design. This experiment 

was not designed for a line cross analysis, and some o f the experimental lines had few 

representative families (e.g. P 2  and F 1 ). Consequently, the standard errors o f the weighted mean 

migration times were high in those lines (Supplementary Materials; Table S3). Indeed, a 

statistical power analysis revealed that the power o f the chi-square test o f the null additive model 

was only modest (0.41). This means that, even if  directional dominance effects contribute to this 

trait, the experimental design only yielded a moderate chance o f detecting them. The use o f a 

balanced design with the same average number o f families per line would have increased the 

power to 0.5. In order to attain a statistical power o f 0.8, the average number o f families per line 

would have had to have been nearly doubled.

Because optimal adult migration time is probably involved in maximizing reproductive 

success in this population (Gharrett et al. 2013), the observed shift in this trait may have 

provided the basis for ecological outbreeding depression. A significant source o f mortality in 

developing pink salmon embryos is mechanical agitation resulting from redd disturbance by 

subsequent spawners (Fukushima et al. 1998). The bimodal migration distribution o f Auke Creek 

pink salmon enables early-run embryos to develop to a mechanically-resistant developmental 

stage known as epiboly (Ballard 1973) before the arrival o f late-run spawners about two weeks 

later, thereby reducing mortality from redd disturbance (Smoker et al. 1998). The adaptive 

significance o f embryonic development rate is supported by common-garden experiments that 

have revealed that early- and late-run embryos exhibited genetically-based differences in 

development patterns (Hebert et al. 1998) and that early-run embryos completed epiboly faster

100



than late-run embryos (Joyce 1986). Moreover, early-run embryos from the latter experiment 

required approximately two weeks to complete epiboly, which is consistent with the two weeks 

that have historically separated the peaks o f the early- and late-spawning segments; the 

implication is that the embryonic development trajectory is adapted to the time o f egg deposition 

in the early-spawning subpopulation. Hence, our demonstration o f intermediate migration date 

and, by extension, intermediate egg deposition time in hybrids suggests that outbreeding between 

these spawning segments can disrupt local adaptation by rendering hybrid embryos more prone 

to mortality from superimposition by late-spawning adults.

Our results complement those o f a study on adaptation o f embryonic development time in 

first generation hybrids between early- and late-run pink salmon (Echave 2010) which was 

conducted as part o f the same experiment. That study demonstrated that embryonic development 

time differed between controls and hybrids in a significant, compensatory way. Furthermore, 

although dam and sire components o f variation o f development time were significant, their 

interactions were not, which indicated that adaptation o f this trait has primarily exploited 

additive genetic variation. Early-run fish appear to compensate for higher water temperatures 

during incubation by slowing their development rate relative to late-run fish after reaching 

epiboly (Joyce 1986; Hebert et al. 1998); this compensation mechanism results in delayed 

emergence o f early-run fry and a shortened gap in migration time between early- and late-run 

fry. Delayed emergence may provide an adaptive advantage for early-run fry by synchronizing 

their transition to the nearshore environment with more favorable growth conditions, and a 

shortened temporal gap between early- and late-migrating fry may provide beneficial effects of 

predator saturation.

Conclusions
The results o f previous research on Auke Creek pink salmon, when considered alongside 

those presented here, provide a lucid demonstration o f local adaptation o f migration and 

embryonic development time to the seasonally distinct environments encountered by the early- 

and late- spawning segments. The implications are that fine-scale genetic structure has an 

important influence on the mean fitness level in this population, which make it unique to the 

outbreeding experiments conducted at Auke Creek. Furthermore, since spawning habitat limits 

the number o f progeny that can be produced within the short and narrow confines o f Auke
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Creek, genetically-determined temporal structure likely enhances the carrying capacity o f each 

brood line by staggering the use o f this resource over time (Smoker et al. 1998; Gharrett et al. 

2013). Hence, it is likely that erosion o f the temporal barrier that separates these spawning 

segments would cause decreased productivity o f this population. Similar temporal structure is 

likely to be an important component o f the population dynamics o f other animal populations in 

which breeding habitat is limited. Fine-scale local adaptation may also promote and maintain 

biodiversity that enhances the ability o f populations to sustain productivity as the climate 

changes. This hypothesis is supported by studies that have demonstrated how adaptive variation 

o f life history traits confers resilience to climatic fluctuations by enhancing the likelihood that 

some individuals within a population will carry traits that are well-suited to future environmental 

regimes (Hilborn et al. 2003; Greene et al. 2010; Schindler et al. 2010). Adaptive variation is 

often impossible to resolve without genetic analyses, yet failure to maintain it could be 

detrimental to the productivity, biodiversity, and sustainability o f wild populations. Our results 

suggest that prudent management o f wild populations should be conducted not only with regard 

for genetic and phenotypic variation that arises from isolation o f populations by great distance or 

time, but also fine-scale variation.
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Tables

Table 3.1 - Log-linear analysis o f marine survival in outbred first- and second-generation pink salmon. Separate analyses were 
performed for the odd- and even-year brood lines in each generation. Chi-square tests o f independence were used to test for 
interactions o f three terms: type o f cross, run source, and marine survival rate.

Interaction

Cross * Survival Run * Survival Cross * Run * Survival

Brood year x2 df P x2 df P x2 df P

2005 4.146 1 0.042 11.538 1 0.001 3.972 1 0.046
2006 0.530 1 0.465
2007 1.98 1 0.161 1.21 1 0.270 0.10 1 0.752
2008 0.781 1 0.383
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T able 3.2 - Bayesian hierarchical analysis o f family-specific marine survival o f outbred first-generation pink salmon. Posterior means, 
95% Bayesian credible intervals (BCI), and the effective number o f posterior samples are listed for two parameters: mean survival 
proportion (pj) and the logit-scale standard deviation o f marine survival (o j  o f the j th experiment line.

