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Abstract

This work presents improved approaches for integrating patterns and processes within 

hydrology, geomorphology, ecology and permafrost on Arctic landscapes. Emphasis was placed 

on addressing fundamental interdisciplinary questions using robust, repeatable methods.

Water tracks were examined in the foothills of the Brooks Range to ascertain their role 

within the range of features that transport water in Arctic regions. Classes of water tracks were 

developed using multiple factor analysis based on their geomorphic, soil and vegetation 

characteristics. These classes were validated to verify that they were repeatable. Water tracks 

represented a broad spectrum of patterns and processes primarily driven by surficial geology. 

This research demonstrated a new approach to better understanding regional hydrological 

patterns.

The locations of the water track classes were mapped using a combination method where 

intermediate processing of spectral classifications, texture and topography were fed into random 

forests to identify the water track classes. Overall, the water track classes were best visualized 

where they were the most discrete from the background landscape in terms of both shape and 

content. Issues with overlapping and imbalances between water track classes were the biggest 

challenges. Resolving the spatial locations of different water tracks represents a significant step 

forward for understanding periglacial landscape dynamics.

Leaf area index (LAI) calculations using the gap-method were optimized using normalized 

difference vegetation index (NDVI) as input for both WorldView-2 and Landsat-7 imagery. The 

study design used groups to separate the effects of surficial drainage networks and the relative 

magnitude of change in NDVI over time. LAI values were higher for the WorldView-2 data and 

for each sensor and group combination the distribution of LAI values was unique. This study 

indicated that there are tradeoffs between increased spatial resolution and the ability to 

differentiate landscape features versus the increase in variability when using NDVI for LAI 

calculations.
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The application of geophysical methods for permafrost characterization in Arctic road design 

and engineering was explored for a range of conditions including gravel river bars, burned 

tussock tundra and ice-wedge polygons. Interpretations were based on a combination of Direct- 

current resistivity - electrical resistivity tomography (DCR-ERT), cryostratigraphic information 

via boreholes and geospatial (aerial photographs & digital elevation models) data. The resistivity 

data indicated the presence/absence of permafrost; location and depth of massive ground ice; and 

in some conditions changes in ice content. The placement of the boreholes strongly influenced 

how geophysical data can be interpreted for permafrost conditions and should be carefully 

considered during data collection strategies.
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Introduction

It is astounding how much and how little we know about the Arctic environment. In Alaska, 

we can walk on landscapes that experienced the first human footsteps on the continent. Visit the 

North Slope where dinosaurs once roamed. We drive our vehicles on highways mirrored by 

pipelines where 40 years ago it was just tundra, and 10,000 years ago there were glaciers. In a 

single place, the amount of variation over time is staggering. And yet by crossing over a 

ridgeline to the next valley it can be completely different. Understanding and quantifying this 

variability over the landscape has been a central theme to all of my Arctic research. My original 

foray into Arctic hydrology began with a simple goal: model the discharge patterns for the 2.2 

km2 Imnavait basin in the foothills of the North Slope of Alaska over 20 years. The initial 

questions I asked were: a) if we are successful in this basin, how do we know it will be 

applicable in the adjacent basin, and b) do we know if the basins are similar? These were critical 

considerations given that the over-arching plan was to predict discharge that would form the 

basis for estimating costs related to highway infrastructure, such as bridges and culverts. There 

are tens of thousands of individual basins in the North Slope area; to design appropriate 

infrastructure ideally we would predict discharge at a scale consistent with the original 

watershed. Inaccurate predictions could lead to over- or under-engineering and produce 

undesirable structural integrity and fiscal concerns.

Digital elevation models (DEMs) provide a conventional solution for estimating basin-wide 

discharge where they can be used to examine the channel networks and confirm their similarity. 

In our study area we had a DEM with 5 m horizontal resolution. This is relatively unusual on the 

North Slope where higher-resolution DEM data is restricted to intensive long-term studies or 

areas of economic interest. In Alaska elevation information is generally limited to either the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEM with 

a 30 m pixel size, or the United States Geological Survey (USGS) topographic maps which are 

only now being slowly updated from the versions produced in the 1950s. However, even with a 

higher-resolution DEM it was not possible to capture all of the topographic features that carry 

water off hill slopes in the small basin on the North Slope that I studied (Schramm et al., 2007). 

These preferential paths are also regionally known as water tracks. Water tracks are linear- 

curvilinear stripes that transport water on hill slopes. In theory they are a feature simply moving
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water down an inclined surface, in practice there are complicating interactions among many 

biophysical factors.

In a periglacial (French and Thorn, 2006; French, 2000; Slaymaker, 2011) region like the 

North Slope, continuous permafrost appears to enhance water track existence due to lack of 

infiltration into deeper groundwater layers. Even though water continues downhill via a water 

track, the flow within water tracks can be convoluted by micro-topographic features, such as 

strang and hummocks, related to ice degradation, ice aggradation and heave related to 

permafrost. This means that even a DEM produced with high-resolution airborne light detection 

and ranging (LiDAR) would have difficulties delineating the water tracks based on topography 

alone. There are currently no studies on ice aggradation and heave in water tracks, and only 

minimal work documenting ice degradation (Fortier et al., 2007; Jorgenson et al., 2008). While 

these are important questions, the limiting factor to studies on hillslope hydrology and more 

specifically water tracks is still the same as with the drainage basins, how do we adequately 

quantify the processes within a zone with enough confidence to extrapolate the results reliably to 

adjacent areas?

During my observations of water tracks on hillslopes in the Imnavait, it became rapidly 

apparent that they didn’t all look the same. Walker et al. (1994) had classified water tracks in the 

area as one of three plant communities: 1) Betula nana -  Rubus chamaemorus; 2) Eriophorum 

angustifolium or 3) Salix planifolia ssp. pulchra - Eriophorum angustifolium. Why was the 

vegetation different in some water tracks? In general, changes in vegetation reflect differences in 

the underlying surficial geology and geomorphology. There were no studies addressing the 

geomorphology of water tracks other than in terms of elevation (McNamara et al., 1999).

Limited mapping suggested water tracks were more widespread on the older Sagavanirktok 

deposits versus the younger Itkillik surfaces (Munger et al., 2008). How did the interplay 

between vegetation, geomorphology and surficial geology affect the water tracks? And what 

were the implications for the hydrologic and thermal gradients? First, we needed to know where 

they were and how to get a grasp on the system as a whole. If we could develop a classification 

system for the patterns observed in water tracks based on their geomorphic and ecological 

properties, this would make it easier to understand the major processes driving the development
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of the water tracks. This would also offer a solid base from which to conduct more complex 

analysis.

Water tracks in the foothills of the Brooks Range have a larger significance than their status 

as a drainage feature. Channelized water has been documented spurring themokarst and thermal 

erosion on the Dalton (Walker et al., 2008) and Richardson (Ferrians et al., 1969) highways. In a 

warming climate the movement of water in hydrological regimes affected by permafrost is 

comprised of dynamic and complex processes (Hinzman et al., 2013). Potential interactions exist 

between the ground thermal regime, vegetation, atmosphere and water cycle that are multifaceted 

(Callaghan et al., 2004) and have both physical and biogeochemical components. The broader 

hydrologic system, of which water tracks area are a headwater component, is already responding 

with variations in river discharge, precipitation, soil moisture, glacier area and volume (White et 

al., 2007) due to climatic variations in the Arctic (Serreze et al., 2000).

Warming has been documented on the North Slope since the early 1900s in permafrost 

temperatures (Lachenbruch and Marshall, 1986) with the greatest increase in the coastal regions 

(3 to 4 °C) compared to moderate increases south in the foothills (1 to 2 °C), with the most 

pronounced increases during winter months (Osterkamp, 2007). Permafrost in the foothills 

region may be the most vulnerable to change because it is closer to 0 °C (Osterkamp, 2008), 

warming significantly at depth (Hinzman et al., 2008) and complicated by snow water equivalent 

decreasing with increases in elevation (Homan and Kane, 2015). In order to infer these affects to 

features like water tracks the first order of business would be to understand the underlying 

geomorphology of the tracks. If we could get a handle on where specific types of water tracks 

were located this would provide a significant improvement towards spatially extrapolating 

ground temperatures, modeling hydrological regimes and understanding landscape dynamics.

Undertaking research to address topics like those of what types of water tracks exist and 

where they are located is inherently an interdisciplinary problem. Fundamentally, addressing 

multi-faceted issues requires the same steps as conventional problems: 1) defining the scope of 

the problems; 2) collecting appropriate data; and 3) using robust and repeatable analysis. The 

main difference between complex interdisciplinary and conventional research is the way
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knowledge is leveraged; both within the scope of a project and in the sequence of steps required 

for reaching the research goals. In conventional research in established fields a customary dogma 

provides clear boundaries for what is already known, the data and methods that are appropriate 

and how to define realistic results. In interdisciplinary research, each field brings its own 

paradigm that may or may not provide sufficient guidelines for solving the issue at hand. 

Researchers engaging in interdisciplinary research must find ways to address realistic project 

designs and outcomes. The two main approaches to interdisciplinary research are: a) developing 

the skills to expertly apply existing methods to new fields; or b) collaborating with other 

specialized researchers with the necessary skills (Golde and Gallagher, 1999). In both of these 

approaches, it is critical to address where the gaps in knowledge and data are and the sequence 

required to build intermediate products.

Interdisciplinary research that focuses on the intersections between hydrology, permafrost, 

geomorphology and ecology has a rich history in the Alaskan Arctic going back to identifying 

Alaskan vegetation in the 1940s (Stoeckeler, 1949), bog studies in the Upper Kuskokwim in the 

early 1950s (Drury, 1956), consideration of Project Chariot at Cape Thompson in the late 1950s 

(Hobbie, 1997) and tundra studies in Barrow in the 1970s (Bliss et al., 1981). Within my main 

study area of the Imnavait, the R4D project in the mid-1980s provided a myriad of 

multidisciplinary information that allowed future researchers including myself to ask more 

complex questions such as why and where water tracks are different on hillslopes. Technological 

advances have also bolstered this type of research including the improved availability of 

remotely sensed imagery and powerful statistical packages becoming easier to access and apply. 

However, increasing the complexity of questions, data and techniques can also make it more 

convoluted to analyze and interpret results. Engaging in research questions especially those that 

are interdisciplinary in scope benefits from using innovative methods that help balance between 

incorporating finer details and complexity vs. the reproducibility of these details and the benefit 

they offer to analysis. Given that every project has a finite amount of time and resources 

available; data and methods which provide the best foundations for both current and future 

projects are even more valuable for addressing interdisciplinary research problems of greater 

complexity.
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The initial step to improving our knowledge of water tracks in the foothills of the Brooks 

Range was to use better methods of quantifying the geomorphology including the ties between 

surficial geology environments (i.e. colluvial, organic) and soil characteristics. These 

geomorphic properties could then be used as input for a spatial classification using satellite 

imagery. The order in which these studies could be successfully executed was critical; without 

first generating water track classes based on their geomorphology mapping, efforts would be 

limited to simple presence / absence or general vegetation characteristics. Also, the current 

method of mapping water tracks was inefficient and used manual delineation (tracing by hand). 

Incorporating semi-automated techniques would allow bigger areas to be mapped more 

effectively. This idea of framing interdisciplinary research questions using optimal techniques 

and coherent approaches became the driving force behind my dissertation. I focused on 

identifying issues where the addition of specific knowledge would address fundamental gaps in 

our holistic understanding of water tracks. The challenge was to identify short-comings and to 

devise logical ways of addressing them using insights from a variety of fields.

If we could figure out why there were differences in water tracks and where the different 

types of water track classes were located, we would be closer towards modeling the relationships 

between the movement of water in the tracks and the implications for the permafrost and the 

ground thermal regime. Although these were the most important knowledge gaps, there were 

additional areas which could benefit from more in-depth study to meet the ultimate goal of 

understanding water tracks and their role in landscape evolution in the Arctic. Evaporation 

(Prowse et al., 2006) and the distribution of ground ice are two key components in understanding 

the processes in modern and future periglacial environments. Evapotranspiration, or the 

combined processes of evaporation and transpiration in plants is known to be affected by 

changes in moss or shrub cover (Blok et al., 2011) in tundra ecosystems. In terms of both moss 

and shrub cover there were obvious differences between non-water track and water track areas, 

as well as between the different types of water tracks. With this in mind I expanded my focus to 

improve calculations for leaf area index (LAI). LAI is an important component for modeling 

evapotranspiration and calculated using vegetation indexes which are affected by surficial soil 

moisture.
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The distribution of ground ice is an important consideration in water track landscape 

evolution because thawing of ice-rich permafrost can cause the surface to settle or liquefy, and 

the amount and type directly relate to the amount of settlement (Jorgenson et al., 2008). While 

boreholes provide a direct way to examine ice characteristics of permafrost, geophysical 

techniques including capacitively coupled and direct current electrical resisitivity tomography 

(CCR- and DCR-ERT) offer substantial advantages to extrapolating to larger areas (Hauck and 

Kneisel, 2006). However, the best practices for these techniques are still being developed. An 

opportunity presented itself to use DCR-ERT to examine permafrost characteristics for a 

potential road corridor extending from the Dalton Highway to Umiat, located in the center of the 

North Slope. Establishing more effective methods for using geophysics to map ground ice 

properties would be very valuable for future studies of water tracks.

With these ideas in mind, my dissertation is comprised of four different chapters. The details 

are as follows.

The first focus of my dissertation was to understand how the interplay between vegetation, 

geomorphology and surficial geology affected surficial drainage networks known as water tracks 

in the Toolik long term ecological research (LTER) area. I hypothesized that there was a range of 

geomorphic characteristics that could be quantified for water tracks. In order to do this we had to 

address how the classes could be identified and if they were robust enough to be repeatable. I 

also wanted to identify the basic factors affecting water track development. This would allow 

evaluation of the definition of water tracks in the Arctic and whether it needed refinement.

My second topic built off this classification and addresses whether water track distribution 

can be accurately and efficiently mapped. As input data, I combined my knowledge about water 

track morphology from my first topic with field survey data, high-spatial-resolution multi- 

spectral images and digital elevation model (DEM) properties. I hypothesized that: (1) water 

tracks could be efficiently delineated using remote sensing; (2) that the individual water track 

classes could be mapped; and (3) there would be spatial variability between the water track 

classes over the landscape. The goal was to move towards a semi-automated methodology which 

could be applied over larger regions of the North Slope of Alaska.
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The third topic addressed improving spatial estimations of LAI in the same study area which 

are critical for predicting evapotranspiration rates, which are the largest unknown in the Arctic 

hydrological cycle. The main objective was to optimize LAI calculations using NDVI for both 

WorldView-2 and Landsat-7 imagery. The optimization was repeated for different groups based 

on: satellite (WorldView-2 vs. Landsat-7); surficial drainage (water tracks vs. other), and 

whether the NDVI values changed within a 10-day period. My hypotheses included: (1) 

optimization would be a robust addition to the gap-method of calculating LAI; (2) subdividing 

the data into groups would improve the LAI calculations; and (3) specific vegetation 

characteristics could be associated with LAI variability.

The final chapter focused on refining geophysical methods for quantifying permafrost 

characteristics for Arctic road design and engineering. The goal of this project was to evaluate 

the effectiveness of DCR-ERT and cryostratigraphy in delineating significant permafrost 

characteristics for Arctic road construction. There are few published best practices with respect 

to optimizing geophysical interpretation with boreholes in continuous permafrost areas. I present 

an interdisciplinary approach to site selection and interpretation of ground properties using 

geophysics and cryostratigraphic data obtained from drilling. I examine how optimization of 

DCR-ERT properties such as electrode spacing can used to find the best resolution for the 

landscape and phenomena under investigation.
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Chapter 1 Geomorphic and biophysical factors affecting water tracks in northern Alaska1

1.1 Abstract

A better understanding of water movement on hillslopes in Arctic environments is necessary 

for evaluating the effects of climate variability. Drainage networks include a range of features 

that vary in transport capacity from rills to water tracks to rivers. This research focuses on 

describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as 

first-order pathways for transporting water off of hillslopes into valley bottoms and streams. 

Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, 

soil and vegetation characteristics. The water track classes were then validated using conditional 

inference trees, to verify that the classes were repeatable. Analysis of the classes and their 

characteristics indicate that water tracks cover a broad spectrum of patterns and processes 

primarily driven by surficial geology. This research demonstrates an improved approach to 

quantifying water track characteristics for specific areas, which is a major step towards 

understanding hydrological processes and feedbacks within a region.

1.2 Background

Hillslope drainage networks play an integral role in controlling the rate and timing of water 

movement from a catchment. In continuous permafrost environments, our observation is the lack 

of systematic insight into drainage networks leads to the assumption that they are homogeneous 

over the landscape. This severely limits our ability to understand the linkages between how 

geomorphology and ecology are related to hydrology and the ground thermal regime. In the 

foothills of northern Alaska this issue is particularly critical where the mean annual ground 

temperature is predicted to be between -2 and -0 °C by 2099 (Jafarov et al., 2012) and warming 

significantly at depth (Hinzman et al., 2008). Shrub expansion in drainage networks and 

hillslopes (Tape et al., 2006) is known to affect the thermal regime by lowering the albedo and 

capturing snow that serves to increase insulation (Sturm et al., 2001; Sturm et al., 2005; Tape et 

al., 2006). Massive ground ice, such as ice wedges (Kanevskiy et al., 2011) and buried glacier ice 

(Jorgenson, 2013), can occur close to the surface on hillslopes and next to drainage networks,

1 Trochim, E.D., Jorgenson, M.T., Prakash, A. & Kane, D.L., Geomorphic and biophysical factors affecting 

water tracks in northern Alaska, submitted to AGUEarth and Space Sciences.
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raising their potential for rapid degradation (Bowden et al., 2008). Thermokarst and thermal 

erosion development is strongly affected by water movement on hillslopes (Bowden et al., 2008). 

These effects could be further amplified in the future as climatic scenarios predict an increase in 

snow water equivalent for the Alaskan North Slope by the end of the century (Brown and Mote, 

2009). The complexity of these factors (shrub expansion, massive ground ice, 

thermokarst/thermal erosion and increasing SWE) necessitates development of a classification 

system for characterizing the variability in drainage networks and a cohesive framework for 

evaluating the biophysical factors controlling their patterns.

Water moves from headwater hillslopes downstream following a variety of pathways 

common in Arctic environments (Figure 1.1) where drainage networks are affected by a variety 

of factors. These include freeze-thaw processes, the presence of snow and ice, organic soil 

accumulation and differential thermal and hydraulic properties between unfrozen and frozen 

ground. As the amount of water increases (i.e. as surface runoff or storage) it impacts the amount 

of heat and mass transfer to the surrounding ground. Gravity and pore pressure gradients advect 

sensible heat and temperature gradients induce conduction, while phase change either releases or 

consumes latent heat (Kane et al., 2001). Mass fluxes associated with erosion and sediment 

transport also amplify with greater amounts of discharge. Seasonally varying conditions, such as 

the development of the active layer and changes in the hydraulic conductivity of the soil material 

through phase change, affect the downslope movement of water. These factors are related to soil 

moisture, organic material depth and degree of decomposition (Hinzman et al., 1996) and 

advective and radiant energy fluxes, which control end-of-winter snowmelt (Quinton and Carey, 

2008). Permafrost acts as a barrier to deeper groundwater infiltration and affects soil moisture 

and drainage (Kane et al., 1989). The presence of a porous organic layer underlain by a mineral 

soil creates a distinct contrast in hydraulic conductivity, which can cause the majority of flow to 

occur within the organic layer (Hinzman et al., 1991; Zheng and Moskal, 2009). Uneven surface 

and frost table topography on a hillslope (Quinton et al., 2009) can cause preferential wetting of 

certain areas due to lateral water fluxes. This enhanced soil moisture affects the rates of ground 

thaw, where wetter areas have higher rates of active layer development (Guan et al., 2010a). 

Enhanced flow has also been documented between inter-hummock areas, where the connected 

tortuosity between inter-hummock areas determines the runoff time for water to leave the
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hillslope (Quinton and Marsh, 1998). There are similarities between inter-hummock flow and the 

more distinct features known as water tracks.

Water tracks in the Arctic

The natural function of water tracks in Arctic environments is to move water off hillslopes. 

Water tracks are linear-curvilinear saturated stripes that comprise the majority of the effective 

drainage network (McNamara et al., 1999) in the northern foothills of the Brooks Range (Figure

1.2). In these features water is confined to the active layer (< 1m) due to the presence of 

impermeable continuous permafrost (McNamara et al., 1998). Previous studies also documented 

an increase in the depth of the active layer (Hastings et al., 1989; Walker et al., 1994) in the near 

vicinity of water tracks. Jorgenson et al. (2008) describe water tracks as shallow depressions that 

are associated with supra-permafrost groundwater movement where reticulate and ataxitic ice is 

found at the permafrost surface (Jorgenson et al., 2008). Reticulate ice begins as desiccation 

cracks with vertical or diagonal orientation formed in early winter and becomes ice-rich through 

sublimation or segregation (Ping et al., 2008). Horizontal lens development is dependent on 

availability of water in saturated soil during freeze-back directed from the permafrost table 

upward. Ataxitic or suspended ice occurs after water accrues during repeated freeze-thaw cycles 

during active layer thinning over time, where the volumetric ice content generally exceeds 50% 

and may be up to 90% (Ping et al., 2008). One explanation for enhanced thaw in water track 

features is due to saturation of the organic mat throughout the majority of the summer, which 

augments the thermal conductivity of the track compared to the surrounding area and modifies 

the boundary condition of the upper mineral layer allowing increased warming (Kane et al.,

2001). Saturated stripes in permafrost have also been documented in other regions including 

Seward Peninsula, Alaska (Hopkins and Sigafoos, 1951), foothills of the Alaska Range 

(Osterkamp et al., 2009), northern Quebec (Nicholson, 1978) and the Canadian High Arctic 

(Williams et al., 2008). The term water track was originally coined in the peatlands of Minnesota 

by Heinselman (1963).The existing literature points to an inadequate designation of how the term 

water track compares to features in other Arctic areas. It is also unclear how gullies differ from 

water tracks.
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Characteristics of water tracks and how they develop over time in permafrost environments 

are poorly understood. Functionally, drainage networks develop based on minimized energy 

expenditures in self-organizing networks as in growth of rill complexes (Berger et al., 2010). 

