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Abstract

Country of origin provides the basis for allocating harvests of Yukon River chum salmon. 

The genetic divergence among Yukon River chum salmon populations adjacent to the 

international border as revealed by allozyme and microsatellite variation is insufficient 

to determine the country of origin of returning fish using mixed-stock analysis (MSA). 

Consequently, we investigated the resolution provided by alternative genetic markers in 

an attempt to detect levels of divergence that would be sufficient for MSA. We analyzed 

10 Yukon River chum salmon populations for variation at 30 variable amplified fragment 

length polymorphism (AFLP) loci and for mitochondrial DNA (mtDNA) restriction 

site variation. We assessed these markers for their utility in MSA and, for mtDNA, 

phylogeographic analysis. The AFLP results show that MSA was most successful when 

mixtures were allocated to regions. The AFLP data were able to provide improved 

country of origin MSA estimates for the border populations with a 6.5% improvement 

for the Canadian populations over microsatellite analysis. No divergence in mtDNA 

haplotype frequency distributions was detected (P>0.05) within the Yukon River. Lack of 

mtDNA divergence likely resulted from a Pleistocene bottleneck that led to panmixia of 

the mtDNA genome.
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General Introduction

The United States and Canada entered into negotiations concerning salmon 

(' Oncorhynchusspp.) in the 1970’s because of disputes over the allocation of the salmon 

resource. In 1985, the two countries signed the Pacific Salmon Treaty, which solidified 

the obligation these countries have to manage the Yukon River salmon resources and 

pertinent Pacific coast stocks. Under Article III of the treaty, the countries agreed to 

conserve salmon and to maintain maximum production. They also agreed that each 

country should receive the benefits of salmon produced in its own rivers.

Chum salmon ( O.keta) of the Yukon River, a major transboundary drainage, are 

of particular interest and concern. In March of 2001, the countries reached an agreement 

that the United States would reduce its catch of Canadian origin fall chum salmon by 10 

percent. Identification of the relative proportion of the chum salmon resource for these 

countries would simplify allocation and management.

The Yukon River flows more than 2000 miles through Canada and Alaska. Chum 

salmon spawn throughout the drainage in both countries and chum salmon are known, in 

general, to exhibit fidelity to natal spawning grounds (Salo 1991). There are two distinct 

runs of chum salmon: summer and fall. Summer chum salmon enter the river between 

early June and early July and spawn primarily in tributaries of the lower 500 miles of 

the Yukon River. Fall chum enter the river from mid-July to late August and spawn from 

the Tanana River confluence to the headwaters of the Yukon River (Buklis 1981). Chum 

salmon are an important resource for the subsistence fisheries in the United States and 

Canada as well as to the wildlife that depend upon them for food.

Management of Pacific salmon fisheries presumes that the appropriate harvest rate 

of each population is a function of their sizes and reproductive capacities. Consequently, 

appropriate management requires knowledge of the species’ population structure and the 

ability to control the harvest of individual populations (Allendorf et al. 1987). Genetic 

analysis of a species can provide information about population structure. Using this 

information as a baseline, the composition of stock mixtures in harvests can be estimated
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using a process called mixed-stock analysis (MSA) (Pella and Milner 1987). Previous 

genetic analyses of Yukon River chum salmon reported low resolution among populations 

adjacent to the international border. The similarities of the border populations resulted in 

MSA estimates for country of origin that had low accuracy and precision (Beacham et al. 

1988; Wilmot et al. 1992; Scribner et al. 1998). The purpose of this research is to apply 

new molecular genetic techniques in an attempt to improve Yukon River chum salmon 

MSA estimates by country of origin. This thesis reports the results of the application of 

amplified fragment length polymorphism (AFLP) and mitochondrial DNA restriction site 

analysis to MSA of Yukon River fall chum salmon.
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Abstract

We surveyed 97% of the mtDNA genome for restriction site variation in Yukon River 

chum salmon to investigate the evolution of genetic variability in this large system, and to 

evaluate its potential for mixed-stock analysis (MSA). Initial exhaustive surveys of two 

populations identified 16 variable sites. We then surveyed 10 Yukon River populations, 

spanning over 2000 river miles, and four populations from other Alaskan locations for 

variation at these sites. Restriction site variation revealed 16 composite haplotypes; no 

divergence in mtDNA haplotype frequency distributions was observed among Yukon 

River populations. However, a haplotype tree showed two lineages, and nested clade 

analysis revealed significant relationships between the geographical distribution of 

haplotypes and their genealogy for a two-step clade that dominates in the Yukon River 

and the total cladogram. The demographic signal was consistent with isolation by 

distance. The absence of historic fragmentation and/or range expansion signals suggests 

that incomplete lineage sorting is responsible for paraphyly within the Yukon River. 

Mismatch analysis revealed that either an ancestral Yukon River population underwent 

a post-Pleistocene expansion followed by subdivision or that expansion and subdivision 

coincided. Although mtDNA does not appear useful for MSA of Yukon River chum 

salmon, it is useful for separating population history from contemporary processes and 

aids our understanding of Yukon River chum salmon evolution.
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Introduction

Gender based asymmetric dispersal and gene flow make investigating mitochondrial 

DNA (mtDNA) essential when assessing population structure and phylogeography.

In many species, females are philopatric whereas males disperse more widely; such 

situations may lead to panmixia of the nuclear genome among locales, but to subdivision 

in the mtDNA genome. This has serious management implications because demographics 

are female dependent, thus reestablishment from other locales in the event of extirpation 

would be improbable (Avise 2000).

Mitochondrial DNA is haploid, maternally inherited, does not undergo 

heterologous recombination, has a high mutation rate (5-10 times greater on average 

than nuclear genes), and has an effective population size (NJ that is one-fourth of the 

nuclear genome (Gyllensten et al. 1985b; Brown et al. 1979). These attributes make 

mtDNA sensitive to founder events and bottlenecks and potentially more likely to 

reveal divergence among populations with low to moderate ^ e(female) s (Ferguson and 

Danzmann 1998). Gene genealogies can be subjected to nested clade analysis (NCA), 

which correlates geographic distribution and genealogical relationships, and pairwise site 

differences can be subjected to mismatch analysis; together they can provide insight into 

the demographic history underlying population structure (Templeton 1998, Rogers and 

Harpending 1992).

Low levels of genetic divergence have been observed among Yukon River chum 

salmon populations, especially those near the United States/Canada border (Beacham 

et al. 1988, Wilmot et al. 1992, Scribner et al. 1998), which creates problems for 

allocation among user groups. Previous genetic studies focused primarily on allozyme 

and microsatellite variation. The only previously published mtDNA study of Yukon River 

chum salmon that we are aware of evaluated only the variation in the ND5/ND6 region of 

mtDNA using seven restriction endonucleases (Scribner et al. 1998). Because there may 

be little evolutionary concordance among mtDNA regions within and among salmonid 

species (Churikov et al. 2001), the full potential of mtDNA variability has not yet been 

explored in Yukon River chum salmon.
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The objectives of this study were to analyze mtDNA restriction site variability 

in Yukon River populations to aid our understanding of their evolution, and to evaluate 

the potential of mtDNA variation to resolve divergence among populations. The specific 

questions addressed were: (1) what are the most informative mtDNA regions for Yukon 

River chum salmon; (2) does the observed variation provide a means for distinguishing 

among chum salmon populations, especially those adjacent to the international border, 

within the Yukon River; and (3) what demographic and evolutionary processes influence 

the current population structure?

Methods

Sample collection

Tissue samples were collected from 10 chum salmon populations within the Yukon River 

and from four other Alaskan locations (Figure 1.1). Eight of the Yukon River populations 

represent major fall chum salmon producers, and two summer populations were included 

(Chulinak and South Fork Koyukuk) to represent summer chum salmon caught in mixed 

fisheries. Populations outside the Yukon River provided an indication of the total scope of 

mtDNA variation among Alaskan chum salmon populations.

DNA preparation and analysis

Total genomic DNA was extracted from heart or fin tissue (~25mg) by proteinase K and 

the Puregene™ DNA isolation kit (Gentra Systems Inc. Minneapolis, MN). Concentrations 

of DNA were determined by fluorometry.

Specific primers were used to amplify seven regions [12S/16S (annealing 

temperature -T A = 50C), ND1/ND2 (TA = 50C), COI/A8 (TA = 52C), A8/ND3 (TA = 

50-52C), ND3/ND4 (TA = 50-52C), ND5/ND6 (TA = 49C), and CytB/Dloop (TA = 50C)] 

by polymerase chain reaction (PCR), which included 97% of the mitochondrial genome 

(Gharrett et al. 2001). PCR-amplification was carried out with Stratagene Robocyclers in 

50 pi volumes under the following conditions: 2.5 mM MgCl2, IX PCR buffer (20 mM 

Tris-HCl pH 8.0, 50 mM KC1), 200 pM for each dNTP, 0.2 pM for each primer, 1 unit of
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Taq polymerase (Promega Madison, WI), and 5 pi of DNA (~ 250 ng). For the A8/ND3 

and ND3/ND4 regions, 225 pM for each dNTP and 0.25 pM for each primer were used. 

Thermal cycling began with an initial cycle of: 95C for three minutes; followed by 32 

cycles of: 95C for 1 min, 49-52C for 1 min (specific TA’s are listed above), and 72C for 2 

min 30 sec; and completed with one final extension cycle of 72C for 5 minutes. The A8/ 

ND3 and ND3/ND4 regions were started at 50C for 5 cycles and then continued at 52C 

for the remaining 27 cycles. Each region was cut with 14 restriction endonucleases (

I, Ban II, BstU I, Dde I, Hha I, Hint I, Mbo I, Msp I, IV, Rsa I, Sau96 I, ScrF I, Sty I, 

Taq I). Reactions were carried out in 15 pi volumes with IX restriction buffer (provided 

by the manufacturer), 5 units of restriction enzyme, and 5 pi of PCR product. Fragments 

were separated by size in a 2.5% agarose/synergel matrix in 0.5X TBE (TBE is 0.045M 

Tris-borate and 0.001M EDTA pH 8). DNA in the gels was stained by ethidium bromide 

(50pg/ml) for 30 minutes and destained for 20 minutes by electrophoresis. A photograph 

was taken of the gels using an ultraviolet transilluminator (312 nm). Fragments smaller 

than 200 bp were resolved by electrophoresis through 8% polyacrylamide gels (29:1 

acrylamide:bisacrylamide) in 2X TAE (TAE is 40 mM Tris-acetic acid and 1 mM EDTA, 

pH 8.0). Syber Green I™ (1:10,000 dilution; Molecular Probes, Eugene OR) was used to 

stain the DNA for 15 minutes. A photograph was taken of the gel on a transilluminator. 

Both 100 and 25 bp ladders were used to estimate fragment lengths. The software 

program ProRFLP™ (DNA ProScan Inc., Nashville, TN) was used to estimate the size of 

the bands.

Population surveys

Restriction site variation in mtDNA was surveyed: (1) to find the most informative sites 

both diagnostically and evolutionarily in Yukon River chum salmon (Churikov et al. 

2001); (2) to identify a subset of the possible mtDNA region/enzyme combinations that 

could be run in a reasonable amount of time for a large MSA study; and (3) to assess the 

discriminatory powers of this technique for population identification.

All seven regions of the mtDNA genome were amplified from ten samples each 

from Big Creek and Chulinak River, which were chosen because they are separated by
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nearly the full length of the Yukon River. Each amplified mtDNA region was subjected to 

restriction digest analyses using the suite of 14 restriction endonucleases. Subsequently, 

10 samples each from Kobuk River, Joshua Green River, Port Dick Creek and an 

additional 10 samples from Chulinak River were analyzed using only the identified 

variable region-by-enzyme combinations (ND5/ND5 -  I, Dde I, Cfo I, I, Sau96 I; 

ND3/ND4 -  Dde I, HinU, Taq I; A8/ND3 -  Ase I, Dde I, IV; COI/A8 -  I,

I; 12S/16S -  Msp I; CytB/Dloop -  Dde I). Finally, 10 samples each from all the Yukon 

River populations and 10 additional samples for Chulinak and Big Creek were analyzed 

for RFLP variation using combinations that revealed major subdivisions in the gene 

genealogy (ND5/ND6 Rsa I; COI/A8 -  Mbo I, Msp I).

