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Ab s t r a c t

Animals that live in seasonal environments have a variety of adaptations to survive periods of 

low to no food availability. One such adaptation is hibernation, which is characterized by 

profound decreases in activity, metabolic rate, and in most cases, body temperature. Among 

animals that hibernate, only two species are known to maintain low tissue temperature while 

defending significant temperature gradients, and the best studied of these is the arctic ground 

squirrel (Urocitellusparryii). In the first chapter, we determine the lower ambient temperature 

limit of hibernation for an arctic ground squirrel (-26°C), and that a maximum torpid metabolic 

rate exists (0.37 mL O2/g*h). This maximum torpid metabolic rate allows animals to defend a 

~26°C temperature gradient between their core and their environment. In this chapter we also 

demonstrate that another, temperate, hibernating species, the golden-mantled ground squirrel 

(Callospermophilus lateralis), is capable of continuing hibernation at sub-freezing temperatures 

and can defend a temperature gradient of at least 9°C. Due to the extreme environment that arctic 

ground squirrels inhabit, they have a very short growing season (~3-7 months) during which they 

must reproduce, grow, and accumulate energy stores prior to hibernation onset. In the second 

chapter we investigate the roles androgens play in hibernation phenology and male aggressive 

behavior. We use plasma samples collected from free-living animals and radioimmunoassays to 

determine circulating androgen levels. We then match the peaks in androgens to the timing of the 

two periods of male-male aggression (testosterone in the spring and dehydroepiandrosterone in 

the late summer/fall). We also present evidence to support testosterone as the main factor 

determining the timing of spring euthermy and emergence among reproductively mature males. 

In the third chapter we utilize captive animals to determine the importance of a cache to male 

reproductive development. Using three separate experiments, we show that while the 

accumulation of a cache in the late summer/fall may increase the likelihood of a male 

undergoing reproductive development, it alone may not be enough to ensure reproductive 

development. Additionally, we demonstrate that simply having access to ad libitum food in the 

spring is not enough to ensure reproductive development, nor is a restricted spring ration enough 

to prevent it.
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Ge n e r a l  In t r o d u c t i o n

Hibernation is a pleisiomorphic trait that is present in a great variety of mammalian taxa 

and is characterized by profound decreases in metabolic rate, activity, and typically, body 

temperature (Geiser 1998, McKechnie 2014). The significantly decreased body temperature 

hibernators experience during torpor is not due to the abandonment of homeothermy, but rather 

is achieved by adjusting the hypothalamic set-point (Mills and South 1972). The new set-point is 

then guarded throughout the torpor cycle such that a temporarily (1-2 hours) cooled 

hypothalamus at any time-point initiates an increase in metabolic rate and heat production, while 

a temporarily (1-2 hours) heated hypothalamus results in a depressed metabolic rate (Heller and 

Hammel 1972; Heller and Colliver 1974; Florant and Heller 1977). The decrease in metabolic 

rate, however, is not due solely to the reduced body temperatures of torpor.

There are two main ways in which mammals are able to accrue metabolic savings during 

the hibernation season. First, the decreased enzymatic activity associated with the Q10 effects of 

decreased body temperature enable metabolic rate to fall as body temperature decreases (Geiser 

2004). Secondly, temperature-independent metabolic suppression is utilized and enables 

metabolic rate to be reduced independently of body temperature, which is particularly important 

during entry into torpor (Geiser 2004). This second method is essential for large hibernating 

animals, such as the black bear (Ursus americanus). Due to their large size and low surface area 

to volume ratio, black bear have a low thermal conductance, referred to as thermal inertia in 

Chapter 1, which results in a slow rate of heat loss. Thermal conductance is defined as the rate at 

which heat is lost by an organism and is a physical process that includes conduction, convection, 

radiation and evaporative modes of heat transfer. In a hibernating mammal, thermal conductance 

is most influenced by levels of insulation (fur), blood flow to the periphery, and body size, with 

larger animals having lower thermal conductivities due to their lower surface to volume ratios 

and thicker fur. Due to these body size dependent differences in thermal conductance, rates of 

basal metabolism in euthermic mammals do not scale linearly with body mass, but rather to the 

0.66 or 0.75 power (for a review and discussion: Schmidt-Nielsen 1984). The low thermal
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conductivity of a bear means that they must rely on temperature-independent metabolic 

suppression as the main source of metabolic savings, with only minor supplementation from the 

small decreases in body temperature (~7°C from euthermic levels, Toien et al. 2011). Smaller 

hibernators, on the other hand, are able to use temperature-independent metabolic suppression 

during entry into torpor, and then maximize metabolic savings by utilizing Q10 effects while 

torpid (Ruf and Geiser 2014).

Hibernators spend the majority of their hibernation season in torpor, at low body 

temperature and at minimal metabolic rate, but intermittently arouse, return to high, or 

euthermic, body temperature and high metabolic rate, and remain there for <24 hours before 

resuming torpor (Carey et al., 2003). The arousal process can consume 86% of the entire 

overwinter energy budget for a hibernator when ambient temperatures remain at or above the 

hypothalamic set-point (Wang 1978). While arousals are undoubtedly necessary, the factors 

driving the timing and ultimate cause of an arousal are not yet fully understood. There is 

evidence that spontaneous arousals can be driven by the accumulation, or loss, of metabolites 

over a torpor bout (Epperson et al., 2011; Jinka et al., 2012). In addition to spontaneous arousals, 

hibernators can undergo induced, or alarm, arousals caused by environmental disturbances such 

as temperature changes or physical agitation (Pengelley and Fisher 1968, Twente and Twente 

1968). Spontaneous and induced arousals differ from each other in a number of ways including 

arousal duration and maximum rewarming rate (Utz and van Breukelen 2013). During an 

arousal, the initial source of heat comes from the actions of norepinephrine, released from 

activated sympathetic neurons, on brown adipose tissue and uncoupling protein-1 (Cannon and 

Nedergaard 2004; 2011) as shivering is not considered effective for heat generation at low body 

temperature (Kitao and Hashimoto 2012). This same non-shivering thermogenesis mechanism is 

presumably what allows some hibernators to remain torpid at ambient temperatures below their 

hypothalamic set-point and defend significant temperature gradients (Buck and Barnes 2000). 

One example of this is the arctic ground squirrel (Urocitellusparryii). Arctic ground squirrels 

utilize non-shivering thermogenesis to undergo thermogenic torpor, which occurs when a 

significant gradient (we defined here as >2.0°C) between body temperature and ambient 

temperature is maintained in steady-state torpor, to survive the Arctic winter.
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The arctic ground squirrel is the northern-most hibernator studied in the laboratory. This 

species experiences some of the coldest overwinter temperatures on record (minimum: -23.4, 

mean: -15.8; Buck and Barnes 1999). Due to their distribution, the arctic ground squirrel 

undergoes a very long hibernation season, lasting from 200-250 days depending on sex and 

reproductive state (Sheriff et al. 2011). The arctic ground squirrel also survives and maintains the 

lowest recorded body temperature of any mammal (-2.9°C, Barnes 1989). While they sustain a 

below freezing body temperature, it is still significantly warmer than the soil in which they are 

hibernating. Having to defend a substantial temperature gradient (2°C or greater) while torpid is 

an unusual circumstance for the majority of hibernators (reviewed in Karpovich et al. 2009 and 

Chapter 1, Table 1.1) and the ability to elevate their torpid metabolic rates is under studied.

Studies of hibernating mammals have frequently been limited to temperatures at which 

animals are able to thermally conform to their environments and allow body temperature to 

match ambient, thereby maximizing their metabolic savings. In the first chapter, we investigate 

whether thermogenic torpor is limited to a species that evolved in environments where 

conditions include frequent exposure to sub-zero temperatures (the arctic ground squirrel) or if, 

as we predicted, it is a more universal ability and shared by another species of ground squirrel. 

Using a temperate zone species, the golden-mantled ground squirrel (Callospermophilus 

lateralis), we demonstrate this species’ ability to survive prolonged periods of torpor at below 

freezing temperatures by increasing its torpid metabolic rate, an ability only extensively 

measured in arctic ground squirrels. While golden-mantled ground squirrels have previously 

been shown to respond to moderate subzero temperatures (-1 and -2; Wit and Twente 1983; 

Geiser and Kenagy 1988) with increased metabolism, these temperatures are only slightly (1- 

2°C) below their maintained body temperature (0°C; Healy et al. 2012) and these temperatures 

were lethal for a subset of tested animals (Wit and Twente 1983). We hypothesized that (I) the 

main difference between these two species’ ability to remain torpid at very low ambient 

temperatures is due to their different body sizes, and therefore different thermal conductivities, 

rather than due to an inherent physiological differences and (II) that the larger size, and thus 

lower thermal conductance, of the arctic ground squirrel would enable them to remain torpid at 

lower temperatures than the smaller golden-mantled ground squirrel. In this research we also 

attempt to identify the lower ambient temperature limit of hibernation for both the arctic and 

golden-mantled ground squirrel, predicting that below this temperature animals would be unable
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to maintain low body temperature for prolonged periods due to an inability to increase torpid 

metabolic rate above a set level; determining this set level also allowed us to define the 

maximum torpid metabolic rate for the arctic ground squirrel.

Hibernation is directly followed by reproductive development, and then pre-hibernatory 

fattening in obligate hibernators, such as many ground squirrel species, and these events occur 

with a circannual rhythm that persists under continuous temperature and photoperiod (Pengelley 

and Fisher, 1963; Ruf and Geiser 2014). Similar to other biological rhythms, the timing of events 

in the circannual hibernation cycle can be entrained/modified by environmental factors such as 

soil temperature (Barnes and Ritter 1993). It has previously been established that reproductive 

development is linked to the timing of hibernation in male ground squirrels (Barnes 1996); males 

that do not undergo testicular development hibernate longer than their reproductively competent 

cohorts and females enter hibernation earlier and end hibernation later than mature males, 

resulting in the longest hibernation seasons (reviewed in Michener 1984). Studies have shown 

that exposure to exogenous testosterone, but not estradiol, can inhibit ground squirrels of both 

sexes from entering torpor (Lee et al. 1990). In the second chapter, we hypothesize that (III) 

there is a link between circulating androgens, specifically testosterone and 

dehydroepiandrosterone, behaviors, and hibernation phenology in free-living male arctic ground 

squirrels. We predicted that high levels of circulating testosterone would only be found in 

reproductively mature males in the spring, coincident with the mating season and associated 

male-male aggression; this peak in testosterone should be brief with mature males’ levels 

returning to baseline once the mating season ends. The late summer period of measured 

aggression (Buck and Barnes 2003) should coincide with elevated levels of the adrenal androgen 

dehydroepiandrosterone due to its association with non-mating season aggression in other 

species (reviewed in Soma et al. 2015). If testosterone plays a role in the timing of spring 

phenology, castrated males should have hibernation seasons that begin in the fall and end late in 

the spring, similar to those of immature males; if testosterone also plays a role in controlling 

hibernation onset then castrated males should enter hibernation early, similar to females. 

Reproductive status, and therefore hibernation phenology, may be influenced by endogenous 

androgens, but it can additionally be influenced by environmental conditions, such as food 

availability (Barnes 1984).
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Sexually mature male arctic ground squirrels emerge from hibernation having recovered 

the body mass and condition lost over winter (Sheriff et al. 2013) by feeding from the caches that 

they accumulate in the fall (Buck and Barnes 1999). A varying proportion of males “opt out” of 

the reproductive season each year, and therefore do not develop scrotal, spermatogenic testes, 

and emerge in the spring at a significantly lower body mass than they attained before hibernation 

(Buck and Barnes 1999). The factors that determine which males participate in mating, and 

which do not, has not been determined. In the third chapter we hypothesize (IV) that access to a 

cache will impact the decision to undergo reproductive development. Here, we use the 

availability of food in the spring and the ability to accumulate a cache in the fall to determine 

whether food availability is the dominate factor in determining which males undergo 

reproductive development in the spring. We predicted that males able to establish a cache would 

develop scrotal testes, whereas males that were unable to cache would have longer hibernation 

seasons and not reproductively mature.
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Chapter 1 Th e r m o g e n ic  c a p a c i t y  a t  su b -z e r o  t e m p e r a t u r e s : h o w  l o w  c a n  a
HIBERNATOR GO?1

Abstract

Hibernation in mammals is a physiological and behavioral adaptation to survive intervals of low 

resource availability through profound decreases in metabolic rate (MR), core body temperature 

(Tb), and activity. Most small mammalian hibernators thermo-conform, with Tb approximating 

ambient temperature (Ta); arctic species are an exception since they must actively defend what 

can be large thermal gradients between Tb and Ta. Here we compare the thermogenic capacity of 

the arctic ground squirrel (Urocitellusparryii) to that of the golden-mantled ground squirrel 

(Callospermophilus lateralis), a temperate zone montane hibernator. We allowed animals to re

enter torpor at sequentially lower Ta’s and found that arctic ground squirrels maintained steady- 

state torpor at Ta’s as low as -26°C through a 37-fold increase in torpid MR (TMR), compared to 

their minimum TMR exhibited at Ta 0°C. Golden-mantled ground squirrels are able to maintain 

steady-state torpor at Ta’s at least as low as -8°C through a 14.5-fold increase in MR compared to 

their minimum TMR at Ta 2°C. In a second experiment, torpid animals were exposed to 

continuously decreasing Ta’s (0.25°C/30min); individuals of both species increased their 

metabolism while remaining torpid at low Ta’s (as low as -30°C for arctic ground squirrels and - 

10°C for golden-mantled ground squirrels). Although the capacity to hibernate at sub-freezing 

Ta’s is not unique to arctic ground squirrels, their large body size, greater torpid metabolic scope, 

and previously ascribed capacity to supercool allow them to occupy much colder hibernacula for 

prolonged seasons of hibernation.