Water tracks typically occupy repeat parallel spacing which is different from dendritic, 

rectangular or deranged drainage networks. Spacing of drainage channels is responsive to the 

amount of water flux over the drainage area, stream incision (advective erosion) and soil creep 

(diffusion-like mass transport) (Perron et al., 2008). The transition to incised channels occurs 

when the sediment transport capacity is greater than the sediment supply (Bledsoe et al., 2002). 

Under permafrost conditions there is normally an expansion of the drainage networks due to an 

increase in sediment yield (Bogaart et al., 2003). In the Imnavait basin (located within the 

Northern foothills of the Brooks Range) McNamara et al. (1999) proposed that water tracks 

formed on hillslopes where channels should exist. They suggested maturation of the channel 

network was limited by permafrost inhibiting erosion rates. Incision as gully development has 

been reported within water tracks (Osterkamp et al., 2009) and drainage networks (Bowden et 

al., 2008; Gooseff et al., 2009) over time. This supports the hypothesis that some water tracks 

will undergo thermal erosion and begin to develop into a more mature drainage network 

(Hinzman and Kane, 1992; McNamara et al., 1999). The potential for this to occur is dependent 

on multiple factors including the amount of water and the presence of massive ice to thaw. At 

this time there are insufficient data to understand where these processes are more likely to occur.

Study area

This study focuses on the area around the Toolik Lake long-term ecological research area and 

includes the Imnavait and Upper Kuparuk basins and Slope Mountain area (Figure 1.3). 

Permafrost in the Imnavait basin has been documented to be 250 to 300 m in depth (Osterkamp 

and Payne, 1981). The glacial history in the region can be broken into at least four separate 

glacial events with the two earliest dating from late Tertiary to early Pleistocene (Hamilton,

2002). The middle event occurred during the middle Pleistocene as the Sagavanirktok glaciation 

covered the area with glacial till and formed the incised rolling hills of the Imnavait and Upper 

Kuparuk basins (Hamilton, 1986). The last period of glaciation during the late Pleistocene was 

simultaneous to the late Wisconsin advances in North America and contained at least two 

advances (Itkillik I and II). Water tracks are more commonly found on the older Sagavanirktok
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deposits versus the younger Itkillik surfaces (Munger et al., 2008). Geomorphic features in the 

region include high and low centered polygons, non-sorted circles, stripes, upland turf 

hummocks, solifluction features, pond complexes, wetland micro-relief and poorly- and well- 

developed hillslope water tracks (Walker and Maier, 2008). Evolution of the landscapes across 

these glacial deposits of differing ages has led to large differences in patterned ground and 

vegetation (Jorgenson, 1984). Although these works concur on the existence of water tracks, they 

do not explain the range of variation within the water tracks and the localized environmental 

factors contributing to their development.

Water tracks in the study area show an association between the type of vegetation and soil 

moisture as documented by Walker et al. (1994). Water tracks were classified as one of three 

potential plant communities: 1) Betula nana -  Rubus chamaemorus; 2) Eriophorum 

angustifolium or 3) Salixplanifolia ssp. pulchra - Eriophorum angustifolium. This is in contrast 

to nonsorted stone stripes dominated by Cassiope tetragona - Calamagrostis inexpansa and 

stream channels with Carex aquatilis - Eriophorum angustifolium. Additional vegetation 

characteristics of water tracks include increased above ground primary productivity of 

Eriophorum vaginatum by up to tenfold compared to the surrounding area as a response to the 

increase in nutrient flux to the root due to flowing water (Tsuyuzaki et al., 2008). In general Salix 

planifolia ssp. pulchra was found in the larger water tracks (Walker et al., 1994) potentially as a 

result of being more sensitive to nutrient availability than comparable areas with Betula nana 

(Matthes-Sears et al., 1988) although there may be a range of interactions (Myers-Smith et al., 

2011). Shrubby vegetation is documented in both poorly and well-developed water tracks. Water 

tracks also showed a 5 to 15 fold increase in growth rate of Sphagnum spp. compared to non

water track areas (Guan et al., 2010b). While these studies illustrate that there are some 

differences between vegetation in both water tracks and the adjacent area as well as between the 

tracks themselves, the differentiation is simplistic and does not encapsulate the range of 

heterogeneity over the landscape. They also provide only a snap-shot of current conditions, 

without investigating the interactions between past vegetation and geomorphic conditions. These 

interactions are required for realistic predictions of future scenarios.
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Problem definition and motivation

In summary, our current understanding of water tracks within the study area is limited to: 1) 

knowing they exist to transport water off of hillslopes; 2) water tracks can be associated with 

specific vegetation communities; and 3) that the organic layer and unfrozen component of the 

track plays a role in moving water. As discussed, there are more complex relationships occurring 

within water tracks in terms of how the geomorphology and ecology are impacting the 

hydrological and thermal gradients. The main problem addressed in this study was quantifying 

how geomorphic and biophysical characteristics differ among the range of water tracks. 

Accordingly, we had to figure out what classes of water tracks could be identified and if they 

could be replicated. This would allow us to identify the basic factors affecting water track 

development and their role in landscape evolution. We could also address if the definition of 

water tracks in the Arctic needed refinement. The process of classifying the water tracks, as well 

as the classes themselves is critical for providing fundamental baseline knowledge for further 

studies and monitoring future changes.

1.3 Materials and methods

Sampling design and data collection

The sampling was designed to collect data across the full range of water track conditions 

identified on aerial photographs within the Toolik Lake region. Sampling sites were clustered to 

permit easier access and those closest to road networks were prioritized. Collection of data took 

place during the summers of 2008, 2009 and 2010. Differential GPS measurements were used to 

precisely locate a network of 283 ground-verification points distributed in water tracks (Figure

1.3). Our general strategy was to sample each water track twice to capture variations over the 

hillslope. Vegetation percent cover was quantified over plots with sides of 1 to 2 m using the 

Braun-Blanquet approach (Mueller-Dombois and Ellenberg, 1974). The percent cover classes 

used were: r, present <5% of records; +, 5 -  10 %; I, 11 -  20%; II, 21 -  40%; III, 41-60%; IV, 61 

- <80%; and V, >80%. Plants were described to the species level when possible guided by 

community compositions generated by Walker et al. (1994). The species level data was summed 

into the following functional groups using the midpoint of each percent cover class: low shrubs; 

erect dwarf shrubs; prostate dwarf shrubs; forbs; graminoids; and moss. Directly adjacent to each 

plot a small pit was excavated to describe soil properties and interpret geomorphic units using
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standard methods (Schoeneberger et al., 2002). The fibrous peat was examined and differentiated 

into one of three plant remains: sphagnum; woody; or sedge. Organic soils were described using 

the following descriptors: near-surface moss and fibrous horizons (live moss, Oi-fibric horizons) 

or deeper and more decomposed horizons (generally Oe-hemic and Oa-sapric horizons). Soil 

textures were aggregated to their dominant matrix (clay, silt, loam, sand or gravel) for the 

purposes of analysis. Distinct changes in the dominant matrix of the mineral soil were used for 

discriminating horizons. The depth of the pit was approximately equal to the depth of thaw for 

the collection date. Surficial geology was assigned at each plot based on mapping by Walker and 

Maier (2008). They defined the following classes: 1) alluvial: stream deposits on modern and 

ancient floodplains; 2) colluvial: hillslope deposits whose origin is due primarily to downslope 

movement of material under the force of gravity which can include forces due to water 

movement; 3) organic; organic deposits deeper than 50 cm. Alluvial and organic surficial 

geology can be associated with water tracks (Walker and Maier, 2008). Slope percent was 

calculated using Star3i digitial elevation data collected in September 2001 with a horizontal 

resolution of 5 m and an absolute vertical resolution of 2.7 m.

Data analysis

Water tracks were classified using multivariate techniques and the classes were validated 

using recursive partitioning techniques as shown in Figure 1.4. The dataset contained 

explanatory variables made up of quantitative and qualitative data types. Multiple factoral 

analysis (MFA) using the package FactoMineR (Husson et al., 2014) in program R (R Core 

Team, 2014) was used to cluster the geomorphology data into classes (Becue-Bertaut and Pages, 

2008) by using blocks of variables to quantify the same object (I-objects x Jk-variables; k=1 to K, 

K=6) (Singh et al., 2007). MFA weights data from the blocks using a consensus matrix, 

decreasing the chance of one block dominating when the principal component analysis (PCA) is 

applied (Escofier and Pages, 1994). PCA produces factors that represent an optimized summary 

of the quantitative association between blocks and eigenvalues, which indicate the variance of 

the characterized data. PCA was run on both the blocks of variables and individual variables 

generating factors common to both (Becue-Bertaut and Pages, 2008). Clustering was applied to 

the principal components using classical Euclidean distance based on the hierarchical method 

with the generalized Ward’s criterion (Becue-Bertaut and Pages, 2008). The significance of the
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cluster description was evaluated using the v.test for the quantitative variables and chi-square 

and hypergeometric tests for the categorical data types.

The blocks of variables were selected using four criteria: (1) qualitative versus quantitative 

data; (2) features that could be mapped on the landscape level or estimated via remotely sensed 

data (Geomorphologyl and Geomorphologyl); (3) general soil properties (Soill and Soil3); and 

(4) detailed soil stratigraphic information (Soil2 and Soil4). Variables were designated as either 

active or passive. Active variables were used in the calculation of factors, while passive ones 

were only visualized after creation of the factors. Different versions of MFA explored the 

existence of more subtly expressed classes. Only the geomorphology and soil data were used 

when creating these potential classes to focus the results primarily on the physical processes. The 

final MFA selected used only the active blocks of Geomorphologyl and Geomorphology2, while 

the remaining quantitative and qualitative blocks were plotted as supplementary data in addition 

to a block containing Vegetation (Veg). The variables included in the block were low shrubs 

(LS); erect dwarf shrubs (EDS); prostate dwarf shrubs (PDS); forbs (FORB); graminoids 

(GRAM); and moss; and shrub height.

Data collection methods changed between 2008 (124 ground points) and 2009/10 (159 

ground points) to include the detailed soil stratigraphic conditions, depth to water table, and 

presence of strangs or aligned hummocks and flarks. Strangs and flarks are wetland features, 

which form perpendicular to the flow path, where strangs are raised areas while flarks are wet- 

saturated areas of standing water. In areas where flarks are not present, the aligned hummocks 

take on a similar form as strangs. The MFA technique accounted for the differences by 

substituting a new level of not-available (NA) for the qualitative variables and using the mean 

value for the class in the quantitative data. Rather than engage in synthesizing these variables, 

after the MFA analysis the 2008 data was reserved from further analysis.

Validation of the classes was confirmed through the use of conditional inference trees on the 

plots from 2009 and 2010, which use binary recursive partitioning based on a regression 

relationship (Hothorn et al., 2006). Two different variations of the method were run in the 

“party” package in R using the “ctree” and “cforest” functions (Hothorn et al., 2006; Strobl et al.,
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2008; Strobl et al., 2007). “Ctree” builds a singular tree in comparison to the bootstrapped 

version of “cforest”, which used 1000 different variations with at least 6 different terminal nodes. 

Both methods partitioned data into branches using explanatory variables that terminated into 

nodes, which maximized the homogeneity of the response variables and the differences between 

nodes to determine the class. The process began with the global null hypothesis of independence 

being evaluated between any of the input variables and the response. If the hypothesis could not 

be rejected the branch was stopped. The criterion used for hypothesis testing was multiplicity 

adjusted p-values of less than 0.05 using the Bonferroni test type. Alternatively, the variable with 

the greatest connection to the response was selected and a split was implemented. In order to 

determine the accuracy of the method, the model was initialized using 80% of the data and 

evaluated using the remaining 20%. Both the initialization and evaluation datasets had similar 

distributions for the different classes. Because this is an ensemble method of many different 

combinations of trees, visualizing single versions is not an ideal representation. In order to 

produce a more accurate “ctree” version, variable selection used the AUCRF package (Calle et 

al., 2011). AUCRF is comprised of random forests and area under the curve. Each class was run 

as a binary end variable so that cross validation could be used to create an optimal selection.

1.4 Results

MFA classification

Five classes of water tracks were established from the MFA analysis. Visualization of the 

classes along the first and second dimensions (Dim), which explained 21.2 and 18.7% of the 

variance, respectively, showed substantial overlap among classes 1, 2, and 4, while classes 3 and 

5 had higher separation (Figure 1.5). In terms of blocks of variables, Geomorphologyl explains 

the majority of the variability in the first and second dimensions, while Geomorphology2 

dominates the remaining dimensions (Figure 1.6). In contrast, Vegetation and the two Soil blocks 

all cluster in similar space regardless of the dimension. The next subplots show the circle of 

correlations between different quantitatively grouped variables in the different MFA dimensions. 

Slope and width have strong opposing effects along dimension 2 (B and C in Figure 1.6). When 

gravel was grouped with clay, and sphagnum peat was grouped with sedge peat thickness, these 

variables were opposing factors most evident along dimensions 3 and 4 (C and D in Figure 1.6). 

Graminoid cover was strongly associated with dimension 3. Moss, low shrubs (LS) and erect
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dwarf shrubs (EDS) form one group while shrub height (SHRUB_H) and forbs make up a 

second along dimensions 1 and 2. Overall, the analyses indicate that environmental variables had 

the largest effect, while the variables in Soil2 and Vegetation formed smaller sub-groups with 

similar trends along all dimensions.

The MFA produced qualitative (Table 1.1) and quantitative (Table 1.2) properties for each of 

the classes and assessed their significance (a =0.05) among classes. Class 1 was distinguished by 

significant association with colluvial deposits, very low surface runoff, buried sphagnum and 

sedge peat, thick mineral soils, strangs or aligned hummocks and flarks, and high moss cover. 

Class 2 had colluvial material, lacked strangs or aligned hummocks, had frequent ponding and 

wet soils, and were narrow with high cover of erect dwarf shrubs. Class 3 also had colluvial 

material, gravel in 50% of cases, steep slopes (> 13%) and high covers of erect dwarf shrubs and 

moss. Class 4 was dominated by organic surficial geology, saturated conditions and often had 

sphagnum underlain by graminoid peat in surface organics. Class 5 contained the widest water 

tracks and was often characterized by alluvial material. They had the greatest amount of soil 

layers and low shrubs.

Reliability o f water track classes

The reliability of the MFA classes was evaluated using conditional inference trees. The 

random forest method (“cforest”) using all variables predicted the classes with 88% accuracy. 

AUCRF variable selection was used to constrain the number of variables for the “ctree” version 

and identified controlling variables similar to those produced by the MFA. After variable 

selection, the MFA classes were predicted with 77% accuracy (Figure 1.7). These analyses 

confirmed the importance of many of the variables highlighted in the MFA. Class 1 had a very 

high prediction probability based on the presence of colluvial deposits, strangs or aligned 

hummocks, and flarks. Class 2 had modest prediction probability, and depended on presence of 

colluvial deposits, lack of strangs or aligned hummocks, low slopes, and variable widths. It was 

frequently confused with class 3. The probability of predicting class 3 was mainly based on high 

slope angle. Class 4 had a very high prediction probability based on organic thickness. Class 5 

had a low prediction probability, and was associated with high slopes.
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Based on the factors dominating the classification, the classes were assigned common names 

that help differentiate the classes and aid recognition. Hereafter, the classes are referred to as 

mineral-flark (class 1), narrow (2), steep (3), organic-rich (4) and wide (5) water tracks.

1.5 Discussion

Usefulness o f the classification methodology

During the development of the water track classification, data selection was a primary 

consideration. The advantage of our statistical analysis was that it retained information in its 

original context, unlike physically-based modeling where many geomorphic characteristics must 

be reduced down to their primary components, such as texture, porosity or permeability. 

Examining both qualitative and quantitative attributes simultaneously also offers clear benefits. 

Qualitative data collected using distinct parameters can often provide data in a more time- 

effective manner (i.e. relative soil moisture, soil texture) allowing a greater number of samples to 

be acquired. Some information, such as surficial geology (colluvial, alluvial, etc.) lends itself 

inherently to simple qualitative classes. For this project, the inclusion of the soil stratigraphic 

data into the MFA using modest categories like thickness and order of layers shed highly 

relevant information on the conditions. This will be discussed in greater detail in the next 

section. There were a number of possible groupings for organizing the data, however, that 

influenced the final classification. As the classes were non-unique, the key to this process was 

validating the reliability of the water track classes using an independent methodology to verify 

that the extracted classes were repeatable.

The combination of MFA and machine learning (via random forests and conditional 

inference trees) provided an essential framework for organizing, analyzing and interpreting a 

complex dataset to produce various classes of water tracks. Often, analysis of periglacial 

geomorphic features is done by pre-specifying scenarios of landscape processes and then fitting 

the data to meet these interpretations. Our methodology delayed the analytic explanation until the 

classifications could be reproduced via machine learning. Multiple trial and errors of the process 

also allowed the driving variables to be narrowed down to the major geomorphic characteristics. 

By setting the other variables as passive in the MFA, their effects were derived without actively 

influencing the classification process. Results from the random forest and conditional inference
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tree analyses indicate that the additional variables can increase the accuracy of the class 

prediction. They also confirm that it is a combination of features within a water track that create 

conditions that are predominant enough to be statistically identified. This combination must be 

abundant enough that it is meaningful for a classifier. In summary, the main advantage of this 

approach is that the dominant trends driving the differences in the water tracks could be 

identified to minimize bias and maximize reliability.

Factors affecting occurrence/distribution o f water track classes

The most important factor controlling the distribution and development of water tracks was 

the surficial geology. The MFA and conditional tree analyses confirmed that significantly 

different environments create lasting geomorphological conditions that influence water transport 

mechanisms into the present day. Water tracks vary over time depending on the localized 

response of vegetation to the climate where the surficial geology creates the initial conditions. 

Below we discuss some of the relevant factors that are most important to the individual classes 

and summarized in Figure 1.8.

The mineral-flark class was characterized mainly by colluvial deposits, the presence of clay 

and gravel and high graminoid and moss cover. In half of the plots, very low runoff and 

ericaceous peat as the top soil layer were observed. In many cases these plots appear to represent 

a transition from previously shrubby to graminoid dominated water tracks. In the MFA analysis 

(Figure 1.6C), clay and gravel were near to the graminoid conditions in ordination space. Moss 

appeared to be an intermediate state. The woody organic matter was opposite to 

clay/gravel/graminoid cluster and was associated with silt. The statistical analysis points to a 

distinct shift within this class of water tracks. As shown in Figure 1.9 (Class 1), water tracks 

classified as mineral-flark could be clearly identified due to the strong presence of bright-green 

graminoids. Mineral-flark plots in this area were associated with documented thermokarst 

activity (Figure 1.10). In this case downslope from the active thermokarst the water tracks 

became significantly incised. Active thermal erosion was observed as ice-rich colluvial material 

with entrained gravel and cobbles was thawed by both conductive surface heat and convectively 

by channelized running water. The interplay between increased incision of the water track, snow

19



(seen in Figure 1.11(A)) and the effects on ground thermal regimes and ice development are an 

important area for further study.

The narrow class was dominated by colluvial material with occasional to frequent ponding as 

shown in Figure 1.11 (B). Gravel and silt soils were present in a significant amount of the plots 

and the vegetation was mainly comprised of erect dwarf shrubs. Differences in the type of peat 

suggest that past conditions were wetter and promoted sedge development. As seen in Figure 1.9, 

some of the narrow water tracks appear similar to the areas between non-sorted stripes, which are 

found on the tops of most hills in the region. Non-sorted stripes maintain the stripe pattern by 

alternating depressed vegetation troughs with non-sorted ground. The stripes generally orient to 

the steepest angle slope (Nekola, 2004). The narrow water tracks are typically 2 - 6 m wide, as 

evident from the distinctive vegetation component, and the slope angles vary from 3 to 20 

degrees. Ice-accumulation in the active areas of non-sorted circles, which are horizontal 

equivalent of stripes, can prevent vegetation from colonizing (Daanen et al., 2007). Frost heave 

is generally greatest with the finest sediments and in the foothills the non-sorted circles can 

quickly be revegetated by an organic mat (Walker et al., 2004). Vegetation can have a significant 

role in stabilizing non-sorted circles (Daanen et al., 2007; Walker et al., 2004), and frost heave 

generally decreases as the vegetation shifts to shrubs (Ping et al., 2008). It is plausible that water 

tracks could form in the vegetated troughs or margins of stripes. This is supported by the idea 

that on a hillslope the vegetation troughs are a natural runoff system (Bertoldi et al., 2006). Most 

interestingly, sphagnum responds to the addition of water in weakly developed tracks with a 

rapid increase in growth (Guan et al., 2010a), which would feedback into the stabilization of a 

non-sorted stripe and the creation of narrow water tracks.

