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ABSTRACT

Mesocarnivore species worldwide have been shown to be significant drivers of ecological 

communities. Changes in their abundance and distributions are known to cause cascading effects 

throughout ecosystems, and changes to the landscape and climate will likely lead to shifts in 

mesocarnivore population sizes and distributions. However, the current status of these species in 

some of the world’s most susceptible landscapes is not known. I assessed the impacts of abiotic 

factors on the distributional patterns and abundance of boreal mesocarnivores and evaluated 

methods commonly used to estimate density and occupancy. I conducted non-invasive winter 

surveys of coyotes (Canis latrans), red foxes (Vulpes vulpes), lynx (Lynx canadensis), 

wolverines (Gulo gulo), and marten (Martes americana) in the interior of Alaska. Overall, 

mesocarnivore occupancy was most strongly influenced by snow depth and snow compaction as 

well as habitat type. Canid species used areas with shallow and compact snow while mustelid 

species used deeper and fluffier snow conditions most often, and lynx used areas with shallow 

and fluffy snow. Forested habitat types were used most commonly across all mesocarnivores. 

Prey abundance and the presence of human activity were less influential to mesocarnivore 

occupancy patterns than snow conditions and habitat, suggesting that a changing boreal climate 

may have a strong, direct influence on the distribution of these mesocarnivores. Estimating 

current population status of these species is particularly important in areas that are most 

susceptible to change, and I used two occupancy-modeling methods and a spatially explicit 

capture-recapture density estimator to assess coyote and red fox populations. Occupancy and 

density are two distinct parameters, however, the simplicity of occupancy (both in terms of 

sampling and modeling) makes its use as a proxy for density an appealing possibility. I found
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that occupancy and density estimates were not consistent and led to significantly different 

inference about coyote and red fox populations. Coyotes and red fox occupancy probabilities 

were similar to each other (range: 0.34-0.48), but red fox density was nearly four times greater 

than coyote density. While both methods produced precise parameter estimates, top-ranking 

occupancy and density models were different. I suggest that managers use caution when using 

occupancy as a proxy for density. Occupancy is best used to address questions related to spatial 

use, while density should be used to assess population size. Together, these findings provide 

valuable information about the current status of a previously unstudied mesocarnivore 

community and provide managers with useful insight into study design and management actions 

that should be taken to best protect this guild.
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CHAPTER 1. GENERAL INTRODUCTION

Mesocarnivores make up a diverse and wide ranging guild that has been shown to drive 

community structure and play a key role in shaping ecosystems (Roemer, Gompper & Van 

Valkenburgh 2009). A mesocarnivore can be defined as any carnivore species that is subordinate 

and physically smaller than the apex predator species in a community. The term mesocarnivore 

is therefore relative, and the criteria for what defines a mesocarnivore can vary among 

ecosystems (Prugh et al. 2009). Though these species are far more numerous than larger and 

more charismatic apex predator species, they have been somewhat neglected in the conservation 

and research community until fairly recently (Roemer, Gompper & Van Valkenburgh 2009). 

Significant declines in apex predator numbers across the world may be the primary reason that 

attention has started to shift to these smaller predators (Ripple et al. 2014).

With declines in apex predator species, primarily brought on by human-caused habitat 

loss and persecution (Ripple et al. 2014), mesocarnivores have taken the place atop the food 

chain in many parts of their range. Mesocarnivores that were previously suppressed by large 

apex species can experience dramatic population growth in the absence of those dominant 

species in a phenomenon called mesopredator release (Soule et al. 1988). As mesocarnivores are 

released from suppression, they begin to exert more pressure on their primary prey resources 

leading to top-down trophic cascades (Ritchie & Johnson 2009). Examples of the mesocarnivore 

release phenomenon can be found worldwide, most commonly in terrestrial systems (Prugh et al. 

2009; Ritchie & Johnson 2009). In areas where both apex- and mesocarnivores coexist, there is 

much debate over the role that each plays within the community and how interactions between 

species dictate those roles (Gehrt & Clark 2003; Mech 2012; Allen et al. 2014). These questions 

arise due to the recognized importance of these species to ecosystem structure and function, and
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the impact that changes to predator populations can have (Ritchie & Johnson 2009; Estes et al. 

2011; Ripple et al. 2014).

Understanding the resource needs and current population status of mesocarnivores is key 

to better predicting community-wide impacts that could occur due to changes at the top of the 

food chain. The same threats that have led to the decline of apex predators may also be impacting 

mesocarnivores across the world. Areas in northern latitudes are particularly vulnerable to 

landscape-level changes (Travis 2003; Tape, Sturm & Racine 2006; Nikiforuk 2010), yet few 

studies have examined mesocarnivore communities in these areas. Climate change is one of the 

biggest threats to ecosystems in northern environments (Olsson 2009; Chapin et al. 2014), 

driving the need to examine habitat requirements for northern and boreal species. Increased 

anthropogenic activity and development may also cause shifts in mesocarnivore populations 

(Ordenana et al. 2010; Bateman & Fleming 2012; Savory et al. 2014). Not only are northern 

boreal areas some of the most vulnerable, but areas such as Alaska still contain large and viable 

apex predator populations as well as numerous mesocarnivore species, all living in sympatry. 

Gaining a baseline of information on current resource needs and populations levels will allow 

researchers to manage mesocarnivore species in these areas as changes continue to occur, and 

will lead to further understanding of the role of these species in the boreal ecosystem and 

interactions among species.

Monitoring carnivore species can be an extremely challenging task. Many species are 

wide ranging and often times found at low densities (e.g., Karanth & Nichols 1998; Mowat & 

Strobeck 2000; Long et al. 2011). In addition, monitoring sensitive or vulnerable species may 

require that researchers prevent any harm or unnecessary stress to an animal, something that can 

be nearly impossible with traditional capture or trapping survey techniques (Arnemo et al. 2006).
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For these reasons, non-invasive survey techniques have become increasingly popular for 

carnivore research (Long et al. 2008). Non-invasive techniques allow for the collection of data 

without the need to tag, collar, or handle the animal of interest. Although there is some 

information that can only be obtained through the use of radio collars, body measurements, or 

blood samples, the majority of population demographic information of interest to researchers and 

managers today can be obtained using non-invasive approaches (Long et al. 2008). Most non- 

invasive surveys can be conducted at a fraction of the cost of a more traditional capture-type 

survey, and these surveys are often safer (Arnemo et al. 2006) and can provide more data than 

traditional approaches (Prugh 2005). Many non-invasive carnivore surveys have been conducted 

using motion-sensitive camera traps, hair rub pads, aerial and ground-based track surveys, scat 

collections, and tracking plates (e.g., Gompper et al. 2006; McKelvey et al. 2006; Pauli et al. 

2008; Sarmento et al. 2009; Whittington et al. 2014). Many traditional statistical analyses can 

accommodate data from non-invasive surveys, and a suite of newer analytical approaches have 

also been developed specifically for the use with non-invasive data (MacKenzie et al. 2006; 

Borchers et al. 2014). These tools make it more logistically and financially feasible to monitor 

mesocarnivores, especially in regions with challenging conditions like those encountered in 

interior Alaska.

Interior Alaska harbors a unique guild of mesocarnivores found few other places in the 

world. Two of the most common species include coyotes (Canis latrans) and red foxes (Vulpes 

vulpes). The red fox is the most widely distributed canid in the world and has been the subject of 

extensive research (Lariviere & Pasitschniak-Arts 1996). Coyotes are also extremely abundant 

and adaptable throughout North America, but they are relatively new to Alaska, having only 

inhabited the state since the turn of the 20th century (Young & Jackson 1951). While these two
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canids live in sympatry in many regions, they rarely co-occur with mesopredators such as 

wolverine (Gulo gulo) and marten (Martes americana) as they do in Alaska. The wolverine is the 

largest terrestrial mustelid species and is well known for its dependence on snow-covered high 

elevation environments, making it a relatively common species in the Alaska Range (Kilstrom 

2004). Marten are far more abundant across North America, but are restricted to heavily 

timbered regions like those found in the boreal forest of interior Alaska (Zielinski et al. 2005). 

Another forest specialist found in the interior is the Canada lynx (Lynx canadensis). This felid is 

one of the most famous examples of a dietary specialist due to its dependence on snowshoe hares 

(Lepus americanus) throughout its range (Ruggiero et al. 2000). These five species share a 

majority of the landscape in Alaska’s interior, yet little information is known about how they use 

that landscape or about the current status of their populations.

In Chapter 2 I evaluated current patterns in mesocarnivore occupancy in the interior of 

Alaska. I collected presence-absence data on coyote, red fox, lynx, wolverine, and marten 

populations by performing snow tracking surveys during two winter field seasons. My goal was 

to estimate current occupancy probabilities of these species. Occupancy modeling is a tool that 

allows researchers to predict spatial use patterns of a target animal species, while simultaneously 

accounting for imperfect detection of that species during surveys (MacKenzie et al. 2006). I 

tested the influence that habitat type, prey abundance, snow conditions, and anthropogenic 

activity had on each species’ occupancy in the study region. I predicted that these different 

landscape factors would have different influences on the mesocarnivore species of interest. It is 

expected that through climate change and increasing levels of anthropogenic activity and 

development, the landscape in northern boreal regions will change dramatically in the near future 

(Winfree et al. 2014; Marcot et al. 2015). The results from Chapter 2 provide important baseline
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data that can be used to manage mesocarnivore species by highlighting key resources that each 

species relies on in this region.

In Chapter 3 I evaluated two distinct non-invasive survey and modeling methods. I 

focused on gaining information on current coyote and red fox population dynamics in the interior 

of Alaska using dynamic occupancy models that included additional parameters to calculate site 

colonization and extinction (MacKenzie et al. 2003). In addition, I used a scat collection survey 

to procure genetic samples from these canid species and used a spatially explicit capture- 

recapture model to estimate population density (Borchers & Efford 2008). My goal with this 

chapter was to compare the modeling techniques and assess the consistency between results. 

While these methods each allow for non-invasive sampling, collecting data to estimate density is 

often a more labor intensive and expensive process. For that reason, it has been proposed that 

occupancy probability can be used as a less expensive index of density (Clare, Anderson & 

MacFarland 2015). I assessed the consistency between these two methods, and in doing so 

provided new data about Alaska’s coyote and red fox populations.
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CHAPTER 2. BOTTOM-UP DRIVERS OF BOREAL MESOCARNIVORE 

OCCUPANCY: VARIABLE EFFECTS OF SNOW CONDITIONS ACROSS SPECIES1

2.1. ABSTRACT

1. Mesocarnivores in northern regions are facing dramatic landscape alterations due to 

climate change and increasing levels of anthropogenic activity. Shifts in carnivore 

community structure can lead to cascading effects throughout entire ecosystems, but 

impacts of climate and landscape perturbations on mesocarnivore communities remain 

poorly understood.

2. We used snow-tracking surveys of five sympatric mesocarnivores over two winters in 

interior Alaska, U.S.A to identify primary factors affecting their occupancy. We 

evaluated the effects of snow depth and compaction, anthropogenic activity, prey 

abundance, and habitat type on occupancy of each species while accounting for 

detectability.

3. Snow depth and snow compaction were the best predictors of mesocarnivore occupancy, 

receiving over 90% AIC support in our model set. Coyotes (Canis latrans) and red fox 

(Vulpes vulpes) occurred in areas of shallow, compact snow, lynx (Lynx canadensis) 

occurred in areas of shallow, fluffy snow, and wolverines (Gulo gulo) and marten 

(Martes americana) occurred in areas of deep, fluffy snow.

1 Prepared for submission in the Journal of Animal Ecology as Pozzanghera, C.P., Sivy, K.J., Lindberg, M.S., and 

Prugh, L.R. 2015.Bottom-up drivers of boreal mesocarnivore occupancy: variable effects of snow conditions across 

species.

7



4. Habitat had a strong influence on guild-wide occupancy, with most species showing 

similar patterns of use across broad habitat types. Prey abundance and levels of 

anthropogenic activity were relatively poor predictors of mesocarnivore occupancy.

5. Altered snow conditions due to climate change may have strong direct effects on the 

distribution of northern mesocarnivores. As the climate continues to warm, snow depth in 

northern boreal regions is likely to become more variable in space and time, and warmer 

temperatures should increase snow compaction. Distribution of mesocarnivores in 

northern regions may begin to mirror those currently found in more southern populations, 

with widely distributed canid populations and more isolated mustelid and lynx ranges.

2.2. INTRODUCTION

Mesocarnivores have a central role in ecosystems (Roemer, Gompper & Van 

Valkenburgh 2009). Interspecific interactions between meso- and apex predator species, and the 

resulting impacts on lower trophic levels, have been well documented and highlight the profound 

impact carnivores can have at a community scale (e.g., Crooks & Soule 1999; Prugh et al. 2009; 

Levi & Wilmers 2012). Most studies of mesocarnivores have focused on these intraguild 

interactions, whereas fewer studies (e.g., Rose & Polis 1998, Riley et al. 2003; Bateman & 

Fleming 2012) have investigated the effects of bottom-up and abiotic factors, such as climate 

change and human development, on their dynamics. However, mesocarnivores inhabiting 

northern boreal environments are affected by many landscape level factors likely to experience 

significant changes into the foreseeable future and therefore it is important to better understand 

the effects of these factors on mesocarnivore distribution.
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The boreal ecosystem represents the world’s largest terrestrial biome and makes up 38% 

of the world’s forest cover (Olsson 2009). This region has also experienced some of the most 

dramatic climate-change impacts around the world (Post et al. 2009). Current climate predictions 

indicate that boreal regions will experience temperature rises in both winter and summer, and 

increases in precipitation throughout most of the year (Olsson 2009; SNAP 2015). In areas where 

winter warming is projected to result in above freezing average temperatures, this could result in 

less total snow accumulation and more rain. However, in areas where temperatures are still 

expected to stay below freezing, the increases in precipitation will likely result in deeper and 

more frequent snow. With these changes, it is expected that the composition and distribution of 

many habitats will shift. Russia’s boreal forest is expected to undergo a massive shift from 

deciduous to coniferous tree species over the next 200-500 years; a shift that is creating a 

feedback loop and accelerating the warming process (Shuman, Shugart & O'Halloran 2011). In 

North America, increasing temperatures are expected to steadily decrease boreal forest habitat 

due to increases in wildfire frequency and severity and insect infestations (U.S. Environmental 

Protection Agency 2013). In addition, shrub species are experiencing both latitudinal and 

elevational range expansion and are encroaching on tundra habitats (U.S. Environmental 

Protection Agency 2013). Many small mammal and ungulate populations, which 

mesocarnivores depend on as a food source, are also likely to change as a result of boreal climate 

shifts (Marcot et al. 2015).

