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Abstract

Latent tree models are tree structured graphical models where some random variables are 
observable while others are latent. These models are used to model data in many areas, such 
as bioinformatics, phylogenetics, computer vision among others. This work contains some 
background on latent tree models and algebraic geometry with the goal of estimating the 
volume of the latent tree model known as the 3-leaf model M 2 (where the root is a hidden 
variable with 2 states, and is the parent of three observable variables with 2 states) in the 
probability simplex A 7, and to estimate the volume of the latent tree model known as the 
3-leaf model M 3 (where the root is a hidden variable with 3 states, and is the parent of two 
observable variables with 3 states and one observable variable with 2 states) in the probability 
simplex A i7. For the model M 3, we estimate that the rough percentage of distributions that 
arise from stochastic parameters is 0.015%, the rough percentage of distributions that arise 
from real parameters is 64.742% and the rough percentage of distributions that arise from 
complex parameters is 35.206%. We will also discuss the algebraic boundary of these models 
and we observe the behavior of the estimates of the Expectation Maximization algorithm 
(EM algorithm), an iterative method typically used to try to find a maximum likelihood 
estimator.
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C h apter 1

In trod u ction

A parametric model is a collection of probability distributions such that any element can 
be described by a finite dimensional vector of parameters 9 in a parameter space 0  via a 
map (called a parametrization or parametric map) ^  : 0  ^  A m-1, where A m -1  denotes the 
probability simplex in R m. Particular types of parametric models are the latent tree models; 
these are rooted graphical models where some random variables are observable and some are 
latent (hidden). The 3-leaf model is a latent tree model with one latent variable as a root 
that is the parent of three conditionally independent observable variables. This model can be 
described semialgebraically, and in this thesis we work to understand better two particular 
3-leaf models. For instance, we estimate the volume of the set of probability distributions for 
these models in their corresponding probability simplex and see the behavior of the estimates 
from the EM algorithm.

1.1 C h apter O verview

In chapter 2 we define some basic concepts of algebraic geometry and statistics. In particular, 
we talk about parametric models, varieties, semialgebraic sets, tensors and latent tree models.

In chapter 3, we introduce the 3-leaf latent tree model M  with tree shown in figure 1.1. 
We describe some of its particular properties. We also discuss two particular models, M 2 

and M 3, that are particularly interesting due to a particular property they share; for i =  2 , 3 
the Zariski closure of M i  intersected with the corresponding probability simplex is the whole 
probability simplex M i if A q-1 =  A q-1. Our discussion includes parameter identifiability. 
We then find the estimate of the volume of M 2 in the probability simplex A 7 [ZS12] and we 
compute our estimate of the volume of model M 3 in the probability simplex A 17.
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Figure 1.1: S3: The directed tree associated to the model M

In chapter 4, we describe the geometry of our models M 2 and M 3 and in particular 
we review and find the algebraic boundary of each of these models. We characterize the 
irreducible components o f the algebraic boundary and identify each with some properties of 
the parameters. This will help to understand the estimates o f the EM algorithm in chapter 
5.

In chapter 5, we review the maximum likelihood function and the EM algorithm. We 
explain the EM algorithm and some properties of it in our particular case. We also show 
some of the results we obtain with the estimates of EM using the theory discussed in chapter 
4.
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C h apter 2

B asic C on cep ts

2.1 A  statistical m od el as a geom etric  o b je c t

Let X  be a discrete random variable with values in a finite set X  . I f  X  has m elements, then 
without loss of generality we assume that X  =  { 1 , . . . ,  m } and we identify the probability 
distribution of X  (also known as a multinomial distribution) with a point p =  (p1, . . . ,  pm) e 
R m such that px >  0 for every x e  X  and xeX px =  1. We define the probability simplex 
as the set of all such points

A m -1 :=  {p  e  Rm : px >  0 , ^ p x  =  1}. (2 .1)
xGX

A statistical model is a family of probability distributions and hence a family of points 
in A m -1. This allows us to identify discrete statistical models with a geometric object.

A parametric model is a collection of probability distributions such that any element of 
this collection can be described by a finite dimensional vector o f parameters 9 e  0 , where 0  
is known as the parameter space (the space of all the possible values of parameters). In this 
case there is a map ^  : 0  M A m -1 such that the model is equal to the image of 0  under ^. 
The coordinates of this map are typically denoted by ^ x(9) for x e  X  and 9 e  0 .

E xam ple 1. Figure 2.1 shows the probability simplex A 2 in R 3 where A 2 is the object 
defined by 1 =  x +  y +  z, 0 <  x, 0 <  y and 0 <  z.

We are particularly interested in a parametric model known as a latent tree model, but 
before we define this type of model we introduce some basic concepts and definitions.
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2.2 V arieties

Consider n indeterminates x  =  (xi, ..,xn). Recall that a polynomial in x  is any sum of the 
form <X>

f (x) =  ^  ••• ^  cai-a„  ̂  ■■ ■ , ca i-a„ e  R
ai=0 an=0

such that only finite number of ca =  ca r„a„ are non-zero. We can express it in its compact 
form f  (x) =  J2a cax a. We call ca the coefficient of x a.

Every polynomial f  =  a cax a defines a function f  : Rn ^  R, which is called a poly­
nomial function. We make the distinction between a polynomial as an algebraic object and 
the map it defines. This distinction will allows us to link algebra and geometry by relating 
a polynomial f  and the collection of zeros of the map it defines.

We denote the set of all polynomials in x 1, .., x n with coefficients in a field K  by K[x] or 
K [x 1, ...,xn]. This set forms a commutative ring with standard addition and multiplication 
of polynomials, with 0 denoting the zero polynomial. In this work we will be working only 
with the fields C and R.
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D efin ition  2. Let f 1 , . . . , f s be polynomials in K [x 1,. . . ,x n]. The affine algebraic variety 
defined by f  , . . . , fs  is

V k ( f 1,.. .,fs )  :=  { ( a 1 ,..,an) e  K n : f i (a 1, ..., an) =  0 for all 1 <  i <  s}.

Thus an affine variety Vk (f 1, ..., f s) is the set of all solutions in K n to the system of equations

f 1(x 1, ...,x „) =  ■ ■ ■ =  fs (x 1, ...,xn) =  0

E xam ple 3. Consider the polynomials f  (x 1, x 2, x3) =  x 1 +  x 2 +  x 3 — 1, g (x 1, x 2, x3) =  x 1x 2, 
h (x1, x 2, x3) =  x 2x 3 and k (x1, x 2, x 3) =  x 1x 3. Then VR ( f ,  g, h, k) =  {(1, 0, 0), (0, 0,1), (0,1, 0)}.

The image of the parametrization map of a latent tree model we consider defines a dense 
subset of a variety, and as previously mentioned this will allow us to link the algebra and 
the geometry. The next subsection defines a concept toward this goal.

2.2.1 Zariski closu re

Let S C K n. We define the Zariski closure S of S as the smallest algebraic variety in K n 
containing S .

D efin ition  4. Let S C K n be any subset. We define the ideal of S by

I ( S ) :=  { f  e  K [x 1, ..,xn] : f  (a1, ..,an) =  0 for all (ab ..,an) e  S }.

It is easy to see that this is an ideal in the ring of polynomials.

P ro p o s itio n  5. If  S C K n, the affine algebraic variety Vk ( I (S )) is the Zariski closure S . 

The proof of this proposition can be found in [CL007].

E xam ple 6 . Consider the set (0,1) C R. Observe that the closure of (0,1) on the usual
topology of R is the set [0,1]. Now we observe that the Zariski closure of (0,1) is R. This
can be proved by showing that if a polynomial is zero in any nonempty open set of R  (in the 
usual topology), then the polynomial is the zero polynomial.
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2.2.2 Sem ialgebra ic sets

D efin ition  7. A basic semialgebraic set is a subset S of Rn defined by polynomial equations 
and inequalities. More formally, S is a set of the form

x  e  Rn : f i (x) <  0 }  J Q  ( Q  { x  e  Rn : f j (x) =  0 }  J
)  \j=r+1 J

where fj, f j  e  R [x1, .., xn]. A semialgebraic subset of Rn is a finite union of basic semialgebraic
sets.

We can observe that semialgebraic subsets of Rn form the smallest family of subsets 
containing all sets of the form

{x  e  Rn : f  (x) >  0}, where f  e  R [x1, ...,xn],

that is closed under finite intersections, finite unions, and complements.

E xam ple 8 . The semialgebraic subsets of R are the unions of sets containing finitely many 
points (the zeros of a polynomial) and open intervals (the solution for f  (x) <  0 for some 
polynomial f ).

E xam ple 9. We observe also that in Example 2.1 the probability simplex A 2 is a semialge­
braic set defined by 1 =  x +  y +  z, 0 <  x, 0 <  y and 0 <  z.

By proposition 5 we observe that the Zariski closure S of a semialgebraic subset S of Rm 
is the set of zeros of all polynomials that vanish on S.

D efin ition  10. The boundary dS  of S is the topological boundary of S (using the standard 
topology on R m, not the Zariski topology) inside S .

2.3 Tensors

Due to their versatility and utility, tensors have various interpretations in different areas of 
mathematics. For our purposes, tensors are generalizations of matrices to higher dimensions, 
hence they are n-dimensional arrays of numbers.
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D efin ition  11. Let V  =  Rr and W  =  R s be two vector spaces with r, s >  2. The tensor 
product a  =  v ® w of the vectors v =  (v j) e  V  and w =  (w j) e  W  is the array

a =  [aj ] =  [vi ■ wj ]

of products of the coordinates of v and w. Any tensor product of two vectors is called a 
rank-one matrix. By definition ® is a bilinear operation, i.e.,

(v +  v') ® w =  v ® w +  v' ® w 

v ® (w +  w') =  v ® w +  v ® w'

(cv) ® w =  v ® (cw) =  c(v ® w)

for all v, v' e  V, w, w' e  W , and c e  R.

The set of all linear combinations of all tensor products defines the set of tensors.

D efin ition  12. Let P  be a nonnegative real tensor, such that P  =  [pii,i2,...,in] is of format 
d1 x d2 x ■ ■ ■ x dn (where format is the number of indices required to uniquely select each 
component). We say that P  has nonnegative rank s if it can be written as

s
P  =  ^ 2  a1t ® a2t ® ■ ■ ■ ® ant

t=1

where s is minimal and the vectors ait e  Rdi have nonnegative entries for i =  1 , 2 ,..,n , 
t =  1 , 2 ,.., s.

We will be able to express the joint probability distribution of a model with a tensor 
(making use of the tensor multiplication), and we will be able to identify an n-dimensional 
probability distribution of format d1 x d2 x ■ ■ ■ x dn with point in ™ di-1. We develop 
this idea more extensively in Chapter 3.
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2.4 Latent tree  m odels

2.4.1 B asic graph th eory

D efin ition  13. A directed graph G is an ordered pair (V, E ), where V  is a set whose elements 
are called vertices or nodes and E  is a set of ordered pairs of vertices called directed edges. 
Given elements u ,v  e  V  and (u,v) e  E , we say that u is a parent of v and we denote by 
Pa(v) the set of parents of v. We also say that (u,v) is adjacent to v and u. The degree of 
a vertex is the number of adjacent edges. A graph G has a cycle if there is a finite sequence 
of edges {a 1, ..., an}, n >  3, with no repeated elements such that for any element a* =  (u, v), 
we have ai+ 1 =  (v,w ) and such that if a1 =  (p, q) and an =  (x ,y ), then p =  y. A directed 
acyclic graph (DAG) is a directed graph without cycles.