1 Published as: Richter, M.M., C.T. Williams, T.N. Lee, 0 . Toien, G.L. Florant, B.M. Barnes and 

C.L. Buck. 2015. Thermogenic Capacity at Subzero Temperatures: How Low Can a Hibernator 

Go? Physiological and Biochemical Zoology 88(1): 81-89.
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Introduction

Seasonality of environments, which encompasses annual cycles of temperature, 

precipitation and resource availability, is a selective force that has led to the evolution of a 

variety of molecular, physiological and behavioral adaptations in indigenous species. One of the 

most intriguing adaptations of animals to seasonal environments is mammalian hibernation, 

characterized by extremely reduced metabolic rate (MR; as low as 1-5% of basal, Geiser and Ruf 

1995), body temperature (Tb) and activity (reviewed in Boyer and Barnes 1999; Storey 2000; 

Carey et al., 2003; Geiser 2004). Mammalian hibernation is a geographically and taxonomically 

widespread phenomenon that allows animals to survive periods of low resource availability by 

providing significant savings in energy use as they subsist on hoarded and/or endogenous energy 

stores (Geiser 2004; McKechnie 2014).

A majority of hibernation research has been conducted on sciurid ground squirrels and 

marmots held in the laboratory and exposed to above-freezing Ta’s (reviews: Davis 1976; Geiser 

and Baudinette 1990; Geiser 2004) with relatively few published investigations examining the 

physiology of hibernation at Ta’s lower than 0°C (Geiser and Kenagy 1988; Barnes 1989; Buck 

and Barnes 2000; Karpovich et al., 2009). Hibernators rely on temperature-independent 

metabolic inhibition, in addition to the temperature-dependent or Q10 effects associated with 

decreased Tb, to reduce MR during torpor (reviewed in Geiser 2004). In most species hibernating 

at Ta >Tb set-point, torpid MR (TMR) decreases with decreasing Ta in a Q10 dependent manner 

(Hammel et al., 1968; Geiser and Kenagy 1988; Snyder and Nestler 1990; Geiser 2004), 

although arctic ground squirrels (Urocitellusparryii) also utilize temperature-independent 

metabolic inhibition enabling them to maintain a constant and low TMR over a Ta and Tb range 

of 0 to 16°C (Buck and Barnes 2000). This relationship of decreasing TMR with decreasing Tb 

holds true for most hibernators so long as the animal’s Tb remains near Ta. However, as Ta 

approaches and decreases below the Tb set-point, the animal must either increase its TMR to 

maintain Tb > Tb set-point, arouse from torpor or, failing these, the animal will die (Geiser and 

Kenagy 1988; Geiser et al., 1990; Arnold et al., 1991; Buck and Barnes 2000).

Although sciurids have been used extensively to study hibernation in the laboratory, 

comparatively little is known about hibernation and hibernacula conditions of sciurids in the wild 

(literature summary in Table 1). Of these studies, the majority include soil temperatures from a
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single season and one small section of the species’ overall distribution; only two sciurid species 

have been shown to experience overwinter soil temperatures < -5°C: the arctic ground squirrel 

and the Alaska marmot (Marmota browerii). These two species are also the only representatives 

of the Arctic, where continuous permafrost constrains the depth of hibernacula such that these 

animals predictably experience sub-freezing soil temperatures across much of their hibernation 

season (Carl 1971; Buck and Barnes 1999b; Lee et al., 2009). Given the limited information 

about hibernaculum conditions available on species living in the temperate zone, it is unclear 

whether they are routinely subjected to sub-zero soil temperatures for extended periods of time 

within their current range distributions.

Since few species are known to hibernate at subzero Ta’s, very few captive studies of 

hibernators have challenged animals with Ta’s substantially below freezing and analyzed their 

corresponding torpid thermogenic capacity. Laboratory studies of arctic ground squirrels reveal 

that they have a tremendous capacity to increase metabolism and generate heat during torpor and 

arousals at low Ta (Buck and Barnes 2000; Karpovich et al., 2009). Field measurements of arctic 

ground squirrel hibernacula have shown that Ta during winter can decrease to as low as -23.4°C 

(Buck and Barnes 1999b) which is lower than Ta’s that hibernators have been subjected to in 

captive investigations (-16°C; Buck and Barnes 2000). Thus, the maximum MR arctic ground 

squirrels can maintain during steady-state torpor remains unknown. Laboratory studies 

conducted at sub-zero Ta’s on hibernating golden-mantled ground squirrels (Callospermophilus 

lateralis), a temperate zone species, have produced conflicting results with respect to their 

thermogenic capacity during torpor. Geiser and Kenagy (1988) found that all golden-mantled 

ground squirrels increase metabolism and generate heat to prevent the potential deleterious 

effects associated with Tb falling below Tb set-point, whereas Wit and Twente (1983) found that 

not all individuals were able to increase torpid thermogenesis and, when exposed to sub-freezing 

Ta’s (-1 to -2°C), a subset of animals either aroused or died. Arctic ground squirrels and golden- 

mantled ground squirrels are two sciurid species that have demonstrated some capacity for 

thermogenic torpor, making these species good candidates for an analysis of thermogenic 

capacity during torpor.

Here we report the thermogenic capacity of hibernating arctic ground squirrels during 

steady-state torpor and compare their response to that of golden-mantled ground squirrels that
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may only rarely be exposed to sub-freezing Ta’s. We anticipated that both species would be 

capable of defending large thermal gradients between Tb and Ta. We hypothesized that 

differences between species in their capacity to maintain a thermal gradient should principally be 

a function of differences in size and thus thermal inertia such that the smaller golden-mantled 

ground squirrels should exhibit a greater increase in MR with more moderate decreases in Ta but 

with both species exhibiting similar maximum TMRs and similar metabolic scopes. Given their 

larger size, more northerly distribution, and use of sub-zero hibernacula, we predicted that arctic 

ground squirrels would be able to maintain torpor at lower Ta’s than golden-mantled ground 

squirrels. To test our hypotheses, we utilized standardized protocols whereby we exposed 

animals to progressively lower Ta’s while concurrently measuring both MR and Tb.

Material and Methods 

Study species and husbandry.

The arctic ground squirrel is distributed from northeastern Russia throughout Alaska and 

northwestern Canada (Iwen 1999). Eighteen (5 female, 13 male) arctic ground squirrels 

(Urocitellusparryii) were either live-trapped north of the Brooks Range, AK near the Atigun 

River (68°27’N, 149°21’W, elevation 812m) and transported to the University of Alaska 

Anchorage vivarium or were born in captivity to mothers that were live-trapped near the Atigun 

River. The golden-mantled ground squirrel (Callospermophilus lateralis) lives in the temperate 

zone (between the tropic of Cancer and the Arctic Circle in the Northern Hemisphere) and its 

range includes the montane regions of western North America, and south through southern New 

Mexico (Howell 1938). Eight (4 female, 4 male) golden-mantled ground squirrels were live- 

trapped for this experiment in Larimer County, Red Feather Lakes, CO (40.8°N, 105.59°W, 

elevation 2,531m) and transported to the University of Alaska Anchorage.

Prior to experiments, all animals were maintained individually in metal cages 

(48x31x30cm, UnifabCages, Kalamazoo, MI, USA) on a 12L:12D photoperiod and at Ta of 20 ± 

2°C. Animals were provided cotton batting for nesting (Perfect Fit, McDonald, Tukwila, WA, 

USA), food (Mazuri Rodent Chow, Brentwood, MO, USA) and water ad libitum. In the fall of 

each experimental year we moved animals into environmental chambers maintained at an Ta of 2
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± 1°C with a 8L:16D photoperiod. As animals began to exhibit bouts of torpor, determined 

during daily observation, we transferred them and their nests into plastic tubs (43x27x19cm for 

arctic ground squirrels, 41x25x18cm for golden-mantled ground squirrels; Nalgene, Rochester, 

NY, USA), removed all food and water and allowed them to resume torpor. All work was 

approved by the University of Alaska Anchorage IACUC, protocol number 175424-2.

Body temperature (Tb).

To record Tb, we surgically implanted temperature-sensitive radiotransmitters (~7g, 

model TA10TA-F40-LF, Data Sciences International, St Paul, MN, USA) into the peritoneal 

cavity of animals at least two months before initiation of metabolic measurements. Briefly, 

animals were anesthetized using isoflurane and under aseptic conditions a 3 cm incision was 

made along the animal’s midline through the cutaneous and muscle layers; the gas-sterilized 

transmitter was placed inside the peritoneal cavity. The muscle and subcutaneous layers were 

closed using chromic gut and polydioxanone sutures, respectively and the skin subsequently 

glued (Vetbond, 3M, St. Paul, MN, USA). After surgery animals were returned to their wire 

cages at Ta 20 ± 2°C where they remained until moved to an environmental chamber (2 ± 1°C). 

Prior to surgery, all transmitters were calibrated to 0.1°C with a mercury thermometer at 0.0°C, 

35°C and 39°C. Transmitters were activated once hibernation began and animals were moved to 

tubs. Tb’s were recorded every ten minutes.

Respirometry.

Rates of oxygen consumption were recorded concurrently from four animals using an 

automated 2-channel system that alternated between channels every 5 minutes (adapted from 

Toien 2013). During measurements, the tubs housing animals were covered with closed-foam 

gasket sealed Polycarbonate lids. Ex-current air was drawn from the chambers through flow 

meters, after which a sub-sample passed through a dual gas flow multiplexer (a modified RM-8, 

Sable Systems International, Las Vegas, NV, USA) that switched air streams between a pair of 

animals and calibration gases. A sub-sample was then dried using Nafion dryers (Perma Pure, 

Toms River, NJ, USA) in a reflux mode, prior to being analyzed for O2 and CO2 content using an 

Oxilla II dual channel O2 analyzer and two CA-10A CO2 analyzers (Sable Systems International, 

Las Vegas NV, USA). Immediately prior to each recording, the CO2 and O2 analyzers were span
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and zero calibrated (using the standard of 20.94% O2 in air, soda lime, and a calibration gas with 

0.5% CO2 in air). At the beginning of each recording, and every hour throughout, a reference air 

sample was collected from inside the animal holding chamber. Samples of zero CO2 air and span 

gas were automatically collected every three hours. Rate of oxygen consumption was calculated 

according to the principles of the Haldane transformation (Haldane and Graham 1912) with 

corrections as outlined in Toien (2013). The rate of chamber air flow was measured and 

maintained at either 200 ± 10 ml/min (low flow) or 2500 ± 10 ml/min (high flow) with mass 

flow controllers (Flowbar8, Sable Systems International, Las Vegas, NV, USA and Brooks 

5850E, 5 l/min range, Coastal Instruments, Burgaw, NC, USA, respectively). Computer 

controlled base-lining units (Sable Systems International, Las Vegas, NV, USA) were used to 

automatically switch from low to high chamber flow when animals aroused and from high to low 

flow when animals went into torpor based on O2 depletion thresholds of 1.3% and 0.08%, 

respectively (as diagramed in Figure 15, Toien 2013). All respirometry data were collected, 

corrected for drift and analyzed using LabGraph (Toien 2013). Efficacy of system performance 

was assessed by burning a known mass of ethanol within the respirometry chamber before 

measurements began, halfway through the temperature protocols, and again after completion of 

experiments.

Steady-state torpor.

In the fall, at the beginning of the hibernation season, all animals (18 arctic ground 

squirrels, 8 golden-mantled ground squirrels) were moved into environmental chambers and 

respirometry measurements were initiated after all animals had exhibited at least one bout of 

torpor. To ensure that animals were in steady-state torpor, we conducted all measurements 

between days 1 and 18 of a torpor bout (Tb remained constant (± 0.5°C) for 2 or more hours prior 

to commencing recording). At low flow, data were not used until after 6 hours (3.26 complete air 

changes) to ensure measured gas concentrations accurately reflected animal metabolism; at high 

flow the duration was reduced to 2 hours (13.6 complete air changes). Mean rates of oxygen 

consumption were determined for individual animals during steady-state torpor over 6-hour 

periods.

Between experimental temperatures, all animals were weighed to the nearest gram 

(CW11-2EO, Ohaus Co., Pinebrook, NJ, USA) and physically disturbed to induce an arousal
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such that all animals were euthermic prior to exposure to the following Ta. Arctic ground 

squirrels were randomly divided into two groups, each of which experienced a different Ta 

exposure protocol: protocol 1 included Ta’s ranging from 2 to -20°C in 2°C increments; animals 

in protocol 2 were exposed to Ta’s of 2°C and 0°C before we decreased the Ta to -10°C and then 

-20°C, following which Ta was decreased in 2°C increments until animals either failed to enter 

torpor, were unable to maintain low Tb, or until a maximum MR was obtained (as indicated by 

successive Ta’s eliciting the same MR). Golden-mantled ground squirrels were exposed to the 

temperatures from protocol 1 after their initial torpor bout; however, in accordance with our 

animal care protocol, golden-mantled ground squirrels were removed from the cold room after 

measurements were made at -8°C. Animals were at each Ta for at least 24 h prior to being 

aroused for the next experimental Ta.

Ramping.

All ramping experiments were conducted in the year following steady-state torpor 

experiments (i.e., in the subsequent hibernation season). Once all animals had undergone at least 

one bout of torpor at 0°C, we began the ramping protocols as follows. Seven arctic ground 

squirrels (6M, 1F) were aroused from torpor at 0°C, weighed and then placed at -20°C where 

they again entered steady-state torpor. While simultaneously recording Tb and MR these animals 

were then subjected to gradually decreasing Ta’s (set point decreased by 0.25°C every 30 min, 

except for at -25.5°C which was maintained for an hour to allow animals to acclimate) until 

animals exhibited an arousal. We defined arousal as an increase in MR of 0.1 ml O2/g*h for 5 

consecutive decreases in Ta. This definition allowed us to differentiate between incremental 

increases in MR associated with the progressively increasing temperature gradients and the 

actual attempt to arouse from low Tb while excluding the MR ‘overshoots’ (when an animal 

increased MR for a brief period of time that did not manifest as an increase in Tb) that the 

animals exhibited during the protocol. We followed a similar protocol with four golden-mantled 

ground squirrels (2M, 2F) in steady-state torpor at 0°C. The starting Ta’s for both species were 

chosen based on the results obtained from our steady-state torpor work. Mean MRs for ramping 

were selected from the last 10 min prior to the set-point again being adjusted. The Tb and Ta we 

report for the ramping experiment are the last temperatures recorded prior to the change in Ta.
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Data analysis.

