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ABSTRACT

Fatty acids, the main components of lipids, are crucial for energy storage and other 

physiological functions in animals and plants. Dietary fatty acids are incorporated and conserved 

in consumer tissues in predictable patterns and can be analyzed in animal tissues to determine the 

composition of an individual’s diet. This study measured the variation in fatty acid profiles of 

three abundant Arctic forage fish species, Arctic Cod (Boreogadus saida), Canadian Eelpout 

(Lycodespolaris), and Longear Eelpout (Lycodes seminudus) across multiple years (2010-2013) 

and geographic locations (Beaufort and Chukchi seas). These fishes are important prey items of 

marine mammals, sea birds, and predatory fishes, and as such they serve as a critical trophic step 

connecting lower trophic-level production to higher level predators. Analyzing forage fish fatty 

acid profiles across multiple years and geographic locations can provide insight into system-level 

trends in lipid transfer through the Arctic ecosystem. Fatty acid profiles differed among species, 

with Arctic Cod having higher concentrations of pelagic zooplankton indicator fatty acids, and 

Eelpout species containing higher concentrations of indicators for benthic prey. While the two 

Eelpout species displayed major overlap in fatty acid profiles, differences in individual fatty 

acids may represent niche separation between Canadian and Longear Eelpout in the Beaufort 

Sea. In addition to variation between species, fatty acid profiles also differed in Arctic Cod 

between the Beaufort and Chukchi seas, and among collection years. High lipid content and 

energy-rich fatty acid classes observed in Chukchi Sea Arctic Cod relative to the Beaufort Sea 

Arctic Cod may indicate favorable feeding conditions in this region over the years sampled, and 

high energy density of Arctic Cod as prey. Despite the within-species variation observed, the 

results of this study suggest that Alaskan Arctic forage fish with different foraging ecology can 

be distinguished based on fatty acid profile, which could be useful in studies that use fatty acid 

data to characterize diets of top predators.
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INTRODUCTION

Arctic Cod and Eelpout species are among the most widespread and abundant fishes 

throughout the Alaskan Arctic (Lowry & Frost 1981, Logerwell et al. 2011, Mecklenburg et al. 

2011, Rand & Logerwell 2011, Christiansen et al. 2012). These forage fishes make up a critical 

trophic step in the Arctic food web, linking primary and secondary production to higher trophic- 

level predators such as sea birds and marine mammals (Bradstreet & Cross 1982, Finley & Evans 

1983, Weslawski et al. 1994, Dehn et al. 2007). However, in addition to predation pressure from 

higher trophic levels, forage fishes are subject to bottom-up controls by environmental 

conditions that affect primary production (Cury & Roy 1989, Bouchard & Fortier 2011,

Crawford et al. 2012). In the Arctic, where temperatures are rising at as much as twice the rate of 

other regions (ACIA 2004), annual mean sea ice extent has been declining by about 4% per 

decade (IPCC 2013). Changes in thickness and timing/extent of seasonal ice retreat are expected 

to alter patterns of primary production (Harley et al. 2006, Grebmeier 2012), which could affect 

the quality and quantity of available food sources for forage fishes (Cury et al. 2000, Chavez et 

al. 2011). Changes in food resources are likely to be reflected in biochemical composition of fish 

tissues (Parrish et al. 2015), which may have cascading effects for their predators. This study 

examined inter- and intraspecific variation in lipid content and fatty acid profiles of Arctic Cod 

(Boreogadus saida), Canadian Eelpout (Lycodespolaris), and Longear Eelpout (Lycodes 

seminudus) across multiple years in the Beaufort and Chukchi seas, to explore how existing 

spatial and temporal differences in trophic conditions are manifested in forage fishes.

Fatty acids are components of dietary lipids and are essential for energy storage, 

structural components of cell walls, thermoregulation, and other important physiological 

processes (Parrish 2013). Fatty acids found in marine fishes consist of carbon chains, normally
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10 to 24 carbons long, with a methyl group at one end and an acid (carboxyl) terminus at the 

other (Budge et al. 2006). Those with carbon chains containing no double bonds (e.g., 16:0 and 

18:0) are termed saturated fatty acids (SFA), while monounsaturated fatty acids (MUFA) contain 

one double bond. Those with two or more double bonds are called polyunsaturated fatty acids 

(PUFA), which include the important omega-3 fatty acids essential in the diet of many animals 

(Parrish 2013). The distinctive structures of fatty acid molecules, and the apparent transfer of 

unaltered fatty acids from prey to predator, make them useful in identifying key trophic linkages 

(Graeve et al. 1997, Dalsgaard et al. 2003, Budge et al. 2006, Parrish 2013).