In addition to a changing climate, increased human development and anthropogenic 

activities are changing northern ecosystems (Johnson et al. 2005). The conversion of boreal 

forest into agricultural or developed areas has been well documented across northern latitudes 

(Ostlund, Zackrisson & Axelsson 1997; Hobson, Bayne & Van Wilgenburg 2002). Boreal
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regions also contain important reservoirs of fossil fuels and are home to some of the largest 

energy production facilities in the world (Economides & Wood 2009; Nikiforuk 2010). Pressure 

to find alternative forms of energy have resulted in an increase in hydroelectric, wind, and solar 

energy exploration projects, all of which result in changes to the landscape through construction 

of roads and habitat loss or alteration. While landscape changes may be necessary to 

accommodate growing human populations, impacts on wildlife can be significant (Cameron et 

al. 1992; Amstrup 1993). These changes could directly impact mesocarnivore species by 

allowing greater access for hunting and trapping activity, fragmenting important habitat patches, 

or supplementing mesocarnivore diets with anthropogenic food sources (Savory et al. 2014).

We examined how snow conditions, prey abundance, habitat type, and current levels of 

anthropogenic activity influenced winter occupancy of coyotes (Canis latrans), red fox (Vulpes 

vulpes), lynx (Lynx canadensis), wolverine (Gulo gulo), and marten (Martes americana) in 

Alaska’s boreal forest. Winter is a critical period for mesocarnivores; coyotes, red fox and lynx 

generally breed between January and April, and parturition occurs during late winter for 

wolverine and marten (Buskirk 1983; Kilstrom 2004; Perrine 2005; Fanson et al. 2010). Food is 

most limiting in winter, and climate change is predicted to have especially strong effects on 

winter conditions in Alaska (SNAP 2015). Large-scale energy development is also on the rise in 

this region, and projects such as the proposed Susitna-Watana Hydroelectric Dam may alter the 

landscape in the near future (Alaska Energy Authority 2014). Understanding current 

mesocarnivore responses to bottom-up forces and establishing baseline population dynamics is 

key to monitoring shifts in this guild over time as landscapes continue to change.

Although the diet and space use of sympatric species within mesocarnivore guilds can 

overlap substantially (Ruggiero at al. 1994; Riley et al. 2003; Schuette et al. 2013; Goad et al.
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2014), interspecific differences may lead to divergent effects of climate or land use change on 

each species. Species like the coyote and red fox are considered “human commensal”; they are 

highly adaptable and able to benefit from activities such as road construction and development 

(Young & Jackson 1951). Coyotes and red foxes, along with wolverine, are considered habitat 

and foraging generalists in northern regions, which aids in their adaptability to a variety of 

environments and environmental conditions (Kamler & Gipson 2000; Grinder & Krausman 

2001; Kilstrom 2004; Perrine 2005). Marten are also able to exploit a wide range of prey 

resources but are fairly restricted to mature forest habitat (Zielinski et al. 2005). Lynx, perhaps 

one of the best examples of a predatory specialist, are well known for their dietary dependence 

on snowshoe hare (Lepus americanus) and are therefore associated with mature or mixed-age 

forest and tall shrub habitats that support hares (Ruggiero et al. 2000). The desirability of these 

species for their fur also may play a role in how land use changes can impact mesocarnivore 

distributions. If increased anthropogenic activity leads to increased access into new areas for 

trappers, valuable species like marten, lynx, and wolverine may be more susceptible to harvest.

We used occupancy modeling, which uses repeated presence-absence survey data to 

estimate detectability and spatial use patterns, to address four main predictions about the effects 

of bottom-up factors on mesocarnivores (MacKenzie et al. 2002). First, we predicted that snow 

conditions (depth and compaction) would have a strong influence on mesocarnivore occupancy. 

We expected snow depth to negatively affect all species except lynx. Increasing snow depth can 

hinder most species’ ability to effectively move and forage, but the low foot-load of lynx (4.1-8.8 

times less than that of coyotes) enables them to move on top of the snow where other species will 

sink in (Halpin & Bissonette 1988; Murray & Boutin 1991). Because small mammal prey such as 

snowshoe hares are also able to stay on top of the snow, species like coyotes are forced to change
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their hunting behavior from chasing to a less familiar ambushing approach in deep snow, 

whereas lynx have a more adaptable hunting approach and can effectively hunt with a chasing or 

ambushing strategy (Murray & Boutin 1991, Murray et al. 1995). Further, we expected snow 

compaction to positively affect coyotes and foxes. Compact snow allows canids to move across 

the landscape quickly, aiding in their ability to avoid competitors and increasing their 

effectiveness at catching prey in a traditional chasing manner.

Second, we predicted that habitat would strongly influence mesocarnivore occupancy at 

the guild level, and that species-specific differences in habitat affiliation would occur based on 

individual species’ behavior. For specialist species (lynx and marten), we expected relatively 

high occupancy probabilities in forested habitats based on their prey requirements and species 

behavior (Ruggiero et al. 2000; Zielinski et al. 2005). For generalist species (wolverine, coyote 

and fox), we did not expect to find differences in occupancy based on habitat type because these 

species are well adapted to a variety of habitats. Third, we predicted that prey abundance would 

be a strong predictor of overall mesocarnivore occupancy, and that individual mesocarnivore 

species would all have positive responses to areas with high prey abundance.

Finally, we predicted that anthropogenic activity would have a neutral or positive effect 

on occupancy for coyote and red fox and a negative effect on the remaining species. Valuable fur 

or a dependence on contiguous habitat tracts may reduce the probability of wolverine, marten, 

and lynx occupancy in heavily populated human areas, whereas canid pelt prices are far lower 

(Dorendorf 2015) and canids have been shown to thrive in human-dominated landscapes 

(Bateman & Fleming 2012). We expected canids to use snowmachine trails and established 

recreational areas to take advantage of anthropogenic food sources and pre-packed trails for easy 

traveling (Grinder & Krausman 2001; Goad et al. 2014).
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2.3. MATERIALS AND METHODS

2.3.1. Study Region

Our study region included two study sites (hereafter, “Denali” and “Susitna”) within the 

central Alaska Range of interior Alaska (Fig. 2.1). Boreal forest (including spruce Picea spp., 

aspen Populus spp. and birch Betula spp.), deciduous shrub, and tundra habitats dominate the 

landscape across both sites. This region is characterized by short summers and long, cold winters 

with ground-covering snow that can last from September until May (Shulski & Wendler 2007). 

Wolves (Canis lupus), black bears (Ursus americanus) and grizzly bears (Ursus arctos) were 

present in the region, as well as caribou (Rangifer tarandus) and moose (Alces alces). The Denali 

study site was a 2000-km2 area made up of federal, state, and private lands including the 

northeastern portion of Denali National Park and Preserve (DNPP) along with portions of the 

Stampede corridor, a 470-km2 parcel of state and private land. DNPP represented an ecosystem 

that was relatively undisturbed and lacked anthropogenic habitat alterations and hunting or 

trapping pressures. Transportation within DNPP during the winter was restricted to ski and dog 

team. In contrast, the Stampede corridor, located outside of DNPP, was used for hunting, 

trapping, and motorized recreation vehicles and home to several hundred year-round residents. 

The Susitna study site was approximately 145 km southeast of the Denali study site and 

consisted of 1800 km2 of primarily public (state and Bureau of Land Management) or Alaska 

Native corporation lands. Although this area did not include any protected areas and harvest of 

all five target species of mesocarnivores was allowed, it was less developed and less traveled 

than the Stampede corridor portions of the Denali study area. However, the proposed Susitna- 

Watana hydroelectric dam site was located in the southwest corner of the study area, and
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proposed transmission lines and new road corridors would span the entire latitudinal range of the 

study area (Alaska Energy Authoity 2014).

2.3.2. Survey Methods

We used a grid-based sampling design to collect data on mesocarnivore presence, prey 

abundance, snow depth and compaction, and habitat characteristics within our study region. We 

used ArcGIS (version 10.1, ESRI, Redlands, California) to overlay each study area with a grid of 

2x2-km cells. This cell size (4 km2) was chosen because it most closely matched marten home 

range size, the smallest of our target species (Buskirk 1983). Analysis at this spatial scale 

represents true occupancy probability for marten, but the assumption of spatial closure was likely 

violated for the other species. Thus, “occupancy probabilities” correspond to probabilities of use 

for foxes, coyotes, lynx, and wolverine. For simplicity, however, we refer to these as “occupancy 

probabilities” for all species. We assigned each grid cell one of three habitat types (forest, shrub, 

or tundra) based on the dominant vegetation cover type within the cell, as calculated from 

satellite imagery (Homer et al. 2007). Fine-scale habitat data (percent cover and composition of 

trees and shrubs) were also collected within each cell during winter surveys. Preliminary 

analyses revealed that fine-scale habitat data did not improve the occupancy models, and we 

therefore used the broad categorical habitat classifications in final model sets.

A stratified random sample of cells was selected from each study site based on the 

proportion of cells within each habitat classification. Each cell was further classified as either an 

area of high or low anthropogenic activity, relative to the surrounding region (Fig. 2.1). This 

distinction was made based on the sample cell’s proximity to human residences and 

development, ease of access (based on road and/or trail density), and land ownership. Cells 

within DNPP were classified as low activity cells, and all cells within the Stampede Corridor

14



were classified as high activity. Cells in the Susitna area were classified as high activity if they 

were found along the Denali highway or along the main winter trapping and hunting 

snowmachine trail. High activity areas were relative to our study region only and were not 

comparable to large metropolitan areas or other urbanized regions.

Surveys were conducted by two researchers within each study site from January to 

March, 2013 - 2014. In 2013, we evaluated the efficacy of three survey techniques: linear 

transects (n = 51 cells), square transects (n = 39 cells), and remote cameras (n = 45 cells). 

Cameras provided too few photos, and these cells were excluded from analyses. The linear 

transect method used temporal replication to estimate detection probabilities, whereas the square 

transects used spatial replication, which eliminated the need for return visits to the cell 

(MacKenzie et al. 2006). Where terrain allowed and snowmachine use was permitted, cells were 

surveyed by snowmachine. Where snowmachine use was prohibited (i.e., designated wilderness 

areas in DNPP) or impractical due to terrain, we surveyed linear transects by dog team or on 

foot. Areas surveyed by dog team were frequented by other dog mushers as well. Square 

transects were 1 km on each side and surveyed in a single visit. Linear transects were 1.87 km 

long on average (SE = 0.063), and they were surveyed repeatedly throughout the winter (range = 

2-10 repeats, mean = 3.88). In 2014, we re-surveyed the randomly generated cells from 2013 and 

also surveyed those cells that we travelled through en route to the random cells (Fig. 2.1). All 

cells in 2014 (n=210) were surveyed using linear transects with temporal replication. This 

allowed us to increase our sample size and survey efficiency.

For all transects, we recorded all target mesocarnivore tracks encountered during the 

survey. We also recorded snow depth and snow compaction at the start of each transect and 

every 500 m thereafter. Snow compaction was indexed by measuring the sink depth of a 198-g

15



tuna can (diameter = 8.2 cm and height = 4.2 cm), dropped from 50 cm above the ground. Snow 

conditions were also recorded at each encountered mesocarnivore track, and we also recorded the 

sink depth of a randomly-selected paw print (measured from the center of the pad) to assess the 

relationship between snow conditions and each species’ sinking depth. We tallied the number of 

ptarmigan and grouse (Phasianidae family), snowshoe hare, red squirrel (Tamiasciurus 

hudsonicus) and vole (Cricetidae family) tracks encountered at 500-m intervals. For each 

carnivore track encountered, we identified it to species and marked the location on a handheld 

GPS unit (Garmin eTrex30, Garmin Ltd.). Because snow conditions can affect detection 

probability, we conducted surveys after a minimum of 24 h since the last track-obliterating 

snowfall to allow adequate time for tracks to accumulate, and no more than 7 days after a 

snowfall to prevent tracks from becoming too melted out, windblown, or otherwise disrupted.

2.3.3. Occupancy Analysis

We used single-season, single-species occupancy models to estimate occurrence (use) 

probabilities of the target mesocarnivore species. The single-season occupancy model provides 

estimates of two response parameters: probability of site occupancy (^), and detection 

probability (p ), which is the probability that the target species is detected given that it is present 

(MacKenzie et al. 2002). Although two seasons of data were included in our analysis, we used a 

single-season model framework and included year as a covariate in our candidate model set 

because we were most interested in factors affecting use, not occupancy dynamics that would 

require estimation of colonization and extinction parameters. Similarly, species was included as a 

covariate, which allowed us to combine data from all species into one database and develop 

models to examine species-specific differences as well as guild-wide patterns. All analyses were
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performed in program R version 3.1.0 (R Development Core Team 2014) using packages 

unmarked (Fiske & Chandler 2011) and AICcmodavg (Mazerolle 2015).

We included two survey-specific covariates and nine site-specific covariates in our 

models using a logit link function. Survey covariates were: number of days since the last 

snowfall (DSLS) and total distance (km) surveyed within a sample cell (DIST). Site-specific 

covariates were: study year (YEAR), survey method (METHOD), study area (AREA), habitat 

type (HABITAT), species (SPECIES), level of anthropogenic activity (ACTIVITY), average 

snow depth over all survey occasions (DEPTH), average snow compaction over all survey 

occasions (COMPACTION), and average total combined prey species abundance per km 

surveyed, adjusted for days since last snowfall (PREY). We calculated average snow depth, 

snow compaction, and prey abundance within each habitat type and used a Pearson’s correlation 

matrix to test for correlation between continuous covariates. DSLS, DIST, DEPTH, 

COMPACTION, and PREY were standardized for analyses.

