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Abstract

Arctic ground squirrels (Spermophilus parryii kenicotti) hibernate underground; 

experiencing burrows temperatures of -5 to -25°C. Hibernation consists of 7-9 months of 

torpor interrupted every 2-3 weeks by 10-20 h arousal episodes with high body 

temperatures and metabolic rates. Metabolic rates and body temperatures were measured 

during arousal episodes under temperate and arctic conditions. No difference in cost of 

arousal episodes was detected. Yet, when the cost of thermogenesis during torpor was 

included, proportional cost of arousal episodes decreased from 86 to 27% comparing 

temperate to arctic conditions. The relationship between metabolic rate and body 

temperature was examined during the recooling phase of hibernation. As animals entered 

torpor, body temperature was allowed to either decrease naturally or was experimentally 

altered at different points along the recooling curve. The changes in metabolic rate can 

be explained by changes in body temperature and no sign of temperature-independent 

metabolic suppression was detected.
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Introduction

Hibernation in Arctic Ground Squirrels

The extreme environment represented by winter in the Arctic has captivated 

biologists for generations. From a physiological point of view, adaptations allowing 

animals to survive during periods with very low temperatures, short day lengths, and 

poor food availability are particularly fascinating for the challenges to limits of design 

and regulation of body temperature patterns and energetics. This thesis examines 

hibernation, one strategy utilized to survive the winter months.

The arctic ground squirrel (Spermophilus parryii kenicotti) with a range that 

extends north to the Arctic Ocean is the northern most hibernating rodent (Hall 1981). 

Arctic ground squirrels overwintering near Toolik Lake, Alaska, experience minimum 

soil temperatures at hibemacula level of -8 to -23°C (Buck and Barnes 1999a). Unique 

adaptations that allow S. p. kenicotti to survive these extreme conditions during 

hibernation include their ability to decrease core body temperatures to -2.9°C (Barnes 

1989) and adopt minimal torpid metabolic rates as low as 0.01 ml 0 2 ‘g’1‘h' 1 (Buck and 

Barnes 2000). Mechanisms that allow metabolic rate to be depressed below basal levels 

are the subject of ongoing controversy.

Several decades of studies on energetics of hibernation in ground squirrels have 

been conducted under temperate conditions, with only two studies at slightly sub-zero 

temperatures (Heller and Coliver 1974; Geiser and Kenagy 1988), and no studies,



besides those conducted at the Institute of Arctic Biology (Barnes 1989, Buck and 

Barnes 1999a,b, and 2000, Barnes et al. unpublished), have been conducted under arctic 

conditions.

Arousal Episodes

Animals spend 7-9 months in frozen burrow systems, alternating between 2-3 

week bouts of hypothermia and hypometabolism (torpor) and 10-20 h arousal episodes 

with high body temperatures and metabolic rates (Twente and Twente 1965; Barnes and 

Ritter 1993). Arousal episodes include 3 phases: rewarming, interbout euthermia and 

recooling. The rewarming phase is characterized by an increase in metabolic rate 

followed by an increase in body temperature from torpid levels to levels equivalent to 

euthermic nocturnal minima (Lyman 1948, Wang 1978, Daan et al. 1991). During 

interbout euthermia, animals are either alert or asleep, and they maintain high body 

temperatures (35 to 37°C) and elevated metabolic rates. The recooling phase is 

characterized by an abrupt decrease in metabolic rate followed by a more gradual 

decrease in body temperature, thus returning the animals to torpor.

The universal presence of arousal episodes among hibernating mammals suggest 

a limit to the length of time torpor can be sustained before a return to high body 

temperature and metabolic rate is required (Willis 1982). The cause of this limit in 

torpor duration and the functional significance of arousals remain unclear. Many 

current hypotheses associate arousals with the requirement for a high body temperature

2
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to maintain a metabolism-linked process that is inhibited at low temperatures (French 

1985; Geiser et al. 1993). Some examples are homeostasis of plasma glucose (Galster 

and Morrison 1975), fatty acids (Dark and Ruby 1993), body water (Fisher and Manery 

1967), and nitrogen (Pengelley and Fisher 1961). Metabolic rate hypotheses assume 

that the rate of depletion or accumulations of these substances are proportional to the 

metabolic rate during torpor.

Although the adaptive function of arousal episodes remains uncertain, Chapter 1 

quantifies the energetic costs associated with each phase of arousal episodes comparing 

ambient temperatures that are representative of both temperate and arctic environments. 

These data are then combined with torpid metabolic rate measurements (Buck and 

Barnes 2000) and field torpor bout lengths (Barnes et al. unpublished) to examine the 

total costs of hibernation contrasting temperate and arctic conditions.

Recooling phase

As ground squirrels enter torpor, core body temperature drops to just above 

ambient or the minimum attainable temperature of-2.9°C (Barnes 1989), and metabolic 

rate reaches levels as low as 1% of minimal resting levels (Buck and Barnes 2000). 

Explanations of the mechanisms by which hibemators depress metabolic rate during the 

recooling phase and torpor are controversial. Hypotheses fall into two categories: 

temperature-dependent or temperature-independent metabolic suppression. 

Temperature-dependent metabolic suppression suggests that the central nervous set
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point for thermoregulation is adjusted downward. This permits body tissues to cool, 

after which metabolic reaction rates slow passively due to the lowered tissue 

temperature effect as dictated by slowed kinetics of reaction rates (Snapp and Heller 

1981; Heldmaier and Ruf 1992; Hosken and Withers 1997). The temperature- 

dependent hypothesis is also known as the Q!0 effect (Schmidt-Neilsen 1997). 

Hypothesis of temperature-independent metabolic suppression suggests that first 

metabolism is actively suppressed, and then set point and body temperature fall as a 

consequence of decreasing heat production (Malan 1993; Snyder and Nestler 1990). In 

Chapter 2, we first defined the appropriate starting point for the measurement of 

recooling as the individual’s minimal metabolic rate, most likely associated with sleep 

(Wang 2000). Next, we examined the relationship between body temperature and 

metabolic rate to determine if the decline in body temperature alone is sufficient to 

explain the degree of metabolic suppression during the recooling phase.
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Chapter One

Energetics of Hibernation under Arctic Conditions

Prepared for submission to the Journal o f Comparative Physiology Biochemical 

Systemic and Environmental Physiology as “Energetics of Hibernation under Arctic 

Conditions.” By Shawna Karpovich, 0ivind Toien, and Brian M. Barnes.

RASMUSON LIBRARY
UNIVERSITY OF ALASKA-FAIRBANKS
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Abstract. Arctic ground squirrels ( Spermophilusparryii kenicottii) overwintering near 

Toolik Lake, Alaska experience minimum soil temperatures at hibemacula level of -8 to 

-23°C. To determine energetic costs of hibernating under arctic compared to temperate 

conditions, captive ground squirrels were studied at three ambient temperatures: 2, -5 and 

-12°C. Rates of oxygen consumption and carbon dioxide production were measured to 

determine metabolic rate and metabolic fuel use during the three phases of arousal episodes. 

Values for respiratory quotient suggest exclusive use of lipid during rewarming and mixed 

fuel use during interbout euthermia. Arctic ground squirrels rewarmed slower, consumed 

more oxygen, and reached higher peak rates of oxygen consumption at ambient temperature 

-12°C compared to 2°C; values at -5°C were intermediate. Ambient temperature, however, 

had no effect on cost or duration of the interbout euthermic phase. Animals recooled faster 

at -12°C than at 2°C, but rates of oxygen consumption were not different. Ambient 

temperature had no effect on total cost of arousal episodes, which include all three phases. 

Arousal episodes accounted for 86% of total hibernation costs at 2°C, 45% at -5°C and only 

23% at -12°C.

Key words: Oxygen consumption -  Ground Squirrel -  Spermophilus -  Metabolic rate -  

Arousal

Abbreviations: Ta = ambient temperature, Tb = body temperature, MR = metabolic 

rate, BMR = basal metabolic rate, RQ = respiratory quotient
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Introduction

The annual cycle of the arctic ground squirrels {Spermophilus ) consists

of a brief active season, with individuals limiting above ground activity to 3-5 months 

(Carl 1971; Barnes 1996; Buck and Barnes 1999b). Animals spend the remaining 7-9 

months in frozen burrow systems (hibemacula), alternating between 2-3 week bouts of 

hypothermia and hypometabolism (torpor) and 10-20 h arousal episodes with high body 

temperatures (Tb) and metabolic rates (Twente and Twente 1965; Barnes and Ritter 

1993). Arousal episodes include 3 phases: rewarming, interbout euthermia and 

recooling. During the rewarming phase, metabolic rate (MR) and thermogenesis 

increase to produce an increase in Tb from the low levels experienced during torpor to 

euthermic levels. The interbout euthermic phase consists of sleep and activity (Lyman 

1948, Daan et al. 1991). The recooling phase is initiated when MR drops below basal 

levels and Tb declines more gradually. The universal presence of arousal episodes 

among hibernating mammals suggest a limit to the length of time torpor can be 

sustained before a return to high Tb and metabolic rate is required (Willis 1982).

