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Abstract

A semi-analytical method is presented to predict the shear stress and motion resistance at 

the tire/snow interaction. The shear stress model is a function of normal pressure and slip. 

The main goal was to develop a simplified model by reducing the number of parameters 

in the model, so that the computational time could be reduced towards real time 

simulations. Motion resistance is calculated by integrating the horizontal component of 

normal pressure along the tire/terrain contact surface. The motion resistance obtained is 

slip dependent because the sinkage is a function of slip. The calculations of motion 

resistance and sinkage were done using the presented model and an existing model. Also 

the calculated results were compared with the FEA(Finite Element Analysis) data, which 

matched reasonably well. In the second part of the thesis shear force is expressed as a 

function of normal load, slip and slip angle. Shear force parameters tire stiffness, friction 

coefficients, and contact pressure constants were assumed as the functions of normal load 

and the coefficients of parameters were found through curve fitting using FEA data. 

These functions were used to calculate tire stiffness, friction coefficient and contact 

pressure constant. The calculated results matched well with FEA simulation results for 

the same tire and snow conditions. Pure shear force and the combined shear force were 

compared, and the pure shear force is always greater than the combined shear force for 

the same slip and slip angle.
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1. Introduction
The performance of the vehicle as it travels over the unpaved terrain has become 

more significant nowadays as it has a wide range of applications, such as in construction 

projects, the petroleum industry, recreational activities, military operations, agriculture, 

etc. When the tire rolls over the terrain the performance of the vehicle depends on the 

terrain response. So it has become significant to know the terrain properties during the 

tire/terrain interaction. To determine the terrain behavior during off-road operations, the 

important task is to develop the pressure sinkage relationship and the shear stress-shear 

displacement relationship during the tire/terrain interaction. In developing these 

equations, it is not only important how accurately we develop these relationships but also 

how fast and conveniently these equations can be incorporated into the framework to 

predict the vehicle performance.

In cold regions, snow is the terrain with which many vehicles have to interact. At 

present we have little knowledge of the changing properties of snow and the movement 

of vehicles, as the mechanical properties of the snow are dependent on the pressure, 

temperature and time.

1.1 Objective

The main goal of this thesis is to develop a semi analytical model for shear stress 

as a function of normal pressure ( a n) and slip ( / ) between the tire and terrain and apply

this model to predict the performance of the vehicle on fresh snow. Slip is defined as 

distance that the tire travels when subjected to the driving torque that is less or greater 

than that in free rolling. The reason for developing this model is that the existing classic 

shear displacement model proposed by J. Y. Wong [1] contains many terrain properties 

such as cohesion modulus&c, friction m odulus^ , Bekker’s exponents, shear

displacement modulus k, cohesion c, and friction angle Hence this model is 

complicated in use for computation of the interface forces at the tire/terrain interaction. 

We planned to develop a semi-empirical shear stress model with a minimum number of 

constants and to reduce the computational time in the real time simulations of the vehicle.
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We compared and performed parametric studies of the shear force in the pure and 

combined slip conditions (longitudinal and lateral directions).

1.2 Properties of Snow

Snow is the only solid that is slippery by nature because it is a non- homogeneous 

substance. It exists in three phases; the solid, liquid and gaseous states coexist at 

thermodynamic equilibrium, with composition corresponding to the pressure and 

temperature. Any change of pressure or temperature causes an immediate shift in the 

phase composition, thus involving fluctuations in the structure of the matter. Since snow 

is an aggregate of ice crystals and air, the factors involved in the phase change are 

particularly active. An increase in pressure and temperature between a sliding body and 

snow will invariably increase the amount of liquid phase, thereby providing the rubber 

surfaces with a lubricant, which considerably reduces the friction coefficient.

While dealing with soils we calculate the strength of the soil as a function of 

certain constants, like cohesion and internal friction angle of the soil. In the case of snow 

we also assumed that it is a type of cohesive and frictional mass [2]. This assumption 

may be little doubtful, as it depends upon the properties of the snow (i.e., the variability 

of cohesion and internal friction angle is more complex), because of the snow 

metamorphosis, which causes the state of the stress-strain relationship to depend on 

temperature, and because snow is more sensitive to the rate of load application. The shear 

strength of the snow depends on three factors: pressure, temperature and time [2].

1.3 Methods to Predict Wheel Performance over Snow

In this section we briefly discuss two mathematical models used to predict the 

vehicle performance over snow.

1. USATACOM-LLL method [3],

2. USAEWES method [3]

The terrain properties required for USATACOM-LLL [3] method are:

1. Plate sinkage tests for determining the pressure -sinkage relationship.

2. Shear stress-normal pressure tests for determining the shear deformation relationship. 

The terrain properties required for the USAEWES [3] method are:
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1. Cone index, to determine the soil penetration resistance at a certain depth.

2. Snow depth.

1.4 Approach

To evaluate the interface forces at the tire/terrain interface, the initial step is to 

determine the sinkage of the tire into snow due to the vertical load acting on the tire. 

Sinkage as a function of slip is calculated by numerically integrating the summation of 

vertical components of shear stress and normal pressure within the limits of zero sinkage 

and maximum sinkage, and subtracting the normal load, which is the weight of the 

vehicle. Here the shear stress is a function of sinkage and slip and the normal pressure is 

a function of sinkage; hence sinkage obtained is a function of slip. Wong’s [4] pressure 

sinkage equation is substituted for obtaining the normal pressure. A semi-analytical shear 

stress model is developed, which is a function of normal pressure ( )  and slip ( /)

between the tire and the terrain, and it is applied for the sinkage calculation. The 

presented model is compared with the existing shear displacement model [4] for 

verification of the model. Motion resistance is calculated by integrating the horizontal 

component of normal pressure within the limits of zero sinkage and maximum sinkage. 

The second part of the thesis includes shear force calculations in terms of normal load, 

slip and slip angle, by expressing the shear force parameters, tire stiffness, friction 

coefficient, and contact pressure constants, in terms of normal load. Then the resultant 

shear forces due to pure and combined slip conditions are compared.

1.5 Overall View

In Chapter 2 we first discuss the calculations of the terrain characteristics using 

Bekkers model [4], For this we used FEA (Finite Element Analysis) data [5] and through 

curve fitting obtained the Bekker’s parameters. Then we discuss the two core models 

(TACOM & WES), which are mostly applied to obtain the interfacial forces at the 

tire/terrain interaction, and also briefly discuss the various motion resistance models.

In Chapter 3 we calculate shear force as a function of normal load, slip and slip 

angle. We express the shear force parameters tire stiffness, friction coefficient and 

contact pressure constants as a function of normal load through curve fitting using FEA
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data. Then we compare the resultant shear force due to pure and combined slip 

conditions.

In Chapter 4 a semi-analytical shear stress model is developed and compared with the 

existing shear displacement model [4] for verification of the model. Then the new semi- 

analytical shear stress model is applied to obtain motion resistance, and compared with 

FEA data and results obtained from the existing shear displacement model [4].
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2. Review of Tire/Snow Interaction Models
In off-road operation, we encounter various types of terrain with different 

behavior, ranging from desert sand through soft mud to fresh snow. The properties of the 

terrain quite often impose severe limitations to the mobility of off-road vehicles. So, we 

need to have adequate knowledge of the mechanical properties of the terrain, and its 

response to the vehicular loading, which is essential to the proper development and 

design of off-road vehicles for a given mission and environment.

In terramechanics the load, either wheel or track, is moving along the soil surface, 

and different approaches or methods have been developed in order to study the reactions 

of the terrain. Let us mention these methods briefly.

In the Bekker method [2] the soil constants are calculated from plate sinkage test 

results. The test arrangements and the analysis of the load-sinkage results are more 

complicated than in the WES method.

In the WES method [6] the soil penetration resistance is measured using a 

standard cone penetrometer. This is a rather simple operation, and the analysis of the 

load-sinkage results is easy.

The terrain which we are considering is fresh snow, which is assumed to be 

homogeneous and have a finite depth. The different pressure-sinkage models proposed by 

different authors and the identification of the constants are discussed in the next section.