All data presented are means ± SEM, unless otherwise noted. We used linear mixed 

effects models in R (REML function in lmerTest package; RStudio, version 3.0.1) with 

individual ID included as a random effect to examine the rate at which steady-state mass-specific 

torpid MR changed in response to changing Ta. For arctic ground squirrels we included only data 

collected between 0°C and -24°C in our model (the linear portion of the response; see results) 

whereas for golden-mantled ground squirrels we included data collected between 2°C and -8°C. 

To determine if torpid MR of arctic ground squirrels had reached a plateau, we compared MR at 

-24°C and -26°C using a paired T-test. We compared the maximum torpid MR between species 

using a Student’s T-test. For all tests, we concluded results to be statistically significant when P 

< 0.05.

Results

Steady-state torpor.

Ground squirrels used in these experiments were able to maintain a low, constant Tb 

indicative of steady-state torpor at all temperatures tested. In response to exposure to 

incrementally decreasing sub-zero Ta’s, torpid squirrels of both species increased MRs and 

continued to defend an increasingly large thermal gradient between Ta and Tb (Figure 1.1).

Arctic ground squirrels maintained low Tb’s and steady-state torpor at Ta’s to as low 

as -26°C (4 of 5 animals exposed to -26°C). At this Ta, the four animals maintained a TMR of 

0.36 ± 0.01 ml O2/g*h, a value not significantly different from the TMR of six animals torpid at - 

24°C (0.37 ± 0.01 ml O2/g*h; paired t-test, P=0.3, Figure 1.1). Arctic ground squirrels displayed 

a 37-fold increase in TMR from 0°C to -24°C (0.01 ± 0.00 ml O2/g*h at 0°C to 0.37 ± 0.01 ml 

O2/g*h at -24°C). The relatively high TMR at -26°C (0.36 ± 0.01 ml O2/g*h) enabled these arctic 

ground squirrels to defend a ~25.5°C thermal gradient and maintain a mean core Tb of -0.5 ± 

0.3°C. The change in TMR from -24°C to 0°C was -0.014 ml O2/g*h per °C. Of the 5 animals 

exposed to -26°C, one animal entered torpor briefly (2.6 h, minimum Tb: -0.4°C) before initiating 

an arousal; this animal was unable to fully arouse and died during the attempt (maximum Tb
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achieved: 3.0°C). As a result of this fatality, no animals were exposed to Ta’s < -26°C during the 

steady-state torpor measurements.

Golden-mantled ground squirrels maintained steady-state torpor at Ta’s to -8°C, the 

lowest Ta they were subjected to given the constraints of our animal care protocol. The highest 

TMR recorded from golden-mantled ground squirrels occurred in animals torpid at -8°C (0.29 ± 

0.01 ml O2/g*h). This TMR is significantly lower than the maximum TMR recorded from arctic 

ground squirrels at -26°C (Students T-test, P  = 0.002); but the TMR of golden-mantled ground 

squirrels had not yet plateaued. The golden-mantled ground squirrels were able to elevate their 

MR by 14.5-fold (0.02 ± 0.001 ml O2/g*h at +2°C to 0.29 ± 0.01 ml O2/g*h at -8°C) as they 

maintained above-freezing Tb at the sub-zero Ta’s tested. Golden-mantled ground squirrels 

exhibited their lowest Tb (0.0 ± 0.2°C) when hibernating at -4°C, thus establishing a ~4°C 

temperature gradient between their core and the environment. However, while they reached their 

Tb nadir at -4°C, the largest gradient golden-mantled ground squirrels defended occurred at Ta - 

8°C (9.0 ± 0.3°C). The change in MR from Ta’s of -8°C to -2°C was -0.024 ml O2/g*h per °C.

Animals were weighed before the steady-state recordings had begun and during 

every induced arousal. For arctic ground squirrels undergoing the first steady-state protocol (Ta’s 

from 2 to -20°C in 2°C increments), 11 arousals were induced and animals lost 154 ± 11 g of 

initial mass (Fall: 750 ± 32 g, Spring: 596 ± 30 g, a loss of ~21%) over the 104 days of the 

experiment. Over the same time course, arctic ground squirrels in the second protocol (Ta’s of 

2°C, 0°C, -10°C, -20°C, -22°C, -24°C, -26°C) underwent six induced arousals and lost 220 ± 23 

g of initial body mass (Fall: 783 ± 19 g, Spring: 563 ± 23 g, a loss of ~28%). The two golden- 

mantled ground squirrels that were subjected to all Ta’s in the steady-state protocol lost a total of 

85 and 55 g (Fall: 247 and 222 g, Spring: 162 and 167 g, a loss of ~34 and ~25% of initial body 

mass, respectively) over five induced arousals and 84 days of the experiment.

Ramping.

Individuals from both species were able to defend a thermal gradient between torpid 

Tb and Ta without immediately arousing when challenged with incrementally lower, sub-zero 

Ta’s. Prior to the metabolic measurements for the ramping experiment, arctic ground squirrels 

spontaneously entered torpor at 0°C; these animals were aroused, weighed and re-entered torpor
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at -20°C immediately before the ramping protocol began. The mean Ta that arctic ground 

squirrels alarm aroused was -25.9 ± 1.1°C (range of -23.0 to -30.0°C). The average TMR just 

prior to arousal was 0.29 ± 0.02 ml O2/g*h, ranging from 0.20 to 0.38 ml O2/g*h (Table 1.2).

The golden-mantled ground squirrels entered torpor at Ta of 0°C were then exposed to 

progressively lower Ta’s; the mean Ta that induced arousal was -6.3 ± 1.8°C (range of -3.0 to - 

10.0°C). TMRs just prior to arousal averaged 0.12 ± 0.06 ml O2/g*h, and ranged from 0.01 to 

0.26 ml O2/g*h (Table 1.2).

Discussion

In this study we investigated the thermogenic responses of two hibernating ground 

squirrel species exposed to sub-freezing temperatures during steady-state torpor. We found that 

arctic ground squirrels exhibited a 37-fold increase in TMR as they defended a thermal gradient 

of ~25.5°C between Tb and Ta, at Ta as low as -26°C, below the lowest published 

soil/hibernacula temperature for this species (Table 1.1). We suggest that the maximum TMR we 

measured in arctic ground squirrels was very close to their maximum TMR they are capable of as 

MR exhibited an abrupt plateau between -24 and -26°C. This was supported by our finding that 

torpid squirrels subjected to steadily decreasing Ta aroused at -25.9 ± 1.1°C, although one 

individual continued to hibernate at Ta = -30.0°C. The maximum TMR of 0.37 ± 0.01 ml O2/g*h 

is close to their basal MR (0.4 to 0.61 ml O2/g*h, Scholander et al., 1950; Withers et al., 1979) 

but is lower than the 0.51-0.84 ml O2/g*h reported for resting MR of wild-caught arctic ground 

squirrels (Sheriff et al., 2013). We also found that golden-mantled ground squirrels are capable 

of increasing their TMR by at least 14.5-fold as they defend a thermal gradient of ~9°C between 

Tb and Ta while maintaining steady-state torpor at Ta’s as low as -8°C (the lowest Ta tested). The 

highest TMR measured for the golden-mantled ground squirrels, like that of the arctic ground 

squirrels, was also well below their published basal MR (0.29 ± 0.01 ml O2/g*h vs. 0.73 ml 

O2/g*h, Snapp and Heller 1981). Arctic ground squirrels, however, exhibited lower minimum Tb, 

lower minimum TMR, a greater torpid metabolic scope, a smaller increase in TMR with 

decreasing Ta, and the capacity to maintain torpor at significantly lower Ta’s compared to 

golden-mantled ground squirrels.
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The golden-mantled ground squirrels utilized in our study maintained Tb above 0°C while 

hibernating at sub-freezing temperatures, contrary to Wit and Twente (1983). Animals were able 

to remain in steady-state torpor at Ta’s as low as -8°C, and one animal only aroused when Ta 

reached -10°C; this value is substantially lower than the Ta -2°C that resulted in death for a 

subset of animals in Wit and Twente (1983). Likely, the discrepancy between our findings and 

previously published results is the difference in protocols utilized and not a real difference in 

thermal tolerance of the animals themselves. Our steady-state protocol allowed animals to fully 

arouse before subjecting them to a lower Ta, and our ramping protocol was much more gradual 

than what animals underwent in previously published work, where torpid animals were moved 

directly from an above zero Ta to below freezing Ta (Wit and Twente 1983).

Although both arctic ground squirrels and golden-mantled ground squirrels maintained 

torpid Tb’s within a fairly narrow range throughout the experiments, the two species differed 

slightly in response to sub-zero Ta’s. While arctic ground squirrels’ Tb during torpor remained 

relatively constant with decreasing Ta, abdominal Tb in golden-mantled ground squirrels 

increased by ~0.9°C between Ta -4 and -8°C (-0.08 ± 0.16°C, 0.95 ±0.25°C, respectively, P  = 

0.08). Throughout the hibernation cycle, Tb is closely monitored and regulated by the 

hypothalamus; as the hypothalamus is heated or cooled, MR of the animal is suppressed or 

increased, ensuring that hypothalamic temperature does not deviate significantly from its set- 

point (Heller and Hammel 1972; Mills and South 1972; Florant and Heller 1977). However, 

thermogenic animals exhibit regional heterothermy during torpor (Barnes 1989) and therefore it 

is unclear whether the observed difference in abdominal Tb reflects a difference in hypothalamic 

set-point or was due to differences in heat transfer from the brown adipose tissue in the thoracic 

region. The arctic ground squirrels in our experiment maintained a slightly higher minimum 

abdominal Tb (-0.94 ± 0.11°C) than previously published for captive animals hibernating in 

outdoor enclosures (-2.9°C, Barnes 1989) or for free-living animals hibernating in the wild (- 

2.0°C -  0.9°C, Buck et al., 2008; Williams et al., 2012); however, our values are similar to those 

reported by Barnes (1989) for a single captive animal hibernating in environmental chambers (- 

1.3°C).

We presume that the increase in MR with decreasing Ta observed in the present study 

directly reflects an increase in rates of non-shivering thermogenesis. In hibernators, non-

21



shivering thermogenesis is activated via norepinephrine’s effects on uncoupling protein-1 (UCP- 

1) in brown adipose tissue (Cannon and Nedergaard 2004; 2011). Animals hibernating at 

temperatures below their hypothalamic set-point may be particularly dependent on heat 

generated by brown adipose tissue. While EMG activity from shivering has been observed at 

Tb’s as low as 4°C (T0 ien et al., 2001) shivering is not thought to be an effective heat generator 

at this temperature (Kitao and Hashimoto 2012). Brown adipose tissue on the other hand up- 

regulates UCP1 upon cold exposure, and the highest levels are found in hibernators that are 

actively generating heat (Barger et al., 2006) indicating functionality at very low temperatures.

In this study we established an upper limit to the TMR for the arctic ground squirrel of 

0.37 ± 0.01 ml O2/g*h (37-fold increase from lowest TMR, Figure 1.1). Evidence supporting this 

as a maximum TMR in this species comes from the apparent plateau in MR between animals 

torpid at Ta -24 and -26°C. Interestingly, this maximum TMR is substantially lower than what 

these animals are capable of generating during an arousal (Karpovich et al., 2009). We were 

fortuitously able to record MR during arousals from two animals that were torpid at Ta -26°C; 

these animals demonstrated maximum arousal MRs of 3.24 and 3.44 ml O2/g*h (a 324- and 344

fold increase, respectively, over the lowest mean TMR). These maximum arousal MR’s are very 

similar to what Karpovich et al. (2009) found for arctic ground squirrels arousing from torpor at - 

12°C (3.40 ± 0.18 ml O2/g*h) as well as being similar to peak levels resulting from stimulated 

arousals of arctic ground squirrels torpid at 2°C (T0 ien et al., 2001) indicating that this is the 

maximum MR for thermogenesis during arousal in this species. It is possible that the discrepancy 

between maximum TMR and the MRs achieved during arousals is due to a threshold effect, i.e., 

animals may be able to increase their TMR only so much before the norepinephrine 

concentrations elicit an arousal. Once norepinephrine levels enabling non-shivering 

thermogenesis reach the threshold an arousal is initiated, the Tb set-point of the hypothalamus is 

reset to euthermic levels (~37°C), and MR increases accordingly (Florant and Heller 1977).

Thus, alarm arousals might simply be a consequence of the elevated norepinephrine levels in 

both the hypothalamus and the brown adipose tissue associated with increased thermogenesis 

during torpor at low Ta. While this is a speculative hypothesis, there is some evidentiary support 

in that injections of norepinephrine directly into the hypothalamus or into the periphery both 

induce arousal from torpor (intrahypothalamic injection: Beckman and Satinoff 1972; 

intraperitoneal injection: Twente and Twente 1978).
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We observed differences in the TMRs generated from each protocol; the steady-state 

torpor protocol resulted in higher TMRs compared to those from the ramping protocol (Figure 

1.1 and Table 1.2). Interestingly, we did see a convergence in the data from both approaches onto 

a single value for the lower Ta limit of hibernation for each species. For the arctic ground 

squirrel, both experiments found a Ta limit of close to -26°C; the maximum MR of torpor 

plateaued between Ta -24 and -26°C (0.37 ± 0.01 ml O2/g*h, Figure 1.1) in the first experiment 

and animals aroused at a mean Ta of -25.9 ± 1.1 °C during the ramping experiment (Table 1.2). 

The golden-mantled ground squirrels were more responsive to decreasing Ta and aroused from 

torpor at a mean Ta of -6.3 ± 1.8°C (range: -3 to -10°C, Table 1.2) during the ramping 

experiment, while the steady state protocol was terminated at -8°C. The difference in lower Ta 

limit between species might reflect the thermal inertia gained from the larger body mass of the 

arctic ground squirrels, which were 316% heavier than golden-mantled ground squirrels at peak 

adiposity. Thermal inertia may also help explain why TMR was lower in the ramping experiment 

as this inertia could result in a lag between changes in Ta and hypothalamic Tb and thus delay the 

metabolic response.