Line Brood year No. fam.

p j Oj

Mean BCI (2.5%) BCI (97.5%) Sample Mean BCI (2.5%) BCI (97.5%) Sample

Early control 2005 66 0.0060 0.0045 0.0077 30000 0.2109 0.0281 0.6329 3200

Early hybrid 2005 42 0.0022 0.0009 0.0036 4700 0.7054 0.0439 1.6430 4300
Late control 2005 60 0.0019 0.0008 0.0032 10000 0.7740 0.0522 1.5960 61000

Late hybrid 2005 26 0.0035 0.0012 0.0060 100000 0.5614 0.0333 1.7530 12000

Early control 2006 69 0.0028 0.0019 0.0038 16000 0.6428 0.1083 1.0830 8700

Early hybrid 2006 43 0.0032 0.0018 0.0047 27000 0.2850 0.0286 0.9312 10000

Table 3.3 - Bayesian hierarchical analysis o f family-specific marine survival o f outbred second-generation pink salmon. Posterior 
means, 95% Bayesian credible intervals (BCI), and the effective number o f posterior samples are listed for two parameters: mean 
survival proportion (pj) and the logit-scale standard deviation o f marine survival (oj) o f the j th experiment line.

p j

Line Brood year No. fam. Mean BCI (2.5%) BCI (97.5%) Sample Mean BCI (2.5%) BCI (97.5%) Sample

Early control 2007 22 0.0138 0.0113 0.0164 10000 0.2732 0.0692 0.4909 9100

Early hybrid 2007 15 0.0142 0.0106 0.0177 3500 0.2198 0.0302 0.6075 7400

Late control 2007 6 0.0153 0.0101 0.0218 10000 0.2099 0.0271 0.7643 10000

Late hybrid 2007 22 0.0150 0.0113 0.0189 1900 0.4666 0.2484 0.7504 10000

Early control 2008 49 0.0130 0.0108 0.0151 10000 0.4132 0.2481 0.6069 2300

Early hybrid 2008 20 0.0114 0.0075 0.0153 10000 0.5012 0.1254 0.9731 7800



110

T able 3.4 - Bayesian mixed models o f adult migration time o f outbred first-generation pink salmon. The effective number o f samples 
from the posterior distribution and 95% Bayesian credible intervals (BCI) are listed for the fixed effect o f cross (C ), the random 
effects o f dam (D ij) and sire (Sik), and the proportion o f variation explained by covariance among maternal (PD) and paternal (Ps ) 
siblings. Delta DIC values, representing the change in DIC accompanying inclusion o f a term, are listed for each random effect.

Term

Broodyear 2005 (early experiment) Broodyear 2005 (late experiment) Broodyear 2006 (early experiment)

BCI
(2.5%)

BCI
(97.5%) Sample ADIC

BCI
(2.5%)

BCI
(97.5%) Sample ADIC

BCI
(2.5%)

BCI
(97.5%) Sample ADIC

C 0.796 6.468 9600 -6.175 -1.455 9600 6.662 13.597 9600

D j 0.000 13.897 9600 0.184 0.000 12.691 9600 -6.627 0.000 9.198 9260 -1.292
Sk 0.000 16.198 9600 -1.672 0.000 5.712 9600 -0.507 0.000 27.381 9266 -19.177

PD 0.000 0.253 9600 0.000 0.570 9600 0.000 0.206 9241

Ps 0.000 0.307 9582 0.000 0.304 9600 0.064 0.569 9323

Table 3.5 - Bayesian mixed models o f adult migration time o f outbred second-generation pink salmon. The effective number of 
samples from the posterior distribution and 95% Bayesian credible intervals (BCI) are listed for the fixed effect o f cross (C ), the 
random effects o f dam (Dij) and sire (Sik), and the proportion o f variation explained by covariance among maternal (PD) and paternal 
(Ps ) siblings. Delta DIC values, representing the change in DIC accompanying inclusion o f a term, are listed for each random effect.

Term

Broodyear 2007 (early experiment) Broodyear 2007 (late experiment) Broodyear 2008 (early experiment)

BCI
(2.5%)

BCI
(97.5%) Sample ADIC

BCI
(2.5%)

BCI
(97.5%) Sample ADIC

BCI
(2.5%)

BCI
(97.5%) Sample ADIC

C, 1.560 7.487 9600 -9.723 -0.274 9600 4.844 10.074 9600

D j 0.447 13.416 9600 -11.090 0.000 9.124 9600 0.898 0.000 1.623 8960 1.005
Sk 0.000 5.835 9052 0.614 0.980 25.870 9600 -14.439 0.000 9.718 9227 -9.277

PD 0.020 0.289 9600 0.000 0.128 9600 0.000 0.062 9286

Ps 0.000 0.134 9600 0.028 0.328 9600 0.000 0.299 9177
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Figures

Figure 3.1 - Posterior distributions o f mean adult migration time in experimental lines o f outbred first-generation Auke Creek pink 
salmon in the odd- and even-year brood lines. Posterior samples (n = 9,600) were obtained under a Bayesian mixed model framework.
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F igure 3.2 - Posterior distributions o f mean adult migration time in experimental lines o f outbred second-generation Auke Creek pink 
salmon in the odd- and even-year brood lines. Posterior samples (n = 9,600) were obtained under a Bayesian mixed model framework



Conclusions

Introduction

The overall purpose o f this research was to describe the scale o f local adaptation by 

observing seasonally structured brood lines o f Pink Salmon that spawn in Auke Creek, Alaska. 

My specific objectives were (1) to identify ecological components o f lifetime fitness, (2) to 

establish an ecological mechanism o f contemporary evolution o f migration time, and (3) to 

evaluate the consequences o f disrupting fine-scale local adaptation o f migration time. In Chapter 

1, I used 29 years o f local environmental data and censuses o f adults and juveniles to identify 

ecological factors that underlie fitness in the freshwater and marine environments. In Chapter 2, I 

integrated observations o f an experimentally imposed genetic marker in juveniles with previous 

observations made on adults in order to identify the life history stage at which evolution of 

migration time occurred and to propose an ecological mechanism for it. In Chapter 3, I used 

quantitative genetic analyses o f migration time in hybrids between early- and late-run Pink 

Salmon to examine the genetic architecture o f migration time and to demonstrate the 

consequences o f relaxing barriers to gene flow. Collectively, these three chapters address each of 

my research objectives.