2.1 Pressure Sinkage Models

2.1.1 Bekker’s Pressure Sinkage Model and Identification of Constants

Bekker’s pressure sinkage relationship for homogenous terrain is given as [7]

P = —  + kd b *
(2.1)

Where

P -Normal Pressure

b -smaller dimension of the contact path,

kc -cohesion modulus
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kf -friction modulus 

z -sinkage

n - Bekker’s exponential 

The constants kc, k^,n  can be obtained from a laboratory test conducted by Shoop [5].

The laboratory test pushed a 23-cm diameter rigid plate into a cube of snow 60*60*50 

cm deep with an average initial density of approximately 200 kg/m3 From the 

experimental curves of the laboratory test, using the MATLAB code, we extracted the 

numerical values of load vs. sinkage test data. Then by curve fitting the test data using the 

Bekker’s equation, we found the values of kc; k ^ n . The values of fresh snow are found

to be kc= 3.43 kn /m n+x; k<j) = 218.84215 =1.0707148 in SI units. From

Figure 2.1 we can observe that the fitted curve and the experimental data matched well. 

The Figure 2.1 load-sinkage relationship obtained from the test is for infinite depth, 

because as the sinkage increases the normal load increases. So, we consider this data to 

determine the Bekker’s constants.



Table 2.1 - Digitized laboratory test data reproduced from Figure 2.2

S:No Sinkage(Meters) Load(Newtons) Pressure( k n !  m 2)

1 0.02908805 126.86567164 3.053529

2 0.03262579 186.56716418 4.490508

3 0.03812893 223.88059701 5.388610

4 0.04834906 268.65671642 6.466332

5 0.05621069 402.98507463 9.699498

6 0.07311321 544.77611940 13.34219

7 0.07783019 634.32835821 15.26772

8 0.08647799 716.41791045 17.24353

9 0.09929078 880.95238095 21.203754

10 0.10354610 928.57142857 22.349903

11 0.10638298 988.09523810 23.782589

12 0.11914894 1142.85714286 27.507573

13 0.12411348 1178.57142857 28.367184

14 0.15390071 1261.90476190 30.372945

15 0.16524823 1321.42857143 31.805631

16 0.17588652 1357.14285714 32.665243

17 0.18652482 1535.71428571 36.963301

18 0.19148936 1642.85714286 39.542136

19 0.19858156 1726.19047619 41.547896

20 0.20212766 1857.14285714 44.699806
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Pressure vs. Sinkage

Figure 2.1 - Comparison of the fitted and experimental data

Figure 2.2 shows pressure-sinkage curves obtained using different areas of snow. We 

compared different snow terrains having different Bekker’s constants [1, 3, 7, 8]. The 

curve, with Bekker’s constants calculated through curve fitting using laboratory test data, 

indicates snow of infinite depth.
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Sinkage,meters

Figure 2.2 Pressure-sinkage curves obtained using different snows 

2.1.2 Wong’s Pressure Sinkage Equation

Wong [1,9 10] conducted experiments in Ontario and Canada. The pressure- sinkage data 

was obtained in a snow cover that contained a significant ice layer at a depth of 

approximately 10 cm (4 in) from the surface, with a snow ground at the base. The 

pressure first increases gradually with sinkage as the snow within a certain boundary 

under the plate is deformed. When the lower boundary of the deformation zone of the 

snow under the plate reaches the ice layer, the pressure increases rapidly with increase in 

the sinkage. When the applied pressure exceeds a certain level, the ice layer is broken, 

resulting in sudden drop in pressure. After the ice layer is fractured, further penetration of 

the plate produces increasing deformation of the snow beneath the ice layer. As the plate 

approaches the frozen ground at the base of the snow cover, the pressure again increases 

rapidly, and the pressure sinkage curve approaches an asymptote. Based on these
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behaviors the pressure-sinkage relationship, before as well as after the failure of the ice 

layer, may be described by an exponential function of the following form [1,9, 10]

Where

z = z„ 1-exp < y .  N

v P» j
or

(2.2)

17 n =Pv (2.3)

a n -pressure 

z -sinkage

zw-defines the asymptote of the pressure-sinkage curve and in the first

approximation may be taken as the depth of the ice layer or that of the frozen 

ground.

/>„,-is an empirical parameter which may be taken as 1/3 of the pressure 

where the sinkage z is 95% of the value of zw.

2.1.3 Reece Pressure Sinkage Equation

Reece[l 1] has proposed a new equation for the pressure-sinkage relationship, given by

<Jn =(ck'c+ysb k 't) \ j^  (2.4)

where

n , kc and are the pressure sinkage parameters

Ys-weight density of the terrain 

c -cohesion

A number of experiments were conducted to verify the validity of the equation (2.4). 

Reece pointed out that that equation (2.4) differs from equation (2.1) in the effect of the 

width, which is sufficient to mark a radical improvement. The soil values in the equation
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(2.4) kc , are dimensionless, whereas kCt  ̂ in the equation (2.1) have a variable

dimension depending on the value of n. The equation (2.4) applies only for homogeneous 

soils and for non-homogeneous soils the pressure-sinkage relationship obtained using a 

smaller size plate may not be extrapolated to that of the larger-size contact area. This is 

because, for the same ratio of z / b ,a plate with larger dimension b has to penetrate to a 

deeper layer of the terrain, which may have different mechanical properties from those of 

a shallower layer. The pressure-sinkage tests were also carried out using a Swiss 

Rammsonde with a cone base diameter of 100 mm [12].

In the next section we will discuss the different failure criteria of the terrain 

postulated by different authors.

2.2 Mohr-Coloumb Shear Stress Model

Soil shear strength is of prime importance when developing thrust models for 

estimating the mobility. The soil deformation modulus in connection with shear strength, 

permits development of slip models for tire-soil interaction.

The shear strength of the soil follows the classical Coulomb’s formula as [1,13]

t  — c <7 ntan (f> (2.5)

where

x- shear strength, kPa 

c -soil cohesion, kPa 

crn -normal pressure kPa 

(/> - soil internal friction,

In pure cohesion soils (^=0) the shear strength consists of cohesion only, and in pure 

friction soils ( c =0) the soil strength depends on soil internal friction angle ( ) and the 

normal pressure. Soil internal friction angle can be estimated based on soil compaction 

degree, granulometry and particle forms [2].

When dealing with soil, it has been assumed that its strength may be determined 

as a function of certain ‘constants’, which are called friction (j) , cohesion c , and specific

gravity, y [2]. These are quite sufficient to generate and to establish an approximate and
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general theory of soil power in supporting certain types of loads. Snow is also assumed to 

be another type of cohesive and ffictionless mass, but this assumption is doubtful because 

of the ever-changing properties of snow [38]. The constants for cohesion and friction are 

to be treated in a similar way in the case of the snow. Certainly in this case the variability 

of c and (/> is more complex, because of the snow metamorphosis that causes the state of 

stress relationship to depend on temperature, and because the variability is more sensitive 

to the rate of load application.

Experiments [2] made on the shear strengths of various materials indicate that the 

equation (2.5) is satisfied practically without exception, and that the line of rupture 

obtained experimentally for materials like marble, concrete and soil is the straight line 

corresponding to equation (2.5).

(a) For Soil (b) For Snow

Figure 2.3. Shear stress vs. normal pressure for soil and snow [2].

Figure 2.3a shows the Mohr-Coloumb failure criteria for soil, marble, and concrete. 

Figure 2.3b shows the Mohr Coloumb failure criteria for fresh snow at constant 

temperature. However, similar lines determined experimentally for snow have a different 

character and are far from satisfying the equation, since the shearing strength of the snow 

is a function of at least three independent factors: pressure, time and temperature. If 

temperature is kept constant, the relationship between rand will be as shown in
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Figure 2.3b. A fresh snow sample subjected to pressure <rn undergoes a disruption of its 

structure, which is followed by a decrease in the x line (a-b). When the pressure is further 

increased an increase in r will be observed. This phenomenon may be explained by the 

effect of compaction and changes in snow structure, expressed by the solidification line 

(b-c-d). Further compression leads to the changing of snow into ice, the strength of which 

(point e) finally yields into a plastic flow up to point F, from which a complete 

liquefaction may end the process. The lower the temperature, the higher is the value of e. 

