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Abstract

Microbes are the base of all marine food webs and comprise >90% of all living biomass in the 

world’s oceans. Microbial life and functioning in high-latitude seas is characterized by the predominance 

of unknown species that encode uncharacterized genes, replenish nutrients, and modulate ecosystem 

health by interfacing with disease processes. This research elucidates eukaryotic microbial diversity and 

functionality in Arctic and sub-Arctic marine environments by describing the culturable and genetic 

diversity of eukaryotic microbes and the life histories of marine fungi belonging to the Chytridiomycota. 

This work includes the description of two new mesomycetozoean species, the assembled and annotated 

genome of Sphaeroforma sirkka, the first description of a cryptic carbon cycle (the mycoloop) mediated 

by fungi from any marine environment, and the description of large-scale eukaryotic microbial diversity 

patterns driven by temperature and latitude in the eastern Bering Sea. These results help establish a 

valuable baseline of microbial diversity in high latitude seas.
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Introduction

The Arctic Ocean remains one of the least studied oceanographic regions in the world (Gradinger, 2009) 

and is changing at an unprecedented rate (Arrigo and van Dijken, 2011; Nelson et al., 2014). 

Exemplifying these changes are decreases in summer sea ice extent and thickness (Holland et al., 2010; 

Stroeve et al., 2007), increases in water temperatures (Steele et al., 2008), and alterations in primary 

productivity (Arrigo et al., 2012). These physical changes are yielding observed and predicted changes in 

biotic diversity and ecosystem processes (e.g. Bluhm and Gradinger, 2008; Gradinger, 1995; Boyd et al., 

2014; Howes et al., 2015; Laidre et al., 2015). While changes in Arctic terrestrial systems are well 

documented (e.g. Forbes et al., 2010), relatively little information is available from the Arctic marine 

environment, which includes three major realms: sea ice, water column and sea floor (Wassmann et al., 

2011; Gradinger et al., 2010).

Although substantial progress has been made towards characterizing marine biodiversity (e.g. Comeau et 

al., 2013; Poulin, 2004; Doney et al., 2012; Pernice et al., 2015), thousands of species remain 

undescribed (Pedros-Alio, 2006; Sogin et al., 2006), especially in the microbial realm. Microbes 

comprise 90% of all living biomass in oceans (Suttle, 2007), yet their diversity and functionality are 

largely unknown, especially in the Arctic Ocean. Historically, microbial research has employed culture- 

based assessments of diversity, coupled with microscopy to elucidate the community composition and 

functioning of microbes; however, these methods are severely limiting, as less than 1% of microbes are 

culturable (Staley and Konopka, 1985) and morphological diagnostics lead to incorrect taxonomic 

assignments (Gleason et al., 2008). To address these limitations, microbial ecologists are employing 

culture-independent methods to assess diversity, such as next-generation sequencing (NGS). Driven by 

this advancement in technology, research on Arctic prokaryotes has drastically increased in the last 

decade (e.g. Mason et al., 2009; Ladau et al., 2013; Galand et al., 2009); however, these technology- 

driven research advancements have yet to be fully developed and extended to the eukaryotic research 

community, as many databases (e.g. SILVA) are still actively being curated to create a reliable consensus 

taxonomy.

As NGS continues to revolutionize the field of microbial ecology, global microbial diversity is being 

found to exceed prior estimates (Schuster, 2008), driven by the dominance of cryptic microbial life, 

especially in the Arctic. Molecular-based studies in Greenland, Norway and the Barents Sea found that 

42% of all eukaryotic sequences were less than 98% similar to any sequences in GenBank and that 15% 

of total sequences were less than 95% similar to any sequences previously recovered (Lovejoy et al., 

2006). This cryptic life and its biological processes challenge ecologists’ understanding of food web
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dynamics and community structures (e.g. Hollowed et al., 2013; Comeau et al., 2011; Boetius et al., 

2013).

To adequately assess microbial responses to climate change, baseline research is first needed to inventory 

microbes, supplemented by organismal research that assesses ecological roles, especially within the 

eukaryotic domain. These baseline studies are imperative for predicting and assessing future changes. 

Unequivocally, fungi are the most cryptic among the eukaryotic kingdoms within the marine system and 

are widely understudied in the Arctic (Jones, 2011). Assessments of Arctic eukaryotic diversity have 

explicitly omitted fungi in diversity studies (Comeau et al., 2011). Despite this, fungi are as important in 

aquatic nutrient cycling as they are in terrestrial soil systems (Barlocher, 2007), and possess the ability to 

change primary production patterns through parasitism (Gleason et al., 2008). Members of the fungal 

phylum Chytridiomycota (chytrids) are distinct from other fungi in that they require water to disseminate 

flagellated infection propagules called zoospores. In addition to many aquatic ecosystems, chytrids can 

dominate fungal biodiversity in cold habitats, such as water-saturated glacial soils (Freeman et al., 2009) 

and snow fields (Naff et al., 2013). Chytrids have been reported from the Arctic (Horner and Schrader, 

1982; Terrado et al., 2011); yet, their diversity and functional role remains unknown. Ecologically, 

chytrids can reshape ecosystems through intense parasitism of primary producers. This parasitic pressure 

can alter food web structures, collapse phytoplankton communities (Jones, 2011), alter phytoplankton 

succession (Lepere et al., 2008) and delay the timing of maximum algal density (Ibelings et al., 2004; 

Lepere et al., 2008) by colonizing up to 90% of a given phytoplankton species (Powell, 1993). If Arctic 

marine chytrids follow a similar life-history strategy then chytrids would constitute a major missing link 

in Arctic Ocean marine ecology.

The distinct connection between microbial diversity, abiotic environmental drivers, and food web 

structure has remained a key question in marine science (Worm et al., 2002). To accurately predict 

microbial responses to climate change, research is needed to elucidate the current abiotic drivers of 

eukaryotic community structure. One of the major changes predicted in future Arctic climate scenarios is 

a shift in precipitation and sea ice coverage duration, potentially leading to reduced snow cover (Hezel et 

al., 2013; Webster et al., 2014) and increased influxes of light. Shifts in nutrient regimes associated with 

larger oceanographic processes can stress or favor the growth of phototrophic eukaryotes (Manes and 

Gradinger, 2009). Understanding the abiotic structuring components of microbial communities is 

essential for explaining the current spatial diversity patterns of microbes.

Understanding abiotic drivers of microbial diversity patterns is important, but these analyses fail to 

incorporate biological-mediate mechanisms (e.g. nutrient cycling) and interactions into spatial diversity
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assessments. Arctic marine environments contain a vast reserve of polysaccharides, lignins and proteins 

(Goni et al., 2000) that are susceptible to microbial metabolism. Metabolizing or modifying these 

compounds for biogenic processes is predicated on the local gene assemblages encoded by microbes. In 

the marine system, the eukaryotes encode an array of enzymes that are responsible for the molecular 

modification and uptake of dissolved organic nitrogen (DON), dissolved inorganic nitrogen (DON) and 

DOC. Fungal amino acid permease, nitrate reductase (Gorfer et al., 2011), monooxygenases, phenol 

oxidase, cellobiohydrolases, chitobiohydrolases (Zifcakova and Baldrian, 2012), esterases, pectinases, 

and amylase (list not comprehensive) (van Den Brink and De Vries, 2011) facilitate catabolic 

modifications and uptake of organic material and DIN. The presence/absence of genes that encode 

catalytic enzymes can serve as a biological marker and proxy for ecosystem function. The rate at which 

these compounds are metabolized govern overall biogeochemical cycling and structure of marine 

ecosystems (Amon et al., 2001). Ultimately, as select organisms degrade available molecules, microbial 

community structure, diversity, and abundance changes in favor of organisms that can metabolize 

remaining substrates.

Characterizing current microbial diversity and identifying the drivers of community structure are complex 

tasks that require a suite of scientific tools. The objective of this research was to blend current state-of- 

the-art technologies with traditional microbiological methods to assess diversity and abiotic drivers of 

microbial community structure, including, functional roles of certain community members, with a focus 

on marine fungi and fungal-like organisms. The Pacific Arctic Domain is of particular interest in 

understanding changing Arctic marine ecosystem functioning and diversity and for assessing the impacts 

of changing oceanographic conditions on them (Grebmeier et al., 2010). This research established 

baseline information on the seasonality of microbial eukaryotes in Barrow, Alaska, by employing culture- 

based assessments of diversity and culturing-independent NextGen sequencing. To build off these 

seasonal data, I assessed the abiotic drivers and spatial diversity of eukaryotic microbes across several 

locations in the Arctic and sub-Arctic. Lastly, to predict the functioning of select eukaryotes, this 

research studied the genetic potential by assembling and annotating the genome of a novel eukaryote, 

Sphaeroforma sirkka.
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Chapter 1: Two New Species of Marine Saprotrophic Sphaeroformids in the Mesomycetozoea Isolated

From the Sub-Arctic Bering Sea1

Abstract

The genus Sphaeroforma previously encompassed organisms isolated exclusively from animal symbionts 

in marine systems. The first saprotrophic sphaeroformids (Mesomycetozoea) isolated from non-animal 

hosts are described here. Sphaeroforma sirkka and S. napiecek are also the first species in the genus 

possessing endogenous DNA-containing motile propagules and central vacuoles, traits that have 

previously guided morphological differentiation of sphaeroformids from the genus Creolimax. 

Phylogenetic analysis of DNA sequences from the 18S rRNA and the ITS1-5.8S--ITS2 loci firmly 

place S. sirkka and S. napiecek within Sphaeroforma, extending the number of known species to six 

within this genus. The discovery of these species increases the geographical range, cellular variation and 

life history complexity of the sphaeroformids.

'Hassett BT, Lopez AJ, Gradinger R (2015) Two new species of marine saprophytic sphaeroformids in 

the Mesomycetozoea isolated from the sub-Arctic Bering Sea. Protist, 166: 310-322.
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Introduction

Osmotrophic protists of the Mesomycetozoea (Ichthyosporea) are ecological commensals, mutualists, and 

parasites in marine, freshwater and terrestrial habitats that have been isolated exclusively from animal 

symbionts (Glockling et al. 2013). The lack of obvious morphological diagnostic features of the 

Mesomycetozoea (Marshall and Berbee 2013) hinder the application of morphological characteristics to 

delineate species boundaries. To circumvent this barrier, DNA sequences of the nuclear ribosomal RNA 

operon coding region have been used as the basis for the detection and diagnosis of novel species 

(Jostensen et al., 2002 and Marshall and Berbee, 2011), the circumscription of novel clades, and the 

reclassification of previously described species within the Mesomycetozoea (Lohr et al.,

2010 and Marshall and Berbee, 2013). Currently, there are over 40 taxa described in the 

Mesomycetozoea, about half of these are phylotypes (Glockling et al. 2013).

The Mesomycetozoea currently includes two 18S-SSU rRNA monophyletic subgroups: the dermocystida 

and ichthyophonida (Marshall and Berbee 2011) that branch near the animal-fungal divergence within the 

eukaryotic supergroup Opisthokonta (Paps et al. 2013). Taxonomy within ichthyophonida has recently 

been revised to include the placement of Pseudoperkensis tapetis in the genus Sphaeroforma, as well as 

by the addition of two new species: S. gastrica and S. nootkatensis (Marshall and Berbee 2013). At 

present, Sphaeroforma comprises four species (Marshall and Berbee 2013), which are proposed as a 

monophyletic assemblage among mesomycetozoean lineages based on molecular evidence.

We investigated the presence and diversity of free-living mesomycetozoeans for the first time in a sub­

Arctic water sample, collected from a nearshore estuarine environment in the Bering Sea, close to Nome, 

Alaska. Culturing and DNA sequence screening revealed two phylogenetically divergent clades of 

mesomycetozoeans saprobic on pollen. Molecular analysis of concatenated partial small subunit nuclear 

rRNA (18S) and ITS1-5.8S-ITS2 (ITS) sequences from six isolates places these Bering Sea isolates into 

the genus Sphaeroforma. Additionally, life history characteristics of these isolates differ from those of 

previously described life histories. We describe these as two new species based on molecular data and life 

history information.

Results

After editing, alignment and removing incompletely overlapping homologous sequences, the finished 

multiple sequence alignments (MSAs) consisted of 30 ITS1-5.8S-ITS2 sequences, 24 18S sequences and 

21 concatenated sequences (Table 1), where both ITS and 18S reads were available for a specific isolate. 

Because Sphaeroforma Arctica 18S (Jostensen et al. 2002) and ITS sequences (Marshall and Berbee
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2013) are only available from single, distinct isolates, we chose to include a chimeric 18S and ITS 

concatenation of the two sequence s in the concatenated MSA. After end trimming, the aligned sequences 

spanned 998 basepairs and 656 basepairs for 18S and ITS1-5.8S-ITS2, respectively. No DNA regions 

were excluded in the alignment procedure or removed from the finished MSAs. A preliminary screening 

of isolated organisms was conducted using sequences from a fragment of the 28S gene. A BLAST query 

of sequenced 28S amplicons from B1 and B2 isolates yielded a closest match (89% identity) with a 

sequence reported from Amoebidium parasiticum (GENBANK Accession #EU011932.1). Additional 

BLAST queries, using 18S rRNA and ITS1-5.8-ITS2 sequences from all isolates examined here, revealed 

a close similarity (96% and 99% identity for ITS and 18S, respectively) to sequences from isolates 

of Sphaeroforma nootkatensis.

Maximum likelihood (ML) and maximum parsimony analyses of concatenated MSAs, including 

sequences from the six Nome isolates, all other known members of Sphaeroforma, and two Creolimax 

fragrantissma isolates, consistently support two distinct clades, corresponding to two new unique 

phylotypes nested within Sphaeroforma: S. napiecek forming a clade with S. nootkatensis and S. sirkka as 

the sister group of the S. nootkatensis/S. napiecek clade (Fig. 1.0). ML and maximum parsimony trees 

produced near identical tree topologies with bootstrap values greater than 98% supporting the uniqueness 

of these phylotypes.

Light Microscopy and Ultrastructure

Once pollen was plated onto PmTG agar media, sphaeroformids were identified by conglomerations of 

raised circular cells. When subcultured and streaked on tryptone, peptonized milk, and PmTG with 

variable salt concentration-containing media, S. sirkka and S. napiecek produced two unique colony types: 

colonies with a consistent opaque unraised matrix of cells with low adhesion properties that were more 

likely to smear across a plate than fix to a probing object and easily harvestable, discretely raised large 

colonies. All isolates of both S. napiecek and S. sirkka were capable of growing on 9, 18, 26 and 35 

salinity-amended peptonized milk agar.

Sphaeroforma sirkka

Following 20 days of incubation and observation, S. sirkka isolate B1 failed to release endospores at 4 °C 

in PmTG broth. In the first 48-hours, cells grew steadily and displayed active organization of cytoplasmic 

material. Within 48-hours of observation, small (<1 ^m) hyaline motile propagules (MPs) were observed 

entering the field of view, suggesting an alternative method of reproduction than endospore release. 