Energetics of hibernation in ground squirrels held at ambient temperatures (Ta) 

>0°C has been well investigated. Animals begin the rewarming phase from steady state 

torpor with Tb values just above ambient and minimal rates of metabolism, as low as 1% 

of basal MR or 0.01 ml 0 2 -g‘1h' 1 (Geiser 1988). Upon initiation of the rewarming 

phase, rates of oxygen consumption and respiration increase, followed by an increase in 

Tb. Rates of oxygen consumption increase rapidly, reaching a sharp peak and then fall
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to euthermic levels; this is accompanied by a more gradual increase in Tb (Wang 1978). 

Rewarming is accomplished through nonshivering thermogenesis in brown adipose 

tissue together with active shivering (Galster and Morrison 1975; Toien et al. 2001). 

The anterior of the body warms first due to the subscapular location of brown adipose 

tissue depots and restriction of blood flow from the posterior (Lyman 1948; Barnes 

1989). Approximately 2-3 h after initiation of rewarming, there is a rapid increase in 

rectal temperatures indicating vasodilatation and reperfusion of the posterior (Lyman 

1948; Toien et al. 2001).

Interbout euthermia is the interval during which animals maintain elevated Tb 

values and metabolic rates. Once rewarming is accomplished, Tb stabilizes at levels 

that correspond to the nocturnal minima of daily temperature cycles in non-hibernating 

ground squirrels (Daan et al. 1991). Ground squirrels remain at elevated Tb values for 5 

to 25 h. Activity, such as grooming and nest arrangement, occurs during interbout 

euthermia, but 93% of this time is spent in a curled hibernating posture (Wang 1978) 

and 66% is dedicated to sleep (Daan et al. 1991). Even though little activity occurs 

during interbout euthermia, it is the phase with the highest energetic cost. The interbout 

euthermic phase represents up to 62% of the energetic cost associated with arousal 

episodes and 52% of the energetic cost of the entire hibernation season (Wang 1978).

The predominant fuel utilized during hibernation under temperate conditions is 

lipid (Snapp and Heller 1981). However, arctic ground squirrels shift to mixed 

carbohydrate and lipid use during steady state torpor under arctic conditions (Buck and 

Barnes 1999a). Arctic ground squirrels show reduced levels of plasma glucose and



tissue glycogen during torpor, which is then replenished during arousal episodes 

through gluconeogenesis via metabolism of glycerol and protein (Galster and Morrison 

1970; Buck and Barnes 1999a).

Arousal episodes, including all three phases, are reported to be the most 

energetically costly component of hibernation, representing up to 83% of the energy 

expended over the entire hibernation season (Wang 1978). Most available data on 

thermoregulatory patterns and energetic costs of hibernation, however, are from 

experiments conducted at ambient temperatures above 0°C. Only two studies have been 

at slightly sub-zero temperatures (Heller and Coliver 1974; Geiser and Kenagy 1988), 

and no studies of the energetics of hibernation have been investigated under arctic 

conditions. S. p. kenicotti overwintering near Toolik Lake, Alaska experience minimum 

soil temperatures at hibemacula level of -8 to -23°C and adopt minimum core Tb values 

as low as -2.9°C (Barnes 1989; Buck and Barnes 1999a). Maintenance of minimum 

attainable Tb values against this thermal gradient together with elevated levels of 

oxygen consumption measured during steady state torpor at ambient temperatures (Ta) 

<0°C, (Buck and Bames 2000) indicate that arctic ground squirrels are continuously 

thermogenic during most of the hibernation season. This increased energetic cost 

associated with hibernation under arctic conditions may be expected to increase the total 

cost of arousal episodes. However, the increased cost associated with steady state 

torpor under arctic conditions may decrease the proportional cost of arousal episodes 

over the hibernation season.

13
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We contrasted the cost of arousal episodes under temperate conditions to costs 

under temperatures equivalent to those experienced by arctic ground squirrels in their 

natural burrows. Metabolic trials were conducted at three Ta values: 2°C was chosen to 

represent temperate conditions, and -5 and -12°C as the range of average temperatures 

in arctic burrows. We hypothesized that, as the gradient between Tb and Ta is increased, 

metabolic rate would increase resulting in higher energetic costs during arousal 

episodes at low compared to high Ta values. We also predicted that animals would 

maintain interbout euthermia for shorter durations at arctic compared to temperate 

conditions, to offset the cost of enduring a high Ta to Tb gradient. Finally, considering 

the increased cost of torpor at subzero temperatures (Buck and Barnes 1999b), we 

hypothesized that the proportional cost of arousal episodes would decrease with 

decreasing Ta.

Materials and methods

Animals

Arctic ground squirrels (10 male, 2 female, all adult) captured near Toolik Lake, 

Alaska (68°38’N, 149°38’W) were housed individually in cages kept within 

environmental chambers at the University of Alaska Fairbanks. A nim als were held 

within a 12L:12D photoperiod at Ta of 2°C and were given water and ad lib Mazuri 

Rodent Chow (Brentwood, MO) supplemented with sunflower seeds, carrots and



apples. For body temperature measurements, temperature-sensitive radio transmitters 

(model VMH-BB Mini-Mitter, Bend, OR, resolution of ± 0.2°C) were sealed in heat 

shrink tubing and triple coated in Elvax (Mini-Mitter, Bend, OR). Transmitter packages 

were 3.5 x 2.5 cm discs and weighed 17-20 g. Transmitters were calibrated at 0 and 

20°C with a temperature controlled water bath and calibrated glass thermometers. 

Transmitters were sterilized before being surgically implanted into the abdominal 

cavity. Prior to surgeries, animals were administered gas anesthesia of 1-5% halothane 

(Halocarbon Laboratories, River Edge, NJ) mixed with medical grade oxygen and 

delivered at 1 litermin"1. After the animal became unresponsive to touch, a 5 x 7 cm 

area of the abdomen was shaved and cleaned, and a 3 cm incision was made along the 

midline allowing access to the abdominal cavity through the linea alba. Next, the 

transmitter was inserted and the linea alba and subcutis were closed with absorbable 

sutures. The skin was closed with a non-absorbable suture, which was removed after 14 

d. Animals were allowed a 24 h recovery period in a warm room.

Metabolic rate and respiratory exchange quotient (RQ) during arousal episodes 

of hibernating ground squirrels were estimated by open flow respirometry. Prior to 

metabolic trials, animals had been hibernating at each experimental Ta, 2, -5 or -12 each 

± 2°C, for at least 14 d. Ground squirrels that had been torpid continuously for 6-11 d 

were transferred into a sealed lexan chamber (42 x 22 x 20 cm) containing 3-5 cm of 

wood chips and approximately 85 g of cotton batting nesting material. No food or 

water was available within the chamber. When handling of the animals during the 

transfer initiated an arousal, which we discerned by sustained increases in oxygen

15



consumption and Tb, the chamber was positioned on a radio receiver. Activity was 

detected as the transmitter signal changed position over the receiver. Tb and locomotor 

activity data, from the transmitter were recorded every 5 minutes on a PC using 

Dataquest III software (Data Sciences International, Saint Paul, MN).

For measurements of rates of oxygen consumption and carbon dioxide 

production, room air was pulled through the metabolic chamber with a vacuum pump at 

2 liters-min 1 through the whole experiment, or 0.3 followed by 3 liters -min’1; the low 

to high flow rate sequence was used for better resolution of rates of oxygen 

consumption during rewarming. Flow rate was determined by Hastings flow meters 

(models AFSC-10K 0-10 liters-min' 1 and 229H 0-300 ml-min 1 Teledyne Hastings- 

Raydist, Hampton, VA) calibrated by Hastings Inc. and verified by measuring weight 

loss of a cylinder of compressed, dry air as its contents passed through the flowmeter.

Excurrent air was drawn through calcium chloride to remove moisture prior to 

measurements of flow or gas concentrations. A sub sample was passed through an 

oxygen analyzer (Ametek S-3A, Sunnyvale, CA, resolution ± 0.01%), then through a 

carbon dioxide analyzer (Beckman 415A, Fullerton, CA, resolution ± 0.05%). Each 2- 

10 h, the C 0 2 and 0 2 analyzers were calibrated with ambient air and the C 02 analyzer 

with a span gas of approximately 1% C 02. The respirometry parameters were 

automatically corrected for baseline and span drift by linear interpolation (LabGraph, 

Toien 1992).

Metabolic rate, represented by mass specific rate of oxygen consumption 

(ml-g '-h '), was calculated using the following equations to compensate for respiratory

16
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volume change according to the principles of the Haldane transformation (Haldane 

1912, Wagner et al. 1973).