The steep class was made up of organic surficial material that was often near saturation. In 

this class, peat stratigraphy transitioned from sedge to sphagnum and may point to a shift in 

ground ice content or rates of solifluction. Solifluction has been examined in silty swales in the 

region during both the late Pleistocene and Holocene (Hamilton, 2002). Field investigations in 

2010 focused on documenting solifluction characteristics and they were found to varying degrees 

in each of the water tracks examined. Hummocks were found in and around water tracks where 

solifluction was more prominent and occurred with greater regular periodicity down the slope
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than the adjacent areas as seen in Figure 1.11 (C). Between hummock and interhummock areas 

there were differences in soil moisture and vegetation. The tops of hummocks were generally 

drier and contained rooted Betula nana or Salix planifolia ssp. Pulchra, while the interhummock 

areas had higher soil moisture and were dominated by mosses. In water tracks characterized by 

Carex aquatilis - Eriophorum angustifolium vegetation, hummock development was observed 

both in the main channel and also on the margins which were predominated by Salix planifolia 

ssp. pulchra. The hummocks appear to be diverting and concentrating flow in a similar fashion 

as observed by Quinton and Marsh (1998). Although they do not appear to play a primary role in 

the formation of water tracks they create micro-topography within the tracks, which alters the 

soil moisture and vegetation. Since water tracks have enhanced moisture compared to the 

surrounding area it seems logical that there is a greater potential for solifluction to occur as a 

result.

The organic-rich class was dominated by peat-rich alluvium with frequent ponding and 

saturated soil conditions and often found downhill from the narrow class. The organic-rich class 

exhibited a different vegetation signature, which was dominated by over 50% cover of 

graminoids. Visual examination of the sites showed surficial indications of ice-wedge polygon 

networks (Figure 1.9). There are few studies concerning the formation of hillslope ice wedges 

and their relationship to drainage networks in Arctic regions. The most substantial work was 

conducted by Mackay (1995) who found ice wedges have been found to develop epigenetically 

on hillslopes, after surface materials stabilized, whereas, syngenetic wedges have been found at 

the base of the slope where sediments have continued accumulating. Mackay (1995) also found 

that polygonal development did not reflect current topography as material movement within the 

active layer was documented from the center of the polygons to the troughs through thermally 

induced mass transport regardless of the slope angle. The development and role of ice-wedge 

polygons in and around water tracks is of particular interest as thermokarst and thermal erosion 

has been documented, including thermokarst gullies (Gooseff et al., 2009) adjacent or in close 

proximity to the organic-rich class sites. Our field sites also contained water tracks with thermal 

erosion that had later stabilized as a more incised drainage channel. Further exploration of the 

role of ice wedge polygons and their relationship to particular types of water tracks is an area of 

interest.
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The wide class was dominated by water tracks with an average width of 28 m and tall shrubs, 

representing a unique environment where some of the characteristics may have been influenced 

by glacial and/or topographic elements differently than the other water track classes. The 

extensive glacial history in the study area during both the earlier Pleistocene and more recent 

Holocene produced glacial-fluvial drainage networks typically characterized by gravels, cobbles 

and boulders depending on the magnitude of flows. In the Upper Kuparuk region there are 

distinct second-order streams that are well-incised topographically and often represent individual 

drainage basins (Figure 1.3). They have been previously described as relicts of either the later 

Sagavanirktok or the Itkillik I advances (Hamilton, 2002). These channels contain large, well- 

rounded boulders that likely underwent fluvial transport during the glacial regimes. Some of the 

wide water tracks also contained boulders and their surficial geology was considered alluvial. 

Although the Itkillik I did not descend into the main Upper Kuparuk valley, there was glacial 

drift on both the western ridge and within the upper bowl of the basin which may have also had 

an influence in some cases.

Definition o f water tracks within periglacial environments

The five water track classes all preferentially transport water down the hill-slopes. The 

geomorphic environment (alluvial, colluvial, organic or glacial) uniquely affects the resulting 

soil and organic layer stratigraphy. This both reflects and feeds-back into the overlying 

vegetation and underlying permafrost conditions. Water tracks differ from rills or gullies in that 

they should not be defined by incision alone in periglacial environments. While sections of water 

tracks may differently transport water due to their topographic gradients, in periglacial 

environments it is the combination of steepest-path and/or hydraulic conductivity of the surficial 

organic material (Hinzman et al., 1996) which contribute to enhanced water transport and 

nutrient availability. Water tracks can be associated with a range of other features and processes 

including: thermokarst, thermal erosion, non-sorted stripes, solifluction, inter-hummock flow, 

ice-wedge polygons and glacial-fluvial drainages. The use of water track as a broad term for 

preferential flow paths where there is a broad spectrum of patterns and processes associated with 

the features should be continued with the understanding that for specific regions they can be sub

divided into classes to quantify the variability within that region
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The stratigraphy of the organic layer clearly points to water tracks evolving as vegetation, 

nutrients, snow, active layer depth and ground ice respond over time. In this context, water tracks 

are associated with climate-driven, ecosystem-modified permafrost (Jorgenson et al., 2010). The 

transitions among sphagnum, ericaceous and sedge peat layers over time evident in the soil 

stratigraphy, and the spatial variation among the different classes, indicate that water tracks 

adjust to variations in temperature and precipitation. Changes in the organic layers also affect the 

type and amount of heat and moisture transfer. Permafrost and ground ice continue to persist in 

this region of continuous permafrost, as the overall summer heat flux within water tracks is not 

sufficient to overcome the larger winter heat losses. The permafrost helps water tracks persist by 

preventing infiltration into deeper groundwater system. The availability of water also allows ice 

to aggrade over time if the climatic or vegetation and soil organic matter accumulation permit. 

Sphagnum, in particular, may play an important role in affecting active-layer dynamics and ice 

aggradation.

Understanding how water tracks differ within a region in terms of their geomorphology is a 

critical factor for studies regarding hydrology, ecology and permafrost. In particular, the types 

and locations of water tracks need to be included in long-term monitoring projects. The evolution 

and response of water tracks to changing climatic conditions will vary depending on the type of 

water track and the interactions between the formative factors. This research points to a need to 

better understand the relationship between the surficial properties and the type and distribution of 

ground ice. Water tracks are most likely to rapidly evolve when in close proximity to the form of 

ground ice where thermal erosion is possible. Vegetation plays a key role in supplementing the 

identification of the geomorphic and hydrologic components in water tracks and will be crucial 

for remote quantification over larger scales in the Arctic.

1.6 Conclusions

Water tracks represent a range of preferential flow paths in periglacial landscapes. 

Understanding how water tracks differ within a region in terms of their geomorphology is a 

critical factor for studies regarding hydrology, ecology and permafrost. We differentiated five 

water track classes using robust statistical methods that effectively partitioned a wide range of
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biophysical factors. This methodology minimized bias and maximized reliability of the 

classification system that can be used for organizing, analyzing and interpreting complex data 

associated with water track development. Our analyses revealed that water track patterns are 

controlled primarily by surficial geology, although we found interactions among a wide range of 

factors. Water tracks were connected with an assortment of other features and processes 

including: thermokarst, thermal erosion, non-sorted stripes, solifluction, inter-hummock flow, 

ice-wedge polygons and glacial-fluvial drainages. These features and processes are all 

fundamentally controlled by slope, climate and surficial geology. These factors in turn determine 

soil texture and control the type and amount of ground ice. Snow, vegetation and cracking/heave 

are all related to soil moisture. Together, these factors affect the hydrologic conductivity found in 

different types of water tracks, their ability to carry water in both the surface and subsurface and 

store or retain water. This classification of water tracks, and the recognition that the patterns 

respond to a wide range of interacting factors, complicates predictions of how they will response 

to projected climate change.
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Figure 1.1: Mechanisms of water transport in cold-region environments.

Including overland flows (Bogaart et al., 2003), rills, intertussock (Dingman, 1973) and hummock flows 

(Quinton and Marsh, 1998), soil pipes (Carey and Woo, 2000), water tracks (Hinzman et al., 1993), beaded 

streams (Oswood et al., 1989) and larger alluvial streams and rivers (Vandenberghe and Woo, 2002).
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A

Figure 1.2: Water tracks are found extensively on hillslopes in the northern foothills of the Brooks Range, 

Alaska.

A) Variations occur between water tracks in terms of width, length, incision and vegetation. B) View of 

water tracks on the slope in the background looking east across the Upper Kuparuk River valley. Photos: 

E.D. Trochim, A) June 19, 2011, B) August 5, 2007.
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Figure 1.3: Location of the study which was centered on the Toolik Lake long-term ecological research 

(LTER) area.

The main panel shows the locations of the field sites (plots) in comparison to the generalized distribution 

of water tracks mapped by Walker and Maier (2008). The glacial geology of Toolik long-term ecological 

research (LTER) area (adapted from Hamilton, 2002) is shown in the top right, where the generalized water 

track distribution correlates to the Sagavanirtok River Glacation. Imagery: Main: SDMI Best Data Layer 

showing medium resolution Landsat imagery via Geographic Information Network of Alaska (GINA).
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Figure 1.4: Study design for dividing the water tracks into classes and replicating the results.

The input data was divided into groups (K) of classes (J) for each plot (I). The active groups were used by 

the MFA to develop the water track classes, and the relationships to the passive groups were examined. This 

dataset was then divided into training and test subsets, based proportionally on the distribution of the water 

track classes. The training set was used to calibrate the cforest and ctree models. The test data was then used 

to validate the model predictions of the water track classes through an accuracy assessment.
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Figure 1.5: Hierarchical clustering for MFA dimensions 1 and 2 showing the five resulting water track 

classes.

Height demonstrates how separable the water track classes are within this dimensional space and the 

occurrence of overlap. Class 5 is the most distinct of all the classes in this dimension, while there is significant 

overlap between classes 1 and 2. Classes 3 and 4 occupy a similar, yet relatively unique area in this 

dimensional space.
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Figure 1.6: Comparison of groups in different factors and their associated correlations for the MFA.

A) Comparison of groups in each dimension (1 vs. 2, 2 vs. 3 and 3 vs. 4) where active and passive 

variables are indicated in the legend with different colors assigned to the pairs of each dimension; B, C and 

D) Correlations between MFA dimensions showing quantitative variables with color indicating group.
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Figure 1.7: Conditional inference tree showing characteristics of water track classes after AUCRF 

variable selection where all splits are statistically significant (p < 0.001).

This classification tree has an overall accuracy of 77%. This decision tree demonstrates that there are 

numerous qualities which characterize the narrow (2) class, in comparison to the mineral-flark (1), steep (3) 

and organic (4) classes which have specific properties.
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Figure 1.8: Final water track classes for the study area summarized including soil stratigraphy, soil texture, vegetation and geomorphology. 

The location of the active layer is approximate, and all water track classes are underlain by continuous permafrost.
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Figure 1.9: Water track class distributions over the study area. Insets show specific class examples.

In general, there is no obvious clustering of the water tracks in comparison to general topographic 

features. Imagery: Main: SDMI Best Data Layer showing medium resolution Landsat imagery via GINA, 

Insets: WorldView-2 acquired July 10, 2011 pan-sharpened with the panchromatic band and displayed using 

bands 542 as RGB.
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Figure 1.10: Development of thermal erosion in water track.

A) Uphill from thermal erosion (looking upstream) B) Active thermal erosion (looking upstream) C) 

Sediment and incision visible below (looking downstream) D) Thermal erosion stabilized by vegetation 

(looking downstream). Photos: E.D. Trochim, July, 2009.
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Figure 1.11: Examples of features and processes influencing water tracks.

A) Snow remaining in an incised water track in early June 2010. B) Narrow (class 2) with flarks (occur 

in-between heaving ground and are wet-saturated areas which often contain standing water) and strangs 

(upraised areas between flarks) present. C) Steep (class 3) with hummocks in the Imnavait Basin. Photos: 

E.D. Trochim, A) May, 2010 B & C) July, 2008.
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Table 1.1: Qualitative properties of clustered MFA classes

Significant a =0.05 in bold, Cla/Mod describes the percentage of individuals with the characteristic who 

belong to class X and Mod/Cla the percentage of individuals in class X who display the characteristic. Lines 

indicate groups of classes.

CLASSES

1 2 3 4 5
Cla/ Mod/ Cla/ Mod/ Cla/ Mod/ Cla/ Mod/ Cla/ Mod/
Mod Cla Mod Cla Mod Cla Mod Cla Mod Cla

Surficial Colluvial 14 94 57 92 27 90
geology Organic 100 100

Alluvial 18 43
Strangs Yes 49 100 16 8

presence No 0 0 67 43
Flarks Yes 50 97 21 10

presence No 1 3
Gravel Yes 32 22 40 57

presence No 58 78 16 43
Drainage Poorly d. 7 21

Mod. d. 16 74
Surficial Negligible 56 57 8 32

runoff Very low 23 41 31 14 24 44
High 67 29

Ponding None 19 57
Occasionally 60 42
Frequently 20 88 42 46 16 74

Soil water M oist 53 15
Wet 59 35

W et: satiated 22 71
Organic Oa 48 16

layer type Oe 22 82
Sphagnum 0 36 44

order 1 12 18 25 74
2 36 15

Woody 0 35 65
order 1 34 47

2 8 57
Sedge order 1 40 12

2 10 10 24 47
4 60 9

M ineral 2 44 35 22 4
order 3 21 44 15 16

5 100 6
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Table 1.2: Quantitative properties of clustered MFA classes (mean ± standard deviation). 

Significant a =0.05 in bold. Lines indicate groups of properties.

CLASSES

1 2 3 4 5 Overall
Width (m) 8 ± 4 6 ± 2 6 ± 3 7 ± 3 29 ± 7 7
Slope (%) 7 ± 3 6 ± 2 12 ± 3 6 ± 3 8 ± 5 8
Depth to water table (cm) 9 ± 5 10±5 8 ± 4 7 ± 3 16 ± 13 9
Number o f  soil layers 3±1 3±1 3 ± 1 3 ± 1 4 ± 1 3
Organic thickness (cm) 19 ± 6 21 ± 6 20 ± 6 24 ± 6 19 ± 13 21
M ineral thickness (cm) 10 ±7 8 ±7 10 ± 7 6 ± 4 7 ± 4 8
Sphagnum thickness (cm) 5 ± 6 7 ± 7 6 ± 6 13 ± 3 7 ± 7 8
Woody thickness (cm) 6 ± 6 7 ± 7 9 ± 6 1 ± 3 16 ± 14 6
Sedge thickness (cm) 7 ± 6 7 ± 6 5 ± 5 9 ± 7 2 ± 4 7
Clay thickness (cm) 1 ± 3 0 ± 2 0 ± 0 0 ± 0 0 ± 0 0
Silt thickness (cm) 4 ± 4 4 ± 4 3 ± 5 3 ± 4 4 ± 6 4
Gravel thickness (cm) 2 ± 4 4 ± 7 4 ± 7 1 ± 2 5 ± 4 3
Low shrubs (% cover) 1 ± 3 0 ± 1 1 ± 5 0 ± 1 2 ± 4 1
Erect dw arf shrubs (% cover) 2 ± 4 1 ± 2 2 ± 4 1 ± 3 0 1
Prostate dwarf shrubs (% cover) 18 ± 12 17 ± 17 18 ± 16 14 ± 15 46 ± 24 18
Forbs (% cover) 15 ± 16 40 ± 31 45 ± 34 15 ± 19 17 ± 10 34
Moss (% cover) 5 ± 17 5 ± 8 7 ± 12 0 ± 1 2 ± 4 5
Graminoids (% cover) 2 ± 3 3 ± 6 6 ± 9 0 ± 1 13 ± 11 3
Shrub height (cm) 38 ± 30 56 ± 25 61 ± 28 47 ± 31 44 ± 31 53
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Chapter 2 Remote sensing of water tracks1

2.1 Abstract

Water tracks are an intrinsic part of the surficial drainage network in the foothills of the 

Brooks Range, Alaska. They preferentially transport water off hill slopes and represent the 

interplay between hydrology, vegetation, geomorphology and permafrost characteristics. This 

research on mapping the location of water tracks builds on previous work which demonstrated 

that different types of water tracks exist due to difference primarily driven by geomorphology. 

We used a combination method where spectral classifications, texture and topography were fed 

into random forests to identify the water track classes. The most accurate distributions were 

obtained for the organic-rich and wide water track classes. The distinct linear shapes of the water 

tracks could also be visualized for many of the classes, especially in areas where the water track 

were particularly discrete. The biggest challenges to mapping the water tracks were due to class 

imbalances and high variability within and overlapping between classes. This research presents a 

significant step forward in understanding periglacial landscape dynamics.

2.2 Introduction

Delineating the composition and spatial extent of drainage networks on the North Slope of 

Alaska is an important step towards integrating these features to the hydrological system. Water 

tracks are the pathways for transporting water off of hillslopes in the region. They are linear- 

curvilinear saturated stripes (McNamara et al., 1998) where water is confined to the active layer 

(typically less than 1m in thickness) due to the underlying continuous permafrost acting as an 

impervious boundary. Water tracks in northern Alaska have multi-faceted characteristics related 

to their hydrological, vegetation and geomorphic components (Figure 2.1). Quantifying these 

inputs for the purpose of mapping water tracks is challenging because of the influence of scale. 

There is the initial challenge of connecting pan Arctic (Raynolds et al., 2008) and northern 

Alaska (Jorgenson and Heiner, 2008; Walker et al., 2003) remotely sensed ecosystem 

distribution with patch and community level vegetation data (Walker et al., 1994). Intensive 

geomorphic mapping in the region based on aerial photo interpretation has only been carried out

1 Trochim, E.D., Prakash, A., Kane, D.L. & Romanovsky, V.E. Remote sensing of water tracks, submitted to

AGUEarth and Space Sciences.
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in key areas such as the Toolik Lake long-term ecological research (LTER) area (Hamilton, 

2002).

Previous efforts to map water tracks in the area have been limited in the Toolik Lake LTER 

site. Walker and Maier (2008) used manual demarcation to map ecosystems and surficial 

geomorphology including water tracks in the 850 km2 Upper Kuparuk River region at 1:25000 

scale. Nested within this area, digital elevation models were used by McNamara et al. (1999) and 

Schramm et al. (2007) in the 2 km2 Imnavait basin to detect the presence of water tracks. Given 

the prevalence of water tracks, the limited scope of these studies underscores the need for 

developing techniques which can efficiently map both the location of water tracks and their 

composition. This information is important for supplementing the sparse baseline ecology, 

hydrology and geomorphology data over large areas in the region and improving integration of 

the Arctic system (Hinzman et al., 2013).

A significant constraint has been the lack of knowledge about the underlying relationships 

between vegetation and geomorphology necessary to resolve the spatial patterns of water tracks. 

Recent work by Trochim (2015) laid the ground-work for enhanced mapping by delineating five 

main classes of water tracks in this study area: mineral-flark (class 1), narrow (2), steep (3), 

organic-rich (4) and wide (5) (Figure 2.2). Each class was associated with specific geomorphic 

features or phenomena including glacial-fluvial channels, ice-wedge polygons, solifluction, 

thermal and mechanical erosion. The classes were linked to significantly different vegetation 

distributions especially between low shrubs, erect dwarf shrubs and graminoids. Walker et al. 

(1994) also related vegetation and the approximate quantity of water as water tracks in the same 

area belonged to one of three plant communities: Betula nana -  Rubus chamaemorus; 

Eriophorum angustifolium; and Salix planifolia ssp. pulchra - Eriophorum angustifolium. Recent 

availability of multispectral images from commercial satellites such as WorldView-2 (that has 8 

spectral bands in the visible and near-infrared regions acquiring images at ~ 2 m spatial 

resolution) also increases the feasibility of using the vegetative structure of water tracks as a 

proxy for their respective geomorphic associations.

48



Previous approaches in Arctic regions used density slicing of panchromatic imagery to 

identify different geomorphic (Grosse et al., 2005) and vegetation (Tape et al., 2011) features. 

Spectral methods including on-site spectra acquisition and unmixing were used to identify 

periglacial units by Ulrich et al. (2009) in the Lena delta. Multiple Endmember Spectral Mixture 

Analysis (MESMA) is a spectral mixing technique which represents an opportunity to extend 

Spectral Mixture Analysis (SMA) where a series of known cover types are used as input. Each of 

the cover types has spectral endmembers corresponding to “pure” spectra which are unmixed as 

linear combinations. MESMA accounts for variability in pixel-scale spatial dimensions and sub

pixel mixing by allowing the number and type of endmembers to vary by pixel (Roberts et al., 

1998). It has been applied in related studies including chaparral plant species mapping (Dennison 

and Roberts, 2003a; Dennison and Roberts, 2003b; Roberts et al., 1998; Roberts et al., 2003), 

arid land soil mapping (Okin et al., 2001) and improved LAI estimation for boreal forests 

(Sonnentag et al., 2007). Another strength of the MESMA technique is the development of 

indices for selecting optimal spectra to represent classes and the Count-based Endmember 

Selection (CoB) index (Roberts et al., 2003). These remote sensing techniques strongly benefit 

from the availability of ground-verified data specific to the desired target as both potential 

spectral targets and for accuracy assessment.