Examination of isolate B1 at 1000x magnification revealed the presence of numerous sphaeroformid cells
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containing exclusive vacuole-localized and complete cell-associated MPs (Supplemental Material: Video 

1) of a similar size class. All isolates of S. sirkka produced these small MPs; while these MP-containing 

sphaeroformid cells were regularly observed, this cell variety constituted <1% of all cells. The quantity of 

vacuole-localized MPs varied from several small dark granular MPs (Fig. 1.1I) to innumerable larger dark 

and hyaline MPs (Supplemental Material: Video 1). Complete sphaeroformid cell-associated endogenous 

swarming MPs were also observed (Supplemental Material: Video 1), but less frequently than the 

vacuole-localized variety. When small endogenous MP swarms were observed, the cell vacuole was 

noticed to be absent or to have lost structural integrity, appearing collapsed in nature. DAPI staining of 

MPs indicate the presence of DNA within these MPs (Supplemental Material: Video 2). Partial release of 

swarming propagules through a small operculate-like opening in the cell wall was observed twice; 

however, MPs were not observed to be amoeboid in nature and were too small to detect the presence of 

flagella through light microscopy. Upon release, hyaline MPs remained motile for over a minute, while 

those propagules that did not escape and were retained within the cell wall remained motile indefinitely. 

Motile propagules were produced by three predominant cell types: those with a granular endogenous 

matrix (Fig. 1.1B), spherical cells with a visible vacuole (Fig. 1.1I), and cells with seemingly no 

intercellular structures beyond swarming MPs (Supplemental Material: Video 1).

At 1000x magnification, granular cells were observed in a variety of sizes, from newly released spherical 

endospores (Fig. 1.1J) 3 -10 ^m diameter, to large undifferentiated cells over 50-^m in diameter (Fig. 

1.1C). Large undifferentiated granular cells were observed to undergo equatorial splitting and release of 

cell content (Fig. 1.1K), including some motile propagules that became quiescent immediately after 

release. Small granular cells likewise possessed the ability to produce pseudopod-like projections (Fig. 

1.1F) and to differentiate into lobed cells. Contrary to granular cells, lobed cells were not observed 

developing into the granular variety.

Lobed cells were frequently observed containing a variety of cleaved and uncleaved endospores, ranging 

from 2 to over 10 lobes (Fig. 1.1H, J, L). After 20-days of monitored growth, massive endospore release 

was induced by warming colonies to room temperature. Equatorial splitting and release of endospores 

was observed upon warming, leaving wall castings, many curling at the ends. Likewise, release of 

endospores through a small terminal opening occurred in mounted specimens. Some cells with smaller 

vacuole-associated endospores also produced vacuole-localized MPs (Fig. 1.1I). Granular plasmodial 

cells were frequently observed; however, MPs were not observed associated with granular plasmodial 

cells. Life history is illustrated in Figure 1.3. The development of MPs and endospores into mature cells is 

inferred.
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Sphaeroforma napiecek

S. napiecek was identified, isolated and cultured in the same manner as S. sirkka. Like S. sirkka, S. 

napiecek formed plasmodial (Fig. 1.2E), multilobed (Fig. 1.2A, B, C), and granular cells with the same 

observable life history, including the production of pseudopod-like projections (Fig. 1.2F) and motile 

propagules. Specifically, vacuole-localized motile propagules were observed in newly released 

endospores (Fig. 1.2G), as well as in complete-cell swarms (Fig. 1.2D). Consistent with S. sirkka, swarms 

were only observed in cells with collapsed (Fig. 1.2D) or absent (Fig. 1.2I, Supplemental Material: Video 

1) vacuoles. Likewise, small motile propagule release was observed through a terminal operculate-like 

opening in cells (Fig. 1.2I).

U ltrastructure

S. napiecek and S. sirkka share many morphological features with other sphaeroformids, including: the 

presence of cell walls during vegetative growth, multinucleation, presence of cell wall pores and a calyx 

(Fig. 1.4A, G). Nuclei contain peripheral nucleoli (Fig. 1.4B) and are associated with a single Golgi body 

with stacked cisternae (when present) (Fig. 1.4A, D). Nuclei of both taxa display swollen perinuclear 

spaces (Fig. 1.4E). Mitochondria contain flatted plate-like cristae and vary in size; oftentimes, a single 

mitochondria comprises the majority of cytoplasmic content (Fig. 1.4C).

Cell walls are similar for both taxa and contain a gelatinous calyx exterior to an electron-dense outer and 

inner layer cell wall. Cell walls vary in thickness, displaying thicker cell walls at polar ends and cell wall 

blebs (Fig. 1.4H), frequently perforated with pores (Fig. 1.4G). Cell membranes of both taxa are wavy 

and generally appear to be unassociated with the cell wall.

S. sirkka produces invaginations of the cell membrane that are surrounded by unknown membrane-bound, 

crescent-shaped structures (CSS) (Fig. 1.5A, B, C, F). CSSs contained numerous folding membranes that 

were sometimes contiguous with the nuclear and mitochondrial membranes and in association with lipid 

droplets (Supplemental Figure 1.0B). CSSs form in association with mitochondria, sometimes appearing 

to share a single membrane (Supplemental Figure 1.0B). CSSs contain electron-dense inclusions (Fig. 

1.5A) and remnants of what appear to be mitochondria inside their membranes (Fig. 1.5F). Thick 

electron-dense strands occur frequently at the base of invaginations (Fig. 1.5B, C, E).

Frequently, the existence of invaginations coincides with membrane-decorated vesicles. These vesicles 

seem to derive from cell membrane invaginations. (Fig. 1.5A, B, E, F). We were unable to determine the 

function of CSSs, but they appear related to the formation of invaginations and production of membrane-
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decorated vesicles. Some CSSs contain inclusions of a similar nature as membrane-decorated vesicles 

(Fig. 1.5F), namely: spherical bodies ~0.5 ^m in diameter accompanied by a short appendage (Fig. 1.5E, 

F). Dark granular vesicles with short flagellum-like strands were observed outside the cell membrane 

(Fig. 1.5D).

Cytoplasmic material contains central vacuoles (Fig. 1.5D), inclusions of varied content and lipids. 

Membrane-bound vacuoles (Fig. 1.4F) differed in number and location in cells. Vacuoles were sometimes 

associated with the nucleus and capable of absorbing cell content (Fig. 1.4A). Dense lipid droplets were 

observed in a number of cells, sometimes associated with contiguous nucleus-mitochondria membranes, 

though not consistently.

Taxonomic summary

Sphaeroforma sirkka

Usually spherically shaped cells ~10 ^m in diameter, but capable of forming inconsistently shaped 

plasmodial cells, pseudopodia-like projections and large granular cells greater than 50-^m in diameter. 

Mitochondria with plate-like cristae, Golgi bodies with stacked cisternae, lipid droplets in cytoplasm, Cell 

wall composed of a lucent calyx with an electron-dense inner and outer cell wall, perforated by pores. 

Produces cell membrane invaginations that pinch to form membrane- bound vesicles. Endospore release 

occurs both through a terminally-located cell wall rupture, as well as through equatorial splitting that 

leaves empty cell wall castings, capable of curling at the ends. Large granular cells (>50 ^m) undergo 

equatorial splitting and release of cell content, in addition to small motile propagules that become 

quiescent several seconds after release. A number of S. sirkka cells possess a central vacuole that contains 

small (<1 ^m) swarming motile propagules. This central vacuole appears to collapse or become absent, 

emptying these small endogenous motile propagules into the main body of the cell. Later, the cell 

membrane ruptures, releasing these small DNA-containing motile propagules exogenously that stay 

motile indefinitely. Capable of growing on a variety of media and in the presence of variable salt 

concentrations on peptonized milk medium ranging in salinity from 9-35. Most closely related to the 

genus Creolimax based on previous phylogenetic studies and morphologically distinguished by the 

absence of spore release through multiple pore openings. Distinguished from S. nootkatensis and S. 

Arctica by the variable presence of plasmodial cells, a central vacuole, the production motile cells <1 ^m 

and phylogenetic inference. Distinguished from S. tapetis by the lack of cell wall amoeboid squeezing, a 

central vacuole, and phylogenetic inference. Distinguished from S. gastrica by the absence of pore- 

associated endospore release, a central vacuole, production of motile propagules, and phylogenetic 

inference. Distinguished from S. napiecek by phylogenetic inference.
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Range: Found in association with Ulva sp. in estuarine environments in the Bering Sea region of Alaska. 

Type: isolate B5, accession #: 18S: KJ736747, ITS: KJ736753

Type locality: subcultured on PmTG medium from sweet gum pollen in conjunction with the 

macroalgae Ulva sp. from a near-shore estuarine system at the Safety Cove Bridge, Nome, Alaska, United 

States of America. August 2013.

Sphaeroforma napiecek

Usually spherically shaped cells ~10 in diameter, but capable of forming inconsistently shaped 

plasmodial cells, pseudopodia-like projections and large granular cells greater than 50 ^m in diameter. 

Mitochondria with plate-like cristae, Golgi bodies with stacked cisternae, lipid droplets in cytoplasm, Cell 

wall composed of a lucent calyx with an electron-dense inner and outer cell wall, perforated by pores. 

Endospore release occurs both through a terminally-located cell wall rupture, as well as through 

equatorial splitting that leaves empty cell wall castings, capable of curling at the ends. A number of S. 

napiecek cells possess a central vacuole that contains small (<1 ^m) swar ming motile propagules. This 

central vacuole appears to collapse or become absent, emptying these small endogenous motile 

propagules into the main body of the cell. Later, the cell membrane ruptures, releasing these small DNA- 

containing motile propagules exogenously that stay motile indefinitely. Capable of growing on a variety 

of media and in the presence of variable salt concentrations on peptonized milk medium ranging from 9­

35. Most closely related to the genus Creolimax based on previous phylogenetic studies and 

morphologically distinguished by the absence of spore release through multiple pore openings. 

Distinguished from S. nootkatensis and S. Arctica by the variable presence of plasmodial cells, a central 

vacuole, the production of long-lived motile cells <1 ^m and phylogenetic inference. Distinguished 

from S. tapetis by the lack of cell wall amoeboid squeezing, a central vacuole, and phylogenetic inference. 

Distinguished from S. gastrica by the absence of pore-associated endospore release, a central vacuole, 

production of motile propagules, and phylogenetic inference. Distinguished from S. sirkka by 

phylogenetic inference.

Range: isolated from Ulva sp. in an estuarine system of the Bering Sea region, Alaska.

Type: isolate B4, accession #18S: KJ736749; ITS: KJ736755

Type locality: subcultured on PmTG medium from sweet gum pollen in conjunction with the 

macroalgae Ulva from a near-shore estuarine system at the Safety Cove Bridge, Nome, Alaska, United 

States of America. August 2013.
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Discussion

Baiting environmental samples with pollen is an effective method to reduce culturing contaminants and 

increase cell inoculum prior to plating. This method is high-throughput in that it selects for organisms 

saprobic on pollen. The limitation to pollen baiting is that, without repeat sampling efforts, it is 

impossible to determine if cells were free-floating in the environment or associated with a substrate. In 

this study, a water sample with Ulva was collected and buoyant pollen was added. Following several 

days, large quantities of sphaeroformids were observed on baited pollen. To this end, the estuarine Bering 

Sea contained a substantial free-floating inoculum load or sphaeroformids migrated to pollen from Ulva. 

In our broth culture analysis, suspended sphaeroformids settled to the bottom of well plates, suggesting 

that these organisms are not buoyant. Subsequently, we surmise these organisms likely migrated to 

pollen. Light microscopy observations of motility support this conclusion. Ultimately, the nature of the 

association of Bering Sea sphaeroformids with Ulva is unknown.

Morphologically, S. sirkka and S. napiecek are unique among the sphaeroformids by having a central 

vacuole, endogenous motile cells that swarm intercellularly, lipid inclusions and invaginating membranes. 

Motile stages are not uncommon within the Mesomycetozoea, but do differ between the dermocystida and 

ichthyophonida, corresponding to a posterior flagellum and amoeboid stages, respectively (Marshall and 

Berbee 2011). The rapid directional movement observed by the MPs is inconsistent with amoeboid-like 

motility, suggesting a deviation from the current dogma of motility within the ichthyophonida. TEM 

analysis revealed hyaline membrane-decorated vesicles with short flagellum-like strands that appear to 

originate from CSSs. These vesicles are of a similar size class to MPs and occur in areas without cellular 

material (Fig. 1.5D, E, F), consistent with video and light microscopy observation of MPs. Likewise, dark 

granular vesicles observed with light microscopy were observed in TEM. These dark granular vesicles 

had short flagellum-like strands, similar to hyaline vesicles. Extensive TEM was unsuccessful in 

identifying a 9+2 microtubule arrangement. To this end, the nature of these flagellum-like appendages 

remains uncharacterized. We hypothesize these vesicles are indeed MPs.

The function of S. sirkka and S. napiecek's DNA-containing motile propagules is assumed to be a method 

of reproduction, though it has not been confirmed. Marshall and Berbee (2010) suggested that 

Sphaeroforma tapetis might be undergoing a cryptic sexual cycle. We did not observe direct evidence for 

sexual mating (e.g. anastomosis or cell wall fusions); however, it is possible that plasmodial 

(Supplemental Figure 1.0A) or large granular cells may be a product of cell fusion and the possibility of 

sex in S. sirkka and S. napiecek cannot be discounted.
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Invaginating membranes are a unique structure among the sphaeroformids, but have been observed in 

other genera within the Ichthyosporea (Marshall and Berbee 2011). The need for a large cell membrane 

surface area to produce invaginations could explain the gap/disassociation between cell wall and 

membrane. The function of CSS is cryptic, but appears intimately associated with formation of 

invaginations, endoplasmic reticulum and even more so with mitochondria. Endoplasmic reticulum- 

mitochondrial interactions are a known phenomenon in all Eukarya, responsible for lipid metabolism, 

calcium cycling and intercellular signaling (Raturi and Simmen 2013); subsequently, observed lipid 

droplets in association with endoplasmic reticulum-mitochondria complexes (Supplemental Figure 1.0B) 

support the function of mitochondrial-associated membranes in lipid metabolism in sphaeroformids. 

Despite this, further research is needed to determine if mitochondria-associated-membranes are involved 

in reproduction, invagination formation, or CSSs.

Recently Sphaeroforma taxa have been distinguished from those in the closely related 

genus Creolimax by the absence of a central vacuole and non-swarming colonies (Marshall and Berbee 

2013). The novel morphology of S. sirkka and S. napiecek eliminates the usefulness of this morphological 

delineation between the two genera, further limiting the application of morphological-based diagnostics. 