We used a three-step process to develop a finalized candidate model set that was both 

biologically relevant and analytically feasible. We ranked all models based on AICc and QAICc 

(Burnham & Anderson 2002). First, we constructed models to estimatep  while holding y  

constant (Schuette et al. 2013), using all combinations of DSLS, DIST, YEAR, METHOD, 

AREA, and SPECIES. The top-ranking model contained DSLS, DIST, AREA, and SPECIES, 

and received 37% AICc weight. The next best model contained DSLS, DIST, YEAR, AREA, 

and SPECIES and received 32% AICc weight. Both models received significant support (A AICc 

< 1), therefore we used all covariates from the more parameterized model, 

p(DSLS+DIST+YEAR+AREA+SPECIES), in the next steps in order to account for all relevant 

predictors of p .

17



In the second step, all combinations of YEAR, AREA, HABITAT, SPECIES, 

ACTIVITY, DEPTH, COMPACTION, and PREY were used to build models that estimated y  

whilep  was modeled as a function of covariates from step one. This resulted in a full candidate 

set of 256 additive models. We used this full set of models to calculate summed individual 

covariate weights to assess the relative importance of each predictive covariate on guild-wide 

occupancy. Covariates with weights > 50% were considered important (Burnham & Anderson

2002). In step three, we used a A AICc < 2 cutoff to reduce the full candidate set down to the top 

10 models. We supplemented this model set with seven interaction models and a null model, for 

a final candidate model set of 18 models. Each of these seven models contained an interaction 

term between SPECIES and one of the other seven covariates used to model occupancy. These 

models were developed in order to directly address our species-specific predictions about the 

influence of snow, habitat type, prey, and anthropogenic activity on occupancy.

We assessed fit of the data by evaluating the most complex model in the candidate set 

using a Pearson x2 goodness-of-fit test (MacKenzie & Bailey 2004) using package AICcmodavg 

with 1000 bootstrapped simulations. We used an estimate of the overdispersion factor (c) to 

evaluate the dataset and identify potential overdispersion or independence violations. Violating 

the assumption of independence can lead to spatial autocorrelation issues and result in overly 

precise variance estimates (MacKenzie et al. 2006). We found a c value of 1.87, suggesting 

reasonable fit, and we therefore used the quasi-corrected AICc (QAICc) to rank the final 18- 

model set. In addition, we used the estimate of c to inflate standard errors to account for 

overdispersion (Burnham & Anderson 2002).

Species-specific occupancy and detection probability estimates were generated from the 

best-supported model (lowest QAICc) in the final 18-model set. We addressed our predictions by
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describing the influence of each explanatory covariate on guild-wide mesocarnivore occupancy 

using summed AICc weights from the full, additive model set, and we addressed species-specific 

occupancy predictions using the final model set with interaction terms.

2.4. RESULTS

Both snow conditions, DEPTH and COMPACTION, strongly influenced guild-wide 

mesocarnivore occupancy as well as species-specific occupancy probabilities. Snow DEPTH and 

COMPACTION received 55.5% and 68.2% AICc support weight in the additive model set 

(Table 2.1) and the top two ranking models based on the final 18-model set (which had a 

combined 92.0% QAICc weight) both estimated occupancy as a function of species and snow 

condition interactions (Table 2.2).

Overall occupancy (i.e., the proportion of survey cells across both areas that were 

occupied or used; (y  ± SE)) was highest for wolverines (0.62 ± 0.09) and lowest for marten (0.19 

± 0.04). Coyotes (0.36 ± 0.05), red foxes (0.50 ± 0.05), and lynx (0.45 ± 0.07) had similar, 

intermediate occupancy probabilities. We used our top-ranking model 

(y(SPECIES*COMPACTION) to produce these estimates while holding COMPACTION at its 

mean value. Detection probabilities (p ± SE) from this top-ranking model were greatest for red 

fox in Susitna during 2013 (0.40 ± 0.05) and lowest for wolverine in Denali in 2014 (0.13 ± 

0.03). Overall, detection probabilities were lower in the Denali site than the Susitna site (Fig.

2.2). Although survey effort increased during the 2014 season, detection (logit-transformed 

model coefficients ± SE) decreased during that year (P = -0.13 ± 0.13).

We predicted that snow depth would negatively impact all species except lynx. However, 

areas with deeper snow were less likely to be occupied by coyotes (P = -0.28 ± 0.20), red fox (P 

= -0.21 ± 0.27), and lynx (P = -0.57 ± 0.37), and more likely to be occupied by wolverine (P =
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0.96 ± 0.33) and marten (P = 1.27 ± 0.36) (Fig. 3.3 A). Coyotes (P = -0.23 ± 0.19) and red foxes 

(P = -0.16 ± 0.27) had higher occupancy probabilities in areas with compact snow, whereas lynx 

(P = 0.83 ± 0.33), wolverine (P = 0.88 ± 0.33), and marten (P = 1.44 ± 0.37) had higher 

occupancy probabilities in areas with fluffy snow (Fig. 3.3 B). Average (mean ± SE) sink depth 

of snow tracks was greatest for lynx (6.3 cm ± 0.3) and wolverine (6.5 cm ± 0.3) and lower for 

coyote (4.5 cm ± 0.2), fox (4.1 cm ± 0.2), and marten (4.4 cm ± 0.2). Snow depths (mean ± SE) 

were similar in shrub (44.2 ± 1.8) and forest (39.0 ± 2.1) habitats and lowest in tundra (28.4 ±

2.2). Compaction was greatest (least penetrable snow) in the tundra (4.9 ± 0.3) and least (most 

penetrable snow) in the forest (8.0 ± 0.3). There was low correlation between snow (DEPTH and 

COMPACTION) and total prey species abundance (-0.19 and -0.22, respectively). Prey 

abundance was highest in forest habitats (7.6 ± 1.5 tracks per km*day), moderate in shrubs (3.2 ± 

0.4), and lowest in tundra (1.8 ± 0.2).

We predicted HABITAT would be an important explanatory covariate of guild-wide as 

well as species-specific mesocarnivore occupancy. Our full model set indicated that HABITAT 

was indeed the most influential variable on guild-wide occupancy (Table 2.1). Based on model 

y(HABITAT+SPECIES), probability of occupancy (logit-transformed model coefficients ± SE) 

was highest in the forest (P = -0.05 ± 0.28) and lowest in the open tundra landscapes (P = -1.27 ±

0.27) across all species. We also predicted that specialist species would prefer forested habitats 

whereas generalists would show little preference among the three major habitat types. Model 

y(HABITAT*SPECIES) revealed that lynx and marten (known habitat specialists) indeed had 

highest occupancy probabilities in forested habitat and the remaining species (habitat generalists) 

had more equally distributed occupancy probabilities among the three habitat categories, but 

patterns of habitat use across all species were quite similar (Fig 3.4). Although habitat strongly
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influenced guild-wide mesocarnivore occupancy, the y(HABITAT*SPECIES) model had little 

support (A QAICc > 12.0), indicating that other factors had more effect on use.

Total prey species abundance was a poor predictor of guild-wide mesocarnivore 

occupancy (Table 2.1). The influence of PREY on mesocarnivores at the species-specific level 

was assessed in model y(SPECIES*PREY) (Table 2.2). Probability of occupancy (logit- 

transformed model coefficients ± SE) increased in areas of greater prey abundance for coyotes (P 

= 0.71 ± 0.33), lynx (P =5.52 ± 2.83), and wolverine (P = 2.21 ± 1.70), and decreased with 

greater prey abundance for red fox (P = -0.90 ± 0.38) and marten (P = -1.33 ± 0.53). However, 

this model received little support (QAICc weight = 3%).

Lastly, we predicted that occupancy would be negatively impacted by areas of high 

anthropogenic activity for all species other than coyotes and red foxes. In high activity areas, 

marten had very low occupancy probabilities, and coyotes and lynx had the highest probabilities 

of occupancy (Fig. 3.5), but we found little support to suggest that species-specific occupancy 

probabilities were influenced by ACTIVITY (Table 2.2). Similarly, guild-wide mesocarnivore 

occupancy was not strongly affected by anthropogenic activity (Table 2.1).

2.5. DISCUSSION

Our analysis of northern mesocarnivore occupancy indicates that abiotic factors strongly 

affect this important guild and the potential effects of future climate-induced change may be 

profound. Understanding how abiotic and bottom-up forces drive species distributions is vital. 

Landscape level changes, including those brought on by climate and anthropogenic factors, are 

imminent across much of the northern boreal regions and we have shown the importance of 

several landscape factors on mesocarnivores. Snow depth and compaction were the most
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influential predictors of mesocarnivore occupancy that we tested. The negative response to 

increasing snow depth shown by coyotes and red foxes matched our predictions. Likewise, we 

found that these species were more likely to occur in areas of more compact snow. Wind-blown 

regions, river corridors, existing animal travel routes, roads, and trails are all areas that could 

produce highly compacted and relatively shallow snow conditions, and these areas can allow 

canids to more successfully chase prey, escape predators by using familiar travel routes, and 

increase visibility to aid in hunting and predator avoidance (Murray & Boutin 1991; Murray, 

Boutin & O'Donoghue 1994).

We predicted that lynx, unlike canids, would be more tolerant of deep snow conditions 

due to their low foot loading (Murray & Boutin 1991; Murray, Boutin & O'Donoghue 1994). 

Surprisingly, lynx occupancy was lowest among all study species in areas of deep snow. 

However, their high occupancy probability in areas of less compact (fluffy) snow suggests that 

overall lynx are most frequently using areas with shallow, but fluffy snow. Lynx may use 

shallow snow for similar reasons described for canids, to reduce energetic costs, and they may be 

avoiding travel routes with compact snow that are frequented by canids to avoid competitive 

interactions (Ruggiero et al. 2000). On average we found that lynx sunk into snow more deeply 

than either canid species, contrary to our predictions and previous findings about foot-load ratios 

(Murray & Boutin 1991; Murray, Boutin & O'Donoghue 1994). However, the high probability of 

lynx use in areas with fluffy snow could lead to a deeper sink depth than canids without 

increasing energetic costs. Similarly, canid sink depth was likely reduced relative to lynx due to 

their higher use of compacted snow areas.

We found that snow was a better predictor of landscape-scale occupancy than either prey 

abundance or habitat type, although we recognize that we measured snow conditions and prey

22



abundance at a different resolution than habitat type. Lynx are generally thought to use areas 

where they can most successfully access their primary prey source, with snow conditions playing 

a minimal role in use patterns (Ruggiero et al. 2000). The highest prey abundance during our 

study occurred in forested areas with fluffy snow, two conditions that were associated with high 

probabilities of lynx use. However, there was no direct correlation between snow conditions and 

prey abundance, and snow depths did not differ between forest and shrub habitats. In addition, 

lynx spatial use patterns may be determined primarily by snow conditions when there is an 

increased need for long distance daily travel. This can occur during periods of low snowshoe 

hare abundance (Ward & Krebs 1985), as was the case during our study.

Mustelids (wolverine and marten) also had highest probabilities of occupancy in areas of 

fluffy snow, but they were more likely to occur in areas with deeper snow. A previous study of 

marten in Manitoba found that they occurred across a range of snow depths and were seemingly 

unaffected by deep snow, possibly using subnivean travel routes under deep snowpack for 

thermal cover, predator avoidance, and increased access to prey species such as voles (Raine 

1983). Similarly, wolverine are known to require persistent spring snow for denning (McKelvey 

et al. 2011), which may explain their occurrence in deep snow areas throughout the winter 

leading up to the denning period.

Snow conditions strongly affected occupancy of all mesocarnivores in our study, and yet 

those effects varied substantially among species. Climate change may directly impact these 

species’ space use patterns, and ultimately their distribution. Snow conditions in northern boreal 

regions of Alaska, and worldwide, are predicted to change dramatically over the next century 

(Chapin et al. 2014; Winfree et al. 2014). Warmer temperatures and increased precipitation 

throughout the winter months may increase the variability of climatic conditions across the
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boreal regions. Areas projected to warm above freezing may experience more rain, less total 

snow accumulation and wetter snow that more easily becomes compacted. In those regions, 

species that use areas with shallow, compacted snow (i.e. canids) may become more widespread 

and abundant due in part to energetically efficient travel, increased hunting opportunities, and 

easier predator avoidance. In areas projected to remain below freezing, increases in winter 

precipitation could increase snow depth, which may favor mustelids by increasing access to 

spring denning areas and allowing for more consistent subnivean travel corridors. Snow 

conditions in boreal regions are projected to become similar to current conditions in areas such 

as the northwestern United States, where mid-elevation mountainous regions experience more 

winter precipitation as snow, and lower or more coastal regions receive more rain (McKelvey et 

al. 2011; SNAP 2015).

Our study was conducted near the northern edge of the region that harbors all five of our 

studied mesocarnivore species, with the southern edge of this region extending into the 

Northwestern United States (US). Although the Northwestern US does contain viable wolverine, 

marten, and lynx populations, these populations are generally restricted to isolated boreal regions 

with deep, persistent snow cover (Ruggiero et al. 1994). In contrast, coyotes and red foxes are 

widespread throughout North America, including areas that receive little or no snow (Riley et al.

2003). Canids in northern boreal regions may therefore continue to persist and thrive in areas that 

receive less snowfall, whereas mustelids may become restricted to areas that maintain sub

freezing temperatures consistently through the winter.

Surprisingly, habitat was a poorer predictor of species-specific occupancy probabilities 

than snow conditions. Thus, the effect of habitat type on occupancy does not appear to vary 

substantially among species. However, habitat was a strong predictor of occupancy when
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examining all mesocarnivores together, and we found forest habitat types to be areas of highest 

occupancy probabilities. The latter results are consistent with previous findings, especially those 

that describe lynx and mustelid habitat use (e.g., Ruggiero et al. 1994; Kilstrom 2004; Squires et 

al. 2010). We found highest numbers of prey in forest habitats, which could explain higher levels 

of mesocarnivore use in forested areas. However, we did not find prey abundance to be a strong 

predictor of occupancy in any analyses. It is possible that prey tracks are a poor index of 

abundance, especially for species such as voles that can travel below the snow, and ptarmigan 

that may fly through an area or perch in vegetation, rendering them undetectable via track 

surveys. Precise, spatially explicit estimates of prey abundance can be difficult to obtain across 

large study areas required for carnivore studies. Using track counts is one way to easily produce 

a spatially explicit abundance index, but validation of this method is needed before strong 

conclusions can be drawn.