D efin ition  14. Let G =  (V, E ) be a directed graph and let G' =  (V, E  U {(u , v)|(v, u) e  E }). 
We say that G =  (V, E ) is connected if for any u ,v  e  V , there is a cycle in G' containing
u, v.

D efin ition  15. We say a directed graph G =  (V, E) is a tree if it is connected and each 
node has at most one parent. Let v e  V (G ). We say that v e  V  is a root if it does not have 
parents and we also say that v is an inner vertex if it has degree at least 2 . A leaf is a vertex 
with degree 1 .

It can be shown that a directed tree has only one root.

E xam ple 16. Figure 2.2 shows an example of a directed tree with root R, inner vertex A, 
and leaves X , Y  and Z .

2.4.2 Latent tree  m od el

Several statistical models can be represented using a graph whose vertices represent a random 
variable and every directed edge expresses the dependence structure between two random 
variables. These types of models are examples of graphical models.

We are very interested in particular parametric models that are also graphical models 
known as latent tree models. Latent tree models are associated to rooted tree-structured 
graphical models (see for example [MSZTL13],[MTAW00] and [Z16]). Formally, we associate 
this model with a pair (G, 0 )  where G is a DAG tree and 0  is a set of parameters. In a latent
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Figure 2.2: Directed tree with root R, inner vertex A, and leaves X , Y  and Z .

tree model, each inner node of the tree is assumed to represent a hidden discrete random 
variable (where a hidden random variable is a variable that is not directly observed) and each 
leaf vertex is assumed to represent an observable discrete variable. The set of edges E  =  
{E 1, . . . ,E k} expresses the direct dependences between variables. The set X  =  {X 1, . . ,X n} 
is the set of observed variables and H  =  {H 1,.., Hm} is the set of hidden variables. So the 
set of nodes V  =  {V1, ..., Vm+n} =  {H 1, .., Hm,X 1, . .. ,X n} represents the m +  n hidden and 
observed variables.

The set 0  consists of Markov matrices M(ya y b ) and a row vector ny . The Markov 
matrices have nonnegative entries and rows that sum to 1 , one for each (K ,V b) e E . As 
mentioned above, a tree has only one root, so we denote this random variable with Vr. The 
row vector ny  correspond to the parentless latent variable Vr. The row vector nVr  specifies 
the distribution of the random variable Vr, i.e. nVr  (j)  =  P rob (V  =  j )  and each entry of a 
Markov matrix is M(Va ,yb)(i, j ) =  Prob(Vb =  j |K  =  i) , i.e. the entries are the transition 
probabilities of the states of the parent vertex Va to the child vertex Vb. Denote the set 
{ 1, 2 ,.. .,k } by [k]. Let V  =  (V1,..., V^+n) and j e nn=+1m[|Vj|], where | Vj | denotes the size of 
state space of the variable Vj. Then the joint probability distribution of all variables, both 
observed and latent, is

Prob(V  =  j)  =  nyr (jj) n  Me(jVa , j Vb ) . (2.2)
e€E

9



The parameterization map of the joint distribution of all the variables is denoted

^ : 0  ^  ^(nn+m ^ - 1.

Since the probability distribution of the model with hidden variables is obtained from the 
fully observed model, we can obtain the probability distribution P  of the observable variables 
by marginalizing over the hidden variables, where the parametrization map is

^  =  s o 0 : 0  A(nn=11x ^ - 1

with S denoting the appropriate map marginalizing over the hidden variables. For any 
vector x  =  (x 1, x2 , ..., xn) E Rn, let Xj denote the i-th entry of x, i.e. x  =  x*. If t =  

(tm+i,tm+2 , ...,tn) E Ujj=m+1[lVj |], then for any s =  (s i ,s 2, . . , sm) E njU O V|] we denote 
(S, t) (s1,s 2, .  ̂sm, tm+1, tm+2 , ..tn) . Thus

Prob(t) =  ^  nvr((s, t ) i) n  Me((s, t ) Va, (^  t ) Vb) . (2.3)
senm=ii|Vj |] eee

Then ^ (0 )  is the collection of distributions on n observable variables that arise from the 
latent class model.

At this point an example will come in handy, so we will see a particular one which we 
are very interested in, known as the 3-leaf model. Since we will look for a lot of properties 
of this model we will dedicate a whole chapter to it.

10



C h ap ter  3

T h e  3 -lea f m od el

Let M  be a latent tree model associated with (S3, 0 )  with tree S3 shown in Figure 3.1, where 
H  is a hidden variable with state space of size k and X 1, X 2,X 3 are observable variables with 
state spaces of sizes k1,k2 ,k3 respectively. The set of parameters 0  of M  is the set of 
transition matrices: M 1 of format k x k1 corresponding to the variable X 1, M 2 of format 
k x k2 corresponding to the variable X 2, M 3 of format k x k3 corresponding to the variable 
X 3, and n of format 1 x k corresponding to the variable H . We observe from (2.2) that the 
joint probability of all the variables, both hidden and observable, is

P (H  =  h ,X 1 =  x 1,X 2 =  x 2, X 3 =  x3) =  n(h) ■ M 1(h ,x 1) ■ M 2(h ,x 2) ■ M3(h,x3).



By marginalizing over the latent variable, we obtain the distribution of all observable vari­
ables for the model M :

k
P (X 1 =  x 1,X 2 =  x 2, X 3 =  x3) =  ^ n ( i )  ■ M 1( i ,x 1) ■ M 2( i ,x 2) ■ M 3(i,x3). (3.1)

j=1

By conditional independence of the variables X 1, X 2 and X 3 given the variable H  we observe 
that we can express the distribution of the observable variables as

k
P (X 1,X 2, X 3) =  ^ n ( i ) ( M 1( i , :) ® M 2( i , :) 0  M 3( i , :)), (3.2)

j=1

where M j( i , :) is the i-th row of the matrix M j , j  =  1, 2, 3. In particular, this expression 
allow us to see the parametrization map of M :

^  : 0  =  { {n , M 1, M 2, M 3} }  m  A q -1 (3.3)

where q =  n^U  kj.

We observe that the Markov matrix Mi has format k x kj, and since in each row the 
entries sum to 1, the last column is determined by the first kj — 1 columns for i =  1, 2, 3. 
Also we note that since the vector n has format 1 x k and the entries sum to 1 , the last entry 
is determined by the first k — 1 entries. Thus

dim (0) =  k — 1 +  k(k1 — 1) +  k(k2 — 1) +  k(k3 — 1). (3.4)

The coordinate functions of ^  are polynomials. This property is crucial to us.

E xam ple 17. Consider the model M  when k =  k1 =  k2 =  k3 =  2 , denoted M 2, also known 
as the binary 3-leaf model. Let

9 =  { n =  (0.7, 0.3), M 1
0.8 0.2 \ _  /  0.6 0.4 \ _  I 0.7 0.3

M 2 =  , M 3 =
0.4 0 .6 / V 0.1 0 .9 / V 0.25 0.75,

12



Then the distribution P  =  P(Q) of all observable variables is

P  =  0.7 ■ (M 1(1,:) 0  M 2(1,:) 0  M 3(1 , :)) +  0.3 ■ (M 1(2,:) 0  M 2(2,:) 0  M 3(2 , :)).

Thus

P
0.2382 0.1838 0.1098 0.1482
0.0633 0.0797 0.0387 0.1383

We observe from (3.4) that d im (0) =  7.

D efin ition  18. Consider the map ^  as defined in (3.3). We refer to this probabilistic model 
as having stochastic parameters and a stochastic parametrization map ipst. We can define 
a new map by dropping the nonnegativity assumptions of the parameters but retaining the 
condition that the rows of the Markov matrices and the entries of n sum to 1. We consider 
complex parameters and the complex parametrization map when the parameter space has 
complex entries, as well as the real parameters and the real parametrization map ^ R  when 
the parameter space has real entries [ART14].

Remark 1. The image of complex, real or stochastic parameters under ^  is a 3-dimensional 
k1 x k2 x  k3 tensor, whose 3=1 hi entries sum to 1 .

E xam ple 19. In the model M 2, the parameters

Q1 =  { n =  (1.1835, -0 .1835), M 1

M 3
1.5888 -0.5888 
0.7708 0.2292

1.5109 -0.5109 
0.6972 0.3028

M 2
0.2666 0.7334 
0.1276 0.8724

satisfies

^ ( # 1)
0.1134 0.0821 0.0713 0.2811
0.0927 0.3325 0.0149 0.0121

e  A 7
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02 = { n =  (0.5 +  1.8552i, 0.5 — 1.8552i),M1

and the parameters

0.1084+  0.0827i 0.8916 — 0.0827i 
0.1084 — 0.0827i 00.8916 +  0.0827i

e  A 7

, -0.0387 — 0.0803i 1.0387 +  0.0803i\ _  /0.3207 +  0.0474i 0.6793 +  0.0474iM 2 =  — , M 3 =
—0.0387+  0.0803i 1.0387 — 0.0803i/ V 0.3207 — 0.0474i 0.6793 — 0.0474i,

satisfies

^ C (02)

E xam ple 20. In the model M 2, the parameters 

01 =  { n =  (0.7, 0.3), M 1

M3

0.0009 0.1474 0.0087 0.2582
0.0716 0.2768 0.1781 0.0583

1.2 —0.2 

0.9 0.1
M 2

0.8  0.2 

1.2 0.2

3 —2
0.2  0.8

satisfies

-0r ( 01) 

and the parameters

02 =  { n =  (0.7, 0, 3), M 1

0.6 +  i 0.4 — i

2.0808 0.4932 — 1.0848 —0.3792
—0.3288 —0.0852 0.2528 0.0512

A 7

0.7 +  0.7i 0.3 — 0.7i 
0.4 +  0.4i 0.6 — 0.4i

M 2 =
0.1 +  0.3i 0.9 — 0 .3 i,

M3
1 .2 +  0 .2 i —0 .2 — 0 .2i 
0.3 +  0.9i 0.7 — 0.9i

satisfies

^ C (02)
—0.2856 +  0.3696i 0.3276 +  0.2604i 
0.2736+  0.1524i 0.2544 -  0.0924i

0.1456+  0.0784i 0.3024 — 0.2184i 
0.1164 0.0904i 0.1344 0.4596i

A 7
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Trivially Im (^st(0 ))  C Im (^R (0 ))  C Im (^C (0 )) ,  but we wonder how these sets differ. 
Under the Zariski topology for C, it is a known that

Im (^st(0)) C Aq-1  C Im (^R (0 ))  C Im (^c (0 ))  =  V.

In particular, by Example 19, we observe that A q-1  contains points of Im (^C (0 ))\ Im (^ st(0 ))  
and points of Im (^R (0 ))  \ Im (^st(0 ))  (it also contains other points). By Example 20 we 
observe that A q-1 =  Im (^R (0 ))  and that A q-1  =  Im (^C (0 )) . We note that V  is defined by 
a single equation P j  =  1.

Denote by M 3 the model M  when k =  k1 =  k2 =  3 and k3 =  2 .

Remark 2. Since the coordinate functions of the parametrization map of the models M 2 and 
M 3 are polynomials, we can talk about the Jacobian of the map. We compute the rank of 
the Jacobian at a generic point of the interior of the parameter space of M 2 and the rank 
of the Jacobian at a generic point of the interior of the parameter space of M 3. For the 
model M 2, the rank of the Jacobian at a generic point in the interior of the parameter space 
is 7. For the model M 3, the rank of the Jacobian at a generic point in the interior of the 
parameter space is 17. Therefore dim(Im(^2)) =  7 and dim(Im(^3)) =  17, where ^ i denotes 
the parametrization of the model M i.

We are now ready to state a theorem of crucial importance for us.