The life history of sphaeroformids has largely been defined by equatorial splitting and subsequent 

endospore release, based on S. Arctica (Jostensen et al. 2002), S. nootkatensis and S. gastric (Marshall 

and Berbee 2013). The central understanding of Sphaeroforma reproduction became increasingly more 

complex with the reclassification of Pseudoperkesis tapetis to S. tapetis; in addition to cell wall 

splitting, S. tapetis also produces short-lived motile amoeboid cells (Marshall and Berbee 2013). With the 

addition of S. sirkka and S. napiecek, the life history complexity within the genus Sphaeroforma increases 

further. In addition to endospore release through terminal ruptures and equatorial splitting, S. 

sirkka and S. napiecek produce motile cells in a central vacuole that release into the cell cavity, before 

exogenous dissemination, eventually becoming capable of rapidly swimming across several fields of view 

(>1-mm). S. sirkka and S. napiecek are also unique among the sphaeroformids in the production of large 

granular cells (~50-^m) that may release substantial cell content, contributing to the consistent opaque 

unraised matrix of cells with low adhesion properties, observed in agar media growth. The nature by 

which large granular cells, plasmodial cell, and MP-containing cells develop is unknown. The complex 

life cycle of these novel sphaeroformids and the interpretation of the observed cell types and structures 

offer fascinating opportunities for future work. Based on the current knowledge we propose a general life 

cycle combining our TEM, and various light microscopical observations. It appears that S. sirkka and S.
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napiecek share similar life histories and morphologies and are distinguished solely by phylogenetic 

inference.

Both sympatric and allopatric modes of speciation are plausible mechanisms underlying the genetic 

divergence and morphological differences between Bering Sea and British Columbia isolates (Marshall 

and Berbee 2013) documented here. As the first saprotrophic species in the Mesomycetozoea, sympatric 

speciation mediated by resource partitioning away from the symbiotic relationship may have favored the 

development of a free-living life history strategy, e.g. long-lived motile spores and lipid energy reserves. 

The geographical distance (~3,000 km) between isolation sites of Bering Sea and British Columbia 

species is compatible with divergence and speciation under allopatric conditions. In the nearshore 

environment, varying salinities from freshwater discharge exert strong selection pressure on marine 

organisms. The Bering Sea isolates we describe here, possess the ability to grow under variable salinities. 

This halotolerance may be an enhancer of geographical isolation linked to brackish water systems, 

leading to speciation and divergence from other sphaeroformids.

Conclusions

The newly described species, Sphaeroforma sirkka and S. napiecek considerably expand the genetic, 

environmental, and life history diversity of the genus Sphaeroforma. They represent the first saprotrophic 

sphaeroformids and mesomycetozoeans to be isolated from a non-animal host.

Methods

Isolation and culture: A water sample containing the filamentous macroalgae Ulva sp. was collected 

from the estuarine Safety Cove east of Nome, Alaska (64°28'19.55"N, 164°44'47.23"W; salinity 17) on 

August 30th, 2013. Safety Cove salinity was measured in the lab using a temperature/salinity probe (YSI) 

from water samples stored at 4 oC. Water samples were baited with Liquidambar styraciflua (sweetgum) 

pollen (Sparrow 1960) and incubated for 3-days at 4 oC. Pollen containing fungal-like organisms was 

streaked onto PmTG media containing 1-g peptonized milk, 1-g tryptone, 5-g glucose, and 20-g agar liter- 

1 of Instant Ocean seawater adjusted to a salinity of 20 and amended with streptomycin sulfate and 

penicillin G antibiotics. Six isolates were harvested, resuspended in Instant Ocean seawater and 

subcultured from a single cell, grown in axenic culture and maintained on PmTG agar at 4 oC until 

molecular analysis.
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DNA extraction, amplification, and sequencing: Total genomic DNA was isolated from 14-day cell 

cultures using the DNeasy Plant Mini Kit (Qiagen) following manufacturer's protocols. Segments of the 

major ribosomal RNA coding region were amplified by polymerase chain reaction (PCR) using the 

following primer pairs: LR0R/LR5, which targets a ~900 basepair (bp) segment of the 28S rRNA gene 

(Rehner and Samuels, 1994 and Vilgalys and Hester, 1990), NS1/NS4, which targets a ~  1200-bp portion 

of the 18S rRNA gene (White et al. 1990), and ITS4/ITS5, which targets the entire ITS1-5.8S-ITS2 

internal transcribed spacer (White et al. 1990). 28S primers were used to preliminarily screen isolates of 

interest, but not included in phylogenetic analysis. PCRs were conducted using Platinum Taq (Life 

Sciences); reagent concentrations were according to manufacturer's protocol with a starting concentration 

of 10ng/^l of genomic DNA. Thermocycling parameters were: 28S LSU: 29 cycles at 95 °C melting for 

1-minute, 50 °C annealing for 30-seconds, 72 °C extension for 90-seconds; 18S: 10 cycles- 95 °C melting 

for 29-seconds, 50 °C annealing for 29-seconds, and an extension step at 72 °C for 90-seconds, 29-cycles- 

95 °C melting for 29-seconds, 47 °C annealing for 29-seconds and a final extension for 90-seconds; ITS1- 

5.8S-ITS2: 95 °C melting for 1-minute, 50 °C annealing for 1-minute, 72 °C extension for 1-minute with 

a final extension of 5-minutes at 72 °C. Amplification products were purified using the PureLink PCR 

Purification kit (Life Sciences) and then used as templates in Sanger sequencing reactions using the 

BigDye Terminator v3.1 chemistry (Applied Biosystems). Purified sequencing reaction products were 

analyzed on a 3130xl ABI instrument at the Institute of Arctic Biology DNA Core Lab at the University 

of Alaska Fairbanks. PCR products were sequenced in both directions to maximize confidence on base 

calls along the length of the amplicon. Chromatographs were examined in MEGA6 (Tamura et al. 2013) 

for the presence of secondary peeks and conflicting bases. Low quality sequencing reads were discarded 

and the amplicons resequenced or re-amplified and resequenced. High quality sequences were aligned by 

gene region with ClustalW. High variability regions with ambiguous alignment were manually edited to 

minimize homology artifacts introduced by automated alignment. All aligned sites were included in 

subsequent analyses. The resulting multiple sequence alignments (MSAs) were then expanded with the 

addition of publicly available sequence data and used in subsequent phylogenetic analysis.

Phylogenetic analysis: MSAs including sequences from the six Nome, Alaska isolates and all other 

publicly available homologous sequences from species of Sphaeroforma were employed in these 

analyses. Maximum likelihood (ML) and maximum parsimony trees were estimated from each of the 

three MSAs. The nucleotide substitution model used in ML analyses was selected by application of the 

model comparison routines implemented in MEGA6. Both Bayesian and Akaike information criteria 

identified the Tamura-3-parameter model (Tamura 1992) with among site rate variation (T92+G) as the 

best fitting model for concatenated sequences. ML trees were generated with MEGA6 using the best
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fitting model. Bootstrap values were generated through tree estimation from 1000 pseudoreplicates (site 

resampling with replacement) of the MSAs. Maximum parsimony analysis was conducted in SeaView 

(Bazinet et al. 2014) using 1000 bootstrap replicates.

Morphology and substrate utilization: Life history and growth substrate utilization was assessed for the 

six Nome isolates. Two isolates representative of S. sirkka and S. napiecek (B1 and B4) were grown 

independently in PmTG broth in 96-well plates at room temperature and also at 4 °C for live 48-hour 

video recording (United Scope, MU500) of growth development on a Zeiss Telaval 31 inverted scope. 

After 48-hours, growth was observed and photographed every 12-hours. Due to the low concentration of 

unique cell types, snapshots of the life history were obtained using a Leica DM2000 compound 

microscope with mounted samples on a standard glass slide with coverslip to supplement monitored 

growth. Additionally, reproduction of all six isolates was assessed on several media including: tryptone 

and agar, peptonized milk and agar, and PmTG media. Peptonized milk agar was amended with variable 

salinities of: 8.75, 17.5, 26.25, and 35, corresponding to roughly 25%, 50%, 75%, and 100% of standard 

marine salinity and observed for visible growth after 7-days.

Nucleic acid staining was conducted using DAPI (Sigma-Aldrich) DNA light and a Zeiss Axiovert 35 

inverted microscope with UV filter set. Colonies with a consistent opaque unraised matrix of cells were 

harvested from 2-month old cultures and suspended in sterile seawater amended with DAPI staining 

solution on a glass slide with coverslip and studied live with video recording by a ocular-mounted camera 

(United Scope, MU500).

TEM: Cells were fixed in Modified Karnovsky's fixative for 1-hour at room temperature and pelleted 

lightly. Cells were washed and post fixed for 1 hour in 1% Osmium tetroxide in 0.1 M Sodium cacodylate 

buffer in the dark. After post-fixation cells were washed with 0.1 M sodium cacodylate buffer twice, once 

with nanopure water, and en-bloc stained with 2% uranyl acetate. The pellets were dehydrated through a 

graded series of ethanol, followed by 3-changes of acetonitrile and embedded in Eponate. 70-nm cross 

sections were cut on a Leica UC6 ultramicrotome and post-stained with uranyl acetate and lead citrate. 

Images were TEM collected on a JEOL (Model: JEM 1200 EXII) with a Tietz TEM high-resolution 

camera (Model: F224).
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Figure 1.0. Maximum likelihood tree. Maximum likelihood tree with maximum parsimony bootstrap 

values (MP/ML) of taxa from concatenated ITS/18S sequences showing statistical support of 6 

phylotypes. The tree is drawn to scale, with branch lengths measured in the number of substitutions per 

site. The analysis involved 21 nucleotide sequences. There were a total of 1659 positions in the final 

dataset.

22

http://www.sciencedirect.com/science/article/pii/S1434461015000218%23gr1


Figure 1.1. Light microscopy-observed morphology of Sphaeroforma sirkka. Light microscopy- 

observed morphology of Sphaeroforma sirkka with 100x oil immersion lens. Scale bar represents 10-^m. 

A. Sweet gum (sg) pollen colonized by saprotrophic members of Sphaeroforma displaying plasmodial 

(p), oblong (o) and spherical morphology with variable cell size (4-30 ^m). B. Two frequently observed 

cell types that correspond to mode of asexual reproduction: granular (g) and lobed (l). C. Isolate B1 

displaying variable cell size and morphology, including large granular cells up to 50-^m in diameter, 

spherical cells (s), and lobed cells (l). D. Plasmodial cell (p) contrasting typical spherical cell. E. Large 

plasmodial cell. F. Small spherical cell with a pseudopod-like projection. G. Large granular cell with a 

predominant cleavage furrow (cf), likely differentiating into a lobed cell. H. A differentiating lobed cell. I. 

Spherical cell with both vacuole (v)-associated endospores (e) and vacuole-localized motile granules (g) 

(<1 ^m). J. Terminal release of cleaved endospores through the spherical cell wall. K. Granular cell 

undergoing hemispherical-splitting and subsequent release of endogenous contents and motile propagules. 

Motile propagules quiescence shortly after release. L. Parent cell wall castings (w) split in even halves 

following endospore discharge.
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Figure 1.2. Light microscopy-observed morphology of Sphaeroforma napiecek. Light microscopy- 

observed morphology of Sphaeroforma napiecek with 100x oil immersion objective. Scale bar represents 

10-^m.A. Typical circular S. napiecek cell with multiple cleaving endospores. B. Large multilobed 

spherical cell. C. Spherical cell with fully cleaved and organized granular endospores of variable size 

before release. D. Complete-cell swarming motile propagules (s) around the collapsed vacuole (cv). E. 

Granular plasmodial cell contrasting a typical spherical cell. F. Pseudopod-like projection. G. Terminal 

release of vacuolated endospores, some containing vacuole-localized motile propagules (mp). H. Cell 

wall castings displaying equatorial splitting and curled ends (c). I. Operculate-like opening releasing 

motile propagules terminally in the path denoted by the arrow.
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Figure 1.3. Life cycle of Sphaeroforma sirkka and S. napiecek. Life history of sphaeroformids based on 

observed (black arrows) and inferred transitions (orange arrows). Three distinct methods of reproduction 

occur: equatorial splitting and release of cleaved endospores, the development and splitting of large 

granular cells (not drawn to scale), and the motile propagule stage (green background).
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Figure 1.4. Electron micrographs of S. napiecek and S. sirkka. Electron micrographs of S. napiecek and 

S. sirkka displaying typical organelles and cell wall structure. A. S. napiecek nucleus (n) with nuclear

pores (np) containing a peripheral nucleolus (nu) positioned between a lipid globule (li) and vacuole (v). 

Golgi body with stacked cisternae associated with nucleus. Cell membrane generally unassociated with 

the cell wall and mitochondria (m) with plate-like cristae. B. Elongated cell of S. napiecek with a central 

vacuole (v), mitochondria (m) and nucleus (n) with nucleolus (nu). C. Large mitochondria of S. sirkka 

comprising majority of cytoplasmic content with multivesicular body (mvb). D. S. napiecek lipid globule 

(li) in association with Golgi body (g) and nucleus (n). Black markings are an artifact of imaging. E.S. 

napiecek nucleus (n) with swollen perinuclear space (pns). F. S. napiecek central vacuole. G. S. napiecek 

cell wall with pores (p). H. S. sirkka displaying cell wall blebs (bl) perforated by pores.
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Figure 1.5. S. napiecek and S. sirkka cells containing crescent shaped structures. A.S. sirkka cell with 

large invagination enclosing a membrane decorated vesicle pinching away from the cell membrane. 

Invagination is surrounded by a crescent shaped structure (css) that contains an electron-dense inclusion 

(edi). B.S. sirkka cell with invagination giving rise to a membrane-decorated vesicle (black arrow). 

Invagination contains crescent shaped structure (css) with electron-dense strand at base (white arrow). 

Note close association of mitochondria (m) with css. C.S. sirkka cell with invagination displaying 

electron-dense strand at base. D.S. napiecek cell with large central vacuole (cv) and dark granular vesicle 

with short flagellum-like strand (white arrow). E. Enlarged view of Figure 6B (above) showing greater 

resolution of membrane-decorated hyaline vesicle (black arrow). Note short tail. F.S. sirkka cell with five 

mitochondria (m) interacting with crescent-shape structure (css). CSS contains circular vesicle with short 

flagellum-like tail (white arrow top) and a partially intact mitochondria (black arrow). Membrane- 

decorate vesicle outside cell membrane (white arrow bottom).
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Table 1.0. Sequence database classification with NCBI accession numbers, isolates, and targeted rRNA 

locus used for phylogenetic analysis and generation of trees.