Statistical analyses

Restriction sites were inferred for each enzyme from mtDNA fragment patterns 

that differed by a single site. Composite haplotypes based on all region-by-enzyme 

combinations were developed for each fish with the GENERATE program in REAP 

(McElroy et al. 1992). The program GROUP in REAP eliminated redundant haplotypes. 

The program D in REAP calculated nucleotide divergence among haplotypes. The 

program DA in REAP calculated haplotype and nucleotide diversity within populations 

and average net nucleotide divergence among populations. The program REDUCE in 

REAP eliminated monomorphic sites.

The binary codes produced by GENERATE and REDUCE in REAP were 

used to calculate the pairwise site differences among haplotypes, which facilitated 

the construction of a minimum-spanning tree showing the most parsimonious gene 

genealogy. The program PARSPROB 1.13 (http://bioag.byu.edu/zoology/crandall_lab/ 

programs.htm) was used to determine if the haplotypes were parsimoniously connected at 

the 0.95 level.

Neighbor-joining trees (Saitou and Nei 1987) were constructed from the matrix 

of estimates of population net nucleotide divergence (from DA in REAP) using PHYLIP 

(Felsenstein 1995).

http://bioag.byu.edu/zoology/crandall_lab/


10

Tests of homogeneity of haplotype frequencies among the populations were 

conducted with the MONTE program in REAP (10,000 iterations). Where significant 

heterogeneity was observed, the haplotypic variation was partitioned hierarchically by 

analysis of molecular variance (AMOVA; Excoffier et al. 1992), based on the pairwise 

site differences among the haplotypes, with the significance of the (p-statistics determined 

by 17,000 randomizations using Arlequin 2.0 (Schneider et al. 2000). The population 

structure tested included 7 regions: 1) United States Yukon River summer-run, 2) United 

States Yukon River fall-run, 3) Canada Yukon River, 4) Northwest Alaska, 5) Aleutian 

Peninsula, 6) South Central Alaska, and 7) Southeast Alaska.

Nested clade analyses were conducted using GEODIS 2.0 (Templeton 1998, 

Posada et al. 2000); significance was determined from 17,000 randomizations to 

detect significant associations among geographic locations and haplotypes. Causes of 

significant associations were inferred from the key provided by Templeton (1998). To 

assist in rooting the cladogram, chum salmon data from Churikov et al. (2001) were 

combined with data from this study. These additional data were not included in the nested 

clade analyses because they will be reported elsewhere, and were used only to root the 

cladogram. A minimum-spanning tree of the combined data was constructed based on 

the variable region/enzyme combinations observed, which facilitated the development 

of a nested clade design. Ambiguities in the topology were resolved (Templeton et al. 

1987, 1992), and outgroup weights were calculated for the haplotypes using a heuristic 

algorithm (Castelloe and Templeton 1994).

The Yukon River populations were tested for sudden population expansion with 

mismatch and intermatch distribution analyses (Rogers and Harpending 1992, Rogers and 

Jorde 1995) using Arlequin 2.0 with significance and 95% confidence intervals for the 

estimated demographic parameters determined by 1000 parametric bootstrap simulations.

Results

Comprehensive restriction site analysis of two Yukon River populations (Big Cr. and 

Chulinak) revealed seven haplotypes and surveyed a total of 432 sites of which 16 were
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variable. Initially, 20 variable sites were identified but four were removed due to possible 

duplication of recognition sites between Msp I and IVAScrF I and overlaps between 

amplified regions. Variation was observed in all regions except for the ND1/ND2 region 

(Table 1.1). The ND5/ND6 region had the most variation with five variable sites that 

resolved four haplotypes and a nucleotide diversity, calculated using all monomorphic 

and polymorphic sites, of 1.52 substitutions per 1000 base pairs (bp). Between 8.1 and 

12.9% of the nucleotides in each mtDNA region were surveyed. Overall, 1771.3 bp 

or 10.7% of the mitochondrial genome were examined, which revealed a haplotype 

diversity of 0.64 and a nucleotide diversity of 0.50 substitutions per 1000 bp. Haplotype 

distributions did not differ (P>0.05) between the two populations (Table 1.2). Composite 

haplotype frequencies ranged from 5 -  60%; five of the seven haplotypes were 

singletons. The haplotype genealogy revealed a star-like pattern with rarer haplotypes 

diverging radially from the more abundant central haplotype (Figure 1.2). Two mtDNA 

evolutionary lineages, E (haplotypes A-F) and G (haplotype G), previously identified 

by Churikov et al. (2001) were observed. Average nucleotide divergence between 

lineages, based on all monomorphic and polymorphic sites among haplotypes, was 1.96 

substitutions per 1000 bp as compared to 1.04 substitutions per 1000 bp within lineages.

Results from the comprehensive survey were ambiguous in determining the best 

set of region-by-enzyme combinations to describe population structure; a total of 10 

region-by-enzyme combinations showed variation, none of which could be eliminated 

without possibly omitting useful sites.

12S/16S COI/COII A8/COI1I ND3/ND4 ND5/ND6 Cytb/D-loop

Msp I Mbo I Ase I Dd I Ase I Dde I

Msp I Dde I Hinfl Dde I

N laIV Taq I Cfo I

Rsa I 

Sau96 I
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These combinations were too numerous to run in a large MSA study, so an 

additional survey analyzing just these sites was performed to clarify the haplotype 

genealogy. Expanding the number of populations to include Kobuk, Joshua Green, and 

Port Dick Creek, but focusing only on the variable region/enzyme combinations, revealed 

eight new haplotypes for a total of 15 haplotypes (Table 1.3). A total of 87 restriction 

sites was detected of which 23 were variable. In this survey fewer enzymes were used. 

Consequently, a smaller portion of the genome was surveyed: a total of 356 nucleotides 

or 2.14% of the mitochondrial genome. The average number of restriction sites and 

nucleotides examined per haplotype was 72.94 and 297.87 (1.79% of mtDNA genome), 

respectively. Because the variable sites were the focus of the reduced survey, the 

magnitude of nucleotide diversity and divergence estimates increased, but the haplotype 

diversity remained about the same, as expected. Haplotype frequencies ranged from 1.6 

-  55.7%; 11 out of 15 haplotypes were singletons. Haplotype frequency distributions did 

not differ (P>0.05) among the five populations (Table 1.3).

The haplotype genealogy revealed two star-like phylogenies consisting of the 

E and G lineages (Figure 1.2). The structure of the G lineage became clearer with the 

addition of haplotypes H, I, J, and O. The Kobuk River was the only population in which 

the G lineage was absent. Haplotypes F, K, L, M, and N were added to the E lineage. The 

NCA revealed significant associations (P<0.05) between the geographic distribution and 

the genealogical relationship among subclades within clades 2-1, and the total cladogram 

(Figure 1.3). The results identified the cause of the associations as restricted gene flow 

with isolation by distance (Figure 1.3, Table 1.5). Inclusion of the data from Churikov 

et al. (2001) improved the resolution of the gene genealogy, and allowed for a better 

estimation of the root than could be achieved by using data from this study alone (Figure 

1.2). Haplotype W (C in Churikov et al. 2001) had the largest outgroup weight and nested 

in clade 3-2 (Table 1.6, Figure 1.3). Therefore, the root for the nested clade analysis of 

the present study was assigned to clade 3-2. Although one might argue that haplotype E is 

the root because of its high outgroup weight and multiplicity, the results of the NCA were 

unaffected by alternative rooting strategies.
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The region-by-enzyme combinations that contributed most to defining the 

haplotype genealogy were analyzed to evaluate their potential for Yukon River chum 

salmon MSA (Figure 1.2: ND5/ND6 Rsa I; COI/COII Mbo I, Msp I). These sites 

distinguished the E, G, and C clades, which were the most abundant and divergent 

groups. A total of 17 restriction sites were surveyed with these combinations of regions 

and restriction enzymes; five variable sites revealed one new haplotype, R Only 68 bp or 

0.41% of the genome was covered with these enzymes. On average, 14.2 sites and 56.8 

bp (0.34% of the genome) were surveyed. Haplotype frequencies ranged from 0.58%

-  66.08%; haplotypes P and D were singletons. The haplotype genealogy displayed 

both E and G lineages with the majority (87%) belonging to the E lineage (Figure 1.2). 

Haplotype frequency distributions exhibited heterogeneity among the 14 populations 

(P<0.01, Table 1.4). However, no heterogeneity was observed among populations within 

the Yukon River. An AMOVA, based on the mutational differences among haplotypes, 

was used to partition the heterogeneity hierarchically into three levels of population 

structure: among regions (tpCT), among populations within regions (cpsc), and among 

populations (cpST). The regions were the United States Yukon River summer-run, United 

States Yukon River fall-run, Canada Yukon River, Northwest Alaska, Aleutian Peninsula, 

South Central Alaska, and Southeast Alaska. Overall AMOVA revealed that 88.31 % of 

the variation occurred within and 11.69% was attributed to divergence among populations 

(<pST = 0.1169, ,P<0.001). The majority of the among population variation (11.62%) was 

accounted for by differences among regions ((pCT = 0.1162, P<0.05). Differences among 

populations within regions did not account for detectable variation 0.07% ((psc = 0.0007, 

P>0.05). Neighbor-joining analysis clustered most of the Yukon River populations 

together (Figure 1.6). However, Chandalar, Teslin and Kluane were somewhat divergent.

Mismatch and intermatch distributions were unimodal and conformed to the 

sudden expansion model (Figure 1.5, Table 1.7). Mismatch and intermatch distributions 

for the more comprehensive mtDNA surveys showed the same patterns (results not 

shown). The intermatch distribution estimated t, the time in generations since expansion 

measured in mutational units, at 0.97 (0-2.62). We did not attempt to translate x into years
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since expansion because most estimates of sequence divergence are based on interspecific 

comparisons, which can be quite different from intraspecific.

Discussion

Nucleotide diversity estimates differed among mtDNA regions, ranging from 0 to 1.52 

substitutions per 1000 nucleotides. A similar pattern was observed in coho, pink, sockeye, 

and chum salmon (Gharrett et al. 2001, Churikov et al. 2001). All three studies confirmed 

that surveys of the entire genome are appropriate for estimating nucleotide diversities 

and divergences and choosing appropriate regions for surveying population divergence. 

The ND5/ND6 region was most informative because it had the highest nucleotide and 

haplotypic diversities. This contrasted with the results of Churikov et al. (2001) for chum 

salmon, and suggests that the mtDNA regions that are informative species wide may not 

be as informative in certain geographic regions. There was agreement that 12S/16S, ND1/ 

ND2, and CytB-Dloop were the least informative regions. Moreover, the two studies 

were in agreement that Mbo I and Msp I variation in the COI/COII region revealed the 

major genealogical break.