T h eorem  21. The intersection of the probability simplex and the Zariski closure of the image 
of ^ 2 is the whole probability simplex A 7, i.e. /m (^2) if A 7 =  A 7 and the intersection of the 
probability simplex and with the Zariski closure of the image of ip3 is the whole probability 
simplex A 17, i.e. /m (^ 3) if A 17 =  A 17.

This is because dim(Im(^2)) =  7 and dim(Im(^3)) =  17, which are full dimensional open 
subsets of A 7 and A 17 respectively.

For any latent tree model M , the property that Im (^) if A ( ^  ni)-1  =  A ( ^  ni)-1  is 
false in general. That is why we are very interested in the models M 2 and M 3. For example, 
denote by M * the model M  where k =  k1 =  k2 =  k3 =  3. The problem with M * is that the 
parameter space has dimension 20 and the simplex where the image of the parametric map 
^* lies has dimension 26. Thus Im(^*) C A 26 since dim(Im(^*)) <  dim (A26).
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3.0.3 P aram eter identifiability

A model is strictly identifiable if different values of parameters generate different probability 
distributions (in other words, if the parametrization map 0  is one-to-one). In general, strict 
identifiability is a very strong property for a latent class model, so it is too much to ask 
for strict identifiability. For the model M , let {n ,M 1,M 2,M 3}  =  0 e  0 , then by label 
swapping (see example 22 ) the states of n we will obtain k! — 1 other elements 9j e  0  such 
that 0 (0 j) =  '0(0). With this we can see that our parametrization map is not one-to-one, 
but what can we expect for some source of identifiability? It is possible to prove that for 
any generic parameters 0 1,0 2 e  0  such that 0 ( 0 1) =  0 ( 0 2), 0 1 and 02 differ only up to label 
swapping, which is equivalent to say that 0  is generically k!-to-one (see Theorem 23). We say 
that our model is identifiable up to label swapping. For example, generically 0 2 is generically 
2-to-one and 0 3 is generically 6-to-one

0.4 0.6 
0.8  0.2

M 2
0.1 0.9 
0.6 0.4

M3
0.25 0.75 
0.7 0.3

E xam ple 22. Consider the model M 2. Let

0* =  { n =  (0.3, 0.7), M 1

Then the distribution P  of all observable variables is

0(0*) =  0.7 ■ (M 1(1,:) 0  M 2(1,:) 0  M 3(1,:)) +  0.3 ■ (M 1(2,:) 0  M 2(2,:) 0  M 3(2,:))

Thus

0 (0*) =

We observe that in Example 17 we obtain the same tensor with different parameters. Note 
that the parameter 0* differs from the parameter in Example 17 just by label swapping. 
The Markov matrices have the same rows but in different order; the vector n is obtained by 
switching the values.

The next natural question is: When does a probability distribution P  arise from stochastic 
parameters? This question is answered in various papers; see for example [ARSV14]. The 
next theorem is an specific case for our models M 2 and M 3.

0.2382 0.1838 0.1098 0.1482
0.0633 0.0797 0.0387 0.1383
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T h eorem  23. Consider the models M 2 and M 3. Then generic parameters of these models 
are identifiable up to label swapping and there exists an algebraic procedure for the determi­

nations of the parameters from the joint probability distribution P (X 1,X 2,X 3).

Using the steps of the proof in [ARSV14] we programmed the functions params2x2x2.m 

and params3x3x2.m in Matlab (see the Appendix). These functions have as input a 2 x 2 x 2 
and 3 x 3 x 2  probability distribution (nonnegative tensor whose entries sum to 1), respectively, 
and have as output the parameters M 1, M 2, M 3 and n up to label swapping. This is assuming 
that the code returns something. There are some cases, like when n =  (1, 0), where the code 
does not work properly. The set of these cases have measure zero in [0,1]dim(e ).

E xam ple 24. Let us go through the code with a particular example. Let

0.2382 0.1838 0.1098 0.1482
0.0633 0.0797 0.0387 0.1383

P

Let P3 be the marginalization of P  over the observable variable X 3. It is possible to compute

P3 =  M t  diag(n)M 2
0.3480 0.3320
0 .1020 0 .2180 . 

Let P..i be the slice of P  with third index fixed at i;

P..1 =  M f  diag(n)diag(M 3(:, 1))M 2

and

P..2 =  M Tdiag(n)diag(M 3 (:, 2 ))M 2

0.2382 0.1838 
0.0633 0.0797

0.1098 0.1482 
0.0387 0.1383

Assuming that P3 is invertible (this assumption might seem strong, but the set of tensors 
for which P3 is singular has measure zero), we compute

P—1 P ..1 =  M —1diag(M 3(:, 1))M2
0.7360 0.3240 
0.0540 0.2140

(3.5)
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Thus the columns of M 3 are determined by the eigenvalues of P3 1P..1 and P3 1P..2 (this is 
because P3_1P..1 is a diagonalizable matrix as shown on (3.5)). These are

and ( ° -3 | respectively.
0.25 0.75

0.7 0.3
Thus M3 =  . To obtain the rows of M 2 first we compute the left eigenvectors

\0.25 0.75^
of P3-1 P.. 1 and then we normalize each row (assuming the sum of the row entries is not zero 
we divide each entry by it) so the entries sum to 1. Thus the left eigenvectors of P3_1P..1 are 

0.8321 0.1104
and by normalizing we obtain 

0.5547 0.9939

0.6 0.4
M 2

2 0.1 0.9

0 .8 0 .2
Similarly we compute M 1 with P..jP3- 1 for i =  1, 2. So we obtain M 1 =  . Now

that we computed M 1 and M 2, n is the diagonal of the matrix M - TP3M - 1. Note that

T 1 ,^0.7 0 .0^
M r TP3M - 1

1 3 2 0.0 0.3

Thus n =  (0.7, 0.3), which agrees with Example 17.

3.1 V olu m e o f  the m od el in the p rob a b ility  s im plex

One of the main interests of this work is determine the volume of M 2 and M 3 in their 
respective probability simplices. We are interested in the volume since by Theorem 21, we 
know that Im (03) if A 17 =  A 17 and Im (02) if A 7 =  A 7, thus Im (03) is Zariski dense in A 17 

and Im (02) is Zariski dense in A 7 .

18



3.1.1 T h e  volu m e o f  M 2 in A 7

Since the model M 2 satisfies Im (^2) f  A 7 =  A 7 , we consider the volume of M 2 in A 7.
In order to estimate the volume of M 2 in A 7, we programmed the function Sto2x2x2.m 

in Matlab (see the Appendix). This function takes a sample of size n from the probability 
simplex. The sample { x 1, x 2, ..., with x i G A 7 is chosen using a Dirichlet distribution 
[KBJ00].

Note that x i can be rearranged in tensor form for i =  1, 2,..., n. We apply params2x2x2.m 

to each x i in the sample, and that returns the parameter n, M 1, M 2 and M 3 for x i. We then 
verify the entries of each parameter to determine if they are stochastic, real non-stochastic or 
complex non-real. In params2x2x2.m we assume that P3 is invertible, which is equivalent to 
the assumption that n has no zero entries and M 1 and M 3 are invertible. After several runs 
of the program we obtain that for a sample of size n =  105, the percentage of distributions 
that arise from stochastic parameters is 8.3% (this agrees with [ZS11]), the percentage of 
distributions that arise from real, non-stochastic parameters is 81.5% and the percentage of 
distributions that arise from complex, non-real parameters is 10 .2%.

3.1.2 T h e  volu m e o f  M 3 in A 17

Analogously to the previous section, we can take a sample x 1, ...,xn of some distributions in 
A 17 and apply params3x3x2.m to each x i. This function returns {n , M 1, M 2, M 3}  that give 
rise to x i. Again we verify the entries of each element in the parameter to determine if they 
are stochastic, real non-stochastic or complex non-real.

After several runs of the program, for a sample of size n =  105 we obtain the following 
estimations:

E stim ation  25. The rough percentage of distributions that arise from stochastic parameters 
is 0.015%, the rough percentage of distributions that arise from real, non-stochastic param­

eters is 64.742% and the rough percentage of distributions that arise from complex, non-real 
parameters is 35.206%.

These percentages do not sum exactly to 1 due to numerical error. We actually ran tests 
with higher values of n but the change was not very significant.
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Even though they were not used in the code, results like the next proposition facilitate 
the classification of parameters; the next proposition can also give us the main idea of the 
proof of Theorem 23.

P ro p o s itio n  26. Let P  e  R 3x3x2 be a distribution (tensor) of nonnegative rank 3. If 
M 3 e  R 3x2, then M 1, M 2 e  R 3x3 .

Proof. Let P..+ (i, j ) =  k= 1 P (i, j ,  k) (i.e. summing over the third index; see P3 in Example 
24). We observe that

P..+ =  M ^ diag(n)M 2.

Let P..k( i , j )  =  P ( i , j ,  k). Then

P..k =  M T diag(n)diag(M 3( :,k ))M 2.

Assuming that M 2,M 1 are non-singular and n has non zero entries, then P.+ is invertible
and we see

P.-+1P..k =  M2~1diag(M3(:,k))M2

Since all entries of M 3 are real, all the eigenvalues of P .-1 P..k are real. Let A be an eigenvalue 
of P-+:P..k. Thus a left eigenvector v associated with A of P-+:P..k satisfies

vP .-1P..k =  Av,

(P - 1P..k )TvT =  AvT,

(P - 1P..k — AI )TvT =  0 ,

((P -+P..k )T — AI )vT =  0 .

Since (P.- 1P..k)T — AI is real, then vT must be real. Therefore the entries of M 2 are real. 
Analogously, since

P..k P.- 1 =  M f 1diag(M 3( :,k ))M 1,

the entries of M 1 are real. □

Now that we have established the volume of both models in their correspondent proba­
bility simplices, in the next chapter we will explore some of their geometric properties.
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C h ap ter  4

T h e  a lgebraic b ou n d a ry  o f  M

4.1 A lg eb ra ic  bou n d a ry

Let P  =  [pi1 ,i2,..,in] be a real n-dimensional tensor of format d1 x d2 x ■ ■ ■ x dn.

D efin ition  27. We define the algebraic boundary of a semialgebraic subset S C Rd to be the 
Zariski closure dS  of its topological boundary. This is equivalent to the smallest algebraic 
variety containing its boundary in the Euclidean topology.

D efin ition  28. A slice of a tensor P  is a subtensor of some format d1 x d2 x ■ ■ ■ ds - 1 x 1 x 
ds+1 x ■ ■ ■ x dn.

For example, note that in Example 24 the matrix defined as P..i is a slice of P  of format 
2 x 2 x 1 .

The next theorem is proved in [ARSZ15] and concerns the algebraic boundary of the 
model M .

T h eorem  29. [ARSZ15] The algebraic boundary of M d has 3= 1 ki irreducible components

for  d = 2 , 3. In particular, the irreducible components of M 2 are given by slices having rank

<  1 .

This implies that the algebraic boundary of the model M 2 has 6 irreducible components 
and the algebraic boundary of the model M 3 has 8 . Let us discuss why.

We will see that each irreducible component corresponds to having a zero in a row of any 
Markov matrix Mi. Let

n =  O n,* 2), M 1 =  M  , M 2 =  ( bn b1̂  , and M 3 =
\ a 21 a2  ̂/  \ b21 b22 /
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be the parameters of p e  M 2.