Fatty acid profiles (i.e., the identities and amounts of specific fatty acids present in an 

individual organism or tissue) are like fingerprints that can be used to examine inter- or 

intraspecific differences in diet (Budge et al. 2002, Iverson et al. 2002, Pethybridge et al. 2014, 

Richoux et al. 2014,). Diet studies are often conducted using stomach content analysis, but this 

method is invasive, only identifies very recently ingested items, and is biased against easily 

digested or assimilated prey (Baker et al. 2014). Alternatively, biochemical methods can estimate 

assimilated diet items on a longer time-integrated scale (Budge et al. 2006). Consequently, fatty 

acids and other chemical tracers, such as stable isotopes, are now widely used in tracking organic 

matter pathways through the marine food web (e.g., Budge et al. 2006, El-Sabaawi et al. 2009, 

Revill et al. 2009). Lipid and fatty acid analysis (quantification of lipid classes and fatty acid 

profiles) can provide information about forage fish feeding habits as well as the quality of the 

fish as prey items, and may thus indicate the lipids available for transfer to higher trophic levels 

and how that could affect the physiological condition of predators (Falk-Petersen et al. 2009, 

Stowasser et al. 2012). Furthermore, if  patterns of fatty acids in forage fish and other prey are 

characterized in an ecosystem they can be used to investigate diets of higher trophic level

2



predators (Iverson, et al. 2004,

Budge et al. 2006). However, the 

ability to estimate predator diets 

using fatty acid analysis will 

depend on the degree of 

differentiation between fatty acid 

profiles of prey species 

(Nordstrom et al. 2008).

The relative amounts of 

specific fatty acids in tissues can 

vary among individuals of the 

same species due to a variety of 

factors including reproductive 

status, diet, or environmental 

conditions (St. John & Lund 1996, Kirsch et al. 1998, Budge et al. 2002). For example, 

differences in temperature have the potential to directly affect fatty acid composition of the lipid 

bilayer of cell membranes, which require a specific composition to maintain proper fluidity 

(Hazel 1984, Parrish 2013). Increased membrane rigidity at low temperatures can result in 

lowered cell permeability and impairment of enzymatic functions (Dey et al. 1993, Masuda

2003). Poikilotherms such as teleost fishes may increase the amounts of MUFAs (i.e., 18:1) and 

PUFAs (i.e., 20:5 and 22:6) in cell membranes to maintain membrane functions at low Arctic 

temperatures (Hazel 1984, Bell et al. 1986, Dey et al. 1993). Fatty acids present in fishes and 

other consumers also reflect their feeding habits, and can sometimes indicate whether specific

Figure 1. Fatty Acid Transfer Through Food Webs.
Fatty acids produced by open water phytoplankton or ice 
algae are deposited into consumer tissues. Animals have 
limited ability to alter certain ingested fatty acids. This 
allows for specific fatty acids (e.g., 20:1ro9 and 22:1ro11) 
to be used as chemical tracers of diet sources.
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prey items were consumed (Dalsgaard et al. 2003, Nordstrom et al. 2008, Kelly & Scheibling 

2012) (Figure 1). Similarly, differences in the fatty acid composition of lower trophic-level 

organisms may be reflected in the composition of their consumers (Rosen & Trites 2005, 

Jeanniard du Dot et al. 2008).

Fatty acid profiles differ among phytoplankton species, or between open water 

phytoplankton and sea ice algae (Ackman et al. 1968, Viso & Marty 1993; Figure 1), and can 

also differ within species depending on growth conditions, including light intensity, temperature, 

nutrient availability, and turbulence (Shifrin & Chisholm 1981, Richardson 1985, Fraser et al. 