Species rRNA Locus Accession
Sphaeroforma nootkatensis PDD9 18S JX992713.1
Sphaeroforma nootkatensis CH1 18S JX992714.1

Sphaeroforma nootkatensis A9 18S JX992712.1
Sphaeroforma nootkatensis RU1 18S JX992710.1

Pseudoperkinsus tapetis BM1 18S GU727522.1
Pseudoperkinsus tapetis KS1 18S GU727524.1
Pseudoperkinsus tapetis CG2 18S GU727525.1
Pseudoperkinsus tapetis Pb2 18S GU727526.1

Pseudoperkinsus tapetis LE7 18S GU727527.1
Sphaeroforma gastrica ON36 18S JX992717.1

Sphaeroforma gastrica CRG3 18S JX992715.1
Sphaeroforma gastrica CGE 18S JX992716.1
Sphaeroforma Arctica 18s Y16260.2

Sphaeroforma sirkka B1 18S KJ736745
Sphaeroforma sirkka B2 18S KJ736746

Sphaeroforma sirkka B5 18S KJ736747
Sphaeroforma napiecek B3 18S KJ736748

Sphaeroforma napiecek B4 18S KJ736749
Sphaeroforma napiecek B6 18S KJ736750

Creolimax fragrantissma CH2 18S EU124915.1
Creolimax fragrantissma PW1 18S EU124914.1

Sphaeroforma nootkatensis PDD9 ITS1-5.8S-ITS2 JX992686.1
Sphaeroforma nootkatensis RU1 ITS1-5.8S-ITS2 JX992693. 1
Sphaeroforma nootkatensis A9 ITS1-5.8S-ITS2 JX992684.1

Sphaeroforma nootkatensis CH1 ITS1-5.8S-ITS2 JX992681.1
Sphaeroforma Arctica SAR ITS1-5.8S-ITS2 JX992683.1

Pseudoperkinsus tapetis Pb2 ITS1-5.8S-ITS2 GU727336.1
Pseudoperkinsus tapetis BM1 ITS1-5.8S-ITS2 GU727345.1

Pseudoperkinsus tapetis KS1 ITS1-5.8S-ITS2 GU727311.1
Pseudoperkinsus tapetis CG2 ITS1-5.8S-ITS2 GU727339.1

Pseudoperkinsus tapetis LE7 ITS1-5.8S-ITS2 GU727338.1
Sphaeroforma gastrica ON36 ITS1-5.8S-ITS2 JX992677.1

Sphaeroforma gastrica CRG3 ITS1-5.8S-ITS2 JX992673.1
Sphaeroforma gastrica CGE ITS1-5.8S-ITS2 JX992678.1
Sphaeroforma sirkka B1 ITS1-5.8S-ITS2 KJ736752

Sphaeroforma sirkka B2 ITS1-5.8S-ITS2 KJ736751
Sphaeroforma sirkka B5 ITS1-5.8S-ITS2 KJ736753

Sphaeroforma napiecek B3 ITS1-5.8S-ITS2 KJ736754
Sphaeroforma napiecek B4 ITS1-5.8S-ITS2 KJ736755

Sphaeroforma napiecek B6 ITS1-5.8S-ITS2 KJ736756
Creolimax fragrantissma CH2 ITS1-5.8S-ITS2 EU124891.1

Creolimax fragrantissma PW1 ITS1-5.8S-ITS2 EU124895.1
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Supplemental Materials

Supplemental Figure 1.0. Cross section of a plasmodial S. napiecek cell. B. S. sirkka cell with 

endoplasmic reticulum (white arrows) contiguous with the nuclear membrane extending and interacting 

with mitochondria (m).Endoplasmic reticulum fills css at base of invagination. Lipid (li) droplet in close 

proximity to mitochondria and nucleus (n).
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Chapter 2: Draft Genome Sequence of Sphaeroforma sirkka B5

Abstract

Until recently, the Mesomycetozoea exclusively comprised organisms isolated from animal symbionts. 

This paper reports the genome sequences of Sphaeroforma sirkka, the first free-living saprotrophic 

mesomycetozoean.
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Genome Announcement

Sphaeroforma sirkka is the first known free-living species in the Mesomycetozoea. It was isolated using 

pollen grains from a sample collected in the near-shore estuarine environment in the sub-Arctic Bering 

Sea. The Mesomycetozoea branch near the animal-fungal divergence and are expected to be important to 

understanding the origins of multicellularity (1, 2). As the first free-living organisms within the diverse 

mesomycetozoeans, whole genome sequencing could reveal interesting features of sphaeroformids, help 

guide evolutionary inference and understand the evolution of complex organisms. Novel fatty acid 

elongase enzymes within the related Sphaeroforma Arctica genome have been identified (3) and 

developed for patent (US 20120233716 A1). To this end, Sphaeroforma sirkka is of additional interest, 

as it is the first sphaeroformid to contain lipid inclusions.

Genomic DNA from S. sirkka was generated as previously described (4). A sequencing library was 

prepared using the Illumina TruSeq Nano DNA Library The library was loaded on one lane of an Illumina 

HiSeq 2500 Rapid Run flow cell (v2) and sequenced in a 2 x 100 base pair (bp) paired-end format using 

HiSeq Rapid SBS reagents (v2). Base calling was performed by Illumina Real Time Analysis (RTA) 

v1.18.64. Output of RTA was converted to FastQ format with Illumina Bcl2fastq v1.8.4. Final sequence 

output consisted of 107,591,345 paired-end reads (21.5 Gbp) from a library with an estimated insert size 

of 750 bps. Assembly was conducted with SOAPdenovo v2.0.4 (5). Maximum read length of 100, 

average insert size of 750, k-mer size of 66, merge level 2, edge selection of 10X coverage, and a 

minimum contig length of k+2 were parameterized for assembly. The resulting SOAPdenovo assembly 

yielded 331,225 contigs assembled into 4,842 scaffolds. Maximum scaffold length was 269,605 bps with 

an N50/N90 of 45,979/1,535.
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Chapter 3: Chytrids Dominate Arctic Marine Fungal Communities1

Abstract

Climate change is altering Arctic ecosystem structure by changing weather patterns and reducing sea ice 

coverage. These changes are increasing light penetration into the Arctic Ocean that are forecasted to 

increase primary production; however, increased light can also induce photoinhibition and cause 

physiological stress in algae and phytoplankton that can favor disease development. Fungi are voracious 

parasites in many ecosystems that can modulate the flow of carbon through food webs, yet are poorly 

characterized in the marine environment. We provide the first data from any marine ecosystem in which 

fungi in the Chytridiomycota dominate fungal communities and are linked in their occurrence to light 

intensities and algal stress. Increased light penetration stresses ice algae and elevates disease incidence 

under reduced snow cover. Our results show that chytrids dominate fungal communities and have the 

potential to rapidly change primary production patterns with increased light penetration.

1Hassett BT, Gradinger R (2016) Chytrids dominate Arctic marine fungal communities. Environmental 

Microbiology, doi: 10.1111/1462-2920.13216.
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Introduction

The Arctic Ocean remains one of the least studied oceanographic regions in the world (Gradinger, 2009). 

Its poorly described ecosystem structure and functioning challenge ecologists’ abilities to predict food 

web dynamics and community structures under future climate change scenarios (Boetius et al., 2013; 

Hollowed et al., 2013; Kortsch et al., 2015). Observed and predicted decreases in sea ice thickness and 

concomitant increases in light penetration have been linked to changes in the amount and seasonality of 

primary production on pan Arctic scales (Frey et al., 2014). Such shifts reduce certainty in predicting 

future food webs even more so, as major components, specifically in the microbial realms have been 

poorly studied.

The sea ice environment is a dynamic ecosystem that changes its physical structure simultaneously with 

the strong seasonality of solar radiation at high latitudes and with daily fluctuations of air temperatures. 

Sea ice is a semi-porous medium that contains a reticulate network of hypersaline brine channels, whose 

channel size and volume increase with elevated ice temperatures (Cox and Weeks, 1983). In the Arctic 

winter, air temperatures may be as low as -40oC, resulting in brine channels that are impermeable to fluid 

and gas exchange. Subsequently, the largest brine channels are frequently located at the ice-water 

interface adjacent to temperature-stable seawater at its freezing point. Stable temperatures and oceanic 

fluid exchanges within bottom ice brine channels make this interface a favorable substrate for high 

concentrations of bacteria, algae and small eukaryotes (Gradinger et al., 2010) (Supplemental Figure 3.0). 

Within the Arctic sea ice ecosystem, diatoms are often the major contributor of biomass and 

photosynthate production that drive food webs in Arctic marine ecosystems.

One of the major predicted changes in future Arctic climate scenarios is a shift in precipitation and sea ice 

coverage duration, leading to a reduced snow cover (Hezel et al., 2013; Webster et al., 2014). Snow 

cover significantly alters light attenuation (Perovich, 1990, 1998) and regulates photosynthetic ice algal 

growth (Campbell et al., 2015). Observed snow reductions and increasing sea ice melt pond extent are 

suggested to cause massive under-ice phytoplankton blooms (Arrigo et al., 2012); however, the increased 

light intensities can also induce photoinhibition (Cartaxana et al., 2013; Lund-Hansen et al., 2014; 

Campbell et al., 2015) that exceeds physiological acclimation potentials of the often obligate shade 

adapted algal species. Consequently, ice ecosystems may approach tipping points, shifting Arctic marine 

communities and food webs into new equilibrium states (Duarte et al., 2012).

Largely ignored in marine systems (except for commercially relevant fish species), disease is an 

important structuring component of food webs that can modulate the carbon balance of ecosystems 

(Olofsson et al., 2011) and facilitate transitions into new equilibrium states (Dakos et al., 2008; Scheffer
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et al., 2012). Within aquatic systems, fungi belonging to the Chytridiomycota (chytrids) are important 

disease-causing organisms of phytoplankton that can delay or terminate algal blooms, rapidly turn over 

nutrients, and alter microbial successions (Ibelings et al., 2004; Adl and Gupta, 2006; Kagami et al.,

2006, 2014; Lepere et al., 2008). Chytrids can also serve as a unique trophic bridge (mycoloop) between 

phytoplankton and zooplankton/meiofauna by converting carbon acquired from large inedible algae into 

smaller lipid-rich zoospores used for reproductive dissemination (Kagami et al., 2007). The presence of 

chytrids have been confirmed from polar sea ice (Horner and Schrader, 1982; Terrado et al., 2011) and 

detected in zooplankton stomach content in the Bering Sea (Cleary et al., 2015), yet little information is 

available from any marine ecosystem on the relevance of chytrids, the seasonality and diversity of 

chytrids, the prevalence of parasitism, and the drivers of this parasitism.

We hypothesized that the sea ice environment could be a prime habitat for parasitic fungi, as it harbors 

extremely dense blooms of sea ice diatoms in spatially constrained brine channels, making encounter 

rates between parasites and algae highly probable. Based on a three-year field program in the Alaskan 

coastal Arctic, our data revealed a dynamic fungal community dominated by the Chytridiomycota actively 

parasitizing diatoms, whose activity is tightly linked to light-induced algal stress. These data provide the 

first evidence of a mycoloop in any marine system. We therefore suggest that the mycoloop's relevance 

to the Arctic marine carbon cycle might increase in the future ocean in regions with less snow and sea ice 

coverage.

Results

Diatoms typically dominate ice algal diversity and biomass at both poles (Gradinger, 2009), as they did in 

the Alaskan land-fast ice system we sampled. In May 2013, the ice harbored numerous diatoms infected 

with chytrid parasites (Fig. 3.0). Parasitized diatoms hosting mature chytrid sporangia visibly possessed 

less chlorophyll, frequently aggregated around chytrid rhizoids (Fig. 3.0C). Rhizoids extract nutrients 

from their host for sporangium maturation and the eventual release of free-swimming zoospores to infect 

new diatoms. Single diatom cells hosted numerous chytrids in different developmental stages (Fig. 3.0D).

In 2014, the seasonality of chytrid parasitism was monitored in Barrow, Alaska from polar night in 

January to ice melt in August. During the main ice covered period (January to June), chytrids were only 

observed in April, which typically coincides with the maximum of the ice algal spring bloom, parasitizing 

1% of all diatoms. Variability of total disease incidence was low among sample replicates and suggested 

a high degree of repeatability between sites in close proximity (<1m apart). Observed chytrid parasites 

showed preference for larger pennate diatoms (>30^m) that frequently localized to an infection court in

37



close proximity to the diatom girdle band. Navicula and Pleurosigma species were the most susceptible 

to chytrid parasitism (Fig. 3.1 A).

To further assess the seasonality and occurrence of Arctic Ocean chytrids and the greater fungal 

community, 18S rRNA barcoding sequences were examined from sea ice and sea floor sediments (<20m 

depth) in 2014. Based on the analysis of >12 million 18S rRNA gene barcodes, the Chytridiomycota 

dominated fungal communities in both sea ice (Fig. 3.1A) and sediments (Fig. 3.1B) and constituted up to 

10% of all eukaryotic sequences in May sediment. In sea ice, chytrids comprised >70% of all fungal 

reads in April and over 95% of fungal reads from seafloor samples in May (corresponding to their peak 

abundances).

BLAST queries and phylogenetic estimates of the five most abundant OTUs from each month in ice and 

sediment identified the Mesochytriales, Chytridiales, Rhizophydiales, and the Lobulomycetales as the 

closest related taxonomic orders. Additionally, phylogenetic placement of sequence reads grouped two 

sequences with the Gromochytriales (Supplemental Figure 3.1). Additionally, fungal members within the 

Ascomycota, Basidiomycota, Cryptomycota, Blastocladiomycota, Neocallimastigomycota, and 

Zygomycota were detected in sea ice and sediment. In January sea ice and in June sediments, members of 

the Dikarya and the Zygomycota dominated fungal communities, respectively (Fig. 3.1). The Dikarya 

was comprised of a mixture of ascomycotous yeasts belonging to Sporobolomyces and Kluyveromyces 

and conidiating molds, such as Sporosorium, Cladosporium and Aureobasidium. The majority (>99%) 

of Zygomycota (Entomophthoromycota) sequences belonged to Basidiobolus. The taxonomic placement 

of Basidiobolus varies with phylogenetic hypothesis (Gryganskyi et al., 2013) and remains unresolved; 

subsequently, we placed Basidiobolus in their historical context as Zygomycota.

In 2015, we conducted a repeated measures, graded snow cover experiment to assess the effects of 

reduced snow cover/increased light on chytrid parasitism by removing snow from five random test sites 

adjacent to a paired control. Snow depth is spatially heterogeneous in the sea ice ecosystem (Perovich, 

1990) and ranged from 5-46 cm within our undisturbed control sites in 2015. In snow-cleared sites with 

elevated under-ice photo flux densities (43 uE m-2 s-1), ice algae had significantly (two-tail t-Test, 

p=0.001) reduced photosynthetic yields. Three days into the experiment, parasitism was low and not 

significantly different between control and experimental plots (ANOVA, p=0.367); yet, after seven days, 

diatoms in the snow-cleared area were nearly 5x more likely (ANOVA, p<0.001) to be infected with 

chytrids relative to the control (Fig. 3.2A). Radiative transfer processes are more exponential than linear 

with snow depth (Perovich, 1990). To this end, when snow depths from undisturbed control sites were 

plotted against disease incidence using an exponential curve (due to the exponential relation between light
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attenuation and snow depth), snow depth explained 45% of the variability of infection in natural 

undisturbed plots (Fig. 3.2B). The relationship between light and infection was further explored by 

plotting normalized18S rRNA gene barcode sequences against snow depths from the 2014 field data. 