The line of rupture of snow a-b-c-d-e-f cannot be represented, therefore, by the equation

(2.5), though at a particular instant, it may be interpreted as a certain function of the 

variable ‘constants’ c and^. Experiments [2] indicate that the process described by the 

line a-b-c in Figure 2.3b has a little practical importance from the point of view of vehicle 

operation, because it refers to very low pressures, which can never be attained in vehicle 

design. However, within the range of pressures encountered, the line c-d-e is 

representative for the types of snow so far tested, in conjunction with vehicle 

performance. The results of the experiments, which lead to this conclusion, are shown in 

Figure (2.4).
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Figure 2.4. Experimental results of shear stress vs. normal pressure for snow

Various types of snow, designated by the numbers 1, 2, 3 and 4, produce almost a 

straight-line relationship between r and an, which relates to pressure enclosed between

1 and 4 psi [2], This relationship corresponds to that expressed by the line c-d-e of the 

general curve shown in Figure 2.3b. Thus it appears possible to determine snow shear in 

any specific case. Under this assumption equation (2.5), used to determine the shear 

strength is valid when referred to snow. The application of the general methods similar to 

those used in soil mechanics, for the purpose of determining the state of stress in a snow 

cover, appear to be justified.

2.3 Tire/Snow Interaction Models

In this section we will discuss the two methods that predict wheel performance on 

shallow snow.

2.3.1 Land Locomotion Laboratory Method (LLL) or USATACOM Method

The technique for determining the terrain properties using the plate sinkage test 

was proposed by Bekker [7]. This technique is also called the bevameter technique. In 

this test a plate of suitable size is used to simulate the contact area of the vehicle running
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gear, and the pressure sinkage relationship of the terrain is measured. This test is used to 

determine the pressure distribution at the tire terrain interface. The size of the plate 

should be compatible with that of the contact area of the tire/terrain interface, in order to 

minimize the uncertainty in applying the measured data to the prediction of the 

performance of the real vehicle.

The alternate method proposed by Wong [1, 9, 10] for specifying the pressure- 

sinkage relationship is depth dependent. In this thesis our area of interest is fresh shallow 

snow, which is defined as the snow where the ‘pressure bulb’ (i.e. the snow compacted 

due to the weight of the vehicle) intersects a rigid interface [8]. Since this is the case of 

the finite depth, we use Wong’s [1, 9, 10] pressure-sinkage relationship to determine the 

sinkage of the snow. Several analytical models have been developed to predict the 

tractive performance of the rigid wheel on soft terrain [1, 15, 48]. To evaluate the relation 

between the tractive effort and slip of the rigid wheel, the development of shear 

displacement along the wheel-snow interface has to be determined. The shear 

displacement developed along the contact area of the rigid wheel may be determined 

based on the analysis of the slip velocity V- as shown in Figure 2.5. The absolute speed of

a point on the circumference of the wheel can be determined by the wheel speed, radius 

and angular velocity [14]. For a rigid wheel, the tangential component F. of the absolute

velocity of a point on the rim defined by the angle 0 can be expressed by [ 15]

Vj = n v [ l - ( l - i )  cos d\ (2.6)

where

r -radius of wheel 

w -angular velocity of wheel 

i- slip of wheel

From equation (2.10) we can say that the slip velocity for the rigid wheel varies with the 

angle 6 and slip.

The shear displacement along the wheel soil interface is defined by [ 15]
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j  = |  Vjdt = |  rw[1—(l—/)cos
o e

-  r[(80 -6 ) - (l -  /)•(sin -  sin 0)] (2.7)

Where

d0 is the entry angle that defines the angle measured from wheel centerline to a point on

the rim that comes into contact with the terrain.

In order to improve the accuracy some researchers have measured the soil 

deformation by conducting experiments [49]. The shear stress distribution along the 

contact area can be determined by the equation [1,7, 16]

(2.8)

By integrating the horizontal component of the tangential stress over the entire contact 

area, the total tractive effort F can be determined [1, 15]
w0

F  = \ t x cos (2.9)

The drawbar pull is given by the equation [ 1, 15,17]

*0 00
Fd ~ rb J tx cos d 0 - jc r n sin# dd

_° 0

The vertical load is given by the equation [1, 15]

(2.10)

(2.11)

The wheel torque is given by the equation [1, 15]

M w = r 2b\z{d)dd (2.12)
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Figure 2.5 Shear displacement under the wheel

2.3.2 Waterways Experiment Station (WES) Method

To determine the vehicle performance using the WES method [6] the terrain properties 

are characterized by cone index, obtained using a cone penetrometer. WES developed an 

empirical equation relating Bekker’s parameters to cone index [18]. Cone index is the 

force per unit cone base area and its units are pressure. The commonly used cone 

penetrometer consists of a 30° circular cone with a 0.5 in2 base area, a proving ring and 

dial gauge for indicating the force required to push the cone into the terrain. The rate of 

penetration is approximately 12 in/sec [19]. This cone index is used to determine the 

dimensionless quantity, wheel numeric, and then mobility index is calculated. Based on 

the wheel numeric the tire performance parameters like drawbar coefficient and traction 

coefficient are calculated. The different wheel numeric models are described in the next 

section.

In this WES method [6] two types of dimensionless parameters are used. The 

vehicle mobility is described using mobility parameters and the wheel soil interaction 

using the wheel numeric, which is based on wheel characteristics and the Cl-value (cone 

index) of the soil. Figure 2.7 shows the free-body diagram of NRMM-II simple force 

analysis.



18

Figure 2.6 Free body diagram of NRMM-II simple force analysis [6] 

eN-eccentricity of normal force T-traction force from soil

eR-eccentricity of resistance force N-normal force from soil,

er-eccentricity of tractive force Ww-wheel load from axle

R-motion resistance force from soil D-draw bar pull from axle

Q-torque from power train

Now let us discuss the mobility parameter, which is a simple means to access 

vehicle mobility on a “go/ no go” basis on different terrain. Pull coefficient or net traction 

coefficient, and drawbar pull coefficient are related by

P
w

(2.13)

where

/*p-net traction coefficient

P -drawbar pull 

w -wheel load

The rolling resistance coefficient or towed force coefficient is given by

P.
Mr=- w

(2.14)
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where

Hr - rolling resistance coefficient

Pr - rolling resistance, resistance to movement

w - wheel load KN

The thrust coefficient or gross traction coefficient or traction coefficient is given by

* , = - %  (215) rr.W

where

//, -  thrust coefficient (gross) traction coefficient

/v - rolling radius of the wheel 

Q - wheel torque, KNm 

W -wheel load, KN

The different kinds of wheel numerics (used to find the mobility of the vehicle) that are 

proposed by different authors [20-29,50] differ mainly in the tire width and tire deflection 

factors. The original dimensionless wheel numerics were given in equation [6]

e . . / CLhd  
W ’ ’d ’hw w n.W

Where the wheel and the soil variables are defined below

Cl -  cone index, soil penetration at a certain depth 

b - tire section width, m 

d  - tire diameter, m 

W - tire load, KN 

S -  slip

d - tire deflection 

h - tire section height, m 

Brixius [24] proposed the wheel numeric given by

(2.16)
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1 + 3 —  
d  J

(2.17)

The Brixius [24] models are based on the farm tractor draw pull tests carried out by John 

Deere Co. in the USA

2.3.3 K. A. Abd El-Gawwad et al. Model

Gawwad and Crolla [30-33] have modified Bekker’s model of the pressure-sinkage 

relationship and, also, the shear stress-shear displacement relationship. They assumed the 

tire/terrain contact area had two sections, the loading section and the unloading section. 

For the loading section they used Bekker’s pressure-sinkage relationship. For the 

unloading section the predicted normal pressure distribution is as follows

In determining the shear stress as a function of shear displacement for pneumatic tires 

they introduced a constant J0, which accounts for the fact that a threshold perimeter shear 

exists at which the movement of the wheel starts. Thus the equation has been modified as 

follows:

VT = 0 .SS-(l-e~0WB (2.18)

(2.19)

(2 .20)

v b )
(2.21)

Where

K = K +Auzu

zu is the sinkage when unloading begins

k0 and Au are parameters whose values are determined from the 

experimental data.

t = (c+ crntan ̂ )(l -  e ) (2.22)
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The slip-shear parameters, J0 and k, not only depend on the soil properties but also on tire 

characteristics and the applied load. The following relationships are proposed for the 

determination of the slip-shear parameters, for cohesive soils based on tire tests in clay:

j 0= -0.065+0.49/MOBN 

k = -0.06~t~0.66/hdOBN

Where

MOBN is the mobility number.