A significant issue in classifying geomorphic phenomena is variability both between and 

within factors which define the targets. Within each class there can be a range of surficial 

conditions due to variation in vegetation, surface composition and near surface moisture 

conditions. This is especially true when using data with the appropriate spatial and spectral 

resolution for the mapping the specific feature. Water tracks can vary from 2 meters to over 30 

meters in width so while there are clear benefits to using imagery with spatial resolution 

comparable to the smallest features, there is a tradeoff due to the increase in data complexity. 

Statistical techniques such as random forests (Pal, 2005) have a history of being used to map 

geomorphic (Heung et al., 2014; Timm and McGarigal, 2012) and ecological (Crisci et al., 2012; 

Cutler et al., 2007) properties. In remote sensing, they are noted for their ability to handle non- 

parametric data while producing high accuracy classifications (Rodriguez-Galiano et al., 2012). 

Another advantage is that data from different sources like multispectral visible imagery can be 

combined with elevation properties like slope and aspect (Chasmer et al., 2014).
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This work addresses whether water track distribution can be accurately and efficiently 

mapped by combining existing knowledge about water track morphology with field survey data, 

high-spatial-resolution multi-spectral images and digital elevation model (DEM) properties. We 

focus on the following questions: (1) can water tracks be delineated efficiently; (2) is it possible 

to map the water track classes of Trochim et al. (submitted); (3) what is the spatial variability of 

the water track classes; and (4) what are the main factors driving the model variability and errors. 

The main problems addressed in this study were to figure out what data would be necessary for 

mapping the water track classes and how to optimize the processing steps. This would require 

using both the MESMA technique to map various properties of the landscape including 

vegetation, surficial geology and geomorphology and other intermediate data to produce the final 

classifications using random forests. The goal was to move towards a semi-automated 

methodology which could be applied over larger regions of the North Slope of Alaska.

2.3 Study area

Moist acidic tundra covers the study area in the Imnavait and Upper Kuparuk basins in the 

Toolik Lake LTER area. The erosional topography on the landscape is created by Cretaceous 

sedimentary rocks forming east-west-trending open folds (Black, 1969). Elevation varies from 

844 to 960 m. Glaciation in the middle Pleistocene during the Sagavanirktok advance created the 

incised rolling hills and covered the area with glacial till (Hamilton, 2002). Continuous 

permafrost in the area extends 250 to 300 m below the surface (Osterkamp and Payne, 1981). 

This forms a resistant surface for water percolation and restricts water movement to near-surface 

runoff or evapotranspiration (Hinzman et al., 1996). In this region of the Arctic strong 

seasonality restricts the annual cycle to warm (>0°C) and cold (<0°C) periods which go from 

May through September and October through April respectively. A continuous snowpack is 

typically present from late September to mid-May or early June although it can snow any day of 

the year. The topography influences the pattern in which the wind redistributes the snow in the 

study area (Evans et al., 1989). The discharge cycle follows a nival regime (Kane et al., 1989). 

Poorly- and well-developed hillslope water tracks, wetland microrelief (Walker and Maier, 2008) 

and beaded streams transport water to larger rivers. Greater amounts of snow and continuous 

discharge through the summer can be found in well-developed water tracks. In contrast poorly
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developed water tracks generally have flow only during and after snowmelt and rain events. The 

five main vegetation communities found in the region include: dry exposed acidic sites, moist 

acidic shallow snowbeds, moist non-acidic snowbeds, moist acidic uplands, and moist nonacidic 

uplands (Walker et al., 1994).

2.4 Methods

This study used a diverse set of input data and a multistep process to delineate the spatial 

distribution of the water track classes as shown in Figure 2.3.

Field data

Ground information about water tracks and the adjacent areas was collected using a sampling 

design which identified cluster of water tracks on aerial photographs of the region. Priority was 

given to areas representing a range of gradients and proximity to the road networks. The data 

was collected the summers of 2008, 2009 and 2010. A network of 532 plots was precisely 

located using differential GPS measurements located in water tracks as seen in Figure 2.4. Each 

plot was 1 to 2 meter sq. and represented a homogenously mixed land cover. The Braun- 

Blanquet percent cover classes (Mueller-Dombois and Ellenberg, 1974) were used to describe 

vegetation, moss and lichen. Walker et al. (1994) community compositions were used as a 

principal key to identify plants found in the area to the species level. Directly adjacent to each 

vegetation plot a small soil pit was excavated to assess the geomorphic and soil properties using 

standard methods (Schoeneberger et al., 2002) which were analyzed in Trochim et al. 

(submitted). Surficial geomorphology, surficial geology, primary vegetation and plant 

communities were sampled at each point from vector data (Walker and Maier, 2008). Water 

track presence/absence and water track class were derived from the analysis of Trochim et al. 

(submitted) and used to proportionally divide the data into train and test (0.7/0.3) subsets.

Remotely sensed data

Panchromatic and multispectral data from the WorldView-2 satellite were collected on July 

10, 2011. Three scenes were used for analyses which were acquired sequentially. The spectral, 

spatial and radiometric properties of the WorldView-2 satellite are listed in Table 2.1. 

Orthorectification was applied to the imagery in ENVI version 5.0 (Exelis Visual Information
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Solutions, 2014) using the ASTER 30 meter digital elevation model. Atmospheric effects were 

resolved using the ATCOR 2 model (Richter and Schlapfer, 2011) and the data were converted 

to surface reflectance. Percent slope, aspect, plan convexity and profile convexity was calculated 

(Wood, 1996) from a Star3i digitial elevation model collected in September 2001. The data had a 

horizontal resolution of 5 m and an absolute vertical resolution of 2.7 m. Using the multispectral 

WorldView-2 imagery, the Normalized Difference Vegetation Index (NDVI ) (Richardson and 

Everitt, 1992) was calculated from reflectance using the multispectral imagery in the Near 

InfraRed (pnir) (band 7) and red (preD) (band 4) wavelengths. A mask was created from NDVI 

to remove gravel, roads and water from the multispectral imagery.

Intermediate clustering

The contribution of vegetation to the water track classes was isolated using the labsv package 

(Roberts, 2013) in R (Team, 2014) using the indicator value method (Dufrene and Legendre, 

1997). Indicator species and life-form groups were identified by detecting similarities within 

groups in sample compositions from different sites (McGeoch and Chown, 1998). A major 

advantage to this method is that each indicator value is calculated independently (Dufrene and 

Legendre, 1997). A Monte Carlo method using 1000 permutation runs was used to generate p- 

values. P-values less than 0.05 were used to segregate the most important features. These 

properties were used as the target for the MESMA classification. If no significant property was 

found then the most important surficial geological property found in Trochim et al. (submitted) 

was substituted.

MESMA was applied using two different approaches to the WorldView-2 data where the 

information from the ground plots including the water track classes, vegetation and surficial 

geology were targeted. First, optimal endmembers were selected using the best CoB values for 

each subclass to classify: surficial geology, primary vegetation, moss, forbs, prostate dwarf 

shrubs, and low shrubs. CoB values rank endmembers by optimizing the models chosen within 

the correct class, while constraining confusion with other classes (Roberts et al., 2003). 

Consideration was given to endmember average root mean square error (EAR) (Dennison and 

Roberts, 2003b) and minimum average spectral angle (MASA) (Dennison et al., 2004) as 

described by Quintano et al. (2013). Calculation of these parameters is automated within the
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MESMA algorithm found in Visualization and Image Processing for Environmental Research 

(VIPER) tools software (Roberts et al., 2007) which was used for the analysis. Initially, a 

constrained square array using minimum and maximum allowable fractions of -0.05 and 1.05 

and a maximum root mean square error (RMSE) of 0.025 was used for calculating the CoB 

values. The MESMA classification was repeatedly run using the spectral library specific to that 

class for the unmixing process. The minimum and maximum ElectroMagnetic (EM) fractions 

values used were identical to those of the square array. The maximum allowable RMSE used was 

0.15 while the maximum shade fraction was 0.8. We used a larger RMSE value to ensure 

mapping over as much of the study area as possible. The MESMA process was run multiple 

times for each classification to identify the top spectra for each of the sub-classes which 

corresponded to wide-scale identification of modeled output. The accuracy of the classifications 

was evaluated and only those classes where it was greater than 65% were retained in order to 

preserve the most important characteristics.

The second MESMA classification process used the variables specific for each water track 

class including Eriophorum angustifolium (mineral-flark), colluvial and alluvial surficial 

geology (narrow), erect dwarf shrubs(steep), graminoids (organic-rich), Carex aquatilis 

(graminoids), low shrubs (wide), forbs (wide) and Petasites frigidus (wide). The same settings 

were used for constructing the square array and the spectra were selected based on the highest 

CoB values. Multiple spectra were used as input for each class if there were substantial 

differences. The MESMA classification was run for each class using up to three spectral libraries 

in the unmixing. The minimum and maximum EM fractions were again identical to the square 

array. A variety of maximum allowable RMSE limits were used starting with a value of 0.1 to a 

maximum of 0.5. Again, RMSE values were allowed to vary in order to visually confirm the 

results covered significant areas. As RMSE was used as an input to the random forest model, 

large errors were accounted for during that stage.

Next, a co-occurrence matrix (Anys et al., 1994; Haralick et al., 1973) was calculated for the 

panchromatic band. The entropy result was used to threshold the output into classes which 

indicated the presence of flarks and roughness. The mean, variance, homogeneity and contrast 

were also analyzed using a principal component analysis (PCA) where image noise was
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minimized by retaining only the data found in the first three eigenvalues during the inverse 

rotation.

A final stacked raster dataset was created with a total of 39 layers including the original 

WorldView-2 imagery, MESMA results, co-occurrence products and topographic inputs as 

detailed in Table 2.2.

Machine learning and post-processing

The Classification And REgression Training (caret) package (Kuhn et al., 2013) was used to 

efficiently train random forest (Liaw and Wiener, 2002) models. For each water track class, two 

different binary random forest models were run to differentiate between water track and non

water track areas, and the specific water track class versus all the other water tracks. The model 

process started with determining the proportion of alternate (X0) versus desired (X1) classes. If 

the desired classes comprised less than 20% of the total classes then the dataset was sub-sampled 

using maximum dissimilarity (Willett, 1999). For the wide class, this approach was insufficient 

due to the low number of samples. Additional sites were selected in close proximity to those 

which had been ground verified. Next, an initial random forest model was trained using repeated 

cross-validation of 10 times and 5 repeats and 1000 trees. The number of predictor variables used 

as candidates for each split of the decision tree (mtry) was allowed to vary from 1 to 10. The area 

under receiver operator curve (ROC) was used to select the optimal model (DeLong et al., 1988). 

ROC compares sensitivity (true positive rate) against specificity (false positive rate). ROC values 

range from 0.5 (poor) to 1. Training accuracy was assessed using out-of-bag portion error 

(Breiman, 2001). Backward feature selection was then run to reduce the number of variables, and 

the random forest was rerun with the subset. Confusion matrices were calculated using the test 

datasets to assess accuracy and select either the original or variable-selected random forest 

model. Accuracy was calculated as a percentage (i.e. number of correctly classified pixels 

divided by the total of pixels). The final models were applied to the raster data stack.

Post-classification the presence/absence distribution for each water track was used to mask 

the class results specific to the type of water track. The water track classes were then overlaid, 

sieved and majority filtered to aid in interpretation. Zonal analysis was performed to examine the
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differences between the water track classes in terms of area for three watersheds within the study 

area.

2.5 Results

Indicator species for water tracks and MESMA classification

Each of the water track classes had a significant associated vegetation species or group 

except steep as seen in Figure 2.5. The mineral-flark and organic-rich classes were both indicated 

by graminoid (GRAM) presence but there were differences between the specificity of vegetation 

and number of related samples. Eriophorum angustifolium (ERAN 6) was tied only to the 

mineral-flark water tracks. The steep class presence was tied to erect dwarf shrubs (EDS). The 

wide class was indicated by low shrubs (LS) and Salix pulchra (SAPU15), forbs (FORBS) and 

Petasites frigidus (PEFR5). Since the technique did not identify any related vegetation species 

for the narrow class, alluvial and colluvial surficial geology were used for the MESMA 

classification.

The spectra selected for each water track class demonstrated the robustness of the MESMA 

technique in systematically differentiating between many potential combinations as seen in 

Figure 2.6. For each water track class the spectra were relative similar within the visible (400 to 

600 nm) region of the spectrum, with the largest differences in the near-infrared (> 800 nm) 

portion. For the MESMA classification that used all plots as potential input, there was more 

variation in the visible region. During the MESMA classification, vegetation which was less 

prevalent or patchier within the spatial resolution of 1.84 m required the allowable RMSE to be 

increased in order to produce diverse results. These classes included low shrubs, surficial 

geology, Eriophorum angustifolium, forbs and Petasites frigidus.

The entropy result from the co-occurrence matrix applied to the panchromatic band identified 

major channels. Many of these were related to ice-wedge polygon distribution or flarks. The ice- 

wedge polygons had a clear polygonal shape. Flarks occur in-between heaving ground and are 

wet-saturated areas which often contain standing water. A secondary class for roughness was 

developed to indicate areas which likely contain frost heaves and/or strang. Strang are raised 

areas perpendicular to the flow path in wetland regions.
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Random forest results

The complete random forest results can be found in Table 2.3. Overall, the organic-rich water 

track class produced consistent results between the test and train datasets between both OOB 

error versus accuracy as well as in terms of the ROC values. In terms of accuracy, the next best 

classification was for the wide class. It should be noted that the high test ROC value is also 

somewhat sensitive to the low number of test plots for this class. The mineral-flark and narrow 

classes had moderate results, where the models generally appear to be performing slightly better 

on the training dataset than during the accuracy assessment. The narrow class was adequate only 

for discriminating between other types of water track classes.

For the mineral-flark class the texture (variance, contrast and flarks), the distribution of low 

shrubs and WorldView-2 band 1 were important variables in both random forest models. In 

discriminating the narrow class from the other water tracks, the MESMA RMSE of surficial 

geology had the largest overall contribution followed by the Eriophorum angustifolium EM 

distribution. The most important variables for both organic-rich class models were the RMSE of 

surficial geology, WorldView-2 band 5 and roughness. In the wide class four inputs 

(WorldView-2 band 2, colluvial surficial geology, the RMSE of graminoids / Carex aquatilis 

and WorldView-2 band 1) were selected by both models.

The water track class distribution for the entire study area can be seen in Figure 2.7. At this 

scale several patterns can be noted. First, wide water tracks are found primarily on east-facing 

slopes in the incised rolling hills of the Upper Kuparuk watershed and adjacent drainages. They 

can also be found in proximity to major drainages. The narrow class occurs on west-facing 

slopes, on the north-side of Slope Mountain and in the foothills adjacent to the Sagavanirtok 

River. The organic-rich class is more visible in areas where the topography is less incised. The 

narrow class is visible at steeper slopes in the mountain areas.
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2.6 Discussion

Applicability o f the water track classification

The range of accuracies between 60 and 85% for the various water classes was comparable to 

results from other studies quantifying wetland characteristics in discontinuous permafrost 

(Chasmer et al., 2014). Though the overall classification accuracies were not significantly better 

than the accuracies achieved from popular spectral classification approaches used in remote 

sensing studies, the classification scheme followed in this research has distinct advantages that 

the process (i) does not require the time-intensive step to ‘train’ the computer/classifier, (ii) 

minimizes the bias from user-interpretation, and (iii) is easier to scale-up. Spatially quantifying 

landscapes based on geomorphic properties is challenging due to variability and the role of scale. 

Features such as water track or wetland classes combine a multitude of vegetation, soil moisture, 

soil stratigraphy and surficial geology characteristics to form the individual classes. Ideally like 

in this study, these classes are based on ground-based data verified for the region. Many of these 

features may only be discernable at finer spatial and spectral scales such as through the use of 

WorldView-2 data with a pixel size of 1.84 m. The issue is that increasing our ability to identify 

the patterns also raises the variability and complexity of delineating the classes.

As can be seen in Figure 2.8, the curvilinear shape and pattern of water tracks can be 

discerned from the classification. In the areas such as those around Slope Mountain and on the 

east-facing slope of the Upper Kuparuk watershed where the water tracks are particularly 

distinctive the water track classes are adequately capturing the pattern. Within these slopes, clear 

variation between the mineral-flark, narrow and steep classes can be seen. The steep water 

classes in these situations may be more incised locally, rather than found on a greater angle 

slope. It should be noted that the connectivity of the water tracks is not identical to that found in 

the visible imagery. Given that this classification was mainly a spectral approach that did not 

focus on spatial relationships other than through texture, the ability to discern the shape of 

different water track classes is of significant relevance as it underscores their prevalence, on the 

landscape. Both the water tracks and their specific classes form a dominant geomorphic attribute 

which is complex and a blend of shape and composition.
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The two classes which experience more clumping, or are less linear in nature are the narrow 

and wide classes. The poor performance of the narrow class which is closest to the World-View 

2 pixel resolution is similar to that documented by Dronova et al. (2012) in their characterization 

of wetlands. The narrow class may also be comparable with hummock tussock tundra which can 

occur both as a type of water track and also as a poorly developed water transport mechanism on 

slopes. The wide water track class on many incised rolling hills occupies a large portion of the 

slope. This distribution is likely related to the vegetation which is high in chlorophyll and 

includes both shrubs and graminoids. WorldView-2 bands 1 and 2 (400 to 450 nm and 450 to 

510 nm) have been documented to improve classification of bright green vegetation data in other 

studies (Tarantino et al., 2012).

Implications for permafrost research

Classifying the properties of water tracks over the landscape is a significant step towards 

understanding drainage features in the Arctic which have a multi-faceted effect on permafrost. 

Creating products like distribution of water track classes is useful because it provides a more 

detailed understanding of the specific properties and patterns on the landscape. This can be 

extrapolated to better infer processes and also tailor future studies more effectively. While this 

methodology did not capture every water track within the study area, it was able to successfully 

map the types which we had verified via ground point data. For thermal modeling, this is very 

useful as it improves our ability to delineate specific characteristics related to thermal 

conductivity and soil moisture. For instance, it would be useful to develop N factors for the 

different water track classes to take advantage of the similarities in the atmosphere-soil system 

which are important for predicting ground thermal regimes (Riseborough et al., 2008). Along 

these lines, the ability to lump characteristics together can increase the efficiency of running 

complex numerical models, as similar areas may be treated as a single area within a vector rather 

than repeating the same calculation multiple times over a raster format (grid points).

The distributions of the water track classes also provide a snapshot into how water is moving 

through a basin. By utilizing a raster-based methodology rather than vectorized-lines 

representing channels, the area of each water track class can be calculated. This was done for 

three different watersheds in the study area: the Upper Kuparuk, Imnavait and Toolik

58



Thermokarst (as seen in Figure 2.7). Figure 2.9 shows the differences in percent area between the 

water track classes for each watershed. The Toolik Thermokarst basin shows the highest 

proportion of organic-rich water tracks, and given the accuracy of this class there is reasonable 

confidence in this calculation. Both the Imnavait and Upper Kuparuk share similar proportions of 

mineral-flark and steep classes. Overall, the highest proportion of water tracks was identified in 

the Imnavait watershed with 32%. This is very close to the water track area of 34% estimated by 

McNamara et al. (1999) from a DEM derived from elevation contours generated from aerial 

photographs. Given the errors associated with some of the classes, this analysis is most useful in 

contiguous watersheds where the omission errors which are most common in the water track 

classes should be relatively consistent provided that the input conditions are within the modeled 

parameters.

Factors affecting classification performance

Analysis of the factors affecting the performance of the classifications can be grouped into 

the following areas: (1) General classification issues including insufficient separation between 

classes and errors of omission; (2) methods of spectra selection with the MESMA classification; 

and (3) the effects of class imbalance on the random forest models.

Separating the differences between water track and non-water track areas in both the 

MESMA and random forest techniques was problematic as there was overlap between the 

classes. While some water tracks are ecologically unique, others will be similar to non-water 

track areas as would be detectable from the World-View 2 multispectral imagery. This 

contributed to the dominant errors being those of omission, where the desired water track class 

could be misclassified as null. The complexity of this issue can be most effectively visualized in 

Figure 2.10. Along the analyzed transect, there is similarity between the water track classes and 

Eriophorum angustifolium values. This is in contrast to a filtered NDVI product which more 

clearly emphasizes the curvilinear shape. The issue is that depending on incision, soil moisture, 

and the distribution of shrubs versus graminoids water tracks can be found within the dominant 

linear feature in an area or directly adjacent to it. Over large areas, there does not appear to be a 

simple means for capturing this pattern/phenomenon.

59



In general the MESMA classification contributed critical information for the spatial 

quantification of the water track classes. Due to the variability both between water track and non

water tracks as well as discriminating between the classes themselves, a robust dataset was 

necessary to delineate the features. The MESMA process and the CoB statistic in particular 

provided a useful method for selecting spectra which are most likely to produce the desired 

subclass result. An increased number of available ground-verified points could potentially 

increase the accuracy of this approach. Alternatively, automated iterative selection can be used to 

isolate spectra for the MESMA classification (Roth et al., 2012).