Snow depth explained 94% of the variability of all Chytridiomycota sequences detected between months 

(Fig. 3.2C).

Discussion

Fungi are one of the most under-studied microbial groups in the ocean (Singh et al., 2012) and remain 

largely undescribed in the Arctic marine environment. Based on a three year study in the Alaskan land- 

fast sea ice ecosystem, we determined that the Arctic marine ecosystem is a prime habitat for a dynamic 

fungal community. The life histories and abundances of Arctic marine fungi are closely tied to the 

seasonally varying photon flux that sustains and stresses photosynthetic organisms. These observations 

from the Alaskan land-fast ecosystem detail the first functional roles for fungi in the Arctic marine 

environment that may produce a unique trophic bridge to carbon acquisition for smaller metazoans.

We observed a strong seasonality and host specificity of parasitic chytrids on diatoms, as in other aquatic 

ecosystems (Powell, 1993). Large pennate diatoms were observed to be parasitized in April, near the 

height of the algal bloom. We did not observe epibiotic chytrids in sediment samples, but rather 

endogenous chytrid-like cells (Supplemental Figure 3.2) within diatom frustules that could serve as a 

disease vector, if advected or entrained into ice during ice formation (Eicken et al., 2005). Frequently, 

single diatom cells were host to multiple chytrids in different developmental stages; subsequently, these 

observations underline the parasitic nature of diatom-chytrid interactions. Chytrids display a range of 

diverging morphologies that frequently include endobiotic life histories and life stages without branching 

rhizoids (Sparrow, 1960); subsequently, our cell counts of only epibiotic chytrids are likely an 

underrepresentation of true infection rates. We hypothesize that sinking algae may source chytrids to the 

sediments, resulting in the overwintering of latent inoculum for future disease events.

To supplement cell counts, we sequenced DNA barcodes to assess the seasonal diversity and abundances 

of fungi. Analysis of these data revealed that members of the Chytridiomycota dominated sea ice and 

sediment fungal communities. Primer bias can skew organismal abundances during next-gen sequencing; 

however, in-silico PCR (2 basepair difference) reveals a slight bias against chytrids, amplifying 73% of 

Dikarya, 83% of Zygomycota, and 67% of the Chytridiomycota (Klindworth et al., 2013). Subsequently, 

we surmise these data are reflective of a true chytrid dominance of the fungal community.
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DNA-detected chytrids were classified into five taxonomic orders by BLAST queries and phylogenetic 

mapping. Our tree topology does not represent a phylogenetic hypothesis, but is meant to illustrate 

chytrid diversity within the Arctic marine environment. Each closely related order contains known 

parasites of algae, capable of infecting diatoms (Simmons et al., 2009), producing endogenous resting 

spores (Karpov et al., 2014) and existing in marine ecosystems (Lepelletier et al., 2014). Only four 

species of chytrids have been described from any marine or brackish ecosystem globally (Gleason et al., 

2011; Lepelletier et al., 2014). To this end, our data suggest the sea ice ecosystem could be a large 

reserve of cryptic fungal diversity and provides further evidence that chytrids are integral members 

throughout the world’s cryosphere (Freeman et al., 2009; Naff et al., 2013).

The strong seasonality of chytrid parasitism on algal species (despite the constitutive presence of host 

species monthly) suggested abiotic variables as a regulating factor for chytrid parasitism. One of the 

major changes in future Arctic climate scenarios is a shift in precipitation and sea ice coverage duration, 

leading to a reduced snow cover (Hezel et al., 2013; Webster et al., 2014). As snow cover significantly 

alters light attenuation (Perovich, 1990, 1998), we hypothesized that reduced snow cover would lead to 

increased disease susceptibility of diatoms (Harvell et al., 1999) by inducing physiological light stress 

(Cartaxana et al., 2013; Lund-Hansen et al., 2014). Irradiances exceeding 40 uE m-2 s-1 saturate 

photosynthesis in most sea ice algae (Kirst and Wiencke, 1995), with many algae growing best at 10 ^E 

m-2 s-1 (Karsten et al., 2006). During our graded snow cover experiments, under-ice irradiance exceed 40 

^E m-2 s-1, resulting in statistically reduced photosynthetic yields, indicative of physiological stress 

(Manes and Gradinger, 2009). Physiological stress corresponded with significantly elevated disease 

incidence by chytrids after six days. After nine days, chytrid parasitism dramatically decreased. The 

mechanism for this reduction is unknown; however, we hypothesize that biological interactions (i.e. 

induced chytrid morality from metazoan grazing or another biologic entity) facilitated this attrition.

Fungal community structure is driven by modes of nutrition and environmental selection, yielding major 

community structural shifts in January and June. During polar night, the sea ice fungal community was 

dominated by common conidiating members of the Dikarya, likely sourced into the ocean from 

atmospheric deposition in late summer (Robinson, 2001) and incorporated into sea ice during freeze up. 

Dikaryotic fungi belonging to Aureobasidium and Cladosporium are halotolerant/halophilic genera 

(Kogej et al., 2005; Zalar et al., 2007) that were detected within January sea ice. To this end, we 

hypothesize that these organisms dominated wintertime fungal communities by tolerating hypersaline 

conditions within brine channels, during a time when diatom host concentrations are low. In May, an ice 

melt event expedited transport of algal biomass to the seafloor, resulting in extremely high abundances of 

chytrids in sediment samples (Supplemental Figure 3.3). Through sedimentation process, sea ice
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organisms can settle to the seafloor (Soreide et al., 2013). We hypothesize that sympagic-benthic 

coupling processes lead to the domination of the fungal community by chytrids in coastal sediment. 

Following algal sedimentation, the sediment community shifted drastically in June with a dominance of 

Basidiobolus sp. Members of the Zygomycota (Entomophthoromycota) are primarily saprobic 

(Gryganskyi et al., 2013). This new finding suggests a novel pathway for organic matter in ocean 

sediments by which organic matter reaching the sea floor may be degraded by saprotrophic Zygomycota 

(Entomophthoromycota). Specifically in June, saprobic fungal activity may redirect carbon away from 

higher trophic levels into the microbial loop networks. This process could impact higher trophic levels, as 

benthic metazoans in Arctic Seas often rely heavily on freshly sinking algal matter for nutrient acquisition 

(Grebmeier, 2012). This finding is not surprising as fungi are as important in aquatic nutrient cycling as 

they are in terrestrial environments (Barlocher, 2007).

Our data demonstrate for the first time in a marine environment the seasonality and functionality of 

parasitic chytrid fungi. Ultimately, the relevance of fungal infection in Arctic ecology remains unknown; 

however, we suggest that the observed relationship between increasing parasitism with decreasing snow 

cover may result in the rapid elevation of disease incidence and the restructuring of food webs in the near 

future by undescribed parasites. Currently, no ecosystem model incorporates the impact of parasitism in 

the marine environment (Popova et al., 2012), which we believe is a necessity for the future, especially in 

the Arctic Ocean. Furthermore, the seasonally strong shifts in fungal community structure (on time scales 

of weeks) suggest a highly dynamic fungal community that is actively metabolizing and facilitating 

biogeochemical nutrient cycling processes.

Materials and Methods

Ice cores and sea floor sediment samples were collected from the land fast-ice close to Barrow, Alaska 

(71°21'52.9”; -156°31'26.7”). Sampling sites were located ~3km from the ice edge. Six ice cores were 

extracted monthly using a 9-cm diameter KOVACs ice corer from the same sampling site monthly (three 

for DNA analysis and three cores for fungal enumeration). The bottom 10-cm of each core was sectioned 

using an ethanol sterilized handsaw. Three independent sediment samples were collected monthly 

through the ice using a Ponar grab and stored in sterile polypropylene tubes.

Ice core sections were melted into 1000 mL of 0.22 ^m-filtered seawater. In August, triplicate 1L water 

samples were collected in a Kemmerer water sampler at 3m depth. Melted ice cores/water were sterilely 

sieved (64 ^m mesh) and vacuum-filtered onto 0.6-^m DTTP filters (Millipore). Samples were stored at
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-80oC until DNA extraction. Samples for cell counts were fixed in formaldehyde (4% final 

concentration). Fixed samples were stored at room temperature until enumeration.

A 100 m2 area of level sea ice was divided into equally spaced grid cells (5 m2 each). Five cells were 

randomly selected from within the grid for repeated sampling. Snow-covered control sites were 

established 10 m from snow cleared experimental sites. Triplicate random sampling was conducted 

within both control and experimental sites every other day. To assure the control sites’ snow remained 

undisturbed, a plank was utilized to access the interior of each site for sampling. Experimental sites were 

cleared of snow every other day. Brine was collected from triplicate ice cores and immediately stored in 

an insulated chest. Photosynthetic yield of brine was assessed using a Water-PAM (Walz, Germany) 

from averaged triplicate technical replicates. Under-ice light measurements were assessed using a Li-Cor 

Li-193 Spherical Quantum Sensor attached to a Li-Cor 1400 data logger.

DNA from sediment was extracted using the PowerMax Soil DNA isolation kit (MO-BIO). Sea ice filter 

extractions were conducted by bead beating for 1 minute in phosphate buffer, followed by phenol- 

chloroform extraction. Replicates were pooled before PCR. Target amplicons were generated using the 

eukaryote-specific primers 18S-82F (5'-GAAACTGCGAATGGCTC-3') and Ek-516R (5'- 

ACCAGACTTGCCCTCC-3') (Lopez-Garcia et al., 2003). Sequencing libraries were prepared using the 

TruSeq DNA Library Preparation Kit LT at Michigan State University following the manufacturer’s 

protocol with 6 samples per run. High throughput sequencing was conducted on a MiSeq v2 flow cell 

using 2x250 paired-end reads. Samples were split according to month and multiplexed in two separate 

MiSeq runs equally. Base calling was performed by Illumina Real Time Analysis v1.18.54 and was 

demultiplexed and converted to FastQ files with Illumina Bcl2fastq v1.8.4.

Sequence analysis and processing was conducted using Mothur v1.33.3 (Schloss et al., 2009; Kozich et 

al., 2013). Sequences were aligned using the SILVA (Quast et al., 2013) reference database (Release 

119), screened for chimeras (Edgar et al., 2011) and classified with SILVA, using the K-nearest neighbor 

algorithm (bootstrap cutoff value of 80% following 1000 iterations). Sequences classified as fungi were 

parsed from the dataset and grouped into 97% operational taxonomic units using the furthest neighbor 

clustering. A BLAST query was conducted on representative OTUs with MEGAN v5.10.2 (Huson et al., 

2011). Sequences not classified as members of the Chytridiomycota (e.g. Cryptomycota and 

Neocallimastiogomycota) were reclassified manually to determine the relative abundance of chytrids. 

Datasets were normalized in Mothur (sub.sample) to the lowest number of sequences (979,296).

Fixed ice core samples were gently homogenized, settled in Utermoehl counting chambers and examined 

with a Zeiss Telaval 31 inverted scope. 1000 diatom cells were initially checked each month for the
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presence of chytrid parasitism. If no parasitism was observed after 1000 cells, chytrid parasitism was 

recorded as absent. From samples with any observable parasitism, one thousand additional algal cells 

were counted from each replicate to establish total ratios of chytrid infection of diatoms. While counting, 

algal species observed to be parasitized were identified and counted in each replicate to calculate ratios 

and standard deviations of parasitism per individual algal species. 1000 diatom cells were counted from 

each ice core during the repeated measures graded snow cover experiment.

BLAST queries were conducted on the five most abundant OTUs from each month in sea ice and 

sediment. The five most abundant OTUs were aligned with representative sequences from each 

taxonomic order (Table S1) of the Chytridiomycota (Karpov et al., 2014) using MUSCLE in MEGA6 

(Tamura et al., 2013) and expanded with OTU sequence reads. Unaligned ends were trimmed to generate 

vetted sequences for neighbor joining tree construction (Tamura-3-parameter model) with 1000 

pseudoreplicates for the taxonomic confirmation of BLAST results.

t-test values and regressions were generated using Microsoft Excel. ANOVA data was generated in R 

with a linear mixed-effects model (package lme4).

Images were acquired using a Zeiss Telaval 31 inverted scope with an ocular-mounted camera (United 

Scope, MU500).
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Fig. 3.0. Chytridiomycota from Barrow, AK (May 2013). Light microscopy of the Chytridiomycota 

from Barrow, AK (May 2013). Scale bar is 10 ^m. (A) Pleurosigma sp. with operculated (arrow) 

chytrids. (B) Epibiotic chytrids encysted with long rhizoids (arrow). (C) Chytrid zoosporangia with 

chlorophyll aggregates localized at site of infection (arrows). (D) Diatom host to multiple chytrids. (E) 

Encysted chytrids with branching rhizoids (arrow) in different developmental stages.
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Fig. 3.1. Seasonal patterns of the Chytridiomycota. Note: ice-free water observations in August. (A) 

Disease incidence by diatom species per month. Error bars show standard deviations. (B) 18S rRNA 

sequencing-determined fungal community structure per month in sea ice and water (August). (C) 18S 

rRNA sequencing-determined fungal community structure per month in sea floor sediment.

45



Fig. 3.2. Snow depth helps regulate parasitic activity of the Chytridiomycota. (A) Disease incidence per 

day after snow clearing. Controls were not statistically different (ANOVA). (B) Number of infected 

diatom cells as a function of snow depth from randomly selected sites within snow-covered sites modeled 

as an exponential curve with the formula y= 0.4124e-0 032x. Error bars show standard errors. (C) 

Normalized monthly chytrid abundances (2014) from ice/August water, as a function of snow depth, 

modeled as an exponential curve with the formula y = 1103e-0281x.
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Supplemental Materials

Supplemental Figure 3.0. Dense algal growth at the bottom of ice cores. Ice cores were extracted from 

Barrow, AK (May 2013). Photo credit: Dr. R. Eric Collins.
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Supplemental Figure 3.1. Neighbor joining, bootstrap consensus tree. Tree was constructed from 457 base 

pair 18S rRNA reads, showing the phylogenetic relationship of the five most abundant OTUs detected in 

sea ice and sediment.
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Supplemental Figure 3.2. Pleurosigma sp. filled with chytrid-like organisms from Barrow Sediment.
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Supplemental Figure 3.3. Normalized abundance of chytrid sequences.
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Supplemental Table 3.0. List of 18S rRNA taxa and accession numbers used in phylogenetic analysis.