2.3.4 Yukio Nikajima Model

Yukio Nikajima [34] developed an analytical model to estimate the longitudinal traction 

of the tire on the snow. The model consists of four kinds of forces: braking force 

attributable to snow compression, shear force of snow in void (space between tread 

blocks), frictional force, and digging force (edge effects generated by sipes and blocks) 

[35], The mechanical characteristics of snow were considered in the prediction of the 

braking force and shear force, but were not considered in the prediction of other forces. 

The contribution of shear force of snow in void and the frictional force was large in static 

friction and the digging force and frictional force were large in case of high slip ratios.

2.4 Different Motion Resistance Models

2.4.1 Richmond’s Model

Richmond [36, 37] has developed an empirical equation for motion resistance. This 

empirical equation is applicable to a large range of vehicles, both wheeled and tracked, 

and does not require many elaborate measurements of snow properties. The vehicle is 

installed with load cells on all four wheels and these load cells measure the longitudinal, 

vertical and lateral forces at the tire/terrain interface. Longitudinal forces represent the 

net traction or motion resistance depending on whether the tire is driven or free rolling. 

The resistance forces are measured at all four wheels by towing the vehicle.

The snow and tire characteristic dimensions are shown in Figure 2.8
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Figure 2.7 Snow and tire characteristic dimensions [37]

Using all data a new equation is obtained for motion resistance, which is given by [37,38]

Rs = 21.313(/?0aw)' 1918 (2.23)

Where

p 0 - the average initial undisturbed density of the snow,

a - the arc length of the tire in contact with the snow, 

w -the maximum tire width in meters.

2.4.2 Bekker’s Model

Bekker [4] has proposed a method to predict the motion resistance of the rigid wheel. In 

this method he has made the assumption that the terrain reaction at all the points on the 

contact surface is purely radial, and is equal to the normal pressure beneath a horizontal 

plate at the same depth in the pressure sinkage test.

The equation in terms of the wheel sinkage is given by

Rc =b f kc
—  + k„

w+l

n + 1
(2.24)

Where

Rc is the motion resistance, which is the work done per unit length in

pressing a plate of width b into the ground of depth z0.

In order to express the sinkage in the above equation in terms of terrain and the tire 

characteristics, Bekker has proposed the following equation [4]
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3 W
(2 n + 2) / (2n + l)

\ l/(f2»+l) I V d
(2.25)

According to the above theory the maximum normal pressure should occur at the lowest 

point of the contact where the sinkage is maximum, but experiments show that the 

maximum normal pressure should occur at the bottom dead center and its location varies 

with slip [39],

2.4.3 Gerard W. H. VanEs Model

Gerard W. H. VanEs [40] predicted the rolling resistance of aircraft tires in dry snow. 

These predicted empirical equations have much better agreement with the experimental 

results. The total rolling resistance of an aircraft tire rolling along snow-covered runway 

is given by

D rolling ~ D r +Dc+ Dd (2.26)

Where

Dr -rolling resistance on dry hard surface

Dc - the compaction resistance given by the equation

Where
\\ \

w0=V I  — -1
<Po y

W,=VI — — 1
J

r-void ratio defined as the ratio of the void volume to the volume of the 

solid ice grains.

P

pt -density of ice 

p-actual snow density 

po-initial snow density
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prfinal snow density of snow after compression 

ho-initial snow depth

b-effective tire width at the point of contact between tire and snow surface 

A,-grain structure index varies from 1 to 2; for natural snow its value is 1

2.5 Summary

Now let us summarize all the theories discussed in the previous sections. We have 

basically two models, TACOM and WES, to determine the tire/terrain interaction forces 

of the vehicle over the off-road terrain. In the TACOM method we need to have the 

pressure sinkage curves, and the shear test to determine the tire and the terrain 

characteristics. In this method we have many disadvantages. For example, for non- 

homogenous terrain the curve may not behave exponentially (according to Bekker’s 

assumption), and for snow the behavior of the curve may depend on the temperature, 

density, depth, etc. For these reasons we may not get the accurate tire/terrain 

characteristics, which are used as the input values to determine the interface forces at the 

tire/terrain interaction.

In the WES method we need to perform the cone index test, which is easier than 

Bekker’s pressure-sinkage test, to determine the characteristics of the tire/terrain 

interaction. This method gives better results than the TACOM method. In this method we 

do not require the shear test. In this method the number of parameters are less than the 

number of parameters involved in the TACOM method, in determining the tire/terrain 

characteristics. So the WES method is the better method to determine the vehicle 

mobility.

These methods also have limitations; for instance, their usefulness in the 

development of new vehicle design concepts or in the prediction of vehicle performance 

in new operating environments is uncertain. Furthermore, an entirely empirical approach 

is only feasible where the number of variables involved in the problem is relatively small. 

If large numbers of variables are required to define the problem, then an empirical 

approach may not be cost effective.
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In this thesis TACOM methodology is used and a simplified semi-analytical model is 

developed to determine the interface forces (i.e. traction force, motion resistance) at the 

tire/terrain interaction. The presented shear stress model is a simplified model with fewer 

parameters, so that the computational time could be reduced toward real time simulations. 

The tire/terrain characteristics are determined using Wong’s pressure sinkage model and 

Mohr-Coloumb failure criteria.
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3. Parametric Analysis of Shear Forces
This chapter deals with the comparison of the pure and combined shear forces at the 

tire/terrain interaction. The external forces generated at the tire/terrain interface, when the 

vehicle moves in an arbitrary direction, are the lateral and longitudinal forces. In defining 

pure shear force we have two cases, pure longitudinal force and pure lateral force. Pure 

longitudinal force is the special case of the combined force, in which the slip angle is 

zero. Pure lateral force is the case in which the slip is zero. The term pure force used in 

this study is the vectorial sum of pure longitudinal force and pure lateral force. In 

defining combined shear force [41] we have two cases, combined longitudinal force and 

combined lateral force. Combined longitudinal force is the shear force with both slip and 

slip angle in the longitudinal direction. The term combined shear force used in this study 

is the vectorial sum of combined longitudinal force and combined lateral force.

The shear force is a function of tire stiffness, friction coefficient, and contact 

pressure constant. Our goal is to express these parameters as functions of normal load and 

formulate these functions using a minimum number of coefficients. These coefficients are 

constants and are derived from curve fitting using FEA data [5, 42], Parametric analysis 

was done in order to observe the behavior of shear force with respect to change of tire 

stiffness, friction coefficient, and the contact pressure constants.

The next section discusses the definitions of each of the parameters in detail.

3.1 Definitions 

Braking and driving slip:

The generalized longitudinal slip is given by

The braking and driving slips are defined as

(3.2)

(3.3)

Where
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^-longitudinal slip 

Vx- linear speed of the tire center 

co-Angular speed of the tire 

r-rolling radius of the free rolling tire

The relationship between driving and braking slip is given by

or (3.4)

Combined friction coefficient:

When a vehicle is moving, if the brake is applied suddenly and the steering wheel is

turned, then the wheel may experience friction force which is the result of both, the 

longitudinal friction coefficient juxi and the lateral friction coefficient juy [43].

directions. The combined friction coefficient is neither the resultant nor the average of the 

longitudinal and lateral friction coefficient equations. The reason is that the friction 

coefficients are non-linear functions of normal force.

So to compute the combined friction coefficient, juz , two non dimensional quantities are

introduced, which are termed the normalized slip along the longitudinal and lateral 

directions which are discussed in detail in the next section.

Normalized slip:

Let (f>x be the normalized longitudinal slip which is given by [44]

Let px and py be the friction coefficients along the longitudinal and lateral

(3.5)

(3.6)

(3.7)

Where
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^-longitudinal slip 

//x-longitudinal friction coefficient 

Fz -normal load 

Fx -longitudinal Force

Let 4>y be the normalized lateral slip, which is given by [44]

Co-lateral tire stiffness and Ca =

S^-longitudinal slip 

a  - slip angle 

Fz -normal load 

/^-lateral friction coefficient 

Fy -  lateral Force

The normalized combined slip is given by

^normalized combined slip

Figure 3.1 Friction coefficients and normalized slips along the 
longitudinal and lateral directions

^ _ C«(1 + S*)tanot (3.8)

(3.9)
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Shear distribution equation:

Let N(<f>)be the normalized shear force[46], which when multiplied by the original

function equations (3.11 -  3.16) produce the interactive effect of slip on lateral force and 

slip angle on longitudinal force. When the tire operates only with slip or slip angle, the 

normalized shear force takes the value of one. The normalized shear force takes the form 

of equation (3.10)

JV(^) = l-e x p  {-(/>-Erf1 - E r f )  (3.10)

The first order contact pressure constant E] is related to second order contact pressure 

constant E2 as

E2 = E\ +1/12 

The boundary conditions [46] of the equation (3.10) are given in Table(3.1).