A star-like pattern was expected in the Yukon River chum salmon gene genealogy 

because of a presumed post-Pleistocene population expansion, but the large number 

of mutational steps separating the common haplotype (E) from the less common (D,

F, G) was unexpected. It is unlikely that sufficient time has elapsed during the current 

interglacial interval to produce the divergence observed between the most distal tips of 

the haplotype tree. Large ancestral Yukon River population sizes that were not reduced 

during the last glacial maximum, secondary contact, or incomplete lineage sorting may 

explain our results (Avise et al. 1987). However, incomplete lineage sorting is the most 

likely cause of this variation as evidence points to a bottleneck in the history of Yukon 

River chum salmon and the absence of fragmentation/range expansion events does not 

support secondary contact. The high haplotypic diversity ( = 0.64) and low nucleotide 

diversity ( n = 0.05%) suggest that a bottleneck preceded rapid population growth that 

allowed for mutations to accumulate (Grant and Bowen 1998). This is further supported 

by the unimodal mismatch/intermatch distributions that show waves with only steep
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faces. Such waves conform to the theoretical expected pattern of an expansion occurring 

at T = 0 (Rogers and Harpending 1992). Clearly, the expansion occurred in the recent 

past as measured in mutational time. While the wide confidence intervals of the estimated 

demographic parameters do not allow for much interpretation, the combination of the 

wave patterns and the estimate of the intermatch t  at 0.97 supports the hypothesis of 

a post-Pleistocene expansion. The occurrence in the gene genealogy of the E and G 

lineages was interesting because they may have sorted separately into the Pleistocene 

Beringian and Cascadian glacial refugia (Churikov et al. 2001, Figure 1.2). Ancestral 

populations that are isolated by geography or behavior are expected to undergo stochastic 

lineage sorting if there is polymorphism in the ancestral population (Avise et al. 1990). 

The populations would at first be polyphyletic for the separate mtDNA lineages, but 

eventually attain reciprocal monophyly after roughly 4 Ne(fema,e) generations (Avise 

et al. 1984). Potential reasons for the apparent paraphyly include secondary contact 

or insufficient time to produce monophyly. Again, incomplete lineage sorting is the 

probable cause for the apparent paraphyly as no evidence for historic fragmentation/range 

expansion events, required to support compete lineage sorting, was detected.

Examining ND5/ND6 Rsa I and COI/COII Mbo I and Msp I variation in all of 

the populations uncovered significant heterogeneity, but no heterogeneity was detected 

among populations within the Yukon River. The AMOVA revealed that populations were 

more divergent among regions than within regions and that ND5/ND6 I resolved 

population structure better than COI/COII Mbol, and Mspl. Given the small sample 

sizes, these results were not surprising. However, two geographically distant populations, 

Chulinak and Big Creek had relatively larger sample sizes of 31 and 20, respectively, but 

did not differ.

Mitochondrial DNA restriction site analysis is a labor-intensive technique and 

requires definitive results to warrant its application for stock identification. Our results 

do not support application of mtDNA variation to MSA of Yukon River chum salmon. 

This conclusion is supported by a previous study of mtDNA variation in Yukon River 

chum salmon that surveyed Rsa I variation in ND5/ND6 in addition to other restriction
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endonucleases (Scribner et al. 1998). In that study, variation in the ND5/ND6 region 

yielded inaccurate and imprecise MSA estimates because the data provided little 

resolution. These results suggest that future studies on MSA of Yukon River chum 

salmon should focus on the nuclear genome. The size of the nuclear genome and its 

ability to undergo recombination provide a nearly limitless number of possibilities for 

analysis. Haplotypic variation of mtDNA is, however, well suited for phylogenetic and 

phylogeographic analyses that may address questions about the contemporary structure. 

Such data may be useful for determining what combinations of contemporary gene flow, 

Ne(femalej and historical demographic processes are influencing population structure.

Limited mtDNA divergence in Yukon River chum salmon may have resulted 

from bottlenecks caused by Pleistocene glaciations. Glacial advances limited the habitat 

in which chum salmon could survive and likely resulted in the extirpation/reduction of 

populations causing the loss of mtDNA diversity. The nearly identical patterns of the 

mismatch and intermatch distributions (Figure 1.6) suggest that an ancestral Yukon River 

population expanded and then subdivided, or that expansion and subdivision coincided 

in the current interglacial period (Rogers and Jorde 1995). This signifies that glacial 

advances caused a severe bottleneck, which resulted in a panmictic mtDNA genome for 

Yukon River chum salmon. The lack of mtDNA divergence in Yukon River chum salmon 

is consistent with observations that northern species exhibit little mtDNA divergence 

because of glaciations as compared to species from unglaciated areas (Billington 

2003). Mitochondrial DNA should be more affected by bottlenecks than nuclear DNA 

because of its smaller N . Furthermore, because mtDNA does not undergo heterologous 

recombination, mtDNA behaves as a single locus, as compared to the multilocus 

(multivariate) variation available at nuclear loci. Consequently, population bottlenecks 

can reduce mtDNA haplotypic variation in a population and limit the apparent divergence 

among populations whereas nuclear DNA is not affected as dramatically (Ferris and Berg 

1987).

Augmenting this dearth of mtDNA divergence among Yukon River chum 

salmon populations is recurrent contemporary gene flow, indicated by NCA. It has been
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suggested that chum salmon have high straying rates, although little direct experimental 

evidence exists (Johnson et al. 1997). The research that has been done on straying of 

chum salmon in other geographical regions estimated rates from 2.5 to 42.0% (Quinn 

1993, Tallman and Healey 1994). Even low rates of gene flow can arrest divergence 

among populations (Kimura and Weiss 1964).

Although the application of mtDNA to MSA is not promising it has shed light on 

Yukon River chum salmon life history. The NCA and mismatch analyses of Yukon River 

chum salmon mtDNA revealed that a combination of historical and contemporary events 

has shaped its population structure. Such evidence explains why so little divergence 

has been observed among the populations when the rate of mtDNA evolution and mode 

of inheritance predict otherwise. The evidence of unbiased gene flow and mismatch/ 

intermatch distributions indicative of expansion and subdivision provides some assurance 

that reestablishment of extirpated populations is probable, although not in the lifetime 

of a fisheries manager. The utility of mtDNA, in combination with new statistical tests, 

to answer pertinent management and evolutionary questions reinforces the Avise et al. 

(1987) assertion that “mtDNA is not just another molecular marker.”
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Figure 1.1. Sampling locations: 1 = Kobuk, 2 = Joshua Green, 3 = Port Dick Cr., 4 = W. 

Crawfish Inlet, 5 = Chulinak, 6 = South Fork Koyukuk, 7 = Delta, 8 = Chandalar, 9 = 

Sheenjek, 10 = Black, 11 = Fishing Branch, 12 = Big Cr., 13 = Kluane, 14 = Teslin.



Figure 1.2. Minimum-spanning tree showing the most parsimonious haplotype connections. Tick marks 

represent mutational steps and the numbers refer to the restriction sites tabled in Appendix 1.1. The white circle 

represents haplotypes observed in the first survey; the light gray circle represents haplotypes observed in the 

second and third surveys. The dark gray circle represents haplotypes observed by Churikov et al. 2001.
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Figure 1.3. Nested clade design developed from the haplotype network. Only halpotypes 

found in the present study are shown, haplotypes observed by Churikov et al. 2001 are 

accounted for by leaving zeros in their place.
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Port Dick Cr

Figure 1.4. Unrooted neighbor joining tree constructed from population 

pairwise net nucleotide divergence estimates calculated from composite 

mtDNA halplotypes collected in the third survey.
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Figure 1.5. Distributions of mismatch and intermatch pairwise restriction site differences 

within and among ten Yukon River chum salmon populations.



Table 1.1. Restriction site variation in each of seven regions examined using 14 restriction endonucleases in the first 

survey. Fragment sizes estimated from Oncorhychus mykiss mtDNA sequence (Zardoya et al. 1995).

Region
Fragment

size
Mean No. of 

sites
Mean No. of 
nucleotides % coverage

No. of 
variable 

sites
No. of 

haplotypes
Haplotype
Diversity

Nucleotide 
Diversity (per 

1 0 0 0 )

12S/16S 2402 76.5 309.33 1 2 . 8 8 1 2 0.100±0.088 0.16

ND1/ND2 2689 77.0 324.00 12.05 0 1 0 0.00

COI/COII 2471 54.0 225.33 9.12 3 3 0.195±0.115 0.67

A8/COIII 2115 39.8 170.60 8.07 3 4 0.284±0.128 1 . 2 1

ND3/ND4 2331 52.3 218.00 9.35 3 3 0.195±0.115 0.69

ND5/ND6 2488 53.8 224.83 9.04 5 4 0.432±0.126 1.52

Cytb/D-loop 2599 68.5 284.67 10.95 1 2 0.100±0.088 0.18

Total 16600 423.1 1761.24 10.61 16 7 0.637±0.116 0.50

to
O J



Table 1.2.Distribution of haplotypes and diversity measures for populations in the first suvey. No heterogeneity among 

population haplotype frequencies was observed (PMC>0.05; 10,000 iterations) ( Monte program in REAP; McElroy et 

al. 1992).

E lineage Haplotype
G lineage 
Haplotype

Collection n A B C D E F G

Big Creek 1 0 0 0 3 0  6 0 1

Chulinak 1 0 1 1 0 1 6 1 0

Total 20 1 1 3 1 12 1 1

Average



Table 1.3. Distribution of haplotypes for populations in the second survey. No 

heterogeneity among population haplotype frequencies was observed (PMC>0.05; 

10,000 iterations) (Monte program in REAP; McElroy et al. 1992).

E lineage Haplotype G lineage Haplotype

Collection n E K L C M N D A F B G H I J o

Big Creek 10 6 0 0 3 0 0 0 0 0 0 1 0 0 0 0

Chulinak 2 1 10 0 0 1 3 1 1 1 1 1 0 1 0 0 1

Joshua
Green 10 6 0 0 0 0 0 0 0 0 0 0 2 1 1 0

Kobuk 10 7 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Port Dick 
Cr. 10 5 0 0 0 0 0 0 0 0 0 0 5 0 0 0

Total 61 34 1 1 5 3 1 1 1 1 1 1 8 1 1 1

to
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Table 1.4. Distribution of haplotypes for populations in the third 

survey. Heterogeneity among population haplotype frequencies 

was observed (PMC<0.01; 10,000 iterations) (Monte program in 

REAP; McElroy et al. 1992).

Collection

E lineage Haplotype
G lineage 

Haplotype

n E c p D G

Black 10 6 3 0 0 1

Fishing Br. 10 6 2 1 0 1

Sheenjek 10 8 1 0 0 1

Chandalar 10 3 5 0 0 2

SF Koyukuk 10 7 2 0 0 1

Delta 10 6 3 0 0 1

Big Cr. 20 12 5 0 0 3

Teslin 10 5 5 0 0 0

Kluane 10 5 5 0 0 0

Chulinak 31 26 1 0 1 3

Kobuk 10 8 2 0 0 0

Joshua Green 10 6 0 0 0 4

Port Dick Cr. 10 5 0 0 0 5

W. Crawfish 10 10 0 0 0 0

Total 171 113 34 1 1 22
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Table 1.5. Nested clade analysis showing only clades with significant results. Dc is the 

clade distance, DN is the nested clade distance. L is significantly large. S is significantly 

small. NS is not significant. Templeton (1998) inference key was used to interpret the 

results.

Clade Sub-clade Tip/Interior Dc d n

2-1 1-1 I NS L

1-2 T S S

1-3 T s S

1-4 T NS NS

1-5 T NS NS

I-T contrast L L

Key: 1-2-3-4 No. Isolation by distance.

Clade Sub-clade Tip/Interior Dc d n

Total Cladogram 3-1 T NS NS

3-2 I NS L

3-3 T NS S

I-T contrast NS L

Key: 1-2-11-17-4 No. Isolation by distance.