The random forests were able to most effectively deal with issues of commission or overlap 

between classes through the use of multiple binary models. This is due to either overlapping 

and/or ecologically similar cover classes (Timm and McGarigal, 2012). Class imbalance (Chen 

et al., 2004; Evans and Cushman, 2009) can also lead to decrease in performance due to the 

sample size. This combined with the distribution between a number of classes can cause 

preferential training within the random forest model. Ideally, a dataset should be well-balanced 

through cross validation and class resampling. Variable reduction can be useful in some cases 

especially when one moves to hyperspectral data (Chan and Paelinckx, 2008). In this study 

cross-validation, class resampling and variable reduction were all used to assist with class 

imbalance in the random forest models.

Alternative approaches

The spatial context of water tracks and their trademark linear-curvilinear shape ultimately 

defines the connectivity of a water track and its ability to move water off hillslopes. Small scale 

topographic variation including frost heave and ponding can be concentrated in water tracks 

compared to the surrounding area. Theoretically, water tracks as drainage features should have 

an incised topographic profile which follows the least-cost path of decreasing elevation down the 

slope. In reality the influence of continuous permafrost creates a more complex scenario where 

parts of the water tracks are incised as seen in Figure 2.11. The propensity of linear channels 

share much similarity with both the validated water track classes and the majority filtered 

product, which was produced to make it easier for visual interpretation. In the field, incision was 

more common on the edges of the steep class and the centers of the organic-rich. Using a
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topographic approach alone may classify many of the tracks; however it does not elucidate the 

differences between the different types of water tracks. Also, water tracks are not universally 

incised features due to thick organic mats and presence of shrubs. Water tracks may actually be 

convex in terms of the ground surface topography and slightly elevated in comparison to the 

adjacent environment.

Future improvements to classifying water tracks may include the development of multiple 

classification systems (Wozniak et al., 2014) i.e. the use of ensemble classification models 

versus multiple models best suited to answer a specific question. An additional approach would 

be to integrate geographically weighted errors instead of error matrices (Comber et al., 2012), as 

error matrices do not provide any indication of the spatial distribution of errors. The spatially 

explicit representation generated from geographically weighted approaches offers the prospect of 

creating improved land surface classes in a more explanatory fashion. The use of an object- 

orientated classification may offer limited improvement, as in comparable mapping of wetland 

plant functional types, advantages are generally related to scale (Dronova et al., 2012). The same 

study found the highest accuracies occurred at coarser object scales rather than those close-to- 

pixel resolution. However, future studies might be improved with pre-segmentation of images, as 

their use produces equal accuracy rates between random forests and object-orientated 

classification methods (Stefanski et al., 2013). In general, the advantage of the combined 

MESMA and random forest model approach is that model optimization process will improve 

through semi-automation. The approach also has the ability to efficiently handle iterative 

processing of large datasets.

Supplementary datasets such as polarimetric synthetic aperture radar (SAR) and high- 

resolution airborne light detection and ranging (LiDAR) potentially offer additional information 

necessary for accuracy improvement of water track classes. Polarimetric SAR has been used to 

estimate subsurface water in peat (Touzi et al., 2013), generalize landcover in Arctic coast 

regions (Banks et al., 2013) by approximating biomass (both above and below-ground) 

depending on type. Better discrimination of peat and subsurface water properties would be useful 

for water track descriptions. Acquisition of LiDAR using both bare-earth for more detailed 

topographic information, and first returns to estimate shrub height would be very useful. The

61



advantage to using machine learning methods such as random forests is that they allow the use of 

large, diverse datasets towards the application of complex issues like discriminating water track 

classes.

2.7 Conclusions

This study showed that both water track presence and different water track classes could be 

identified using primarily WorldView-2 imagery. The mineral-flark, steep and narrow water 

tracks displayed a curvilinear shape and repeating pattern perpendicular to the hill slope. The 

highest accuracy and best ROC values were found for the organic-rich and wide water track 

classes. The models performed better on the training set data which had a higher numbers of 

positive classes, and more equalized proportions between classes. In general, errors were 

primarily those of omission or the water track class being misclassified as null. This was due to 

insufficient separation between classes. The biggest underlying issue was the complexity of the 

water track classes. Although they represent the geomorphic properties, they were classified 

using a combination of variables including vegetation, soil moisture, and surficial geology. The 

use of high spatial resolution imagery also increased the variability within the data.

The comparison of different water track class percent area for different watersheds within the 

study area demonstrated that the classification was useful for illuminating differences in 

hydrology and geomorphology. This research has significant implications for understanding 

where water flows repeatedly in periglacial environments including future study designs of 

related phenomena including improving ground temperature predictions. The ability to map 

known water track geomorphic conditions provides a critical baseline for further investigations 

of landscape dynamics within a region. Given the complex interactions of these factors within 

the context of a changing Arctic climate, delineating, mapping, and quantifying different water 

track classes is a significant step forward.
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Figure 2.1: Comparing the affects between feature levels and feature size / scale for mapping water track 

properties on the North Slope of Alaska.

Vegetation is typically quantified by 1 m2 plots or patches. These are extrapolated to estimate the plant 

communities. Between water tracks and the surrounding areas, plant communities typically vary. Substantial 

differences in plant communities are driven by underlying differences in geomorphology, which are 

quantified by mapping geomorphic units. Important changes in geomorphology such as the patterns of 

glaciation or significant climatic shifts control the location and range of ecological classes. Photos: E.D. 

Trochim.

71



72
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Figure 2.2: Water track classes in the Toolik Lake LTER.

Highlighted for the classes are the main characteristics in terms of vegetation, soil moisture and soil stratigraphy. A photographic example is also 

given for each class to assist in understanding the appearance of each class. The type of water track is ultimately controlled by the dominant surficial 

geological conditions, which affect the vegetation. Understanding and incorporating water tracks into hydrological and landscape-process models 

requires knowledge of both their locations and characteristics. Photos: E.D. Trochim.
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Figure 2.3: Flowchart of input data and methodology.

The plots were initially divided into train and test datasets while maintaining the proportions of the 

water track classes. A combination of field derived data, imagery and existing regional classifications were 

used as input data. After intermediate clustering, the final dataset was used to predict the classes using 

multiple random forest models. The final classification was evaluated using accuracy assessments derived 

using the test dataset.
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Figure 2.4: Study area location showing locations of training and test plots overlaid on WorldView-2 

imagery bands 5, 4, 2 and RGB input.
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Figure 2.5: Vegetation and species identified for each water track class by calculating indicator values.

Shading indicates the type of vegetation class and the related species. The abbreviations are as follows: 

low shrubs (LS), Salix pulchra (SAPU15), erect dwarf shrubs (EDS), forbs (FORBS), Petasites frigidus 

(PEFR5), graminoids (GRAM), Eriophorum angustifolium (ERAN6) and Carex aquatilis (CAAQ). The 

indicator value represents the value of a species in relation to the type of site. Frequency indicates the number 

of times the species was found among the samples (not abundance).
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Figure 2.6: Input spectra used for MESMA classification.

Specific spectra were selected for each of the water tracks based on the indicator values clustering results 

or for the case of the narrow class the dominating surficial geology. Additional versions of the MESMA 

classification used spectra derived from all classes based on common types of vegetation and surficial geology.
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Figure 2.7: Final water track classes overlaid over ASTER DEM with hillshade.

The locations of the Toolik Thermokarst, Imnavait and Upper Kuparuk watershed boundaries are 

indicated.
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VISIBLE WATER TRACK CLASSES

Figure 2.8: Inset examples of the water track classes which were majority filtered to aid interpretation.

A and B) show distinctive striped water tracks at the foot of Slope Mountain which are a mix of the 

narrow, steep and wide classes. C and D) show an incised drainage characterized by mineral-flark in the 

center and wide at the margins. On the west-facing slope are narrow water tracks versus the wide ones found 

on the east-facing. E and F) Show large wide water tracks on the east-facing slope of the Upper Kuparuk 

basin. These water tracks were also characterized by mineral-flark, steep and narrow areas.
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Figure 2.9: Area of water track classes for the Toolik Thermokarst, Imnavait and Upper Kupuark 

watersheds.

The area is shown in square kilometers using a square root scale to enable visualization of all basins 

using the same notation. The percent area for each class versus the total watershed area is given. Note the 

similarities in proportions between the Imnavait and Upper Kuparuk basins in contrast to the Toolik 

theromokarst watershed.

79



W W W  149'7TTW

Figure 2.10: Analysis of mineral-flark water tracks.

A) Visible WorldView-2 imagery showing RGB 542. Location of the transect used for comparison is 

shown. B) Majority filtered water track classes where the mineral-flark class is shown in red. C) ERAN6 

(Eriophorum angustifolium) ElectroMagnetic (EM) fraction where the water tracks are black. D) Variance 

from the co-occurrence matrix where the water tracks have a higher contrast to the landscape. E) NDVI 

(calculated the WorldView-2 data) filtered using a laplacian with density slicing, sieving and majority 

filtering applied.
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Figure 2.11: Water track classes compared to channels derived via DEM.

A) Illustrates the granularity of the original water track classes. B) Majority filtered water track classes 

which more clearly show that the slope is dominated by the narrow class. C) Alternatives to spectral 

approaches include extraction of channels via a 5 meter Star3i DEM which was low-passed filtered before 

topographic analysis.

81



Table 2.1: Radiometric, spatial, and spectral resolutions of the WorldView-2 satellite imagery used for 

this study for each band.

The data was acquired July 10, 2011.

Spatial Band Band Band
Radiometric resolution Spectral Band range centers widths

Sensor resolution_______(m)________bands______ name___________________ (nm)_____________
WorldView- 11-bit 0.50__________1________ B-Pan 450 -  800 632_________ 285

2 1.84 8 B1 400 -  450 427 47.3
B2 450 -  510 478 54.3
B3 510 -  580 546 63
B4 585 -  625 608 37.4
B5 630 -  690 659 57.4
B6 705 -  745 724 39.3
B7 770 -  895 831 98.9
B8 860 -  1040 908 99.6
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Table 2.2: Final stacked raster dataset layers (n = 39) used as input for random forest models.

For Classes / Type, the following abbreviations were used: Presence - Absence (P-A); ElectroMagnetic

(EM) fractions; and Root Mean Square Error (RMSE).

Layer Abbreviation Classes / Type Processing
Input

imagery
B and 1 
B and 2 
B and 3 
B and 4 
B and 5 
B and 6 
B and 7 
B and 8

B1
B2
B3
B4
B5
B6
B7
B8

Reflectance

Converted via 
ATCOR to at- 

surface 
reflectance

Surficial geology

Primary vegetation

Forbs 
Prostate dw arf shrubs 

Low shrubs 
Moss

SURF_GEOL

PRIM_VEG

FORBS
PDS
LS

MOSS

P-A Colluvial 
P-A Caline-Castet (CC) 

Subass. Typicum (ST) 
P-A 1-5%
P-A 1-5%
P-A 1-5%

P-A 26-50%

Best CoBI values 
from MESMA

WorldView-2:
MultispectralEriophorum angustifolium ERAN6

EM
RMSE

MESMA:
Mineral-flark

WTs
Surficial geology: colluvial 
Surficial geology: alluvial 

Surficial geology: colluvial /  
alluvial

SURF_GEOL_C
SURF_GEOL_A

EM
EM

RMSE
MESMA: 

Narrow WTs

Erect dw arf shrubs EDS
EM

RMSE
MESMA: Steep 

WTs
Graminoids 

Carex aquatilis 
Graminoids /  Carex aquatilis

GRAM
CAAQ

EM
EM

RMSE

MESMA:
Organic-rich

WTs

Low shrubs

Forbs 
Petasites frigidus 

Forbs /  Petasites frigidus

LS

FORBS
PEFR5

EM
RMSE

EM
EM

RMSE

MESMA: Wide 
WTs

Roughness

Flarks
P-A

Co-occurrence 
matrix & 

thresholding
WorldView-2:
Panchromatic

Mean
Variance

Homogeneity
Contrast

Values 0 -  1.0
Co-occurrence 
matrix & PCA

Slope

Aspect

Percent
Degrees Topographic Star3i DEM

Profile convexity 

Plan convexity

Convex positive, 
concave negative

analysis
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Table 2.3: Model results from random forests for each water track class.

Each water track class had two binary models: one for presence of the water tracks (vs. non water 

tracks) and the second to differentiate the specific class of water track (vs. other water tracks). The number 

(N) of the alternate (X0) versus desired (X1) class is given for both train and test datasets. If the variable 

selection produced a better model, the number of selected variables is given. The out of bag (OOB) error is 

given for the training set while the accuracy refers to the final model results on the tests data.

Number
Water of
Track N Train Train Variables N Test Test Test
Class Type X0 / X1 OOB Error ROC Selected X0 / X1 Accuracy ROC

Mineral- Presence 60 / 24 30.95% 0.70 5 76 / 10 0.7674 0.67
Flark (1) Classes 60 / 24 28.57% 0.72 5 70 / 10 0.7125 0.56

Narrow (2) Presence 180 / 97 35.38% 0.58 — 76 / 41 0.6667 0.47
Classes 98 / 97 43.59% 0.64 9 39 / 41 0.6 0.64

Presence 90 / 45 37.04% 0.62 — 76 / 18 0.7234 0.53Steep (3) Classes 90 / 45 37.78% 0.63 -- 62 / 18 0.7125 0.59
Organic- Presence 48 / 24 36.11% 0.71 11 76 / 10 0.8023 0.77
Rich (4) Classes 60 / 24 26.19% 0.75 19 70 / 10 0.85 0.70

Presence 28 / 14 28.57% 0.81 11 76 / 1 0.7792 0.95Wide (5) Classes 35 / 14 26.53% 0.84 5 79 / 1 0.8 0.92
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Chapter 3 Optimizing LAI estimates in the Arctic using remote sensing1

3.1 Abstract

Calculations of Leaf Area Index (LAI) in Arctic regions using remotely sensed imagery are 

important given increases in the Normalized Difference Vegetation Index (NDVI) and shrub 

cover. The purpose of this study was to optimize LAI calculations using the gap-method with 

NDVI as input for both WorldView-2 and Landsat-7 imagery. This method of estimating LAI 

was repeated for different groups based on the presence/absence of water tracks and changes in 

NDVI over time which confound estimates of greenness. Changes in surficial moisture 

conditions are a known confounding factor in NDVI measurements and the study design helped 

to isolate this affect. Ground-based measurements of vegetation cover and type were used to 

understand sub-pixel variability and supplement the analysis. The results showed that NDVI 

values were higher for the WorldView-2 data than the Landsat-7 imagery and for both sensors 

the distributions were unique to their groups. After the LAI calculations were developed for each 

group and satellite, overall the Landsat-7 results had lower RMSE values while those from the 

WorldView-2 had greater variability. The variability in Landsat-7 LAI for some groups was 

linked to the interaction between NDVI and either graminoids or erect dwarf shrubs. In contrast 

the WorldView-2 LAI results showed significant interactions between NDVI and moss for water 

tracks with high amounts of change in the NDVI values over time. This study showed that even 

though higher resolution images may be superior for identifying and mapping landcover classes 

(such as different types of water tracks), a coarser resolution image that averages some of the 

variability in spectral signatures may be superior for estimating the LAI.

3.2 Introduction

In tundra ecosystems remotely deriving canopy cover is critical for predicting the effects of 

climate change on vegetation cover and related processes. This information is a key component 

for computing primary productivity (Stoy et al., 2009), energy balance, evapotranspiration 

(Anderson and Kustas, 2008) and biogeochemical cycling. Canopy cover is defined by the 

dimensionless Leaf Area Index (LAI) which is the total one-sided area of leaves per unit ground

1 Trochim, E.D., Mumm, J.P., Prakash, A. & Kane, D.L. Optimizing LAI estimates in the Arctic using remote 

sensing, submitted to Remote Sensing.
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area (Watson, 1947). Calculating LAI can be challenging due to variability in spatial (horizontal 

and vertical dimensions) and temporal dimensions in addition to the issues of stratification and 

heterogeneity (Breda, 2003). In the Arctic, previous efforts have concentrated on tying direct 

methods of calculating LAI with indices that can be derived through remotely sensed imagery 

including the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 

(EVI) (Rocha and Shaver, 2009; Stenberg et al., 2004; van Wijk and Williams, 2005; Williams et 

al., 2008). These studies compared LAI calculated at the plot scale (0.1 m2 to 1 m2) to NDVI 

and/or EVI derived either via plot scale measurements or from satellite imagery with a pixel size 

of at least 30 m. This study builds on previous work by utilizing remotely sensed imagery 

collected in similar space and time dimensions. Data was acquired from the WorldView-2 

satellite during field collections and compared to images obtained from Landsat 7.

Canopy cover, and by definition LAI, reflect plant and vegetation community composition. 

Previous work by Shippert et al. (1995) demonstrated that plant functional types with specific 

moisture contents could be used as groups to better predict LAI. The independent variable in this 

study was NDVI. This approach was an indirect method to limiting the effects of soil moisture 

and its interaction with moss, which are the two largest unknowns in terms of its influence on 

NDVI and thus LAI. Hallik et al. (2009) showed spectral reflectance from within an herb-moss 

layer was related to its mass bulk properties in the visible spectrum and the above ground water 

content in the near infrared portion. Differentiating the effects of pixel mixing from the 

vegetation components is also an issue in relating LAI to NDVI values derived at different 

spatial resolutions. Dividing the landscape into similar groups based on vegetation and 

hydrologic characteristics is one way to gage the impact of pixel mixing in different areas.

Surficial water drainage is a key consideration in continuous permafrost environments as 

illustrated by Engstrom et al. (2008) as variations in vascular vegetation greenness and wetness 

are associated with microsite topography. On the northern side of the Brooks Range in Alaska, 

drainage networks are comprised of linear-curvilinear saturated stripes known as water tracks 

(McNamara et al., 1999). They can easily be identified by the differences in vegetation between 

the track and surrounding area. Water is confined to the active layer (< 1m) due to continuous 

permafrost (McNamara et al., 1998) and the immediate water track area shows high amounts of
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the shrubs Betula nana and Salix planifolia ssp. pulchra (Walker et al., 1994) and increased 

amounts of Sphagnum spp. (Guan et al., 2010) . Given these characteristics, water tracks are 

areas where greening may differentially occur. They represent an important area to quantify 

NDVI characteristics as the increased moss, shrubs and soil moisture are important components 

for quantifying both LAI and error associated with LAI measurements (Figure 3.1).

These issues are especially pertinent given documented increases in NDVI throughout 

northern Alaska (Jia et al., 2006; Stow et al., 2003; Verbyla, 2008) and the pan-Arctic (Raynolds 

et al., 2008). Increases in NDVI values have been attributed to increases in shrub cover over time 

in the foothills of the Brooks Range (Tape et al., 2006; Tape et al., 2011). The availability of 

high-resolution satellite imagery in this area multiple times per growing season provides a useful 

resource for understanding how NDVI values vary over the landscape and what effects this has 

on LAI calculation. The main objective of this study was to optimize LAI calculations using 

NDVI for both WorldView-2 and Landsat-7 imagery. In order to facilitate this process, the data 

was grouped based on: satellite (WorldView-2 vs. Landsat-7); surficial drainage (water tracks vs. 

other), and whether the NDVI values changed within a 10-day period. The goals were to: a) 

examine whether optimization was useful for developing robust method of calculating LAI using 

the gap-method using NDVI for the different groups; and b) examine if specific vegetation 

characteristics could be associated with LAI variability.

3.3 Study area

This study area is comprised of moist acidic tundra within the Imnavait and Upper Kuparuk 

basins (68°37' N, 149° 19' W; elevation 900 m) in the Toolik (Figure 3.2) Lake long-term 

ecological research (LTER) area. Continuous permafrost is present and documented in the 

Imnavait basin to extend 250 to 300 m below the surface (Osterkamp and Payne, 1981). 

Seasonality is limited to warm and cold periods which go from May through September and 

October through April in this region of the Arctic. The average temperature is approximately 10 

°C in July while the average annual rainfall is around 220 mm (Trochim, 2009). Water only has 

two paths out of the basins: as near-surface runoff or evapotranspiration as the permafrost forms 

a resistant block (Hinzman et al., 1996). Water is transported downslope through poorly- and 

well-developed hillslope water tracks and wetland microrelief (Walker and Maier, 2008). Well-
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developed water tracks can have discharge all summer and contain deeper snow accumulation in 

the winter. Flow is restricted to the snowmelt period and following rain events in poorly 

developed water tracks. The period of vegetation activity is from early to mid-June through early 

September. Vegetation communities found in the region include: dry exposed acidic sites, moist 

acidic shallow snowbeds, moist non-acidic snowbeds, moist acidic uplands, and moist non-acidic 

uplands (Walker et al., 1994).

3.4 Methods

Field data

Fieldwork was completed between July 6 and 14 in 2010. The sampling design consisted of 

transects constructed perpendicular to the slope angle across water tracks. Each transect 

consisted of four to six plots of 2 m2 located at positions where the characterization of 

heterogeneity could be maximized. Nadir-looking color and near infrared (NIR) digital camera 

images were acquired over each plot. The color camera was a Nikon D5000 with a 12.3 

megapixel CMOS image sensor with 4288 by 2848 pixel format and 35 mm focal length lens. 

The NIR imagery was acquired using a red-blocking filter (Hunt et al., 2010) on a Canon EoS 

Rebel XT. The measurements were performed with the exposure set manually. Color and NIR 

images were mosaicked separately and georeferenced using differential GPS co-ordinates from 

the field plots which had accuracy on the order of < 0.25 meters.