Table 3.1 Boundary conditions of normalized shear force equation

<fr=0 </)=+00

m 0 1
dN(0)/d<t> +1 0

d r f  ((ft/d2 <f> 2Er l<0 N/A

dN3(<f>)/d3<f> 0 < 6(E2-Ei)+1<1.5 N/A

At dN2(fy/d2(fr= dN3(<p)/c? (j)= 0 the contact pressure is almost uniform.

The pure longitudinal shear force Fx | is defined as the shear force with zero slip angle.

f ,U  (3-ID
The pure lateral shear force Fy js Q is defined as the lateral force with zero slip (Sx=0).

The vector sum of pure shear forces is given by the equation (3.13).

<312>
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pure - f t a=0 + 5=0 (3.13)

The combined longitudinal shear force Fx | is defined as the longitudinal component of 

shear force with non-zero slip and slip angle (0, S^O).

F x \ a * o =  VxFzN(<fi)cos p f (3.14)

The combined lateral shear force Fy  ̂ ^  is defined as the lateral component of shear

force with non-zero slip and slip angle (c&O, 0). This is the component of the

combined shear force in the lateral direction.

Fy\sx*o= HyFzN (4>)s in ^  (3.15)

The resultant of the two is called combined shear force and is given by equation (3.16)

F  = H F ,n(v ) =  f t .a*0 y sx* 0 (3.16)

Fz

y U-0
Figure 3.2 Longitudinal and lateral components of pure and 

combined shear forces

A numerical method is applied to compare the magnitude of F  (3.13) & Fz (3.16). 

FPure (3-13) is based on the assumption that the shear forces at the tire/terrain interface 

are linear with respect to normal force, /v  (3.16) is based on the non-linearity of the 

shear forces at the tire terrain interaction, which is proven experimentally. It is easy to 

obtain Fpure as there are published data of pure longitudinal and pure lateral shear forces.

But it is comparatively difficult to obtain data of combined lateral force and combined 

longitudinal force Fz. Therefore, the comparison between F  and Fy was not based
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on experimental data, but was based on computational results obtained using equations

(3.13) and (3.16).

To do the comparison of the pure and combined forces we first need to find 

appropriate ways to calculate the magnitude of the parameters used in the shear force 

calculation. The parameters are tire stiffness, friction coefficient, and the constants in the 

shear distribution equation (3.10). In this study, the parameters are assumed to be 

functions of normal load F; . The coefficients of parameter function are derived by curve 

fitting using the FEA data. In the next section we will discuss how to identify the 

appropriate values of the coefficients used in each parameter function.

3.2 Coefficient Identification for Tire Stiffness and Friction Coefficient Equations 

FEA [42] has been applied to simulate the performance of a tire on fresh snow. The 

simulations are carried out for loads varying from 3.5 KN to 7.5 KN on a tire of 0.736 m 

diameter. Thus obtained FEA data are used to find the coefficients in the equations for 

the tire stiffness, friction coefficient and contact pressure constant are shown in Table 3.2.

Table 3.2 FEA data for the tire stiffness, friction coefficient and pressure constant

Normal

Load

F z

Long.

Stiffness

(KN/radian)C,

Lateral.

Stiffness

(KN/radian)Ca

Long.Friction

Coefficient

A

Lateral.Friction

Coefficient

My

Pressure

Constant

E ,

3.5 4.9236 5.85986746 0.39290586 0.22346521 0.04024988

4.5 4.9778 6.10045272 0.35743519 0.18417462 0.08024988

6.24 5.0888 6.34103797 0.29058663 0.13833560 0.18907413

7.5 5.9020 7.17498769 0.24965893 0.11632469 0.34697080

The empirical equations used for the calculations of the longitudinal stiffness and the 

lateral stiffness are given in equations (3.17, 3.18). The appropriate values of and A j 

are obtained by optimization, using FEA data given in Table 3.2

A4 + AiFz
(3.17)



Where

Cs -longitudinal tire stiffness (KN / rad)

Fz -normal Load (KN)

A4 =0.2026 =0.1516

Similarly the values o fi?4 , and Bs for lateral stiffness are obtained.

C  =
Ba +

Where

Ca -lateral tire stiffness (AjV / rad)

B4=0.1936 i?5 = 0.1190 (KN

Normal Load vs. Tire Stiffness

(3.

Normal Load(Fz)

Figure 3.3 Comparison of the fitted curve and FEA data for Cs and Ca
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The empirical equations (3.19, 3.20) are used for the calculations of the longitudinal and 

the lateral friction coefficients, where the constants Ai_ A2, A3 are also obtained by an 

optimization method, using the FEA data given in Table 3.2.

Hx = ^1 + A2 Fz + A3 Fz(3.19)

Where

fj.x -longitudinal friction coefficient

A,=0.5386 A2=-0.0438 (K N y  6.9010e-004

Similarly the values of A A2y A3 for lateral stiffness are obtained.

My = B\ +B2 Fz +B3Fz2 (3.20)

juY -Lateral Friction Coefficient

5, = 0.4131 B2=-0.0673 (. KN)_1 B3 = 0.0037

Normal Load vs. Friction Coefficient

Figure 3.4 Comparison of the FEA data and fitted curve for the friction coefficient
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The empirical equation (3.21) is used for the calculation of the contact pressure constant 

as shown in equation (3.10), where the constants a2, are obtained by optimization, 

using the FEA data given in Table 3.2.

£1 = 0 .5{l-exp(-a,2Fz 2)} (3.21)

aj=7.5852e-009 a2=  0.1203

Normal Load vs. Pressure Contact

Figure 3.5 Comparison of the FEA data and fitted curve for the contact pressure constant 

3.3 Sensitivity Analysis

Now let us study the effect of change in each parameter on the shear force.
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3.3.1 Sensitivity due to Percentage Change in Parameters (pure longitudinal slip)

In this section we will study the sensitivity of shear force to each parameter. To study this 

we changed one parameter and kept the other parameters constant. For instance if we 

change tire stiffness, the other two parameters, friction coefficient and contact pressure 

constant, are kept constant. A similar procedure is followed for the other two parameters, 

as shown in Figure 3.6. Therefore we know the effect of each parameter on shear force. 

We did the analysis by considering equation (3.11) and studying the effect of a change in 

each parameter on shear force, defined as shown below

Shear force variation ratio due to c = Fx{F2l,fixl,csl,Eu )
Fx(F22,jUx2,

Longitudinal Slip, Sx

Figure 3.6 Comparison of the shear force variation due to change of each parameter

Fx ( ^ z 2  > J Csl J ^11  )  — Fx ( ^ z l  » / C i  > csX, )Shear force variation ratio due to jux Fx {FZ2 1 Mx2 S Cs2> F\2) Fx (Fz, , fJ.xX ,csX,E n }
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Shear force variation ratio due to =— Fx(Fz2>MxI’ Cs1>^li) Fx ’ ^11 )
Fx (̂ *z2 ’ Fxl ’ ̂ s2 ’ -̂ 12 ) — ’ /fd ’ ̂ sl»-̂ 11)

We can infer from Figure 3.6 that the shear force variation ratio is always 

positive, which means that, as the normal force increases, the shear force also increases. 

The tire stiffness has the greatest influence and the coefficient of friction has the least 

influence among all the parameters on the shear force variation ratio, when we take 

magnitude into consideration.

The contact pressure constant (£/) has a greater influence on the shear force 

variation ratio when we consider slope, until partial slip 0.8). At the full slip the shear 

force is sensitive to neither the stiffness nor the contact pressure.

In the next section we compare the effect of each parameter on shear force 

variation under different conditions (i.e., by considering different tires with differing 

stiffness, and also various terrains having differing friction coefficients).