Taxonomic O rder Identifier GenBank Accession Number
Mesochytriales Uncultured eukaryote clone Spring 37 JX069054.1

Mesochytriales Uncultured Chytridiomycete clone WS 10-E02 AJ867629.1

Mesochytriales Uncultured Chytridiomycete clone WS 10-E14 AJ867630.1

Mesochytriales Uncultured Chytridiomycete clone WS 10-E15 AJ867631.1

Mesochytriales Uncultured eukaryote clone Spring 08 JX069031.1

Mesochytriales Uncultured eukaryote clone Spring 57 JX069067.1

Mesochytriales Mesochytrium penetrans FJ804149.1

Gromochytriales Gromochytrium mamkaevae strain CALU x-51 KF586842.1

Gromochytriales Uncultured eukaryote clone kor FJ157331.1

Chytridiales Rhizophydium sp. JEL354 AY635827.1

Chytridiales Phlyctochytrium planicorne DQ536473.1

Chytridiales Rhizidium endosporangiatum DQ536484.1

Chytridiales Chytriomyces spinosus AH009063.1

Chytridiales Chytridiales sp. JEL187 AY635825.1

Chytridiales Chytriomyces hyalinus DQ536487.1

Chytridiales Chytriomyces sp. WB235A DQ536486.1

Chytridiales Chytriomyces sp. JEL378 DQ536483.1

Chytridiales Podochytrium dentatum AH009055.1

Chytridiales Rhizoclosmatium sp. JEL347-h AY601709.1

Rhizophydiales Rhizophydium sp. JEL136 AY601710.1

Rhizophydiales Rhizophydium sphaerotheca AY635823.1

Rhizophydiales Kappamyces laurelensis DQ536478.1

Rhizophydiales Rhizophydium sp. JEL317 AY635821.1

Rhizophydiales Boothiomyces macroporosum DQ322622.1

Rhizophlyctidales Blyttiomyces helicus DQ536491.1

Rhizophlyctidales Rhizophlyctis rosea AY635829.1

Rhizophlyctidales Catenomyces sp. JEL342 AY635830.1

Spizellomycetales Spizellomyces punctatus AY546684.1

Spizellomycetales Powellomyces sp. JEL95 AF164245.2

Spizellomycetales Triparticalcar Arcticum DQ536480.1

Spizellomycetales Gaertneriomyces semiglobifer AF164247.2

Polychytriales Polychytrium aggregatum AY601711.1

Polychytriales Lacustromyces hiemalis AH009039.1

Polychytriales Neokarlingia chitinophila HQ901766.1

Cladochytriales Diplochytridium lagenarium AH009044.1

Cladochytriales Endochytrium sp. JEL324 AY635844.1

Cladochytriales Nowakowskiella sp. JEL127 AY635835.1

Cladochytriales Cladochytrium replicatum AY546683.1

Cladochytriales Endochytrium sp. JEL325 AY349046.1
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Supplemental Table 1.0 
continued....

Cladochytriales 

Lobulomycetales 

Lobulomycetales 

Lobulomycetales 

Lobulomycetales 

Lobulomycetales 

Lobulomycetales 

Outgroup 

___________ Outgroup___________

Nephrochytrium sp. JEL125

Uncultured chytridiomycete clone RSC-CHU-20

Chytridiales sp. PL70

Lobulomyces angularis JEL45

Chytridiales sp. AF011

Chytridiales sp. AF021

Uncultured fungus clone CCW64

Rozella allomycis

Rozella sp. JEL347__________________________

AH009049.1

AJ506002.1

EF443138.1

AF164253.2

EF432819.2

EF432822.2

AY180029.1

AY635838.1

AY601707.1
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Chapter 4: Eukaryotic Microbial Richness Increases with Latitude and Decreasing Temperature in the

Pacific Arctic Domain in Late Winter1

Abstract

The Bering Sea has some of the highest concentrations of inorganic nutrients of any marine system that 

drives one of the most productive ecosystems globally. We conducted a detailed survey of the eukaryotic 

microbial community structure across the southeast Bering Sea and surrounding areas from the open sea 

into ice-covered waters. Deep sequencing of 18S rRNA from the chlorophyll maximum accounted for 

>96% sample coverage of eukaryotic microbes that corresponded to high estimated Chao1 richness 

(>6,000). MDS ordination analysis revealed nearly identical community structures for samples acquired 

south of the Aleutian Islands and samples acquired in proximity to the ice edge. Different diversity 

indices in conjunction with nearly identical community structure suggests the potential lack of functional 

redundancy within shelf break regions and underlines the susceptibility of these ecosystems to climate 

change. Organisms detected in the Gulf of Alaska site were more likely to be detected in the Bering Sea 

than organisms detected in sea ice, despite the existence of sea ice in the Bering Sea. Ordination with 

inorganic nutrients and water mass data suggested that temperature was related to microbial community 

structure during late winter.

'Hassett BT, Gradinger R (Submitted). eukaryotic microbial richness increases with latitude and 

decreasing temperature in the Pacific Arctic Domain in late winter. Applied and Environmental 

Microbiology.
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Introduction

Microbes are the foundation of all marine food webs and catalyze essential biogeochemical cycling 

throughout the world’s oceans. Microbes comprise 90% of all living oceanic biomass (1), yet are 

proportionally vastly understudied in the Arctic and sub-Arctic (2). As high latitude seas continue to 

warm, the metabolic activity and structure of microbial communities are likely to change, favoring 

organisms genetically capable of coping with elevated temperatures (3), fluxes within the nutrient regime 

(4), and biological competition due to range extensions of boreal taxa, as established for several trophic 

levels within sub-Arctic and Arctic seas (5, 6). As microbes differentially respond to environmental 

perturbations (7), future community equilibriums remain uncertain, owed in part to the lack of 

contemporary species inventories and the understudied nature of abiotic drivers for large-scale microbial 

diversity patterns.

In general, organismal diversity gradients within high-latitude seas are known to differ along longitudinal 

(8) and latitudinal axes (9), driven by a combination of evolutionary history (10) and seasonal physical 

forcing (11). Physical forcing in the sub-Arctic and Arctic is particularly strong on diversity patterns, 

governed by the extreme seasonality of light (12), and temporally and spatially changing nutrient 

concentrations (13) that regulate the phenology of photosynthetic primary production of ice algae and 

phytoplankton (14). Additionally, the seasonally increasing marine primary productivity in polar regions 

stimulates and regulates microbial community diversity patterns (15, 16). Subsequently, the winter 

season is the optimal time window for assessing diversity, as the microbial community structure changes 

minimally (17) and diversity is the highest (15, 18).

The Bering Sea is a semi-enclosed high latitude sea, consisting of a deep central basin with surrounding 

continental shelves. Circulation patterns in the Bering Sea are driven by the Alaskan Coastal Current and 

the eastward flowing Aleutian North Slope current that flows northwestwardly (as the Bering Slope 

current) and finally southwardly (as the Kamchatka Current) near Russia. This anticyclonic flow of 

water forms part of the North Pacific sub-Arctic gyre (19). High production on the northern Bering Sea 

shelf is supported by the continuous advection of nutrient-rich waters, while the southeastern shelf 

depends on cross-shelf exchanges (20). The continental shelf of the eastern Bering Sea is one of the most 

productive marine ecosystems in the world (6) that is experiencing significant warming (21). Increased 

warming on continental shelves should lead to a northward migration of the Arctic-sub-Arctic ecotone 

(6).

The rapid growth rate of microorganisms (relative to zooplankton or larger metazoans) allows microbial 

communities to rapidly shift into different equilibrium states, serving as useful indicator organisms for
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environmental change (7). We hypothesized that the eukaryotic microbial community structure would 

differ with hydrography, possibly indicating temperature-induced changes in the microbial population.

We also hypothesized that the nutrient-rich waters of the Bering Sea would be a significant driver of 

microbial community structure, favoring the growth of specific microbial clades.

Materials and Methods

In late winter/early spring of 2015 (14 March to 25 March) seawater sampling was conducted onboard the 

R/V Sikuliaq across the Gulf of Alaska into the Bering Sea (Figure 4.0). Sampling was designed to target 

microbial communities in the water column along a northern transect from open ocean conditions in the 

northern North Pacific into the ice-covered areas of the Bering Sea (Table 4.0). Sea ice sampling was 

conducted at one station to further assess diversity difference and serve as a standard reference for 

interpreting MDS spatial plotting distance.

Three true replicate samples were collected at all water stations and at a single sea ice station for the 

assessment of eukaryotic microbial diversity. A single replicate corresponded to a single Niskin bottle or 

a single 10 cm bottom ice core section. Water samples were collected using a CTD/Rosette sampler 

holding 24 10-liter Niskin bottles from the chlorophyll a maximum. The chlorophyll a maximum depth 

was identified with in situ readings of a CTD-mounted fluorometer (Seapoint) and sampled to reduce the 

variability due to depth and algal biomass (9, 22). All replicates at a sampling site were collected from a 

single CTD cast. For all water samples, corresponding triplicate nutrient samples (100 mL) were 

acquired for PO4, Si(OH)4, NO3, NO2, and NH3 analysis.

One liter of water was collected per replicate immediately following CTD retrieval for the analysis of 

community structure. Samples were separately filtered onto 0.6-^m DTTP filters (Millipore) using a 

vacuum filter. Samples were stored in sterile polypropylene tubes at -80oC until DNA extraction. At the 

Sea Ice station, three ice cores were extracted using a 9-cm diameter KOVACs ice corer. The bottom 10­

cm of each core was sectioned using an ethanol-sterilized handsaw. Ice core sections were melted at 

room temperature into 1000 mL of 0.22-^m-filtered seawater. After complete melt of the ice cores, 

samples were vacuum-filtered onto 0.6-^m DTTP filters (Millipore) and were stored in sterile 

polypropylene tubes at -80oC until DNA extraction.

DNA extractions from filters were conducted by bead beating for 1 minute in phosphate buffer, followed 

by phenol-chloroform extraction. Replicates were pooled before PCR. Target amplicons were generated 

using the Earth Microbiome Project primers: Euk_1391f: (5'- GTACACACCGCCCGTC-3') and EukBr: 

(5'- TGATCCTTCTGCAGGTTCACCTAC-3 ') (23) to generate ~170 base pair reads. Sequencing
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libraries were prepared using the TruSeq DNA Library Preparation Kit LT at Michigan State University 

following the manufacturer’s protocol. High throughput sequencing was conducted on a MiSeq v2 flow 

cell using paired-end reads. Samples were split according to month and multiplexed in a single MiSeq 

run. Base calling was performed by Illumina Real Time Analysis v1.18.54 and was demultiplexed and 

converted to FastQ files with Illumina Bcl2fastq v 1.8.4.

Sequence analysis and processing was conducted using Mothur v1.33.3 (24, 25). Sequences were aligned 

using the SILVA (26) reference database (Release 119), screened for chimeras (27) and classified with 

SILVA, using the K-nearest neighbor algorithm (bootstrap cutoff value of 80% following 1000 

iterations). Bacteria, Archaea and metazoans were removed from all data sets. Sequences were then 

clustered into operational taxonomic units (OTUs) at 97% similarity using the Average Neighbor 

distance. Datasets were normalized in Mothur (sub.sample) to the lowest number of sequences (62,588) 

for all downstream analyses.

Rarefaction curves were generated in Mothur (subsampling frequency of 500). To assess the OTU 

sampling coverage of normalized datasets. Good’s nonparametric estimate of richness was used to assess 

success of sampling coverage. Taxonomic graphs representing eukaryotic supergroups were generated 

using the SILVA classification and manually grouped to reflect recent eukaryotic taxonomy (28). Based 

on this classification, the Cryptophytes, Picozoa, Kathablepharidae, Centrohelida, Haptophyta, 

Centrohelida, and Telonema were grouped as Incertae Sedis. Ordination was conducted in R using the 

Vegan package. For MDS plots, Bray-Curtis distance was used to assess community dissimilarities (fi- 

diversity) in two dimensions with minimal stress.

Results

Following sequence vetting and processing, 1,695,188 high-quality unique DNA sequence reads from the 

six stations were used in downstream analysis. After data normalization in Mothur and OTU generation, 

11,135 distinct OTUs were observed across all sampling sites (Table 4.1). Sequencing depth from a 

single MiSeq run was adequate to obtain >96% sample coverage across all sites (Table 4.1). This 

sequencing depth resulted in near-saturation of rarefaction curves (Supplemental Figure 4.0).

In all water samples, the Alveolates had the highest relative abundance among the eukaryotic 

supergroups, followed by Stramenopiles and Opisthokonts. In sea ice, the community structure was 

markedly different and was comprised of mostly the Stramenopiles, followed by Alveolates and Rhizaria 

(Figure 4.1). Sites sampled in southwestern Alaska (Shelikof Strait and Deep Water Basin) had strikingly 

similar community structure, despite substantial geographic distance (~800 km). While these sites did
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maintain analogous structure, estimated richness was markedly different. Chao1 estimates of species 

richness across all sites revealed that microbes within Shelikof Strait had the highest estimated richness 

(6,801) and that the Deep Water Basin had the lowest (2,912). The low estimate of richness in the Deep 

Water Basin corresponded to the lowest number of observed OTUs (1,863). North of the Aleutian 

Islands, eukaryotic community structure varied with increasing latitude, even across short geographical 

distances (e.g. ~160 km between Pribilof Islands/Bering Sea Shelf sites). In the Bering Sea, Chao1 

species richness increased with decreasing temperature, with the marginal ice zone (MIZ) (-1.7oC) having 

the highest species richness of all Bering Sea water samples. Multidimensional scaling of samples 

illustrated the dissimilarity of community structure (Figure 4.2). P-diversity showed tight grouping 

between the two locations in southwestern Alaska. A second grouping consisted of the MIZ and Bering 

Shelf location, while the sea ice sample grouped separately (Figure 4.2A).

Often, the greatest number of observed OTUs did not correspond to the highest richness estimate for a 

location (e.g. the Sea Ice station), largely explainable, as Chao1 is a measure of singleton abundance. To 

this end, samples with a higher abundance of singletons have higher Chao1 estimates/extrapolations of 

species richness (Table 4.1). In order to supplement Chao1 estimates, Simpson diversity indices were 

also used to assess richness. Overall there was good agreement, with the two highest Chao1 sites 

(Shelikof Strait and MIZ) also having the highest Simpson diversity recorded among water sites. The 

Deep Water Basin, with the lowest Simpson diversity, also had the lowest Chao1 richness estimate.