Note that our parameter space 0  can be identified with a subset of [0 ,1]dim(e ). Thus, 
in an informal way for M 2, we can think that if a parameter 0 has at least one zero, then 
0 lives in the boundary of [0 , 1]7. Thus 0 (0 ) might live in the boundary of M  (0  is a 
2-to-1 polynomial map) and therefore might live in d M 2. Let {a 11 =  0} be the set of all 
parameters with a11 =  0. For example, in any neighbourhood M e  R 7 of a point in {a 11 =  0} 
(or {a 12 =  0 } ) , there are parameters where a11 <  0 that are not mapped into the interior 
of M . In particular we observe that since {a 11 =  0} lives in a facet of the cube [0 ,1]7, 
then d im (0 ({a 11 =  0 })) <  dim (A7). Doing a similar computation as the one mentioned in 
Remark 2, we obtain that the rank of the Jacobian at a generic point in {a 11 =  0 } if U is 6 . 
Thus the dimension of the irreducible components of d M 2 is equal to 6 .

Now we will talk about how we have completely described the irreducible components of 
the algebraic boundary of M 2. Let 0 be a parameter such that the entries of the Markov 
matrices are all positive and that is mapped to d M 2 (such points are called singular points). 
In [ARSZ15] it is proven that 0 either has a zero in n or a Markov matrix is singular. It is also 
proven in [ARSZ15] that there exists 0* e  [0 ,1]7 with a zero entry in a Markov matrix such 
that 0(0*) =  0(0 ). This implies that the algebraic boundary of M 2 is completely described 
by the set of parameters with a zero entry in a Markov matrix.

Briefly we show why there exists 0* e  [0 ,1]7 with a zero entry in a Markov matrix such 
that 0(0*) =  0(0). Suppose first that 0 =  {n ,M 1 ,M 2,M 3}  has a zero on n. Without loss 
of generality suppose that n =  (0,1). Thus, we can define 0* =  {n , M*, M 2, M 3}  where M* 
is M 1 but with first row (0,1). Note that M 1 has a zero entry and 0(0*) =  0(0). Now 
suppose that a Markov matrix of 0 is singular. Without loss of generality suppose that M 1 is 
singular. Let 0* =  {n*, M*, M *  M 3*} be such that n* =  n M 1, M* =  M 1, M* be the identity 
matrix and M* =  diag(n*)- 1M Tdiag(n)M 3 . Note that M* has a zero entry and by doing 
the calculations we can observe that 0 (0 ) =  0(0*) [ARSZ15].

It can be shown that d im (0 ({n 1 =  0 })) =  3 by obtaining the rank of the Jacobian at a 
generic point in {n 1 =  0 }.

We can now proceed to characterize the irreducible components.
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4.2 B ou n d a ry  strata  o f  M 2

As mentioned above there are 6 irreducible components on the algebraic boundary of M 2. 
The irreducible components of the algebraic boundary d M 2 are:

a) Two 6 dimensional components F6c1k, k =  1, 2, are given by ^ { c 1k =  0} =  ^ { c 2k =  0}. 
Note that this can be identified with the set of tensors such that the determinants of 
P1 and P2 are zero, where P1 and P2 are the 2 x 2-slice Pk =  [p**k]. This follows from 
the observation that the determinants of P1 and P2 are

det(P2) =  P112P222 -  P122P212 =  £ ^ 22^1^2 det(M 1) det(M 2) =  0,

det(Pi) =  P221P221 -  P121P211 =  cn c21n1n2 det(M 1) det(M 2) =  0.

b ) Two 6 dimensional components F6a1i, i =  1, 2, are given by ^ {a 1k =  0} =  ^ {a 2k =  0}. 
Note that this can be identified with the set of tensors such that the determinants of 
the 2 x 2-slice Pai and Pa2 are zero, where Pa2 =  [p2,i,j] and Pai =  [p1,i,j]. This follows
from the observation that the determinants of Pa2 and Pai are

det(Pa2) =  P211P222 -  P212P221 =  a12a2 2 det(M 2) det(M 3) =  0,

det(Pai) =  P111P122 -  P112P121 =  an a21 det(M 2) det(M 3) =  0.

c ) Two 6 dimensional components F6b1i, i =  1, 2, are given by ^ {b 1k =  0} =  ^ {b 2k =  0}. 
Note that this can be identified with the set of tensors such that the determinants of 
the 2 x 2-slice Pb2 and Pbl are zero, where Pb2 =  [Pi,2,j] and Pbl =  [Pi,1,j]. This follows 
from the observation that the determinants of Pb2 and Pbl are

det(P62) =  P121P222 -  P122P221 =  b12b22^1^2 det(M 1) det(M 3) =  0,

det(Pbi) =  P111P212 -  P112P211 =  bn b21n1ff2 det(M 1) det(M 3) =  0.
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Thus the algebraic boundary of M 2 is the union of its irreducible components as follows:

{P112P222 — P122P212}  U {P 121P222 — Pl22P22l }  U {^211^222 — P212P221}

U {P 111P122 — P112P121}  U {P111P212 — P112P211}

U {P221P222 — P121P211} .

As mentioned above, the dimension of each component is 6 . Table 4.1 shows a classifi­
cation of the irreducible components of the boundary of M 2 up to label swapping and the
interior according to the zeros in the parameters.

Table 4.1: Boundary strata of M 2 distributions generically of rank 2
Name # Long name Representative Parameters Comments

F7 1 F7 No zeros Interior of M
There are 6 irrec ucible components in the algebraic boundary d M

F6 6

F6a11
F6a12
F6b11
F6b12
F6c11
F6c12

M  — ( 0 1 )

One zero in a matrix

Fn 1 Zero in n.

Other More than 1 zero in the pa­
rameters (no zero in n)

4.3  B ou n d ary  strata  o f  M 3

The details to determine the algebraic boundary of M 3 follow the same spirit as the case 
M 2 and are found in [ARSZ15]. Let

â11 a12 a13̂ (b n b12 b13̂ C12\
n — (ff1,ff2,n3), M 1 — a21 a22 a23 , M 2 — b21 b22 b23 , and M 3 — C21 c22

\a31 a32 a33 Vb31 b32 b33 \C31 C32/
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be the parameters of P G M 3.
The irreducible components of the algebraic boundary d M 3 are:

a) The two components F16ck, k = 1 ,  2, are given by the determinants of P1 and P2. This
are ^ {c 1fc =  0} =  ^ {c 2fc =  0} =  ^ {c 3fc =  0}, given by the 3 x 3-slice Pk =  {P**fc}  having 
rank <  2. This corresponds to a zero in M 3.

b ) The three components F16a1i, i =  1, 2 , 3, are given by the 3 x 3 matrix P1 • (P2) -1  =
M l A 1M - t  having an eigenvector with zero i-th coordinate (where A 1 =  diag(M 3(: 
, 1) • diag(M 3(:, 2 ))-1 ). This corresponds to a zero in M 1.

c) The three components F16b1j, j  =  1, 2 , 3, are given by the 3 x 3 matrix P T • (P2) -T  =
M 2t A2M - t  having an eigenvector with zero j-th  coordinate (where A2 =  diag(M 3(: 
, 1)T • diag(M3(:, 2 ))-T ). This corresponds to a zero in M 2.

Table 4.2 shows a classification of the irreducible components of the boundary of M 3 and 
the interior according to the zeros in the parameters.

Now that we have talked about some structure of our model M 2 and M 3, we are going 
to make use of it with a well known tool in statistics called the EM algorithm. In the next 
chapter we discuss this tool and our interest in it.
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Table 4.2: Boundary strata of M 3 distributions generically of rank 3

Name # Long name Representative Parameters Comments
F17 1 F17 No zeros Interior of M

There are 8 irrec ucible components in the algebraic boundary d M

F16

3
F16a11
F16a12
F16a13

f  0 ?12 ?13 \
| * * * | 
V * * * / An eigenvector of P1 • (P2) 1 

with zero i-th coordinate, 
for i =  1, 2, 3.

3
F16b11
F16b12
F16b13

3 ̂
* 

*
2 ̂

-X- 
-X-

o 
-x- 

-X- An eigenvector of P^ • 
(P2) - t with zero j-th  coor­
dinate, for j  =  1, 2, 3.

2

1
2

1
1

c
c

6
6

1
1

F
F

/  0 C12 \
I * * I
V * * /

The determinants of P1 
and P2

Fn 1 Zero in n.

Other More than 1 zero in the pa­
rameters (no zero in n).
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C h apter 5

T h e  E M  a lgorithm

5.1 M axim u m  lik elihood  estim ator

D efin ition  30. Let X 1,. . . ,X n be independent and identically distributed discrete random 
variables with probability mass function (pmf) f  (x; 0). The likelihood function is the function 
is defined by

n

l (0 ) = n  f  (x  »)•
i=1

If a global maximizer exists it is called a maximum likelihood estimator (MLE); i.e. a value 
of 0MLE that maximizes L (0 ).

Let X  be a finite discrete random variable with probability distribution p in a parametric 
model M  with parametrization 0 : 0  ^  A s. Then there exists 0* G 0  such that 0(0*) =  p. 
Denote by 0x(0) the x coordinate of the map 0. Suppose that we obtain a random sample of n 
independent draws from X  , i.e X (1) =  x (1), X (2) =  x (2),..,X (n) =  x (n). Now what if we want 
to infer p (and therefore 0*) based on the sample? An often used method by frequentists to 
estimate parameters in a parametric model is the maximum likelihood method. This method 
consists in finding the parameter that maximizes the likelihood function, if such a parameter 
exists. In our case that is, maximize the probability of observing the sample x (1),x (2), ... ,x (n) 
in the likelihood function with respect to the parameter 0. Since each element in the sample 
is independent, we can express the probability of observing the sample by

n s+1
L*(0|w) =  ^ 0 x(i)(0) =  ^ 0 x(0)w(x), where w(x) =  # { i  : x (i) =  x } . (5.1)

i=1 x=1
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Thus, to estimate 9* we find the parameter values that maximize the likelihood function 
(5.1).

Note that for any 9* G 0 , we have ^(9*) =  p* G M . Thus for the likelihood function we 
can find the maximum likelihood estimate 9MLE by finding a maximizer pMLE constrained 
to the image of 0  in the probability simplex (i.e. pMLE G M ) and then by taking 9MLE in 
the fiber of pMLE. Thus we can think of the likelihood function as

s+1
Lm(p|w) =  n p * 1' p g m .

x=1
This function is known as the constrained likelihood function. We can extend the domain of 
the constrained likelihood function by letting p G A s. This new function is known as the 
unconstrained likelihood function .

For convenience, we take the logarithm of the likelihood function, the unconstrained 
likelihood function or the constrained likelihood function. The maximizer of these new 
functions called the log-Likelihood, the unconstrained log-Likelihood, and the constrained log- 
Likelihood, will be the same as the maximizer of their respective original functions. For 
example, for the likelihood function we obtain that the log-Likelihood is

s+1
£*(9|w) =  ^  w (x) log(0x(9)) for 9 G 0 .

x=1

We observe that any sample of n independent draws from X  has an empirical distribution 
p(x) =  w (x )/n . Consider the function

1s+1 s+1 /s+1
Lm(p ip )= n  px(9)p(x)= n  px(9)w(x)/n =  n  px(9)w(x)

x=1 x=1 \x=1

Since this new function is just the n-th root of the unconstrained likelihood function, it will 
have the same maximizer as the unconstrained likelihood function. Thus for any p G A s 
with rational entries, finding the maximizer of L(p|p) is equivalent to find the maximum 
likelihood estimator. We can loosen the condition that p has rational entries and consider
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any p G A s. We also call Lm(p|p) the unconstrained likelihood function, and its logarithm 
the unconstrained log-Likelihood. Note that this extends naturally to the likelihood function 
and the constrained likelihood function.