Ecological components o f  lifetim e fitn ess

Chapter 1 provided evidence that compensatory processes related to spawner densities 

regulate the production o f Pink Salmon fry in Auke Creek. Several o f these processes, including 

egg retention arising from competition for spawning substrate and egg mortality resulting from 

redd disturbances, have been empirically demonstrated in Auke Creek (Fukushima and Smoker 

1997; Fukushima et al. 1998). Local adaptation to seasonal differences in spawner densities is 

evident in the distinct life history traits that are displayed by early- and late-run Pink Salmon, 

which include stream life and development to epiboly (Joyce 1986; Fukushima and Smoker

1997). These life history adaptations have likely enabled early- and late-run fish to exploit 

seasonally distinct niches, thereby staggering the adult migration over time and enhancing the 

aggregate productivity o f Auke Creek pink salmon (Gharrett et al. 2013).

Several o f the most parsimonious models o f freshwater productivity included indices of 

water quality, but the coefficient estimates for those indices had broad standard errors and, in 

some cases, had signs that were not consistent with expectations. To account for my inability to
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detect strong effects o f water quality I proposed that, in years o f poor stream conditions, losses of 

freshwater productivity in early migrating fish may be compensated for by gains in freshwater 

productivity in later migrating fish that encounter more unseeded spawning habitat. Some 

support for this hypothesis was provided in Chapter 2, where I observed that an early pulse of 

spawners entered Auke Creek in 1989 during a period when stream temperatures were 

anomalously high (~ 16.5 °C). A delayed and truncated outmigration o f early-run fry was 

observed the following spring and indicated that the early pulse o f spawners produced few 

offspring. Despite the apparent failed reproduction o f a large number o f very early-run spawners 

that summer, the early run o f 1989 produced more fry per spawner than in the previous two 

years, in which stream temperatures were lower but the adult migration distributions were more 

compressed. These observations provide support for the hypothesis that the staggering of 

spawning activity over time increases fry production in this small stream and buffers against 

fluctuations in environmental conditions.

In contrast to the freshwater phase, there was little evidence o f density-dependent 

processes operating in the marine phase. Although several o f the most parsimonious models 

provided evidence that early marine survival was adversely affected by higher abundances of 

Dolly Varden charr and Coho Salmon smolts, survival was more closely coupled with 

environmental factors in the nearshore environment that condition the vulnerability o f fry to 

predators. Consistent with expectations, sea-surface temperatures in the nearshore environment 

had a substantial influence on marine survival. Sea-surface temperature likely influences growth 

o f juvenile salmon through its direct effects on the physiology o f developing fry (Mortensen et 

al. 1991) and by modulating the growth and abundance o f their planktonic prey (Bienfang and 

Ziemann 1995). This suggests that, because cool sea-surface temperatures and associated low 

prey abundance are characteristic o f Auke Bay in early spring (Mortensen et al. 2000), fry that 

emerge after vernal warming has commenced should benefit from increased fitness. This idea is 

supported by the fact that early-spawned embryos exhibit developmental compensation, a 

genetically determined trait which buffers embryos against warm stream temperatures and 

increases the likelihood that fry emergence is coincident with vernal warming (Hebert et al.

1998). However, directional selection would likely oppose the persistence o f extremely early 

migration times that result in embryos being exposed to stream conditions in excess o f their 

compensatory scope.
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An unanticipated observation in Chapter 1 was the negative relationship between marine 

survival and stream flows late in the juvenile outmigration period. W hile the mechanism 

underlying this relationship remains unclear, it is likely that this period o f highly variable stream 

flows has important implications for the ecology o f Pink Salmon fry early in their marine 

residency. Peak stream flows from Auke Creek are typically observed in late May and early 

June, which is a period that coincides with the movement o f fry from nearshore to offshore 

waters (Mortensen 2000), and it is possible that heightened stream flows drive this offshore 

migration. The results o f Chapter 1 suggest that late-outmigrating fry that encounter high stream 

flows generally experience poor survival and, consequently, directional selection may oppose the 

persistence o f extremely late migration times.

The models o f lifetime fitness ignored the temporal structure that exists between brood 

lines and spawning segments in Auke Creek. Given that both brood lines experience, on average, 

similar environmental conditions, there was little reason to expect that their ecology would 

systemically differ, so they were modeled together in order to increase the power o f these 

analyses. The early- and late-spawning segments, conversely, encounter different ecological 

challenges due to their distinct life history schedules. Although it was beyond the scope o f the 

available data, separate models o f these spawning segments might have yielded insight into run- 

specific components o f lifetime fitness. As noted before, investigations o f seasonal variation in 

freshwater productivity have demonstrated that compensatory processes have a greater influence 

on early-spawning fish (Fukushima and Smoker 1997; Fukushima et al. 1998). An important 

implication o f this is that freshwater productivity o f early-spawning fish should be generally 

lower than that o f late-spawning fish. This idea was supported by the results o f the stock 

separation algorithm in Chapter 2, which demonstrated that freshwater productivity o f early-run 

fish was substantially lower in three out o f the four years o f genetic monitoring. Conversely, in 

the marine environment, there are countervailing environmental factors that must be considered 

in comparing fitness between spawning segments. Early-outmigrating fry typically encounter 

cooler w ater temperatures and reduced zooplankton biomass, but lower predator abundances. 