1989, Reitan et al. 1994). Thus, inputs of fatty acids to the Arctic food web may vary in space 

and time due to environmental factors that impact phytoplankton species composition and their 

growth. Large-scale differences in fatty acid inputs to the food web are investigated here by 

comparing fatty acid profiles of Arctic Cod from the Chukchi and Beaufort seas. These two 

regions differ in the magnitude of primary production as well as in a number of environmental 

controls on phytoplankton growth (Carmack & Wassmann 2006) that can in turn influence fatty 

acid composition of primary producers (Skerratt et al. 1995, St. John & Lund 1996, Skerratt et al. 

1998, Leu et al. 2010).

Large-scale water and geological characteristics occur between the Beaufort and Chukchi 

seas such as the broad, shallow Chukchi Sea shelf that encompasses an area nearly three times 

that of the Beaufort Sea shelf (Carmack & Wassmann 2006). Nutrient-rich Pacific waters travel 

north through the Bering Strait into the Chukchi Sea (Weingartner et al. 2005, Carmack & 

Wassmann 2006), supporting high production of phytoplankton (Gradinger 2009), which are 

producers of the nutritionally important PUFAs (Falk-Petersen et al. 1998). In contrast to the rich 

Pacific-influenced waters of the Chukchi Sea, the Beaufort Sea is characterized by greater
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riverine inputs (Carmack & Wassmann 2006, Dunton et al. 2006). In the Eastern Beaufort Sea in 

particular, the Mackenzie River is responsible for high influx of sediments, terrestrial matter, and 

fresh water (Omstedt et al. 1994, Macdonald et al. 1998). In addition, the narrow Beaufort Sea 

shelf drops steeply after the shelf break, creating strong depth gradients (Carmack & Wassmann 

2006) that could impact food availability or quality, such that fish lipid composition varies with 

depth down the slope (Christensen 2000).

In addition to spatial variation in physical geography and oceanographic features, sea ice 

cover and differences in ice formation and thaw timing between regions could affect lipid 

manufacture of primary producers (Leu et al. 2011). Currently, the Beaufort Sea experiences an 

open water period of about two to three months, which is approximately one month shorter than 

observed in the Chukchi Sea (Wang & Overland 2015). However, in the next thirty years, both 

of these regions could experience an additional 1-3 months of open water during the summer 

(Wang & Overland 2015). Nutrient-rich Pacific waters support large ice-edge phytoplankton 

blooms in the Chukchi Sea as seasonal ice retreats northward (Wang & Overland 2015). Because 

community structure of primary producers is related to water-column irradiance and nutrient 

concentration (Hill et al. 2005), these large scale differences in sea ice dynamics create distinct 

production regimes between the Chukchi and Beaufort seas, which could also be creating distinct 

lipid dynamics between the two regions.

High irradiance and temperature, such as that created from thin and early sea ice retreat, 

can have detrimental effects on lipid and PUFA production in primary producers, decreasing the 

nutritional quality of sea ice algae (Smith et al. 1989, Leu et al. 2010). For this reason, sea ice 

thickness, extent, and snow cover can influence PUFA production and trophic transport at the 

base of the food web with consequences for secondary consumers (Leu et al. 2011). Animals
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have limited ability to synthesize PUFAs and must obtain them from primary producers (Budge 

et al. 2006). These essential nutrients are necessary for reproductive success, growth, and 

development in zooplankton grazers (Falk-Petersen et al. 2009, Soreide et al. 2010), and for the 

forage fishes that feed on them (Olsen et al. 1991, March 1993, Copeman & Laurel 2010). 

Growth and fatty acid profiles of forage fish, particularly the ice-associated Arctic Cod 

(Bradstreet & Cross 1982, Lonne & Gulliksen 1989), could thus be tightly coupled to changing 

ice conditions, affecting the available prey source for Arctic sea birds and mammals.

Stomach content analysis of Arctic Cod and Eelpout has demonstrated that these forage 

fishes have distinct but overlapping diets that include zooplankton (McAllister et al. 1981, 

Walkusz et al. 2011). Arctic Cod are considered generalist pelagic feeders, but they reproduce 

under ice, and their larvae feed on the eggs and nauplii of crustaceans that rely on ice-associated 

primary production (Bradstreet & Cross 1982). Thus, reproductive success and PUFA 

acquisition of early Arctic Cod life stages is tightly linked to sea ice cover. In open water, Arctic 

Cod can be found throughout the water column feeding largely on copepods (Lowry & Frost 

1981, Bradstreet & Cross 1982, Ajiad & Gjos^ter 1990). Arctic Cod also occur near the 

seafloor, where they feed on copepods, amphipods, mysids, and euphausiids (Walkusz et al. 