Although the generalist species did occur in all habitats, we found strong guild-wide 

association with forested habitats and fairly weak differences in habitat use between generalist 

and specialists (Fig 2.4). Climate change may increase shrub and forest cover in some regions 

(Tape, Sturm & Racine 2006), which we have shown should broadly benefit mesocarnivores. 

Energy projects such as the Susitna-Watana hydroelectric dam, which is proposed for 

development in one of our study areas, may have habitat-mediated impacts on mesocarnivores at 

localized scales. The proposed dam would create a 9,500-hectare inundation reservoir in an area 

that is currently dominated by mature spruce forest, thereby removing prime habitat for forest 

specialists such as marten and lynx as well as habitat used by the generalist mesocarnivores. 

However, local extirpation of forest dependent species is unlikely due to the availability of 

boreal forest in the outlying regions beyond the inundation zone.
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Energy development in boreal regions could affect mesocarnivores by increasing 

disturbance levels in addition to removing habitat. Levels of anthropogenic activity across our 

study region had minimal influence on species-specific occupancy and no influence on guild- 

wide mesocarnivore occupancy. We suggest this finding was due to the relatively low levels of 

activity in our study region. Our study region experiences very little habitat fragmentation and 

has a small human population, with the two nearest towns (Healy and Cantwell, AK) containing 

only 1,240 yearly residents (U.S. Census Bureau, 2010). This area is similar to many other boreal 

systems, and the low human population density may facilitate avoidance of areas with intensive 

human activity by mesocarnivores. Our results indicate that current levels of anthropogenic 

activity in rural boreal areas do not strongly affect mesocarnivore occupancy. However, a 

marked increase in activity or a large-scale disturbance associated with energy infrastructure 

could produce different results. If construction of the Susitna-Watana dam moves forward, 

mesocarnivore occupancy should continue to be monitored to improve our understanding of how 

mesocarnivores respond to increased anthropogenic activity in boreal regions.

In conclusion, our study indicates that snow conditions likely play a large role in 

determining guild-wide and species-specific patterns of mesocarnivore occupancy in northern 

boreal regions. It is likely that there will be winners and losers when it comes to adapting to 

landscape level changes, and we have shown that snow conditions, which are likely to change 

dramatically in the near future, may be one of the most significant factors determining who wins 

and who loses. In turn, the shifting mesocarnivore guild may lead to further community-wide 

cascading events. Future work should explore the impact of snow conditions on mesocarnivore 

occupancy over time and across a wider range of boreal environments to assess how patterns of
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use change with a changing climate. In addition, addressing the link between these abiotic 

drivers and interspecific interactions may help further explain spatial use patterns.
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2.7. FIGURES

Figure. 2.1. Study area map
Interior Alaska mesocarnivore study region and survey locations including individual 2 x 2 km 
survey cells (n = 300). Black cells had relatively high levels of anthropogenic activity and white 
cells had relatively low levels of activity. Cells were surveyed during winters of 2013 and 2014. 
Black star shows approximate location of proposed Susitna-Watana hydro dam site.
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Figure. 2.2. Mesocarnivore detection probabilities
Detection probability estimates with standard errors for each target species by study site in 2013. 
Estimates were derived from the top ranking overall model: y(SPECIES*COMPACTION) 
^(AREA+DIST+DSLS+SPECIES+YEAR). DIST and DSLS were held at their mean value.
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Figure. 2.3. Mesocarnivore occupancy probabilities by snow conditions 
Occupancy probability for each target species based on snow conditions within the interior 
Alaska study region, 2013-2014. Snow depth (panel A) and snow compaction (panel B) are 
measured in cm. Snow compaction ranges from highly compact (0) to fluffy (10). Error bands 
represent 95% confidence intervals.
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Figure. 2.4. Mesocarnivore occupancy probabilities by habitat type
Species-specific occupancy probabilities across major habitat categories within the interior
Alaska study region, 2013-2014. Error bars represent 95% confidence intervals.
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Figure. 2.5. Mesocarnivore occupancy probabilities by levels of anthropogenic activity 
Influence of high and low levels of anthropogenic activity on occupancy probabilities of interior 
Alaska’s mesocarnivore species, 2013-2014. Error bars represent 95% confidence intervals.
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2.8. TABLES

Table 2.1. Predictive covariate summed model weights
Influence of covariates (summed AICc weight) on mesocarnivore occupancy probabilities in 
interior Alaska, 2013-2014. Levels of each categorical covariate are listed in the description.

Covariate
Name

Description AICc Weight 

(%)

SPECIES Target species (coyote, lynx, marten, red fox, wolverine) 99.9

HABITAT Major habitat type within sample cell (forest, shrub, tundra) 99.2

COMPACTION Survey cell average snow compaction. Standardized to mean of 0 68.2

DEPTH Survey cell average snow depth. Standardized to mean of 0 55.5

PREY Average prey species abundance per cell. Standardized to mean of 0 40.5

AREA Study site (Denali or Susitna) 34.7

ACTIVITY Level of anthropogenic activity within cell (high or low) 29.2

YEAR Study year (2013 or 2014) 27.8
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Table 2.2. Occupancy model selection table
Top ranked models explaining mesocarnivore occupancy in interior Alaska, 2013-2014. Models 
are described by the number of parameters (K), Quasi-Akaike Information Criterion value 
corrected for sample size (QAICc), change in QAICc (AQAICc) and overall model weight 
(QAICcWt). Models represent the subset with A QAICc < 10 from the final set of 18 models. 
The detection probability, p, was modeled asp(AREA+DIST+DSLS+SPECIES+YEAR) for all 
8 models.

Model Description K QAICc AQAICc QAICcWt

0(SPECIES*COMPACTION) 20 1537.39 0.00 0.58

0(SPECIES*DEPTH) 20 1538.48 1.09 0.34

0(SPECIES*PREY) 20 1543.15 5.76 0.03

^(HABITAT+SPECIES) 17 1545.40 8.01 0.01

^(HABITAT+SPECIES+COMPACTION) 18 1546.02 8.63 0.01

0(HABITAT+SPECIES+SNOW) 18 1546.71 9.31 0.01

0(SPECIES*AREA) 20 1546.71 9.32 0.01

0(HABITAT+SPECIES+SNOW+COMPACTION) 19 1546.84 9.45 0.01
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CHAPTER 3. EVALUATING MESOCARNIVORE POPULATION STATUS USING 

OCCUPANCY AND DENSITY MODELING2

3.1. ABSTRACT

1. Interspecific interactions among carnivore species can shape community dynamics 

through phenomena such as mesocarnivore release and carnivore cascades. Although 

many studies have shown that apex predators can strongly impact ecosystems, their 

effects on mesocarnivores vary substantially among studies. Inconsistencies among 

studies may arise from the use of different survey and analytical methodologies. Multiple 

non-invasive survey methods have been established to monitor elusive mesocarnivore 

species, and parameters such as occupancy and density are widely used to evaluate 

population trends. However, the ability of relatively inexpensive and simple methods, 

such as occupancy, to accurately represent trends in carnivore population size has not 

been well examined.

2. We used non-invasive track and scat surveys of coyotes (Canis latrans) and red foxes 

(Vulpes vulpes) in the interior of Alaska to estimate occupancy probabilities and densities 

of these two species. We compared occupancy and density estimations using three 

methods: single-season occupancy models, dynamic occupancy models, and spatially 

explicit capture-recapture models.

3. We found that occupancy estimates derived from single-season and dynamic occupancy 

models produced nearly identical results for coyote and red fox populations. Current

Prepared for submission in the Journal of Animal Ecology as Pozzanghera, C.P., Sivy, K.J., Lindberg, M.S., 

Mumma, M.A., Colson, K., and Prugh, L.R. (2015) Evaluating mesocarnivore population status using 

occupancy and density modeling.
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occupancy probabilities were similar for both species and strongly influenced by habitat 

type. Red fox densities were higher than coyote densities, but densities for both species 

were far lower than those reported from studies in lower latitudes.

4. We found that estimates of occupancy and density each provided different information 

about our study populations, suggesting that occupancy (based on track distribution) was 

not a good proxy for density. Top ranking occupancy and density models varied about 

highly influential predictor variables, and parameter estimates of comparable models did 

not follow similar trends.

5. The low cost of occupancy study designs relative to density surveys may not warrant 

their use as a density proxy. Occupancy should be used to assess habitat use patterns, 

spatial partitioning of landscapes, and year to year changes in distributions, as it was 

originally designed to do.

3.2. INTRODUCTION

Apex and mesopredators play a key role in ecological communities, and global declines 

in apex predator populations have resulted in an increased interest and need for carnivore 

research (Miller et al. 2012). Direct and indirect interactions between apex and mesocarnivores 

can ripple through ecosystems, and the loss of apex species has begun to shift the role of 

mesocarnivores (Prugh et al. 2009). Many studies have documented mesocarnivore release and 

carnivore cascades in a variety of populations (Ritchie & Johnson 2009), but other studies have 

failed to document mesocarnivore release, and the response of small carnivores to the presence 

of large carnivores remains controversial (e.g., Gehrt & Clark 2003; Squires et al. 2012; Allen et 

al. 2014). Discrepancies among carnivore studies may arise in part because of different
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methodologies. Many studies use indirect measures of carnivore activity or distribution, or 

provide correlative information to examine interspecific interactions between carnivores (e.g., 

Chamberlain & Leopold 2005; Levi & Wilmers 2012; Miller et al. 2012; Sollmann et al. 2012). 

Few studies use experimental manipulations or estimate true animal density to compare 

population sizes and assess these community dynamics (Henke & Bryant 1999; Berger & Gese 

2007). Although some studies have compared the relative efficiency of various survey designs 

(Gompper et al. 2006), fewer studies have assessed the consistency of inference across different 

methods commonly used to examine carnivore population dynamics (but see Clare, Anderson & 

MacFarland 2015).

Due to the elusive nature of many carnivores, data hungry population parameters such as 

density and abundance can be logistically difficult and prohibitively expensive to obtain 

(Garshelis 1992). For that reason, the use of density and abundance proxies has grown in 

popularity (Pollock et al. 2002; Jhala, Qureshi & Gopal 2011). Analyses such as occupancy 

modeling produce population-level metrics that describe the probabilities that a species occupies 

or uses predefined areas (MacKenzie et al. 2006). While traditional occupancy models are not 

designed to be direct surrogates for density, they can be used to describe spatial partitioning of 

the landscape among carnivores (Schuette et al. 2013; Steinmetz, Seuaturien & Chutipong 2013), 

and some studies have shown a positive relationship between occupancy and population size 

(Gaston et al. 2000; Bailey, Simons & Pollock 2004; Clare, Anderson & MacFarland 2015). 

However, movement patterns of carnivores can change dramatically in response to changes in 

prey, climate, or interspecific interactions, and these changes may strongly affect occupancy 

patterns and complicate the use of occupancy as a direct proxy for carnivore abundance (Murray 

& Boutin 1991; Kamler & Gipson 2000; Chamberlain & Leopold 2005; Prugh 2005; Randa et al.
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2009). Dynamic occupancy models extend traditional models by including parameters to 

estimate colonization and extinction of study sites by a species of interest, allowing more 

accurate inferences to be made about the changes in occupancy from year to year and in response 

to a variety of factors (MacKenzie et al. 2003). Including a spatial and temporal component to 

occupancy increases the power of this model, but it is still unclear whether occupancy can or 

should be used as a density surrogate.

Studies that estimate carnivore density have typically used standard capture-mark- 

recapture (CMR) models (Mowat & Strobeck 2000; Boersen, Clark & King 2003; Mulders, 

Boulanger & Paetkau 2007), but these models generate abundance estimates that must be 

converted to density based on post-hoc trapping area designations and thus result in 

heterogeneity in capture probabilities due to edge effects (Karanth & Nichols 1998). 

Improvements from traditional density estimators have been made through the recent 

development of spatial CMR models that estimate density directly by combining the location 

data provided by trap or capture coordinates with the encounter histories of marked individuals 

(Borchers & Efford 2008; Royle & Young 2008; Thompson, Royle & Garner 2012). Spatially 

explicit capture-recapture (Borchers & Efford 2008) is a recently developed method for spatial 

density estimation that is based on a maximum likelihood framework. Flexibility in these models 

allows for non-invasive survey designs to be used; however, the need for individual 

identification presents an added challenge compared to presence/absence surveys like 

occupancy.

In this paper, we compare the consistency of inference using multiple survey and 

modeling techniques that are used increasingly to study carnivores: spatially explicit capture- 

mark-recapture (SECR), traditional occupancy modeling, and dynamic occupancy modeling.
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Surveying for carnivores presents unique challenges and requires researchers to weigh the pros 

and cons of many decisions. Clear management goals or study objectives should be the driving 

force behind choosing a study design, but as is often the case, limitations on time, money, and 

qualified field technicians may end up guiding many project decisions. With that in mind, it is 

critical to understand what options are available and what questions can be answered with the 

resources available to each study.

Both of the above outlined modeling techniques (occupancy and spatial capture-mark- 

recapture) can be used with a non-invasive survey design. Non-invasive survey methods 

including remote cameras, track surveys, scat and hair collections, and tracking plates are often 

used to monitor carnivore populations (Soule et al. 1988; Long et al. 2011; Sollmann et al. 2012; 

Whittington et al. 2014). Non-invasive surveys are safer, often require fewer bureaucratic 

hurdles, and can provide similar or superior information as surveys that require capture and 

handling of study animals (Gompper et al. 2006; Long et al. 2008). Occupancy surveys are 

possibly the most logistically feasible population level survey. Presence/absence data can be 

collected with observational surveys, sound surveys, sign surveys, motion activated camera 

traps, or species specific markings of a target species, and depending on the survey design, 

researchers may only need to conduct a single survey (Long et al. 2011; Sollmann et al. 2012; 

Whittington et al. 2014). These features, along with the limited amount of laboratory analysis 

required, makes occupancy studies flexible and inexpensive.