Late-outmigrating fry, which typically enter Auke Bay in advance o f substantial increases in 

predator abundance, likely encounter more favorable sea-surface temperatures, but experience a 

truncated marine growth period prior to the arrival o f migratory predators. The net effect o f this 

is that late-run fry are smaller than their early-run counterparts throughout their nearshore
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residence period (Mortensen et al. 2000). This suggests that early-outmigrating fry should benefit 

from reduced size-selective mortality and generally exhibit higher marine survival. Support for 

this idea was provided by the results o f the stock separation algorithm from Chapter 2, which 

demonstrated that marine survival o f early-run fish was substantially higher in all four years o f 

genetic monitoring. Hence, it is likely that these life history strategies involve tradeoffs between 

freshwater and marine productivity. Furthermore, the existence o f distinct lifetime fitness 

components in these spawning segments would likely buffer against productivity losses resulting 

from periodic environmental fluctuations and create the potential for evolutionary responses to 

persistent climatic shifts.

Contemporary evolution o f  m igration time

Previous observations o f an experimentally imposed genetic marker in adult Auke Creek 

Pink Salmon demonstrated that natural selection against late-migrating fish caused 

microevolution o f migration time in the odd-year brood line. Furthermore, the demographic 

changes that resulted from this selection event, which were first evident in broodyear 1989, have 

persisted over at least thirteen generations (Kovach et al. 2012). In Chapter 2, I extended that 

research by using observations o f this genetic marker in outmigrating fry to demonstrate that the 

decline in the overall frequency o f the late-marker allele was first observed in adults that 

returned to Auke Creek in 1991. This suggested that an evolutionary event occurred during the 

marine phase. Furthermore, since genetic drift (Kovach et al. 2012) and interpopulation gene 

flow (Gharrett et al. 2001; M ortensen et al. 2002) were not sufficiently strong to cause the 

observed genetic changes, I concluded that natural selection was the most probable agent of 

evolution. Additional support for this hypothesis came from the observation that estimated 

marine survival o f early-run fry was more than ten times higher than that o f late-run fry that 

outmigrated from Auke Creek in spring o f 1990.

Plots o f the migration distributions o f early- and late-run fry and sea-surface temperatures 

o f Auke Bay during the genetic monitoring period provided a potential ecological mechanism of 

natural selection. A period o f early warming o f Auke Bay during spring o f 1990, which 

coincided with the peak outmigration o f early-run fry, likely favored increased survival o f early- 

run fry relative to late-run fry. Support for this hypothesis was provided by the results o f Chapter 

1, which demonstrated that early marine survival covaried with sea-surface temperature, 

presumably because temperature conditions the vulnerability o f fry to size-selective mortality.
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The distinct outmigration times o f early- and late-run fry produces mixtures o f fry o f different 

sizes, which potentially enables natural selection to operate through size-selective mortality. This 

mechanism may be a driving force behind trends toward earlier and truncated migrations, which 

have been observed in both brood lines over the past 40 years (Kovach et al. 2012). During this 

time frame, Auke Bay has exhibited a trend toward warmer spring sea-surface temperatures. 

Additionally, although temporal trends in the seasonal availability o f zooplankton have not been 

evaluated in this estuary, there is evidence that zooplankton blooms are occurring earlier in other 

systems (Edwards and Richardson 2004; Thackeray et al. 2010). W hen considered in the context 

o f environmental changes in Auke Bay, the trend toward earlier migration time might reflect 

juvenile salmon exploiting more favorable estuarine growth conditions in early spring.

Interestingly, the expected responses to a warming climate are opposing in the freshwater 

and marine stages. In the freshwater environment, increasingly stressful stream conditions would 

be expected to favor later stream entry, whereas in the marine environment, a shift in the optimal 

growth window (e.g. earlier vernal warming, earlier zooplankton bloom) would be expected to 

favor earlier outmigration. In Chapter 1, I observed that fitness during the marine stage appeared 

to be more closely coupled to physical conditions than in the freshwater stage, where 

compensatory processes appeared to drive fry production. The fact that the observed genetic 

changes in phenology appeared to be primarily driven by physical conditions during the marine 

stage is, therefore, consistent with the results o f Chapter 1.

A significant trend toward earlier and truncated migrations was observed in the even-year 

brood line o f Pink Salmon that home to the Hugh Smith Lake system. This observation was 

concordant with the idea that the changes in temporal structure observed in Auke Creek are 

linked to processes operating over a large spatial scale. Similar changes in migration time have 

been documented in other anadromous salmonid populations spanning multiple species and 

regions (e.g. Robards and Quinn 2002; Quinn et al. 2007; Kennedy and Crozier 2010).

Moreover, earlier timing o f life history events has now been observed across a wide range of 

taxa. These changes in phenology likely reflect a response to the earlier growing seasons that 

have accompanied climate change (Parmesan 2006; Bradshaw and Holzapfel 2008; Both et al. 

2009). W hile it is unclear whether these phenological shifts generally reflect genetic evolution or 

plasticity, the results o f Chapter 2 suggest that contemporary evolution o f phenology is possible 

in populations that harbor genetically determined life history variation.
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The trends in the migratory characteristics o f Auke Creek Pink Salmon have coincided 

with a decline in freshwater productivity over the same time span, which was reported in Chapter

1. The decline may be a direct consequence o f temporal compression o f the adult migration or, 

alternatively, it may be related to observed declines in the amount o f gravel spawning substrate 

in Auke Creek. In spite o f these reductions in fry production, recruitment o f adult Pink Salmon to 

Auke Creek has remained stable in each brood line over the past 30 years (Kovach et al. 2013). It 

is possible that losses in fry production have been, in part, compensated for by more favorable 

growth conditions in Auke Bay and resulting increases in marine survival. A positive temporal 

trend in marine survival was observed in Chapter 1, but it was not significant over the 29-year 

time series. The observation that adult recruitment has remained stable indicates that Auke Creek 

Pink Salmon have sustained historic levels o f productivity in spite o f substantial environmental 

changes. Genetic diversity o f life history traits has been recognized as an important component 

o f population resilience (Hilborn et al. 2003; Greene et al. 2010). The results o f Chapter 2 

support that idea and indicate that fine-scale local adaptation can promote such genetic diversity.