In addition to the increased thermogenic load animals incurred due to sub-freezing 

Ta’s in our study, they also underwent frequent, induced arousals. This combination of elevated 

TMR and induced arousals resulted in a significant body mass loss (17-33%) over 104 days of 

hibernation for the arctic ground squirrels. For a comparison, free-living, adult female arctic 

ground squirrels lose 30% of their body mass over the course of the 237 ± 2.2 day hibernation 

season (Buck and Barnes 1999a) which includes ~15 spontaneous arousals (Buck et al., 2008). 

The two golden-mantled ground squirrels that were exposed to the full range of Ta’s in the 

steady-state protocol lost 34.4 and 24.8% of their fall body mass over 5 induced arousals and 84 

days of hibernation; this compared to ~29% body mass loss over ~232 days of hibernation and 

~20 arousals for a free-living individual (Healy et al., 2012). The rapid body mass loss our 

animals experienced over a short period of time is indicative of the cost of arousals for a 

hibernator in addition to the increased TMR incurred at low Ta’s. At Ta’s above Tb set-point 86% 

of overwinter energy expenditure is accounted for by arousals (Wang 1978); as Ta decreases, the 

relative cost of arousals actually decreases due to the increased metabolic load of thermogenic 

torpor (Karpovich et al., 2009). Although soil temperatures measured in the Arctic can be as low 

as -23.4°C, soils at most hibernacula typically do not freeze solid at a depth of ~1 m until late
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October (Buck and Barnes 19996); therefore, arctic ground squirrels need only be thermogenic 

during deep torpor for a portion (5-7 months, Buck et al., 2008) of the hibernation cycle.

Hibernation functions as an energy conservation strategy that enables survival during 

periods of low resource availability. Arctic ground squirrels were able to maintain torpor at Ta’s 

as low as -26°C, which is only ~3°C colder than what they are known to experience in the field (- 

23.4°C, Table 1). Although golden-mantled ground squirrels have a temperate zone distribution, 

we found that they remain at Tb ~ 0°C and have the capacity to increase MR and maintain 

steady-state torpor in Ta’s at least as low as -8°C. Interestingly, this is also only a few degrees 

cooler than the minimum winter soil temperatures these animals are known to experience in the 

wild (-4.9°C, Table 1). Our results are consistent with the hypothesis that the physical 

environment plays an important role in shaping the hibernation phenotype of hibernating 

sciurids. However, we recognize the severe limitations of inferring adaptation based on two- 

species studies (reviewed in Garland and Adolph 1994) and we encourage further study on the 

thermogenic capacity of hibernators during deep torpor so that multi-species comparisons can be 

made.
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Figure 1.1: Panel A: Mean temperature gradients of animals in steady-state torpor at 
experimental ambient temperatures (Ta, °C). Panel B: The effect of Ta on steady-state torpid 
metabolic rate (mean ± SEM) in ground squirrels. Number of arctic ground squirrels ranges from 
4 to 18 individuals at each temperature. Number of golden-mantled ground squirrels ranges 
from 2 to 8 individuals at each temperature.
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Table 1.1: Published values for burrow/soil temperature and minimum torpid metabolic rate. 

Temperatures in °C, torpid metabolic rate (TMR) in mL O2/g*h.

Species Burrow/Soil
Temperature

Minimum TMR 
(mL O2/g*h)

Sources

Healy et al., 2012;
Callospermophilus

lateralis -2°C-4.9°C 0.045 C.L. Frank, pers 
comm.; Snapp and 

Heller 1981
Callospermophilus 2°C 0.017 Kenagy et al., 1989;

saturatus Geiser et al., 1990

Ictidomyes
tridecemlineatus -1°C 0.02

Kisser and Goodwin, 
2012; C.L. Buck, pers 

comm.

Marmota browerii Min.: -15.0°C, 
Mean: -7.3°C N/A Lee et al., 2009

Marmota marmota 0°C 0.013 Arnold et al., 1991
Florant and Heller

Marmota flaviventris 5-7°C 0.022 1977; Florant et al., 
2000

Marmota monax 1.9°C 0.032 Ferron, 1996; Lyman 
1958

Urocitellus columbianus -2°C N/A Young, 1990

Min: -23.4°C, 
Mean: -8.9°C

Buck and Barnes,
Urocitellus parryii 0.01 1999b; Buck and 

Barnes 2000

Urocitellus richardsonii -2.6°C 0.02 Michener 1992; 
Wang 1979
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Table 1.2: Results from ramping experiment

GMGS# Ta of arousal MR at arousal AGS# Ta of arousal MR at arousal
GMGS 1 -10°C 0.26 10-17 -23°C 0.20
GMGS 2 -3°C 0.02 10-04 -25°C 0.23
GMGS 3 -9°C 0.18 08-15 -24°C 0.34
GMGS 4 -3°C 0.01 09-13 -23°C 0.29

08-34 -28°C 0.38
09-06 -28°C 0.30
08-28 -30°C 0.32

Means: -6.3±1.8 0.12±0.10 -25.9±1.1 0.29±0.02

Maximum metabolic rates (reported as oxygen consumption in ml O2/g*h ± SEM) from 

minimum ambient temperature (Ta) at which animals continued to exhibit torpor as determined 

via a temperature-ramping experiment that involved exposing animals to progressively 

decreasing Ta’s during a single torpor bout. Individual golden-mantled ground squirrels are 

presented as their animal number (GMGS#) as are the arctic ground squirrels (AGS#).
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Chapter 2 Th e  in f l u e n c e  o f  a n d r o g e n s  o n  h ib e r n a t io n  p h e n o l o g y  o f  f r e e -l iv in g

MALE ARCTIC GROUND SQUIRRELS1

Abstract

Many free-living ground squirrel species are sexually dimorphic in hibernation phenology. The 

underlying causes of these differences are not yet known. Androgens, testosterone (T) in 

particular, inhibit hibernation. To determine the influence of endogenous androgens on annual 

timing of hibernation and aggression, we first measured circulating levels of T and 

dehydroepiandrosterone (DHEA), an adrenal androgen implicated in non-mating season 

aggression in other species, in free-living male arctic ground squirrels (Urocitellus parryii, 

AGS). We also manipulated endogenous androgen levels by surgical castration, and 

consequently compared body temperature records from intact (n = 24) and castrated (n = 9) 

males to elucidate the influence of endogenous androgens on annual body temperature rhythms. 

Unsurprisingly, the highest T levels (0.69 ± 0.20 ng/mL) were found among reproductively 

mature male AGS in spring, whereas, both immature males in spring and all males in late 

summer had T levels an order of magnitude lower (0.06 ± 0.00 and 0.07 ± 0.01 ng/mL, 

respectively). DHEA levels were higher in males during the late summer compared to 

reproductively mature males in spring (124.6 ± 20.8 and 40.6 ± 4.2 pg/mL, respectively). 

Eliminating gonadal androgens via castration resulted in males remaining heterothermic 

significantly later in spring (Julian date 112.1 ± 2.9) than reproductive males (87.1 ± 3.9) but did 

not change the timing of hibernation onset (castrate: 284.8 ± 1.0 vs. intact: 276.2 ± 3.1). We 

conclude that while androgens play a significant role in spring hibernation phenology of males, 

their role in fall hibernation onset is unclear.

Key words: hibernation phenology; androgen; arctic ground squirrel

1 Prepared for submission to Hormones and Behavior as M.M. Richter, B.M. Barnes, K.M. O-Reilly, A.M. Fenn, 
C.L. Buck. The influence of androgens on hibernation phenology of free-living male arctic ground squirrels.
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Introduction

Arctic ground squirrels (Urocitellusparryii, AGS), the northernmost hibernator, 

experience the most extreme winter conditions and have only a very short season in which to 

mate, rear offspring, and prepare for the following winter (Buck and Barnes 1999b, Carl 1971). 

In early spring in preparation for the mating season, adult males end heterothermy (period of 

hibernation when animals undergo torpor-arousal cycles) and remain sequestered below ground 

(Williams et al. 2012b). This pre-emergent period is characterized by 10-27 days of euthermic 

but arrhythmic body temperature (Tb; Williams et al. 2012a) and is required for testicular 

recrudescence and spermatogenesis (Barnes et al. 1987). During this pre-emergent euthermic 

period males draw from a food cache to regain lost body mass (Buck and Barnes 1999a). In 

addition to the males that engage in the mating season, a varying proportion forgo mating 

opportunities, continue hibernating through the mating season (Bronson 1979; Buck and Barnes 

1999b; Schwagmeyer and Brown 1983; Sheriff et al. 2011; Slade and Balph 1974), and neither 

undergo testicular maturation nor have a significant pre-emergent euthermic period (Williams et 

al. 2012b). Unlike the differences found in timing of spring emergence, timing of entrance into 

hibernation is nearly synchronous among males (Sheriff et al. 2011). Female AGS begin 

hibernation significantly earlier, emerge from hibernation significantly later than reproductive 

males, and exhibit no pre-emergent euthermic period (Buck and Barnes 1999a; Sheriff et al. 

2011; Williams et al. 2012b). The modulator(s) of sex differences in hibernation phenology is as 

yet unknown.

In the early spring, male AGS have high levels of circulating androgens (Boonstra et al. 

2001; Buck and Barnes 2003) coincident with reproductive development and behaviors, male- 

male aggression and mate guarding (Carl 1971; Buck and Barnes 2003). At the conclusion of the 

breeding season, testes atrophy (Barnes and York 1990; Buck and Barnes 1999a), mating season 

aggression ends and circulating androgen levels decline (Buck and Barnes 2003). In the late 

summer, males accumulate a cache to be utilized in the following spring; this cache, and the 

surrounding territory, is defended against other males in the weeks prior to the start of 

hibernation (Carl 1971; Buck and Barnes 1999a; Buck and Barnes, 2003). The hormonal 

correlate of this second period of male-male aggression, associated with the defense of territory 

and caches, is not known.
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In other animal species, non-mating season aggression can be influenced by an adrenal 

androgen, dehydroepiandrosterone (DHEA). Among many song birds, red squirrels 

(Tamiasciurus hudsonicus), and dwarf hamsters (Phodopus sungorus), non-mating season 

aggression coincides with increased concentrations of circulating DHEA, rather than testosterone 

(T) (Soma et al. 2008 (a review); Boonstra et al. 2008; Scotti et al. 2008). It is possible that male 

AGS may utilize the same non-testicular androgen during the late summer, when their testes are 

regressed and quiescent (Barnes and York 1990) and that its actions may contribute to the late 

hibernation onset observed in males compared to females.

The differences in hibernation patterns observed between reproductively mature males, 

immature males, and females combined with the known inhibitory effects of T on hibernation 

(Darrow et al. 1988; Goldman et al. 1986; Lee et al. 1990; Smit-Vis 1972; Vitale et al. 1985) 

strongly imply an important phenological role for endogenous androgens. To test this role of 

androgens we castrated males, to remove the main source of endogenous T, and compared Tb 

patterns between intact and manipulated males. We also measured plasma T and DHEA 

concentrations in samples collected from intact males across the active season and correlated the 

two discrete periods of male-male aggression with increased androgens, T in the spring, and 

DHEA in the late summer.

Methods and Materials 

Animals and Blood Sampling:

Free-living adult and juvenile AGS were live-trapped using Tomahawk traps (Tomahawk 

Live Trap, Tomahawk, WI, USA) baited with carrot north of the Brooks Range, AK near the 

Atigun River (68°27’N, 149°21’W, elevation 812m). Animals were trapped during the active 

season (April to September) between 2008 and 2013 and transported by truck to the nearby 

Toolik Field Station where they were anesthetized by a 3-5 min exposure to isoflurane vapors.

On first capture, animals were uniquely tagged (Monel no. 1 ear tags, National Brand & Tag 

Company, New Port, KY, USA and AVID MUSICC passive integrated transponder [PIT] tags, 

Norco, CA, USA), weighed, and assessed for sex. Males were scored for reproductive state 

(spring captures only, score of 0-3; 0: no palpable testes; 3: fully enlarged, scrotal testes), and
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sampled for blood (1-2 mL) via cardiac puncture. The blood sample was immediately added to 

vials containing EDTA, centrifuged, the plasma drawn off and frozen at -80°C until time of 

assay. Animals were held in their traps overnight in the laboratory, provided rodent chow ad 

libitum (Mazuri Rodent Chow, Brentwood, MO, USA) and fresh carrots, and released at site of 

capture the following morning.

Hormone Assays:

Plasma T was measured in randomized batches between 2010 and 2012. Samples were 

analyzed in duplicate using a commercially available RIA kit (ImmunoChem™ Double 

Antibody RIA cat. No. 07189102; MP Biomedicals, Santa Ana, CA, USA). The antibody used in 

this kit is highly specific (highest cross-reactivity with 5a-dihydrotestosterone at 3.40%) and the 

assay has a reported sensitivity of 0.03 ng/mL. We followed the manufacturer’s recommended 

protocol with the following modifications: all volumes were halved and we added an additional 

standard at 0.05 ng/mL by diluting the 0.1 ng/mL 1:1 with the provided steroid diluent. Using 

this protocol provided inter- and intra-assay coefficient of variations (CV’s) of 13.6% and 14.1 ± 

8.8%, respectively. We measured inter-assay CV’s using a pooled sample run in each assay; we 

used results of this same pooled sample assayed at the beginning and end of each assay to 

calculate intra-assay CV’s. The assay was validated with both an analysis of standard addition 

and a test of parallelism. Samples with measured levels of T below the lower detectable limit for 

this assay were assumed at the level of detectability (0.05 ng/mL; 241 from intact males, 31 from 

castrated males, 43 from females). Two out of the 419 samples from intact males were 

determined to be statistical outliers, based on a box-plot (higher than the upper quartile + 3*inner 

quartile range), and therefore omitted from analysis and presentation; none of the 44 samples 

collected from female animals were considered outliers.