3.3.2 Sensitivity due to Change of Tire Stiffness (pure longitudinal slip)

The change physically indicates that we are considering different tires, having different 

stiffness. Let us change tire stiffness as shown in Figure 3.7. The arbitrary values of tire 

stiffness should be chosen in such a way that they should satisfy the basic increasing 

trend of Cs Vs F: and decreasing trend of Cs / Fz Vs Fz as shown in Figure 3.9. We can

also observe that the slopes of each curve follow relation OA < OB < OC for Cs Vs Fz

and OA > OB >OC for Cs / FzVs Fz.

Figure 3.7. Trend change of tire stiffness
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Figure 3.8 uses equation (3.11) to show the shear force variation due to the change of the 

stiffness as shown in Figure 3.7. Shear force variation for curve A in Figure 3.8 is defined

Figure 3.8 is defined as Fx(Fzl,juxl,csl,E u ) —18(random2).

As we design the trend of each curve according to Figure 3.9, the shear force 

variation increases for a small slip, up to 0.2. For the slip between 0.2 and 0.5 the shear 

force variation decreases. At the full slip condition, irrespective of the change in the tire 

stiffness, the shear force variation remains constant.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 t

Longitudinal Slip, Sx

Figure 3.8 Comparison of the shear force at different ranges of stiffness

3.3.3 Sensitivity due to Change of Contact Pressure Constant

Let us change the trend of pressure constant vs. normal load, as shown in Figure 3.9. The 

arbitrary values of contact pressure constant should be chosen in such a way that they

as Fx{Fz2,Mx2>cS2’Eu)~Fx(Fz\>Mx\’cs\î n)- Shear force variation for curve B in Figure

3.8 is defined as Fx{FiX,/ux1,cŝ E u) - \ 2(randoml) . Shear force variation for curve C in

14

0
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should satisfy the basic increasing trend of E] Fz as shown in Figure 3.9. From Figure

3.9 we can also observe that the slope of each curve follows the relation OA < OB < OC 

for E] Vs Fz .

Figure 3.9

As we design the trend of each curve according to the Figure 3.9, the slope of relative 

shear force increases as the slope of the curves increases up to partial slip i.e., 0.6. At the 

full slip condition, irrespective of the trend change in the contact pressure constant, the 

relative shear force for all the curves (OA,OB,OC) remains the same, as shown in 

Figure 3.12

Normal Load (Fz)

Trend of contact patch constant
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Figure 3.10 Comparison of the shear force variation due to change in contact patch

constant

3.3.4 Sensitivity due to Change of Friction Coefficient

Let us change the trend of the friction coefficient, //x and the normal load Fz as shown in 

Figure 3.11. The arbitrary values of friction coefficient should be chosen in such a way 

that they satisfy the basic decreasing trend of fix Vs and increasing trend of

juxFz Vs Fz . The curve ‘b ’, which we obtained with the initial point 0.3938 and final point

0.1696, is from the equation jux = a, +a2Fz + a2F72, where the values of a2, a3 are 

obtained from the optimization using the FEA data.
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Figure 3.11 Trend of friction coefficient

Now if we design the values of fj.x so that we get two curves, ‘c’ and ‘a’ which are below

and above the curve ‘b ’ as shown in Figure 3.11, we can observe that for the curve ‘c’ the 

relative shear force is unstable at very small slips, up to 0.25, and then it increases as 

shown in Figure 3.12. This situation occurs when the vehicle moves from fresh snow 

with high friction to slippery ice with low friction. At full slip the relative shear force 

remains constant.
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Figure 3 .12  Comparison of the shear force variation due to change in friction coefficient

3.4 Numerical Comparison of Pure and Combined Forces

3.4.1 Comparison of Fpure and Fcombined Magnitude

From Figure 3.13 we can observe that Fpure (equation (3.13)) is always greater than the 

Fcombined (3-16). At constant normal load and as the slip angle increases, F  increases 

whereas Fcombined decreases. At a constant slip angle, as the normal load changes Fpure and

Fcombined increase.
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Comparison of pure vs. combined forces

Longitudinal Slip ,Sx

Figure 3.13 Comparison of magnitude the pure and combined forces

3.4.2 Comparison of Angle fi Fpureand Fcomb

We compared angle J3 for both pure and combined forces as shown in Figure 3.2. We 

can observe that at smaller slips the pure and the combined forces are closer to 90°, which 

indicates that the lateral force is dominating more. At the intermediate slips both the 

combined and the pure force curves are close to 45°, since the lateral and the longitudinal 

forces have almost equal influence. At the full slip condition both the pure and the 

combined force angles are close to zero, since the longitudinal force dominates. We can 

also observe that the normal load does not have any influence on the pure and the 

combined force orientation.
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0 0.1 0.2 03 0,4 as 0,8 01 0.8 0.9 1

Longitudinal Slip,Sx

Figure 3.14 Comparison of the orientation of pure and the combined forces

Comparison of pure and combined angles

4 6 8
Slip Angle, alpha, in degrees

Figure 3.15 Comparison of the orientation of pure and combined forces w.r.t. slip angle
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3.4.3 Comparison of Isotropic and Anisotropic Cases

Figure 3.16 shows the comparison of pure and combined shear forces for the isotropic 

case(equal friction coefficient in all directions, jux = juy) and the anisotropic cases

(unequal friction coefficients, jux& juv). For both the isotropic and anisotropic cases the

Pcomb is independent of the coefficient of friction and the normal load as shown in Figure 

3.18.

90 

80 

70
cn
CD 
CD »_
-g 60
C
tn
-5 , 50 
<

40 

30 

20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Longitudinal Slip,Sx

Figure 3.16 Comparison of the pure and combined forces for isotropic and anisotropic

cases.

Comparison of isotropic and anisotropic cases
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3.5 Summary

In this chapter we expressed shear force as a function of normal load, slip, slip angle and 

other snow/tire property-related parameters. Material property parameters include tire 

stiffness, friction coefficient and contact pressure constant. In order to simplify the shear 

force model, material property parameters are assumed to be functions of normal load 

only. We obtain the coefficients of empirical equations through curve fitting using FEA 

data. FEA data include simulated values of tire stiffness, friction coefficient and contact 

pressure constant for specific tire/snow pairs under different loads. According to 

computation results obtained from the parameter empirical equations, the selected 

parameter functions can appropriately reproduce the FEA data well in both magnitude 

and trend. We studied the effect of each parameter, i.e., friction coefficient, tire stiffness 

and contact pressure constant, on the shear force. We found that for different tires having 

different stiffness the shear force increases as the tire stiffness increases. We also found 

that for different terrain with different friction coefficients, the shear force increases with 

an increase in friction coefficient.

We compared the resultant shear force obtained by two methods. In the first 

method we assumed shear forces obey a linear system, and obtained the resultant shear 

force by taking the vector sum of pure longitudinal and pure lateral forces. In the second 

method we assumed shear forces obey a non-linear system, and obtained the resultant 

shear force by taking the vector sum of combined longitudinal and combined lateral shear 

force. We found that the resultant shear forces obtained by these two methods are not the 

same, but the resultant shear force due to pure forces is always greater than the resultant 

shear force due to combined shear forces. So we use the second method to obtain the 

resultant shear force, which has more practical importance, as the prediction of shear 

force matches the experimental data and FEA simulation results better.
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4. Semi-Analytical Shear Stress Model For Shallow Snow
The main objective of this chapter is to develop a semi-analytical shear stress model for 

tire-snow interaction as a function of normal pressure and slip. The existing classic shear 

stress model has a number o f terrain constants, such as cohesion, friction angle, shear 

modulus, etc., which are difficult to quantify for snow. So we planned to develop a semi- 

analytical equation with a minimum number of parameters, which has a great advantage 

of reducing the computational time while conducting the vehicle simulations. To achieve 

this goal we used numerical method and matched the boundary conditions of shear stress 

of the existing classic shear displacement model [1,7, 14] with our model. We compared 

the computation results of both the models, which matched reasonably well with respect 

to the boundary values.

By using the above two models we calculated the sinkage and the Motion 

resistance as a function of slip, and compared with the FEA data which matched 

reasonably well.

To explain all the computation and comparison processes we first need to describe the 

parameters used in these processes.