Disruption o f  fine-sca le  local adaptation

In Chapter 3, log-linear analyses demonstrated that marine-survival rates in two 

generations o f hybrids between early- and late-spawning fish generally did not differ 

substantially from those o f controls. Bayesian hierarchical models, which revealed considerable 

posterior overlap o f mean survival rates among most experimental lines, provided additional 

support for these observations. Furthermore, the hierarchical models produced no evidence of 

increased variance o f survival rates in hybrids in either generation. Early- and late-run fish 

encounter different growth conditions during their early marine residence period (Mortensen et 

al. 2000), and the results o f Chapter 1 suggest that these differences are relevant to lifetime 

fitness. W hile different lifetime fitness components indicate that there is potential for local 

adaptation to the nearshore environment, distinct adaptations to this life history stage have yet to 

be demonstrated in Auke Creek Pink Salmon. Hence, there was no hypothetical basis for 

ecological outbreeding depression o f marine survival in this study, and the similar marine 

survival rates that were observed between first generation hybrids and controls are therefore not 

surprising. Conversely, epistatic outbreeding depression has been observed in hybrids between 

the temporally isolated brood lines o f that exist at Auke Creek (Gharrett et al. 1999), thereby 

demonstrating that this mode o f outbreeding depression can manifest in hybrids between
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populations that encounter, on average, similar environmental conditions throughout their life 

history. In contrast to the even- and odd-year brood lines, environmentally-induced variation in 

stream entry date likely creates opportunities for gene flow between the early- and late-spawning 

segments in some years. Concordantly, genotype data from 24 allozyme loci produced estimates 

o f F s t  in the even-year brood line that did not differ from zero (-0.0105; Gharrett et al. 2013), 

thereby indicating that substantial gene flow does occur between these segments. Regular 

exchange o f migrants can occlude the formation o f distinct coadapted gene complexes (Edmands

1999), which could explain why similar marine survival rates were observed between second 

generation hybrids and controls.

M ixed effects models revealed that additive components o f adult migration time, arising 

from covariation among siblings, were generally present when many observations (i.e. returned 

experimental fish) were available. Similarly, a line cross analysis revealed that additive 

composite effects were a significant component o f variation in adult migration time and 

suggested that a model with only additive effects sufficiently described the genetic architecture 

o f this trait. In both generations, the mixed effects models produced posterior distributions of 

hybrid migration times that were nearly intermediate to those o f controls, thereby revealing an 

outcome o f outbreeding that was consistent with genes influencing migration time in an additive 

manner. Early- and late-spawning fish encounter different ecological challenges in freshwater.

As noted earlier, the compensatory processes that were evident in Chapter 1 likely pose greater 

challenges to early-spawned embryos, which are vulnerable to redd disturbances by late- 

spawning adults (Fukushima et al. 1998). W hile early-run embryos appear to have evolved 

expedient completion o f epiboly in response to these compensatory processes (Joyce 1986), the 

effectiveness o f this adaptation is contingent upon early-run embryos being deposited 

sufficiently far in advance o f the arrival o f late spawners. This suggests that intermediate arrival 

on the spawning ground, as was observed in hybrids, and subsequent delayed deposition of 

embryos is maladaptive in terms o f embryo survival. Therefore, the observed shift in migration 

time o f hybrid fish was consistent with ecological outbreeding depression. An implication of 

these results is that outbreeding depression acts as a postzygotic mechanism o f genetic isolation, 

thereby contributing to the maintenance o f fine-scale temporal structure in this small stream.

This idea is supported by evolutionary theory, where outbreeding depression in hybrids has been 

recognized as an important driver o f sympatric genetic divergence (Schluter 2000).
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Chapter 2 detailed natural selection against late-migrating fish in the odd-year brood line, 

which resulted in severe demographic declines in the late portion o f the migration. Furthermore, 

this event occurred during a period in which the migrations have become temporally compressed 

in odd- and even-year fish (Kovach et al. 2012), thereby suggesting that substantial losses of 

genetically-determined temporal structure have occurred in both brood lines. In spite o f these 

changes, considerable temporal structure was evident in the posterior distributions o f adult 

migration time in the odd-year brood line, which were distinct between early and late control 

lines in each generation. Although there was no late control line in the even-year brood line, the 

posterior mean migration times o f early hybrids and controls differed by ten days in the first 

generation and seven in the second, which implies that the even-year brood line also continues to 

harbor pronounced temporal structure. W hile I have treated the spawning segments as discrete 

entities in this dissertation, the phenotypic distribution o f migration time in Auke Creek is more 

realistically regarded as bimodal. Collections o f broodstock from the hybridization experiment 

were made from the earliest and latest arriving fish and represented the tail ends o f the 

distribution. Similarly, collections o f broodstock that were used to amplify the late-marker allele 

were made from the latest arriving fish. It is therefore possible that the selection event that was 

observed during the genetic monitoring period acted against only the latest migrating fish and the 

late-spawning segment was largely left intact. This could explain the apparent persistence of 

temporal structure in Auke Creek.

M anagem ent implications

The depth o f research conducted at Auke Creek has provided a uniquely detailed level of 

insight into the ecological and adaptive significance o f life history variation in a salmonid 

population, which has important implications for the management o f other salmonid populations. 

The primary findings from Chapter 1 were that production o f fry in Auke Creek is limited by 

spawning habitat and that survival during the early marine stage is critical to adult recruitment. 