O2 consumption = ((Flow, • Fi02) - (FlowE • Fe02))/BM

Flow, = FlowE • (1 - FEo2 - Feco2)/(1 - Flo2 - Fico2)

Flow, = air flow (STPD, liters-h'1) entering chamber, FlowE = air flow (STPD, liters-h'1) 

exiting chamber, Flo2 = fraction of O2 entering chamber, FEo2 = fraction of O2 exiting 

chamber, FiCo2 = fraction of CO2 entering chamber, and FEC02 = fraction of CO2 exiting 

chamber, BM = body mass (kg).

Temperature of the metabolic chamber was measured with a 30-gauge copper- 

constantan thermocouple that was threaded through the lid of the metabolic chamber, 

extending 1 -2 cm into the chamber and connected to a thermocouple thermometer 

calibrated at 0 and 20°C. Averages of flow rate, C 02%, 0 2%, and room and metabolic 

chamber temperatures were logged onto a computer each minute (LabGraph, Toien 

1992). The system as a whole was calibrated every 30 d or less, during data collection 

via ethanol bums. The stoichiometric equation of ethanol combustion was used to 

verify weight loss of an ethanol lamp placed inside the metabolic chamber and allowed 

to bum until it went out. Respiratory Quotient of the ethanol bum was validated in the 

same manner. The system was 97.72 ± 0.42% accurate (n = 15).
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Data analysis

Body temperature and activity data were merged with Ta, O2 consumption, and 

CO2 production via Microsoft Excel. The end of the rewarming phase was defined as 

the time when Tb rose above 30°C, and the beginning of the recooling phase was when 

Tb fell and remained below 30°C. Interbout euthermia was thus defined as the duration 

from Tb >30°C to first Tb <30°C, instances when Tb declined <30°C for short periods, 

then returned to >30°C were not incorporated into the euthermic phase. These only 

occurred just prior to recooling, as if animals attempting to recool were disturbed. MR 

during interbout euthermia was determined as the duration from the first Tb >35°C to 

last Tb <35°C, excluding the 60 minutes at the end of rewarming phase and periods of 

elevated MR associated with locomotor activity.

The phases of rewarming, interbout euthermia, and recooling were analyzed to 

determine average duration, and average MR and total oxygen consumed within each 

phase. RQ was measured during rewarming and interbout euthermia and was arcsine 

square root transformed prior to statistical analysis. Peak (maximum) MR, Tb at peak 

MR, Tb at initiation of trial, and duration from initiation of trial to peak MR during 

rewarming were also determined. Total and proportional costs were calculated by 

summing the total oxygen consumption of each phase of arousal episodes together with 

total oxygen consumption during torpor, which was calculated by multiplying average 

torpid MR data (Buck and Barnes 2000) with torpor bout durations from field animals



(Barnes et al. unpublished) that correspond to the three Ta values, 2, -5 and -12°C used 

in this study.

Data obtained at the three Ta values were compared using the SAS general linear 

model for analysis of unbalanced designs with mass as an independent variable. 

Pairwise comparisons were obtained using least square means (Zar 1996). Results of 

statistical comparisons of metabolic parameters did not change when data were re­

analyzed on a mass-independent basis using the general linear model with mass 

included as an independent variable (Hayes and Shonkwiler 1996). Each mean contains 

one or two females, interactions and covariation between sex and age and the 

parameters measured were determined to have no significant effect on the general linear 

model. Values are reported as means ± standard errors.

Results

At the initiation of arousals, core Tb was close to ambient in animals at Ta 2°C, 

but higher than ambient in animals held at Ta -5 and -12°C, although animals in both of 

these groups began rewarming with subzero mean Tb values (Table 1). Animals 

rewarming at Ta -12 and -5°C had initial Tb values that were 3.81°C (P < 0.001) and 

2.54°C (P < 0.001) lower than the initial Tb of 2.37°C of animals rewarming at 2°C. An 

increase in rate of oxygen consumption followed by an increase in Tb was observed in 

all animals after each was transferred into the metabolic chamber (Fig. 1).
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Rewarming ground squirrels took longer and reached higher metabolic rates 

while arousing at low compared to high Ta values. Duration from initiation of trial to 

peak MR values was 67% longer at Ta -12°C (P = 0.002) and 53% longer at -5°C (P = 

0.034) compared to 2°C (Table 1). Peak MR values were 28% higher (P = 0.002) at Ta 

-12°C than at 2°C and 42% higher at -12°C than at -5°C (P = 0.002) (Table 1). Tb at the 

time MR reached peak was 86% higher in animals rewarming at Ta -12°C (P = 0.003) 

and 47% higher in animals rewarming at -5°C (P = 0.044) compared to 2°C (Table 1). 

Rewarming to Tb 30°C took 45% longer at Ta -12°C (P = 0.018) than at 2°C, while 

duration at -5°C was intermediate (Table 1). Animals rewarming at Ta -12°C consumed 

38% more total oxygen to reach Tb 30°C than animals rewarming at Ta 2°C (P = 0.006) 

values at Ta -5°C were intermediate (Fig. 3a).

There was no difference among groups in duration of interbout euthermia, 

calculated as the amount of time with Tb >30°C, or in average MR, total MR, or in 

average Tb while animals were euthermic (Table 1, Fig. 3a). Yet, average MR did 

differ, when intervals associates with activity were excluded. Animals consumed 34% 

more oxygen while resting at Ta -12°C (P = 0.046) and 12% more at -5°C (P = 0.005) 

compared to 2°C (Table 1). Average resting Tb was not different than average Tb 

including values during activity.

Ground squirrels re-entering torpor took less time and sustained a higher MR 

while recooling at low compared to highTa values. Animals recooled 162% faster at Ta
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-12°C (P = 0.0004) and 89% faster at -5°C (P = 0.0002) compared to 2°C. Average MR 

during recooling was 100% higher at Ta -12°C (P = 0.014) than at 2°C, but when 

duration of the recooling phase is considered, total oxygen consumed during the 

recooling phase did not differ among groups (Fig. 3).

Respiratory quotient was higher during interbout euthermia than during 

rewarming at all three Ta values (P = 0.002 to 0.03) (Table 1).

Steady state torpor duration values from Barnes et al unpublished (230 ± 16 h at 

Ta 2°C, 389 ± 17 h at Ta -5°C, and 470 ± 7 h at Ta -12°C, were combined with torpor 

costs from Buck and Barnes 2000 (Table 1). These data were used together with the 

cost of the three phases of one arousal episode to calculate the total cost of a hibernation 

cycle represented by the total cost of one arousal episode and one steady state torpor 

bout. Total cost of a hibernation cycle was 23.1 ml 02 ,g’1,h' 1 at 2°C, 45.4 at -5°C, and 

85.7 at -12°C. Animals consumed 196% more oxygen during one hibernation cycle at 

Ta -5°C and 371% more at Ta -12°C compared to a hibernation cycle at Ta 2°C (Fig. 4a). 

The proportion of the total cost of hibernation during hibernation represented by each 

phase of the arousal episodes decreased markedly with the addition of total oxygen 

consumption during torpor. The rewarming phase represents 23%, interbout euthermia 

58%, recooling 5% and torpor 14% of the hibernation season at Ta2°C, compared to 

14% rewarming, 39% euthermia, 2% recooling and 45% torpor at Ta -5°C; and 9% 

rewarming, 17% euthermia, 1% recooling, and 73% torpor at Ta-12°C (Fig. 4b).
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Discussion

The relationships between Tb and metabolic rate differ for ground squirrels 

hibernating under arctic compared to temperate conditions. The population of arctic 

ground squirrels used in this study experience whole season average soil temperatures at 

the hibemacula level between -5 and -13°C while hibernating in their natural burrows 

(Buck and Barnes 1999a). Since arctic ground squirrels exposed to subzero 

temperatures supercool to a minimum Tb of -2.9°C (Barnes 1989), animals hibernating 

under arctic conditions are obligated to support a significant gradient between Tb and 

soil temperature at all times (Fig. 2). This is apparent in Buck and Barnes’ (2000) study 

that shows torpid MR increases proportionately as Ta is decreased below 0°C, at Ta -5 

and -12°C are 279% and 857% higher, respectively, than the minimal values measured 

at 2°C.

Rewarming Phase

Animals begin the rewarming phase with Tb and MR values at the torpid level. 

The elevated MR associated with thermogenesis during torpor at subzero Ta values did 

not, however, produce a faster rewarming after arousals were stimulated (Table 1, Fig. 

1). Time to reach peak MR and time to reach Tb >30°C took longer at subzero Ta values 

than at 2°C (Table 1). This is perhaps due to the lower initial tissue temperature in 

animals rewarming at Ta <0°C. Lower Tb values may slow the increase in heart rate,
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rates of ventilation, and rates of nonshivering thermogenesis that are required for 

warming (Zimmer and Milsom 2001). This is supported by the observation that the 

greatest lag in rewarming was from initiation to Tb 5°C (Fig. 1). Time to rewarm from 

Tb 5°C to Tb 30°C was not different between groups.