Plasma DHEA was measured in randomized batches in 2013. We measured the active 

form of DHEA instead of its inactive form, DHEA-S. 100^L samples were assayed in duplicate 

using a commercially available RIA kit (DSL8900, BeckmanCoulter, Pasadena, CA, USA). The 

antibody used is highly specific to DHEA with extremely low cross-reactivity (highest with 

isoandrosterone at 0.733%) and the sensitivity of the assay, as stated by the manufacturer, is 9.0 

pg/mL. The manufacturer’s protocol was used with the following modification: standards were 

created at 26 pg/mL, 53 pg/mL, 105 pg/mL, 210 pg/mL, 325 pg/mL, 650 pg/mL and 1650 pg/mL
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by diluting the provided calibrators with 0 ng/mL calibrator. Inter-assay CV, measured using a 

single pooled sample run in each assay, was 3.6%, and intra-assay CV, calculated using the 

pooled sample assayed at the start compared to end of each assay, was 15.7 ± 7.8%. Prior to 

analysis, samples were extracted using methylene chloride, dried under nitrogen gas, and re

suspended in phosphate-buffered saline with glucose. Other extraction methods using other 

solvents were tested, but this method gave the most reproducible results. Extraction efficiencies 

were calculated for each sample and resulted in a mean extraction efficiency of 33.1 ± 0.01%. 

However, values are presented without correction since there was little variation in extraction 

efficiencies. These methods were validated for use in this species using both an analysis of 

standard addition and a test of parallelism. Samples found to be below the lower detectable limit 

for this assay (25.5 pg/mL; 62 from intact males, 3 from castrates) were listed at that lower limit 

for presentation and analysis. One sample out of the 224 analyzed was determined to be a 

statistical outlier, based on a box-plot, and therefore omitted from analysis and presentation.

Body temperature (Tb) measurement:

One of three different temperature loggers (modified TidBit Stowaway model TBICU32- 

05+44, (14g, ±0.3°C), Onset Computer Corp, Bourne MA, USA; iButton DS1922L and 

DS1921G (both 3g, ±0.5°C), Maxim Integrated, San Jose, CA, USA), programmed to recorded 

Tb every 20-120 min (interval dependent on type of logger), was implanted in animals (total of 

24 males, 17 females) for semi-continuous measurement of Tb and subsequent analysis of 

hibernation phenology. Prior to implantation, loggers were calibrated, coated in Elvax (DuPont, 

Wilmington, DE, USA), and gas-sterilized. Briefly, animals were anesthetized using isoflurane, 

then under aseptic conditions, a 3-5 cm incision was made along the animal’s midline through 

the linea alba and the logger was placed inside the peritoneal cavity. The muscle and 

subcutaneous layers were closed using chromic gut and polydiozanone sutures, respectively, and 

the skin subsequently glued (Vetbond, 3M, St. Paul, MN, USA). After surgery animals were 

returned to their traps and provided with fresh carrots and rodent chow, and held overnight in the 

laboratory before being released at site of capture the following morning. Another group of 14 

males underwent all the procedures described above, and, additionally, were castrated. Of the 

manipulated animals, 9 castrates were recovered and their loggers downloaded. The animals
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without recovered loggers were all recaptured at least once after surgery and may have been lost 

to predation or dispersal/loss of territory.

Characteristics of Tb regulation across hibernation were analyzed as described in Buck et 

al. 2008. Heterothermy start date was defined as first day Tb decreased below 30°C and 

heterothermy end date was defined as the last time Tb increased above 30°C. Mean torpor bout 

length was calculated for the duration that Tb was < 30°C for each bout of torpor. The length of 

the pre-emergent euthermic period was determined as the duration prior to the resumption of 

strong diel rhythms in Tb indicative of aboveground activity (Williams et al. 2012b). We use 

hibernation to refer to the period that animals remain below ground, including the pre-emergent 

euthermic period, and heterothermy to refer to the period of time when animals are undergoing 

alternating cycles of torpor and arousal.

Behavioral Observations:

Five free-living, intact adult male AGS were observed within a 4.2 hectare grid during 

the 2008 active season. The grid was separated into 5 equal sections (0.84 hectares) with each 

section observed, weather permitting, every 5 days. Observations were made from a fixed 

location on the grid each day at a distance of 5-10 m from the animal of interest using binoculars 

(10X x 42). Behavioral observations were conducted from 09:30 -  17:00 from 4 July -  4 

August, 2008. The four weeks of focal observations were pooled as follows: Week 1 = 4 -  12 

July (Standardized day 106 -  114), Week 2 = 13 -  19 July (Standardized day 115 -  121), Week 3 

= 20 -  26 July (Standardized day 122 -  128), and Week 4 = 27 July -  4 August (Standardized 

day 129 -  137). The weeks are unevenly divided due to inconsistencies with weather and the 

number of days animals were observed. When precipitation occurred for >50% of the day, 

animals showed very little activity (Williams et al. 2014a) and therefore these days were deemed 

inadequate for observation and omitted from analysis.

Behavior was tracked and recorded using a computer program (Behavior Tracker 

#158503, version 1.5). Behaviors monitored included foraging, aggressive interactions, 

grooming, alarm-calling, time below ground, and caching; however, only foraging, aggressive 

interactions and caching are reported here since these are the behaviors we hypothesize are under 

the influence of late summer androgens. Behaviors were analyzed for total time in addition to
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the number of times the behavior took place. All behaviors were standardized by the total 

amount of time each animal was observed as this substantially varied from animal to animal (0.2 

-  4.0 h per week). The ratio of time spent engaged in each behavior/total time observed is 

presented.

All procedures used were designed to minimize any pain and discomfort to the animals, 

are in accordance with NIH standards, and were approved by the University of Alaska 

Fairbanks’ and Anchorage’s Institutional Animal Care and Use Committees (Protocol #’s: 

340270-33, 148893-1, 130316-31, 160426-4).

Statistical Analysis:

All data presented are means ± SEM, unless otherwise noted. Comparisons were 

considered significant whenp  < 0.05. Timing of blood sampling, and thus hormone 

concentrations reported, are standardized to the mean date of the end of heterothermy of 

reproductively competent males in the year the sample was collected. This method accounts for 

year to year variations in circannual timing such that Standardized Date 1 is the mean date 

reproductively mature males ended heterothermy and Standardized Date 50 would be fifty days 

after. Each hormone was analyzed separately and grouped into Spring (Standardized Date 1 to 

50), and Late Summer (Standardized Date 100 to 200) sampling bins. Hormone data was 

analyzed using a Kruskal-Wallis One Way Analysis of Variance (ANOVA) on ranks with a 

Dunn’s pairwise comparison and a linear regression in SigmaPlot 11.0 (Systat Software, Inc.,

San Jose, CA, USA). Behavior data and associated DHEA values were analyzed using linear 

regressions; prior to analysis, percent foraging data underwent an arc-sin transformation. To 

decrease the pseudo-replication associated due to some repeated measures, multiple samples in 

the same bin from the same individual were analyzed as a mean instead of individually. 

Characteristics of hibernation phenology were analyzed for differences using a one-way 

ANOVA with LSD multiple comparisons correction using SPSS Statistics 17.0 (IBM Armonk, 

NY, USA).

Results

Plasma androgen levels across the active season fluctuated as predicted and are presented 

as Figures 2.1 and 2.2. In the spring, reproductively mature males exhibited the highest levels of
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plasma T of all groups (0.6 ± 0.09 ng/mL, p  < 0.05). Plasma DHEA levels were highest in the 

late summer, but only significantly higher than those of reproductively mature spring males 

(171.9 ± 97.1 ng/mL and 42.9 ± 3.3 pg/mL, respectively,p  < 0.05). Using samples analyzed for 

both androgens and linear regression analysis we found no relationship between T and DHEA 

levels across the entire active season (n= 66, p  = 0.481), in the spring (n = 6, p  = 0.349), or in the 

late summer/fall (n = 57, p  = 0.672). Females were found to have T levels below the detectable 

limit across the entire active season (< 0.05 ng/mL, n = 44; data not shown).

The results of the castrations are presented in Table 2.1. The start and end date of 

heterothermy, duration of hibernation, number of torpor bouts and mean torpor bout length were 

equivalent in castrates and intact, reproductively immature males. The castrates only differed 

from intact, reproductively immature males in the duration of the penultimate arousal bout, 

which was significantly longer in castrates than any other group (75.8 ± 11.4 h,p  < 0.033). 

Castrated males had a pre-emergent euthermic period of 6.7 ± 2.4 days, which was intermediate 

between that of intact, reproductively immature males (3.2 ± 2.3 days) and reproductively mature 

males, which had significantly longer pre-emergent euthermic periods than any other group (16.6 

± 2.1 days,p  < 0.023). Castrates (112.1 ± 2.9), intact, reproductively immature males (103.3 ±

6.0), and females (107.2 ± 1.4) all ended heterothermy on similar dates and significantly later 

than reproductively competent males (174.8 ± 4.5, p  < 0.001).

The results of a month-long observational period are summarized in Fig 2.3. We 

observed a progressive decline in the percentage of time males spent foraging (74.5 ± 13% in 

Week 1 to 65.2 ± 7.2% in Week 4, however, this did not reach significance (r2 = 0.0784, p  = 

0.294), possibly due to low power (0.178), Fig 2.3a). Males also increased both the observed 

mean number of aggressive encounters per hour (Week 1: 8, Week 4: 26, r2 = 0.265, p  = 0.041; 

Fig 2.3b) and incidences of caching per hour (Week 1: 0, Week 4: 12, r2 = 0.399, p  = 0.007; Fig 

2.3b) during this relatively short period in the late summer. In addition to these measured 

changes in behaviors, the authors, and other researchers (Carl 1971; Buck and Barnes 2003), 

have observed that both the number and intensity of aggressive encounters and instances of 

caching continue after the period for which measurements were recorded. Though the correlation 

is not tightly linked in our data, due to the short period of behavioral observations, the increased
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instances of caching and aggression occur as levels of DHEA begin to increase (one-way 

ANOVA, F(6, 123) = 3.51; p  = 0.027).

Discussion

In multiple species of ground squirrels, adult males end heterothermy and emerge earlier 

than females in the spring (reviews: Michener 1984, Williams et al. 2014b); however, the 

endocrine mechanisms of sexual differences in hibernation phenology are unknown. We propose 

that the differences may be driven, at least in part, by circulating androgens. The objective of this 

study was to determine the role of endogenous androgens in annual timing of hibernation in free- 

living male AGS. We monitored the active season cycles of plasma T and DHEA using RIAs.

We established that T levels are highest among reproductive males in the early spring, during the 

mating season (0.6 ± 0.09 ng/mL), and then quickly decline to baseline levels once the mating 

season ends (females pregnant by 7 May (Standardized Date 40); Sheriff et al., 2011) and the 

testes regress. Males maintain low concentrations of T (0.07 ± 0.01 ng/mL) for the remainder of 

the active season (Fig 2.1 and 2.2). We found that plasma DHEA levels remain low throughout 

the active season until late summer/fall when males display a second aggressive period (Buck 

and Barnes 2003) that coincides with an increase in DHEA levels (Fig 2.1 and 2.2). Using 

castration to remove the significant source of endogenous T levels, we established a link between 

T and the early end of the heterothermic season in male AGS (Table 2.1). The similarity between 

the timing of hibernation onset in the fall in intact and castrated male AGS suggests that gonadal 

androgens do not play a role in prolonging euthermy in males.

There are numerous functional implications of increased T in reproductively viable males 

in the spring. The most obvious function of high T in the spring is to initiate reproductive 

development and spermatogenesis in those males that undergo testicular maturation. Another 

closely related function of high spring T is to support the behaviors and territoriality associated 

with the male-male aggression observed in male AGS during the spring (Buck and Barnes 2003). 

The data presented here are unique in that they show that the specific androgen responsible for 

these behaviors is gonadally derived T (Fig 2.1, Table 2.1). Additionally, a hypothesized 

function for spring T is to end heterothermy in males undergoing reproductive development 

(Barnes 1996), since T inhibits hibernation (Lee et al. 1990). Support for this hypothesis comes
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from the increased circulating T and follicle stimulating hormone found in males just prior to the 

cessation of torpor-arousal cycles (Barnes et al. 1988) and spring-gonadectomized males re

entering torpor-arousal cycles (Dark et al. 1996). The data presented here also support this 

argument, as castrated males end heterothermy and emerge significantly later in the spring 

compared to males that undergo reproductive development (Table 2.1).

The elevated levels of circulating DHEA found in late summer animals occurs over a 

longer period of time than the T peak found in reproductive spring males (Fig 2.1 and 2.2). We 

postulate two functions of this late summer androgen surge. We hypothesize that one possible 

action of the increased circulating DHEA is to prevent males from entering torpor at an earlier 

time point, when females immerge (Table 2.1). A second action of increased late summer DHEA 

is to facilitate the aggression observed during the caching period, prior to the onset of hibernation 

(Fig 2.3; Carl 1971; Buck and Barnes 2003). Non-mating season aggression has been linked to 

increased levels of DHEA in a number of other species, both mammalian and avian (red squirrels 

(Tamiasciurus hudsonicus): Boonstra et al. 2008; dwarf hamsters (Phodopus sungoras): Scotti et 

al. 2008; review: Soma et al. 2008, 2015), which supports this possible function. From 

observations made in the field it appears that from the beginning of July through August, when 

the behavioral study ended, male AGS tend to spend a decreasing proportion of their time above 

ground foraging (from 75.5 ± 13.5% of their time foraging in the first week of July to 65.2 ± 

7.2% of their time foraging the first week of August). During this same period we also observed 

an increase in the number of aggressive interactions (from 8 to 26), and instances of caching 

(from 0 to 12). Previous work in this population has determined that during this same time period 

free-living males are still depositing fat, but have already recovered their lean mass (Sheriff et al. 

2013).