5.2 T h e  E M  algorith m

The “EM algorithm” stands for expectation-maximization algorithm [DLR77]. It is an it­
erative method typically used to try to find a maximum likelihood estimator, if one exists, 
of parameters in statistical models where the model depends on hidden variables. The EM 
iteration consists of two steps; the first, the E-step, consists of computing the expectation for 
our hidden variable using the current estimate for the parameters. The second, the M-step, 
consists of the maximization of the function for the fully observed model.

For us, the EM algorithm is relevant in the sense that we want to understand how it 
works on A 17 and M 3; as future work we would like to determine if the EM algorithm 
always produces the Maximum Likelihoood Estimator, i.e. we want to determine if given 
a point p G A 17, the output of the EM algorithm (EM(p)) will be the “best” estimate 
parameter 0 of p in the model M 3. This extends and complements some preliminary work 
from E. Allman, S. Hosten, J. Rhodes and P. Zwiernik on the maximum likelihood estimation 
for 2 x 2 x 2 distributions. Let us describe the idea of the algorithm for our model M .

5.3 E -step

Let p =  p (x ^ x 2,x 3) be the observed data (after normalizing, p is a distribution of format 
k1 x k2 x k3). First, make an initial guess of the initial parameter vector 0O; in our case 
0o =  {n, M 1, M 2, M 3}, so we choose a random distribution n of size k and random Markov 
matrices Mj of size k x k  for i =  1, 2, 3 respectively. Now we obtain the distribution 
0 (0O) =  p (x 1,x 2,x 3) G M , and then we compute the expectation of the “fully observed 
model” u (h ,x 1,x 2,x 3) =  Prob(H  =  h ,X 1 =  x 1,X 2 =  x 2,X 3 =  x 3) for the observed data 
p (x 1,x 2,x 3) by

/, V V ^  V V n (h )M 1(h ,x 1)M 2(h ,x 2)M 3(h ,x 3)u (h ,x 1,x 2,x 3) :=  p (x ^ x 2,x 3)Prob(h|x1,x 2,x 3) =  p (x ^ x 2,x 3) --------------------------------- :----------------- •
p(X1,X2,X3)

(5.2)
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for all (h 'X 1,X2 'X 3) G |H| x |X1| x |X2| x |X3|.
To obtain u(h, x 1, x 2, x3), the assumption of conditional independence of the model is crucial 
to us. With it, we are able to run EM since we can express the joint distribution of the fully 
observed model as the product of the parameters as seen in (2 .2 ).

5.4 M -step

For our M-step, we find 9*, the parameter of the new estimate of p in the model. To determine 
n, we marginalize u(h, x 1, x 2, x 3) over X 1, X 2, X 3 to give the marginal distribution of H . We 
note that by marginalizing over these variables what we obtain is just the distribution of 
the hidden variable (that is n). To determine M 1, we marginalize u(h, x 1, x 2, x 3) over X 2, X 3 
to find the joint distribution of H  and X 1, uh,xi, and thus M 1 =  (diag(n))-1 ■ uh,xi. We 
observe that by marginalizing over X 2,X 3 we obtain the joint distribution of H  and X 1, 
but multiplying by diag(n)-1 we obtain the conditional probability of X 1 =  x 1 given H  =  h 
(that is M 1). Analogously for M 2 and M 3.

With each iteration of EM the log-likelihood function increases if possible. Then for a 
fixed threshold e >  0, if |9* — 90| >  e we set 90 =  9* and go back to the E-step; otherwise 
we stop. The output is the parameter 9* and with this we can compute the corresponding 
probability distribution (tensor) with ^(9*).

5.5 E M  estim ates

We were able to code the EM algorithm for our models M 2 and M 3. The program EM.m (see 
the appendix) has an e =  10-16 and chooses and arbitrary probability distribution p G A q-1 
for q =  8 ,18 respectively.

Before we talk about the results we obtain with the EM algorithm, we will see why for 
any p G A q-1, q =  8 ,18, we think that EM(p) gives the “best” estimate of p in the model
M d, d = 2 ,3.

T h eorem  31. Suppose p G A q-1, q =  8 ,18, and p has strictly positive entries. Then pMLE =  
p is a unique maximizer of the unconstrained log-Likelihood function ^(p|p). Moreover, if 
p G M d, d = 2 ,  3, and EM  uses p as its starting point, then E M (p) =  'p.
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Without giving a formal proof we can observe that the proof of the first statement of 
the theorem is clear since we want to maximize the probability of observing the data. For 
the second statement of the theorem we note that since EM increases the unconstrained log- 
likelihood function in each iteration, if possible, EM will find a local maxima, and therefore, 
a local maximizer. By the first statement of the theorem this maximizer is p. Therefore 
EM(p) =  p.

But what about the MLE and EM(p) for p G M d, d =  2, 3? Before we talk about it, we 
have to introduce some concepts and statements.

D efin ition  32. A set S C R d is convex if for any p,p* G S and any t G [0,1], tp + (1 -t)p *  G S. 

T h eorem  33. The probability simplex A q-1 is convex for any q G Z+.

Proof. Let p,p* G A q-1 and let t G (0,1). Note that

r =  ( f 1, f 2,..,rq ) =  tp +  (1 -  t)p* =  (tp1 +  (1 -  t)p*,...,tpq +  (1 -  t)p*).

Thus q q
^  ri =  ^  tpi +  (1 -  t)p* =  t +  1 -  t = 1 .
i=1 i=1

Note also that since 0 <  pi ,p* <  1, then 0 <  pit +  (1 -  t)p* <  1. Thus r G A q-1. Therefore 
A q-1 is convex. □

D efin ition  34. We say that a function f  : S C R ^  R is concave if S is convex and for any

p,p* G S ,
t f  (p) +  (1 -  t ) f  (p*) <  f  ((tp + ( 1  -  t)p*)).

It can be shown that the unconstrained log-likelihood function restricted to the interior 
of A d is concave. The proof of this statement is just a matter of showing that the sum of 
concave functions is concave (see for example [S11]). It follows then that since pi log(pi) is 
concave, the unconstrained log-likelihood function restricted to the interior of A d is concave.

It can also be shown that if f  : S C R d ^  R is a concave function and S is open, then 
any local maximizer s G S is a global maximizer.
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With these definitions and statements we are now ready to state the theorem that will 
describe the MLE for p G M d.

T h eorem  35. Suppose the data p G A q-1, q =  8,18, for the constrained optimization 
problem for the maximimum likelihood estimator lies outside the model M d , d =  2, 3, that 
is, p G A q-1  \  M d, and that p has only positive entries. Then an MLE lies on the boundary 

of M d.

Proof. Suppose that an MLE exists at some point s in the interior of M d. That is s is a local 
maximizer of the constrained likelihood Lm(p|p) function. We observe that since d im (M d) =  
dim (Aq-1), then any open neighbourhood of s in M d contains an open neighbourhood of 
s in A q-1. Thus s is also a local maximizer for the unconstrained log-Likelihood function. 
By Theorem 31, p3 is also a local maximizer of the unconstrained log-Likelihood function. 
Since the log-Likelihood function is concave, the segment joining s and p consists of global 
maximizers of the log-Likelihood function. Thus there exists some v G d M d that is a 
maximizer.

□

Remark 3. Theorem 35 suggests that for any p G A q-1  \  M d, d =  2, 3, EM should find 
a point on the boundary d M d. Since we do not have a complete understanding of EM ’s 
behavior about which boundary point EM is attracted to, this is a interesting question.

In the previous chapter we discussed how each irreducible component of the algebraic 
boundary of M d (d =  2, 3) corresponds to the matrix parameters with zero entries. Thus 
given an arbitrary p G A q-1  (q =  8,18) we compute 9* =EM (p). By checking the zeros of 
M 1, M 2, M 3, and n of 9* we can determine if the corresponding distribution of 9* lives in the 
interior of the model or in some component of the algebraic boundary.

For the model M 2 with a sample of 10000 probability distributions (tensors) randomly 
chosen, we can see in Table 5.1 that nearly 9% of the samples are inside the model. This 
matches well with our previous simulation showing that the volume of M 2 with respect to 
A 7 is nearly 8%. We also observe that for any facet of the same dimension that appears, the 
counts look uniformly distributed.
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Table 5.1: EM estimate attracted to various boundary strata of M 2 for 104 random proba­
bility distributions. ________ _____________________________ _________

Name Representative Parameters Counts
F7 898
F6 3,648

F6a11 597
F6a12 609
F6b11 586
F6b12 615
F6c11 589
F6c11 589
F6c12 652

F5A 3,158
F5Aa11b11 259
F5Aa11c11 269
F5Ab11c11 234
F5Aa11b12 270
F5Aa11c12 248
F5Ab11c12 246
F5Aa12b11 276
F5Aa12c11 235
F5Ab12c11 259
F5Aa12b12 270
F5Aa12c12 271
F5Ab12c12 285

F5C 1,672
F5Ca11a22 569
F5Cb11b22 572
F5Cc11c22 531

Other 4,272
Total 10,000
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Table 5.2: EM estimate attracted to various boundary strata of M 3 for 105 random proba­
bility distributions.

Name Representative Parameters Counts
F17 17
F16 351

F16a11 49
F16a12 53
F16a13 47
F16b11 40
F16b12 45
F16b13 49
F16c11 37
F16c12 31

Other 99,632
Total 100,000

We also ran the EM algorithm several times for the same p but varying the starting 
parameter 90. For example, after running EM 10000 times for the probability distribution

0.2124 0.0846 0.4666 0.0986
0.0309 0.0383 0.0194 0.0494

each with a different starting parameter, we obtain that F6a12= 9998 and F5Aa12b12= 2. 
This lead us to think that for this case the parameter always converges to case where M 1 

has a zero on the second column.

For our model M 3 with a sample of 100,000 probability distributions randomly chosen, 
we can see in Table 5.2 that the counts inside the model are fewer.

For this case we also ran the EM algorithm several times for the same p but varying 
the starting parameter 90. For example, after running EM 10,000 times for the probability 
distribution

0.0919 0.0825 0.0447 0.0753 0.0360 0.0493
P  = 0.2180 0.0284 0.0313 0.0537 0.0311 0.0867

0.0008 0.0851 0.0070 0.0138 0.0197 0.0447
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each with a different starting parameter, we obtain that F16c11= 1529 and Other= 8471. 
This case is less conclusive as to whether or not the parameters are converging to a parame­
ter where M 3 has a zero on the first column, since we do not have the detail of the facets to 
determine if the points in “Other” share this same property, but I believe so. Also we are 
surprised about how out of all the points picked outside the model, just 351 are attracted 
to the known facets of dimension 16 (which are the facets of greatest dimension in the model).
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C h apter 6

C on clu sions

It was quite surprising that the estimate of the volume of M 3 within A 17 was so small 
compared with the estimate of the volume of M 2 within A 7. It was also very surprising that 
for the model M 3, the estimates of the EM algorithm for the 105 random points was not 
concentrated in the known facets of highest dimension.