Once in active rewarming, ground squirrels at Ta -12°C produced significantly 

higher peak MR values than did animals at 2°C (Table 1). Total oxygen consumption 

was also elevated, reflecting the greater work needed to overcome the larger gradient 

between Ta and increasing Tb values (Fig. 3). This indicates that the cost of rewarming 

at Ta values experienced in arctic hibemacula is elevated above the levels reported in 

most studies of hibernation, which are performed at Ta >0°C.

At the time animals reach peak MR, Tb is significantly warmer in animals at 

subzero Ta values than in animals at Ta 2°C. Since rates of oxygen consumption support 

the level of thermogenesis, one would expect Tb and MR to be strongly linked. Yet this 

does not seem to be the case, animals reach peak MR with a significantly higher Tb at 

subzero Ta values (Table 1). Perhaps animals rewarming at subzero Ta values begin to 

reperfuse the posterior of the body before peak MR is reached causing core Tb to be 

warmer at that point (Lyman 1948; Barnes 1989; Toien et al. 2001).

Interbout Euthermia

When animals reached euthermic Tb values, and the gradient between Ta and Tb 

was sustained, average non-active MR was significantly higher at Ta values <0°C
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compared to 2°C. Yet, this increased thermogenic cost was not detected when MR 

associated with activity was included. The prediction that animals would stay 

euthermic for shorter periods of time at lower Ta values to offset the greater costs 

associated maintaining high Tb values was not supported. This could be due to the 

difficulty associated with measuring natural hibernation patterns under laboratory 

conditions. In three of 17 trials, Tb fell below 30°C at the end of the euthermic period 

and then rewarmed for a short time before entering the recooling phase. These data 

were removed from analysis because it was most likely due to some disturbance. Tb fell 

and rewarmed in two trials, but not below 30°C, so these intervals were considered part 

of the normal euthermic period (Fig. lc). These transient drops in Tb are not seen in the 

field, and as predicted, interbout euthermia is significantly shorter at Ta -12 than at 2°C 

during undisturbed hibernation (durations of interbout euthermia in the field: 15 ± 2 h at 

Ta -12,17 ± 4 h at Ta -5 and 19 ± 6 h at Ta 2°C; Barnes et al. unpublished). However, 

there was still no significant difference in cost of interbout euthermia between the three 

Ta values upon reanalysis of the data using the durations recorded in the field. Also, 

both the lab and field data fall within the 10-20 h range of published euthermic 

durations (Twente and Twente 1965; Barnes and Ritter 1993).

Recooling Phase

Upon initiation of recooling, thermogenesis is suppressed, which allows Tb to 

decrease (Snapp and Heller 1981) (Fig. 1). Recooling durations in this study were
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shorter at subzero Ta values than at 2°C (Table 1), and rates of the decrease in Tb were 

significantly faster at Ta -12 than at 2°C (P = 0.003). Initiation of thermogenesis during 

torpor, indicated by elevated MR values once Tb approached minimum levels, was 

evident for animals recooling at subzero Ta values (Fig. lb&c), while no thermogenesis 

was apparent at Ta 2°C (Fig. la). Consequently, even though the duration of the 

recooling phase was extended at Ta 2°C, the total oxygen consumed was not different 

than at -5°C and -12°C.

Arousal Episode

The three phases of arousal episodes were combined to determine the total cost 

and duration associated for the entire arousal episode. For arousal episodes, duration 

was significantly shorter at subzero Ta values, compared to 2°C, but average MR was 

higher. This, combined with the lack of significant differences in duration and MR 

between Ta values during interbout euthermia, which was the longest and most 

expensive phase (Table 1), overcame any differences that would have been predicted 

from the greater cost of rewarming or the shorter duration of recooling at Ta values 

<0°C (Fig. 3a). The arousal episode data was then reanalyzed using interbout euthermic 

durations from field data that, in contrast to this study, are significantly shorter at lower 

Ta values (Barnes et al. unpublished). This caused total oxygen consumption during 

interbout euthermia to become significantly higher at Ta -12°C compared to at Ta 2°C,
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but it did not cause the total oxygen consumed during the entire arousal episodes 

between Ta values to become significantly different (Fig. 3b).

Even though rewarming had a higher energetic cost under arctic compared to 

temperate conditions, the other phases of arousal episodes did not differ and costs of the 

entire arousal episodes do not differ (Fig. 3). Therefore, our hypothesis that arousal 

episodes would have higher energetic costs at low compared to high Ta values was not 

supported.

Respiratory Quotient

The utilization and availability of metabolic fuels during rewarming and 

interbout euthermic phases of hibernation were examined by measuring RQ.

Respiratory quotients measured in this study are significantly different comparing 

phases; averaging 0.71 during rewarming and 0.77 during interbout euthermia. This 

suggests lipid use during rewarming and mixed fuel use during interbout euthermia. 

This result supports the hypothesis put forward by Galster and Morrison (1970) that 

during steady state torpor lipid catabolism occurs coupled to a gradual reduction in 

blood glucose and liver glycogen. Then as animals undergo an arousal episode, protein 

catabolism and gluconeogenesis take place along with lipid catabolism to restore 

plasma glucose and glycogen stores that are depleted during torpor.
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Total and Proportional Costs o f  Hibernation

Total and proportional costs were represented by a single cycle of hibernation 

(Fig. 4) by incorporating torpid MR measurements from Buck and Barnes (2000) and 

torpor duration values from Barnes et al. (unpublished). This was calculated by 

summing the total oxygen consumption a single arousal episode and a single torpor 

bout. This can be used to represent proportional costs of hibernation, but it is an 

underestimation of the total costs associated with hibernating in the Arctic because 

animals hibernating under arctic conditions have longer hibernation seasons than 

animals hibernating under temperate conditions. Nevertheless, it was considerably 

more expensive to hibernate under arctic compared to temperate conditions (Fig. 4a).

Arousal episodes are considered to be the most energetically costly component 

of the hibernation season. At Ta 5°C, Wang (1978) attributes 83% of the energetic cost 

of the hibernation season to arousals in Richardson’s ground squirrels. Strijkstra et al. 

(1999) calculates arousals to comprise 86% of the energetic cost of the hibernation 

season in European ground squirrels at Ta values between 3 and 20°C. In arctic ground 

squirrels at Ta 2°C, 86% of the total hibernation season was also associated with arousal 

episodes. However, maintenance of thermogenesis during torpor decreased relative cost 

of arousal bouts by up to 59%. Only 55% of the total cost of the hibernation season 

could be explained by arousal episodes at Ta -5°C and 27% at -12°C (Fig. 4b).
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Table 1.1. Metabolic rate (MR) and body temperature (Tb) parameters during hibernation in arctic ground squirrels at ambient 

temperatures (Ta) 2, -5 and -12°C. For each table cell, n = 5-11 , mean = 6.2. Activity is included in interbout euthermic MR 

and Tb values. Torpid Tb, MR and RQ values are from Buck and Barnes (2000), torpid duration is from field data (Barnes et al. 

unpublished). Statistical significance is noted by unlike superscripts.
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Figure 1.1. Individual recordings of metabolic rate (MR), core body temperature (Tb) 

and activity during an arousal episode in representative arctic ground squirrels 

hibernating at ambient temperatures (Ta) (a) 2°C, (b) -5°C, and (c) -12°C.

tem
perature 

(°C
)



Figure 1.2. Representative recording of overwinter body temperature (Tb) and soil temperature (TSOii) near hibemaculum (-lm) 

in a natural burrow at Toolik Lake Alaska. For reference, the straight horizontal line shows where Tb falls below 0°C. Taken 

from Barnes et al. unpublished.
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Figure 1.3. Total oxygen consumption during each phase of arousal episodes at 

ambient temperatures -12,-5 and 2°C, (n = 5,7,5, respectively) with interbout euthermic 

durations from the lab (upper panel) and from the field (n = 52; lower panel). Unlike 

letters on the bars represent statistically significant differences.
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Figure 1.4. Effect of ambient temperature (Ta) on each phase of hibernation expressed 

as totals associated with a single hibernation cycle, one arousal episode and one torpor 

bout (upper panel) and as proportion of the total oxygen consumption for the 

hibernation season (lower panel).
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Chapter Two

Metabolic Suppression During the Recooling Phase of Hibernation in the Arctic 

Ground Squirrel

Prepared for submission to the Journal o f Comparative Physiology B: Biochemical 

Systemic and Environmental Physiology as “Metabolic Suppression During the 

Recooling Phase of Hibernation in the Arctic Ground Squirrel.” By Shawna Karpovich, 

0ivind Toien, and Brian M. Bames.
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Abstract. A quantitative investigation into the relationship between change in body 

temperature (Tb) and metabolic rate (MR) patterns during entry into torpor was 

performed at three ambient temperatures. Minimum metabolic rate in euthermic arctic 

ground squirrels ( Spermophilusparryii kenicotti) averaged 0.48 ± 0.01 ml 02 -g '1,h‘1.