To explore the relationship between inorganic nutrients and water masses in helping shape pelagic 

eukaryotic microbial community structure, MDS ordination was employed to assess community 

dissimilarity and fitted with vectored nutrient data and water temperature (Figure 4.2B). R2 values 

revealed that the majority of dimensional variability was explained by phosphate (R2=0.93), silicate 

(R2=0.99) and temperature (R2=0.97) with a stress value of 7.71 x 10-5, indicating a quality relationship 

for MDS in two dimensions. The inorganic chemical signatures of structurally similar communities were 

analogous (STable 4.0) between grouped sites, with the exception of silicate. Silicate concentrations were 

lowest within the Bering Sea Shelf site and highest at the Pribilof Islands site. Silicate (MDS, p=0.09) 

and phosphate (MDS, p=0.12) values were not significant drivers of community structure. Decreasing 

water temperature across the south-north transect was a significant driver of microbial community 

structures (MDS, p=0.03).

Comparative analysis of terminal sites (i.e. Shelikof Strait and the Sea Ice station) versus all other sites 

revealed a decreasing number of shared OTUs with increasing distance from terminal sites (Supplemental
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Figure 4.1, Table 4.2). Organisms detected in the Shelikof Strait site were more likely to be detected in 

the Bering Sea than organisms detected in the sea ice, despite the existence of sea ice in the Bering Sea.

Discussion

The objective of this research was to identify the eukaryotic microbial structure across the Alaskan sub­

Arctic marine system and to explore the effects of nutrients and water masses in shaping these 

communities. We detected an extremely diverse microbial community across the shelf ecosystem with 

Chao1 richness exceeding the estimated microbial richness of deserts (29), coral reefs systems (30) and 

fungal diversity in rainforests (31). Similarly, these Bering Sea richness estimates exceed Archaeal 

diversity in the coastal Arctic Ocean (32) and microbial communities in Arctic lakes (33).

We detected all major taxonomic supergroups (STable 4.1), with a high diversity of dinoflagellates, 

diatoms, and ciliates. Functionally, there was a strong prevalence of fish and invertebrate symbionts (e.g. 

Paramoeba branchiphila, Paramoeba eilhardi, Debaryomyces hansenii, Thalassomyces fagei, 

Pseudocollinia oregonensis, and Blastodinium navicula), diatom parasites (e.g. chytrids and Pirsonia sp.) 

and toxin-producing phototrophs (e.g. Alexandrium sp., Pseudo-nitzschia australis and Aureococcus 

anophagefferens). A number of terrestrial organisms were detected at sampling stations, including: 

Agaricomycetes and Udeniomyces pannonicus. The eastern Bering Sea receives a disproportionate 

amount of terrestrial-sourced freshwater runoff along the shelf region (34), likely sourcing these 

organisms into the Bering Sea with aeolian input (35). Additionally, a number of cryptic clades were 

detected across our sample sites, including: nine Marine Stramenopile (MAST) clades, Novel 

Apicomplexa Class 2, DH147-EKD23 ciliate clade, SL163A10 AntArctic clade, SCM28C5, the NOR26, 

TAGIRI-17, D-52, FV36-2G-8, E222 and a number of clone-detected species.

Assessing the true species richness of eukaryotes using NGS techniques is confounded by the application 

of multiple species concepts across different eukaryotic clades (36). For instance, diatom taxonomy 

employs a morphospecies concept that does not correspond with the phylogenetic species concept (37). 

We therefore suggest that our species number estimate is likely incomplete for organisms defined by 

morphology. Additionally, divergent paralogous evolution of 18S rRNA genes (38, 39) can lead to 

overestimation of diversity. In some diatom species, intragenomic variation of 18S rRNA can approach 

2% divergence (39). To address these issues, we employed stringent quality filtering of sequence reads 

and 3% similarity clustering to reduce overestimations of diversity.

When assessing community structure, we phylogenetically classified our sequences using an 80% 

bootstrap cutoff and conservatively assessed community structure by binning these organisms into
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taxonomic supergroups. The Deep Water Basin site and Shelikof Strait had nearly identical community 

structures (Figure 4.1, 4.2). This finding can be explained by the tight oceanographic coupling between 

these two sites. Strong advection from the Alaska Coastal Current and the Alaska Stream will produce 

similar water masses with related temperatures and salinity in regions south of the Aleutian Islands.

These similarities are heightened by reduced vertical mixing with increasing depth. The Shelikof Strait 

and the Deep Water Basin sites had similar temperatures that were the highest among all sites sampled 

(Table 4.0). Water mass similarities, as depicted by temperature and inorganic nutrients, resulted in 

structurally similar microbial communities that are likely under comparable environmental selection 

pressures. Despite similar community structure, eukaryotic microbial community diversity was markedly 

lower in the Deep Water Basin, relative to Shelikof Strait (Table 4.1). The diversity differences between 

the southern Alaskan sites were largely driven by the abundance of singleton taxa. This implies that the 

same community structure is being maintained by fewer taxa in the Deep Water location, suggesting 

diminished ecological functional redundancy in the Deep Water Basin and increased potential 

susceptibility of eukaryotic microbial communities along the shelf break region to disturbances. 

Additional research elucidating functional gene repertoires would help understand redundancy and 

potential susceptibility of microbial organisms to climate change within shelf break regions.

MDS analysis of normalized OTU abundances augmented community structural similarities between the 

Deep Water Basin/Shelikof Strait stations and the MIZ/Bering Sea Shelf stations. The MIZ and the 

Bering Sea Shelf stations had the coldest temperatures from any water column sites. The Pribilof Islands 

site was spatially ordinated between shallow northern cold water sites and deeper southern warm water 

sites. The Pribilof Islands receive a mixture of northerly advected Alaskan Coastal Current water and 

Aleutian North Slope Current (20). We sampled in proximity to the transition zone between the middle 

and outer shelf domain. Thus, the Pribilof Island eukaryotic microbial community structure likely 

represents an intermediate wintertime community comprised largely of southerly taxa and some northerly 

taxa (Table 4.2).

Originally, we hypothesized that the eukaryotic microbial community structure would differ with 

hydrography. Within the wintertime Bering Sea, we found strong evidence that hydrography shapes large 

scale spatial diversity patterns of eukaryotic communities resulting in spatially-ordinated Bering Sea 

communities in sequential order of latitude that reveals a positive relationship between latitude and 

estimated richness. This relationship resulted in the MIZ having the highest estimated richness in the 

Bering Sea. The MIZ is a unique community composed of true pelagic organisms and those sourced from 

the sea ice (40). A number of taxa were only detected within both sea ice and the MIZ: Eugregarinorida, 

Strombidinopsis sp., Euplotes charon, Maullinia ectocarpi, Guinardia delicatula, Rhizosolenia imbricate,
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and the FV36-2G-8 clade. Subsequently, we hypothesize that duel contributions from the pelagic and sea 

ice realm resulted in the highest Chao1 richness within the MIZ. By extension, the decreasing richness at 

the Bering Sea Shelf station and Pribilof Islands was likely influenced by ice cover and organisms seeded 

from the sea ice environment. Strong northerly winds can advect sea ice into the southeastern Bering Sea, 

ephemerally covering the Bering Sea Shelf station, as it did in 2015. This advection resulted in a mixture 

of taxa found only in sea ice, the MIZ and the Bering Sea Shelf site (e.g. SCM28C5 clade, Eutintinnus 

sp., Paulinella chromatophora, Globothalamea, Rotaliida, D52 clade); however, the shared number of 

OTUs between sea ice and other sites was minimal, relative to the Shelikof Strait site (Table 4.2). 

Subsequently, we surmise that temperature is a larger driver of eukaryotic microbial community structure 

than proximity to the sea ice. These results support previous observations made in the Arctic Ocean (41).

We hypothesized that the high concentrations of nitrate, silicate, and phosphate (among the highest in any 

marine system globally) within the Bering Sea (42) would be a driver for microbial community structure. 

Analysis of nutrient data were within the historical ranges previously reported for nitrate (43) and silicate 

(44). Overall, we did not find strong evidence for the significant effects of nutrients on structuring 

microbial communities in wintertime, even by focusing our analysis on the chlorophyll maximum that is 

often dominated by photosynthetic diatoms that require inorganic silicate. Further research is needed to 

evaluate the synergism of nutrients (such as phosphate), temperature and seasonality in structuring 

microbial communities.

We believe that our data delineate the Arctic-subArctic ecotone region (Supplemental Figure 4.1) of 

eukaryotic microbial communities in wintertime. This ecotone is defined by the spatial-temporal 

distribution of sea ice coverage that creates a gradient of cold water across the southeastern Bering Sea 

shelf. As solar irradiance increases in spring and stimulates the phytoplankton bloom, other factors such 

as light regime, stratification, and biological interactions will largely shape the eukaryotic community; 

however, in wintertime with overall low or non-existing new primary productivity, large scale diversity 

patterns appear to be driven by temperatures, irrespective of the unique chemical signatures across large 

geographical distances. Ultimately, our observations reinforce the coupled nature between physical 

oceanography and microbial diversity patterns and greatly underline the diversity responses of microbial 

communities to temperature. We suggest that an increase in microbial diversity studies would greatly 

benefit the understanding of biological responses to climate change by focusing on the base of food webs 

and the organisms that are likely to respond the quickest to abiotic perturbations.
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Figure 4.1. Relative abundance of eukaryotic supergroups illustrating general community structure.
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A B

Figure 4.2. MDS plots of eukaryotic microbial community structure. MDS plots of eukaryotic microbial 

community structure computed by the Bray-Curtis dissimilarity index. A) MDS plot of five water sites 

along a northern transect. An ice station was included as a positive control to illustrate relative 

dissimilarity distance. B) MDS plot of water samples only with environmental vectors used to explain 

inorganic nutrient- and temperature-driven groupings.
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Table 4.0. Sampling locations, date, depth of chlorophyll a maximum, temperature (T) and salinity (S). 

Brine salinity values are listed for sea ice.

Site name Location Date Chlorophyll a depth (m) T S
Shelikof Strait N58°17'58.6314", W-153°52'41.1954” 14 March 225 6.2 32.5

Deep water basin N53°36'40.4274", W-164°35'34.2594" 16 March 266 5.6 33.5

Pribilof Islands N56°32'2.4606", W-167°59'24.4572" 20 March 104 5.3 32.9

Bering Sea Shelf N57°52'40.7388", W-168°51'22.0782" 21 March 64 0.3 32.2

Marginal Ice Zone N58°37'6.8988", W-170°43'13.98" 24 March 72 -1.7 31.7

Sea Ice N58°34'28.5708", -W170°51'50.1654" 25 March NA -1.8 35.6
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Table 4.1. Site diversity and attributes of vetted datasets.

Site Name Sample Coverage (%) # OTUs # Singletons Chao1 Simpson

Shelikof Strait 97.1225 3199 1801 6,801.0 0.107

Deep Water Basin 98.6755 1863 829 2,912.5 0.062

Pribilof Islands 97.4404 3123 1602 5,380.7 0.218

Bering Sea Shelf 97.2311 3425 1733 5,874.2 0.107

MIZ 96.8444 3780 1975 6,788.2 0.185

Sea Ice 97.1288 3912 1797 5,982.5 0.121
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Table 4.2. Comparative analysis between terminal sites representing the number of shared OTUs.

Sea Ice versus MIZ 436 Shelikof Strait versus Deep Water Basin 744

Sea Ice versus Bering Sea Shelf 432 Shelikof Strait versus Pribilof Islands 778

Sea Ice versus Pribilof Islands 214 Shelikof Strait versus Bering Sea Shelf 685

Sea Ice versus Deep Water Basin 146 Shelikof Strait versus MIZ 624

Sea Ice versus Shelikof Strait 224 Shelikof Strait versus Sea Ice 224
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Supplemental Materials

Supplemental Figure 4.0. Sampling rarefaction curves. Curves were generated after sequence vetting, 

subsampling (62,588) and clustering at 97% similarity, generated per site displaying the unique number 

of OTUs per sampling effort.
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Supplemental Figure 4.1. Shared OTU map. Map illustrates the Arctic-sub Arctic ecotone. Map 

represents the number of shared OTUs between the Sea Ice station (red) versus all other sites and the 

Shelikof Strait station (yellow) versus all other sites, as a function of percent color opacity. Intermediate 

sites are more yellow than red, as these sites had a higher proportion of organisms found in the Shelikof 

Strait site. The MIZ and Bering Sea Shelf site are more orange, as these sites had a higher proportion of 

organisms found in sea ice.

80



Supplemental Table 4.0. Inorganic nutrient data (fjJVI ). Data was acquired from all water sites. Standard deviations (s.d.) are 

the result of three independent replicates.

Station Name P 0 4 +/- s . cl. Si(OH)4 +/- s . cl. N 0 3 +/- s. cl. n o 2 +/- s. cl. NH4 +/- s. cl.

Shelikof Strait 1.40 0.31 19.89 4.70 11.81 3.36 0.12 0.05 1.13 1.96

Deep Water 

Basin 1.31 0.16 20.88 4.25 12.18 2.82 0.09 0.02 0.008 0.02

Pribilof Islands 1.77 0.35 29.77 7.43 15.08 4.72 0.14 0.07 1.85 3.21

Bering Sea Shelf 1.23 0.04 18.57 0.79 9.43 0.43 0.10 0.003 4.0x1 O'5 3.2x10"

MIZ 1.67 0.17 29.69 3.61 11.76 1.68 0.08 0.02 0.70 1.2



Supplemental Table 4.1. Condensed taxonomy of detected organisms in the Bering Sea region: Shelikof 

Strait (SS), Deep Water Basin (DWB), Pribilof Islands (PI), Marginal Ice Zone (MIZ) and Sea Ice. 

Organisms classified to minimally the taxonomic genus level are represented below. Select taxonomic 

clades in the Phaeophytes and fungi were represented by only sequences classifiable to Order and were 

included in this table. The majority of our sequences did not classify to the genus level and were not 

represented in this table. For example, the Prasinophytes were detected at every station, but Prasinoderma 

sp. is represented at only three stations.

SS DWB PI BSS MIZ Sea Ice

Amoebozoa

Dactylopodids

Paramoeba sp. + + - - + +

Paramoeba branchiphila + - - - - -

Paramoeba eilhardi - + - - - -

Tubulinds

Vermamoeba sp. + - - - - -

Vermamoeba vermiformis + - - - - -

Paraflabellula hoguae - - - + - +

Excavata

Diplonemids

Diplonema sp. - - + - - -

Euglenids

Petalomonas cantuscygni + - - - - -

Neobodo sp. - - - + + -

Ichthyobodo sp. - - - + + -

Archaeaplastida

Prasinophytes

Prasinoderma sp. - - - + + +

Opisthokonta

Choanoflagellates

Stephanoecidae + + - + + +

Diaphanoeca grandis + - - - + +

Mesomycetozoea

Pseudoperkinsus tapetis - - + + + +

Fungi

Chytrids

Rhizophlyctidales - - - + + -

Ascomycota

Capnodiales - - - - + -

Dothideales + - - - - -

Pleosporales + - - + + +
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Supplemental Table 4.1 
continued.....
Penicillium sp.