Survey designs for SECR density estimation can be equally as flexible but require a way 

for the researcher to assign each “sample” collected to a specific individual. This is most 

commonly done through collection of genetic material, but can also be done using photos of 

species with uniquely marked individuals (Karanth 1995). This process likely will result in more
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time and money invested into SECR surveys and laboratory processing than required for 

occupancy studies, but may be necessary if density is the parameter of interest. By combining 

winter scat collection with snow tracking surveys, we simultaneously collected data required for 

SECR and occupancy modeling, respectively, to assess current populations of coyotes (Canis 

latrans) and red foxes (Vulpes vulpes) in two study areas in interior Alaska and to assess the 

relationships between these two modeling methods as well as the relationships between animal 

density and track density.

Mesocarnivores have been shown to play a key role in the boreal ecosystem in the 

interior of Alaska (Prugh 2005), yet little is known about their current population size and 

distribution in this region. Changes to the landscape brought on by increased anthropogenic 

development and climate shifts will likely alter coyote and red fox distributions (Alaska Energy 

Authority 2014; Winfree et al. 2014). In addition, state predator control efforts targeting wolves 

(Canis lupus) and bears (Ursus americanus and U. arctos) can result in patchy and fluctuating 

apex predator distributions that have unknown impacts on smaller canid species (Van 

Ballenberghe 2006; Alaska Department of Fish and Game 2015a). We provide the first non- 

invasive density and occupancy estimates of sympatric red fox and coyotes in areas of interior 

Alaska with and without wolf control, creating a population baseline that can be referred to for 

future management of these species. We generated red fox and coyote population estimates from 

different modeling methods to compare the inference that could be drawn from each. We 

examined the efficacy of using occupancy as a surrogate for density by comparing patterns in 

these population metrics between species and study areas. We predicted that occupancy 

estimates from traditional and dynamic occupancy models would be similar, and that occupancy 

and density estimates would have the same trends. Specifically, we predicted that within-species
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estimates of occupancy probability and density would be best estimated as a function of the same 

predictive covariates. Overall, we expected red fox densities and occupancy probabilities to be 

significantly higher than coyotes due to smaller home range requirements for foxes (Peters 1986; 

Sargeant, Allen & Hastings 1987; Harrison, Bissonette & Sherburne 1989). We also predicted 

the existence of a carnivore cascade and expected that low wolf abundance in the study area with 

wolf control would result in higher coyote density and lower red fox densities than in the study 

area where wolves were at natural densities (Levi & Wilmers 2012; Newsome & Ripple 2015).

3.3. MATERIALS AND METHODS

3.3.1. Study Region

Our study region included two study sites (hereafter, “Denali” and “Susitna”) within the 

central Alaska Range of interior Alaska (Fig 3.1). Boreal forest (including spruce Picea spp., 

aspen Populus spp. and birch Betula spp.), deciduous shrub, and tundra habitats dominate the 

landscape across both sites. This region is characterized by short summers and long, cold winters 

(Shulski & Wendler 2007). Black bears (Ursus americanus), grizzly bears (Ursus arctos), 

Canada lynx (Lynx canadensis), wolverine (Gulo gulo), American marten (Martes americana), 

ermine (Mustela erminea), and least weasel (Mustela nivalis) were also present in the region, as 

well as two aquatic mesocarnivores, mink (Mustela vison) and river otter (Lutra canadensis). 

Common prey species included voles (Cricetidae family), ptarmigan (Lagopus spp.), grouse 

(Bonasa umbellus and Falcipennis canadensis), snowshoe hares (Lepus americanus), red 

squirrels (Tamiasciurus hunsonicus), ground squirrels (Spermophilus parryii), caribou (Rangifer 

tarandus), and moose (Alces alces). The Denali study site was a roughly 2000-km2 area that 

included the northeastern portion of Denali National Park and Preserve (DNPP) along with 

portions of the Stampede corridor, a 470-km2 parcel of state and private land. All species within
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the DNPP border were protected from harvest, and general-season hunting and trapping of 

coyotes and foxes was legal in the Stampede corridor. The Susitna study site was approximately 

145 km southeast of the Denali study site and consisted of 1800 km2 of primarily public (state 

and Bureau of Land Management) or Alaska Native corporation lands. General season harvest of 

coyotes and red fox was also legal throughout the Susitna study area. In addition, this site has 

been included in the Intensive Management predator control program since 2000, resulting in a 

reduced wolf abundance in this area (Alaska Department of Fish and Game 2015b). Differences 

between study areas (i.e. weather, amount of human disturbance, prey abundance) did exist 

beyond wolf abundance, and we recognize that our models do not include all potentially relevant 

covariates to determine causes for potential population differences between study areas. Our 

focus is on comparing model results given consistent predictor variables, and we use study area 

comparisons as a way to directly compare the population level inference that we obtain from 

occupancy and density estimations.

3.3.2. Track surveys and sample collection

Scat samples were collected in each study site from January to March in 2013 and 2014 

for use in spatially explicit density estimations. Collection of samples coincided with 

mesocarnivore track surveys that used a grid-based survey design to estimate species occupancy 

probabilities. In 2013, each site was overlaid with a grid of 2x2-km cells using ArcGIS (version

10.1, ESRI, Redlands, California), and cells in each study area were randomly selected for 

occupancy surveys (Fig 3.1). We assigned each grid cell one of three habitat types (forest, shrub, 

or tundra) based on the dominant vegetation cover type within the cell, as calculated from 

satellite imagery (Homer et al. 2007). We surveyed a total of 300 cells across both years and 

study areas, 90 cells in 2013 and 210 cells in 2014. Fifty-one of these cells were surveyed during
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both seasons and used in the dynamic occupancy analysis. We used either linear transects or 

track squares to survey each cell. The linear transect method used temporal replication to 

estimate detection probabilities, whereas the square transects used spatial replication, which 

eliminated the need for return visits to the cell (MacKenzie et al. 2006). Where snowmobile use 

was prohibited (i.e., designated wilderness areas in DNPP) or impractical due to terrain, we 

surveyed by dog team or on foot. Because snow conditions can affect detection probability, we 

conducted surveys after a minimum of 24 h since the last track-obliterating snowfall to allow 

adequate time for tracks to accumulate, and no more than 7 days after a snowfall to prevent 

tracks from becoming too melted out, windblown, or otherwise disrupted. We recorded all 

mesocarnivore tracks encountered during each survey.

We connected the randomly selected survey cells in each study area with trails that 

resulted in a network of travel routes spread across each study site. These travel routes made up 

the primary scat survey areas in 2013 and 2014, and were also included in 2014 occupancy 

surveys to increase sample size (Fig 3.1). Scats that were encountered along travel routes were 

collected with a Ziplock plastic bag that was then placed inside an autoclave bag or Whirlpak. 

GPS coordinates, date, and estimated age of the scat were recorded. During daily surveys, any 

coyote or red fox tracks encountered along travel routes were marked and a fresh set of tracks 

was chosen at the end of the survey day to follow in order to find additional scat samples. We 

started these backtracking surveys at the point where canid tracks crossed our travel route, and 

followed them backwards until a scat was located. Backtracking surveys greatly increased 

sample size and expanded the search area. In addition to the collection of scats along established 

travel routes and backtracking trails, all scats that were opportunistically encountered during 

non-survey periods (i.e., when moving base camp locations, bringing in camp supplies, or
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exploring new regions of the study sites) were also collected. All scat samples were kept frozen 

to slow the degradation of fecal DNA.

3.3.3. DNA extraction and species verification

To extract DNA, scats were removed from the -80°C freezer and placed on ice to slowly 

defrost. After the outer surface of each scat had thawed (~ 30 minutes), we rubbed the outer 

surface of each scat with the end of a wooden craft stick. We broke off the end of the craft stick 

that contained the sample into a 1.5 ml tube so that no part of the stick extended above the top of 

the tube. DNA was then extracted using Qiagen DNA Investigator Kits (Qiagen Inc., Valencia, 

CA, USA) with a negative control included in each batch to monitor for contamination.

Each sample was identified to species using a modification of a previously developed 

mitochondrial DNA test (De Barba et al. 2014). Primer pair DL1F and DL5R (Palomares et al. 

2002) and a forward primer, Gulo1F (Dalen, Gotherstrom & Angerbjorn 2004), were combined 

with the primers SIDL (Murphy, Waits & Kendall 2000), H3R (Dalen, Gotherstrom & 

Angerbjorn 2004), and H16145 (Murphy, Waits & Kendall 2000), to amplify DNA fragments of 

species-specific lengths. Red fox and coyote scats were verified via DNA fragments of ~346 

base pairs (bps) and ~363 bps, respectively, whereas scats that failed to amplify or were from 

non-target species were excluded from further analyses. The conditions for our original 15 ^L 

reaction were 0.2 ^M DL1F, 0.2 ^M DL5R, 0.2 p,M GulolF, 0.4 ^M SIDL, 0.4 ^M H3R, 0.2 

^M H161453, 3 ^L H20, 1.26 p,L TE buffer, 7.5 p,L lx Qiagen Master Mix, 1.5 ^L Q solution, 

and 1.5 ^L of DNA extract. We later scaled down this reaction to 7 p,L to reduce costs. We 

maintained primer concentrations while adjusting the remaining solution volumes to 0.69 ^L 

dH20, 0 ^L TE buffer, 3.5 ^L 1x Qiagen Master Mix, 0.7 ^L 0.5x Qiagen Q solution, and 2 ^L of 

DNA extract. The PCR profile for both the 15 and 7 p,L reactions consisted of an initial
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denaturation step of 95°C for 15 minutes followed by 30 cycles of 95°C for 15 seconds, 46°C for 

90 seconds, 72°C for 60 seconds with a final elongation step of 72°C for 15 minutes. Fragment 

sizes were determined using an Applied Biosystems 3730xl Genetic Analyzer (Applied 

Biosystems Inc., Foster City, CA, USA) and associated GENEMAPPER 3.7 software.

3.3.4. Individual identification

All scats verified as red fox or coyote were genotyped twice using a canid PCR multiplex 

(C1) consisting of 5 microsatellite primer pairs (FH2328, FH2054, FH2010, FH2088, and 

FH2001; Breen et al. 2001; Guyon et al. 2003; Moore, Brown & Sacks 2010). Similar to our 

species verification test, we maintained primer concentrations for C1 while reducing the PCR 

volume from 20 to 7 ^L to limit costs. The concentrations of our 7 p,L reaction were 0.22 ^M 

FH2328, 0.18 ^M FH2054, 0.2 ^M FH2010, 0.22 ^M FH2088, and 0.22 ^M FH2001, along 

with 0.65 p,L dH2 O, 3.5 p,L 1x Qiagen Master Mix, 0.7 ^L 0.5x Qiagen Q solution, and 2 ^L of 

DNA extract. Samples that failed to produce matching genotypes at >3 loci were considered 

degraded and excluded from further analyses.

High quality coyote samples (>3 matching loci) were genotyped up to 2 additional times 

for C1 and up to 4 times for a second canid multiplex (C2) depending upon how many loci 

amplified consistently. C2 included 5 additional primer pairs (FH2137, FH2140, FH2159, 

FH2096, and CXX2235; Breen et al. 2001; Guyon et al. 2003) combined in a 7 ^L multiplex, 

scaled down from 20 ^L, that included control and sex identification primer pairs (DBX and 

DBY; Seddon 2005). The conditions for the 7 ^L reaction were 0.2 ^M FH2137, 0.2 ^M 

FH2140, 0.2 ^M FH2159, 0.22 ^M FH2096, 0.18 ^M CXX2235, 0.2 ^M DBX, 0.2 ^M DBY, 

0.6 p,L dH2O, 3.5 ^L 1x Qiagen Master Mix, 0.7 p,L 0.5x Qiagen Q solution, and 2 ^L of DNA 

extract. High quality fox samples (>3 matching loci) were genotyped up to 2 additional times for
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C1 and up to 4 times for a fox multiplex (V2), which we designed after we found that fox 

samples failed to amplify at certain loci contained in C2. V2 consisted of a 7 p,L reaction that had 

been scaled down from 20 ^L and included 4 primers pairs (INU055, FH2140, REN105L03, and 

CXX2235; Breen et al. 2001; Guyon et al. 2003; Moore, Brown & Sacks 2010) and 2 sex 

determining loci (CF-hprt and VV-sry; Berry et al. 2007). The conditions of the 7 ^L reaction 

were 0.2 ^M INU055, 0.2 ^M FH2140, 0.2 ^M REN105L03, 0.2 ^M CXX2235, 0.2 ^M CF- 

hprt, 0.07 ^M VV-sry, 0.65 p,L dH2O, 3.5 ^L 1x Qiagen Master Mix, 0.7 p,L 0.5x Qiagen Q 

Solution, and 2 ^L of DNA extract. The PCR profile for all 3 individual identification 

multiplexes began with a denaturation step of 95°C for 15 minutes followed by a touchdown of 

10 cycles at 94°C for 30 seconds, 68°C for 30 seconds (annealing), and 72°C for 45 seconds with 

a 1°C decrease in the annealing temperature at each cycle followed by 25 cycles at 94°C for 30 

seconds, 58°C for 30 seconds, and 72°C for 45 seconds and a final elongation step of 60°C for 15 

minutes. We included a negative control for each batch of PCR reactions. Allele sizes were 

determined using an Applied Biosystems 3730xl Genetic Analyzer (Foster City, CA, USA) and 

GENEMAPPER 3.7 software.