During the recooling phase, a significant effect of ambient temperature during the 

recooling phase was detected on rate of Tb decrease, but there was no effect on rate of 

MR depression. MR decreased with a temperature coefficient represented by Qio values 

from 3.1 to 3.6. Even though these values are slightly above the biologically expected 

range of 2-3, the slopes of the Qio lines were not significantly different than a Qio of 3.

Metabolic rate and Tb measurements during recooling and torpor were also 

compared while Tb was experimentally warmed. Qio values of 2.6 to 3.9 were 

observed, but slopes of the Qio lines were not different than a Qio of 3. These results 

indicate that temperature-dependent and not temperature-independent mechanisms of 

metabolic suppression are sufficient to explain the decrease in MR during the recooling 

phase of hibernation.

Keywords: Metabolic suppression, Spermophilus, Qio, torpor, BMR

Abbreviations: Ta = ambient temperature, Tb = body temperature, MR = metabolic 

rate, BMR = basal metabolic rate, Qio = change of rate in chemical reactions associated 

with a 10°C change in temperature, Tic = lower critical temperature
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Introduction

Ground squirrels enter hibernation while asleep (Daan et al. 1991), piloerect, 

curled into a tight ball with their nose tucked under their tail. Ground squirrels then 

spend the winter months alternating between prolonged bouts of profound hypothermia 

and hypometabolism (torpor) and brief arousal episodes with high body temperatures 

(Tb) and metabolic rates (MR) (Twente and Twente 1965; Bames and Ritter 1993). 

Explanations of the mechanisms by which hibernating mammals depress MR during 

entry or the recooling phase of torpor and steady state torpor are controversial. 

Hypotheses fall into two general categories: temperature-dependent and temperature- 

independent metabolic suppression. Temperature-dependent metabolic suppression 

suggests that entry into torpor begins with a downward adjustment of the set point for 

thermoregulation. This permits body and tissues to cool, after which decreases in 

metabolism follow passively due to the Qio effect (Snapp and Heller 1981; Heldmaier 

and Ruf 1992; Hosken and Withers 1997). Temperature-independent metabolic 

suppression suggests that first metabolism is actively suppressed, and then body 

temperature falls as a consequence of decreasing heat production (Malan 1993; Snyder 

and Nestler 1990). Support for temperature-independent mechanisms would come from 

observations of metabolic rate and Tb relationships during recooling that produce Qio 

values >3, the upper limit of what is accepted as the normal physiological range (Geiser 

1988; Song et al. 1997).
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Arctic ground squirrels (Spermophilus parryii) hibernate at ambient 

temperatures, from room temperature 20°C to -20°C (Buck and Barnes 2000). This 

wide range in Ta values corresponds to a wide range of MR and Tb values, which offers 

an opportunity to look for evidence for different mechanisms of metabolic suppression 

during the recooling phase of hibernation. If temperature independent inhibition of 

metabolism is occurring, we hypothesized: a) Qio of the recooling phase will be >3; b) 

during the recooling phase, body tissues will cool at a rate driven by Ta, but metabolic 

rate will decrease at a constant rate regardless of Ta; and c) increases in Ta, and 

therefore Tb, during the recooling phase, will have no effect on metabolic rate.

Materials and methods

Animals

Arctic ground squirrels (9 male, 7 female, all adult) captured near Toolik Lake, 

Alaska (68°38’N, 149°38’W) were housed individually in cages kept within 

environmental chambers at the University of Alaska Fairbanks. Animals were held 

within a 12L:12D photoperiod at Ta of 2°C and were given water and ad lib Mazuri 

Rodent Chow (Brentwood, MO) supplemented with sunflower seeds, carrots and 

apples. For body temperature measurements, temperature-sensitive radio transmitters 

(model VMH-BB Mini-Mitter, Bend, OR, resolution of ± 0.2°C) were sealed in heat 

shrink tubing and triple coated in Elvax (Mini-Mitter, Bend, OR). Transmitter packages
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were 3.5 x 2.5 cm discs and weighed 17-20 g. Transmitters were calibrated at 0 and 

20°C with a temperature controlled water bath and calibrated glass thermometers. 

Transmitters were sterilized before being surgically implanted into the abdominal 

cavity. Before surgeries, animals were administered gas anesthesia of 1 -5% halothane 

(Halocarbon Laboratories, River Edge, NJ) mixed with medical grade oxygen and 

delivered at 1 liter-min’1. After the animal became unresponsive to touch, a 5 x 7 cm 

area of the abdomen was shaved and cleaned, and a 3 cm incision was made along the 

midline allowing access to the abdominal cavity through the linea alba. Next, the 

transmitter was inserted and, the linea alba and subcutis were closed with absorbable 

sutures. The skin was closed with a non-absorbable suture, which was removed after 

14 d. Animals were allowed a 24 h recovery period in a warm room.

Metabolic rate in ground squirrels before and during the recooling phase was 

estimated by open flow respirometry. Prior to metabolic trials, animals had been 

hibernating at each experimental Ta of 5,2, -5 or -12 each ± 2°C, for at least 14 d. 

Ground squirrels that had been continuously torpid for 6-11 d were transferred into a 

sealed lexan chamber (42 x 22 x 20 cm) containing 3-5 cm of wood chips either with or 

without approximately 85 g of cotton batting nesting material. No food or water was 

available within the chamber. When handling of the animals during the transfer initiated 

an arousal, which we discerned by sustained increases in oxygen consumption and Tb, 

the chamber was positioned on a radio receiver. Activity was detected as the 

transmitter signal changed position over the receiver. Tb and locomotor activity data,
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from the transmitter were recorded every 5 minutes on a PC using Dataquest III 

software (Data Sciences International, Saint Paul, MN).

For measurements of rates of oxygen consumption and carbon dioxide 

production, room air was pulled through the metabolic chamber with a vacuum pump at 

1-2 liters-h'1. Flow rate was determined by a Hastings flow meter (models AFSC-10K 

0-10 liters-min'1, Teledyne Hastings-Raydist, Hampton, VA) calibrated by Hastings Inc. 

and verified by measuring weight loss of a cylinder of compressed, dry air as its 

contents passed through the flowmeter.

Excurrent air was drawn through calcium chloride to remove moisture prior to 

measurements of flow or gas concentrations. A sub sample was passed through an 

oxygen analyzer (Ametek S-3A, Sunnyvale, CA, resolution ± 0.01%), then through a 

carbon dioxide analyzer (Beckman 415A, Fullerton, CA, resolution ± 0.05%). Each 2- 

10 h, the CO2 and O2 analyzers were calibrated with ambient air and the CO2 analyzer 

with a span gas of approximately 1% CO2. The respirometry parameters were 

automatically corrected for baseline and span drift by linear interpolation (LabGraph, 

Toien 1992).

Metabolic rate, represented by mass specific rate of oxygen consumption 

(ml-g '-h '), was calculated using the following equations to compensate for respiratory 

volume change according to the principles of the Haldane transformation (Haldane 

1912, Wagner et al. 1973).



O2 consumption = ((Flow, • Fi02) - (FlowE • FEo2))/BM 

Flow, = F1owe- (1 - Fe02- FeC02)/(1 - Fioj - FiC02)

Flow, = air flow (STPD, liters-h'1) entering chamber, FlowE = air flow (STPD, liters-h"1) 

exiting chamber, Fio2 = fraction of O2 entering chamber, FE02= fraction of O2 exiting 

chamber, Flco2 = fraction of CO2 entering chamber, and FEco2 = fraction of CO2 exiting 

chamber, BM = body mass (kg).

Temperature of the metabolic chamber was measured with a 30-gauge copper- 

constantan thermocouple that was threaded through the lid of the metabolic chamber, 

extending 1-2 cm into the chamber and connected to a thermocouple thermometer 

calibrated at 0 and 20°C. Averages of flow rate, C 02%, 02%, and room and metabolic 

chamber temperatures were logged onto a computer each minute (LabGraph, Toien 

1992). The system as a whole was calibrated every 30 d or less, during data collection 

via ethanol bums. The stoichiometric equation of ethanol combustion was used to 

verify weight loss of an ethanol lamp placed inside the metabolic chamber and allowed 

to bum until it went out. Respiratory Quotient of the ethanol bum was validated in the 

same manner. The system was 97.72 ± 0.42% accurate (n = 15).

Minimum metabolic rate was measured on 13 arctic ground squirrels, average 

mass of 727 ± 22 g, during the non-hibernating season in summer. Anim als were fasted 

for 8-10 h before being placed into the metabolic chamber in the dark and without a 

nest. Ta was initially set to -5, 5, 17.5, 20 or 28°C and programmed to warm or cool by 

3 to 5°C every 6 h during 24 h long trials. The pattern of Ta, warm to cold or cold to 

warm, and the time of day that the trial began were randomized. Measurements to

43
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evaluate the influence of a nest were conducted by repeating trials with 84 ± 4 g nest of 

cotton batting material present at Ta -12 to 5°C.