Boonstra et al. (2011; 2014) have proposed an anabolic function and need of circulating 

androgens in AGS in late summer. They propose that elevated androgens and the localization of 

androgen receptors enable AGS to increase their lean mass in preparation for hibernation. This 

increased lean mass is subsequently drawn upon to support the mixed fuel metabolism of 

thermogenesis during hibernation (Buck and Barnes, 2000). Although compelling, in our 

population of free-living AGS, we find a temporal mismatch between the period of lean mass 

accretion (Sheriff et al. 2013) and elevated late summer DHEA concentration (Fig 2.1 and 2.2).
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Free-living AGS in this population complete lean mass growth by 12 August (Sheriff et al.

2013), well before the rise in DHEA, but after the high levels of T found in spring. Thus, in 

Arctic Alaska, the late summer increase in DHEA levels likely do not significantly facilitate 

anabolism, but rather functions to influence increased rates of aggression and caching behavior 

among males observed late in the active season. Further, the function of elevated late season 

DHEA concentrations observed in males could be to delay the onset of hibernation as compared 

to females in the population.

Conclusions

In summary, we were able to outline the cycles of two androgens, T and DHEA, in free- 

living male AGS (Fig 2.1 and 2.2). We were also able to show that changing levels of these two 

hormones coincide with possible trends in changing behaviors such as caching and aggression 

(Buck and Barnes 2003, Fig 2.1, 2.2, 2.3), as well as to spring hibernation phenology (Table 2.1). 

Castrated male AGS displayed similar hibernation characteristics to reproductively immature 

males, demonstrating the important role endogenous androgens, namely T, play in influencing 

the timing of heterothermy end and pre-emergent euthermy, but not the timing of hibernation 

onset (Table 2.1). Further work is required to determine what role, if any, androgens play in 

influencing the timing of hibernation onset.
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Figure 2.1: Scatter-plot of individual plasma samples collected from free-living male AGS from 

2008 to 2013. Each point represents a single assayed sample. Individual animals are represented 

from one to ten times, depending on the number of times the animal was captured for subsequent 

sampling (total individuals for T = 143, for DHEA = 129). Closed circles represent plasma 

testosterone concentrations (ng/mL) and open squares represent plasma DHEA concentrations 

(pg/mL). All samples found to be below the lower detectable limit of the assay have been 

adjusted to that lower detectable limit. Sample dates have been standardized to the mean date of 

euthermy for reproductive males in the year the sample was collected. Total number of samples 

assayed for testosterone concentration is 406. Total number of samples assayed for DHEA 

concentration is 223.
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Figure 2.2: Seasonal and reproductive status effects on plasma androgen concentrations. 

Reproductive status was determined at time sample was collected. Numbers (T) and letters 

(DHEA) indicate statistical significance between groups (p < 0.05) as determined by a Kruskal- 

Wallis One Way Analysis of Variance. Values presented are means ± SEM. Number of samples 

per group for testosterone, from left to right: 91, 17, and 182. Number of samples per group for 

DHEA, from left to right: 57, 8, and 98.
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Figure 2.3: Summary of behavior observations of free-living male AGS. Left-hand panel 

displays the decreased percentage of time spent foraging over the course of the observational 

study. Right panel shows the increased incidences of observed caching and aggression per hour 

of observation. Week 1: 4 -  12 July (Standardized Date 106 -  114, n = 4), Week 2: 13 -  19 July 

(Standardized Date 115 -  121, n = 5), Week 3: 20 -  26 July (Standardized Date 122 -  128, n =

3), and Week 4: 27 July -  4 August (Standardized Date 129 -  137, n=4). The line presents 

plasma DHEA concentrations (means ± SEM; pg/mL) during and after the observational study (n 

= 0, 19, 9, 32, 35, 23, 10, 2).
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Table 2.1: The results of the body temperature (Tb) data collected over three consecutive 

hibernation seasons (2009 to 2012), presented as means ± SEM. Heterothermy start date = first 

day Tb fell below 30°C and heterothermy end date = last time Tb increased above 30°C. Mean 

torpor bout length = time Tb remained <30°C. The length of the pre-emergent euthermic period = 

the time prior to the resumption of strong circadian Tb rhythms, as defined by Williams et al. 

2012b. Data were analyzed using a one-way ANOVA with LSD multiple comparison correction. 

Letters indicate groups that are statistically different (p < 0.05).

Heterothermy 
Start 

(Julian Date)

Heterothermy 
End 

(Julian Date)

Heterothermy
Duration
(Days)

Number
of

Torpor
Bouts

Mean Torpor 
Bout Length 

(Days)

Penultimate 
Arousal 

Bout Length 
(Hours)

Length of 
Pre-Emergent 

Euthermic 
Period (Days)

Repro
(n=18) 276.2 ± 3.1A 87.1 ± 3.9A 174.8 ± 4.5A 8.8 ±

0.6A 14.1 ± 0.7A 39.0 ± 7.7A 16.6 ± 2.1A
Non-
Repro
(n=6)

270.2 ± 5.7A 107.3 ± 6.0B 201.2 ± 7.4B .2
.9 

 ̂
© 16.3 ± 0.7B 34.4 ± 9.7A 3.2 ± 2.3B’C

Castrates
(n=9) 284.8 ± 1.0A 112.1 ± 2.9B 191.3 ± 7.1B 10.7 ± 

0.8A-B 14.9 ± 0.7A-B 75.8 ± 11.4B 6.7 ± 2.4C

Adult
Females
(n=15)

230.0 ± 3.8B 
(n=17) 107.2 ± 1.4B 241.0 ± 3.5C 14.5 ± 

0.5C 16.1 ± 0.5B 27.2 ± 2.3A 0.4 ± 0.2B
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Chapter 3 Do e s  t h e  a v a il a b il it y  o f  a  f o o d  c a c h e  a f f e c t  t im in g  o f  h ib e r n a t io n  a n d

SPRING REPRODUCTIVE STATUS IN MALE ARCTIC GROUND SQUIRRELS (UROCITELLUS

PARRYII)?1

Abstract

It has previously been reported that a varying proportion of male ground squirrels forgo 

reproductive development their first spring. The factors that influence this variation have yet to 

be defined. We set out to determine whether food availability plays a role in timing of 

hibernation and reproductive development. We used three approaches: In the first experiment, 12 

captive animals were allowed to establish a food cache in their cages in autumn; after the onset 

of hibernation, the caches were removed from half the animals. In the second experiment, 

captive animals were not allowed to cache in the fall; in the spring, prior to the end of 

hibernation, 8 were provided with ad libitum access to food, while the other 7 were kept on a 

restricted ration. In the third experiment, field-caught males were allowed to dig burrows and 

nest in outdoor dirt-filled enclosures; 7 of these were provided with cacheable food prior to 

hibernation and 7 were provided food that could not be cached. Animals in all three experiments 

were assessed for timing of hibernation end, testicular development, and plasma testosterone 

levels after hibernation. In the first experiment, all 12 animals underwent reproductive 

development; in the second experiment 6 of 8 males provided with ad libitum food in the spring, 

and 3 of 7 kept on a restricted ration, underwent reproductive development; in the third 

experiment 5 of 7 males that could cache underwent reproductive development, while only 2 of 7 

that could not cache did. In all experiments, the animals that underwent reproductive 

development had higher levels of testosterone. While none of our experiments were conclusive 

as to the role food availability plays in male testicular development, they all suggest that building 

a cache in the fall improves the chances of spring development. One clear result we did find was 

that, much like what has been observed in free-living animals, males that undergo reproductive 

development hibernate for a shorter period of time, compared to their reproductively naive 

cohorts under similar conditions.

1 Prepared for submission to the Canadian Journal o f  Zoology as M.M. Richter, B.V. Gagliotti, C.L. Buck, B.M. 
Barnes. Does the availability of a food cache affect timing of hibernation and spring reproductive status in male 
arctic ground squirrels (Urocitellus parryii)?

61



Introduction

Arctic ground squirrels (Urocitellusparryii, AGS) are the farthest north hibernators 

under extensive study. The AGS habitat is characterized by continuous permafrost that 

constrains the depths at which animals can burrow thus ensuring their exposure to subzero 

temperatures for the majority of their hibernation season (Carl 1971, Buck and Barnes 1999b). 

This extreme environment has resulted in hibernating AGS displaying uncommon adaptations 

including the use of mixed fuel metabolism (Buck and Barnes 2003) to supply the necessary 

energy to maintain extremely high metabolic rates while torpid at sub-zero temperatures (Richter 

et al. 2015). In addition to the high over-winter energy demands of living in the Arctic, male 

AGS arouse and emerge into a snow covered environment with little to no food availability 

(Hock 1960). The short growing season severely constrains the timing and availability of food 

for the reproduction, growth, and fattening that are required prior to the onset of the next 

hibernation season. This constraint affects males leading into, and during, the spring mating 

season, which occurs prior to the start of the growing season (Hock 1960), and this constraint 

may lead to some males forgoing reproduction during some years.

Among ground squirrels, only a subset of yearling males sexually mature and develop 

descended, spermatogenic testes (Schwagmeyer and Brown 1983, Slade and Balph 1974, 

Bronson 1979) with as many as 25-60% of first year males delaying reproductive development 

until their second, or even third, spring (Bronson 1979; Buck and Barnes 1999a). This is 

different from females that almost all attempt to reproduce each year of their life (Bronson 1979, 

Michener 1983, Buck and Barnes 1999, Sheriff et al. 2011). The observed yearly variations in 

proportion of males undergoing reproductive development suggest that age at first reproduction 

in male ground squirrels is likely influenced by environmental and body conditions, and/or 

population structure.

Age at first reproductive maturation in male ground squirrels can be influenced by their 

energetic status prior to, and immediately following, hibernation (Holmes 1988). Manipulating 

food available at the start through the end of hibernation (Barnes 1984) or surgically removing 

fat deposits from (Forger et al., 1986) male golden-mantled ground squirrels (Callosperomphilus 

saturatus and lateralis, respectively^ results in either a failure to undergo, or delay in,
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reproductive development. Reproductive development can also be affected by quality of diet; 

male ground squirrels fed lower fat containing diets having less testosterone and smaller testes 

compared to those fed a high fat diet who exhibit accelerated reproductive development (Dark et 

al., 1992). The above studies hypothesized that smaller males with less fat at the end of 

hibernation do not reproductively mature because they lack the energy reserves to maintain high 

body temperature over the prolonged interval that is necessary for gonadal maturation.

We utilized a number of approaches to determine how the availability of a food cache, its 

continued presence during hibernation, and availability in spring affects the timing and pattern of 

hibernation and the spring reproductive status of male AGS. In males held captive in cages, we 

tested the hypotheses that (1) removing a cache during hibernation will result in males foregoing 

gonadal development and ending hibernation later in spring compared to males with intact 

caches; (2) males entering hibernation without cached food will undergo gonadal development if 

fed ad libitum after heterothermy ends; and (3) that males held in outdoor enclosures and fed 

food that could be cached in self-dug burrows would end heterothermy earlier and undergo 

gonadal development unlike males fed food that could not be cached. In these experiments we 

also measured seasonal changes in body mass and circulating levels of testosterone in spring as 

additional measures of spring reproductive condition.

Methods and Materials 

Spring Food Availability

Fifteen juvenile male arctic ground squirrels (Urocitellusparryii, AGS) were caught in 

Tomahawk live-traps near Toolik Field Station on the North Slope of Alaska (68°27’ N, 149°21’ 

W, elevation 812 m) in late July and early August 2008. Animals were transported to the 

University of Alaska Fairbanks where they were housed in hanging wire cages (49x30.5x20.3 

cm, Acme Metal, Statesville, NC, USA) for 6 weeks in a warm room (~22°C, photoperiod 

12L:12D) and provided with cotton batting for nesting material (Perfect Fit, McDonald, Tukwila, 

WA, USA), ad libitum food (Mazuri Rodent Chow) and water. In September, animals were 

moved into an environmental chamber (2 ± 2°C, 8L:16D) and assigned at random to one of two 

groups: Group one, CACHE, n = 8, was provided with a 200g cache of rodent chow after at least 

one full bout of torpor. Group two, NO CACHE, n = 7, had all food removed from their cages 

after torpor was first observed. Animals were then allowed to hibernate without interruption.
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Torpor bout length and the occurrence of arousal episodes were monitored daily using the 

sawdust method (wood shavings were placed on the back of torpid animals; if the shavings were 

absent on a subsequent day, the animal was presumed to have aroused and return to torpor since 

the previous check, Pengelley and Fisher 1961). In spring, males were considered to have ended 

hibernation if they remained active at high body temperature for four consecutive days. On the 

fourth day active, animals were briefly anesthetized using isoflurane vapors weighed, assessed 

for reproductive state (see below) and a 0.5 mL blood sample was collected via cardiac puncture. 

The cache of CACHE animals was weighed every 3-5 days and the mass recorded as an estimate 

of the food being consumed before the cache was replenished to 200g. NO CACHE animals 

were treated as above; however, they were provided with the minimum amount of food (~3-6g 

daily) required for them to retain their post-hibernation body mass (as determined on euthermia 

day 4), ± 10%. These procedures were repeated every 3-5 days for 20 days after hibernation had 

ended (total of 4 blood draws).

Cache vs. Cache Removed

Nine pregnant female AGS were caught in Tomahawk live-traps in April 2010 near 

Toolik Field Station on the North Slope of Alaska (68°27' N, 149°21’ W, elevation 812 m) 

transferred to the University of Alaska Anchorage, and gave birth in captivity. Juvenile males 

(n=12) were weaned and housed individually in hanging wire cages (48x31x30 cm, custom made 

by UnifabCages, Kalamazoo, MI, USA). In July 2010, squirrels were moved into plastic tubs (38 

x 56 x 20 cm, Nalgene, Rochester, NY, USA) and provided with pine shavings and cotton 

batting for nesting material, rodent chow, sunflower seeds and water ad libitum. Animals were 

allowed to cache the rodent chow and sunflower seeds in their cages. Food intentionally removed 

from the food dish was considered cached and not removed from the cage during cleanings. An 

exception was when the chow became wet/spoiled, in which case it was removed from the cage 

(this amount never exceeded 1% of the total cache at a time).