We determined consensus genotypes for each locus by comparing replicate PCRs for 

each sample and required >2 matching PCRs for heterozygous and >3 matching PCRs for 

homozygous loci because the probability of an allelic dropout is greater than the probability of a 

false allele. To construct reliable multi-locus genotypes for each sample, we required consensus 

genotypes at >6 loci for each fox and >7 loci for each coyote sample after first determining the 

minimum number of loci necessary to assure a low probability of misidentifying 2 first-order 

relatives as the same individual (probability of identity siblings <0.01; (Waits, Luikart &

Taberlet 2001) using the software GENALEX6 (Peakall & Smouse 2006). We then used
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GENALEX6 to identify individuals by matching our completed samples based on the consensus 

multi-locus genotypes. We categorized samples that had matching genotypes or a mismatch at 

only 1 locus as being from the same individual. Grouping samples with single mismatches 

avoided falsely inflating the number of individuals, because it was more likely that single locus 

mismatches would occur from allelic dropouts or false alleles than it was for the samples to 

represent 2 unique individuals (Peakall & Smouse 2006).

3.3.5. Statistical analyses

3 .3 .5 .1 . Oc cu p a n c y

We used single-season, single-species occupancy models and dynamic occupancy models 

to estimate coyote and red fox occupancy probabilities. The single-season occupancy model 

provides estimates of two response parameters: probability of site occupancy (^), and detection 

probability (p ), which is the probability that the target species is detected given that it is present 

(MacKenzie et al. 2002). Dynamic occupancy models include 2 additional parameters, 

colonization probability (y) and local extinction probability (s), to estimate population changes 

over time (MacKenzie et al. 2003). We included two survey-specific covariates and four site- 

specific covariates in our models using a logit link function. Covariates were: number of days 

since the last snowfall (DSLS), total distance surveyed within a sample cell (DIST), study year 

(YEAR; only included in single-season models), survey method (METHOD), study area 

(AREA), and habitat type (HABITAT). All analyses were performed in program R version 3.1.0 

(R Development Core Team 2014) using packages unmarked (Fiske & Chandler 2011) and 

AICcmodavg (Mazerolle 2015).

We used a two-step process to develop finalized candidate model sets that were both 

biologically relevant and analytically feasible for each species and each occupancy model
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technique. We report the following steps based on dynamic occupancy modeling, but note that 

our single-season analysis followed identical steps while ignoring the steps related to y and s. We 

ranked all models based on AICc and QAICc (Burnham & Anderson 2002). First, we 

constructed models to estimatep  while holding y, e, and y constant (Schuette et al. 2013), using 

all combinations of DSLS, DIST, METHOD, and AREA. In the second step, all additive 

combinations of HABITAT and AREA were used to build a candidate model set for each species 

that estimated y  while p  was modeled using the top-ranked detection model identified in step one 

and y and s were fixed as either a function of AREA or HABITAT. Because we only had two 

study years, we were unable to model the colonization and extinction parameters as a function of 

year. This resulted in a full candidate set of nine single-season models and 10 dynamic 

occupancy models for each species (1 null model was included with each analysis).

We assessed fit of the data for single season occupancy models by evaluating the most global 

model in the candidate set for each species using a Pearson x2 goodness-of-fit test (MacKenzie & 

Bailey 2004) using package AICcmodavg with 1,000 bootstrapped simulations. We used an 

estimate of the overdispersion factor (c) to evaluate the dataset and identify potential 

overdispersion or independence violations. Violating the assumption of independence (e.g., due 

to spatial autocorrelation) can result in overly precise variance estimates (MacKenzie et al.

2006). We found a c value of 2.46 for our coyote data and 1.59 for our red fox data, suggesting 

both had reasonable fit, and we therefore used the quasi-corrected AICc (QAICc) to rank the 

final 9 models for each species. In addition, we used the estimate of c to inflate standard errors to 

account for overdispersion (Burnham & Anderson 2002). A similar approach to assess goodness- 

of-fit for dynamic occupancy models has not been developed in available software packages, and
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package AICcmodavg does not support a correction for overdispersion in dynamic occupancy 

models. Therefore, we did not correct for any potential lack of fit in these models.

3 .3 .5 .2 . De n s i t y

We used spatially explicit capture-recapture models implemented with the R package 

secr to estimate coyote and red fox density (Borchers & Efford 2008). This model uses the 

spatial location of traps across the study area along with spatial records for every capture event to 

produce density estimates based on theoretical home range locations within the study area. The 

package secr allows a variety of trap (or detector) techniques to be implemented, including those 

used in non-invasive sampling. We used the “count” detector option which is designed for 

studies that capture animals using traps that do not restrict animal’s movements, and which 

allows multiple individuals to be captured at one location during the same occasion, making it 

ideal for scat collection studies. This method assumes that captures (detections) occur at a 

specified location within a sampling grid cell. Therefore, we created a grid of 1x1-km cells over 

each study region and specified the center of each cell as the “trap location”. The relatively small 

cell size ensured good spatial coverage of the study area and allowed us to map individual home 

ranges at a scale that produced more precise density estimates than the larger 2x2-km cells we 

used for occupancy surveys. We used ArcGIS (version 10.1, ESRI, Redlands, California) to 

identify the cell associated with each genotyped scat. In addition, we categorized each cell across 

both study sites based on the level of survey effort (termed “usage” in secr). Cells that 

intersected our primary scat travel routes were classified as high usage, cells located within areas 

that were accessible during backtracking surveys or opportunistic collections were classified as 

low usage, and cells that were never searched or inaccessible were considered unused.
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SECR models estimate three response parameters: density (D), the probability of 

detection for a detector at the center of the home range (g0), and a scaling parameter (o). 

Together, g0 and o define the model for detection probability as a function of location. Models 

may be constructed to estimate parameters based on automatically generated predictor variables 

such as survey occasion (t; the discrete sampling event) and survey session. A survey session in 

secr is defined as a set of occasions over which a population is considered closed to immigration, 

emigration, births, and deaths. We used study area (AREA) and survey year (YEAR) to break 

our study into a maximum of four sessions (Denali 2013, Denali 2014, Susitna 2013, and Susitna 

2014) or a minimum of two sessions where only AREA was evaluated (Denali and Susitna). We 

divided our surveys into two occasions each session (T), the first spanning from January through 

February, and the second consisting of March and early April. Occasions were set up to divide 

the survey season in half, both in terms of timing and survey effort. We chose not to separate our 

occasions by month (January, February, March) because January often produced fewer scat 

samples due to lack of daylight available for searching. We first used the above two predictors 

(session and occasion) to create 8 models for each species to estimate g0 and o while holding D 

constant. We then used AICc to identify the most parsimonious detection model for both coyote 

and fox. We then constructed models for D, the true parameter of interest, while maintaining a 

fixed set of detection parameters.

When modeling D, user-defined covariates and habitat masks may be used to estimate 

density across a group or landscape gradient. We included a habitat mask using 3 broad habitat 

categories that matched our occupancy habitat covariate: forest, shrub, and open tundra. We used 

the habitat mask to create models that estimated density as a function of habitat type 

(HABITAT). We also modeled density differences between sessions and occasions. We built a
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set of 9 models to estimate coyote density. The top-ranking model was then used to create a 

coyote density surface that described coyote activity centers across the study area. We modeled 

red fox density using the same habitat mask and session argument, and we also included the 

coyote density surface as a user-defined covariate in the red fox models to assess the effect that 

coyote density had on red fox density. Eleven fox models were created. All models were ranked 

using AICc. We did not correct for potential lack of fit in these models due to the large amount 

of computational power required to run fit tests in secr and the lack of any current support in the 

literature to suggest that such a test is useful to estimate overdispersion.

3.3.6. Model evaluation and comparison

We used the top-ranking models for each species and method, along with the best 

supported models that held either the density or occupancy parameters constant, to evaluate the 

consistency of inference among methods. Top ranking models were used to provide baseline data 

on current red fox and coyote population status. We compared parameter estimates between 

species from models holding y  and D constant and considered estimates to be significantly 

different between species if 95% confidence intervals did not overlap. We looked for similar 

trends in population estimates across our three models to signify consensus between modeling 

methods. In addition, we used well-supported models that estimated density and occupancy as 

functions of AREA or HABITAT to compare the influence of these covariates on our parameters 

of interest. We evaluated the precision of occupancy and density estimates by comparing 

coefficient of variation (CV) values for reported models (standard errors divided by parameter 

estimates).
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3.4.1. Species and individual identification

We successfully identified species of 84% of scats collected in winters 2013 and 2014 

(n = 875) and obtained reliable multi-locus genotypes from 82% of the coyote scats (n = 150 

genotyped scats from 36 individual coyotes) and 70% of fox scats (n = 355 genotyped scats from 

86 individual foxes).

3.4.2. Single-season occupancy models

Detection probabilities were estimated from the top-ranking model evaluated for each 

species when y  was held constant. The top-ranking model for coyotes contained DIST, DSLS, 

METHOD, and YEAR. Detection probabilities (p ± SE) were higher in 2014 (0.575 ± 0.155) 

than in 2013 (0.133 ± 0.044). Detection (logit transformed model coefficients ± SE) increased 

with DSLS (P = 0.253 ± 0.139) and DIST (P = 0.895 ± 0.199). The top-ranking model for fox 

contained DIST, DSLS, and YEAR. In contrast to coyotes, detection probabilities (p ± SE) were 

higher in 2013 (0.359 ± 0.054) than 2014 (0.237 ± 0.033). Detection (logit-transformed model 

coefficients ± SE) increased with DSLS (P = 0.574 ± 0.119) and DIST (P = 0.399 ± 0.145).

Occupancy for coyotes was best explained as a function of habitat type (Table 3.1): 

model p(DIST+DSLS+YEAR+METHOD) y(HABITAT). Coyote occupancy (y± SE) was 

highest in shrub habitats (0.51 ± 0.08), intermediate in forest (0.43 ± 0.09), and lowest in open 

tundra (0.16 ± 0.06). Overall coyote occupancy when holding y  constant was 0.40 ± 0.05. AREA 

was an influential covariate on occupancy (AQAICc = 1.81) when modeled with HABITAT 

(Table 3.1), and occupancy (logit-transformed model coefficients ± SE) was greater in Denali (P 

= -0.21 ± 0.39) than Susitna (P = -0.42 ± 0.47). Fox occupancy was best described when held 

constant (0.50 ± 0.05) or modeled as a function of YEAR, or YEAR and AREA (Table 3.1).

3.4. RESULTS
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Occupancy probabilities were greater in 2014 (0.65 ± 0.11) than in 2013 (0.40 ± 0.06) using 

model p(DIST+DSLS+YEAR) y(YEAR). Occupancy probabilities were nearly identical 

between Denali (0.50 ± .06) and Susitna (0.49 ± 0.07) when looking at study area differences 

alone.

3.4.3. Dynamic occupancy models

Detection probabilities for coyotes were best modeled as a function of DIST, DSLS, and 

AREA. Detection (logit-transformed model coefficients ± SE) increased with DSLS (P = 0.18 ± 

0.29) and DIST (P = 0.46 ± 0.26). Detection probabilities (p ± SE) were greater in the Denali 

study area (0.45 ± 0.09) than the Susitna study area (0.14 ± 0.06). Fox detection was best 

modeled as a function of DIST, DSLS, and METHOD. Detection probability (logit-transformed 

model coefficients ± SE) increased with DIST (P = 0.24 ± 0.18) but decreased with DSLS (P = - 

0.09 ± 0.25). Covariates included in these top-ranking detection models for each species were 

included for modeling of the occupancy, colonization, and extinction parameters.

Occupancy probability of coyotes using dynamic occupancy models was best explained 

as a function of habitat type when y and s were held constant (Table 3.2). Coyote occupancy (y  ± 

SE) was highest in shrub habitats (0.56 ± 0.17), intermediate in forest (0.46 ± 0.16), and lowest 

in open tundra (0.10 ± 0.10). Site colonization probability (y ± SE) was 0.23 ± 0.12 and local 

extinction probability (s ± SE) was 0.363 ± 0.19. Overall coyote occupancy when holding y  

constant was 0.34 ± 0.08. AREA was again an influential covariate when modeled with 

HABITAT (Table 3.2), and occupancy (logit-transformed model coefficients ± SE) was greater 

in the Denali study area (P = 0.17 ± 0.72) than the Susitna area (P = -1.78 ± 1.30).

The best-fitting fox model estimated occupancy as a function of habitat type while 

colonization and extinction were estimated as a function of AREA (Table 3.2). Fox occupancy

61



(y  ± SE) was highest in open tundra habitats (0.93 ± 0.18), intermediate in shrub (0.42 ± 0.12), 

and low in forested areas (0.3 ± 0.14). Site colonization probability (logit-transformed model 

coefficients ± SE) was greater in Denali (P = 3.12 ± 5.55) than Susitna (P = -2.18 ± 1.52) and 

local extinction probability was greater in Susitna (P = -0.29 ± 1.14) than Denali (P = -0.76 ± 

0.99). Overall fox occupancy when holding y  constant was 0.49 ± 0.09.

3.4.4. Spatially explicit capture-recapture models

Coyote detectability (log-transformed model coefficients ± SE) was best modeled as a 

function of AREA and YEAR. Detection probability at the home range center (g0) was greatest 

in Denali during 2013 (P = -1.37 ± 0.29) and lowest in Susitna 2013 (P = -2.96 ± 0.57). Fox 

detection was best modeled as a function of AREA alone and was greater in Susitna (P = -1.63 ± 

0.24) than in Denali (P = -2.18 ± 0.19).

The top-ranking model from our candidate model set (Table 3.3) estimated coyote 

density as a constant (6.02 ± 1.15 coyotes/1000km2) while the detection parameters were both 

estimated as functions of AREA and YEAR. We used this top-ranking model to produce a 

surface of coyote activity centers (Fig 3.2). Our second ranking, and well supported (AAIC = 

1.65), model estimated density as a function of AREA and YEAR and showed that coyote 

density was greatest in Denali during 2014 (19.7 ± 11.4 coyotes/1000km2) and lowest in Susitna 

during 2013 (3.0 ± 1.3 coyotes/1000km2). When estimating density as a function of HABITAT 

alone, coyote densities were greatest in forest habitats (20.8 ± 9.65 coyotes/1000km2), 

intermediate in shrubs (4.81 ± 1.41 coyotes/1000km2) and lowest in open tundra (2.2 ± NA 

coyotes/1000km2), however precision of these estimates was poor (Fig 3.3).