There is still plenty of work to do, like understand better the geometry of M 3 and 
understand the behavior of the estimates of EM. As mentioned before we would like to 
determine if the estimate of the EM algorithm agrees with the maximum likelihood estimator.
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A p p e n d ix

Listing 6.1: g3podtree.m

function [P] =
%

g3podtree(pie,M1,M2,M3)
%
% Ago 31 2015
q = l e n g t h ( p i e ) ;
t = size(M1 , 2)
r = s i z e (M2 , 2)
s = s i z e (M3 , 2)
P = z e r o s ( t ,r , s ) ;
for i = 1 : t

for j = 1 : r
for k=1 s

for p = 1 :q
P (i ,j , k ) = p i e ( p ) * M 1 ( p , i ) * M 2 ( p , j ) * M 3 ( p , k ) + P ( i , j ,k ) ;

end
end

end
end

Listing 6.2: params2x2x2.m
function [ f l ag,M1, M 2 ,M3,pie]=params2x2x2(P)
%Sept 7 2015
%This function receives a Tensor P of dimension 2x2x2 and gives back the 
“/parameters M1,M2,M 3,p ie  (up to label
%epsilon is the criteria for rcond (determines if a function is good to work)
%flag is a variable that if get equal to 1 some matrix wans good to work 
%with (computationally speaking) 
e p s ilon=10~-6; 
f l a g = 0 ;

P1oo=[P(1 ,1 ,1) ,P(1 ,1 ,2);P(1 ,2 ,1) ,P(1 ,2,2)];
P2oo= [P(2 ,1,1) ,P(2,1,2);P(2,2,1) ,P(2,2,2)];
Po1o=[P(1 ,1 ,1) ,P(1 ,1 ,2);P(2,1 ,1) ,P(2 ,1 ,2)];
Po2o= [P(1 ,2,1) ,P(1,2,2);P(2,2,1) ,P(2,2,2)];
Poo1 = [P(1 ,1,1) ,P(1,2,1);P(2,1,1) ,P(2,2,1)];
Poo2= [P(1 ,1,2) ,P(1,2,2);P(2,1,2) ,P(2,2,2)];

if rcond(P1 oo) <ep si lon  || rcond(P2 oo) <e psi lo n || rcond(P o1 o)< eps il on || rcond(Po2o)< 
epsilon || r c o n d (Poo 1 ) < epsilon || rco nd (Po o2 )<e ps ilo n 
f l a g = 1 ;

e nd



P3 = sum(P ,3) ;
P2 =[ P( 1,1 ,1) +P(1,2,1),P(1,1,2)+P(1,2,2); P(2,1,1)+P(2,2,1),P(2,1,2)+P(2,2,2)];
P1 =[ P( 1,1 ,1) +P(2,1,1),P(1,1,2)+P(2,1,2); P(1,2,1)+P(2,2,1),P(1,2,2)+P(2,2,2)];

if r c o n d (P 1 ) < epsilon || r c o n d (P 2 ) < epsilon || r c o n d (P 3 )< epsilon 
flag=1;

e nd

°/,M3(: ,1)=eig(inv(P3)*Poo1);
% M 3 ( : ,2)=eig(inv ( P 3 ) * P o o 2 ) ; 
[U,V,W]=eig( i n v ( P 3 ) * P o o 1 ) ;
W 1 = W ( : ,1)/ s u m ( W ( : , 1));
W 2 = W (: ,2)/s u m (W (: ,2));
M 2 ( 1 , 1 ) = W 1 (1);
M 2 ( 1,2)= W 1 (2);
M 2 ( 2 , 1 ) = W 2 (1);
M 2 ( 2 ,2 )=W2(2);

p i e = (i n v ( M 2 ) . ’* P 3 . ’* [ 1 ; 1 ] ) . ’;
M1 = inv(dia g ( p i e ) )* i n v (M2) . ’ *(P 3 ) . ’ ; 
M3 = inv(dia g ( p i e ) )* i n v (M2) . ’* P 1;

% M1(: ,1) =di ag (M3 * inv(P1)*P1 o o * i n v ( M 3 ) ); 
% M1(: ,2) =di ag (M3 * inv(P1)*P2 o o * i n v ( M 3 ) );

% tie = [] ;
% p 0 = i n v ( M 1 ) . ’* P 3 * i n v (M2);

u u % u t i e (1) = s u m (p 0 (: , 1) ) ; 
u u % u t i e (2) = s u m (p 0 (: , 2) ) ; 
u u % u p i e = t i e ;

u u u i f u r o u n d ( P ,4)~ = roun d( g3p od tre e(p ie ,M1 ,M 2,M 3) ,4) 
u u u u u u u u f l a g = 1; 
uuu end

u u u i f u r c o n d ( M 1 ) < e p s i l o n u | | u r c o n d (M2)< e p s i l o n u | | u r c o n d (M3)< e p s i l o n u | | u r c o n d (d i a g (p i e ))< 
epsilon 

u u u u u u u u f l a g = 1; 
uuu end
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Listing 6.3: params3x3x2.m

funct ion [fl ag, M1 ,M2 ,M3,pie]=params3x3x2(P)
%Sept 7 2015
%This function receives a Tensor P of dimension 3x3 and gives back the 
"/.parameters M1 =3x3 , M2 = 3x3 , M3 = 2x2 , pie = 3x1 (up to label)

%epsilon is the criteria for rcond (determines if a function is good to work) 
/flag is a variable that if get equal to 1 some matrix wans good to work 
%with (computationally speaking) 
e p s ilon=10~-6; 
f l a g = 0 ;

%P . .+
P3 = s u m (P , 3) ;
P1= [ P ( 1 , 1 , 1 ) + P ( 2 , 1 , 1 ) + P ( 3 , 1 , 1 ) , P ( 1 , 1 , 2 ) + P ( 2 , 1 , 2 ) + P ( 3 , 1 , 2 ) ; 

P ( 1 , 2 , 1 ) + P ( 2 , 2 , 1 ) + P ( 3 , 2 , 1 ) , P ( 1 , 2 , 2 ) + P ( 2 , 2 , 2 ) + P ( 3 , 2 , 2 ) ; 
P(1, 3, 1)+ P(2 ,3 ,1) +P (3, 3,1),P(1,3,2)+P(2, 3,2)+P(3,3,2)]; 

i f r c o nd ( P3 ) < e ps i l o n 
f l a g = 1 ;

e nd 
%Pi . .
P 1oo=[P(1 ,1 ,1) ,P (1, 1,2 ); P(1 ,2 ,1) ,P( 1, 2,2 )];
P 2 o o = [ P (2 ,1 ,1) ,P(2,1,2) ;P(2,2,1) ,P(2,2,2)] ;
P 3 o o = [ P (3 ,1 ,1) ,P(3,1,2) ;P(3,2,1) ,P(3,2,2)] ;

if r c o n d (P 1o o )<epsilon || r c o n d (P 2 o o )<epsilon || r c o n d (P 3 o o )<epsilon 
f l a g = 1 ;

e nd 

% P . i .
P o1o=[P(1 ,1 ,1) ,P (1, 1,2 ); P(2 ,1 ,1) ,P( 2, 1,2 )];
P o 2 o = [ P (1 ,2,1) ,P(1 ,2,2) ;P(2,2,1) ,P(2,2,2)] ;
P o 3 o = [ P (1 ,3,1) ,P(1 ,3,2) ;P(2,3,1) ,P(2,3,2)] ;

if r c o n d (P o 1 o )<epsilon || r c o n d (P o 2 o )<epsilon || r c o n d (P o 3 o )<epsilon 
f l a g = 1 ;

e nd 

%P.. i
Poo 1 = [P(1,1,1) ,P(1,2,1) ,P(1,3,1) ;P(2,1,1) ,P(2,2,1) ,P(2,3,1) ;P(3,1,1) ,P(3,2,1) ,P(3,3,1)] ; 
P o o 2 = [ P ( 1 , 1 , 2 ) ,P(1,2,2),P(1,3,2);P(2,1,2),P(2, 2 , 2 ) , P ( 2 , 3 , 2 ) ; P ( 3 , 1 , 2 ) , P ( 3 , 2 , 2 ) , P ( 3 , 3 , 2 ) ] ;

if r c o n d (Poo 1 ) < epsilon || r c o n d (P o o 2 ) < epsilon 
f l a g = 1 ; 

e nd

%M3(:,1)=e ig (in v( P3) *P oo1 );
% M 3 ( : ,2)=eig(inv ( P 3 ) * P o o 2 ) ;
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[ U, V, W]  = e i g ( i n v ( P 3 ) * P o o 1 )  ;
W1 = W( , 1 ) / s um (W( ,1));
W2 = W( ,2) /sum (W( ,2)) ;
W3 = W( ,3) /sum (W( ,3)) ;
M 2 ( 1 , 1 ) = W 1 (1);
M 2 ( 1,2)= W 1 (2);
M 2 ( 1,3)= W 1 (3);
M 2 ( 2 , 1 ) = W 2 (1);
M 2 ( 2 ,2 )=W2(2);
M 2 ( 2 ,3 )=W2(3);
M 2 ( 3 , 1 ) = W 3 (1);
M 2 ( 3 ,2 )=W3(2);
M 2 ( 3 ,3 )=W3(3);

pie = (i n v (M2) . ’*P3. ’ * [ 1;1;1]) . ’;
M1 = inv(dia g ( p i e ) )* i n v (M2) . ’ *(P 3 ) . ’ ;
M3 = inv(dia g ( p i e ) )* i n v (M2) . ’ * P 1;

if r c o n d (M 1 ) < epsilon || r c o n d (M2)<epsilon || r c o n d ( M 3(1:2,1:2))<epsilon || rcond(M3(2:3 
,1:2))<epsilon || r c o n d (d i a g (p i e ) ) < epsilon 
f l a g = 1 ;

e nd

Listing 6.4: Sto2x2x2.m
function [SZ,RE,IM] =Sto2x2x2(n)
%Sept 7 2015
%Gives the percentage of the simplex that acutally comes from the model of the Markov chain 
%Has just one variable, ’n ’ the number of sample

%a is the oarameter of the dirichlet distribution, in this case a vector of ones gives a 
uniform d i s t , the size of a is the dimension of the simplex 

a = [1,1 , 1 , 1 , 1 , 1 ,1,1];

% This next step generates the random point in the simplex with the dirichlet dist 
p = lengt h( a) ;
r = g a m r n d (r e p m a t (a ,n ,1) , 1,n ,p ) ;
r = r ./ r e p m a t (s u m (r ,2) , 1,p );

s = 0 ; 
re =0 ; 
im=0 ;
%P carries the point of the simplex as a tensor 
tic
for i=1 : n

P(: , : ,1) = [r(i,1) , r (i , 2) ;r (i , 3) , r (i , 4)];
P(: , : ,2) = [r(i,5) , r (i , 6) ;r (i , 7) , r (i , 8)];

%flag commes from the rcond condition if something used was not good
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[flag ,M1 ,M2 ,M3 ,pie]=params2x2x2 (P) ;

if flag==1
c o nt i nue

end

if sum ( sum ( imag (M 1 ) ==0) ) ==4 && sum ( sum ( imag (M2) ==0) ) ==4 && sum ( sum ( imag (M3) ==0) ) ==4 && 
s u m (s u m (imag(pie)==0))==2

if sum(sum ( M 1 < 1 ) )==4 && s u m (s u m (M2<1))==4 && s u m (s u m (M3<1))==4 && s u m (s u m (pie<1))==2
if s u m (sum( M 1 >=0))==4 && s u m (s u m (M2>=0))==4 && s u m (s u m (M3>=0))==4 && sum(sum(pie 

>0))==2 
s = s + 1 ;

else
r e = r e + 1;

e nd 
else 
r e = r e + 1; 

end
else

im= im + 1; 
e nd

e nd

toc
SZ=100*s/n;
RE=100*re/n;
IM=100*im/n;

Listing 6.5: Sto3x3x2.m

function [SZ,RE,IM] =Sto3x3x2(n)
%Sept 7 2015
%Gives the percentage of the simplex that acutally comes from the model of the Markov chain 
%Has just one variable, ’n ’ the number of sample

%a is the oarameter of the dirichlet distribution, in this case a vector of ones gives a 
uniform dist , the size of a is the dimension of the simplex 

a = [1,1 ,1 ,1, 1, 1,1 ,1,1,1,1,1,1,1,1,1,1,1];