For respirometry measurements during recooling into torpor, trials were 

conducted with either the beginning Ta remaining unaltered or, after the animal began to 

recool, Ta was raised either abruptly to Ta 20-22°C or gradually (>l°C-h'1) from Ta 5 to 

35°C.

Data analysis

Data of body temperature and activity were merged with Ta and MR 

measurements via Microsoft Excel. For measurements of resting MR at each Ta, 

30-minute averages of rates of oxygen consumption were calculated, when MR was 

stable at minimal levels and not associated with activity. Minimum metabolic rate was 

determined as the average individual minimum MR. The corresponding 30-minute 

average of Tb was also recorded during each minimum MR measurement. A one-way 

ANOVA determined that there was no significant difference in MR of animals with and 

without nesting material between Ta 15 and 30°C. Therefore, simple linear regression 

lines were fitted to MR values of animals without nesting material between Ta -5 and 

15°C, and to measurements for animals with nesting material between Ta -12 and 5°C.

During recooling trials, Tb at each individual’s minimum MR determined the 

beginning of the recooling curve and Tb 5°C was defined as the end of the recooling 

phase. Slopes of decreasing MR during recooling at different Ta values were compared
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by calculating Qio values between Tb individual minimum MR and Tb 17.5°C to exclude 

MR associated with thermoregulation at lower Tb values. In recooling trials, 30-minute 

averages of MR corresponding to discrete Tb values were used to estimate Qio.

The equation used to calculate Qio was:

Qio = (MR,/MR2) (1°/(Tr T2)}

MRi is the metabolic rate at temperature Ti; MR2 is the metabolic rate at temperature 

T2.

Body temperature and MR data were converted to a logarithmic scale before 

being fitted with simple linear regression lines for Tb and MR reduction curves and 

calculation of recooling Qio values. For the altered recooling data, slopes of MR change 

for each individual animal were averaged. Comparisons between slopes were 

performed with z-tests. Rates of Tb and MR decreases during unaltered recooling were 

compared using one-way ANOVAs; pairwise comparisons were performed with Tukey 

tests (Zar 1996). Sex and age were determined to have no significant effect on MR in 

arctic ground squirrels (Karpovich et al. 2002). All regression lines were highly 

significant (P <0.0001); log MR vs. Tb 2 to 15°C had a P value of 0.01. All values are 

reported as means ± standard errors.

Results

Average metabolic rates of euthermic arctic ground squirrels, measured at rest 

during their non-hibemating season in summer, were not significantly different over the
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range of Ta 15 to 28°C, with minimal values occurring between Ta 22 and 25°C (Fig. 1). 

Average minimum MR of individuals (n = 8) was 0.48 ± 0.01 ml 02 ,g'1-h' 1 at Ta 24 ± 

0.6°C and Tb 33 ± 0.4°C. Metabolic rate increased linearly and proportionately as Ta 

was decreased from 15 to -5° (Fig. 1). Metabolic rate increased with a slope 

corresponding to a 21% lower thermal conductance in animals within a nest compared 

to animals without nesting material (Table 1). Lower critical temperature (Tic), 

determined by the intercept between the horizontal line representing minimal MR and 

the linear regression lines calculated from MR data at Ta < 15°C, was 21.9°C for animals 

without a nest and 15.3°C for animals within nests (Fig. 1). Tb was significantly higher 

during metabolic trails conducted at Ta -5 and 28°C, compared to at Ta 10°C, but Tb did 

not significantly vary at other Ta values and averaged 37 ± 0.1°C. Regression lines 

representing MR below Tic extrapolated to Tb values of 39.5 to 38.9°C, at zero MR.

Examples of change in Tb and MR as arctic ground squirrels entered torpor at Ta 

values 2, -5 and -12°C are shown for representative animals in Figure 2. Tb and MR 

decreased exponentially, with MR rapidly decreasing from elevated levels and Tb 

falling more gradually. Average rates of decrease in Tb and MR at the three Ta values, 

calculated from linear regressions of log-transformed data, are shown in Figure 3. 

Animals cooled significantly faster (P <0.001) at lower compared to higher Ta values; 

however, rates of change of MR did not differ significantly with Ta (Figs 2 and 3). 

Average slopes of cooling curves, calculated between the Tb value at each individual’s 

minimum MR (avg. beginning Tb = 33 ± 0.4°C) to Tb 5°C, were 95% and 165% steeper 

at Ta -5 and -12°C, respectively, compared to at Ta 2°C (Fig. 3, Table 2). Average
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slopes of the decrease in MR, calculated from each individual’s summer minimum MR 

to MR at the time Tb reached 15°C, were also steeper at lower compared to higher Ta 

values, but the slopes were not significantly different (Fig. 3, Table 2).

As animals re-entered torpor at Ta -5 and -12°C, MR decreased rapidly until Tb 

reached 25°C, when the rate of decrease became more gradual. Metabolic rate began to 

increase as Tb reached 10°C (Fig. 2). These animals then maintained a higher MR 

during torpor compared to animals at Ta 2°C.

In figure 4, average log transformed MR values during recooling at each Ta are 

plotted against Tb values and shown together with lines corresponding to rates of 

change equal to Qio 2 and 3. Temperature coefficients (Qio) were compared only for 

pre-thermogenic values above Tb 10°C. Qio values for rate of change in MR versus Tb 

during recooling were 3.6 at Ta 2 and -5°C and 3.1 at Ta -12°C, but these values did not 

significantly differ from each other. All three curves were significantly steeper than a 

slope representing Qio of 2 (P = 0.0002) but not significantly different from a slope 

representing than Qio of 3 (Fig 4).

In experiments that altered Ta during recooling, changes in MR of arctic ground 

squirrels were recorded while Tb was either raised or prevented from decreasing during 

recooling by either slowly (2-3 days; Fig 5 upper panel) or abruptly (2-3 hrs; Fig 5 

lower panel) raising Ta. MR increased as Tb increased in torpid animals. This is shown 

by plotting MR corresponding to integer values of Tb, as Tb was varied between 2 and 

30°C (Fig. 5). The average slope of individual regression lines fitted to these data 

corresponds to a Qio of 2 .6 .
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Metabolic rate data during experiments that altered Ta during recooling was 

separated based on the findings of Buck and Bames (2000) that showed no significant 

change in steady state torpid MR from Ta 0 to 16°C. Results from Tb >16°C had a MR 

versus Tb relationship corresponding to Qio 3.9, and data from Tb <16°C corresponds to 

a Qio 2.3 (Fig. 6 , Table 1). The fitted line for all of the data extrapolates to MR 0.34 ml 

Org *'h 1 at Ta 38°C, while for data from Tb >16°C the regression line extrapolates to 

MR 0.49 ml 0 2-g'1-h’1 at Tb 38°C (Figs 6 and 7).

Discussion

During torpor, hibernating mammals can decrease MR to 1% of basal metabolic 

rate (Geiser 1988), but the mechanisms that cause metabolic suppression remain 

controversial. Geiser (1988) reviewed two theories or categories of mechanisms: strict 

temperature dependence and temperature independence. Temperature dependence, also 

known as the Qio effect, hypothesizes that as Tb decreases, kinetic reaction rates of 

biochemical pathways linked to cellular metabolism slow according to the Van’t Hoff 

rule. This rule states that for each 10°C change in temperature, reaction rates including 

whole animal metabolic rates change in parallel by a factor or Q ]0 of 2-3 (Schmidt- 

Neilsen 1997). Therefore, as heterothermic animals enter the recooling phase of 

hibernation or daily torpor and Tb decreases from 38 to 28°C, the temperature dependent 

hypothesis predicts that MR would concomitantly decrease by 50% (Qio= 2) to 33% 

(Qio= 3) of beginning levels. Further decreases in Tb from 28 to 18°C, from 18 to 8°C,
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and finally from 8 to -2°C, the average minimal Tb measured in hibernating arctic 

ground squirrels (Barnes 1989), would be paralleled by further factorial changes in MR 

culminating for this 40°C change in Tb in an overall decrease in MR to 6% for a Qio of 2 

and 1% for a Q io of 3 of beginning rates of oxygen consumption, assuming only aerobic 

metabolism. Temperature dependent hypothesis thus assume that passive changes in 

metabolism will follow passive changes in Tb that result from heterothermic mammals 

terminating defense of a high thermoregulatory set point for Tb (Snapp and Heller 

1981).

The theory of temperature independence of metabolic suppression hypothesizes 

that MR is actively suppressed through molecular mechanisms. For example respiration 

and thermogenesis due to futile cycles within the mitochondria of cells may be 

suppressed by a regulated decrease in mitochondrial proton leak (Barger 2002). These 

changes at the cellular level are translated to changes at the organ and ultimately at the 

whole animal level. As a consequence, heat produced from metabolic reactions is 

reduced, and therefore, Tb decreases passively at a rate directed by the Ta.Tb gradient. 

Temperature independent hypothesis thus assume that active (not passive) changes in 

metabolism will precede (not follow) passive changes in Tb. Terminating defense of a 

euthermic thermoregulatory set point for Tb (Snapp and Heller 1981) is a prerequisite 

under both hypotheses.