Remotely sensed data

Satellite data including WorldView-2 and Landsat 7 imagery was collected during the same 

time period as seen in Figure 3.3. The details of each satellite (Chander et al., 2009) are listed in 

Table 3.1. The WorldView-2 data was orthorectifed using the ASTER 30 meter digital elevation 

model. All of the Landsat 7 and WorldView-2 scenes were converted to surface reflectance using 

the ATCOR 2 model (Richter and Schlapfer, 2011). In order to maximize spatial resolution the 

Landsat 7 multispectral imagery was pan-sharpened to 15 meters using the hyperspherical color 

sharpening (HCS) method (Te-Ming et al., 2012) which maximizes preservation of spectral 

characteristics and does not alter values for vegetation indices (Johnson, 2014). The Normalized 

Difference Vegetation Index (NDVI ) was calculated from reflectance in the Near InfraRed 

(pNIR) and red (pRED) wavelengths (Richardson and Everitt, 1992).
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Calculation o f fractional cover and LAI

LAI was calculated using gap probability (Jonckheere et al., 2004) to determine the 

contribution of vegetative and non-vegetative components as observed from above (Tang et al., 

2007). This was based on the definition of fractional cover ( /c) by Gonsamo et al. (2011) where 

/ c is the ratio of pixels recorded as canopy versus the total number of pixels in a specific plot 

subscene. Fractional cover can also be calculated from NDVI using the maximum or saturated 

NDVIg when vegetation occupies the complete field of view and non-vegetation NDVI 

(NDVIback) as per Equation 3.1:

f  =  N D V I  -  N D V l back

J c  N D V I g - N D V I back K )

This produces a scaled version of NDVI (Carlson and Ripley, 1997). LAI was calculated 

from fractional cover through Beer-Lambert's law as per Equation 3.2:

L A I  =  -
M l - J c )  (3.2)

where k refers to the extinction coefficient (m2 ground m-2 leaf). This study used a k value of 

0.5 as suggested by Shaver et al. (2007). Fractional cover was derived from all available 

WorldView-2 and Landsat 7 scenes using NDVI. A similar approach was also used for the nadir- 

looking ground-based imagery. The red and NIR were stacked and georeferenced. NDVI was 

calculated from the red and NIR bands and a threshold based on trial-and-error was applied to 

obtain an estimate of percent area green vegetation which excluded moss.

Statistical and Spatial Examination o f LAI

LAI values were analyzed in R (R Core Team, 2014) to isolate the most important factors 

affecting the prediction of LAI. The first step was to optimize the NDVIg and NDVIback values. 

Four different groups for each of the satellites were identified based on surficial drainage 

characteristics (water-tracks vs. non-water tracks from Trochim (2015)) and changes over time in 

NDVI values (high vs. low). The change quantiles were calculated based on the difference in 

NDVI values between the earliest and latest dates. For each group, the Nelder-Mead
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optimization algorithm for derivative-free optimization in the dfoptim package (Varadhan et al., 

2011) was used to estimate NDVIg  and NDVIb a c k  values. Initial estimates of those values were 

made by minimizing the median absolute deviation between the ground and satellite-derived LAI 

values. Next, log weights were calculated using robust regression (Rousseeuw et al., 2014) to 

reduce the influence of outliers. The NDVIg  and NDVIb a c k  values were optimized a second time 

using the weights so that plots with higher accuracy had a greater contribution. Root Mean 

Square Error (RMSE) and correlations using the spearman method were calculated for each 

group between the ground and satellite-derived LAI values.

A Kruskal-Wallis test was performed on the satellite-derived LAI values to assess whether 

they were unique to each sensor. The lme4 package (Bates et al., 2013) was used to perform a 

linear mixed effects analysis of the relationship between LAI and group. The intercepts for plots 

and dates were tested as random effects, while the groups were set as the fixed effect. We then 

examined the random effects of by-plot and by-date random slopes for the effect of groups. P- 

values were obtained by likelihood ratio tests using parametric bootstrapping of the full model 

with the effect under investigation against the model without the effect under investigation. 

Linear mixed effect analysis was performed a second time to investigate the linkages between 

satellite-derived LAI and field measurements of percent cover which were significantly 

correlated with the residuals from the gap-method analysis. Percent cover for graminoids (sedges 

and grasses combined), erect dwarf shrubs and moss was factorized into the following classes: r, 

present in < 5% of records; +, 5 - 10 %; I, 11 - 20 %; II, 21 - 40 %; III, 41 - 60 %; IV, 61 < 80 %; 

V, > 80 %. As fixed effects, NDVI and the corresponding percent cover were used with both 

interaction terms and main effects into the model. The repeated use of the same plots was 

assigned as a random effect. The p-values for the compared models were obtained as described 

earlier. If the interactions were significant, the t-test values were also analyzed.

3.5 Results

NDVI versus derived LAI

The initial relationship between NDVI and derived LAI values was examined by their group 

median and quartiles as seen in Figure 3.4. NDVI values for all dates were compared to each 

group. Overall, there were some clear differences between the Landsat-7 and WorldView-2
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sensors; given that one of the group criteria was based on relative change in NDVI values over 

time this is expected. The WorldView-2 derived LAI values were lower for all groups except the 

high change water tracks than those derived from the Landsat-7 data. This indicates potential 

fundamental differences between the Landsat-7 and WorldView-2 groups in terms of input LAI 

values. The NDVI values follow different patterns for each sensor; where NDVI values in 

general were higher for the WorldView-2 satellite.

Optimization o f gap probability LAI estimates

The final optimized NDVIg  and NDVIb a c k  values for each group are found in Table 3.2. The 

accuracy of the satellite-derived LAI values can be seen in Figure 3.5. At the 0.05 significance 

level, the LAI gap-probability results from the WorldView-2 and Landsat-7 satellites are from 

non-identical populations. There was a significant difference in LAI overall based on date for 

both the Landsat-7 and WorldView-2 data with p values less than 0.05. The groups were also 

significantly different from each other for both sensors. However, there were no significant 

differences within the groups by date when the random effects of the interaction were examined. 

Overall, the Landsat-7 results were more accurate than those from the WorldView-2 satellite, as 

RMSE values were smaller and more positively correlated. In almost all cases, ground-derived 

values of LAI greater than 1.5 were underestimated in the satellite-derived values. In general, 

satellite-derived LAI values from June 30 from the Landsat-7 data were higher than those 

ground-derived. This was in contrast to the LAI values from July 9 which were under-estimated. 

The relationship was the most linear between the ground-derived and satellite-derived values for 

the other low-change group as it had the strongest positive correlation out of any group.

LAI values calculated from the WorldView-2 satellite were most similar to the Landsat-7 

results in the water track high change group, where many of the same plots had similar values in 

between satellites. The water track low change group showed the most accurate LAI calculation 

for the WorldView-2 satellite. Overall, the WorldView-2 LAI results were more affected by 

outliers than the Landsat-7 data, as indicated by the larger RMSE. Generally, the LAI values for 

July 2 in all groups were higher than other dates. In the water track classes, the July 4 LAI values 

were the lowest for the range of dates. Both of the other groups were negatively correlated. For 

the high change other group this correlation was significant, meaning that both the
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overestimation of LAI values less than 1.5 and underestimation of LAI values greater than 1.5 

caused a substantial trend. The low-change other group is noteworthy as all of the LAI values 

derived from satellite data underestimate in comparison to ground-derived values. While half of 

the values from this group show a relatively good fit, outliers around the measured value of 2.0 

are substantially underestimated at 0.5 by the predicted values and create considerable error.

Examining the residuals as seen in Figure 3.6 shows that there is variation between 

homoscedasticity and heteroscedasticity between the groups, especially those indicated with 

significant correlations. Of all the correlations, only three had significant interactions between 

LAI, NDVI and the percent-cover vegetation data derived from the plots. The water track high 

change group from Landsat-7 had a significant interaction effect between LAI and the 

combination of NDVI and graminoids (x2 (1) = 18.25, p=0.05). The interactions model contained 

multiple significant t-values (p<0.05) in both the main effects and interactions between NDVI 

and graminoids. Examination of the residual plot shows lower values of graminoids were 

associated with under prediction of LAI while higher amounts resulted in over prediction. There 

was also a significant relationship between LAI and the interactions of NDVI and erect dwarf 

shrubs for the other low change Landsat-7 group (x2 (2) = 33.18, p=0.01). The individual 

interactions of this model were not significant, so interactions between erect dwarf shrubs and 

NDVI on LAI are likely a combined effect not captured by the factors. In the WorldView-2 data 

the only significant interaction for LAI was found between moss and NDVI in the water track 

high change group (x2 (3) = 18.19, p=0.01). The significant influence of moss and its interactions 

with NDVI are interesting for this group. The increase in moss from 5-10% to 10-20% was 

associated with a 0.17 increase in LAI with a standard error of +/- 0.06 (p<0.01). In contrast, as 

moss increases from 61-80% to 81-100% it was related to a decrease in LAI of 0.42 with a 

standard error of +/- 0.09 (p<0.01). When the interaction between NDVI was accounted for the 

increase in moss from 5-10% to 10-20% was associated with a decrease of 0.27 in LAI with a 

standard error of +/- 0.10 (p<0.01). This also happened between the interaction of NDVI and 

moss from 61-80% to 81-100% as LAI increased by 0.63 with a standard error of +/- 0.13

(p<0.01).
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3.6 Discussion

Usefulness o f gap-method optimization for calculating LAI

We assessed the usefulness of optimization within the gap-method of calculating LAI from 

NDVI derived via satellite imagery. Optimization was a more robust and repeatable method of 

calculating NDVIg  and NDVIb a c k  than simply deriving the values from the images. It also 

allowed the error in the gap-method calculation to be reduced, as NDVIg  and NDVIb a c k  are 

important parameters in the calculation of LAI. The use of optimization reduced the gap- 

probability method to be computationally similar to using linear regression to calculate LAI 

(Rocha and Shaver, 2009; Shippert et al., 1995). In this study, the gap-probability method of 

calculating LAI was also consistently used for both ground-based and satellite-based data. The 

advantage to this was the extinction coefficient (k - m2  ground m- 2  leaf) suggested by Shaver et 

al. (2007) that was regularly used in all LAI calculations, simplifying it as possible error source 

in all LAI calculations.

The use of groups with the gap-method also improved the overall accuracy of the LAI 

calculations. Since the study used WorldView-2 and Landsat-7 satellite imagery with different 

spatial resolutions, it was useful to examine if relatively simple characteristics could be useful in 

discriminating LAI values. The groups were based on the idea that there are regular wetting and 

drying cycles occurring on the landscape which are associated with different rates of greening. 

The first division was to separate out water track from non-water track areas, as water tracks 

represent areas of preferential surficial flow. The second division, both within water tracks and 

other areas was to separate whether there was change over time in terms of NDVI. This is a 

modified version of implementing LAI calculations using vegetation-community specific linear 

regression equations like Shippert et al. (1995).

Variation in LAI values

There were clear differences between the WorldView-2 and Landsat-7 LAI values which are 

ultimately driven by variations in NDVI. Overall the WorldView-2 NDVI values were higher in 

all groups than those derived from the Landsat-7 satellite, similar to what was found by Williams 

et al. (2008) at comparable scales. Even with the use of optimization, the Landsat-7 derived 

groups had lower RMSE values than the majority of those from WorldView-2. This means that
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the increased averaging of a larger area due to the bigger 15 m pixels allowed the NDVI values 

derived from the Landsat-7 imagery to better estimate LAI. Fundamentally, this is an issue of 

spectral mixing at different scales. Within the Landsat-7 results the significant vegetation factors 

that were interacting with NDVI were graminoids and erect dwarf shrubs. Given the spatial 

resolution of the Landsat-7 data, this means that effects of graminoids and erect dwarf shrubs 

were perceptible in larger pixels, since the interaction was absent in the WorldView-2 results.

Both the graminoids and erect dwarf shrubs showed similar patterns when the LAI gap- 

model residuals were compared to their percent-area, underestimations of LAI were associated 

with lower percent covers while overestimations were linked to higher ones. Water tracks which 

are associated with high levels of graminoids tend to contain species that tolerate saturated 

conditions like Carex aquatilis and are essentially small fens in places. Variations in background 

moisture conditions in these areas may be related to higher variations in NDVI values over time . 

Another potential cause might be the flowering of Eriophorum angustifolium. Known as cotton 

grass it produces a distinctive fluffy white seed-head. Over a large area, it could raise NDVI 

values and also cause changes over time as it gains and sheds its seed-head. In comparison, some 

water tracks also contain tussocks. Plots could also be depressed as a result of the presence of 

tussocks of Eriophorum vaginatum where the presence of standing dead material may not only 

depress values but also lead to increased shadowing (McGuffie and Henderson-Sellers, 1986). 

Graminoids including grasses have also been shown to behave asymptotic more quickly in the 

visible portion of the spectrum in comparison to the NIR as a result of total wet biomass, total 

dry biomass, dry green biomass, chlorophyll content, and leaf water content (Tucker, 1977).

The erect dwarf shrubs like Ledum palustre decumbens and Vaccinium uliginosum may be 

experiencing similar flowering and shading effects respectively to those seen in the graminoids 

for the other low change group. If the magnitude of this effect is overall lower than the 

graminoids, perhaps the effect although discernable has an overall effect on NDVI as there was 

less variability in NDVI values over time. Chen et al. (2009) found that percent cover and mean 

height of Vaccinium uliginosum could be used to estimate LAI along with other common Arctic 

vegetation. Within this study area, NDVI has been shown to be significantly dominated by 

shrubs including live foliar and woody deciduous types in measurements with a spatial resolution
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of 0.35 m2 (Riedel et al., 2005), at other spatial scales this relationship is unclear. The literature 

supports the interaction of erect dwarf shrubs and NDVI for the calculation of LAI although 

additional attention on their effects over scales similar to Landsat-7 data would be useful.

In contrast, the WorldView-2 LAI results were only associated with the significant 

interaction between moss and NDVI for the water track high change group. In terms of spectral 

reflectance, common species of moss like Sphagnum are influenced by color, cell structure, 

morphology, water content and chemistry (Arkimaa et al., 2009). Water content, in particular, 

was shown to be one of the most confounding influences on spectra as increased moisture 

content suppresses reflectance from 500 to 700 nm while the response can be variable between 

750 to 900 nm. This means that as moss increases in moisture content, NDVI would decrease 

through an intermediate stage before rising. In areas of high moss cover, increases in LAI and 

NDVI were asymptotically linked with moss water content and the thickness of the green moss 

layer (Douma et al., 2007). NDVI has also been linearly correlated with photosynthetic activity 

in mosses (Harris, 2008). This may be variable in the Arctic, where the abundance of brown- 

colored mosses (e.g., Tomentypnum nitens) can also influence greenness (Buchhorn et al., 2013). 

In summary, the interaction between moss, NDVI and LAI are complex. This is indicated in the 

results by the reversal of the trend between low and high percent covers of moss when the 

interaction of NDVI is considered versus the influence of percent cover alone on LAI.

Variability within LAI from the remainder groups for both sensors was likely due to a 

combination of the factors discussed above along with the influence of soil moisture (Weidong et 

al., 2002). The data collection period for this study represents an intermediate period in canopy 

development. Other potential sources of error include non-photosynthetic and photosynthetic 

plant material interacting to create nonlinear spectral mixing (Asner et al., 2007). Other studies 

found this period represents an intermediate stage when neither woody stem cover nor canopy 

leaf area strongly influences the spectral signature (Boelman et al., 2011).

Effect o f spatial resolution on LAI

The spatial implications of using either Lansat or WorldView-2 data to calculate LAI are 

clearly demonstrated in Figure 3.7. There are noticeable contrasts in the locations of the groups
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and variations between the groups based on the spatial resolution of the data. Curvilinear features 

on the landscape as either water tracks or frost stripes are readily apparent in the WorldView-2 

data and lacking in the Landsat-7. Since a conservative distribution of water tracks was used, 

many water tracks appear as stripes in the high change other group. Overall, Landsat-7 LAI 

values were lower than those from the WorldView-2 imagery even when similar dates were 

compared. In the Landsat-7 results the highest LAI values were found on the hillside. In 

comparison, the highest LAI values in the WorldView-2 results were found in the centers of the 

water tracks with elevated LAI values within the tracks. The WorldView-2 data also made it 

possible to discern areas of low LAI values including the frost-stripes on the hillslope and within 

the peat ice-wedge polygons and wetlands between the two hillslopes. Future studies should 

weight their study criteria carefully when selecting the spatial resolution of imagery used for LAI 

analysis and craft their methodologies appropriately.

3.7 Conclusions

This study showed that LAI could be calculated using satellite-derived NDVI values by using 

optimization in the gap-probability model. Emphasis was placed on analyzing hillslope patterns, 

which were described by the presence/absence of water tracks and the magnitude of variation in 

NDVI over time. The results indicated these simple characteristics created groups where the 

groups of LAI values are distinct from each other even with variability over time. The effects of 

the groups were compared between WorldView-2 and Landsat-7 imagery where the LAI values 

were higher in the WorldView-2 results. This did not result in more accurate LAI estimates, as 

the Landsat-7 imagery had lower RMSE values. We conclude that the spatial resolution had an 

overall effect on the LAI values by substantially changing the nonlinear spectral mixing inputs. 

This was supported by different vegetation factors (erect dwarf shrubs, moss and graminoids) 

significantly interacting with the NDVI and LAI depending on which sensor was used.

While there has been a push towards higher resolution spatial data, future studies should be 

cognizant of the advantages and limitations offered by the increased spatial resolution on LAI 

calculations based on NDVI. Although the use of WorldView-2 imagery allowed comparisons to 

be made using data collected using the same footprint as field measurements, the number of field 

observations necessary to validate the increase in variability also increases. Future projects
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should be cognizant of these issues and modify their project design accordingly. Given increases 

in NDVI values over time in the Arctic and the role of LAI computing ecological and 

hydrological characteristics, utilizing remotely sensed data effectively will remain important 

over time.
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Figure 3.1: Development of groups to quantify effects of water tracks in the study area on the North 

Slope of Alaska.

Water tracks are discernable on the ground by their curvilinear structure and by differences in 

vegetation compared to the adjacent areas. Vegetation and surface wetness can vary between and within 

tracks. Photos: E.D. Trochim.
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Figure 3.2: Study area location showing WorldView-2 imagery (Bands 431 as RGB) used as input and the 

location of LAI ground-based measurements.

Bottom insets contrast the NDVI values from the different imagery.
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Figure 3.3: Summary of experimental design including input imagery and climatic variables.

A) Timing of collection of imagery from ground and satellite (WorldView-2 and Landsat 7) sources. B) & 

C) Air temperature at 1 m and precipitation collected at the Imnavait Basin Station (68° 36’ 58.6” N, 149° 18’ 

13.0” W, elevation: 937 meters). There was a large precipitation event on July 5 and 6 which included both 

rain and snow. D) Flowchart of input data and methodology including pre-processing, model and accuracy 

steps.
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Figure 3.4: Comparing median values of ground-derived LAI and NDVI between different groups by 

data acquired from Landsat-7 and WorldView-2 satellites.

The upper and lower “hinges” of each box represent the 25th and 75th percentiles, while dots represent 

outliers.
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Figure 3.6: Residual results divided by group.

Homoscedasticity (random variation) and heteroscedasticity (trends) can be compared between the different groups for each of the variables. The 

percent cover of moss, graminoid and erect dwarf shrubs using the Braun-Blanquet approach (Mueller-Dombois and Ellenberg, 1974) were collected 

concurrently in the field during the ground-derived LAI calculations. Spearman correlation coefficients are listed on each plot if the relationship was 

significant (p<0.05).
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Figure 3.7: Location of each group compared to satellite-derived LAI values from each image date. 

LAI values are higher for the WorldView-2 imagery than Landsat-7 over similar dates.



Table 3.1: Radiometric, spatial, and spectral resolutions of the WorldView-2 and Landsat 7 satellite 

imagery used for this study.

Total 
spectral

Sensor
Radiometric

resolution

Spatial
resolution

(m) bands
Selected
bands Name

Band range

(nm)
WorldView-

2
11-bit 1.84 8 B5

B7
Red

NIR1
630 -  690 
770 -  895

Landsat-7 8-bit 30

15

B3
B4
B8

Red
NIR

Panchromatic

630 -  690 
750 -  900 
520 -  900
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Table 3.2: Final NDVIg and NDVIback values for each group and sensor.

These were a result of optimization of the gap-method for calculating LAI. NDVIg remains relatively 

constant while NDVIback resulted in higher parameterization.

Sensor Group NDVIg NDVIback

L7 Water track A low 0.999999 -0.06113
Water track A high 0.999999 -0.23488

Other A low 0.999999 0.136768
Other A high 0.999998 0.050766

WV2 Water track A low 0.999998 0.095434
Water track A high 0.999999 0.145836

Other A low 1 0.3
Other A high 0.999994 0.278987
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Chapter 4 Geophysical and cryostratigraphic investigations for road design in northern

Alaska1 

4.1 Abstract

This study used combined geophysical and cryostratigraphic methods for permafrost 

characterization in Arctic road design and engineering. Two major study areas located in the 

continuous permafrost zone represented a range of terrain conditions including yedoma 

(syngenetically frozen ice-rich silts with large ice wedges) plateaus and hills, thaw-lake basins, 

river terraces, and modern floodplains. Direct-current resistivity - electrical resistivity 

tomography (DCR-ERT) using a Wenner array was applied over transects. Complementary site 

data including the results of drilling and active layer depths measurements were also obtained. 