% This next step generates the random point in the simplex with the dirichlet dist 
p = lengt h( a) ;
r = g a m r n d (r e p m a t (a ,n ,1) , 1,n ,p ) ; 
r = r ./ r e p m a t (s u m (r ,2) , 1,p );
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s = 0 ;
re =0 ; 
im=0 ;
%P carries the point of the simplex as a tensor 
tic
for i=1 : n

P(: , : ,1) = [r(i,1) ,r (i ,2) ,r (i ,3) ;r (i ,4) ,r (i ,5) ,r(i,6) ;r(i,7) ,r(i,8) ,r(i,9)];
P ( : , : ,2)=[r(i,10),r(i,11),r(i,12);r(i,13), r ( i , 1 4 ) , r ( i , 1 5 ) ; r ( i , 1 6 ) , r ( i , 1 7 ) , r ( i , 1 8 ) ] ;

%flag commes from the rcond condition if something used was not good 
[ f l ag,M1,M2, M 3 ,pie]=para m s 3 x 3 x 2 ( P ) ;

if flag==1
c o nt i nue

end

if sum ( sum ( imag (M 1 ) ==0) ) ==9 && sum ( sum ( imag (M2) ==0) ) ==9 && sum ( sum ( imag (M3) ==0) ) = = 6 && 
s u m (s u m (imag(pie)==0))==3

if sum ( sum (M1 < 1) ) ==9 && sum ( sum (M2 < 1) ) ==9 && sum ( sum (M3 < 1) ) = = 6 && sum ( sum (pie < 1) ) 
==3

if sum ( sum (M1 >0) ) ==9 && sum ( sum (M2 >0) ) ==9 && sum ( sum (M3 >0) ) ==6 && sum ( sum (pie >0) 
) ==3

s = s + 1 ;

else
r e = r e + 1;

e nd 
else 
r e = r e + 1; 

end
else

im= im + 1; 
e nd

e nd

toc
SZ=100*s/n;
RE=100*re/n;
IM=100*im/n;

Listing 6 .6 : EM.m
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f unct ion [Phat ,P, ipie , iM1 , iM2 ,iM3 ,pie ,M1 ,M2 , M3] = EM ( rank)
% O c t 16 2015

%epsilon is our stopping criteria between the difference of the estimated 
% par ame t e r s 
epsil o n = 1 0 ~ -16; 
h = r a n k ;
% m1, m2, m3 are the parameters of the previous estimation 
m1 = z e r o s ( h) ; 
m2 = z e r o s ( h) ; 
m3 = z e r o s ( h) ;
%piesin=z er os( 1 ,3) ;
%This next step choose a random point from the space 
r = D i r i c h l e t t ( r a n k ) ;
% this step organizes it as a tensor 
if rank==3

for i = 1 : 1
P ha t ( : , : , 1 ) = [ r ( i , 1 ) , r ( i , 2 ) , r ( i , 3 ) ; r ( i , 4 ) , r ( i , 5 ) , r ( i , 6 ) ; r ( i , 7 ) , r ( i , 8 ) , r ( i , 9 ) ] ;
P h a t (: , : ,2) = [r(i,10) , r (i , 11) , r (i , 12) ;r (i , 13) , r (i , 14) , r (i , 15) ;r(i,16) ,r(i,17) ,r(i,18)

];
e nd

else if rank==2 
for i = 1 : 1

P ha t ( : , : , 1 ) = [ r ( i , 1 ) , r ( i , 2 ) ; r ( i , 3 ) , r ( i , 4 ) ] ;
P ha t ( : , : , 2 ) = [ r ( i , 5 ) , r ( i , 6 ) ; r ( i , 7 ) , r ( i , 8 ) ] ;

e nd 
e nd

e nd

[x1,x 2, x3] =size(Phat);
% n = x 1 + x 2 + x 3 ;
%D=P/n;
%This are the first choice of parameters to a p r o x i m a t e , they are chose
% r ando ml y
pie = r a n d (1,h ) ;
M 1 = r a n d ( h ,x 1 );
M 2 = r a n d ( h ,x 2 );
M 3 = r a n d ( h ,x 3 );

pie=pie/sum(pie) ;
M1 = i n v (d i a g (s u m ( M 1 ,2)))* M 1 ;
M2 = i n v (d i a g (s u m (M2,2 )) )* M 2 ;
M3 = i n v (d i a g (sum(M3,2)))*M3;

i p i e = p i e ; 
i M 1 = M 1 ; 
i M 2 = M 2 ; 
i M 3 = M 3 ;
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Z = z e r o s ( h , x 1 , x 2 , x 3 ) ; 
u = z e r o s ( h , x 1 , x 2 , x 3 ) ;
P = z e r o s ( x 1 , x 2 , x 3 ) ;

/this P is the tensor resulted of our chosen parameters 
P = g 3 p o d t r e e ( p i e , M 1 , M 2 ,M3);

/////////
/E-step :
//////// 

for loop=1:50000
/ the nex loop commented is another way to get P 

/ for i = 1 : 2
/ Pet i t (: ,: ,i)=M1'*diag(pie' .* M 3 (: ,i ) )*M2 
/ end
/ vector with only i-th entry of pie 

for i = 1 :h
v = p i e .*(i = = [ 1 :h]) ;
/This array of posterior probabilities of X_0 for all possible
/o bs ervations that is , for fixed (ii,jj,kk) u (: ,ii , jj ,k k )= P r o b (X _ 0 | i i ,jj ,k k )
for j = 1 : x3

Z ( i , : ,: ,j ) = ( M 1 ' * d i a g ( v ' .* M 3 ( : ,j ))*M2) . /P ( : , : ,j );
end

/this step get u (x ,h ) = u (x ) p ( h | x ;p a r a m e t e r s ). This is just the observed data times time 
the conditional probability P r o b (X _ 0 | i i ,j j ,kk) 

u (i ,:,:,:) = squeeze(Z(i, :, :,:)).*Phat; 
e nd

/////////
/M-step :
////////
/ estimating new mixing parameters 

pie = s u m (s u m (s u m ( u ,4) ,3) ,2) ' ; 
uuuuDiv = inv(diag(pie)) ;u/u foru di vidingub y u rowu sums 
uuuuA = s u m (s u m ( u ,4) ,3);u/marginalize utou X_0 ,u X_1 uva ri abl es  
u u u u M 1 = D i v * A ;uu /u div id esu eachurowubyurowutougetuM1

uu uuifurank==3
uuuuBt = s u m (s u m ( u ,4) ,2) ;u/ ma rgi nal iz eut ou X_0,uX_2uvariables
uuuuB(: tB=1 : ,1) ;
uuuuB(: tB=2 : ,2) ;
uuuuB ( : tB=3 : ,3) ;
u u u u M 2 = D i v * B ;
uuuuCt = s u m (s u m ( u ,3) ,2) ;u/ ma rgi nal iz eut ou X_0,uX_3uvariables 
uuuuC(: , 1)= C t ( : , : ,1,1) ; 
uuuuC ( : , 2)= C t ( : , : ,1,2) ; 
u u u u M 3 = D i v * C ;
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uuuu elseu if u rank = = 2
uuuuuuuBt = s u m (s u m ( u ,4) ,2);u%ma rgi nal iz eut ou X_0 ,uX _2 uva ri abl es
u u u u B (: ,1)= B t (: , : ,1) ;
u u u u B (: , 2)= B t (: , : ,2) ;
u u u u M 2 = D i v * B ;
uuuuCt = s u m (s u m ( u ,3) ,2) ;u% ma rgi nal iz eut ou X_0,uX_3uvariables 
uuuuC(: , 1)= C t ( : , : ,1,1) ;
uuuuC ( : , 2)= C t ( : , : ,1,2) ;
u u u u M 3 = D i v * C ;
uu uu uu uue nd
uuuuend

u u u u P = g 3 p o d t r e e ( p i e , M 1 , M 2 , M 3 ) ;

u u u u % S t o p i n g u c r iteriaucheckuthatutheudif ferenceuentryubyuentryubetweenutheunewuparameters
uu uu%andutheuolduparametersuisulessuthan uepsilon
uuuucheck=0;
uu uuforu i = 1 : h
uuuuuuuuforuj =1 : h
uuuuuuuuuuuuifuabs(M1(i,j)-m1(i,j))<epsi lon 
u u u u u u u u u u u u u u u u c h e c k = c h e c k + 1;

uuuuuu uuu uu uen d
uu uu uu uue nd
uuuuend

uuuuuuforui = 1 :h
uuuuuuuuforuj =1 : h
uu uu uu uuu uuu uu ifu  abs(M2(i,j )-m 2( i,j ))< ep sil on
uuuuuuuuuuu uu uuu uu che ck =ch eck +1 ;

uuuuuuu uuu uu uue nd
uu uu uu uue nd
uu uuuuend

uuuuuuforui = 1 :h
uuuuuuuuforuj =1 : 2
uu uu uu uuu uuu uu ifu  abs(M3(i,j )-m 3( i,j ))< ep sil on
uuuuuuuuuuu uu uuu uu che ck =ch eck +1 ;

uuuuuuu uuu uu uue nd
uu uu uu uue nd
uu uuuuend
u u uu%uTheunewuparameteruchangedutouold 
u u u u m 1 = M 1 ;
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u u u u m 2 = M 2 ; 
u u u u m 3 = M 3 ;

uu uuifurank==3 
u u u u u u u u i f u c h e c k ==24 
u u u u u u u u u u u u u u loop;
uuuuuuuuu uuu uur et urn 
uuuuuuuu en d 
uuuu e l s e i f u r a n k ==2 
uuuuuuu ui fuc he ck= =12
u u u u u u u u u u u u loop;
uuuuuuuuu uuu uur et urn
uuuuuuuu en d
uuuuend
e nd

Listing 6.7: bndstrata.m
function bndstrata(filename)
/ 11/8/15
/ check pdf file Boundary stata. This function receives a file generated in 
/ the function g e n e r a t e b n d s t a t a .
/ f i l e n a m e = 'B n s t r a t a f i x e d 2 .t x t ';
A = d l m r e a d (f i l e n a m e ); 
n= s i z e ( A , 1 ) ;
F7 =0 ;
F 6 = z e r o s (1,6);
F 5 a = z e r o s (1 , 12) ;
F5b = z e r o s (1 , 12) ;
F 5 c = z e r o s (1,3);
F 4 a = z e r o s (1,8);
F4b = zeros(1 ,24) ;
F 3 p = 0 ;
F 3 a = z e r o s (1,6);
F 3 b = z e r o s ( 1 ,24); 
other = 0;
/ the archive filename is a matrix that each row corresponds to the row of 
/ the pdf file Boundary strata for 2x2x2

tic
for i=1 : n

k = 0 ;
for j =0 : 2

/ Z is a matrix that tells where are the zeros or ones in the
/ parameters M1 M2 M3
/ Z (j +1,:) is a vector correspondent to the parameter Mi, it tells
/ whethere there is a zero or a 1 in Mi and if is either in the
/ first row or the second row of Mi
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Z (j +1, :) = [ A (i ,17 + 2 * j )==0 , A (i ,18 + 2 * j )==0 , A ( i ,17+2*j )= = 1 , A ( i ,18 + 2 * j )==1];
/z tells the number of zeros per parameters M1 M2 M3 
z(j + 1)= s u m (Z (j +1 , : )) ;
/ k is the total number of zeros in M1 M2 M3 
k=k+ sum(z(j + 1)) ;

end

/ check cases acording to number of zeros 
switch k

/first we check if there are no zeros in the parameters 
c as e 0

/We check first if pie has a zero or not 
if A ( i ,16)==1 || A (i ,16)==0

F 3 p = F 3 p + 1 ;
/ if pie does not have a zero then that tensor lives in F7 

else
F 7 = F 7 + 1;

e nd
/ C as e t he r e i s e x ac t l y o ne z e r o 

c as e 1
/In the next cycle we find in which parameter there zero lives
for j =0 : 2