Animals were moved into an environmental chamber at an ambient temperature of 0°C ± 

2°C and constant darkness in November. Animals were allowed to continue eating and caching 

until they spontaneously began hibernating. After animals had under-gone at least one complete 

bout of torpor (as determined by the sawdust method), they were separated into two treatment 

groups. Half of the animals (n = 6) were allowed to retain their cache of food (CACHE), while
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the other half had all food removed from their cages while they were in torpor (CACHE 

REMOVED). Torpor bouts were monitored using the sawdust method. In spring, after four 

consecutive days of activity, animals were considered to have ended hibernation and removed 

from their cages, weighed, anesthetized with isoflurane, reproductive state evaluated, and a 

0.8mL blood sample was collected via cardiac puncture. This process was repeated once weekly 

for 28 days. During this time, animals were housed in a warm room (22 ± 2°C). Animals from 

the cache removed group (CACHE REMOVED) were fed a minimal amount (~3-6 g) of rodent 

chow to maintain their post-hibernation weight ± 10%; animals in the CACHE group were 

allowed to feed from their caches during this time.

Semi-Natural Enclosures

Pre-Hibernation Procedures:

Fourteen male arctic ground squirrels were collected from the North Slope as juveniles in 

summer, 2008. Animals were implanted with gas sterilized body temperature loggers (15g, 

modified TidBit Stowaway model TBICU32-05+44, Onset Computer Corp.) programmed to 

record body temperature (± 0.2°C) every 20min (Long et al. 2007). Unpotted loggers were cased 

in plastic heat-shrink before coating with biologically inert plasticized wax (Elvax, DuPont, 

Wilmington, DE, USA) and calibrated at 0.0 and 40.0°C in a temperature controlled bath. 

Animals were anesthetized using isoflurane, a 3-4cm incision made along the midline, the logger 

was placed amid the abdominal fat, and the incision closed (linea alba using chromic gut, 

subcutaneous tissue with Dexon, and the skin with Prolene). This procedure was repeated to 

remove the loggers the following spring. After 10-15 days of recovery, animals were moved to 

outdoor, earth-filled enclosures beginning mid-July, 2009. Each enclosure housed one animal. 

Enclosures were 0.9 x 0.9 meters made of wire mesh (~2.5cm2) that extended 1.8 meters 

underground to allow burrowing in a contained area (described in Barnes and Ritter 1993). 

Animals immediately began burrowing upon release and were provided hay for use as nest 

material. For the remainder of the 2009 active season, half of the animals were fed a diet that 

was cacheable, while half were fed the same diet, but in a non-cacheable form to test how the 

ability to cache food affected timing of hibernation and reproductive status the following spring. 

Each animal in the CACHE group (n = 7) was given 70 ± 25g of rodent chow and whole, shelled 

sunflower seeds daily. Each animal in the NO CACHE group (n = 7) was given equivalent
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amounts of rodent chow and ground sunflower seeds, combined with water, creating a porridge 

consistency. Animals were weighed once every 7-10 days while active after being trapped in 

small Tomahawk traps (Tomahawk, WI, USA) using peanut butter as bait. An animal was 

deemed hibernating when they were not seen above ground for seven days.

Post-Hibernation Procedures:

Enclosures were viewed twice a week starting March, 15th 2010 to inspect for the first 

appearance through the snow of emerging animals. After emergence, the animals were trapped 

and moved into a shelter where they were weighed, anesthetized with isoflurane, reproductive 

state was evaluated, and a 0.8mL blood sample was collected via cardiac puncture every seven 

days for 35 days after first emergence. During the post-hibernation season all animals were fed 

ad libitum rodent chow and sunflower seeds.

Reproductive State

For all three experiments, reproductive state was determined visually and manually. 

Males were considered “non-reproductive” if they retained non-descended testes and a non- 

pigmented scrotum. “Reproductive” males included males that had testes that could be palpated 

easily in the abdomen, males that had scrotal testes that were easily palpated but did not fill the 

scrotum and a pigmented scrotum, as well as males with fully enlarged testes and a pigmented 

scrotum.

Plasma Testosterone

Blood samples (0.5 to 1.5mL) were collected into EDTA coated tubes. The blood was 

centrifuged to separate the plasma, which was stored at -80°C until assayed for testosterone 

content. Plasma was assayed using a commercially available RIA kit (ImmunoChem™ Double 

Antibody RIA cat. No. 07189102; MP Biomedicals, Santa Ana, CA, USA). The antibody used in 

this kit is highly specific (highest cross-reactivity with 5a-dihydrotestosterone at 3.40%) and has 

a sensitivity of 0.03ng/mL. Using the manufacturer recommended protocol we maintained 

interassay and intraassay coefficient of variances (CV’s) of 13.6% and 14.1 ± 8.8%, respectively. 

We measured interassay CV’s using a single pooled sample run in each assay. We measured 

intraassay CV’s by comparing results of this same pooled sample assayed at the beginning and
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end of each assay. This protocol was validated for use in this species using both an analysis of 

standard addition and a test of parallelism. Samples found to be below the lower detectable limit 

for this assay (0.05 ng/ml), were listed at that lower limit for presentation and analysis.

Statistics

All data presented are means ± SEM, unless otherwise noted. Differences between 

reproductive and non-reproductive ratios were analyzed using a Fisher's Exact Test. Differences 

between groups were determined using a Student's T-test. Testosterone data were analyzed using 

linear mixed models with repeated measures and Bonferroni corrections. For the model, plasma 

testosterone was the dependent variable, factors included reproductive status and experimental 

group and all inherent interactions, and animal ID was the random variable. Differences were 

considered significant whenp  < 0.05. All analyses were done in SPSS Statistics 17.0 (IBM 

Armonk, NY, USA).

Results

Spring Food Availability

Six of eight juvenile males hibernating indoors in the CACHE group, given ad libitum 

access to food after ending heterothermy, underwent reproductive development after ending 

hibernation, while three of seven animals fed a restricted ration (NO CACHE) became 

reproductive in the month after ending hibernation (p = 0.315). There was no significant 

difference in pre-hibernation body mass between animals in the NO CACHE and those in the 

CACHE group (780.8 ± 34.4g vs. 782.6 ± 24.9g respectively, p  = 0.97) and no significant 

difference between groups in spring body mass (575.3 ± 46.5g vs. 654.1 ± 20.0g, p  = 0.13). A 

comparison of the body masses of animals that became reproductive to those that did not was 

also not significant in pre-hibernation (803.6 ± 61.6g, 753.7 ± 83.8g, p  = 0.23) nor immediately 

post-hibernation (638.3 ± 93.7g, 569.2 ± 103.2g, p=0.20). Animals in both the NO CACHE and 

the CACHE group began hibernation (Julian Dates: 213.1 ± 54.3 (Aug 1 ± 54.3 days) vs. 294.5 ± 

41.1 (Oct 22 ± 41.1 days), respectively, p  = 0.25) and ended hibernation on similar dates (91.6 ± 

12.9 (Apr 2 ± 12.9 days) vs. 76.6 ± 14.2 (Mar 18 ± 14.2 days), p  = 0.46). However, the duration 

of the hibernation season was significantly longer in animals that did not develop reproductively

67



than in animals that underwent reproductive development (184.8 ± 14.2 days vs. 79.67 ± 13.9 

days, p  < 0.01). Plasma testosterone concentration was similar between the CACHE and NO 

CACHE groups (F(1, 10.854) = 4.205, p  = 0.65), but was significantly different between 

reproductive and non-reproductive males (F(1, 10.854) = 12.641, p  = 0.005; Fig 3.1a and 3.1b). 

The week the sample was collected also played a significant role in plasma testosterone 

(F(3,23.007) = 4.779, p  = 0.01; Fig 3.1a and 3.1b), as well as the interaction between the week 

and reproductive status being significant (F(3, 23.007) = 3.342, p  = 0.037).

Cache vs. Cache Removed

All (12 of 12) captive animals that were allowed to establish a cache in their cages 

underwent reproductive maturation even if that cache was removed after torpor began (CACHE 

REMOVED). Animals in the CACHE group attained the same pre-hibernation body weight 

(1010.3 ± 83.7g) as the CACHE REMOVED animals (960.8 ± 52.5g, p  = 0.61). Animals in both 

groups ended heterothermy at mean body masses that did not significantly differ (806.7 ± 113.1g 

for CACHE and 704.3 ± 48.9g for CACHE REMOVED, p  = 0.39). After the month-long 

monitoring period directly following the end of heterothermy, the CACHE group attained a 

significantly greater body mass than the CACHE REMOVED animals (818.4 ± 25.7g vs. 590.6 ± 

44.6g, p  < 0 .01). Animals in both groups started, ended and hibernated for the same duration 

(CACHE: 54.7 ± 7.9 days, CACHE REMOVED: 66.5 ± 7.1 days, p  = 0.29). Plasma testosterone 

concentrations were not different between groups (F(1, 15.040) = 0.50, p  = 0.827, Fig 3.1c), but 

which week after hibernation the sample was collected was a significant factor (F(3, 22.080) = 

3.940, p  = 0.022, Fig 3.1d).

Semi-Natural Enclosures

Despite entering hibernation at comparable weights (CACHE: 774.1 ± 22.9g, NO 

CACHE: 753.4 ± 29.9g, p  = 0.53), males hibernating outdoors in enclosures in the CACHE 

group emerged from hibernation at a significantly larger body masses than the NO CACHE 

animals that were unable to cache food (657 ± 31.7g vs. 543.6 ± 28.1g, respectively, p  = 0.02). 

Two of seven NO CACHE animals underwent reproductive development in the month following 

emergence, whereas five of seven CACHE animals underwent reproductive development (p = 

0.286). The animals that reproductively matured combined between groups emerged at a
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significantly larger body mass (660.7 ± 31.8g) than those that did not (539.9 ± 25.3g, p  = 0.01). 

Males that reproductively matured spent significantly less time heterothermic (201.5 ± 4.2 days, 

p  < 0.01) than males that did not undergo reproductive development (251.3 ± 5.5 days). Males 

that did not undergo reproductive development had significantly shorter pre-emergent euthermic 

periods (3.17 ± 0.7 days) than males that utilized this time to feed from their caches and undergo 

reproductive development (13.67 ± 1.5 days, p  = 0.0003) Males that became reproductively 

mature began torpor later (Aug 20 ± 7.2 days) and ended earlier (May 9 ± 5.8 days) than males 

that did not (Jul 29 ± 2.7 days, p  = 0.182 and Apr 6 ± 2.9, p  = 0.0014, respectively). The only 

significant factor affecting plasma testosterone was reproductive state (F(1, 8.691) = 5.714, p  = 

0.041; Fig 3.1e, 3.1f).

Discussion

We found that there are a number of factors and complex interactions that affect 

reproductive development in males. Here we demonstrate that the decision to undergo 

reproductive maturation is not as straightforward as the presence or absence of food upon 

resumption of high body temperature in the spring. Our spring food availability study 

demonstrated that the mere presence of ad libitum food in the spring was not enough to ensure 

that all males underwent reproductive development; nor was the absence of ad libitum food in 

the spring enough to prevent reproductive maturation. This also held true for animals in the 

outdoor enclosures that were provided with cacheable food, not all of which underwent 

reproductive maturation. However, having built up a substantial cache in the late summer/fall did 

result in all laboratory males becoming reproductively mature, despite half of those males being 

put on a restricted ration upon termination of heterothermy. Combined, these experiments show 

that while having access to ad libitum food in the spring can aid a male AGS in undergoing 

reproductive development, the formation of a cache prior to entering the heterothermic season 

may be just as important as what is actually available in spring.

The least surprising result of these studies is that reproductively mature males had higher 

levels of plasma testosterone than non-reproductive males (Spring Food Availability p  = 0.005 

and Semi-Natural Enclosures p  = 0.041). A much more interesting result was the role time 

played in the patterns of testosterone expression. Both indoor experiments, Spring Food
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Availability and CACHE vs. CACHE REMOVED, showed week as a significant factor in 

testosterone level (p = 0.01 and 0.022, respectively); whereas week was not a significant factor 

for reproductively mature males in the Semi-Natural Enclosures (p = 0.621). The sampling 

period for both indoor experiments occurred immediately after resumption of euthermy, whereas 

the males in the Semi-Natural Enclosures could not be sampled until they came above ground,

~2 weeks after resumption of euthermy. The higher levels of testosterone immediately post- 

heterothermy occur after peak follicle stimulating hormone and coincide with the peak in 

luteinizing hormone, and combined most likely initiate the reproductive development of the 

testes (Barnes 1986). After the initialization of spermatogenesis, plasma testosterone levels can 

be maintained at a lower level throughout the mating season before declining to baseline for the 

remainder of the active season (Barnes 1986, Richter et al., 2015).

The one consistent result across all of our experiments is that the males that became 

reproductively mature spent a shorter time heterothermic and in hibernation than those that did 

not. This result is unsurprising due to results from golden-mantled ground squirrels 

(Callospermophilus saturatus) whose hibernation length was correlated to fall body mass;

Barnes (1984) additionally found that spring body mass was affected by food availability in the 

fall. For males to undergo reproductive development, a 1-3 week process (Barnes 1996), they 

must maintain high body temperature and fuel the development in one of two ways: 1. with 

endogenous fat stores that were not spent during hibernation, or 2. by eating. The AGS lives in 

an environment that remains below freezing throughout the majority of the winter (Buck and 

Barnes 1999a, 1999b), devoid of plant growth and frequently snow covered in the spring (Hock 

1960). This environment forces males of this species to end heterothermy in poor body condition 

and provides little to no food on the surface when they come to high body temperature, thus 

leaving a previously acquired cache as the only possible source for the energy required for 

spermatogenesis as well as the euthermy required to undergo it.