Helotiales

Xylariales

Debaryomyces hansenii 

Basidiomycota

Agaricomycetes 

Udeniomyces pannonicus

SAR

Alveolates

Apicomplexa

Filipodium sp.

Gregarinidae sp.

Novel Apicomplexa Class 2

Ciliates

DH147-EKD23

Pseudocollinia oregonensis 

Peritrichia sp. 

Scuticociliatia sp. 

Mesanophrys carcini 

Parauronema longum  

Acineta sp.

Ephelota sp.

Cryptocaryon sp. 

Loxophyllum sp. 

Myrionecta 

Eutintinnus sp.

Favella arcuata 

Pelagostrobilidium sp. 

Stenosemella sp. 

Strombidinopsis sp. 

Tintinnidium sp. 

Tintinnidium mucicola 

Tintinnopsis sp. 

Tintinnopsis lohmanni 

Tintinnopsis sp. JG-2-11a  

Rimostrombidium veniliae 

Discocephalus ehrenbergi 

Euplotes sp.

Euplotes charon 

Hypotrichia sp.

H ypotrichia sp. 1-99

+

+

+
+

+

+

+ +

+
+

+

+

+

+

+ + +

+

+

+

+ + +

+

+

+ +

+

+ +
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Supplemental Table 4.1
continued....
Holosticha sp. - - - + - -

Oligotrichia + - + + + +

Laboea sp. + - + + + -

Pseudotontonia sp. - + + + + -

Strombidium sp. + + + + + +

Dinoflagellates

Amphidinium sp. + + + + + -

Gymnodinium sp. CCMP422 - - - + - -

Chytriodinium sp. + + + + + -

Lepidodinium sp. + + - - - -

Nematodinium sp. - - + - - -

Polykrikos sp. - - - - - +

Gyrodinium sp. + + + + + +

Azadinium sp. + - - - - -

Karlodinium veneficum + + + + + -

Pelagodinium beii + + + + + +

Symbiodinium sp. + + + - - -

Halostylodinium sp. + - - - - -

Alexandrium fundyense + + + + - +

Alexandrium ostenfeldii + - + + - +

Alexandrium tamarense + + + + + +

Ceratium tenue + + + + + +

Protoperidinium sp. + + + + + -

Protoceratium reticulatum - - - - - +

Scrippsiella sp. - - - + - +

Tintinnophagus acutus - - - - - +

Prorocentrum donghaiense - - + - - -

Prorocentrum minimum + + + + + -

SL163A10 (AntArctic) + + + - + -

Blastodinium navicula + - - + - -

Haplozoon sp. + + + + + -

Scrippsiella sp. + + + + + -

Paulsenella vonstoschii - - - - - +

Noctiluca scintillans - - - - - +

SCM28C5 - - - + + +

Thalassomyces fagei + + + + - -

Euduboscquella crenulata + + + + + +

Takayama pulchellum + + + - - -

Syndiniales

Amoebophrya sp. + - + + + +

Syndiniales Group I - + + + + +
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Supplemental Table 4.1
continued....
Syndiniales Group II + + + + + -

Syndinium sp. - + - - - -

Rhizaria

Cercomonads

Minchinia sp. - - - - + -

Cercozoa sp. CC-2--9d - - - + - -

Minorisa sp. - + - + + +

NOR26 + + + + + -

Pseudopirsonia sp. - - - + - +

Nudifila sp. - - - - - +

Paulinella sp. + + + + + -

Paulinella chromatophora - - - + + +

Cryothecomonas sp. + + + + + +

Protaspa sp. - - + + + +

Ebria sp. + + + + + +

Thaumatomonads

Thaumatomastix sp. - - - - - +

Phytomyxea

M aullinia ectocarpi - - - - + +

Spongospora sp. - - - - - +

Paradinium

Paradinium poucheti - - + - - -

Acantharia

Acanthometra sp. - + - - - -
Uncultured marine acantharean DH147-
EKD17 - + - - - -

Chaunocanthida sp. + + - - - -

Foraminifera

Globothalamea - - - + + +

Rotaliida - - - + + +

Polycystinea

Lithomelissa setosa + + + - - -

Stramenopiles - + + + + +

Incertae Sedis

Pirsonia sp. + - + + + +

Pirsonia guinardiae + - + - - +

Labyrinthulids

D52 - - - + + +

TAGIRI-17 - - - - - +

Aplanochytrium sp. - - - + - +

MAST-1 - + - + + +

MAST-2 + + + + + +
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Supplemental Table 4.1
co n tin u ed ..
MAST-3 + + + + + +

MAST-4 + + + + + -

MAST-6 + + + - + +

MAST-7 + + + + + -

MAST-8 + + + + + -

MAST-9 + + + + + -

MAST-12

tes

+ + + + + -

Spumella sp. + - - - - +

E222 + + + + + +

Ochromonas sp. + - - - - -

Chrysophyceae sp. + - - - - -

Asterionellopsis glacialis - - - - - +

Asteroplanus karianus + + + + + +

Fragilariopsis sp. + + + + + +

Navicula sp. - - + - - +

Nitzschia sp. + + + + + +

Pleurosigma sp. + + + + + +

Pseudo-nitzschia australis + + + - + -

Attheya longicornis + + + + + +

Brockmanniella brockmannii - - - + + -

Chaetoceros sp. + + + + + +

Chaetoceros rostratus + + + + + +

Chaetoceros sp. CCAP 1-1-/16 - - - + - -

Chaetoceros sp. p442 + + + + - -

Cyclotella choctawhatcheeana - + - - - +

Cymatosira belgica - - - + - +

Ditylum brightwellii + + + + + -

Hyalosira sp. CCMP469 + - + - - +

Minutocellus sp. + + + + + +

Porosira sp. + + + + + +

Skeletonema sp. + + + + + +

Thalassiosira sp. + + + + + +

Thalassiosira concaviuscula + - + + + -

Thalassiosira guillardii + - - - - +

Thalassiosira nordenskioeldii - - - - - +

Thalassiosira oceanica - - - + - -

Thalassiosira punctigera + + + - - -

Actinocyclus curvatulus + + + + + +

Corethron criophilum + + + + + -

86



Supplemental Table 4.1
continued.
Coscinodiscus radiates + + + - + -

Coscinodiscus sp. GGM-2— 4 + - - - - -

M elosira sp. + + + - - -

Stephanopyxis nipponica + + + - - -

Leptocylindrus minimus + - + + + -

Proboscia alata + + + + + -

Guinardia delicatula - - - - + +

Rhizosolenia imbricate - - - - + +

Dictyochophytes

Dictyocha speculum + + + + + -

Florenciella sp. - - + - - -

Pseudochattonella verruculosa + + + + + -

Apedinella radians + - + - - -

FV36-2G-8 - - - - + +

Pseudopedinella elastica + - + + - -

Pteridomonas sp. + - - + - +

Pelagophytes

Aureococcus anophagefferens + + + + + -

Pelagococcus subviridis + + + - - -

Pelagomonas calceolata + + + + + -

Phaeophytes

Ectocarpales - - - - - +

Laminariales - - - - - +

Costaria costata - - - - - +

Peronosporomycetes

Halocrusticida - - - - - +

Bolidomonas

Bolidomonas pacifica + + + + + -

Incertae Sedis

Cryptophytes

Rhodomonas sp. - - + + + +

Teleaulax sp. + + + + + +

Kathablepharidae

Katablepharis sp. - - + + + +

Leucocryptos sp. - - - + - -

Picozoa

Picomonas sp. + + + + + -

Centrohelida

Chlamydaster sterni - - - + - -

Haptophyta

Emiliania huxleyi + + - - + -
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Supplemental Table 4.1 
continued
Isochrysis galbana  

Phaeocystis antArctica 

Phaeocystis cordata 

Chrysochromulina sp. 

Chrysochromulina campanulifera 

Chrysochromulina parva  

Haptophytes

Haptolina sp.

Telonema

Telonema antArcticum

+ + + + +

+ + + + +

+ + + - -

+ + + - -

+ - + + +

+ - + + +
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General Conclusions

The Arctic Ocean still remains one of the least studied oceanographic regions in the world. During the 

time of this research, sea ice reached the 6th lowest extent on record in both 2013 and 2014 and the lowest 

maximum extent ever in 2015. With these changes are coming continued perturbations to the Arctic 

marine environment, with concomitant shifts in ecology. Although substantial progress has been made 

towards characterizing marine biodiversity, numerous species remain undescribed, especially in the 

microbial realm. The uncharacterized nature of Arctic marine microbes is a challenge for assessing 

species richness and predicting shifts in microbial ecological patterns, even when equipped with high- 

throughput sequencing technologies.

Using the contemporary paradigm for the description of new species, this research expands the known 

diversity of organisms by describing two new marine eukaryotes. By describing these organisms, the life 

history of the sphaeroformids was expanded to include a free-living saprotrophic stage and lipid 

inclusions, attributes previously unassociated with the taxonomic class and genus, respectively. Genetic 

characterization of these new species expanded public sequencing databases with 18S rRNA and ITS 

barcodes. The addition of these barcodes is the first step to filling in the blanks of unknown diversity 

encountered during high throughput sequencing analysis. My success in culturing unknown organisms 

underscores the merit in conducting culturing-based assessments of diversity in the future, especially in 

high latitude seas. Though only 1% or fewer microbes are thought to be culturable, the introduction of 

non-standard culturing techniques (such as the use of complex organic baits) could substantially augment 

culturing success for eukaryotes.

Culturing-based studies of microbes can expand known biodiversity; however, established culture 

libraries can serve as an important source for genomic DNA for full genome assembly. As of November 

30th, 2015, 186 protist genomes have been sequenced and deposited in GenBank from across the globe. 

By comparison, over 700 species of diatoms are found in Arctic sea ice, underscoring the vast potential 

for breakthroughs in understanding the genetic composition of Arctic eukaryotic microbes, including 

easily grown, cosmopolitan species. The present research included genome assembly and annotation of a 

newly cultured species, Sphaeroforma sirkka. Annotated genes within the assembled S. sirkka genome 

were found to have closest identity to Oncorhynchus mykiss (Rainbow Trout), underscoring the vast 

potential for understanding the evolution of multicellular organisms from these and future genome data. 

Genomic data can be extensively analyzed to explore the potential presence of useful gene products 

(Figure 5.0) that could be beneficial to humans. My research identified diverging fatty-acid related 

catalytic enzymes that are functionally similar to gene products incorporated into patent products (e.g. US
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20120233716 A1). The application of genetic resources has substantial academic potential to explain and 

guide organism-specific ecological hypotheses. The presence or absence of genes details the genetic 

potential that dictates functionality in an ecosystem (Figure 5.0). From these data, gene products can be 

organized into known metabolic pathways to map theoretical biochemical pathways (Figure 5.1). This 

metabolic mapping from encoded genes can guide sound scientific hypotheses about the life history and 

response of specific organisms to changes in the environment, such as organismal response to an influx of 

sourced terrestrial matter (Hilton et al., 2015; Blair and Aller, 2012) or identifying organisms for potential 

use in bioremediation (Kues, 2015) or bioreactors (Farinas, 2015). Alternatively, genomic data provide 

substantial resources for multigene phylogenies that can circumscribe taxonomic clades and refine species 

definitions (Kim et al., 2015; Cavalier-Smith et al., 2015) that are essential for guiding estimates of 

microbial richness. My research increases the known genetic diversity within eukaryotic microbes and 

highlights some immediate applications for its use, such as metabolic mapping and classifying functional 

gene repertoires.

Genetic data generated during the description o f novel organisms and genome assembly can be used as 

biological markers for the assessment of environmental microbial diversity. Short regions of 

taxonomically informative DNA loci (gene barcodes) (e.g. ITS, 18S, 28S rRNA) can be sequenced to 

determine the relative abundance of microbial species within a local community. High throughput 

sequencing results can exceed millions o f taxonomic data points that can be analyzed for diversity 

patterns across time and space to guide inductive and deductive research. My research used 18S rRNA 

barcodes to assess fungal diversity patterns within sea ice and seafloor communities in Barrow, Alaska. 

Analysis o f fungal community sequence data revealed a dynamic community fluctuating with season, in 

which saprotrophic Zygomycota fungi dominate sediment fungal communities during algal decay, 

parasitic Chytridiomycota dominate in the presence o f photosynthesizing algae, and the Dikarya dominate 

during polar night. These sequence data led to further experimental and observational results that 

delineated a cryptic carbon cycle in a marine environments, the mycoloop. More importantly, this 

research highlighted the strong interactions between the physical environment and biological interactions 

by employing a classic disease paradigm, the disease triangle. Specifically, strong influxes of light can 

physiologically stress photosynthetic organisms, rendering them susceptible to fungal infection. To date, 

marine mycology has been largely anecdotal and comprised of temporal/spatial snapshots e.g. (Pernice et 

al., 2015). This research is the first analysis in any marine environment that details the seasonal 

composition, functionality and genetic diversity of marine fungi. Most importantly, this research places 

marine fungi within a functional paradigm that is predictable and expected. The ultimate ecological 

outcome o f marine fungal activity remains unknown; however, my research establishes the conceptual
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framework in which marine fungi can be further explored. Fungal sequences generated in this time-series 

analysis comprised <5% of the total eukaryotic sequence data generated. Future research should analyze 

the remaining data to assess the total eukaryotic community structure in sea ice and sediment as a 

function of time and environmental drivers.

Assessing the abiotic drivers of microbial community structure is essential for explaining the current 

spatial diversity patterns of microbes. This research mapped eukaryotic microbial community structure in 

the Bering Sea by using 18S rRNA gene barcodes to establish baseline diversity estimates and the 

physical drivers behind large-scale diversity patterns. Data from this study was determined to have 

successfully mapped >96% of the eukaryotic microbial diversity and revealed an extremely diverse 

population whose structure is shaped by decreasing temperature with increasing latitude. By analyzing 

community structure in conjunction with diversity, different regions of the Bering Sea were determined to 

be structurally similar, yet less diverse. These data suggested that the same ecosystem processes were 

being maintained by fewer individuals and that these microbial communities were structured by 

temperature. These results suggest that the eukaryotic microbial population is sensitive to temperature 

changes and underlines the potential impacts of climate perturbations to the base of marine food webs.

Ultimately, this research advances the field of marine science by expanding the known diversity of 

microorganisms, genes, food webs, and spatial biological patterns in high-latitude seas. Future 

researchers are now better equipped to interpret findings within an established context, as this research 

has defined the fundamental physical parameters that constrain microbial communities and identified 

major players in the Arctic and sub-Arctic seas.
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Figure 5.0. KEGG-classified gene products. Annotated genes from the genome of Sphaeroforma sirkka 

were classified into functional pathways. Graph shows the number of genes belonging to major cellular 

functions.
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Figure 5.1. KEGG-classified metabolic pathways. Annotated genes (dots) from the genome of 

Sphaeroforma sirkka superimposed onto known pathways. Highlighted red pathways are theoretical 

paths through known genes.
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