The boreholes provided cryostratigraphic information on soil texture, cryostructures, massive 

ground ice, and gravimetric moisture content of frozen soils. The resistivity data supported 

evaluation of the presence/absence of permafrost; location and depth of the active and 

intermediate layers; and in some conditions changes in ice content. In contrast, the 

cryostratigraphic interpretation generally offered more nuanced analysis of the subsurface, but 

was limited in its ability to detect unconformities and the depth of drilling. Both techniques were 

enhanced by the availability of high-resolution geospatial information and can be used to 

optimize the location and density of the boreholes for road construction.

4.2 Introduction

Design, construction and maintenance of roads in Arctic Alaska requires identification of 

permafrost distribution and its properties. The nature and extent of permafrost, in turn, strongly 

influences route selection, mitigation techniques and cost. Ice content along with ground 

temperature, and soil stratigraphy and composition are fundamental parameters for planning, 

designing and evaluating engineering applications.

This study employs geophysical techniques and cryostratigraphic analysis to identify 

permafrost characteristics in a proposed road corridor connecting the Dalton Highway and Umiat

1 Trochim, E.D., Schnabel, W.E., Kanevskiy, M., Munk, J., Shur, Y., Geophysical and cryostratigraphic 

investigations for road design in northern Alaska, submitted to Cold Regions Science and Technology.
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on the Colville River in Northern Alaska. The proposed road corridor is located within the 

continuous permafrost zone and crosses the Itkillik, Anaktuvuk, Chandler, and potentially 

Colville rivers between the Dalton Highway and Umiat (Figure 4.1 and Figure 4.2). Thickness of 

permafrost in northern Alaska can range from 200 m in the foothills to 600 m on the coast 

(Osterkamp and Payne, 1981). Estimated ground ice distribution (Jorgenson et al., 2008) 

indicated that finer grained soils tended to be more ice rich, however features such as ice-wedge 

polygons occurred in a variety of environments. Silt-dominated ice-rich deposits more than 30 m 

thick with syngenetic ice-wedges formed in the late Pleistocene (Yedoma) have been 

documented in the adjacent area along the Itkillik River (Kanevskiy et al., 2011a; Kanevskiy et 

al., 2011b).

The main goal of a geophysical survey as part of a geotechnical investigation is evaluation of 

the homogeneity of a studied geological body and the uncovering of heterogeneities in it. 

Geophysical methods used in geotechnical investigations in the permafrost region—electrical, 

seismic, magnetic, and gravity—uncover differences between properties of geological bodies in 

the Earth’s crust, and use of these methods is time- and cost-efficient. In general, geophysical 

methods are indirect. Direct evaluation of soil properties by geophysical methods is limited. To 

make a direct conclusion, geophysical data should be calibrated by using information on soil 

obtained by direct methods, such as trenching and drilling. The application of geophysical 

methods at a key site can be used for calibration, and the application of calibrated geophysical 

methods can be used for extrapolation of geotechnical data on similar landforms and for design 

of a drilling program. Geophysical methods can theoretically greatly reduce the number of 

boreholes.

Cryostratigraphy analysis is a main method of identification of genesis and properties of 

permafrost soils. This analysis and geophysics represent complimentary methods of collecting 

and interpreting information about permafrost characteristics. Cryostratigraphy is a branch of 

geocryology originally developed in Russia for analyzing the structures specific to permafrost 

and has been used to understand the particularities of permafrost environments and Arctic 

engineering applications (French and Shur, 2010). Previous studies in Alaska have indicated a 

strong relationship between cryostratigraphy and corresponding terrain units derived from
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interpreting imagery via remote sensing (Jorgenson et al., 1998; Kanevskiy et al., 2014). The 

limitations to the cryostratigraphic technique include a high-level of localized permafrost 

knowledge being necessary to construct the interpretations and the time required to complete the 

analysis. The soils and permafrost data for cryostratigraphic analysis can be obtained from either 

boreholes or outcrops as available.

A variety of geophysical techniques have been used to delineate permafrost distribution and 

ice morphology (Kneisel et al., 2008). These include ground penetrating radar (GPR) and 

various types of electrical resistivity tomography (ERT) including: 1) direct-current resistivity 

(DCR-ERT) (Hilbich et al., 2008; Isaksen et al., 2011; Katasonov, 1978; Kneisel, 2010; 

Lewkowicz et al., 2011; McClymont et al., 2013; Overduin et al., 2012; Rodder and Kneisel, 

2012; You et al., 2013), and 2) capacitive-coupled resistivity (CCR-ERT) (De Pascale et al., 

2008; Fortier and Savard, 2010; Kuras et al., 2006; Timofeev et al., 1994). Others have used a 

combination of either GPR and DCR-ERT (Sjoberg et al., 2015) or CCR- and DCR-ERT 

(Oldenborger and LeBlanc, 2013). Ideally all investigations should be supported by subsurface 

data based on outcrops, boreholes, or excavation methods.

Interpreting geophysical data, in both permafrost and non-permafrost environments, greatly 

benefits from information derived from remotely sensed data and boreholes in order to increase 

the understanding of pertinent landscape characteristics (Hubbard et al., 2013). Cryostratigraphic 

analysis can be used to constrain geophysical models as described by Fortier et al. (2008) where 

they examined the ice-content of permafrost mounds. Translating these ideas into practices that 

can be reasonably applied over large scales where there can be substantial variation both within 

and between terrain units is important for Arctic road construction. This project used DCR-ERT 

to detect soil properties as resistivity (the reciprocal of conductivity). As soil particles and ice are 

both highly resistive compared to liquid water, the relative fractions of ice, soil particles, and 

liquid water strongly influence the resistivity of different soil strata or formations (Hauck, 2002). 

The changes in resistivity directly relate to changes in soil properties (Scherler et al., 2010). 

However, other factors influencing resistivity include texture, temperature, salinity, and 

cryogenic structure of the soil (Samouelian et al., 2005). Consequently application of DCR-ERT, 

like all geophysical methods, requires field calibration for evaluating soil properties at key sites.
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Boreholes can allow accurate characterization of soil stratigraphy, ice content, depth to 

bedrock and potential of fill material. Solid-stem drilling is relatively cheap, very fast and the 

most common approach in Alaska. This technique is limited to general information on ground 

ice distribution, soil texture and moisture content as auger cuttings cannot be used for detailed 

evaluation of permafrost structure and properties. Undisturbed samples of ice obtained by a 

SIPRE (Snow, Ice, and Permafrost Research Establishment) corer, or moderately disturbed 

samples of ice obtained by split spoons following solid-stem augering, or direct-push Geoprobe 

drilling are suitable for describing cryogenic structure, evaluating visible ice volume, and soil 

testing. Generally exploratory solid-stem boreholes are drilled first to contextualize the overall 

surficial geology. This is followed by additional drilling of regularly spaced solid-stem boreholes 

and ideally an area of hollow-stem auguring. The more detailed results from the undisturbed 

samples can clarify permafrost structure and origin (i.e. differentiating between tabular and 

wedge ice, or syngenetic and epigenetic permafrost) and help understand the variability of 

permafrost properties within the area. The total number of boreholes necessary is generally 

constrained by cost and complexity of the environment where the results depend on the spatial 

heterogeneity of materials over short distances, time required to drill per borehole and portability 

of the drilling equipment.

The goal of this project is to combine DCR-ERT and cryostratigraphic interpretations in 

delineating significant permafrost characteristics for Arctic road construction. There are few 

published best practices with respect to optimizing geophysical interpretation with boreholes in 

continuous permafrost areas. Producing reasonable cryostratigraphic interpretations of 

permafrost conditions requires a substantial amount of accumulated knowledge about the 

subsurface conditions. It rests on the assumptions that similar surficial conditions in an area 

should have comparable subsurface stratigraphy. In this study, we evaluate the effectiveness of 

the two techniques for improving site characterization.

4.3 Methods

Regional setting and identification o f terrain units

The study area is located within the physiographic province of the Arctic Foothills 

(Wahrhaftig, 1965). At Umiat (69°22'N, 152°08'W, 81 meters above sea level) mean annual air
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temperature is -11.8 °C, mean annual precipitation and snow depth are 229 mm and 136 mm 

correspondingly (based on National Climate Data Center records from 1971 to 2000). 5-Model 

Projected Average, Mid-Range Emissions (A1B) predict mean annual temperature to warm to -

11.0 °C and mean annual precipitation to decrease slightly to 222 mm for the interval of 2010 to 

2019 (Scenarios Network for Alaska Planning, 2015). The major ecosystems consist of upland 

low birch-willow shrub tundra and upland shrubby tussock tundra, where Betula nana and Salix 

pulchra serve as canopy cover, and overlapping understory species include Vaccinium 

uliginosum, Vaccinium vitis-idaea, Epetrum nigrum, Equisetum arvense, and Sphagnum spp. On 

alluvial plains the ecosystem transforms to riverine low willow shrub tundra, where Salix 

aleaxensis, S. arbusculoisdes, and S. glauca are the main tall shrubs in frequently flooded areas, 

and Salix lanata richardsonii and S. pulchra dominate the inactive areas (Jorgenson and Heiner, 

2008). Based on an interpretation of aerial and satellite images, aerial reconnaissance, and 

observations on the ground we identified five major terrain units: (1) low hills with gentle slopes 

and flat plateaus formed by ice-rich yedoma deposits, (2) flat thaw-lake basins connected by 

erosional patterns, (3) shallow thermokarst depressions connected by erosional patterns, (4) river 

terraces, and (5) modern floodplains.

Site selection

The analysis focused on two major areas: AR6 (Anaktuvuk River Bridge Crossing) and AL2 

(Alignment Hole #2) (Figure 4.2). Site selection was based on potential bridge alignment sites 

and characterization of ice-rich permafrost with ice wedge polygons. Inclusion of sites 

representing the area of 2008 Anaktuvuk tundra fire (Jones et al., 2009) was a secondary 

consideration. These sites represent a range of conditions including tussock tundra (both 

unburned and burned conditions), high and low centered ice-wedge polygons and active 

thermokarst features. Fieldwork for this study was completed by September 10, 2010, when the 

depth of seasonal thawing was close to maximum.

Electrical resistivity tomography

DCR-ERT transects were completed in conjunction with the drilling of boreholes in the study 

area. The DCR-ERT surveys were acquired using an Earth Resistivity/IP Meter SUPER STING 

R1 IP (AGI Advanced Geosciences Inc.). The spacing of the electrodes and total length of the
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survey varied by transect, and are detailed in Table 4.1. Both of these characteristics determined 

the depth which could be effectively resolved using the DCR-ERT methodology. A Wenner 

array was used due to its ability to discriminate changes in the vertical dimension and high 

signal-to-noise ratio (Loke, 2010). It is suitable for imaging permafrost structures such as the 

location of the permafrost table (Fortier et al., 2008). The software package RES2DINV (Loke 

and Barker, 1995) generates a two dimensional resistivity cross-section, that seeks to minimize 

the root-mean-square error (RMSE) between the measured and simulated apparent resitivities, 

with the simulated data derived from the 2-D model.

Borehole and geospatial data

Fourteen boreholes were drilled using a SIPRE corer (7.5 cm inside diameter) with Tanaka 

power head to a maximum depth of 3.9 m (Figure 4.3). Two boreholes, 6-m deep AL2 (TH10- 

631) and 4-m deep AL1 (TH10-632), were drilled by the Alaska Department of Transportation 

and Public Facilities (AKDOT & PF). A total of 58 samples were obtained to determine 

gravimetric water content of frozen soils. The borehole data were contextualized by active layer 

depths at each electrode, vegetation descriptions and site photographs. Aerial photographs and 

airborne light detection and ranging (LiDAR) data were collected in August 2008. Elevation data 

were derived from the LiDAR with cell size of 0.9 m and a vertical accuracy of 0.5 m. The aerial 

imagery had a 0.3 m (1 foot) spatial resolution. The elevation data were incorporated as part of 

the inversion process in obtaining the calculated resistivity cross-sections and incorporated into 

plots showing variations in active layer depths. Landform analysis of surficial geology was based 

on the aerial photographs. The elevation data and aerial photographs were also draped in 3-D to 

assist with visualization.

Permafrost description

In the areas of ice-rich permafrost, specific methods of geotechnical investigations have been 

successfully applied (Kanevskiy et al., 2012; Kanevskiy et al., 2013; Stephani et al., 2010), 

including the cryostratigraphy methods and especially cryofacies analysis (French and Shur, 

2010; Katasonov, 1969; Katasonov, 1978) which was used for this study. It is based on the close 

relationship between shape, size, and spatial pattern of ice inclusions in soils (i.e., cryostructures) 

and specific terrain units, which reveals the nature of permafrost formation. For cryostratigraphic
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descriptions, we used a classification of cryostructures (patterns formed by ice inclusions in the 

frozen soil), which has been adapted from several Russian and North American classifications 

(French and Shur, 2010; Gasanov, 1963; Katasonov, 1969; Katasonov, 1978; Shur and 

Jorgenson, 1998; Zhestkova, 1982). The ice content of frozen soil was evaluated by oven-drying 

(90°C, 72 h) samples. Gravimetric moisture contents (GMC) were calculated on a dry-weight 

basis.

4.4 Results

Site -  AL2

The AL2 study site is comprised of two major terrain units: low hills with gentle slopes 

formed by ice-rich yedoma deposits and flat thaw-lake basins connected by erosional patterns 

(Figure 4.2). Transects 1 and 3 were located on yedoma deposits (Figure 4.4) which consist of 

silt with large syngenetic ice wedges formed in the late Pleistocene. Transect 4 was located on 

deposits of thaw-lake basins which consist of ice-rich peat and organic-rich silt, with modern ice 

wedges underlain by relatively ice-poor lacustrine and taberal (thawed and refrozen) silt. The 

cryostratigraphy and gravimetric water content of soils from the boreholes are summarized in 

Figure 4.5.

The content of wedge ice in yedoma is presumably very high: four of five boreholes from 

transects 1 and 3 at the AL2 site drilled in yedoma deposits encountered ice wedges. Ice wedges 

were also encountered by two boreholes (TH10-631 and TH10-632) drilled in this area by 

AKDOT & PF. Ice wedges were encountered at depths from 0.9 m to 2.2 m. The gravimetric 

moisture content of the ice-rich silt layer above the ice wedges, known as intermediate layer 

(Kanevskiy et al., 2011a; Shur, 1988) varied from 56-223% (average 112%, n=14). A single 

borehole without wedge ice (AL2-4) was drilled from the top of a baidzharakh (thermokarst 

mound), which formed due to thawing of the surrounding ice wedges. The GMC of yedoma silt 

in this borehole varied from 59 to 82% (average 71%, n=5).

AL2 transect 1 is gently sloped toward the lake and has been affected by recent fire. All three 

boreholes drilled within transect 1 (AL2-1, AL2-2 and AL2-3) indicated the presence of ice 

wedges. Active layer depths on AL2 transect 1 averaged 55 cm with a standard deviation of 10
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cm. The lowest modeled resistivities of just under 300 Q m were detected in the active layer of 

highly burned well-drained surfaces (Figure 4.6). High surface modeled resistivities of 

approximately 1.0 kQ m were located in areas with water-filled thermokarst troughs above 

degrading ice wedges. Higher resistivities of 19.8 kQ m were found in the upper part of 

permafrost. Toward the maximum resolution depth of 25 m, resistivities decreased 

approximately in half to 10.8 kQ m.

The transition between recently burned tussock tundra and the thermokarst lake was 

examined in AL2 transect 3 (Figure 4.6) The center of the survey was positioned next to the 

boundary between the burned tussock tundra on the main yedoma surface and actively sliding 

material on the slope adjacent to the thermokarst lake to maximize the DCR-ERT vertical 

resolution. The average active layer was 62 cm, and the standard deviation was 20 cm due to 

large differences between the slope and main yedoma surface. For example, active-layer 

thickness in the exposed soil on top of baidzharakh reached 1.5 m (borehole AL2-4). The lowest 

modeled resistivities of just over 60 Q m corresponded to wet silt in the active layer. On the 

slope affected by surficial thermokarst and thermal erosion activity, modeled permafrost 

resistivity values of 5.8 kQ m were found approximately 5 m below the surface, while under the 

main yedoma surface the low-resistivity layer was much thinner (Figure 4.6). The resistivity in 

yedoma increased with depth to 12.3 kQ m.

Thaw-lake basin deposits were studied in AL2 transect 4 (Figure 4.6) and borehole AL2-5 

(Figures 4.4 and 4.5). The deposits consist of ice-rich peat almost 1.5 m thick and gray silt more 

than 2.5 m thick, which contains layers and inclusions of peat. The GMC of the peat varied from 

180% to more than 300%, and the GMC of the shallow-water lacustrine silt with peat inclusions 

varied from 80 to 170%. Ice-poor deep-water lacustrine and taberal (thawed and refrozen) silt 

with peat layers was detected from 2.55 to3.89 m (Figure 5, borehole AL2-5). The GMC of silt 

varied from 33-61%. Though the peat layer contained almost no visible ice, its GMC was 234%. 

In borehole AL2-6, wedge ice was encountered right below the active layer at a depth of less 

than 0.5 m (Figure 4.5).
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At the AL2 transect 4 an electrode spacing was reduced to 1 m to better delineate the ice 

content in the upper permafrost. The average active-layer depth was 50 cm, with a standard 

deviation of 11 cm. Resistivities of approximately 120 Q m were measured near the surface in 

the area with low-centered polygons (around electrode 1) and where the surface transitioned 

back to tussock tundra near the base of the yedoma slope (toward electrode 84) that was more 

severely burned during the tundra fire (Figure 4.6). Higher modeled resistivity values, around

20.0 kQ m, were found 2.5 m below the surface around both boreholes. At the central part of the 

transect, modeled resistivity values decreased to 430 Q m at 6 m below the surface. This low- 

resistivity area formed a circular structure approximately 8 m in diameter. Two smaller areas 

with relatively low resistivity values of 2.8 kQ m were encountered at similar depths on both 

sides of this structure.

Site -  AR6

The AR6 study site is made up of three major terrain units: (1) low hills with gentle slopes 

formed by ice-rich yedoma deposits, (2) river terrace (abandoned floodplain), and (3) modern 

floodplain The height of the yedoma hills is 30-50 m, and the height of the river terrace is 

approximately 5 m above the surface of the Anaktuvuk River floodplain. The river terrace and 

yedoma hills were affected by the recent fire (Figure 4.2). On the east side of the Anaktuvuk 

River, AR6 transect 1 bisected the large flat floodplain adjacent to the main channel (Figure 4.7). 

AR6 transects 2 and 3 focused on the ground ice distribution on the river terrace. Summarized in 

Figure 4.8 are the cryostratigraphy and gravimetric water content of soils from the boreholes in 

this area.

The AR6 transect 1 had a sandy unit supported shrub growth and overlaying the river 

gravels. The presence of Salix alaxensis indicated a more recent history of active flooding. 

Multiple smaller subchannels contained coarser surficial gravels and cobbles. Surficial 

investigations indicated an active layer depth of greater than 1.5 m and absence of ice-rich 

permafrost. However the presence of gravels confounded our efforts to obtain core samples and 

to reach the permafrost table. The DCR-ERT configuration used for this transect, on the other 

hand, allowed us to image to approximately 13 m depth. The AR6 transect 1 had modeled 

resistivities with minimum and maximum values of approximately 300 Q m and 8.8 kQ m
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(Figure 4.9). The surficial channels are indicated by the lowest resistivity values, ranging from 

300 to 500 Q m. A high-resistivity area was detected from depths of 2 to 4 m.

The AR6 transect 2 examined the transition between high-centered ice-wedge polygons at the 

river terrace and the lower-lying floodplain while the AR6 transect 3 investigated the high- 

centered ice-wedge polygons in greater detail. The boreholes AR6-1, AR6-2, and AR6-3 were 

located within the low river terrace. All boreholes reached gravel at depths of 0.9-1.9 m. The 

upper permafrost at this location consisted of ice-rich peat, silt, and silty sand 0.6-1.3 m thick 

underlain by sand and gravel. The GMC of the peat, silt, and silty sand deposits varied from 117 

to 444% (average 293%, n=5). The GMC of the underlying sand deposits varied from 33 to112% 

(average 64%, n=5). High-centered ice-wedge polygons were framed by troughs up to 1 m deep 

and 1.5 m wide, developed above thawing ice wedges. The vertical extent of ice wedges in the 

river terrace is not expected to exceed 3 m because gravel is located close to the surface. As a 

side note, borehole AR6-2 was drilled through the small ice wedge up to 0.3 m wide (Figure 

4.10).

The average active layer depth for AR6 transect 2 was 54 cm with a standard deviation of 13 

cm. On the western end of the transect (the section lying within the floodplain), active layer 

depths exceeded the 1 m extent of our probe. The highest modeled resistivities of 21.0 kQ m 

were found under the river terrace with ice-wedge polygons at depths from 4 to 15 m; the lowest 

were present under the floodplain with approximate values between 270 and 500 Q m. Modeled 

resistivities for all three boreholes at depth 1.5 were approximately 3.2 kQ m.