The top-ranking model for red fox described density and both detection parameters as a 

function of AREA (Table 3.3). This model suggested red fox densities were greater in Susitna
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(23.5 ± 3.4 foxes/1000km2) than in Denali (14.8 ± 3.1 foxes/1000km2). A model that held 

density constant and estimated the detection parameters as a function of AREA was also well- 

supported (AAICc = 1.07) and produced precise estimates of fox density (19.9 ± 2.4 

foxes/1000km2). Although there was some support for the model that estimated fox densities as a 

function of current coyote activity centers (AAICc = 3.3), there did not appear to be a strong 

response of foxes to coyotes. At low coyote density (1 coyote/1000km2), fox density was 

estimated at 20.1 foxes/1000km2, and with a 20-fold increase in coyote density (21.0 

coyotes/1000km2), fox density decreased by only 1.5% (19.8 foxes/1000km2).

3.4.5. Model comparison

The top-ranking single-season and dynamic occupancy models for coyotes both estimated 

y  as a function of habitat (Tables 3.1 and 3.2), while the best SECR model estimated coyote 

density as a constant (Table 3.1). Occupancy estimates were consistent between modeling 

methods (Fig 3.3), suggesting highest occupancy probabilities in shrub habitats. In contrast, 

density estimates indicated that coyote densities were higher in forest habitats compared to shrub 

and tundra, but these estimates had poor precision (Fig 3.3). The top-ranking models from the 

three different methods each suggested that different factors affected fox populations. The top- 

ranked single-season occupancy model estimated y  as a function of study year (Table 3.1), while 

dynamic occupancy models best estimated y  as a function of habitat type (Table 3.2), and 

density was best estimated as a function of study area (Table 3.3). Comparing estimates between 

models estimating y  or D  as a function of AREA alone (all of which had reasonable support) 

shows consistency between dynamic and single-season occupancy estimates, but a different trend 

in density. Density estimates showed significantly higher coyote abundance in Denali compared 

to Susitna, whereas occupancy estimates were similar between the two areas (Fig 3.4). When
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comparing constant estimates of y  or D for coyotes and foxes, both occupancy analyses showed 

consistent and non-significant trends of slightly higher fox than coyote occupancy, and the SECR 

analysis indicated fox densities were significantly higher than coyote densities (Fig 3.5). 

Estimates of y  or D in the constant model were more precise for foxes than coyotes using single

season occupancy models (CV= 0.10 and 0.13 for foxes and coyotes, respectively), dynamic 

occupancy models (CV= 0.18 and 0.24), and SECR density models (CV= 0.12 and 0.19).

3.5. DISCUSSION

Our study of mesocarnivores in the interior of Alaska provided an important evaluation 

of non-invasive survey methods and modeling techniques for carnivore research. We have shown 

that scat collection and snow tracking can be effective survey methods for coyotes and red fox in 

northern, boreal environments and that modeling techniques to estimate occupancy probability 

and density may provide useful but different information on mesocarnivore populations. These 

results suggest that inconsistent findings among mesocarnivore studies may be partially 

explained by methodological differences.

Our study has shown that both occupancy modeling and SECR density estimation can be 

useful tools, but based on our findings we caution against using occupancy as a surrogate for 

density in systems with similar species and sampling conditions (Gaston et al. 2000; Clare, 

Anderson & MacFarland 2015). We predicted that results from our two occupancy analyses 

(dynamic and single-season) would be similar and lead to the same population level inference. 

Although we did not use dynamic occupancy models to assess long term population level trends 

(MacKenzie et al. 2003), we showed that estimates between the models were consistent and that 

the dynamic occupancy models are robust and held up well to relatively small sample sizes. We 

used only the subset of survey cells that were surveyed during both years of our study for the
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dynamic occupancy models, resulting in a sample size less than one quarter the size of our 

single-season analysis (n = 51 cells vs 295 cells, respectively). Precision was worse, as expected, 

for the dynamic occupancy models; however, the inference drawn from both analyses were 

nearly identical between the two forms of occupancy models. We included a small number of 

covariates in our models, and there was general consensus that habitat type was the primary 

predictor of coyote occupancy. Although coyotes are considered habitat generalists across much 

of their range, in northern regions they are tied to snowshoe hares and may therefore be more 

dependent on habitat types that support high hare abundance (Murray, Boutin & O'Donoghue 

1994; Prugh 2005). Indeed, we found highest coyote occupancy in shrub and forest habitats. The 

single-season analysis for red fox best predicted occupancy as a function of survey year while 

the dynamic model predicted habitat to be the most influential parameter, however we were not 

able to include year in our dynamic occupancy analysis. Overall our analyses indicate that 

dynamic and single-season occupancy models can provide consistent results for occupancy 

probability, but acknowledge that in other settings these models might appropriately indicate 

different dynamics (e.g., stable occupancy with high, but balanced rates of extinction and 

colonization).

When comparing results between density estimates and occupancy estimates for both 

mesocarnivore species in our study, we found more inconsistencies than agreement. Density 

models seemed to perform well with the level of precision somewhere between that of the single

season and dynamic occupancy models, and even in instances with extremely low sample sizes 

(e.g., zero coyote tracks were found in tundra habitats in the Susitna area), all models converged 

and produced usable point estimates. The inconsistency between occupancy and density models 

was evident in two ways, however. First, top-ranking models from SECR analysis and those
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from the occupancy analyses did not include any of the same predictive covariates on their 

parameters of interest (density and occupancy, respectively). While coyote occupancy varied 

strongly by habitat type, the best-ranked density models held habitat, study area and study years 

constant. Similarly, fox density varied most strongly by study area, while study area had minimal 

influence on occupancy probabilities. Second, when we examined comparable models for both 

coyotes and foxes, we found strong inconsistencies between point estimates from SECR 

compared to occupancy. Coyote densities were significantly higher in forested areas compared to 

shrub lands, while occupancy estimates were higher in shrub than forest. In addition, coyote 

densities were significantly higher in Denali than Susitna, yet occupancy probabilities were 

similar between the two study areas. Clare, Anderson & MacFarland (2015) estimated bobcat 

occupancy and density using camera traps across a large area and regressed occupancy estimates 

from multiple survey sites as functions of density and found a strong positive relationship 

between occupancy and density. We surveyed an area less than one third the size of this bobcat 

study and were unable to produce similar functions to directly compare occupancy and density, 

which could partially explain some of the discrepancies in our findings.

We recognize that our comparison between occupancy modeling and SECR density 

estimation used different sampling approaches, and it is possible that occupancy and density 

estimates could be more comparable in situations when identical data are used. Nonetheless, 

these comparisons offer useful insights because carnivore researchers often use fecal genotyping 

to estimate density and use cameras or track surveys to estimate occupancy. In future studies, the 

collection of scats could be used to create a presence/absence encounter history so that 

occupancy modeling as well as SECR modeling could be done with the same data. In addition, 

occupancy may be more likely to accurately represent density in situations when the target
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species is territorial and survey cells can approximately match the size of an average animal’s 

home range. In this way, it can be assumed that occupied cells represent a single animal’s home 

range, and the proportion of occupied cells in a study area more closely approximates overall 

abundance rather than use. However this analysis represents the first one of its kind for these 

species and we suggest that density and occupancy estimates should not be used interchangeably 

for population inference without further examination of the relationship between these two 

parameters.

Both occupancy modeling and SECR analyses are important for carnivore research. 

Occupancy modeling provides an inexpensive and informative way of looking at spatial use 

patterns, changes in distribution of a species over time, and even interspecific-interactions 

(Sollmann et al. 2012; Richmond, Hines & Beissinger 2013; Schuette et al. 2013). Managers 

should be cautious about using occupancy as a proxy or index for abundance, as spatial use 

patterns may easily change due to a variety of factors unrelated to population size including prey 

abundance, habitat quality, or climate patterns (Murray & Boutin 1991; Kamler & Gipson 2000; 

Chamberlain & Leopold 2005; Prugh 2005; Randa et al. 2009). Our analysis suggests that 

occupancy is most appropriate to examine current use patterns of different levels of landscape 

scale factors such as habitat. Although we were unable to examine the relationships of 

occupancy and density in areas with high carnivore densities, occupancy is bounded at 1 whereas 

density is not, creating no way to identify occupancy differences between regions of high density 

(Clare, Anderson & MacFarland 2015). Density models allow for more precise population 

monitoring related to population size and have direct benefits for species that are subject to 

harvest pressure by trapping and hunting. Obtaining density, even using non-invasive survey 

methods, is a more costly endevour than occupancy analyses and can be highly variable when
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using genetic information (Mumma et al. 2015). Costs of non-invasive genetic analyses can 

range between $25-150 per sample depending on sample sizes, complexity of analyses, and labor 

costs (Stenglein et al. 2010; Mumma et al. 2015), in addition to the costs of fieldwork to collect 

samples. In contrast, costs of occupancy estimation consisted solely of fieldwork expenses.

Although we have shown that little consensus can be drawn between occupancy and 

density estimation, our results provide an informative baseline for boreal Alaska canid 

populations. Overall we predicted that red fox would have greater densities and occupancy 

probabilities across our study region than coyotes. Red foxes are smaller bodied, require less 

overall prey biomass, and can therefore maintain smaller home ranges (Peters 1986; Sargeant, 

Allen & Hastings 1987; Harrison, Bissonette & Sherburne 1989). Indeed, our spatially explicit 

density estimates for red fox were more than three times higher than estimates for coyotes (19.9 

foxes vs 6.03 coyotes per 1,000 km2). While consistent with our predictions, these estimates 

were dramatically lower than reported densities from other parts of their distributions, which are 

as high as 910 foxes and 710 coyotes per 1,000 km2 (Hein & Andelt 1995; Henke & Bryant 

1999; Heydon, Reynolds & Short 2000; Sarmento et al. 2009). Low densities may be partly 

related to low snowshoe hare numbers during our study, but large red fox home ranges reported 

in other northern boreal regions may be an indication that these mesocarnivores continually 

persist at low densities in this ecosystem (Jones & Theberge 1982). Indeed, our low-density 

estimates were similar to estimates of coyote abundance from a previous study in interior Alaska 

(Prugh et al. 2005).

Results from our density analysis seem to suggest a clear difference in population size 

between these canids, yet our occupancy analyses suggested that there was an equal distribution 

of used landscape in our study region. Estimates from both dynamic and single season
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occupancy analyses indicated that foxes had similar occupancy probabilities to coyotes. Many 

studies have shown spatial partitioning of sympatric coyotes and red foxes (Sargeant, Allen & 

Hastings 1987; Harrison, Bissonette & Sherburne 1989; Gosselink et al. 2003). Taking into 

account our density estimates, we suggest that coyotes exist at a lower density yet require larger 

home ranges and end up using an equal amount of the landscape as the more numerous red foxes 

across the boreal regions of interior Alaska. Using both density and occupancy provides a more 

complete picture of the current status of these populations, but these results suggests that relying 

on one method alone may lead to incomplete inference if the study goal is to examine space use 

and population size, especially when comparing two species with different home range sizes.

Finally, we predicted that current coyote and red fox populations would be impacted by 

the Alaska state-sponsored wolf control program and that our analyses would highlight the 

existence of a carnivore cascade. Our study was un-replicated and differences in density and 

occupancy estimates between our study areas could have been due to factors aside from wolf 

control, and we used this analysis as an example to explore the consistency of inference drawn 

between two analytical methods. We predicted that wolf control would release coyote 

populations and indirectly reduce red fox abundance, leading to higher coyote densities and 

occupancy probabilities in Susitna than in Denali and the opposite pattern for foxes (Roemer, 

Gompper & Van Valkenburgh 2009; Levi & Wilmers 2012). We found that in our high wolf 

study area (Denali), mesocarnivores had strikingly similar densities and occupancy probabilities 

to each other, and coyotes actually had higher densities in Denali than in the Susitna area, where 

wolf densities have been reduced by 35-80% per year for the past decade using aerial shooting 

(Alaska Department of Fish and Game 2015b). In addition, we predicted that coyotes would 

displace red fox, but we found that coyote density had little to no effect on red fox densities
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across the study region. Finally, in the Susitna area where low wolf abundance should have 

indirectly resulted in low red fox abundance by releasing coyotes, red fox densities were actually 

higher, and occupancy probabilities equal to those in Denali. These findings do not support the 

existence of a carnivore cascade between wolves, coyotes, and red fox in this region, and our 

multi-method approach for evaluating this hypothesis provides a useful example of how 

inconsistencies in current mesocarnivore research may arise due to differences in methodologies.

Assessing population trends at a landscape scale can provide an important overview of a 

population’s status and provide insight into species interactions. Differences in cost, efficiency, 

efficacy, and survey logistics can make it difficult to decide which survey methods are most 

appropriate for a specific project. These differences may translate into discrepancies in research 

and interpretation of biological data. We have shown that occupancy modeling and density 

estimation can be successfully used to assess mesocarnivore populations in northern boreal 

regions, but we caution that these parameters should be treated independently and that occupancy 

may not be an appropriate proxy for true density estimates.
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3.7. FIGURES

Figure. 3.1. Study area map
Interior Alaska mesocarnivore study areas showing individual 2 x 2 km survey cells (n = 300) 
used for occupancy analyses, and primary scat collection survey routes through each study area.
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Figure. 3.2. Coyote density centers
Interior Alaska study areas showing coyote density for 2013 and 2014. Estimates 
(animals/1000km2) are derived from model D(.)g0(SA+Y)o(SA+Y).
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Figure. 3.3. Coyote occupancy and density estimates by habitat type
Interior Alaska coyote density estimates and occupancy probabilities. Estimates are derived from 
the top ranking spatially explicit capture-recapture (A) dynamic occupancy (B) and single-season 
occupancy (C) models that estimate D or p  as a function of habitat type. Error bars represent 
95% confidence intervals.
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Figure. 3.4. Canid occupancy and density estimates by study area
Interior Alaska red fox and coyote density estimates and occupancy probabilities for the Susitna 
and Denali study areas. Estimates are derived from the top ranking spatially explicit capture- 
recapture (A) dynamic occupancy (B) and single-season occupancy (C) models that estimate D 
or p  as a function of study area. Error bars represent 95% confidence intervals.
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Figure. 3.5. Overall canid occupancy and density estimates
Interior Alaska red fox and coyote density estimates and occupancy probabilities. Estimates are 
derived from the top ranking spatially explicit capture-recapture (A) dynamic occupancy (B) and 
single-season occupancy (C) models that estimate D or p  as a constant. Error bars represent 95% 
confidence intervals.
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3.8. TABLES

Table 3.1. Single-season occupancy model selection table
Occupancy models for coyotes and red foxes in interior Alaska, 2013-2014. Models are 
described by the number of parameters (K), Quasi-Akaike Information Criterion value corrected 
for sample size (QAICc), change in QAICc (AQAICc) and overall model weight (QAICcWt). 
Models are ranked by QAICc. Parameters are held constant (.), or modeled as a function of 
survey distance (DIST), days since the last snowfall (DSLS), survey method (M), study area 
(SA), study year (Y), or habitat type (H).