Only male ground squirrels are known to accumulate caches (Krog 1954, Carl 1971, 

McLean and Towns, 1981, Gaglioti et al. 2011), further supporting their importance to only that 

sex. The establishment of a substantial cache in the late summer/fall may thus be a prerequisite 

for spring reproductive development; the inability to establish one may be the driving factor 

behind why a varying proportion of first year males do not attempt reproduction in a given year.
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In addition to enabling reproductive development, a cache allows male AGS to regain the body 

mass lost over winter; its presence also explains how mature males can emerge from hibernation 

at the same body mass they attained in the fall (Buck and Barnes 1999a). The ability to 

recuperate body mass and increase body size prior to the mating season is directly linked to 

reproductive success, with larger males more successfully competing for mates than smaller 

individuals (Schwagmeyer and Brown 1983).

In addition to these effects of energy status, population structure has been shown to 

influence the proportion of reproductive development in male ground squirrels. Male European 

ground squirrels (Spermophilus citellus) living in populations with high male densities opt to 

forgo reproduction their first spring, likely to avoid the stress and violent social interactions that 

can be deadly during the mating season (Strauss et al., 2007). Slade and Balph (1974) found that 

the removal of part of the population of Uinta ground squirrels (Urocitellus armatus), therefore 

reducing density, results in a greater proportion of yearling males becoming reproductively 

mature. Changes in population structure and density could result in differences in male 

reproductive development either directly through social interactions or indirectly due to effects 

on the availability of food resources and thus the ability of males to fuel euthermia and gonadal 

development. Coincident with the caching period, male AGS display increasing amounts of 

male-male aggression to protect both their caches and their territories (Buck and Barnes 2003). 

Therefore, in order for a juvenile male to successfully undergo reproductive development in the 

spring, they will first have to disperse from the natal burrow to their own territory, grow and 

fatten, accumulate a substantial cache, and defend it from the larger, adult males in their 

population.

As the climate changes, it could have a significant impact on the mating success of males. 

Current predictions include a prolonged fall period, therefore a lengthened growing period 

(Serreze and Francis 2006, Post et al., 2009). If this does occur, it could enable juvenile males to 

grow larger and possibly establish a cache, allowing them to undergo reproductive development 

and successfully compete with older males their first spring. Unlike other arctic animals that are 

experiencing an environmental mismatch that has actually decreased their reproductive success 

(Post and Forchhammer 2008), this prolonged fall might increase the fitness of many AGS males 

similar to what has been observed among yellow-bellied marmots (Marmotaflaviventris, Ozgul
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et al. 2010). However, climate change predictions also suggest that there may be delayed springs 

due to increased winter snowfall (Wheeler and Hik 2013) which could have the opposite effects 

on AGS males. Early emerging males will have to balance the increased cache availability of 

food in the fall with possibly delayed green-up and snow melt both of which are already known 

to cause high mortality (Morton and Sherman 1978).
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Figure 3.1: Means ± SEM of plasma testosterone RIAs for each experiment. Panels A and B: 

plasma testosterone from the Spring Food Availability experiment. Reproductive state (p = 

0.005), week (p = 0.01) and the interaction (p = 0.037) were all significant factors in the linear 

mixed model. N 's of each group: Cache = 8, No Cache= 7; Non-reproductive males = 6, 

Reproductive males = 9. Panels C and D: plasma testosterone from the Cache vs. Cache 

Removed experiment. Week was the only significant factor (p = 0.022). N 's for weeks 1-3:

Cache = 6, Cache Removed = 6; Reproductive = 12; N 's for week 4: Cache = 4, Cache Removed 

= 6; Reproductive = 10. Panels E and F: plasma testosterone results from the Semi-Natural 

Enclosures experiment. The only significant factor from the linear mixed model analysis was 

reproductive status (p = 0.041). N 's for week 1-3: Cache = 7, No Cache = 7; Non-reproductive = 

7, Reproductive = 7. N 's for week 4: Cache = 6, No Cache = 4, Non-reproductive = 3, 

Reproductive = 7.

5

3.0

0.0

73



Table 3.1: Summary table of experimental results. Values presented are means, ± SEM. *denotes 

significant difference between the two groups (p < 0.05).

Spring Food Cache vs. Cache Semi-Natural
Availability Removed Enclosures

Cache, Fraction Repro 6/8 6/6 5/7
No Cache, Fraction 3/7 6/6 2/7
Repro

Cache, Fall Body Mass 782.6 ± 24.9 g 1010.3 ± 83.7g 774.1 ± 22.9g
No Cache, Fall Body 780.8 ± 34.4g 960.8 ± 52.5g 753.4 ± 21.9g
Mass

Cache, Days Torpid 102.0 ± 21.4 days 54.7 ± 7.9 days 213.2 ± 7.3 days
No Cache, Days 144.3 ± 25.6 days 66.5 ± 7.1 days 235.9 ± 12.3 days
Torpid

Repro, Fall Body Mass 803.0 ± 21.8g 985.6 ± 44.8g 776.3 ± 21.5g
Non-repro, Fall Body 753.7 ± 34.2g N/A 751.3 ± 22.9g
Mass

Repro, Days Torpid 78.7 ± 13.9 days 60.6 ± 5.4 days 201.5 ± 4.2 days
Non-repro, Days 
Torpid

184.8 ± 14.2 days* N/A 251.3 ± 5.5 days*
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Ge n e r a l  Co n c l u s i o n

This dissertation uses the arctic ground squirrel as a model species to investigate the 

limits of hibernation, the roles of androgens in behaviors and phenology in free-living 

individuals, and the importance of resource availability and timing on reproductive development. 

Here, we demonstrate the limits of the hibernation phenotype and determine the maximum torpid 

metabolic rate. We also show the influence androgens have on hibernation phenology in males, 

and how this can be manipulated by a castration. Lastly, we explore the impact food availability 

in both the spring and fall has on the reproductive development of males.

From very limited studies of free-living hibernators and their environments (Chapter 1, 

Table 1.1), as well as most laboratory experiments (review: Ruf and Geiser 2014) it may appear 

that only animals that live in the Arctic are capable of surviving a hibernation season at 

temperatures significantly below the hypothalamic set-point by remaining thermogenic at low 

tissue temperature. However, there is also no evidence that these species have unique 

physiologies that are not shared with other hibernators. Arctic ground squirrels evolved to 

survive and thrive in significantly subzero overwinter temperatures (Buck and Barnes 1999b). 

The golden-mantled ground squirrel is smaller than the arctic ground squirrel and evolved to live 

under much milder overwinter conditions (Healy et al., 2012). Despite their different life 

histories, we correctly predicted that both species of ground squirrel would be capable of 

defending significant temperature gradients while remaining torpid.

In the first chapter we hypothesized that (I) the main differences between these species in 

their capacity to maintain a thermal gradient would be due to their body size and that the larger 

size, and thus lower thermal conductivity, of the arctic ground squirrel would allow that species 

to maintain torpor at lower ambient temperatures. While we did not directly test the effects of 

body mass independently of species differences, our data do demonstrate a species and, 

indirectly, a body size difference in metabolic rate increases over the same ambient temperature 

range (Fig 4.1). Figure 4.1 shows that despite having similar metabolic rates at 2, 0, and -2°C, 

when both species are thermally conforming to their environment, there are significant 

differences between the species’ metabolic rates as ambient temperature decreases and animals 

need to utilize thermogenic torpor to defend body temperature. Both species demonstrate an 

increase in metabolic rate with ambient temperature reductions (F(5, 11) = 140.846, p  < 0.001)
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and yet there was a significant interaction between species (F(5, 11) = 28.308, p  < 0.001) 

illustrating that golden-mantled ground squirrels had a greater elevation in metabolic rate over 

the temperature range studied. On a gram-specific basis golden-mantled ground squirrels have a 

higher torpid metabolic rate than arctic ground squirrels at the same temperature, and this 

supports our hypothesis that the observed difference is due to total body size, and the associated 

higher thermal conductance of the golden-mantled ground squirrels.

The shallower slope of metabolic rate increase observed in the arctic ground squirrel (Fig.

4.1) is likely due to the lower thermal conductance (as exemplified by Fig 4, Cannon and 

Nedergaard 2011, Appendix 4.1), and therefore lower rate of heat loss, their larger body size 

provides them. Additional support for the importance of the environment’s influence on body 

mass comes from the differences in body size with increasing latitude observed among arctic 

ground squirrels; animals in the Kluane National Park (~400g; 60.6194° N, 138.3310° W) are 

much smaller than those found in the Alaska Range (~600g; 63°04'10''N 151°00'26''W ), which 

are smaller than those just south of the Brooks Range (~750g; 65.4900° N, 148.5467° W), which 

are still smaller than those found north of the Brooks Range (800-1000g; 68° 38' N, 149° 36' W) 

(Wheeler and Hik 2013; B.M. Barnes pers. comm.). The increase in body size, and thus lower 

thermal conductance, with increasing latitude, and therefore colder conditions and longer 

hibernation seasons, favors an environmental effect on hibernation phenotype. It has been shown 

in woodchucks (Marmota monax) that latitude, and the associated environmental conditions, can 

affect the hibernation patterns of a species in the field (Zervanos et al. 2010) and that some of 

those same latitudinal differences are maintained when animals are brought into the laboratory 

and experience identical overwinter conditions (Fenn et al. 2009). As we hypothesized, (II) the 

arctic ground squirrel was able to remain torpid at lower ambient temperatures (Chapter 1, Table

1.2). Additionally, we were able to determine that the arctic ground squirrel has a maximum 

torpid metabolic rate of 0.37 ± 0.01 mL O2/g*h, which is near their basal metabolic rate (0.4 to 

0.6 mL O2/g*h, Scholander et al., 1950; Withers et al., 1979).

The factors controlling this maximum torpid metabolic rate are not known, but research 

into the limiting factors would be beneficial to the field. In Chapter 1, we proposed that there 

could be a threshold level of norepinephrine, the neurally-released molecule responsible for non

shivering thermogenesis during torpor via downstream actions on uncoupling protein-1 (Cannon
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and Nedergaard 2004; 2011), that elicits an arousal. The logic behind this proposed mechanism 

was that as ambient temperatures decrease, a torpid squirrel must produce more heat and 

therefore might require increases in sympathetic activation of non-shivering thermogenesis; 

however, once the threshold level of activation is reached, instead of remaining torpid and 

thermogenic, the animal initiates an arousal. This proposed mechanism could explain why 

animals cannot continue to defend significantly greater thermal gradients at low tissue 

temperature without returning to euthermy. A possible twist on this proposed mechanism could 

be the recruitment of additional brown adipose depots that, once activated by the sympathetic 

nervous system in response to continued heat loss, support an arousal in the animal. We refute 

the implication in our chapter that increases in norepinephrine at the level of the brown adipose 

tissue stimulates arousals since it is the activation of non-shivering thermogenesis by the 

sympathetic nervous system, rather than an increase in circulating norepinephrine concentrations, 

that result in thermogenesis. In addition to determining the mechanisms of torpid thermogenesis 

vs. arousal thermogenesis, future studies should include more species to determine if the ability 

to remain thermogenic and defend a temperature gradient while torpid is truly widespread 

amongst ground squirrel species.

Studying free-living arctic ground squirrels enables investigations into what influences 

their circannual, or yearly, rhythms. Male and female arctic ground squirrels display different 

hibernation phenologies (Sheriff et al., 2011) and in the second chapter we demonstrate, as we 

hypothesized (III), that the differences are due, at least in part, to circulating androgen levels.

The increase in circulating testosterone levels observed in males drives their early arousal and 

resumption of euthermy in the spring time. However, why males remain active on the surface 

after females have entered hibernation cannot be due to circulating testosterone levels since they 

are very low, and castrates also remain on the surface similar to their intact cohorts. Instead, I 

propose that the increase in circulating dehydroepiandrosterone, an adrenal androgen, is 

responsible for the late season aggression observed at this time as well as the delayed onset of 

hibernation. In addition to the males that come to high body temperature early and undergo 

reproductive development, a subset of males do not but rather continue hibernating and do not 

emerge until the mating season begins and do not undergo reproductive development.

85



Every year there are a varying proportion of first year males that do not participate in the 

mating season, and do not develop scrotal testes (Buck and Barnes 1999a). These males do not 

spend a prolonged period at high body temperature prior to emergence (Williams et al., 2012) 

and do not recover the body mass lost over winter by feeding from a cache, unlike the males that 

mature (Buck and Barnes 1999a). Unlike other species of sciurid that seemingly rely on 

endogenous energy stores, which can be manipulated before (Forger et al., 1986) or after 

(Holmes 1988) hibernation to alter reproductive development, arctic ground squirrels seem 

mainly reliant upon a cache to determine reproductive status. Male arctic ground squirrels that do 

not mature do not recover the body mass lost over winter, unlike reproductively mature males 

(Buck and Barnes 1999a). As we hypothesized in the third chapter (IV), the ability to accumulate 

a substantial cache in the late summer/fall seems to be important for a male to undergo 

reproductive development. However, ad libitum access to food in the spring can also lead to 

reproductive development, though it is not a guarantee.

The importance of studying animals that live in the arctic and what controls their 

phenologies is particularly important now in light of the predictions from climate change models. 

The models predict numerous changes including a lengthened growing period (Serreze and 

Francis 2006, Post et al., 2009) which could increase the proportion of juvenile males that are 

able to attain sufficient size and caches to undergo reproductive development their first spring. 

However, if the arctic ground squirrel cannot utilize this change in growing season, they, like 

certain other species, may experience mismatches with their environment that result in decreased 

reproductive success (Post and Forchhammer 2008). Climate change also predicts the northward 

movement of shrubs and forbes which, in addition to increasing food resources, may increase 

predation on the arctic ground squirrel (Wheeler et al., 2015).
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Figure 4.1: Mean torpid metabolic rates (±SEM) across the same ambient temperatures for 

golden-mantled ground squirrels (GMGS, open squares) and arctic ground squirrels (AGS, 

closed circles). The dotted line is the linear regression for GMGS, the solid line for AGS. The 

stars indicate significant differences between species (ambient temperatures -4 to -8°C, 2-way 

ANOVA; p  < 0.001).
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Appendix 4.1 Figure 4 from Cannon and Nedergaard 2011
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