During the recooling phase of hibernating arctic ground squirrels, we looked for 

evidence of temperature independent metabolic suppression. First, we examined the 

rate of decrease in both MR and Tb. If MR was being suppressed first and then Tb
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followed passively, we hypothesized that there would be no difference in the rate of MR 

decrease at different Ta values, but that due to a changing Tb-  Ta gradient, Tb would 

cool at a rate directed by Ta. Conversely, if Tb was the force suppressing MR, the rate 

of decrease in MR should parallel the rate of decrease in Tb. Second, we calculated Qio 

values during the recooling phase. If the decrease in MR was at a level beyond 

temperature effect of Tb alone, the relationship between MR and Tb should result in a 

Qio value greater than 3. Third, we looked at the effect of preventing Tb from recooling 

during entry into torpor and the effect of rewarming Tb in animals that just completed 

the recooling phase. If MR was actively suppressed by a mechanism not related to Tb, 

alteration of Tb should have no effect on MR, which would remain “clamped” at 

minimum levels.

To examine metabolic suppression during the recooling phase of hibernation, 

the first step was to determine the appropriate rate of metabolism to compare 

subsequent decreases to as animals begin the entry into torpor. Use of metabolism 

associated with activity or thermogenesis, would yield results indicating a high degree 

of metabolic suppression, although basal metabolism would have been unaffected.

Wang and Lee (2000) stressed the importance of comparing equivalent metabolic states 

at different Tb values; therefore, we measured each individual’s minimum MR and then 

compared deviations from this value as each individual underwent the recooling phase 

entering into torpor.
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Minimum Metabolic Rate

Previous estimates of basal metabolic rate of arctic ground squirrels (Table 3) 

average 30% higher than our estimate of 0.48 ml 02 ,g’1-h' 1 (Fig. 1). Possible 

explanations of this disparity could involve differences in body mass and energetic state 

of animals. Hock (1960) performed his measurements on a different subspecies of 

arctic ground squirrel S. p. plesius with a smaller body mass than S. p. kenicotti.

Smaller animals in general have higher gram specific metabolic rates (Kleiber 1961). 

Also, our MR measurements were collected during 24 h trials with the animals held in 

darkness; therefore many of the minimum MR values reported in Fig. 1 likely represent 

MR of sleeping animals, which can have 27-29% lower basal metabolic rates than 

awake animals (Snapp and Heller 1981). Arctic ground squirrels enter hibernation from 

sleep (Daan et al. 1991); therefore, investigations into metabolic suppression during the 

recooling phase should be examined using sleeping MR as the starting point. Snapp 

and Heller (1981) compared MR of sleeping S. lateralis with torpid MR and calculated 

a Qio of 2.5, suggesting temperature dependant metabolic suppression. Furthermore, 

Erikson (1956) reports “sub-basal” MR values between 0.3 to 0.6 ml 0 2-g'1-h' 1 on 

sleeping arctic ground squirrels at Ta 30°C, values that are comparable to those in the 

present study.

Lower critical temperature for S. parryii estimated by Scholander et al (1950) 

was between 17 and 20°C and was estimated at approximately 25°C by Erikson (1956). 

These values encompass our estimate of 21,9°C. Addition of cotton batting nesting
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material shifted the lower critical temperature to 15.3°C, which suggests that since 

burrow temperatures never warm above 10°C during the summer months (Buck and 

Barnes 1999a) arctic ground squirrels are continuously thermogenic while in their 

burrows. Chappell (1981) using Scholander’s (1950) BMR estimate of 0.61 ml 

02 'g‘1,h"1, suggested that nests made of grasses might shift the lower critical 

temperature to 5 to 7°C.

Body temperature did not differ significantly from Ta -2 to 25°C, but it was 

elevated at Ta -5 and 28°C when compared to Ta 10°C (Fig. 1). This is most likely 

associated with increased activity and thermoregulation at the coldest and wannest Ta 

values in which experiments were conducted.

Tb and MR reduction during recooling

We hypothesized that if temperature independent mechanisms were responsible 

for the reduction in metabolism, during the recooling phase, body tissues would cool at 

a rate driven by Ta, but that metabolic rate would decrease at a constant rate regardless 

of Ta. Figure 3 offers support for this hypothesis. As expected, due to the larger 

gradient between body and ambient temperatures, Tb cools fastest at Ta -12°C 

and slowest at 2°C, but there was no difference in the rate of MR depression, suggesting 

active metabolic suppression that was not dependent on Tb.

However, the decrease in MR was extremely difficult to describe. Ground 

squirrels almost always begin to recool after a bout of activity, which caused a peak in



MR (Fig. 2). This obscures the relationship between Tb and MR at the beginning of the 

recooling phase. Also, the thermal gradient and therefore the degree of elevation of 

resting MR during euthermia due to thermogenesis is lowest at Ta 2°C and highest at Ta 

-12°C. Therefore, at the point where thermogenesis is abandoned, the degree of 

elevation in MR would cause the MR reduction curve to begin from higher starting 

points, thus obscuring the shape of the curve. A combination of these two factors could 

obscure the significant difference between the MR reduction curves at the three Ta 

values. MR follows the same trend as Tb; this indicates the possibility of some degree 

of temperature dependent metabolic suppression.

Qio during recooling

The relationship between MR and Tb during the recooling phase produced Qio 

values above 3, outside of the physiologically expected range. These results also 

support the active metabolic suppression hypothesis (Fig. 4). However, when the slope 

of these lines were statistically compared to a slope of 3, there was no difference, 

suggesting that metabolic suppression is passive, based on changes in Tb alone.

Average Tb during euthermic minimum metabolic rate measurements was 37°C. 

However, average Tb at the point the recooling curve reached each animal’s minimum 

metabolic rate was only 33°C. This represents a 4°C decrease in Tb before MR begins 

to decrease that was not included in the Qio calculations. Figure 7 shows the beginning 

portion of the Q ,0 curves from figure 4 for the six trials performed at Ta -5°C. From the
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beginning of the recooling phase to Tb 25°C, the slopes of the lines are steeper than a 

Qio of 3 (Fig. 7, top panel). The curves were re-plotted with Tb 37°C in place of 33°C, 

the lines now are either parallel or more shallow in slope when compared to a Qio of 3 

(Fig. 7, bottom panel). MR was measured on a real time basis, with minimal lag 

between changed in gas concentrations and detection of these changes. Tb was 

measured with transmitters, coated in elvax and implanted into the core of the 

abdominal cavity, which could have caused a time lag between changes in tissue 

temperatures and transmitter detection of this change. Correction for a time lag 

between temperature changes in tissues and detection by the transmitter would decrease 

the Qio values and offer stronger support for temperature dependent metabolic 

suppression. We attempted to address this by “clamping” Tb at constant temperatures 

during the recooling phase.

Analysis of Qio values during recooling produced Qio values above 3, but the 

slopes of the lines were not significantly different than 3. This could be argued to 

support both hypotheses. In order to resolve this, we experimentally altered Ta, and 

therefore Tb, during the recooling phase (Fig. 5). The gradual increase in Tb above a 

fixed Ta shown in the top panel of Figure 5 is most likely the result of metabolic heat 

trapped within the nest that did not dissipate due to the small gradient between Ta and 

Tb. This is not apparent in the trial depicted in the bottom panel because the animal 

arouses only a few hours after reaching Ta 22°C, where it began to experience the same 

low Ta to Tb gradient as the animal in the top panel.
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In the altered recooling trials, MR did not decrease to minimal levels as it does 

in Figure 2; instead, MR increases linearly with Tb. The lack of a “clamp” that holds 

MR at minimum levels is evidence for mechanisms of metabolic suppression that are 

temperature dependent. Also, the relationship between the altered Tb values and MR 

values results in a Qio of 2 .6 , which is within the biologically expected range and 

suggests that metabolic suppression is passive. The line fitted to the altered recooling 

data (Fig. 6) extrapolates to Tb 38°C at a MR of 0.34 ml O rg '^h '1, which is lower than 

our measure of BMR. This is most likely due to the error associated with extrapolation 

and the small sample size used to draw this line.

Metabolic rate of active ground squirrels between Ta 15 and 28°C were not 

significantly different (Fig. 1). Consequently, since Tb passively followed Ta during the 

altered recooling trials (Fig. 5, bottom panel), we split the altered recooling data in half 

and reanalyzed as Tb <16 or >16°C. Log MR plotted against Tb 0 to 15°C had a slope of 

0.084 ml- 02-g’1-h"l oC ( T a b l e  1), which was not statistically different from 0. This 

agrees with Buck and Barnes (2000) study that showed no change in MR of torpid 

arctic ground squirrels between Ta 0 and 16°C. The Qi0 of Log MR plotted against Tb 

16 to 30°C was 3.2 but had a slope not significantly different than a Qio of 3. The 

regression line fitted to the data between Tb 16 and 30°C extrapolated to Tb 38°C, at MR 

of 0.49 ml Org 1-h only 0.01 ml C V g ' h ' 1 higher than the minimal MR measured on 

euthermic animals.