Table 1.6. Halpotype outgroup weights

Haplotype Multiplicity Weight Outgroup weight

E 52 66.00 0.215

H 21 24.00 0.078

I 1 0.50 0.002

J 1 0.50 0.002

K 1 0.50 0.002

L 3 1.50 0.005

C 5 58.00 0.189

M 3 56.00 0.182

N 1 0.50 0.002

0 1 0.50 0.002

D 1 0.50 0.002

A 1 0.50 0.002

F 1 0.50 0.002

B 1 0.50 0.002

G 1 0.50 0.002

Q 1 2.00 0.007

R 1 0.50 0.002

S 2.00 0.007

T 1 0.50 0.002

U 1 0.50 0.002

V 1 0.50 0.002
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Table 1.6. (Continued)

Haplotype Multiplicity Weight Outgroup weight

W 1 74.00 0.241

X 6 6.00 0.020

Y 1 3.00 0.010

Z 1 0.50 0.002

1 1 7.00 0.023

Total 111 307 1



Table 1.7. Observed polymorphic sites, mean site difference, time of expansion measured in mutational 

units, and population size before and after the expansion from the third survey (Schneider et al. 2000). 

Bracketed values are 95% confidence intervals derived from 1000 parametric bootstrap simulations. All 

estimates confonn to the null hypothesis of sudden expansion (P>0.05).

Population S Mean site difif. Tau ThetaO Thetal

Intermatch 5(3-13) 0.77 (0.13-1.77) 0.97 (0-2.62) 0 (0-0.70) 2.35 (0.59-4407)

Chulinak 4 (0-5) 0.49 (0-1.51) 3.06 (0.52-4.35) 0.09 (0-.049) 0.409 (0-209.159)

Big Creek 3 (1-9) 0.93 (0.10-2.17) 1.27 (0-3.71) 0 .10(0-1.20) 2.20 (0.16-4762)

Kluane 1 (1-9) 0.56 (0.20-1.80) 0.87 (0-1.76) 0(0-1.43) 1680(2.29-6842)

Teslin 1 (1-9) 0.56 (0.20-1.80) 0.87 (0-1.84) 0(0-1.43) 1680 (2.29-6842)

Fishing Branch 4(1-9) 1.07 (0.20-2.51) 1.36 (0.15-3.61) 0 (0-0.67) 4.41 (0.58-6634)

Black 3 (1-9) 0.87 (0.20-1.80) 0.91 (0-2.05) 0(0-1.31) 1333 (2.64-5576)

Chandalar 3 (1-10) 1.27 (0.20-3.16) 2.06 (0.25-5.31) 0.04 (0-2.80) 2.82 (0.61-5372)

Sheenjek 3 (0-6) 0.60 (0-2.22) 2.79 (0.47-4.19) 0 . 0 1  (0-1.01) 0.64 (0-2758)

Delta 3(1-9) 0.87 (0.20-1.80) 0.91 (0-1.88) 0(0-1.51) 1333 (2.64-5528)

SF Koyukuk 3 (0-6) 0.76 (0-2.07) 1.11 (0.17-3.55) 0 . 0 1  (0-0.71) 1.62 (0-4714)
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Appendix 1.1. Polymorphic restriction site information from this study and Churikov et 

al. 2001

1 2 3
12S/16S

6 7 8
COI/COII

Haplotypes Msp I MspI Msp I MspI Mbo I Mbo I Msp I Msp I Msp I
A 0 0 1 1 1 1 0 1
B 0 0 1 1 1 1 0 1
C 0 0 1 1 1 1 0 1
D 0 0 1 0 1 1 0 ( 1
E 0 0 1 1 1 1 0 1
F 0 0 1 1 1 1 0 1
G 0 0 1 1 0 1 0 0
H 0 0 1 1 0 1 0 0
I 0 0 1 1 0 1 0 0
J 0 0 1 1 0 1 0 0
K 0 0 1 1 1 1 0 1
L 0 0 0 1 1 1 0 1
M 0 0 1 1 1 1 0 1
N 0 0 1 1 1 1 0 1
0 0 0 1 1 0 1 0 0
P - - 1 1 1 1
Q 0 0 1 1 1 1 0 1
R 1 0 0 1 0 1 0 0
S 0 0 1 1 0 1 0 0
T 0 0 1 1 1 1 1 1
U 0 0 1 1 1 1 0 1
V 0 1 0 1 0 1 0 0
w 0 0 1 1 1 1 0 0
X 0 0 1 1 0 0 0
Y 0 0 1 1 0 1 0 0
Z 0 0 1 1 1 1 0 1
1 0 0 1 1 0 0 0 0
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Appendix 1.1. (Continued)

10 11 12 13 14 15 16 17 18

Haplotypes Ase I Dde I Dde I NlaIV Dde I Dde I Dde I Taq I
A 1 1 1 0  1 1 1 0  0
B 1 1 1 0  1 1 1 1 1
C 1 1 1 0  1 1 1 0  0
D 1 1 1 1 1 1 1 0  0
E 1 1 1 0  1 1 1 0  0
F 0 1 1 0  0 1 1 0  0
G 1 1 0  0 1 1 1 0  0
H 1 1 1 0  1 1 1 0  0
I 1 1 1 0  1 1 1 0  0
J 1 0  1 0  1 1 1 0  0
K 1 1 1 0  1 1 0  0 0
L 1 1 1 0  1 1 1 0  0
M 1 1 1 0  1 1 1 0  0
N 1 1 1 0  1 0  1 0  0
0  1 1 0  0 1 1 1 0  0
p . . .  . . . . . .

Q 1 1 0  0 1 1 1 1 0
R 1 1 1 0  1 1 1 0  0
S 1 1 0  0 1 0  1 0  0
T 1 1 0  0 1 1 1 1 0
U 1 1 1 0  1 1 1 0  0
V 1 1 1  0 1 0 1 0 0
W 1 1 1 0  1 1 1 0  0
X 1 1 0  0 1 0  1 0  0
Y 1 1 1  0 1 0 1 0 0
Z 1 1 0  0 1 1 1 0  0
1 1 1 0  0 1 0  1 0  0



33

Appendix 1.1. (Continued)

19 20 21 22 23 24 25 26 27
ND5/ND6 CYTB/DL

Haplotypes Ase I Dde I Dde I Dde I Cfo I Rsa I Sau961 Dde I Dde I
A 0 1 1 0 0 1 1 0 0
B 0 1 1 0 0 1 1 0 1
C 0 1 1 0 0 0 1 0 1
D 0 1 1 0 0 1 1 0 1
E 0 1 1 0 0 1 1 0 1
F 0 1 1 0 1 1 0 0 1
G 1 0 1 0 0 1 1 0 1
H 0 1 1 0 0 1 1 0 1
I 0 1 1 0 0 1 1 1 1
J 0 1 1 0 0 1 1 0 1
K 0 1 1 0 0 0 1 0 1
L 0 1 1 0 0 1 1 0 1
M 0 1 1 0 0 1 1 1 1
N 0 1 1 0 1 1 1 0 1
0 1 1 0 1 0 1 1 0 1
P - - 1 -

Q 0 1 1 0 0 1 1 0 1
R 0 1 1 0 0 1 1 0 1
S 1 1 1 0 0 1 1 0 1
T 0 1 1 0 0 1 1 0 1
U 1 1 1 0 0 1 1 1 1
V 1 1 1 0 0 1 1 0 1
w 0 1 1 0 0 1 1 0 1
X 1 1 0 1 0 1 1 0 1
Y 1 1 1 0 0 1 1 0 1
Z 0 1 1 0 0 1 1 0 1
1 1 1 1 1 0 1 1 0 1
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Appendix 1.2.Restriction fragment sizes for seven PCR- 

amplified regions of chum salmon mtDNA produced by each of 14 

endonucleases. Fragment sizes are in base pairs (bp). * indicates 

additional restriction patterns that were detected by Churikov et al. 

2001, but were not observed in this study.

12S/16S

M
s: b a-s: > o
''Ocq CO

CQ Q it:

A A A A A A A

1400 1200 1250 405 1200 2250 860

460 295 390 150 560

300 260 335 360

265 200 195 220

120 200 160 180

40 160 130 90

160 75

130 70

105

80

65

60

40

35
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Appendix 1.2.(Continued)

12S/16S
Ms

p 
I

NlaI
V

Rs
a 

I

Sa
u9

61

Sc
rF

l

Sty
 

I

Tag
 

I

A B c* D* F A A A A A A

1010 750 770 630 850 2225 1050

750 600 480 420 450 175 720

620

570

620 500

375

200

425

280

190

390

205

190

400

325

200

520

110

450 450 450

420

450 170

80

185

170

150

390 390 390 390 140

300 300 300

200

300 70

180 180 180 180 180

176 176 176 176 176

130 130 130 130 130

126 126 126 126

50

126



Appendix 1 .2 .(Continued)

ND1/ND2

« § -  -a J  ^cq c§ Q  it;

A A A A

1310 1240 790 785 1100 1390 1310

1090 695 710 495 790 705 405

225 345 640 200 385 300 375

142 245 200 280 140 220

110 122 175 95 200

90 95 170 110

155

125

90
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Appendix 1.2.(Continued)

ND1/ND2

Ms
p 

I
>

>

1

A

Rs
a 

I
> 1

Sa
u9

61
O

l-H
*
co

A

SO
'I

>

Taq
 

I
>

1420 1290 575 1530 1256 1960 1310

560 496 335 300 430 305 990

515 319 285 280 292 215 310

120 273 270 260 205 140

270 240 160 177

72 215 90 166

180 123

170

110

85

83

30
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Appendix 1 .2 .(Continued)

C0I/C0II/A8

I—I

A > 
Ba

n 
II s

5oq

A

-Si
Q

A > 
H

ha
\

> 
H

in
fl

Mb
o 

I

Ms
p 

1

A B c* A B C D

2230 1650 1575 480 1530 580 1020 1020 975 975 1655

240 710 895 380 830 490 830

160 370 195 490 655 680 680

365 250 600 665

335 185 420 550 550 550 550

240 160 400 400 400 310

190 160 390 390 200 200 200 200

120 150 275 275 275 150 150 150

30 80 265 265

95 95 95
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Appendix 1.2.(Continued)

C0I/C0II/A8

>
Q Rs

a 
1

Sa
u9

61

Scr
F 

I

§ Taq
 

I

A B A A A B A A

944 944 1050 1520 1377 1450 620

856 330 310 801 910 490

500 230 300 576 360

356 220 185 421 421 280

188 188 205 145 303 303 265

143 143 170 207 207 210

141 141 140 134 134 140

110 110 70 80 80 98

99 99 50
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Appendix 1.2.(Continued)

255

190 190

160 160 

140 140

A8/A6/COIII/ND3

As
e 

I

> 
Ba

n 
II

A

Dd
e 

I

> 
H

ha
l

H
in

fl

1

Mb
o 

I

A B A B C A F A

2190 1100 2180 1000 1240 560 2030

1700 880 810 810 940 150

490 210 665 510 510

395 395

325 325 325 340 340

270 270

190 190 305 305

185 185 185 305
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Appendix 1.2.(Continued)

A8/A6/COIII/ND3

Ms
p 

1 

Nla
 

IV

Rs
a 

I

Sa
u9

61

Sc
rF

l M
& Taq

 
1

A A B A A A A A B

940 607 607 725 600 1032 1090 1590

615 490 490 505 595 466 560 1290

460 418 420 420 318 250 420 420

175 286 286 170 300 303 100 300

223 150 175 87 100 195 195

195 195 105 105 80

195 195 95

195
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Appendix 1.2. (Continued)

ND3/ND4L/ND4

> 
As

e 
I

> 
II

> 
Bs

5
Q

<3
S 's ’

A B D E A A B

1970 1410 1530 1035 1020 1180 1180

380 620 530 920 920 920 710 540

320 290 555 555 555 555 620 375 375

330

515 210

310 310 310 150 150

205 205 205 120 120

165

115 115

58 58 58 58

55 55 55 55

50 50 50
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Appendix 1.2. (Continued)