Model K QAICc AQAICc QAICcwt

Coyote

p(DIST+DSLS+M+Y) 0(H) 9 242.53 0.00 0.26

p(DIST+DSLS+M+Y) 0(.) 7 243.21 0.69 0.18

p(DIST+DSLS+M+Y) 0(H+Y) 10 244.09 1.57 0.12

p(DIST+DSLS+M+Y) 0(H+A) 10 244.33 1.81 0.11

p(DIST+DSLS+M+Y) 0(Y) 8 244.71 2.19 0.09

p(.) 0(.) 3 244.74 2.21 0.09

p(DIST+DSLS+M+Y) 0(A) 8 245.10 2.58 0.07

p(DIST+DSLS+M+Y) 0(H+Y+A) 11 245.54 3.01 0.06

p(DIST+DSLS+M+Y) 0(Y+A) 9 246.76 4.23 0.03

Red fox

p(DIST+DSLS+Y) 0(Y) 7 462.20 0.00 0..40

p(DIST+DSLS+Y) 0(.) 6 463.17 0.97 0..24

p(DIST+DSLS+Y) 0(Y+A) 8 464.13 1.93 0.15

p(DIST+DSLS+Y) 0(A) 7 465.26 3.06 0.09

p(DIST+DSLS+Y) 0(H+Y) 9 466.23 4.03 0.05

p(DIST+DSLS+Y) 0(H) 8 467.23 5.03 0.03

p(DIST+DSLS+Y) 0(H+Y+A) 10 467.88 5.67 0.02

p(DIST+DSLS+Y) 0(H+A) 9 469.35 7.15 0.01

p(.) 0 (.) 3 478.55 16.35 0.00
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Table 3.2. Dynamic occupancy model selection table
Dynamic occupancy models for coyotes and red foxes in interior Alaska, 2013-2014. Models are 
described by the number o f parameters (K), Akaike Information Criterion value (AIC), change in 
AIC (AAIC) and overall model weight (AICwt). Models are ranked by AIC. Parameters are held 
constant (.), or modeled as a function of survey distance (DIST), days since the last snowfall
(DSLS), survey method (M), study area (SA), or habitat type (H).

Model K AIC AAIC AICwt

Coyote

0(H) y (.) e (.) p(DIST+DSLS+A) 9 244.68 0.00 0.17

0(H+A) y (A) e (A) p(DIST+DSLS+A) 12 245.11 0.43 0.14

0(H+A) y (.) e (.) p (D IS T + D S L S + A ) 10 245.31 0.63 0.13

0(.) Y(.) e (.) p(.) 4 245.57 0.89 0.11

0(H) y (A) e (A) p(DIST+DSLS+A) 11 245.67 0.98 0.11

0(.) y (.) e (.) p(DIST+DSLS+A) 7 245.74 1.06 0.10

0(.) y (H ) e (H) p(DIST+DSLS+A) 9 245.96 1.28 0.09

0(A) y (A) e (A) p(DIST+DSLS+A) 10 247.60 2.92 0.04

0(A) y (.) e (.) p(DIST+DSLS+A) 8 247.69 3.0 0.04

0(H+A) y (H ) e (H) p(DIST+DSLS+A) 14 247.72 3.04 0.04

0(H) y (H) e (H ) p(DIST+DSLS+A) 13 250.00 5.32 0.01

0(.) y (A) e (A) p(DIST+DSLS+A) 11 250.23 5.55 0.01

0(A) y (H) e (H) p(DIST+DSLS+A) 12 251.37 6.69 0.00

Red fox

0(H) y (A) e (A) p(DIST+DSLS+M) 11 306.79 0.00 0.45

0(H+A) y (A) e (A) p(DIST+DSLS+M) 12 307.29 0.50 0.35

0(.) y (A) e (A) p(DIST+DSLS+M) 9 310.30 3.51 0.08

0(H) y (.) e (.) p(DIST+DSLS+M) 9 311.38 4.59 0.04

0(H+A) y (.) e (.) p(DIST+DSLS+M) 10 311.71 4.92 0.04

0(A) y (A) e (A) p(DIST+DSLS+M) 10 312.26 5.47 0.03

0(.) y (.) e (.) p(DIST+DSLS+M) 7 315.04 8.25 0.01

0(H) y (H) e (H ) p(DIST+DSLS+M) 13 316.29 9.50 0.00

0(H+A) y (H ) e (H) p(DIST+DSLS+M) 14 316.60 9.81 0.00

0(A) y (.) e (.) p(DIST+DSLS+M) 8 317.04 10.25 0.00

0(.) Y(.) e (.) p(.) 4 319.01 12.22 0.00

0(.) y (H ) e (H) p(DIST+DSLS+M) 11 319.53 12.74 0.00

0(A) y (H) e (H) p(DIST+DSLS+M) 12 321.51 14.72 0.00
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Table 3.3. Spatially explicit capture-recapture model selection table
Spatially explicit capture recapture models for coyotes and red foxes in interior Alaska, 2013
2014. Models are described by the number of parameters (K), Akaike Information Criterion 
value corrected for sample size (AICc), change in AICc (AAICc) and overall model weight 
(AICcwt). Models are ranked by AICc score. Parameters can be held constant (.), or modeled as 
a function of study area (SA), study year (Y), survey occasion (T), habitat type (H), or coyote 
density (CD).

Model K AICc AAICc AICcwt

Coyote

D(.)g0(SA+Y)a(SA+Y) 9 901.69 0.00 0.60

D(SA+Y)g0(SA+Y)a(SA+Y) 12 903.34 1.66 0.26

D(h)g0(SA+Y)a(SA+Y) 11 905.14 3.45 0.11

D(SA+Y+H)g0(SA+Y)a(SA+Y) 14 907.38 5.70 0.03

D(SA+H)g0(SA)a(SA) 8 914.45 12.76 0.00

D(SA)g0(SA)a(SA) 6 915.76 14.07 0.00

D(.)g0(.)a(.) 3 921.01 19.38 0.00

D(.)g0(SA)a(SA) 5 928.03 26.35 0.00

D(h)g0(SA)a(SA) 7 933.67 31.98 0.00

Red fox

D(SA)g0(SA)a(SA) 6 2265.13 0.00 0.49

D(.)g0(SA)a(SA) 5 2266.21 1.07 0.29

D(CD)g0(SA)a(SA) 6 2268.43 3.30 0.09

D(SA+H)g0(SA)a(SA) 8 2268.55 3.42 0.09

D(H)g0(SA)a(SA) 7 2270.35 5.22 0.04

D(.)g0(SA+Y)a(T) 7 2278.82 13.69 0.00

D(CD)g0(SA+Y)a(T) 8 2281.22 16.08 0.00

D(SA+Y)g0(SA+Y)a(T) 10 2282.54 17.41 0.00

D(H)g0(SA+Y)a(T) 9 2283.63 18.50 0.00

D(SA+Y+H)g0(SA+Y)a(T) 12 2287.58 22.45 0.00

D(.)g0(.)a(.) 3 2310.49 45.36 0.00
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CHAPTER 4. GENERAL CONCLUSIONS

This study has revealed current trends in mesocarnivore space use patterns and 

population densities in interior Alaska. I have shown that landscape factors, including abiotic and 

bottom-up forces, play a key role in current occupancy patterns of coyotes, red foxes, lynx, 

marten, and wolverines. In addition, I have used multiple non-invasive survey techniques and 

modeling methods to produce current estimates o f occupancy probabilities and canid densities 

while comparing two commonly used modeling techniques.

I examined the impacts that habitat type, prey abundance, snow conditions, and human 

activity had on the target mesocarnivore species. I found snow conditions, both average snow 

depth and snow penetrability, to be the most influential covariates for predicting occupancy 

probabilities. Coyotes and foxes had highest occupancy probabilities in areas of shallow and 

compacted snow. These findings matched my predictions and are well supported by other studies 

that suggest canids use areas for traveling and hunting that reduce the amount o f energy required 

to move through the snow (Murray & Boutin 1991; Murray, Boutin & O'Donoghue 1994).

Unlike canids, lynx have been shown to be more tolerant o f deep snow conditions (Murray & 

Boutin 1991) and I predicted that they would have greater occupancy probabilities in deep and 

less compacted (fluffy) snow compared to other mesocarnivores. I did find that lynx used areas 

o f fluffy snow, however, I was surprised to find that lynx occupancy in deep snow was the 

lowest o f all mesocarnivores. Wolverines and marten had unique responses to snow conditions in 

that they both used deep and fluffy snow. This preference may be due to the need for snow 

covered denning areas (wolverine) and increase availability of subnivean travel routes (marten) 

used for predator avoidance, thermal cover, and access to prey (Raine 1983; McKelvey et al. 

2011). Overall I have shown that climatic conditions may play an important role in determining
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how mesocarnivores are distributed. Snow conditions are likely to shift dramatically in boreal 

regions due to climate change (Chapin et al. 2014; Winfree et al. 2014), and these shifts could 

lead to changes in spatial distributions of mesocarnivores.

Although snow conditions were the most influential predictor of mesocarnivore 

occupancy during my study, I recognize that prey and habitat are also important (Murray, Boutin 

& O'Donoghue 1994; Prugh 2005) and that covariation among these predictors must be 

addressed. When assessing occupancy of all mesocarnivores together, habitat type was a strong 

predictor. This guild-wide analysis suggested that forest habitat types were used the most by the 

study species, and I also found that prey abundance was highest in these forested areas.

However, I found that snow depths did not differ significantly between forest and shrub habitats 

and that there was no correlation between snow conditions and prey abundance. Prey covariate 

also received little support as a predictor of occupancy probability. Prey abundance was based on 

a count of tracks encountered during occupancy surveys, and it is possible that tracks are a poor 

index of prey abundance. These methods need to be validated further before strong conclusions 

about the impact of prey can be made. I also investigated the effect that human activity had on 

mesocarnivores and found a minimal impact in our study area. It is likely that the current levels 

of human influence in this rural boreal region are too low to be of significance at the scale that I 

examined (~4,000 km2), however an increase in development and activity in the area could cause 

dramatic changes (Ordenana et al. 2010; Bateman & Fleming 2012). I suggest that my results be 

used as a baseline and that follow up studies are conducted in the coming years to assess the 

impacts climate change and development projects such as the proposed Susitna-Watana 

hydroelectric dam may have on mesocarnivores.
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The occupancy analysis presented in Chapter 1 highlights resources o f particular 

importance and influence on mesocarnivore distribution. Occupancy analyses like the one I have 

conducted have become a staple for non-invasive research on habitat selection, impacts of 

urbanization on wildlife, and identifying resource needs and areas o f importance for vulnerable 

species (Karanth et al. 2011; Sollmann et al. 2012; Schuette et al. 2013). The population level 

inference that can be derived from these models is extensive (MacKenzie et al. 2006), however 

the relationship between occupancy and density has not been well established. In Chapter 2 I 

evaluated the use of occupancy models and spatially explicit capture-recapture (SECR) models 

for mesocarnivore studies, and I compared the inference obtained from each.

I predicted that occupancy models (single-season and dynamic) would produce similar 

inference on canid population abundance as density estimates produced from SECR analysis. As 

expected, I found that single-season and dynamic occupancy models produced similar results. 

Overall, estimates suggested higher red fox occupancy than coyote occupancy and similar trends 

in both habitat use and study area occupancy. Precision was good in both models, and the 

slightly greater variance observed in the dynamic models is likely due to smaller survey-site 

sample sizes. However, I found inconsistencies between results from occupancy and SECR 

analyses, suggesting that methodological differences may explain some of the inconsistencies 

found in current mesocarnivore research regarding interspecific interactions (e.g., Gehrt & Clark 

2003; Ritchie & Johnson 2009; Allen et al. 2014). In addition, my results do not support recent 

findings that occupancy is a strong index of density (Clare, Anderson & MacFarland 2015). I 

found that habitat was a strongly influential covariate for both coyote and fox occupancy, but 

was not well supported as a predictor of density. Overall precision was adequate with all models 

(CV < 0.25), suggesting that each is a viable option for mesocarnivore research, however
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managers should be cautious about using occupancy as a proxy for density. The differences I 

have shown between these modeling methods could partially be explained by differences in 

survey designs and data collection. Using scat collection to estimate density, and track surveys to 

estimate occupancy may have led to some of the differences between this study and that of Clare, 

Anderson & MacFarland (2015), and I recommend that further model comparisons be performed 

using data collected from a single survey method. While occupancy modeling provides an 

inexpensive and informative way to assess spatial patterns, it is likely most appropriate for 

assessing habitat use, changes in spatial distribution over time, or spatial relationships between 

co-occurring species (Sollmann et al. 2012; Richmond, Hines & Beissinger 2013; Schuette et al. 

2013). Density estimation with SECR is a more suitable model if research goals revolve around 

monitoring population size for conservation purposes or harvest management.

My findings will improve management efforts and survey designs in boreal regions for 

these valuable furbearer species by establishing important resource needs and baseline 

population demographic information for these species. As conditions in boreal regions around 

the world continue to change, it is vital to understand how mesocarnivore species interact with 

their environment so that we can better understand how they interact with each other and how to 

continue to study them in the most efficient way possible.
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