The AR6 transect 3 average active layer depths were 48 cm with a standard deviation of 7 

cm. Resistivities of between 117 and 220 Q m were found close to the surface in the centers of 

ice-wedge polygons with higher values around 400 Q m in the polygon depressions and in the 

vicinity of cracks in the soil resulting from tundra fire. Gravel deposits correspond to modeled 

resistivity values ranging from 5197 to 7490 Q m.
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4.5 Analysis

Terrain units and permafrost properties

Low hills with gentle slopes and flat plateaus formed by yedoma deposits. The structure 

and properties of this unit were evaluated based on similarity with Yedoma silt deposits studied 

in the adjacent area at the Itkillik River exposures (Kanevskiy et al., 2011a; Kanevskiy et al., 

2011b). This deposit is Pleistocene syngenetic permafrost characterized by extremely high ice 

content and large ice wedges. The thickness of yedoma deposits varies from several meters to 

more than 35 m. There are two different generations of ice wedges (depicted in Figure 4.6): 

active Holocene ice wedges (usually encountered at depths from 0.6-1.0 m) and inactive late 

Pleistocene ice wedges (usually encountered at depths from 1.5-2.5 m). Most late-Pleistocene 

ice wedges penetrate through the whole yedoma stratum, and are seperated from the active layer 

by the ice-rich intermediate layer (Kanevskiy et al., 2011a; Shur, 1988). The volume of Holocene 

wedge ice in the upper permafrost (within the intermediate layer) usually varies from 10-30%, 

and the volume of Pleistocene wedge ice varies from 40-70%. The GMC of the intermediate 

layer varies from 80% to more than 200%, while the GMC of Pleistocene yedoma deposits 

typically varies from 50 to80%. The borehole data proved the similarity of the unit to yedoma 

deposits and intermediate layer previously studied by Kanevskiy and co-authors at the Itkillik 

River exposure (Kanevskiy et al., 2011a).

Flat thaw-lake basins connected by erosional patterns. The depth of thaw-lake basins 

varies from several meters to more than 20 m. Deposits of thaw-lake basins consist of ice-rich 

peat and organic-rich lacustrine silt (GMC varies from 80% to more than 300%) with modern 

active ice wedges underlain by relatively ice-poor lacustrine and taberal (thawed and refrozen) 

silt (GMC typically varies from 30-40%). Active ice wedges are very close to the bottom of the 

active layer and usually up to 3 m wide with a vertical extent of up to 5 m. The thickness of peat 

usually varies from 1 to 3 m, and the thickness of ice-rich lacustrine silt typically does not 

exceed 2 m. The thickness of ice-poor thawed and refrozen silt depends on the initial (prior to 

thawing) thickness and ice content of yedoma deposits and can reach 10 m and more.

Shallow thermokarst depressions connected by erosional patterns. The depth of shallow 

thermokarst depressions does not exceed several meters. We believe these landforms are related
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mostly to thawing of relatively thin yedoma strata. In some cases, shallow thermokarst 

depressions form when thawing of yedoma under thermokarst lakes is interrupted by sudden lake 

drainage. Lack of drilling data prevents us from characterizing the structure and properties of 

deposits of shallow thermokarst depressions. Landforms transitional from thaw-lake basins to 

shallow thermokarst depressions can be observed.

River terraces (abandoned floodplain). Deposits of low alluvial terraces include ice-rich 

peat and organic-rich silt and silty sand up to 2 m thick (GMC varies from 100 to more than 

400%) with active ice wedges; the terraces are underlain by sand (up to 1 m thick; GMC 

decreases with depth from more than 100% to 40%) and gravel, which is mostly ice-poor.

Modern floodplains. Several levels of floodplain can be detected. The younger (lower) 

levels are formed by unfrozen gravel (the depth of closed talik is unknown) or by presumably 

ice-poor gravel beneath the more than 2-m thick active layer. The older (higher) levels have 

permafrost, which is indicated by ice-wedge polygons. Lack of drilling data in the study area 

prevents us from characterizing the structure and properties of the floodplain deposits.

Combined cryostratigraphic and geophysical interpretations

Direct comparison of the cryostratigraphic and geophysical interpretations of various terrain 

units (Figure 4.11 and Figure 4.12) allows the two techniques to be contrasted and evaluated in 

their usefulness for delineating permafrost characteristics. In the AL2 transects 1 and 3 the 

general thickness and areal distribution of the active layer and intermediate layer were similar 

between the two techniques. Knowledge derived from both the adjacent boreholes and soils of 

similar nature suggested the presence of inactive Late Pleistocene ice wedges interspersed with 

yedoma silt. The interpretation derived from the geophysics perceived this unit as a homogenous 

frozen mass where resistivity values varied between 9 and 15 kQ m depending on depth due to 

the spacing of the electrodes. The relatively small active Holocene ice wedges identified by the 

borehole results and interpolated into the cryostragraphic analysis based on pre-existing 

landscape knowledge were not detected by geophysical data, because these wedges are 

associated mainly with the ice-rich intermediate layer with high resistivity. No distinct ice-
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wedge polygons were visible in the areas of transect 1 and 3, which is typical of the yedoma 

surface, but at some places, shallow troughs about degrading ice wedges could be observed.

On the AL2 transect 3, the elevation of the yedoma hill above the lake suggested that a 

thickness of yedoma exceeds 12 m, which is matched in the geophysical interpretation. The 

geophysical results can be used to clearly delineate extent of the thermokarst processes 

(including potential underground piping) near the edge of the lake where resistivity values fall 

below 200 Q m. They also suggest that the intermediate layer is thicker than what is estimated by 

the cryostratigraphic analysis. Alternatively, it may also indicate a thicker active layer as the 

tundra fire resulted in substantial thermokarst especially in the intermediate layer.

There were some significant differences between the cryostratigraphic and geophysical 

analysis for AL2 transect 4. The cryostratigraphic interpretation identified ice wedges based on 

the borehole results and aerial photographs which corresponded to deeper active layer areas in 

the geophysics. The interpretability of the geophysics is affected by the choice of a Wenner array 

which is generally better at resolving vertical resistivity variations, while the dipole-dipole has 

improved lateral resolution. The Wenner array also has greater depth capabilities and for that 

reason we chose it. Time permitting we would have performed both. In this case, the resistivity 

results do show reasonable correlation to the estimated ice-wedge distribution but they are not 

distinct in terms of value or separable from the near surface.

In the central part of AL2 transect 4, in a drained lake basin, the geophysics reveal a zone 

with electric resistivity lower than 1 kQ m, which could be interpreted as an isolated talik formed 

due to partial freezing of the closed talik which had formed under the thermokarst lake before its 

drainage. Deeper borehole drilling would be necessary to confirm the nature of this low- 

resistivity zone. Features like taliks are important considerations for permafrost engineering and 

Arctic road construction. Geophysical techniques like DCR-ERT are very useful for guiding 

boreholes to document the nature and extent of taliks and can significantly reduce the number of 

boreholes which are required to delineate talik zones.
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The AR6 transect 1 cryostratigraphic interpretation was not possible because the SIPRE corer 

is not suitable for drilling in coarser material such as gravel. Active channels were delineated 

using the aerial photography. The geophysical data supported the location and extent of the 

channels, and also indicated similarity to the adjacent channels. The base of the active layer was 

interpreted to be consistent with the boundary of the 3 kQ m layer identified as frozen sand. Soils 

with values in excess of 8 kQ m at depth were considered to be frozen gravel.

On the AR6 transect 2, analysis of the DCR-ERT data was able to differentiate the margin 

between the active layer on lower-lying modern floodplain (less than 600 Qm) and the frozen 

gravel (~ 5.0 -  10.0 kQ m). This gravel layer under the floodplain is less resistive than deposits 

of the river terrace containing ice wedges. A transitional layer between the gravel and the active 

layer was identified as the peat and silt layer based on the borehole results. In comparison to the 

cryostragraphic analysis, the Holocene ice wedges, alluvial sand and the peat and silt layer could 

not be clearly separated from each other by the geophysics. This transect benefited greatly from 

the elevation data for topographic correction.

The AR6 transect 3 geophysical analysis identified both the active layer and frozen peat and 

silt layer in the near-surface of the ground. They matched the cryostratigraphic interpretation 

very closely. The alluvial sand layer could not be differentiated from the alluvial gravel with 

mean values of 8.6 kQ m. There were distinct wedge or channel shapes with slightly lower 

resistivity mean values of 6.3 kQ m. The positioning of the mass on the left side of the transect 

suggests that it might be a buried ice wedge as it aligns with the cryostratigraphic interpretation. 

However, the 6.3 kQ m distribution on the right does not match the location of ice-wedge 

polygons suggested by the borehole. The surface pattern indicates an ice-wedge polygon located 

directly above the transect. Since the current from an injection point integrates over an area 

perpendicular to the transect, an ice wedge directly adjacent could influence the resistivity 

results. Further examination of the ice-wedge polygons would benefit from the use of quasi-3D 

resistivity imaging (Rodder and Kneisel, 2012).

Overall, the geophysical and cryostratigraphic interpretations for most transects greatly 

benefited one from the other. The geophysical analysis was superior for identifying potential
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unconformities in the subsurface such as the potential talik in AL2 transect 4. The DCR-ERT 

results using a Wenner array were particular useful in delineating the shape and depth of the 

active and intermediate layers. It should be noted that delineating the intermediate layer is not as 

simple as simply measuring the active layer at one period, as it is based on the soil and ice 

properties in the cryostratigraphic interpretation. The cryostratigraphic analysis produced 

detailed subsurface representations, however they are based on a wealth of subsurface 

knowledge from previous studies (Kanevskiy et al., 2011a; Kanevskiy et al., 2011b) and rest on 

the assumption that these transects are similar to others studied in detail via exposed outcrops.

Suitability o f cryostratigraphic and geophysical methods for Arctic road construction and

alternatives

Evaluating the effectiveness of the DCR-ERT geophysics and cryostratigraphy for examining 

permafrost characteristics for road construction in the Arctic should account for multi-criteria 

including: time, effort, experience, cost and accuracy. In the preliminary stages, producing 

permafrost distribution and characteristics through either DCR-ERT or cryostratigraphy is time 

and labor intensive. Both techniques benefit from pre-existing knowledge of regional 

characteristics, and they should be preceded by differentiation of terrain units to characterize the 

landscape. Identifying the areal extent of these units can assist in targeting drilling programs 

which are the backbone of soil and permafrost characterization for roads. The locations of 

geophysical transects can and should be pre-selected in many cases to maximize the potential 

results (e.g., at the boundaries of different terrain units). In the case of DCR-ERT it can be 

beneficial to model the expected resistivity results in order to select the best electrode spacing 

and array type. Both methods are bolstered by the availability of ancillary data such as high- 

resolution visible imagery and good-quality DEMs.

The location and spacing of boreholes strongly shapes the cryostratigraphic analysis. As the 

primary source of information and verification, boreholes can be located at either regular 

intervals (driving up costs) or located to discriminate between terrain units (requires landscape 

interpretation experience). In contrast, geophysical interpretation is often most effective when 

the data is collected first and then boreholes are situated where they maximize information. In 

this study, the deeper boreholes were drilled either before or concurrently to the fieldwork. The
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shallower boreholes and DCR-ERT transects were acquired simultaneously, while the geospatial 

data were obtained afterward due to limitations in field logistics. The most effective order would 

be to acquire the geospatial information first to optimize the locations of the geophysical 

transects. The DCR-ERT data would then be collected and preliminarily analyzed before using 

all available data to select the location of the boreholes. This would maximize the inference from 

the datasets and improve interpretation of both the geophysical and cryostratigraphic results. In 

many instances, this could lead to a reduced number of boreholes required. Geophysics can also 

be used to assist in interpolating between boreholes in an alignment, regardless of when or where 

the boreholes are drilled.

The three main advantages of DCR-ERT for examining permafrost characteristics for road 

construction are: 1) the type of array can be varied from the Wenner array; 2) multiple arrays can 

be used in the inversion process and 3) the spacing of the electrodes can be easily varied to 

control the resolution and depth of investigation. Time permitting, we would have also used the 

dipole-dipole array (Van Dam, 2012) on our transects, which is more sensitive to changes in 

vertical structure in the near surface (Dahlin and Zhou, 2004). One disadvantage of DCR-ERT is 

that the technique requires a moderate amount of time and effort in order to get good contact 

between the electrode stakes and ground. CCR-ERT (De Pascale et al., 2008; Hauck and Kneisel, 

2006; Kuras et al., 2006) is a reasonable alternative to DCR-ERT as the technique does not 

require staking.

The biggest limitation to cryostratigraphic analysis of permafrost for road construction is the 

base of knowledge required to produce accurate representations of the subsurface. Semi

automating the construction of the cryostratigraphic interpretations for transects could produce 

significant savings in effort. Integrating remotely quantified information such as wedge-ice 

volumes (Ulrich et al., 2014) for planning and designing road construction would be a good 

addition. The cryostratigraphic method provides intricate estimates of soil-ice volume in addition 

to the subsurface distribution of ground ice. These estimates of the ground-ice content are critical 

for geosystems approaches to permafrost engineering for road construction (Stephani et al., 

2014).
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4.6 Conclusions

This study found DCR-ERT transects with a Wenner array and cryostratigraphy analysis 

produced sufficient information on permafrost characteristics pertinent to road construction in 

northern Alaska. There was consistency between the geophysical interpretations and the terrain 

units, confirming that terrain units are a good indicator of the subsurface conditions. Optimizing 

the electrode spacing to adjust the vertical depth and resolution of transects allowed the 

geophysical results to highlight differences in presence/absence of permafrost and estimate 

active and intermediate layer depths. The major drawback was the 2 m electrode spacing was 

relatively ineffective in delineating ice-rich from ice-poor layers at depths greater than 10 m. 

Subsurface heterogeneity was most detectible when there were significant differences in 

landcover such as the transition from floodplain to river terrace.

Both the geophysical and cryostratigraphic results and interpretations were improved by 

availability of high-resolution geospatial (aerial photographs & DEMs) data. Given the planning 

and financial resources that go into constructing roads in continuous permafrost, data collection 

should begin with geospatial information and geophysical data collected at key sites. Boreholes 

would preferably be drilled in areas where they maximize the interpretation from the geophysics. 

This approach also capitalizes on the time, effort and expertise required to process and analyze 

the results. Future improvements in geospatial and geophysical methods and techniques will 

eventually make it easier to estimate permafrost characteristics; however, borehole data remain 

the baseline source of subsurface information.
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Figure 4.1: Stream meandering along ice wedges of high center ice-wedge polygons with the high bank of 

the Colville River in the background
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Figure 4.2: Study area showing field sites AR6 and AL2 with inset versions of aerial photographs and surficial geology



Figure 4.3: Drilling with SIPRE corer at site AL4-2 in burned tussock tundra
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Figure 4.4: AL2 transect 1, 3 and 4 showing aerial photograph draped with 2 times vertical exaggeration and site photographs
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Borehole AL2 was drilled on September 1, 2010; all other boreholes -  on September 8-9, 2010.
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Figure 4.6: Draped aerial photographs of AL2 transects 1, 3 and 4 with their corresponding DCR-ERT 

modeled resistivity (fi m) below each
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Figure 4.7: AR6 transect 1, 2 and 3 showing aerial photograph draped with 2 times vertical exaggeration and site photographs



Figure 4.8: Cryostratigraphy and gravimetric water content (%) of frozen soils, site AR6 (Bridge). 

All boreholes were drilled on September 10, 2010.
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Figure 4.11: : Comparison of subsurface characteristics derived from cryostratigraphic analysis (A, C & 

E) vs. geophysical interpretation (B, D & F) for AL2 transects 1, 3 and 4
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Table 4.1: Site characteristics and descriptions of DCR-ERT, active layer depths and ice

Site

AR6 #1

AR6 #2 

AR6 #3 

AL2 #1 

AL2 #3 

AL2 #4

______ Description______

Anaktuvuk River Alluvial 
Plain

Burned Tussock Tundra to 
Flood Plain

Burned Tussock Tundra 
and Degrading High 
Centered Polygons

Burned Tussock Tundra on 
Gentle Slope

Burned Tussock Tundra 
and Thermokarst

Low & High Centered 
Polygons

Electrode
Spacing

Electrodes______ (m)

42 2

84 2

42 0.5

84 2

42 2

84 1

Resistivity 
(fi m)

Maximum
Resolution
Depth (m) Min. Max.

13 305 8833

25 265 20960

3.5 117 9703

25 296 19370

14.5 62.4 12262

13.5 121 10034

Average
Active
Layer
Depth
(cm)

54

48

55

62

50
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Conclusion

The motivation for this thesis was to advance how we examine the interactions between 

hydrology, geomorphology, ecology and permafrost on Arctic landscapes. Using robust, 

repeatable methods which are spatially scalable is a critical foundation for engaging in 

interdisciplinary research. I created a classification for water tracks to understand the 

geomorphic and biophysical properties of water tracks within the Kuparuk River basin and 

adjacent areas. I then used these water track classes as the basis for finding their spatial 

distribution using high-resolution remotely sensed imagery. I examined the effects of drainage 

networks in calculating LAI based on NDVI and how the accuracy and trends varied depending 

on the spatial resolution of the input imagery. I also used a combination of cryostratigraphic and 

geophysical data to characterize permafrost for Arctic road design and engineering.

In order to accomplish my objectives, I combined knowledge from a variety of fields 

including hydrology, remote sensing, engineering, permafrost, ecology and geomorphology. By 

unifying complimentary principles from a variety of fields, more complex questions could be 

answered while examining them through lenses of scale and laws of proximity. The key was to 

identify the primary driving forces so that questions and areas of emphasis could be targeted at 

specific areas using purposeful steps. These created frameworks to illuminate how location, 

timing and magnitude influence data and the interactions of the main patterns and processes. 

Ultimately this allowed complex, interdisciplinary questions to be answered with greater 

certainty and accuracy.

Five water track classes were developed using robust statistical methods which effectively 

partitioned a wide range of biophysical factors. This methodology represented a unique solution 

to minimize bias and maximize reliability for organizing, analyzing and interpreting complex 

data to obtain new information for classifying water tracks. Our interpretation revealed that water 

tracks are controlled primarily by surficial geology, although we found interactions among a 

wide range of factors. Water tracks represented a range of preferential flow paths in periglacial 

landscapes. Understanding how water tracks differ within a region in terms of their 

geomorphology is a critical factor in study designs for hydrology, ecology and permafrost 

investigations.
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Both water track presence and different water track classes were identified mostly using 

WorldView-2 imagery. The mineral-flark, steep and narrow water tracks displayed a curvilinear 

shape and repeating pattern perpendicular to the hill slope. The highest accuracy and best ROC 

values were found for the organic-rich and wide water track classes. The biggest underlying 

issue was the complexity of the water track classes. Although they represent the geomorphic 

properties, they were classified using a combination of variables including vegetation, soil 

moisture, and surficial geology. The ability to map known water track geomorphic conditions 

provides a critical baseline for further investigations of landscape dynamics within a region. 

Given the complex interactions of these factors within the context of a changing Arctic climate, 

deriving and quantifying different water track classes offers a substantial step towards 

interpretation.

LAI was calculated using satellite-derived NDVI values by using optimization in the gap- 

probability model. The results showed that groups based on the presence/absence of water tracks 

and the magnitude of variation in NDVI over time had distinct LAI values even with variability 

over time. The effects of the groups were compared between WorldView-2 and Landsat-7 

imagery where the LAI values were higher in the WorldView-2 results. This did not result in 

more accurate LAI estimates, as the Landsat-7 imagery had lower RMSE values. We concluded 

that the spatial resolution had an overall effect on the LAI values by substantially changing the 

nonlinear spectral mixing inputs. Future studies should be cognizant of the advantages and 

limitations offered by the increased spatial resolution on LAI calculations based on NDVI and 

modify their project design accordingly.

DCR-ERT transects with a Wenner array were a useful tool when combined with 

cryostratigraphy information for examining continuous permafrost characteristics pertinent to 

road construction in northern Alaska. The resistivity cross-sections derived using DCR-ERT 

were consistent with the terrain units, suggesting that terrain is a good indicator of the 

subsurface. Optimizing the electrode spacing to adjust the vertical depth and resolution of 

transects allowed the geophysical results to highlight differences in presence/absence of 

permafrost and estimate active and intermediate layer depths. Acquiring and compiling
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geospatial (aerial photographs & DEMs) data with geophysical results permitted maximum 

contextualization of borehole data, and the order of acquisition may allow future projects to 

leverage data more effectively.

Both disciplinary and interdisciplinary research is rarely linear in execution. This thesis is a 

cumulative step forward towards understanding how and why water moves on Arctic landscapes. 

It required a broad approach as measuring water in streams or rivers is only a fraction of the 

knowledge required to scale between a channel and landscape dynamics. I also incorporated 

techniques like remote sensing and geophysics which could be reasonably applied over large 

areas. This was important not only for monitoring and evaluating for climate affects but also for 

engineering applications and future planning scenarios. The development of complementary 

approaches for Artic landscape characterization creates more realistic scenarios for the 

application of highly sophisticated numerical models where the physical parameters used 

accurately reflect those found on the landscape.

It is my hope that my research will contribute to a better understanding of the patterns and 

processes which connect Arctic science and engineering, and also contribute to improving 

methods for answering interdisciplinary research questions in Alaska and beyond.
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