ND3/ND4L/ND4

> H—1
sO _ M©

I
a 53<0<=<

O sa
to Co 1 £

A A A A A A A A B

920 900 925 570 930 1289 1950

420 890 455 490 420 1049 250 1120 1120

380 560 312 380 310 100 1110

265 200 370 200 75 924

123 160 200 185

95 160 150 160

55 101 105 155 186

42 85 99 99

25 45 45



44

Appendix 1.2.(Continued)

ND5/ND6

, , M _

5 <3 oco Qcq oq q s $ 1

A B A A A B C* D A B A A

1450 1180 1630 575 575 575 575 1200 930 1420
890 940 860 570 1000 750 415

800 800 200 360 360 360 360 795 795 280 200
560 190 330 450 450 280 170

285 285 300 300 200 180 130
290 290 290 125 125 80 110
280 280 280 80
220 220 220
200 200 200 200
160 160

160
140

160
160
140

160

110 110 110
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Appendix 1.2. (Continued)

ND5/ND6

Ms
p 

I

Nla
 

IV

Rs
a 

I

Sa
u9

6I

Sc
rF

l

s Tag
 

I

A A A B A B A A A

1300 932 1775 730 730 930 1600 670

430 912 1600 720 720 648 940 580

420 305 395 395 510 510 643 410

320 200 225 225 470 266 395

99 175 370 305

77 115 115 100 165

36 36 75 75
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Appendix 1.2. (Continued)

Cytb/D-•loop

s a <3 S3, >
<3 oq

<3
Q i

<3

A A A A B C A A A A A

1600 1450 2100 1020 1020 890 1080 1320 630 841

600 1050 250 660 700 675 575 440 475

410 180 150 545 500 665 360 350 359

105 360 240 255 305 335 298

300 300 200 110 220 174

250 250 250 150 185 161

245 245 160 146

240 240 240 135 123

200 200 200 105 108

110 110 110 65

95 95 95 40

55 55 55

55 55 55

30 30 30
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Appendix 1.2. (Continued)

Cytb/D-loop

Rs
a 

I

Sa
u9

61

Sc
rF

l HH
£ Taq

 
I

B A A A A

1030 1640 981 1060 960

535 810 376 790 950

355 210 297 735 740

340 211 110 95

225 155

195 146

15 144

123

110

74
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Amplified Fragment Length Polymorphisms (AFLP) to 

Mixed-Stock Analysis of Yukon River Fall Chum Salmon, Oncorhynchus keta
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Abstract

To manage Yukon River fall chum salmon effectively and allocate catches equitably 

between the United States and Canada, harvest estimates for individual populations must 

be determined. This task is difficult because the harvest of these populations takes place 

before they segregate into spawning aggregations. Past studies of Yukon River chum 

salmon populations using allozymes, microsatellites, and mitochondrial DNA (mtDNA) 

restriction site analysis have been unable to produce mixed-stock analysis (MSA) 

estimates that were > 80% accurate to the country of origin. Here we examine another 

genetic marker type, amplified fragment length polymorphisms (AFLP), in an attempt 

to increase our ability to distinguish between United States and Canadian fall Yukon 

River chum salmon. Ten chum salmon populations from the United States and Canada 

were analyzed at 30 variable AFLP loci. Results show that Yukon River chum salmon 

populations are structured by both run time and regional location. The MSA was most 

successful when mixtures were allocated to regions. The AFLP data were able to provide 

improved MSA estimates for the border populations by country of origin with a 6.5% 

improvement for the Canadian populations over microsatellite analysis. Furthermore, 

AFLP shows promise in MSA applications because, of all the markers tested, AFLP may 

be the least expensive, quickest to run, and most accurate. In general, the results for all 

marker types were similar, suggesting that the dominant factors influencing population 

genetic structure are geographically restricted gene flow, large effective population sizes 

(A ), and historical demographic events. It does not appear to be the failure of a marker 

system that limits attaining higher accuracy in MSA.
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Introduction

To manage a mixed stock fishery for Yukon River chum salmon ( keta),

populations must be identified and the proportion of each population in the catch must be 

determined (Larkin 1981). If fishery managers allow harvests based on the belief they are 

harvesting a single population when, in fact, a mixture of populations is being harvested, 

the result can be excessive exploitation of an individual population through differential 

harvest rates (Allendorf et al. 1987). Differential harvest can decrease overall production 

for the entire system.

Genetic analysis of Yukon River chum salmon based on allozymes, 

microsatellites, minisatellites, and mtDNA restriction site analysis revealed a population 

structure defined by run time and geographic region with greater divergence between 

run times and among regions than within run times and regions (Beacham et al. 1988; 

Wilmot et al. 1992; Beacham 1996; Spearman and Miller 1997; Scribner et al. 1998; 

Conservation Genetics Laboratory, U.S. Fish and Wildlife Service, unpublished data). 

Application of mixed-stock analysis (MSA) (e.g., Grant et al. 1980) to simulations of 

mixed fisheries showed that the most accurate and precise estimates were obtained for 

geographically defined regions that ignored political boundaries. Moreover, simulations 

showed that problems persist in achieving accurate and precise estimates of country of 

origin from mixtures of populations adjacent to the United States/Canada border; their 

genetic similarity reflects their geographic and possibly ecological similarity. The low 

genetic resolution of populations in this area has confounded resource management. 

Increased resolution would improve management decisions designed to meet allocation 

and harvest/conservation goals mandated in the Pacific Salmon Treaty. Because of the 

difficulty in identifying differences among the border populations, we explored a new 

approach.

The AFLP technique (Vos et al. 1995) allows access to thousands of anonymous 

loci, which may be most appropriate for detecting divergence among closely related 

populations (Bematchez and Duchesne 2000). For MSA applications, a technique that 

rapidly surveys numerous variable anonymous loci distributed through out the genome
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may yield resolution in population studies for which results from traditional methods are 

unsatisfactory. Disadvantages of this technique include dominant expression and other 

assumptions that must be made for analyses, including, homology of comigrating bands, 

Mendelian inheritance, and Hardy-Weinberg equilibrium. Fortunately these assumptions 

appear to hold generally and the bias introduced is probably negligible (Parker et al.

1998; Krauss 2000; Vekemans et al. 2002). Here we analyzed the variation at AFLP loci 

from populations of fall and summer Yukon River chum salmon and a reference sample 

(out-group) from Southeast Alaska. The study objectives were (1) to improve MSA 

estimates for Yukon River United States/Canada border chum salmon populations, (2) to 

determine if the most informative subsets of loci, as determined by relative and absolute 

divergence and variance estimates, improve MSA by amplifying the signal of divergence, 

and (3) to determine if AFLP markers reveal a picture of Yukon River chum salmon 

population structure that is concordant with other markers previously used.

Methods 

Sample collection and DNA isolation

Between 1989 and 1996, 956 samples were collected from eleven populations (Figure 

2.1). Eight of the populations represent the major producers of fall chum salmon for the 

Yukon River. Two summer populations (Chulinak, South Fork Koyukuk) were included 

to represent summer chum salmon in mixed fisheries. A genetically divergent chum 

salmon population from Southeast Alaska was included as a reference. Total genomic 

DNA was extracted from either heart or fin tissue (~25mg) with proteinase K and the 

Puregene™ DNA isolation kit (Gentra Systems Inc. Minneapolis, MN). Concentrations of 

DNA were quantified by fluorometry.

AFLP protocol

Methods generally followed those in Perkin Elmer’s AFLP plant mapping protocol 

and included four steps: (1) digestion-ligation; (2) pre-amplification; (3) selective 

amplification; and (4) electrophoresis (Perkin Elmer 1997). Total genomic DNA (250 

ng ) was subjected to simultaneous digestion by restriction endonucleases EcoR I and
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Mse I and ligation of adapters to the fragments (Vos et al. 1995). Pre-amplification 

polymerase chain reaction (PCR) was done in 20 pi volumes: 2.5 mM MgCl2, IX 

PCR buffer (20 mM Tris-HCl pH 8.0, 50 mM KC1), 200 pM for each dNTP, 0.3 pM 

for EcoR I + A (where EcoR I + A consists of the core and enzyme sequence plus the 

selective nucleotide: 5'-GACTGCGTACCAATTC+A-3') and 0.3 pM for Mse I + C (5'- 

GATGAGTCCTGAGTAA +C-3') primers, 0.016 units of Taq polymerase, and 4 pi of 

diluted digestion-ligation mix. PCR was performed in a Stratagene Robocyler® with an 

initial cycle of 2 minutes at 72°C, followed by 20 cycles of 94°C for 1 min, 56°C for 1 

min, and 72°C for 2 min, with one final cycle at 60°C for 30 min.

Selective PCR was done in 10 pi volumes; conditions were: 2.5 mM MgCl2, IX 

PCR buffer (20 mM Tris-HCl pH 8.0, 50 mM KC1), 200 pM for each dNTP, 0.05pM for 

EcoR I + AXX (X stands for any nucleotide) fluorescently labeled primer, 0.25 pM for 

Mse I + CXX primer, 0.008 units Taq polymerase, and 3 pi of diluted pre-amplification 

product. Thermal cycling conditions were: initial denaturation cycle of 94°C for 3 min, 

followed by 94°C for 1 min, 66-57°C for 1 min (touchdown phase), 72°C for 2 min 10 

sec, then 20 cycles of 94°C for 1 min, 56°C for 1 min, and 72°C for 2 min 10 sec, with a 

final single cycle of 60°C for 30 min.

Three to four pi of PCR product were electrophoresed on a denaturing 6% 

polyacrylamide gel for 50 to 105 minutes. An FMBIO II® (Hitachi Software Engineering 

America Ltd.) fluorescent imaging scanner was used to visualize the DNA fragments. 

The sizes of bands were estimated and scored by FMBIO® analysis software v8.0. All 

band scores were verified by visual inspection, independent of the software.

A pilot study was conducted to identify a subset of approximately 30 informative 

loci. Initially, two samples from each population were amplified by PCR using 64 primer 

combinations (Perkin Elmer AFLP plant kit) to identify primers that revealed frequency 

differences among the populations. Next, 40 DNA samples from each population were 

pooled into four groups of 10 and screened for all 64 primer combinations to discover 

those that might reveal large population specific frequency differences and/or unique 

loci. Finally, 10 individual samples from each of the populations were processed for 13
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promising primer combinations. The loci were scored as binary (1,0) phenotypic data 

and analyzed for variance among populations. The primer combinations that produced 

30 unambiguously scored loci with the greatest variance in banding frequencies among 

populations were run on the entire sample set (Figure 2.1). To ensure that the results were 

reproducible, 10 random samples from each population were subjected to the entire AFLP 

process twice.

Statistical analyses

The hierarchy of Yukon River chum salmon populations analyzed was based on 

seasonal run timing and geographic location. The AFLP data can be interpreted as either 

phenotypic data showing the presence of a dominant allele, or transformed to estimate 

allele frequencies (Nei and Kumar 2000). Analyses were conducted on both phenotypic 

frequencies and estimated allele frequencies, depending on the test. Allele frequencies 

were estimated by a Bayesian procedure (Zhivotovsky 1999) that assumes a non-uniform 

prior distribution of fragment frequencies except for the gametic phase equilibrium test 

where a maximum likelihood approach was used.