/ in the next step we check each parameter to find a zero of a 
/ one in the first column of the parameter ,
if A ( i , 2 * ( j )+17)==0 || A(i ,2*(j)+17)==1 || A (i ,2*(j )+18)==0 || A (i ,2*(j )+18)==1

/ we save the position of the zero acroding to de Boundary 
/ strata file 

pos= 2* j+1 +(A(i,2*j+17)==1)+ (A( i , 2 * ( j ) + 1 8 ) = = 1 ) ;
F6 ( 1 , p o s ) = F 6 ( 1 ,p o s )+1; 

e nd
e nd

/ case where there are 2 zeros 
case 2

/arriba and abajo saves tells whether the zeros are in the first 
/row (arriba) or in the second (abajo) and is a vector with 1's 

u u u u u u u u / a n d u 2 's it will be clarified later 
arriba=zeros(1 ,3) ; 
abajo = zeros(1 ,3) ;

/ in this cycle we try to find the zeros of each parameter 
for j =1 : 3

/In this step we find if there are 2 zeros in one parameter 
if z(j) ==2

/ here we check if the zero are in the same column or 
/ not. If Z (j ,1)= = Z (j , 2) that means that the first row 
/ has either two zeros or two ones 
if Z(j ,1)== Z (j ,2)
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if Z(j ,1)= = 1
F 3 a (1 , 2* j -1)= F 3 a ( 1 ,2*j-1)+1;

else
F 3 a (1 , 2* j )= F 3 a (1,2* j )+1;

e nd
% if there the column does not have two zeros or 
% o ne s i n t he f i r s t c o l umn t he n we e nd i n t hi s
% c ase

else
F5c(j)=F5c(j)+1;

end

% case where there are two zeros, each in a different 
% parameter 

elseif z (j )= = 1
%we check if the zeros where the zeros are in the first column ( 

arriba) or
%in the second column (abajo). arriba and abajo 
%are vectors of size three with 0,1,2
%acording to if there is a zero in the first
%row. arriba(i)=0 if there is no zero in the 
%first row of Mi, arriba(i)=1 if Mi has one 
%zero in the first row and first column and
%arriba(i) =2 if M2 has one zero in the first row
%and second column.

% in this step we verify if the zero is arriba or 
% abajo recall that Z ( j ,1) has a 1 if the 
% M (1 , 1)=0 and Z(j,3)=1 if M(1,1)=1 
if Z(j ,1)= = 1 | | Z ( j ,3)==1

if Z(j ,1)= = 1
arr i b a (j )=1;

else
arr i b a (j )=2;

e nd
%analogously 

else if Z(j ,2)= = 1
abaj o (j ) = 1;

else
abaj o (j ) =2 ;

e nd
e nd

e nd
e nd
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/ if arriba or abajo are zeros that means we end in 
/ case F5A 

if su m(arriba)==0 || s u m (abajo)==0

if s u m (arr iba)==0
/buenvector is just the vector that is not zero 
buenvect or = abaj o ;

else
buenvect or = arr iba ;

e nd
/ finds the correspondent place in the list "long 

u u u u u u u u u u u u u u u u u u u u u u u u /un a m e "

s v = s u m (b u e n v e c t o r );
/since buenvector is a vector with 0,1,2 then its 
/and one entry is zero ( becuase we only have one 
/zero) , then sv is equal to either 2,3 or 4

if sv==2

pos = b u e n v e c t o r (1)+buenvect o r (2)*2+ buenvect o r (3)* 3-2; 
F5a(pos)=F5a(pos)+1; 

elseif sv==3
if b u e n v e c t o r (1)==1 || b u e n v e c t o r (1)==0 && b u e n v e c t o r (2)==1

p o s = b u e n v e c t o r (1)+b u e n v e c t o r (2)*2+b u e n v e c t o r (3)*3-1-( 
buenvect o r (2 )==0)-(buenvect o r (1)==0) ; 

F5a(pos)=F5a(pos)+1;

else
p o s = b u e n v e c t o r (1)+b u e n v e c t o r (2)*2+b u e n v e c t o r (3)*3+3-( 

b u e n v e c t o r (1)==0);
F5a(pos)=F5a(pos)+1;

e nd

elseif sv==4
pos = b u e n v e c t o r (1)+(buenvect o r (2))*2+(buenvect o r (3))*3+4-( 

b u e n v e c t o r ( 2 ) = = 0 ) - 2 * ( b u e n v e c t o r (1)==0); 
F5a(pos)=F5a(pos)+1;

e nd

else
/Case when arriba and abajo are not zero. The same 
/type of a n a l y i s i s . 

b u e n v e c t o r = a r r i b a + a b a j o ; 
s v = s u m (b u e n v e c t o r ); 
if sv==2

pos = b u e n v e c t o r (1)+buenvect o r (2)*2+ buenvect o r (3)* 3-2; 
F5b(pos)=F5b(pos)+1;
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elseif sv==3
if b u e n v e c t o r (1)==1 || b u e n v e c t o r (1)==0 && b u e n v e c t o r (2)==1

p o s = b u e n v e c t o r (1)+b u e n v e c t o r (2)*2+b u e n v e c t o r (3)*3-1-( 
buenvect o r (2 )==0)-(buenvect o r (1)==0) ; 

F5b(pos)=F5b(pos)+1;

else
p o s = b u e n v e c t o r (1)+b u e n v e c t o r (2)*2+b u e n v e c t o r (3)*3+3-( 

b u e n v e c t o r (1)==0);
F5b(pos)=F5b(pos)+1;

e nd

elseif sv==4
pos = b u e n v e c t o r (1)+(buenvect o r (2))*2+(buenvect o r (3))*3+4-( 

b u e n v e c t o r ( 2 ) = = 0 ) - 2 * ( b u e n v e c t o r (1)==0); 
F5b(pos)=F5b(pos)+1;

e nd
end

%case when we have 3 zero s
case 3

% the first case is when the three parameters each has a zero 
if z (1) == 1 && z (2) == 1 && z (3) == 1

% in this part we check the position according to the file 
% boundary strata

if (Z(1,1)==1 || Z ( 1 ,3)==1) && (Z(2,1)==1 || Z(2,3)==1) && (Z(3,1)==1 || Z
(3.3)== 1)
pos = 4*A (i ,17)+1 + 2*A ( i ,19)+A(i ,21) ;
F4a(pos)=F4a(pos)+1;

elseif (Z(1 , 2)= = 1 || Z(1,4)==1) && (Z(2,2)= = 1 || Z(2,4)==1) && (Z(3,2)==1 || Z
(3.4)== 1)
pos = 4* A (i ,18)+1 + 2*A(i,20)+A(i,22) ;
F4a(pos)=F4a(pos)+1;

else
other=other+1;

e nd
end
% case one parameter has two zeros and other parameter has one zero 

for j =1 : 3
if z(j)==2

% case when the parameter that has two zeros has them in the 
% same c o l um 

if Z(j ,1)==Z(j ,2) || Z(j ,3)==Z(j ,4)
pos = (j-1) *8+1 + 4 * ( Z ( j ,3)==1)+2*z(mod(j + 1 ,3)+1)+ Z (m o d (j + 1 ,3)+1,4)+Z(mod(j 

+ 1,3) + 1,3)+Z(mod(j ,3)+1,4)+Z(mod(j ,3)+1 ,3) ;
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else
/ case when the parameter that has two zeros each in 
/ different column
p o s = ( j - 1 ) * 8 + 1 + 4 * z ( m o d ( j + 1 ,3) +1)+2*(Z (m o d (j+ 1 , 3)+1,4)+Z(mod(j +1, 3) +1, 3) )+Z ( 

m o d (j ,3)+1,4)+ Z (m o d (j , 3 ) + 1 ,3)+ Z (m o d (j + 1 ,3 ) + 1 ,4)+ Z (m o d (j + 1 ,3)+1 ,3) ; 
F4b(pos)=F4b(pos)+1;

end
e nd

e nd

F 3 b ( p o s ) = F 3 b ( p o s ) + 1 ;

/ o t he r c as e s 
otherwise

o t he r = o t he r + 1 ;
end

e nd 
toc 
F7 ;
F6 ;
F 5 a ;
F5b ;
F5c ;
F 4 a ;
F4b ;
F3p ;
F 3 a ;
F3b ; 
o t he r ;

/printing is a function that orders the resulting vectors and asigns its
/value printing according to its position
pr int ing(F7, F6,F5a,F5b,F5c,F4a,F4 b,F 3p ,F3 a,F 3b ,ot he r)

[bndstarta3x3x2.m]

Listing 6 .8 : bndstarta3x3x2.m
function bnds tr ata 3x3x2(filename)
/ 11/8/15
/ check pdf file Boundary stata. This function receives a file generated in 
/ the function g e n e r a t e b n d s t a t a .
/ f i l e n a m e = 'B n s t r a t a f i x e d 2 .txt ' ;
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A = d l m r e a d (f i l e n a m e ); 
n= s i z e ( A , 1 ) ;
F 1 7 = 0 ;
F16=zeros(1,8);
other=0;

for i=1 : n 
k = 0 ;
for j = 1:18

Z ( j ) = [ ( A ( i , 3 7 + j ) = = 0 ) ] ;
end
for j = 19 : 21

Z ( j ) = [ ( A ( i , 3 7 + j ) = = 0 ) + ( A ( i , 3 7 + j ) = = 1 ) ] ;
end 

k= s u m (Z );
% check cases acording to number of zeros 

switch k
%first we check if there are no zeros in the parameters

c ase 0
%We check first if pie has a zero or not 
if A (i ,35)==1 || A (i ,35)==0

other=other+1;
% if pie does not have a zero then that tensor lives in F17 

else
F17 = F17 + 1;

e nd
% C as e t he r e i s e x a c t l y o ne z e r o 

c ase 1
for j = 1 : 18

if Z (j )==1
p o s = c e i l (j / 3 ) ;
F16(pos)=F16(pos)+1;

e nd
e nd
for j =19 : 21

if Z (j )==1
if A (i ,56)==1 || A (i ,57)==1 || A(i,58)==1

F 1 6 (8)= F 1 6 (8)+1; 
else

F 1 6 (7)= F 1 6 (7)+1;
e nd

e nd
e nd
o t her wi se

other=other+1;
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end 
e nd

if s u m (F 1 7 ) ~=0
f p r i n t f ( 'uF17 = u/du\n' ,F17)

e nd
if sum (F 1 6 ) ~=0 

f16={};
v a l o r e s = { ' F 6 a 1 1 = ' ,'F 6 a 1 2 = ' ,' F 6 a13=','F 6 b 1 1 = ' ,'F 6 b 1 2 = ' ,'F 6 b 1 3 = ' ,'F6c1 1 = ' , 'F6c12='}; 

for i = 1 : 8
if F16 ( i) ~=0

f16{i}=strc at( va lor es {i} ,in t2 str (F 16( i)) );

end
e nd
f 16(c e l l f u n ('i s e m p t y ' , f 16)) = []; / remove the empty cells
f p r i n t f ('\ n u / s \ n ','F 1 6 ') 
fpr i n t f ('u / s \ n ' , f 16 { :})

e nd

if other~=0
f p r i n t f ( ' \ n u O t h er=u/d\n',o t h e r ) ;

e nd
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