Support for active suppression or temperature independent metabolic 

suppression is marginal at best, even though MR seems to decrease independently of Tb,
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and examination of the relationship between MR and Tb produced Qio values above 3 

during the recooling phase at the three Ta values. However, the slopes of the regression 

lines fitted to the MR vs. Tb data are not significantly different than the slope of a line 

equal to a Qio of 3, indicating that the recooling curve is not different from a 

relationship that is temperature driven. Also, MR increased as Tb was increased in 

torpid animals indicating that MR is dependent on body temperature and the 

relationship between altered Tb and MR resulted in Qio values between 2.6 and 3.2 with 

slopes, again, not significantly different than a Q]0 of 3 .

Therefore, from this study, we conclude that suppression of metabolic rate 

during the recooling phase of hibernation in arctic ground squirrels can be explained by 

changes in Tb alone and is, therefore, temperature dependant. This agrees with Geiser’s 

(1988) review on reduction of metabolism, he calculated Qio values by comparing 

euthermic and torpid Tb and MR values for 60 mammalian and 8 avian species with 

body mass ranging from 2 to 9000 g (most below 100 g). He concluded that in nearly 

all species the reduction in MR could be explained by changes in temperature alone and 

Qio values above 3 were only observed in small hibernating species.
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Table 2.1. Slope and R2 values for regression lines fitted to: with nest, without nest (Fig. 1), and altered recooling data (Fig.

6). Regressions were significant at the P < 0.0001 level, except log MR vs. Tb 2-15°C at P = 0.01.

regression
coefficients

without nest 
MR vs. Ta

with nest 
MR vs. Ta

altered recool 
Log MR vs. Tb

altered recool 
Log MR vs. Tb

(Tb 2 to 15°C)

altered recool 
Log MR vs. Tb

(Tb 16 to 30°C)
slope 

(ml 0 2-g'1-h‘1-°C‘1) -0.028 -0.022 0.095 0.084 0.113

R2 0.48 0.39 0.63 0.13 0.87

o\



Table 2.2. Slope and R  values for regression lines fitted to: rates of decrease in body temperature (Tb), reduction in metabolic 

rate (M R) (Fig. 3), and Qio values of recooling data (Fig. 4). All regressions were significant at the P < 0.0001 level.

rate of Tbdecrease rate of MR reduction Qio
Log Tb vs. time Log MR vs. time Log MR vs. Tb
slope slope slope

Ta (°C) ("Oh'1) R2 (ml 0 2*g'1*h'1*°C'1) R2 (ml 0 2*g’1*h"1,0C 1) R2
2 -0.078a 0.91 -0.239 0.83 0.131 0.89
-5 -0.152b 0.94 -0.335 0.82 0.126 0.88

-12 -0.207c 0.92 -0.346 0.78 0.110 0.93
* different subscripts denote statistical significance



Table 2.3. Estimations of basal metabolic rate for ground squirrels.

Author Descriptor Estimate based on... BMR (ml O V V )
this study S. p. kennicotti oxygen consumption 0.48

Scho lander et al, 1950 S. p. kennicotti oxygen consumption 0.61
Erikson, 1955 S. p. kennicotti oxygen consumption 0.60
Hock, 1960 S. p. plesius oxygen consumption 0.80

Withers et al., 1979 S. p. kennicotti oxygen consumption 0.40
Kleiber, 1947 Mammals all mammals 0.67
McNab, 1988 Burrowing grazers feeding habits 0.40

Hayssen and Lacy, 1985 Eutherians all eutherians 0.51
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Figure 2.1. Resting metabolic rate (MR) of arctic ground squirrels with and without 

nesting material during the non-hibernating season, (without nest, n = 6, 6, 9, 9 , 10, 13, 

11, 10, 12,1, 13, 11; with nest n = 5, 8, 5,2, 7, 6, from left to right). Each symbol for 

MR represents a 30-min. average of consecutive 1-min. recordings of rates of oxygen 

consumption selected during 6-h trials at each Ta and intervals of no locomotor activity.
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Figure 2.2. Representative recordings of body temperature (Tb, solid line) and 

metabolic rate (MR, dotted line) during the recooling phase in hibernating arctic ground 

squirrels at ambient temperatures 2°C, -5°C, and -12°C. Spikes across the x-axis 

indicate occurrence of activity (act), shown without units. The arrows indicate values 

of resting minimum metabolic rate as determined during euthermia for each individual.
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time (h)

Figure 2.3. Decrease in average body temperature (Tb; upper panel) and average 

metabolic rate (MR; lower panel) over time during the recooling phase at ambient 

temperatures (Ta) 2, -5 and -12°C (n = 5, 6 , 5). Tb 25°C is shown as time 0. Asterisks 

indicate statistical significance.
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Figure 2.4. Relationship between metabolic rate (MR) and body temperature (Tb) 

during the recooling phase at ambient temperatures (Ta) 2 (n = 5), -5 (n = 6) and -12°C 

(n = 5). The slopes of the dotted lines represent temperature coefficient (Qio) values of 

3.60, 3.57 and 3.14, at Ta 2, -5 and -12°C, respectively. The solid and dashed lines 

represent rates of change corresponding to Qio values of 2 and 3. For Ta -5 and -12°C, 

values below Tb 17.5°C are elevated due to thermogenesis, therefore no values below Tb 

17.5°C were included in the analysis.
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Figure 2.5 . Representative recordings of individual body temperature (Tb, solid 

line), ambient temperature (Ta, heavy solid line), and metabolic rate (MR, broken 

line), during recooling trials in arctic ground squirrels when Ta was altered. The 

spikes across the bottom axis show occurrence of activity. Arrows indicate the 

increase in Tb and MR associated with initiation of an arousal.
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body temperature (°C)

Figure 2.6. Relationship between metabolic rate (MR) and body temperature (Tb) 

during the recooling phase of hibernation in arctic ground squirrels when ambient 

temperature was altered (n = 8). The broken line represents the regression line for all 

data and corresponds to a Qio of 2.6. The solid line represents the regression line for 

data with Tb >16°C and corresponds to a Qio of 3.9.
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body temperature (°C)

Figure 2.7. Relationship between metabolic rate (MR) and body temperature (Tb) 

during the beginning of the recooling phase at ambient temperature (Ta) -5°C. Each 

individual’s minimal metabolic rate is paired with the Tb at the time the decrease in MR 

curve reached each individual’s minimum MR during recooling (33 ± 0.04°C; top 

panel) or the Tb from the summer measurements of euthermic minimum metabolic rate 

(37 ± 0.1 °C; bottom panel). The dotted lines are individual trials and the heavy solid 

line represents a slope corresponding to a Qio of 3 .
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Conclusions

Arousal Episodes

Arctic ground squirrels, like temperate hibernating ground squirrels, increase 

metabolic rates and body temperatures every 2-3 weeks for 10-20 hours throughout the 

hibernation season. However, unlike temperate species, arctic ground squirrels can face 

a large gradient between body temperature and subffeezing ambient temperatures 

during torpor and arousal episodes. We examined energetic costs during the 

rewarming, interbout euthermic and recooling phases of arousal episodes. Rewarming 

was more energetically expensive under arctic compared to temperate conditions. 

Interbout euthermia, without activity, was also more expensive, but activity, which may 

have included shivering, obscured any statistically significant differences between arctic 

and temperate conditions. Recooling was much faster under arctic conditions, but 

thermoregulation at low body temperatures outweighed any significant differences in 

the energetic cost of recooling between arctic and temperate conditions.

Therefore, there was no difference between arctic and temperate conditions in 

energetic costs associated with arousal episodes. In spite of the lack of difference in 

total costs, when considered along with cost of torpor, the proportional costs of arousal 

bouts decrease considerably under arctic conditions. Maintenance of thermogenesis 

during torpor decreased relative cost of arousal bouts by up to 59%.



72

Recooling Phase

Investigation into the timing of the decreases in metabolic rate and body 

temperature showed body temperature cooling faster under arctic conditions, but no 

difference in metabolic rate was detected. This offers only weak support for 

temperature-independent metabolic suppression since the decrease in metabolic rate 

was difficult to define and was often times obscured by euthermic activity or 

thermogenesis.

Calculation of Qio values for the relationship between body temperature and 

metabolic rate during the recooling phase, both with altered and unaltered body 

temperature recooling curves, resulted in values that were >3, which is outside of the 

biologically expected range and again suggests metabolic suppression. However 

comparison of the slope of these curves is not different than a Qio of 3. So, even though 

the curves are slightly above 3, they do not “behave” differently than a Qio of 3. We 

therefore concluded that the decrease in metabolic rate during the recooling phase could 

be explained by the change in body temperature; i.e. recooling is driven by temperature- 

dependant metabolic suppression.
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