These results demonstrate that the quality and quantity o f spawning and nearshore nursery 

habitat are critical components o f salmonid productivity, and support the vitality o f habitat 

conservation as a component o f salmonid management programs. The primary findings from 

Chapters 2 and 3 were that adaptive life history variation that manifests at even a small scale o f 

genetic isolation can support increased productivity o f salmonid populations and provide 

resilience to climate change. This research focused on local adaptation that occurs in sympatric,
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yet seasonally separate subpopulations and therefore supports the importance o f managing 

fisheries to conserve seasonal genetic diversity. Furthermore, because this research demonstrates 

that local adaptation can occur in the presence o f substantial gene flow, it suggests that adaptive 

genetic differences may be found in geographically proximate populations. Hence, this research 

supports the implementation o f hatchery policies that conserve local adaptive variation, such as 

requiring that broodstock selection is made only from local gene pools and is done so in a 

manner that captures the life history variation present across the entire migration distribution.
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Supplementary Materials

Reconstruction o f  autum n stream  flo w s o f  A uke  Creek

Daily autumn stream flows o f Auke Creek during the study period (1984-2012) were 

reconstructed with a general-linear model, which was fit w ith stream flow and rainfall data 

collected from 1962-75. The reconstruction o f autumn stream flow was limited to the months of 

August-October, a period in which flow regimes vary predictably in accordance with rainfall 

patterns. Specifically, a power transformation was applied to daily flow rate o f Auke Creek (Ft), 

based on the optimal level o f power (X = 0.5) selected by a Box-Cox optimization function (Box 

and Cox 1964), and transformed flow rate (Bt) was modeled as a linear function o f daily rainfall 

(R) on the current and preceding 16 days:

B t = '
Ftx - 1

A

B t = -1.75 + 0.12R  + 0.16R - 1  + 0.11R-2 + 0.08Rt-j + 0 .06R ^ + 0.05R-5 + 0.04Rt-6 + 0.03Rt- 7  + 

0.02Rt-8 + 0 .0 2 R t-9 + 0.02Rt-io + 0.02Rt-ii + 0.02Rt-i2 + 0.01Rt-u  + 0 .0 1 R t-i4 + 0 .0 1 R t-i5 + 0.01Rt-i6

+ St

Each o f the 18 coefficients in the linear model were significant (P < 0.05; Table A1), and the 

model accounted for approximately 82% of the variation in daily stream flow in autumn during 

the observed time frame.

Reconstruction o f  spring stream  flo w s o f  A uke  Creek

Daily Spring stream flows o f Auke Creek during the study period (1983-2011) were 

reconstructed with a general-linear model, which was fit with environmental data collected from 

1962-75 including stream flow, rainfall, and air temperature. The reconstruction o f spring stream 

flows was performed for the months o f March-May, a period when melt water from snow pack 

accumulated over the w inter and ice on Auke Lake, along with rainfall, contribute to flow 

regimes. As was done in modeling fall stream flow, a power transformation was applied to daily 

flow rate o f Auke Creek in spring (Ft), based on the optimal level o f power (X = 0.1) selected by 

a Box-Cox optimization function (Box and Cox 1964), and transformed flow rate (Bt) was 

modeled as a linear function o f daily rainfall (R) on the current and preceding 15 days and 

temperature (T) on the preceding 3 days:
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F * - 1
A

B t = -9.38 + 0 .0 2 Rt + 0.03Rt-i + 0.02R - 2  + 0.02Rt-3 + 0 .02R ^ + 0.01Rt-j + 0.01Rt-<s + 0.01R-7 + 

0.01Rt-g + 0.01Rt-p + 0.01Rt-io + 0 .0 1 Rt-ii + 0 .0 1 Rt-i 2  + 0 .0 1 Rt-u  + 0.01Rti  + 0.01Rt-u  + 0.002T t-i  

+ 0.001 T- 2  + 0.003 Tt-3 + st

Each o f the 20 coefficients in the linear model were significant (P < 0.05; Table A2), and the 

model accounted for approximately 70% of the variation in daily stream flow in spring during 

the observed time frame.

PC R and  gel electrophoresis

The polymerase chain reaction (PCR) was used to amplify microsatellite loci. The PCR 

reaction mixtures were 10 |iL volumes: 1 x PCR buffer (50 mM KCl, 10 mM Tris-HCl at pH 

9.0); 1.5-3 mM  M gCh; 0.125-0.2 mM each deoxynucleotide triphospate (dNTP); 0.3-0.5 ^M 

each forward and reverse primer (Integrated DNA Technologies, Inc., Coralville, IA); 0.01-0.05 

|iM  labeled primer (Eurofins M W G Operon, Huntsville, AL); approximately 1 unit o f generic 

Taq polymerase; and 50-100 ng DNA. The general amplification profile was 1 cycle at 95°C for 

3 min; 30-40 cycles at 95°C for 30 s, 49-59°C for 30 s, and 72°C for 45 s; and 1 cycle at 72°C for 

5 min.

After amplification, PCR products were denatured by adding an equal volume o f stop 

buffer (95% formamide, 0.1% Bromophenol Blue) and heating for 3 minutes at 95°C. Target 

fragments were separated by loading approximately 1 |iL o f PCR product into polyacrylamide 

denaturing gels containing 6 % o f a PAGE-PLUS™  40% concentrate (AMRESCO Inc., Solon, 

OH), 8  M  Urea, and 5X TBE (445 mM Tris-Borate and 10 mM EDTA, pH 8.0), in a reaction 

catalyzed by ammonium persulfate and TEMED (N,N,N’,N ’-tetramethylethylenediamine). 

Electrophoresis was performed in LI-COR automated sequencers (4300TM DNA Analysis 

System, LI-COR, Inc., Lincoln, NE) in 1X TBE buffer, with running conditions 1,500 V, 40 W, 

40 mA, and 45°C plate temperature. Allele sizes were scored by using Saga (Ver. 3.2.1, LI- 

COR) software to compare allele band patterns with LI-COR IRD700™  or IRD800™  standard 

ladders (Lincoln, NE).
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Tables

Table S1 - Summary statistics from the linear model o f daily stream flow o f Auke Creek in 
autumn as a function o f rainfall lagged up to 16 days. Rainfall is donated ‘R ’ followed by the 
number o f lagged days (e.g. Rt-5 corresponds to the total daily rainfall from 5 days prior).