4.1.Wong’s Pressure Sinkage Relationship

Wong [4] has conducted many experiments for tire moving on snow layers and 

found that sinkage can be represented as an exponential function of pressure (i.e. normal 

stress).

z = z„

(or)

-
CT n —-

C

= *w(l ~ Z ) (4.1a)

(-In  Z) (4.1b)

Normalized pressure is given by equation (4.2)

-  _ 0 JL 
(7 n —

C
(4.2)

Relative sinkage is given by equation (4.3)
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\
7  1 z c -Z = 1------ = e x p -------<7„ (4.3)

\  > 

Relative sinkage at maximum sinkage is

c-cohesion modulus 

<x„ -normal pressure

& n-normalized normal pressure 

p w-upper bound pressure

zw-upper bound sinkage

Now in order to consider the geometry of the pressure-sinkage relationship, let us assume 

a rigid wheel moving on the shallow snow instead of the pneumatic wheel, as shown in 

Figure 4.1. We made this assumption because the pneumatic wheel behaves as rigid 

wheel on the soft terrain and the shallow snow is a soft terrain. Our main goal is to 

express all the parameters, i.e., sinkage, motion resistance, drawbar pull, and tractive 

force, as function of contact angle. Let us first define each parameter in Figure 4.1.

6 -contact angle at any arbitrary point of contact region 

0() - maximum contact angle

Fz - normal load acting on the wheel 

D  -wheel diameter 

hs - snow height 

z -sinkage at any arbitrary point 

z0 -maximum sinkage

tx- shear stress acting due to tire snow interaction 

- shear force in x-direction 

co - wheel angular velocity

(4.4)

Where



Figure.4.1 Rigid wheel-snow interaction model.

Now let us consider the geometry of each parameter. The sinkage z at any point

on the tire-snow interaction can be determined by the equation [47]

D 2
z = — (co s# -co s# 0) (or) cos# = — z + cos#0 (4.5)

From Figure 4.1 the maximum sinkage occurs at and is given by equation (4.6)

z 0 = 4 = 0  =  y ( 1 _ c o s ^ o )  ( 4 -6 )

From the geometry of Figure 4.1, we also have the relation
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— sin 
v 2

= (z0 -z )[ .D -(z 0 -z )] (4.7)

At 0 = #0 equation (4.7) takes the form

\ 2
sin ft, = z0(£>-z0) (4.8)

Equations (4.1) to (4.8) describe the relationship between contact pressure and contact 

angle. There are methods to determine the three-dimensional contact area between a tire 

and a soil [51].

4.2 Shear Force-Shear Displacement Relationships

We will discuss the two fundamental classic equations in this section. To determine the 

shear stress as a function of slip and normal pressure, we need to develop an equation for 

the shear displacement due to tire snow interaction. The shear displacement developed 

along the contact area of the rigid wheel is determined based on the slip velocity ( T ), as

shown in Figure 2.8. For a rigid wheel, the velocity Vjof a point on the rim is the

tangential component of the absolute velocity at the point, as shown in Figure 2.8. The 

magnitude of Vj of a point on the rim defined by the angle 0 can be expressed by [4]

Vj -  rco[l -  (l -  /) cos 9\ (4.9)

Where

r - wheel radius 

i - slip of the wheel

The shear displacement, which is the integration of shear velocity along the wheel snow 

interaction, is given by [4]

j x = ~  l(0o /)(sin 0O -  sin (4.10)
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Where

<90 - maximum contact angle 

The shear stress acting at the interface is given by [4]

Tc = (c +cr„tan^)[l -  exp(- j x /K)] (4.11)

Where

c- cohesion modulus 

c r n-normal  pressure 

(f> -friction angle

Kshear -shear modulus 

j x-shear displacement

From the above equations it is clear that we need many snow parameters (i.e. c,

(f>, Kshear) to calculate the shear stress at the tire-snow interaction. To obtain these

parameters we would need to conduct many experiments [52], such as plate sinkage 

tests to calculate the normal pressure and shear tests to calculate the shear modulus, 

cohesion and internal friction angle of the terrain while this is a robust procedure, it is 

impractical. In order to eradicate this problem we planned to develop a semi- 

analytical equation for shear stress, which is a function of normal pressure ( cr,,) and 

slip (i) only. We implemented a numerical approach to achieve this goal.

We introduced five dimensionless input parameters, of which two are geometric 

constants and the three are material constants.

2
Geometric constants: —  ,0n

D 0

Q
Material constants: — ,wt ,tan^

Pw

Where

zw -upper bound sinkage[53]
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D
uk = -------

K shear

P w-upper bound pressure [53]

The input values we assumed to numerically find the boundary conditions are shown 

in Table 4.1

Table 4.1 The geometric constants and material constant values

We needed the boundary conditions of the existing equation to set the new 

empirical equation. For this we found the first order and the second order derivatives 

of the existing equation. By doing this we came to the following conclusion.

Let y  = f ( x )  be a function

—  > 0 indicates the function /(x )  is monotonic and increasing
dx

—  < 0 indicates the function /(x )  is mono tonic and decreasing
dx

—  > 0 and ~ ~ T > ® indicates the function /(x )  increases rapidly and possibly
dx dx

tends to infinity

—  > 0 and < 0 indicates the function /(x )  increases slowly and possibly
dx dx

tends to a constant limit 

As we want to get shear stress as a function of normal pressure ( ) and slip (i),

we calculated the first order and the second order derivatives of shear force with respect
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to normal pressure ( o n) and slip (i). The boundary conditions of each parameter used in 

the equation derivation are shown in the Table [4.2]

Table 4.2 Boundary conditions of each parameter of equation (4.12)

e z Z On J Jk

zero

sinkage
0 1 0 0 u t

max.

sinkage
0 z o Z o = 1 -  —

O„0 =

— '] ( - t a Z o )
V C J

J o = | t e - s i n 6 ,o )

1 . n +—sin Or,
2 0

J kO =
uk e x v ( - u kJ 0)

Equation (4.12) is the fundamental non-dimensional shear stress equation, which we used 

for our derivations.

Where

= (l + cr„ tan ^)| 1 -  — (4.12)
l k J

Tx =

O  n=

C

<X„

J k =u k e x p  

D
K shear

The final derived equations are tabulated in Table 4.3, and the derivations are shown in 

the appendix in detail.



Table 4.3 The first and second order derivatives of equation (4.12)

W h e r e :
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From Table 4.2 it is clear that the first order derivative ^ T x >0 d _  r* < o indicates that
do,,

the tx vs o„ curve is increasing slowly and possibly tends to a constant limit as shown in

d t d 2r xFigures 4.2 and 4.3 In the same way — f- > 0 and — -r- < 0, which indicates that the
d i d i 2

tx vs o„ curve is increasing slowly and possibly tends to a constant limit, as shown in 

Figures 4.4 and 4.5. We then numerically found the boundary values, at the maximum 

sinkage and zero sinkage, for all the curves as shown in Table 4.4



Table 4.4 Boundary values at the maximum sinkage and zero sinkage for equation (4.12)

On =0

(zero sinkage)

On — O n0

(maximum sinkage)
trend

T0 VS. On t \  -M M
lz"  U JU J T 1b  ?-?, ~^0  ^

/  \  c

U J
monotonic

decreasing

Tx+T2 vs.

O n
Uk(Ql +Q2)\g=0o 0

monotonic

decreasing

y x vs. On ) uk ( Qi + )\e=o(l tan^
monotonic

decreasing

y 2 VS. On
(t0\zJ uI { q x+ q 2Y\e=e0

0
monotonic

decreasing

y 3 vs. On 0
=

~ (/tL =o X1 + <J"° tan^)sin^0

y 4 vs. O n 0 -~ u k sin 6*0 (y3|0=0)

4.3 Simplified Shear Model

Depending on the trend and order of magnitude of the existing model described in the 

previous section, we have developed a simplified semi-empirical equation, which is a

function of normal pressure (cr„) and slip (i) as shown in equation (4.13)

rx = (l + cr„ tan ̂ )[l -  exp(- ) ] (4.13)

Where



Table 4.5 The first order and the second order derivatives of equation (4.13).