Statistical allelic analyses

Gametic phase equilibrium was estimated by the program RAPDLD (Black 1997) 

and analyzed following the methods of Apostal et al. (1996). Average unbiased 

expected heterozygosities were calculated according to Nei (1978). The percentage of 

polymorphic loci at the 95% criterion was determined. Nonmetric multidimensional 

scaling (Kruskal 1964) of chord distances (Cavalli-Sforza and Edwards 1967; Wright 

1978) calculated from allele frequencies was carried out in NTSYS 2.1 (Rohlf 2000). In 

addition, a minimum spanning tree (MST) constructed from the chord distance matrix 

was superimposed on the multidimensional scaling to detect distortions in the ordination 

process. The distances of the MST were ranked from 1-10 with 1 being the smallest and 

10 being the largest. Saltery Cr., the reference population, was not included in any further 

analyses.
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A hierarchical unbiased gene diversity analysis was used to partition the 

genetic variation due to population divergence, according to the following model: 

Ht=Hs+Dsr+Drc+Dct (Chakraborty and Leimar 1987; Nei and Chesser 1983). The 

harmonic mean was conservatively based on the sample size (N) so the bias correction 

was slightly excessive. Hx is the overall average expected heterozygosity; Hs is the 

average expected heterozygosity within populations; DSR = HR -  Hs is the diversity 

attributed to divergence among populations within regions; DRC = Hc -  HR is the 

diversity attributed to divergence among regions within run times; DCT = HT -  Hc is 

the diversity attributed to divergence between run times. The relative proportions of 

the total diversity accounted for by the different levels of hierarchy were estimated 

by calculating coefficients of gene differentiation (GST-statistics). Effective migration 

rates (Nm)  were estimated from GSI-statistics, assuming a hierarchical island model

at equilibrium using the formula: Nm = ((l-Gsx)-l)/4)/(g/(g-l))2 (Zhivotovsky et al. 

1994). Significance of the GST-statistics was inferred from log-likelihood ratio tests of 

homogeneity (Chakraborty and Leimar, 1987). To further evaluate the reliability of the 

data set, confidence intervals for GST-statistics and migration estimates were determined 

by bootstrapping over loci 1000 times.

Isolation by distance (IBD) was examined by standard linear regression of 

population pairwise matrices of \ogi0(Nm) on log10(distance in km), Nm  was estimated 

from 'A(l/Gsx -  1) (Slatkin 1993). Significance of the correlation between the two 

matrices was determined by the Mantel test (Mantel 1967) with 10,000 randomizations 

using Arlequin 2.0 (Schneider et al. 2000).

Statistical phenotypic analyses

Hierarchical log-likelihood ratio tests were conducted to determine the heterogeneity of 

phenotypic frequencies among populations within regions, among regions, and between 

run times (G-test, Sokal and Rohlf 1995). To avoid violating asymptotic assumptions, 

phenotypes with expected overall counts of less than four were excluded from analysis. 

The magnitude of heterogeneity among and within fall regions was compared using an 

approximate F-statistic (Smouse and Ward 1978): among, dfwithin = (G mong/df mong)/(Gwithin/
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df\vithin)* Significance levels were adjusted to prevent type I error for multiple tests of the 

same hypothesis by dividing the alpha by the number of tests (Cooper 1968).

The MSA simulations were performed using the direct maximum likelihood 

method as implemented in the program SPAM 3.5 (Debevec et al. 2000). Parametric 

bootstrap resampling of both the baseline and mixture was repeated 1000 times to 

derive mean allocation estimates and to evaluate precision. Specifically, bootstrapping 

the baseline entails randomly and independently sampling phenotypes at each locus in 

each population from the baseline phenotypic frequency distribution to re-estimate the 

parameters (phenotype frequencies) of the frequency distribution based on the baseline 

sample sizes. Mixture bootstrapping consists of first randomly drawing N individuals 

(defined by the stated mixture sample size and the specified mixture composition) from 

the multinomial sample of individuals; and then creating the multilocus phenotypes for 

those individuals by randomly and independently sampling with replacement phenotypes 

at each locus using the relevant observed baseline phenotype frequencies, and an 

assumption of gametic phase equilibrium.

Artificially simulated mixtures (N = 400) representing 100% of each individual 

population were subjected to MSA to test baseline performance. Mean allocations to 

individual populations were then summed for geographically defined regions. For the 

United States/Canada border populations, additional summing to politically defined 

border regions was also done. The results of the AFLP analyses were compared to results 

from microsatellite analyses by conducting simulations using data from 11 microsatellite 

loci collected from the same individuals and populations (Conservation Genetics 

Laboratory, U.S. Fish & Wildlife Service, unpublished data). Additional MSA simulations 

were performed on the regions (biological and political) using equal proportions of 

each population from the region in the simulated mixtures. A randomization test was 

conducted using the Resample Stats Excel add-in (Resampling Stats, Inc. Arlington,

VA) to determine if there were significant differences between AFLP and microsatellite 

MSA estimates for the border region by country of origin. The AFLP and microsatellite 

estimates were assumed to be independent samples and the difference between the mean
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estimates was used as the test statistic. Estimates were randomized 1000 times between 

the AFLP and microsatellite categories.

An attempt to improve MSA estimates for the border populations was made 

by selecting only the most informative loci among these populations for analysis.

This approach was taken because loci that are homogenous among populations may 

overwhelm the signal of divergence and prevent improved MSA estimates. A variety of 

criteria were used for determining the most informative loci, these included the highest 

G-test ratio, Gsr DST, HT, allelic variance, and phenotypic variance among the border 

populations. These criteria were chosen because no one metric fully describes population 

relationships as described by Wright (1978) who stated that the allelic variance, limiting 

variance (HT), and fixation index must be analyzed when interpreting data. The other 

criteria were chosen because they are additional measures that detect divergence, the key 

to success for MSA. The 10 and six most informative loci for AFLP and microsatellites, 

respectively, were evaluated for each selection criteria in MSA simulations performed 

on the United States and Canadian border regions with equal contributions from the 

populations.

To determine the accuracy over a range of mixture scenarios, MSA was performed 

on simulated mixtures (N = 400) of Canadian chum salmon originating from the four 

Canadian populations ranging from 0% to 100% at 20% increments. Equal proportions 

of the chum salmon populations were used to create the mixtures. An accuracy graph 

plotted the mean estimated proportions against true proportions along with the 95% 

nonsymmetric confidence intervals.

Results

The two primer combinations chosen, amplified 117 AFLP loci of which 59 were 

variable. Data for 30 of these loci, identified in the pilot study, were collected for 

analyses.
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Primer pairs No. of fixed loci No. of variable loci No. of variable loci scored

E-ACC/M-CAC
E-AAG/M-CAC

Total

22
36
58

40
19
59

17
13
30

Gametic phase disequilibrium (P<0.05) was observed in 3%-7% of the pairwise 

tests within populations, which generally conforms to the expectation of the type I error 

rate. Two pairs of loci showed consistent linkage (P<0.05), one in six and the other in 

eight populations; the less informative locus from each pair was omitted from further 

analyses.

Average unbiased expected heterozygosities and percent polymorphic loci 

were similar among populations ranging from 27.8% to 31.6%, and 82.1% to 89.3%, 

respectively. There was a significant difference between the extremes of heterozygosities 

(E)=0.05, Sign-test, Sokal and Rohlf 1995), but not for polymorphic loci (P>0.05, 

McNemar’s test, Sokal and Rohlf 1995). However, differences among the populations of 

greater significance were measured by the G-test.

Nonmetric multidimensional scaling (Kruskal 1964) of chord distances (Cavalli- 

Sforza and Edwards 1967; Wright 1978) calculated from allele frequencies at 28 AFLP 

loci revealed a population genetic structure defined by run time and geographic region 

(Figure 2.2). The measure of stress for the analysis was low (0.02), signifying good 

compression of the data into two dimensions. Saltery, the reference population from 

Southeast Alaska, differed from the Yukon River populations. Within the Yukon River, 

populations were less divergent but formed three clearly defined groups. These groups 

included summer populations from the lower region (Chulinak, South Fork Koyukuk), 

and fall populations from the middle region (Delta), and the border region (Black, 

Sheenjek, Chandalar, Fishing Branch, Big Creek) (Figure 2.1). The upper Yukon River 

fall populations (Teslin and Kluane) did not cluster closely either with each other or with 

other populations. The minimum spanning tree revealed that the closest relationships 

were among the border populations and then between the summer populations. This
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indicates that there was some distortion in plotting the populations in the first two 

dimensions but, in general, the scaling accurately described the estimated genetic 

relationships among the Yukon River chum salmon populations.

Significant overall heterogeneity was observed between run times and within and 

among regions (Table 2.1). However, levels of heterogeneity among fall regions were 

greater than levels within fall regions (F42 105 = 3.20 PO.OOOl). Populations of the border 

region had the lowest heterogeneity. The upper region, which includes the Kluane and 

Teslin populations, was the most heterogeneous. Out of 21 total loci and after correcting 

for multiple tests, significant heterogeneity was observed at: seven loci between summer 

and fall runs, one locus within the lower Yukon region, two loci within the border region, 

four loci within the upper region, five loci within fall run regions, and five loci among 

fall run regions (Appendix 2.1).

Variation at 28 loci was partitioned by gene diversity analysis (Chakraborty and 

Leimar 1987; Nei and Chesser 1983) to examine the magnitude of divergence among 

the populations and levels of hierarchy (Table 2.2). Overall gene diversity analysis 

revealed that 97.9% of the variation occurred within populations, and 2.1% among 

them. The majority of among-population diversity (1.3%) was accounted for by regional 

differences; and differences between run times and among populations within regions 

accounted for 0.2% and 0.6%, respectively. All values differed significantly from zero 

as inferred from the hierarchical G-tests (Chakraborty and Leimar 1987). Estimates of 

Nm  were 4.6 to 43.5 migrants per generation; the greatest value was among populations 

within a region and the lowest value was among regions (Table 2.2).

The 95% bootstrap confidence interval for the between run-times coefficient 

of gene differentiation (GCT; -0.046% to 0.4%) includes 0. This would lead to the 

interpretation that GCT is not significant; however, tests of significance are most powerful 

and appropriate when done on “raw” data (i.e., phenotype or allele frequencies) rather 

than sample statistics (Hawkins et al. 2002). A possible explanation for this situation 

begins with the study design. Because the emphasis is on fall Yukon River chum 

salmon, the design is unbalanced and includes eight fall and two summer populations.

i
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Furthermore, South Fork Koyukuk is a mid-river summer population, which is more 

closely related to fall populations because of a possible cline in Yukon River chum 

salmon (Crane et al. 2001). Therefore, the design is not the best for characterizing the 

summer and fall relationship. Whereas G-tests reveal that there are significant differences 

between run times, quantifying the magnitude of divergence and gene flow between the 

runs will require a better design.

Regression analysis and the Mantel test suggest that the Yukon River chum 

salmon populations exhibit a genetic structure that is consistent with an isolation by 

distance model (7?2=0.3163; Figure 2.3). The correlation between Nm  and geographic 

distance is significant (F’=0.002), which suggests that gene flow is geographically 

restricted and that these populations are approximately at migration-drift equilibrium 

(Slatkin 1993).

Estimates of the proportionate contributions of populations to a simulated 

mixture varied between 62.5% and 89.9% accuracy (S.E., 4.8% to 10.6%); with results 

for the populations adjacent to the international border ranging from 62.5% to 79.9% 

(S.E., 8.9% to 10.6%). Results improved considerably when estimates were summed 

over regions (Table 2.3). Misallocations were usually made to adjacent regions. For the 

border populations, summing to politically defined border regions reduced accuracy and 

precision as compared to those for the biological region (Table 2.4). Results from the 

simulations using the microsatellite data revealed that AFLP data were somewhat better 

at characterizing the Canadian border populations both individually and regionally, the 

randomization test revealed that the Canadian border region estimate for the AFLP data 

was significantly greater (PO.OOOl) than the estimate for the microsatellite data (Table 

2.4, 2.5). In contrast, the microsatellites had better individual estimates for the U.S. 

border populations; but the U.S. border region estimate was marginally lower (P=0.048) 

than the AFLP estimate (Table 2.4, 2.5).