Term Coefficient Std. error t P

intercept -1.7510 0.0082 -213.8240 < 2E-16

Rt 0.1157 0.0044 26.2990 < 2E-16

Rt-i 0.1607 0.0046 35.0060 < 2E-16

Rt-2 0.1116 0.0046 24.3640 < 2E-16

Rt-3 0.0765 0.0046 16.6830 < 2E-16

Rt-4 0.0603 0.0046 13.1630 < 2E-16

Rt-5 0.0472 0.0046 10.2970 < 2E-16

Rt-6 0.0393 0.0046 8.5690 < 2E-16

Rt-7 0.0340 0.0046 7.4210 1.97E-13

Rt-8 0.0244 0.0046 5.3460 1.04E-07

Rt-9 0.0209 0.0046 4.5690 5.32E-06

Rt-io 0.0193 0.0046 4.2090 2.72E-05

Rt-ii 0.0175 0.0046 3.8080 0.0001

Rt-i2 0.0159 0.0046 3.4560 0.0006

Rt-13 0.0126 0.0046 2.7480 0.0061

Rt-14 0.0091 0.0046 1.9790 0.0480

Rt-15 0.0117 0.0046 2.5340 0.0114

Rt-i6 0.0130 0.0044 2.9560 0.0032
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Table S2 - Summary statistics from the linear model o f daily stream flow o f Auke Creek in 
spring as a function o f rainfall (R) lagged up to 15 days and temperature (T) lagged up to 3 days.

Term Coefficient Std. error t P

intercept -9.4194 0.0078 -1202.34 < 2e-16
Rt 0.019 0.0036 5.323 1.24E-07

Rt-i 0.0264 0.0037 7.118 1.99E-12

Rt-2 0.0232 0.0037 6.227 6.80E-10

Rt-3 0.0218 0.0037 5.837 7.00E-09

Rt-4 0.0187 0.0037 5.017 6.14E-07

Rt-5 0.0138 0.0037 3.697 0.0003

Rt-6 0.0131 0.0037 3.502 0.0005

Rt-7 0.0111 0.0038 2.951 0.0032

Rt-8 0.0094 0.0037 2.526 0.0117

Rt-9 0.0107 0.0037 2.894 0.0039

Rt-io 0.0092 0.0037 2.508 0.0123

Rt-ii 0.0089 0.0037 2.417 0.0158

Rt-i2 0.0072 0.0037 1.943 0.0522

Rt-i3 0.0089 0.0038 2.33 0.0200

Rt-14 0.0086 0.0039 2.221 0.0266

Rt-15 0.0086 0.0038 2.283 0.0227

Tt-i 0.0025 0.0005 5.373 9.49E-08

T-2 0.0011 0.0006 1.827 0.0679

Tt-3 0.0032 0.0005 6.841 1.31E-11
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Table S3 - Significance values of Pearson’s correlation coefficients for each pair of covariates 
used in the linear models of freshwater productivity. Covariates include adult migration year (Y), 
median date of migration (M ), temperature during migration (T), and stream flow during 
migration (F m ) and incubation (Fi). Moderately significant values (P  < 0.10) are shaded.

Covariate: Y M T F m F i

Y 1.000
M 0.082 1.000
T 0.247 0.262 1.000

F M 0.283 0.287 0.001 1.000

F i 0.990 0.510 0.079 0.284 1.000

Table S4 - Significance values of Pearson’s correlation coefficients for each pair of covariates 
used in the linear models of marine survival. Covariates include juvenile outmigration year (Y), 
median date of outmigration (M ), Coho Salmon smolt (C) and Dolly Varden charr (D ) 
abundance, sea-surface temperature during the spring bloom (T ), and stream flow during the 
spring bloom ( F s )  and late outmigration period ( F l ) . Moderately significant values (P  < 0.10) are 
shaded.

Covariate:
Y

M

Y

1.000
0.688

M

1.000

C D

C 0.389 < 0.001 1.000
D 0.412 0.023 0.027 1.000
T 0.165 0.065 0.221 0.692

F s 0.081 0.235 0.475 0.988

F l 0.064 0.948 0.616 0.224

T F s F l

1.000
0.073
0.144

1.000
0.163 1.000
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T able S5 - Coefficients and standard errors (parentheses) o f terms from general linear models o f freshwater productivity. Covariates 
include adult migration year (Y), median date o f migration (M), Auke Creek temperature during migration (T), and Auke Creek stream 
flow during migration (FM ) and incubation (Fi ). The most parsimonious models are shaded.

Model AIC R2 P Term 1 Term 2 Term 3 Interaction

Y 38.533 0.148 0.039 -0.021 (0.010)
M 42.589 0.020 0.460 0.010 (0.014)
T 43.087 0.003 0.763 -0.020 (0.066)

Fm 42.282 0.031 0.363 -0.190 (0.206)
Fi 42.970 0.008 0.656 -0.172 (0.381)

Y + T 40.507 0.149 0.123 -0.021 (0.010) 0.010 (0.063)
Y + Fm 40.205 0.158 0.107 -0.020 (0.010) -0.109 (0.200)
Y + Fi 40.284 0.156 0.111 -0.021 (0.001) -0.170 (0.358)
M  + T 44.565 0.021 0.757 0.010 (0.015) -0.010 (0.068)
M  * T 45.824 0.046 0.753 0.117 (0.134) 1.514 (1.895) -0.010 (0.008)

M  + Fm 43.922 0.043 0.567 0.008 (0.014) -0.166 (0.213)
M  * Fm 44.657 0.084 0.527 -0.013 (0.025) -13.949 (13.056) 0.059 (0.056)
M  + Fi 44.258 0.032 0.659 0.011 (0.014) -0.211 (0.387)

Fm  + Fi 44.203 0.034 0.643 -0.179 (0.214) -0.104 (0.392)

Y + Fm  + Fi 42.053 0.162 0.211 -0.020 (0.010) -0.093 (0.208) -0.135 (0.372)

M  + Fm  + Fi 45.765 0.048 0.741 0.009 (0.015) -0.146 (0.223) -0.148 (0.403)
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Table S6  - Coefficients and standard errors (parentheses) of terms from general linear models of marine survival. Covariates include 
juvenile outmigration year (Y), median date of outmigration (M ), Coho Salmon smolt (C) and Dolly Varden charr (D ) abundance, 
Auke Bay sea-surface temperature during the spring bloom (T), and Auke Creek stream flow during the spring bloom (F s ) and late 
outmigration period (F l ). The three models that had the highest probability of being the most parsimonious are shaded.