Where:

Ux = r i0  + r^ +y2 a "

U2 =(2/ - i '2)(r, <x„)

U3 = (rI a „ ) - ( l - / ) t /4

We then numerically calculated the boundary conditions, at the zero sinkage and the 

maximum sinkage of the new model, and tabulated the results in the Table 4.5. The 

inputs of the existing shear displacement model are shear displacement, contact angle, 

normal pressure and slip. The simplified model takes only normal pressure and slip as the 

inputs. Thus in the simplified model we have reduced the number of inputs, when 

compared to the existing shear displacement model.

Table 4.6 shows the boundary conditions at the zero and maximum sinkage of 

equation (4.13)
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Table 4.6 Boundary conditions at the zero and maximum sinkage of equation (4.13)

On =0

(zero sinkage)

On — O n0

(maximum sinkage)
trend

y Y vs. On UlL = 0= Tl(i + T2) tan^
Monotonic

decreasing

y 2 vs. On - ( t A b . J ! + 2 k . L , ) < w 0
Monotonic

decreasing

y 3 vs. On 0 0 N/A

y 4 vs. On 0 0 N/A

We compare the existing model and the new model numerically, with respect to the 

order of magnitude and the trend of boundary conditions, which matched very well as 

shown in Figures 4.2, 4.3, 4.4, 4.5.

From Figure 4.2 we can conclude that the models match well with respect to the 

following points:

• y x vs <j „ is always in the positive region.

• As the normal pressure increases from 0 to 1, y, decreases from a maximum

value to a certain value.

• As normal pressure increases, y, remains constant at approximately tan (j)

• As the slip increases the initial slope increases for both models, and after reaching

a certain value of slip they remain constant, irrespective of the change in the slip.
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Figure 4.2 Comparison of the first order derivative of both models at various slips

From the Figure 4.3 we can conclude that the models match well with respect to the 

following points:

• y 2 vs o  nis always in the negative region.

• As the normal pressure increases from 0 to 1, y 2 decreases from a maximum value 

to a certain value.

• For values greater than 1, as the normal pressure increases y 2 is always zero.

• As the slip increases the initial slope increases for both models, and then after 

reaching a certain value of slip they remain zero, irrespective of the change in the 

slip.
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Figure 4.3 Comparison of the second order derivative of both models at various slips

From Figure 4.4 we can conclude that both models match well with respect to the 

following points:

• y 3 vs. i is always in the positive region.

• As the normal pressure increases from 0 to a small value, increases from zero

to the peak value. In this case the peak value of the existing model is slightly 

higher than that of the new model.

• From a certain value of pressure, as the normal pressure increases y 2 is always 

zero.

• As the slip increases the initial slope increases for both models, and then after 

reaching a certain value they remain zero irrespective of the change in the slip.
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Non-Dimensional Contact Pressure

Figure 4.4 Comparison of the first order derivative of both models at various slips

From Figure 4.5 we can conclude that both models match well with respect to the 

following points:

• y 4 vs .o nis always in the negative region.

• As the normal pressure increases from 0 to a small value, y 4 increases from zero

to the peak value. In this case the peak value of the existing model is slightly

higher than that of the new model.

• From a certain value of pressure, as the normal pressure increases y4is always

zero.

• As the slip increases the initial slope increases for both models, and then after 

reaching a certain value they remain zero irrespective of the change in the slip.
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Figure 4.5 Comparison o f the second order derivative of both models at various slips

The Figure 4.6 is zx vs. cr„, a comparison of the resultant shear stress of Figures 4.2, 4.3,

4.4 and 4.5 with respect to the trend and order of magnitude. We can observe the 

following points:

• Both models almost match in trend and order of magnitude.

• Both models have positive slope, and as the slip increases the slope of the curves 

increases.

• After reaching a certain value of pressure, the slopes of the curves have a 

decreasing trend, as the second derivatives of the curves are negative.
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Figure 4.6 Comparison of both models at various slips 

4.4 Evaluation of sinkage using Wong’s equation

From Figure 4.1 the load acting on the wheel is the summation of the vertical components 

o f the shear stress and the normal pressure, given by the equation [4]:

J < Jn cos 0  d O  +  |  txsin

Where:

F - r b =  0 (4.14)

F z - normal load 

r- radius o f the wheel 

b - wheel width 

cr, -normal pressure

t x -shear stress

0 {] -maximum contact angle
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In the equation (4.14) a n is a function of 0 , and t x is a function of both 0 and i . 

Thus for every i, if  we numerically integrate the equation (4.14), we get 90. From 0O 

we can calculate sinkage z0 from equation (4.15).

zo = y ( l - c o s 0 o) (4.15)

Thus the sinkage z0 is dependent on slip (/). From Figure (4.8) we can make the 

following observations:

(i) All four models, the developed model, shear-displacement model [1,7, 14], 

upper-bound method [36], and FEA data [31] match well with each other and 

all the models are functions of slip.

(ii) The straight-line portion of the curve indicates that sinkage is calculated by 

taking shear stress as zero in equation (4.14). Thus the sinkage is independent 

of slip in this case.
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Figure 4.7 Comparison of the models in sinkage vs. slip curves

4.5 Motion Resistance

As the vehicle moves through the snow, it must overcome the resistance at each wheel 

caused by the snow deformation to maintain forward motion. This resistance is termed 

‘Motion Resistance’.

Longitudinal Motion Resistance is given by equation [4]

* , = ^ j < r „ s i n 6W  (4.16)
^ 0

6{) is a function of ias described by equation 4.14; therefore the motion resistance is also 

a function of i. From Figure 4.8 we can make the following observations:
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(i) The predicted values of the developed shear model and the shear displacement model 

match well with the FEA data.

(ii) From Figure 4.8 we can see that the curve calculated without shear stress indicates no 

effect of slip on motion resistance, because shear stress is assumed to be zero in the 

sinkage calculation.

0.6 
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«  0.45
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' m  0,4 
cr
§ 0.35 
is 1
5  0.3
CDJM
|  0.25 
o
z  0.2

0.15

° ‘1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Longitudinal Slip, S x

Figure 4.8 Effect of sinkage on motion resistance vs. slip.

4.6 Summary

In this chapter we developed a new semi-analytical shear stress model, in which the shear 

stress is function of normal load and slip at the tire/terrain interface. The calculated 

sinkage and motion resistance for different loads and slip using this model match well 

with calculation results obtained from the existing classic shear displacement model 

[1,7,14], FEA data [27], and the upper bound method [26].
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5.Conclusions and Future Work
5.1 Conclusions

Following are the conclusion based on accomplishments during the study.

• A simplified shear stress model is developed to simulate tire/snow interaction as a 

function of normal pressure and slip.

• The motivation to develop this model is that it only requires normal load and slip 

as the inputs, eliminating the other terrain parameters such as cohesion, internal 

friction angle, and shear modulus which are used in existing models, and outputs 

the interaction forces such as the traction force, motion resistance and the draw­

bar pull.

• The other advantage is the reduction in the computational time, which makes the 

model more appropriate for real time vehicle simulations.

• The motion resistance calculated by applying the present model is slip dependent, 

whereas motion resistance calculated by the existing models does not depend on 

slip, and may not match the real physical phenomenon of the tire/terrain 

interaction.

• The motion resistance calculated by the developed model, existing shear 

displacement model and the FEA model matched reasonably well with respect to 

trend and order of magnitude.

• The shear force model parameters, including tire stiffness, friction coefficients 

and contact pressure constants, are expressed as functions of normal load, slip 

(longitudinal) or slip angle (lateral) and material property parameters. Since the 

material properties are simple functions of loads, the computation time has been 

greatly reduced in comparison with the performance of the existing shear force 

model.

• The values of the coefficients used in the material property functions in the shear 

force equation are found through curve fitting using FEA data.

• The empirical equations for tire stiffness, friction coefficient and contact pressure 

constant were compared with FEA data and matched reasonably well.
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• Shear force at the tire/terrain interface was numerically computed for pure and 

combined slip conditions and comparison studies were done for different turning 

maneuvers of the vehicle, in which the pure shear force is always greater than the 

combined force.

5.2 Future Work

• The present semi-analytical shear stress model could be refined further to 

minimize the number of tire/ snow constants, so that the computational time could 

be further reduced during real time simulations.

• The model should be further simplified so that the symbolic method is used to 

obtain the interfacial forces rather than numerical integration, which is presently 

used.

• In the present work only homogeneous fresh snow has been considered. The 

present model should be extended to non-homogeneous snow having different 

layers in order to be more useful in practical applications.
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