Efforts to increase the accuracy and precision of estimates for the politically 

defined border regions by using only the most informative loci produced mixed results 

for the AFLP and microsatellite data. For the AFLP data, estimates for the Canada border
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region improved (89.7% - 92.4%; S.E. 6.8% - 7.3%) at the expense of the United States 

border region (76.1% - 81.0%; S.E. 10.1% - 12.2%), except for the loci with the highest 

Hx (total expected heterozygosity). These loci produced estimates for both regions of 

68.0±14.6%, which were less accurate and precise. The standard errors for the MSA 

estimates derived from subsets of loci were high, and the results were quite susceptible to 

changes in methods, suggesting that the differences among subsets of loci are not large. 

For the microsatellite data, estimates were not affected by locus selection. The estimates 

for the Canada border and United States border ranged from 78.8% - 79.9% (S.E. 4.5%

- 5.6%) and 79.6% - 82.4% (S.E. 4.6% - 5.8%), respectively.

The MSA of simulated samples of Canadian chum salmon ranging from 0% 

to 100% at 20% increments revealed that accuracy was greatest when Canadian chum 

salmon comprised 40% of the mixture (Figure 2.4). Theory predicts that this point would 

be most accurate because there are four Canadian and six U.S. populations with the 

simulated mixtures comprised of equal proportions of each population; accuracy for MSA 

is greatest when all the populations contribute to the mixture equally (Wood et al. 1987). 

Estimates were within 11.4% of the actual value; Canadian chum salmon proportions at 

0% and 20% expected were overestimated. This overallocation was distributed among the 

Canadian border populations and Teslin, with an underalloction of United States border 

populations, especially Sheenjek and Chandalar. Canadian chum salmon proportions 

were underestimated when the expected value ranged between 60% and 100% because 

of underallocation of fish to Fishing Branch and overallocation of fish to Sheenjek and 

Chandalar.

Discussion

Surveying Yukon River chum salmon populations for AFLP variation revealed temporal 

and spatial structuring that follows an isolation by distance pattern. Nested within run 

time, levels of heterogeneity were significantly greater among regions than within 

regions, suggesting that the Yukon River chum salmon populations form the following 

regional associations: Lower River, Middle River, Border area, and Upper River. The 

Upper River populations, Kluane and Teslin, were distinct from each other and from the
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other populations. These results are consistent with those of previous studies (Beacham 

et al. 1988; Wilmot et al. 1992, 1994; Beacham 1996; Spearman and Miller 1997; 

Scribner et al. 1998 ; Conservation Genetics Laboratory, U.S. Fish & Wildlife Service, 

unpublished data). In addition, GST values for AFLP, allozyme (Wilmot et al. 1994), 

and microsatellite (Conservation Genetics Laboratory, U.S. Fish & Wildlife Service, 

unpublished data) data collected for the same populations were 0.021, 0.019, and 0.017, 

respectively. These values are also similar to those reported for allozyme data (albeit at 

different geographic scales) for the Yukon River 0.028 (Seeb and Crane 1999), Southeast 

Alaska/British Columbia 0.030 (Kondzela et al. 1994), British Columbia 0.023 (Beacham 

et al. 1987), Washington/British Columbia 0.028 (Phelps et al. 1994), and Japan/Russia 

0.038 (Winans et al. 1994).

The level of AFLP divergence we observed produced the most accurate and 

precise MSA estimates for biogeographic regions in comparison to estimates for political 

regions or individual populations. Resolution among the border populations is low. 

Increased genetic resolution among the border populations is desirable for managing 

and allocating fish. Unlike past studies, simulations show that the AFLP technique was 

able to produce MSA estimates that were > 80% accurate for the border populations by 

country of origin. However, while the improvement of the AFLP data set over the others 

was significant, it was not dramatic (Table 2.4, 2.5). Although all data sets gave estimates 

of > 80% for the U.S. border populations, only the AFLP technique revealed sufficient 

divergence to provide an estimate > 80% accurate for the Canadian border populations.

The amount of divergence revealed varies among loci (Ewens 1983); therefore, 

in an attempt to improve MSA estimates, subsets of informative loci were analyzed with 

MSA simulations in an effort to concentrate the signal of divergence. Different criteria 

were used in selecting informative loci because no single measure can capture the full 

spectrum of population structure. In various situations variance estimates may capture the 

total amount of divergence among populations better than FST or some analogue, which, 

although popular for estimating divergence, actually assesses progress towards allelic 

fixation (Wright 1978). However, this approach did not improve results, which supports
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the observations of Scribner et al. (1998) who also failed to improve MSA estimates by 

using subsets of diverse loci, and who suggested that loci with large allelic diversity do 

not necessarily improve stock discrimination. In addition, it has been shown that two- 

allele systems with the common allele frequency at or below 0.8 provide the strongest 

resolution among stocks, and that multiple rare alleles provide little information for stock 

mixture analysis (Waples and Smouse 1990).

The results presented here were generally similar to those of previous studies; 

the different data sets provide a concordant picture of the genetic structure of Yukon 

River chum salmon. The genetic compositions of these populations are the net result 

of four factors acting separately or in combination: 1) gene flow; 2) limited genetic 

drift (large Ne); 3) limited time of separation; and 4) historical demographic events.

First, geographically restricted gene flow is supported by indirect estimates of effective 

migration and isolation by distance analysis. Estimates of migration based on Gsx 

statistics assume drift-migration equilibrium, which the significant isolation by distance 

suggests (Slatkin 1993). This assumption is often not met for salmonids over long 

ranges; however, the Yukon River is a relatively small area, compared to the entire range 

of chum salmon, and the rates of gene flow observed were in line with estimates from 

other chum salmon studies (e.g., Beacham et al. 1987; Kondzela et al. 1994; Phelps et 

al. 1994) and with estimates for Yukon River chinook salmon (Gharrett and Zhivotovsky 

2003). Moreover, meeting this assumption is not critical in situations where 4 < Nm  < 1 

(Hutchinson and Templeton 1999). Secondly, a large which reduces the rate of genetic 

drift, could be responsible for low GST values and is supported by Pleistocene refugial 

evidence, and current run sizes (Eggers 2001; Neigel 2002). However, this scenario 

suffers because Pleistocene glaciations severely reduced water levels, which would have 

led to the extirpation or reduction of populations, and census sizes are rarely indicative 

of Ng. Thirdly, a limited time of separation among the populations is possible because 

of probable habitat loss during the Pleistocene glaciations and the likely recolonization 

afterwards, although the significant isolation by distance indicates that recolonization has 

not occurred very recently (Slatkin 1993). Lastly, residual historic fragmentation or range
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expansion events resulting from glacial processes of the Pleistocene and beyond could 

have influenced the current pattern (Templeton 1998).

For example, the divergence of the Kluane and Teslin populations may be related 

to the geologic history of the region. The Yukon-Kuskokwim region was a refuge 

during the last glacial maximum (14,000-20,000 years ago), except for the upper river 

portion, which was glaciated and now harbors the Kluane and Teslin populations. The 

minimum spanning tree indicates that Kluane and Teslin may have been recolonized 

from populations of the border region, and the genetic divergence may be the result of 

postglacial founder events or subsequent bottlenecks. Recolonization from the border 

region is much more probable than from Southeast Alaska, as has been speculated 

(Wilmot et al. 1994) because Lake Kluane drained via the Alsek River to the Gulf of 

Alaska, not the Bering Sea, until a headwater exchange occurred about 400 years ago. 

Southeast Alaskan chum salmon are adapted to short migrations up coastal rivers and it is 

doubtful that they could have survived the 2000 mile migration of the Yukon River.

The similarities among the populations appear to be, primarily, the result of gene 

flow, thus it is unlikely that other types of neutral genetic markers will tell a substantially 

different story. However, increasing the number of loci may increase resolution. Because 

considerable effort has been devoted to Yukon River chum salmon MSA with similar 

outcomes, we conclude that investigation of additional molecular techniques assaying 

neutral genetic markers is unwarranted. Although, additional work focusing on loci 

under selection (e.g., MHC, Pan I) and on techniques that offer, potentially, faster sample 

processing (e.g., micorarrays, SNPs) may be worthwhile for providing fisheries managers 

with more accurate and timely MSA estimates. In the meantime, the AFLP technique 

may be preferable because it can accurately apportion mixtures to the following Yukon 

River regions: Lower, Middle, Border United States, Border Canada, and Upper, can 

rapidly resolve thousands of anonymous loci, and may be the least expensive, although 

microsatellites performed nearly as well.

Mixed-stock analysis using AFLP or microsatellite markers offers managers a 

powerful tool for evaluating fisheries. Current management of Yukon River chum salmon
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relies on sonar enumeration, test fishery catch per unit effort (CPUE), and subsistence 

harvest reports to make an initial assessment of run strength, little information concerning 

the contribution of regions and populations to harvests is incorporated. The fact that 

fall chum salmon usually enter the river in four to five pulses associated with offshore 

wind events or high tides complicates this assessment because the “wide fluctuations in 

pulse size and run timing have not yet been characterized” (JTC 2001). For example, in 

2001 the first pulse of fall chum salmon was among the largest recorded at 109,000 fish; 

subsequent pulses were weak and the overall run was poor. Runs have been depressed 

since 1998 and subsistence and commercial fishing are restricted or closed when the 

total run size drops below 600,000 fish. If there is an indication that a region will exceed 

escapement goals, a directed fishery may be opened. Unfortunately, current inseason run 

assessment tools are generally inadequate to allow directed fisheries (JTC 2001). Region- 

specific pulses of chum salmon are however, detectable by MSA; this information should 

assist in making inseason assessments and regulating fisheries.
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Figure 2.1. Sampling sites: Chulinak (N = 96), S.F. Koyukuk (N = 96), Delta (N = 80), 

Chandalar (N = 75), Sheenjek (N = 79), Black (N = 96), Fishing Branch (N = 96), Big Cr. 

(N = 96), Kluane (N = 96), Teslin (N = 96), Saltery Cr. (N = 50).
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Figure 2.2. Nonmetric multidimensional scaling of chord distances (Cavalli-Sforza and 

Edwards, 1967; Wright, 1978) among chum salmon populations from the Yukon River 

and Southeast Alaska. Distances were estimated from allele frequencies at 28 AFLP loci. 

A minimum spanning tree is superimposed to detect distortions in the ordination process. 

The numbers 1-10 rank order the relative genetic distances from shortest to longest. 

Overall stress was 0.02.
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Figure 2.3. Regression analysis of log10(7Vm) on log10(geographic distance in km) 

separating populations. Nm  = V4(1/GST -  1) assuming an island model at equilibrium. 

Linear regression was significant: y = -0.8983 + 4.1614; R2=0.3163; Mantel test was 

P=0.002.
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Figure 2.4. Estimated versus true proportions of Canadian-origin Yukon River chum 

salmon determined by MSA on artificially simulated mixtures (developed from 

AFLP baseline data) comprised of equal proportions of the Canadian chum salmon 

populations varying from 0% to 100% in 20% increments. Equal proportions of the 

United States chum salmon populations made up the difference in the mixtures that 

had less than 100% Canadian chum salmon. 1000 bootstrap resamples were used to 

derive the mean estimate. Error bars represent the 95% nonsymmetric confidence 

interval.
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Table 2.1. Hierarchical tests of homogeneity using log-likelihood ratio 

analysis (Sokal and Rohlf 1995) of 21 AFLP phenotypic marker frequencies 

among populations within a region, among regions within a run time and 

between run times. No test indicates that a single population was collected for 

that region.

Source of variation df G

Summer

Lower 21 46.27*

Fall

Middle No test No test

Border 84 167.86**

Upper 21 97.36**

Within Fall 105 265.22**

Among Fall 42 339.80**

Total Fall 147 605.02**

Within Summer and Fall 126 311.48**

Between Summer and Fall 21 133.42**

Total 189 784.70**

*P<0.05; **P<0.001.



Table 2.2. Hierarchical gene diversity analysis and estimates of effective migration assuming a hierarchical island 

model at equilibrium for Yukon River chum salmon populations averaged over 28 AFLP loci based on allele 

frequency estimates.