Model AIC R 2 P  Term 1 Term 2 Term 3 Interaction
Y 70.035 0.042 0.284 0.018 (0.017)

M 69.092 0.073 0.157 -0.028 (0.019)

C 71.283 0.000 0.943 0.008 (0.109)

D 68.984 0.076 0.147 -0.103 (0.069)

T 66.532 0.151 0.037 0.412 (0.188)

F s 71.241 0.002 0.835 -0.345 (1.640)

F l 64.073 0.220 0.010 -2.150 (0.778)
Y  +  M 69.999 0.107 0.229 0.017 (0.017) -0.027 (0.019)
Y  +  C 71.963 0.045 0.552 0.019 (0.017) 0.028 (0.110)
Y  +  D 70.127 0.103 0.242 0.015 (0.017) -0.093 (0.070)
Y  +  T 64.800 0.254 0.022 0.030 (0.016) 0.505 (0.186)

M  +  F s 70.748 0.084 0.320 -0.031 (0.020) -0.916 (1.643)

M  +  F l 63.090 0.297 0.010 -0.029 (0.017) -2.166 (0.754)

C  +  T 68.317 0.158 0.108 -0.046 (0.105) 0.432 (0.196)

C  +  F s 73.230 0.002 0.974 0.011 (0.112) -0.368 (1.687)

C  +  F l 65.939 0.224 0.037 0.034 (0.098) -2.177 (0.795)
D  +  T 65.113 0.246 0.026 -0.114 (0.063) 0.437 (0.181)

D  +  F s 70.930 0.078 0.347 -0.103 (0.070) -0.352 (1.605)

D  +  F l 64.953 0.250 0.024 -0.066 (0.065) -1.961 (0.800)

T  +  F l 52.449 0.513 < 0.001 0.596 (0.151) -2.866 (0.653)
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Table S6 (continued)

Model AIC R 2 P Term 1 Term 2 Term 3 Interaction

F s  +  F l 65.786 0.228 0.035 0.775 (1.524) -2.261 (0.819)

Y  +  C  +  T 66.724 0.256 0.057 0.029 (0.016) -0.026 (0.101) 0.515 (0.193)

Y  +  D  +  T 63.956 0.324 0.019 0.026 (0.015) -0.099 (0.062) 0.515 (0.181)

M  +  F s  +  F l 65.066 0.297 0.030 -0.028 (0.018) 0.219 (1.525) -2.197 (0.798)

C  +  T  +  F l 54.243 0.516 < 0.001 -0.034 (0.081) 0.610 (0.157) -2.857 (0.664)

D  +  T  +  F l 52.479 0.545 < 0.001 -0.068 (0.052) 0.598 (0.149) -2.673 (0.660)

D  +  F s  +  F l 66.730 0.256 0.057 -0.064 (0.066) 0.673 (1.530) -2.063 (0.845)
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T able S7 - Numbers o f released fry, adult returns, and proportion returned by brood year, cross, and run in two brood years o f Pink 
Salmon outbred over one generation. Returning odd- and even-year progeny were collected at Auke Creek weir in 2007 and 2008 
respectively. Parental run types are abbreviated early (E) and late (L).

Dam x Sire Cross

Broodyear 2005 Broodyear 2006

Run Fry released Adult returns Proportion Fry released Adult returns Proportion

E x E Control Early 12,517 75 0.0060 25,294 84 0.0033
E x L Hybrid Early 13,047 43 0.0033 9,865 28 0.0028
L x E Hybrid Late 7,080 20 0.0028
L x L Control Late 12,084 31 0.0026

Table S8  - Numbers o f released fry, adult returns, and proportion returned by brood year, cross, and run in two brood years o f Pink 
Salmon outbred over two generations. Returning odd- and even-year progeny were collected at Auke Creek w eir in 2009 and 2010 
respectively. Parental run types are abbreviated early (E) and late (L).

Broodyear 2007 Broodyear 2008

(Dam x Sire) x (Dam x Sire) Cross Run Fry released Adult returns Proportion Fry released Adult returns Proportion

(E x E) x (E x E) Control Early 15,453 223 0.0144 29,729 421 0.0142

(E x L) x (E x L) Hybrid Early 3,671 51 0.0139 7,777 100 0.0129
(E x L) x (L x E) Hybrid Early 2,939 46 0.0157

(L x E) x (E x L) Hybrid Late 12,473 210 0.0168

(L x E) x (L x E) Hybrid Late 2,228 32 0.0144

(L x L) x (L x L) Control Late 2,898 44 0.0152



Table S9 - Types o f crosses and corresponding line designations used in a line cross analysis of 
adult migration time in the second generation even-broodyear experiment. The numbers o f full 
sib families and returned adults, and the weighted mean Julian date o f adult migration in each 
line (Z}) and its standard error are listed.

(Dam x Sire) x (Dam x Sire) Line type No. families No. adults z , SE(Z})

(E x E) x (E x E) P1 21 223 235.453 0.415

(L x L) x (L x L) P2 6 44 243.545 1.429

(E x E) x (L x L) F1 9 109 237.284 0.989

(E x L) x (E x L) 
(E x L) x (L x E) 

(L x E) x (E x L) 

(L x E) x (L x E)

F2 37 339 238.917 0.611
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Figures

Figure S1 - Average proportion o f the total outmigration o f Pink Salmon fry, Coho Salmon smolts, and Dolly Varden charr that 
passed the Auke Creek w eir on each date over the time series (1983-2011). Plots were smoothed with 5-day rolling means.



137

F igure S2 - Annual numbers o f adult Pink Salmon returned to Auke Creek and Pink Salmon intercepted in the commercial harvest in 
Northern Southeast Alaska (1984-2010). Auke Creek Pink Salmon are expressed in thousands, and commercially harvested Pink 
Salmon are expressed in millions.