Source Gene diversity
Coefficient of gene differentiation 

(95% conf int) Nm  (95% conf int)

Within populations Hs = 0.298 Hs/Ht = 0.979 (0.958 to 0.993)

Among populations 
within regions DSR = 0.002 Gsr = 0.006* (0.003 to 0.009) 43 (27 to 87)

Among regions 
within run-times Drc = 0.004 Grc = 0.013* (0.003 to 0.032) 5 (2 to 18)

Between run-times d ct = 0.001 Gct = 0.002* (-4.6x1 O'4 to 0.004) 33 (-184 to 351)

Total gene diversity Ht = 0.304 GST = 0.021* (0.007 to 0.040) 12 (6 to 34)

*P<0.001 inferred from hierarchical tests of homogeneity. 95% confidence intervals estimated by 
bootstrapping over loci 1000 times.
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Table 2.3. Results of allocations to biologically defined regions from MSA of simulated 

mixtures developed from baseline data collected at 28 AFLP loci. In each simulation, a 

single source served as contributors to a mixture of 400 fish; estimates of contributions to 

the mixture were summed for the regions. Regions are represented by equal proportions 

of fish from populations in the region. The estimates for middle fall and Delta are based 

on the same simulation. The mixture and baseline were bootstrapped 1000 times. A 100% 

allocation to the region containing the individual populations would indicate perfect

baseline performance.

Source of mixture Mean (SE) percent by stock region

Region
Baseline

Population
Lower

Summer Middle Fall Border Fall Upper Fall

Summer 86.3 (5.9) 0.9 (1.3) 9.9 (5.4) 2.9 (2.9)

Chulinak 90.0 (5.2) 0.8 (1.2) 7.1 (4.8) 2.1 (2.5)

SF Koyukuk 83.4 (7.1) 1.2 (1.6) 11.5 (6.5) 3.9 (3.6)

Middle Fall 3.8 (3.3) 89.9 (4.8) 4.9 (3.7) 1.4 (2.0)

Delta* 3.8 (3.3) 89.9 (4.8) 4.9 (3.7) 1.4 (2.0)

Border Fall 3.7 (3.0) 0.6 (0.8) 90.5 (4.9) 5.2 (4.0)

Chandalar 2.5 (2.8) 0.4 (0.8) 85.4 (6.9) 11.7 (6.6)

Black 10.4 (6.3) 1.9 (1.9) 86.1 (6.7) 1.6 (2.4)

Sheenjek 1.2 (1.8) 0.5 (0.8) 95.7 (3.7) 2.6 (3.1)

Fishing Br. 0.8 (1.3) 0.2 (0.4) 97.6 (2.6) 1.4 (2.0)

Big Cr. 2.1 (2.3) 0.6 (0.9) 89.8 (6.0) 7.5 (5.7)

Upper Fall 2.6 (2.6) 0.3 (0.6) 13.9(6.4) 83.2 (6.7)

Teslin 2.7 (2.8) 0.7 (1.2) 15.6 (7.2) 81.0 (7.6)

Kluane 1.7 (2.4) 0.0 (0.0) 8.0 (5.2) 90.3 (5.7)

* There is a single Middle Fall 
population.



Table 2.4. Results of allocations for the border populations to politically defined regions from MSA of simulated 

mixtures using baseline data from 28 AFLP loci. In each simulation, a single source served as contributors 

to a mixture of 400 fish; estimates of contributions to the mixture were summed for the regions. Regions are 

represented by equal proportions of fish from populations in the region. The mixtures and baselines were 

bootstrapped 1000 times. A 100% allocation to the region containing the individual populations would indicate 

perfect baseline performance.

Source of mixture Mean (SE) percent by stock region

Region
Baseline

population
Lower

Summer
Middle

Fall

Border
United
States

Border
Canada Upper Fall

Border United 
States 4.6 (3.5) 0 . 8  (1.1) 82.8 (7.0) 7.3 (5.3) 4.5 (3.9)

Chandalar 2.5 (2.8) 0.4 (0.8) 80.3 (8.0) 5.1 (4.8) 11.7(6.6)

Black 10.4 (6.3) 1.9 (1.9) 82.5 (7.6) 3.6 (3.8) 1.6 (2.4)

Sheenjek 1 . 2  (1.8) 0.5 (0.8) 79.0 (8.6) 16.7 (7.9) 2.6 (3.1)

Border Canada 1.4 (1.8) 0.3 (0.7) 7.9 (5.8) 8 6 . 2  (6.6) 4.2 (3.8)

Fishing Br. 0.8 (1.3) 0.2 (0.4) 10.2 (7.4) 87.4 (7.6) 1.4 (2.0)

Big Cr. 2.1 (2.3) 0.6 (0.9) 4.7 (4.8) 85.1 (7.1) 7.5 (5.7)

- j
O n



Table 2.5. Results of allocations for the border populations to politically defined regions from MSA of simulated 

mixtures using baseline data from 11 microsatellite loci. In each simulation, a single source served as contributors 

to a mixture of 400 fish; estimates of contributions to the mixture were summed for the regions. Regions are 

represented by equal proportions of fish from populations in the region. The mixtures and baselines were 

bootstrapped 1000 times. A 100% allocation to the region containing the individual populations would indicate 

perfect baseline performance.

Source of mixture Mean (SE) percent by stock region

Region
Baseline

population
Lower

Summer
Middle

Fall

Border
United
States

Border
Canada

Upper
Fall

Border United 
States 2 . 6  (1.6) 1.5 (1.5) 82.4 (5.0) 11.9(4.4) 1.6 (1.3)

Chandalar 2 . 8  (2.1) 1.2 (1.3) 82.7 (5.9) 11.3 (5.0) 2.0 (1.7)

Black 2.4 (1.7) 1.4 (1.4) 83.3 (5.6) 11.1 (5.0) 1.8 (1.4)

Sheenjek 2.3 (1.8) 2 . 0  (1.8) 86.4 (5.3) 8.1 (4.2) 1 . 2  (1.0)

Border Canada 2.2 (1.4) 1.7 (1.4) 14.4 (4.7) 79.7(5.1) 2.0 (1.4)

Fishing Br. 1.6 (1.4) 1 .1  (1.2) 13.0 (4.9) 82.1 (5.5) 2 . 2  (1.6)

Big Cr. 2.3 (1.9) 2.4 (1.9) 14.3 (5.1) 78.4 (5.9) 2 . 6  (1.8)



Appendix 2.1. Hierarchical tests of homogeneity using log-likelihood ratio analysis (Sokal and Rohlf 1995) of 21 AFLP 

phenotypic marker frequencies among populations with a region, among regions within a run time and between run times. No 

test indicates that a single population was collected for that region. Shaded area indicates that locus was significant (P<0.05) 

after correction for multiple tests (N/a).

ACC CAC

54 63 92 123 162

Source of variation df G df G df G df G df G

Summer

Lower 1 1.58 1 6.73 1 0.77 1 14.00 1 0.32

Fall

Middle No test No test No test No test No test

United States/Canada 4 4.01 4 0.84 4 0 . 2 1 4 2.09 4 9.11

Upper 1 5.64 1 6.19 1 0.61 1 4.90 1 9.09

Within Fall 5 9.65 5 7.03 5 0.83 5 6.99 5 18.20

Among Fall 2 4.19 2 5.82 2 15.33
■ l  1 -wf

2 3.53 2 8 . 1 2

Total Fall 7 13.83 7 12.84 7 16.15 7 10.52 7 26.32

Between Summer and Fall 1 9.54 1 1.98 1 2.08 1 1.28 1 19.99
-

Total 9 24.96 9 21.56 9 19.01 9 25.79 9 46.63 ' - JOO



Appendix 2.1. (Continued)

ACC CAC

165 171 173 209 217

Source of variation df G df G df G df G df G

Summer

Lower 1 2.81 1 0.07 1 0.33 1 1.53 1 0 . 0 0

Fall

Middle No test No test No test No test No test

United States/Canada 4 2.94 4 5.38 4 3.14 4 12.80 4 32.83

Upper 1 12.19 1 0.04 1 0 . 0 2 1 0.25 1 0.87

Within Fall 5 15.13 5 5.42 5 3.16 5 13.05 5
■ ■ H

33.70

Among Fall 2 8.52 2 13.61 2 8.67 2 7.38 2 23.84

Total Fall 7 23.64 7 19.03 7 11.83 7 20.43 7 57.54

Between Summer and Fall 1 12.72 1 0.87 1 2.05 1 0.03 1 24.93

Total 9 39.17 9 19.97 9 14.21 9 21.98 9 82.48

VO



Appendix 2.1. (Continued)

ACC CAC AAG CAC

297 364 440 81 98 364

Source of variation df G df G df G df G df G df G

Summer

Lower 1 0.52 1 1.81 1 4.33 1 1.38 1 0 . 0 1 1 1.81

Fall

Middle No test No test No test No test No test No test

United States/Canada 4 7.19 4 15.97 4 1.90 4 4.65 4 4.47 4 15.97

Upper 1 2.52 1 14.10 1 0.99 1 0.08 1 14.32 1 14.10

Within Fall 5 9.71 5 30.07 5 2.89 5 4.73 5 18.79 5 30.07

Among Fall 2 6.87 2 6 . 8 8 2 1.82 2 0 . 6 8 2 2.80 2 6 . 8 8

Total Fall 7 16.59 7 36.94 7 4.71 7 5.40 7 21.59 7 36.94

Between Summer and Fall 1 2.06 1 1 1 . 6 6 1 11.92 1 1 2 .0 1 1 0.78 1 1 1 . 6 6

Total 9 19.17 9 50.41 9 20.95 9 18.80 9 22.39 9 50.41

00o



Appendix 2 .1 .(Continued)

AAG CAC

122 167 241 252 324 364

Source of variation df G df G df G df G df G df G

Summer

Lower 1 0.02 1 0.07 1 4.91 1 0.35 1 4.69 1 1.81

Fall

Middle

United States/Canada 4 5.09 4 8.60 4 10.49 4 10.65 4 19.26 4 15.97

Upper 1 0.83 1 20.19 1 0.47 1 3.95 1 0.07 1 14.10

Within Fall 5 5.92 5 28.80 5 10.97 5 14.60 5 19.33 5 30.07

Among Fall 2 7.23 2 23.46 2 6.20 2 178.55 2 1.89 2 6.88

Total Fall 7 13.14 7 52.26 7 17.16 7 193.15 7 21.22 7 36.94

Between Summer and Fall 1 8.99 1 0.15 1 4.74 1 0.27 1 0.69 1 11.66

Total 9 22.16 9 52.47 9 26.82 9 193.77 9 26.60 9 50.41

OO



Appendix 2.1 {Continued)

Source of variation

AAGCAC
394
df G

Summer
Lower 1 0.05

Fall
Middle No test
United States/Canada 4 6.25
Upper 1 0.03

Within 5 6.28
Fall
Among Fall 2 4.43
Total 7 10.70
Fall
Between Summer and Fall 1 4.67

Total 9 15.42
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General Conclusion

Yukon River chum salmon exhibited sufficient variation with AFLP markers, but not 

mtDNA markers, to enable accurate and precise MSA estimates to country of origin 

for the border populations. Whereas mtDNA does not hold promise for MSA of Yukon 

River chum salmon, it does have unique properties that make it useful for addressing 

demographic questions that may allow a better understanding of chum salmon life 

history.

The paradigm of salmon management is to harvest populations individually; 

however, this model is not applicable to most fisheries as salmon populations do not 

segregate until on the spawning grounds. Harvesting mixtures of populations is the 

rule for salmon; hence, MSA utilizing AFLP markers offers managers a tool to prevent 

differential harvest rates. Moreover, MSA may allow for the prosecution of run surpluses 

previously unidentified because of inadequate inseason run assessment tools and the 

necessity for conservative management.