2013, Rand et al. 2013). In addition to variation in diet throughout the water column, Arctic Cod 

exhibit ontogenetic shifts in size and diversity of prey consumed (Walkusz et al. 2013). In 

contrast, Eelpout are primarily demersal species, and are normally found on soft muddy bottoms 

feeding on epibenthic prey, such as shrimp, polychaetes, and mysids (Aydin et al. 2007, 

Wienerroither et al. 2011). While Eelpout do not rely on sea ice for reproduction and larval 

development like Arctic Cod, their benthic prey items will depend on export of organic matter
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from the water column to the seafloor, which is closely 

tied to timing and extent of sea ice advance and retreat 

(Grebmeier & Barry 1991).

Investigating variations in fatty acid 

concentrations among taxa may compliment other diet 

studies and allow for better characterization of foraging 

ecology of fish species. Lipid content and presence of 

specific fatty acids in forage fish tissues can indicate 

overall feeding conditions and specific diet items 

(Pethybridge et al. 2014). Comparing Arctic Cod to 

Eelpout species can indicate how ecological differences 

(i.e., commonly feeding in pelagic versus demersal 

realms) affect fatty acid concentrations and nutritional 

value. Fatty acids were also compared between Canadian 

Eelpout and Longear Eelpout to investigate differences

Figure 2. Study Species. (a)
Arctic Cod (Boreogadus saida),
(b) Canadian Eelpout (Lycodes 
polaris), and (c) Longear Eelpout 
(Lycodes seminudus). Numbers on 
the image are maximum lengths 
obtained from fishbase.org.between two closely related species. These Eelpout 

species are predicted to have diets dominated by epibenthic species based on previous Eelpout 

stomach content diet analyses (Aydin et al. 2007); however, the extent of niche separation 

between species is unknown. Additionally, interannual and regional differences in fatty acid 

composition within forage fish will provide insights into variations in the food sources and 

nutritional quality of these taxa. In this study, fatty acids were quantified in three Arctic forage 

fishes (Arctic Cod, Canadian Eelpout, and Longear Eelpout; Figure 2) collected during multiple

years in the Beaufort and Chukchi seas to characterize variability in fatty acid profiles across
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time and space. Specific objectives were to: (i) examine differences in fatty acid concentrations 

among species and determine if these species can be distinguished based on fatty acid profile 

regardless of within-species variations, (ii) compare fatty acid profiles of Arctic Cod from the 

Beaufort and Chukchi seas collected within the same years to examine spatial variability, and 

(iii) analyze interannual variations in fatty acid composition of all three species in samples 

collected from 2010-2013.

M ATERIALS & METHODS

Sample collection

Arctic Cod, Canadian Eelpout, and Longear Eelpout were acquired from a series of 

expeditions in the Chukchi and Beaufort seas (Figure 3) between 2010 and 2013 (n = 177,

Table 1). Chukchi Sea samples were collected as part of the 2012 Russian-American Long-Term 

Census of the Arctic (RUSALCA) and 2010 and 2011 Alaska Monitoring and Assessment 

Program (AKMAP) cruises using plumb-staff beam and otter trawls. Stations in the Chukchi Sea 

ranged from 22 to 109 m depth. Beaufort Sea samples were collected on the 2011 Central 

Beaufort Sea Fish Monitoring (Beaufish) and the 2012 and 2013 U.S.-Canada Transboundary 

Fish and Lower Trophic Communities projects using otter and beam trawls. Beaufort Sea 

samples used in this study were taken from stations ranging from 13 to 500 m depth. All samples 

were collected in late summer (August 14-September 30). Trawl nets had 7 mm mesh in body 

and 4 mm mesh in the cod-end liner. Samples were collected according to the protocols outlined 

by Norcross et al. (2010) and fishes euthanized according to the UAF International Care and Use 

Committee protocol 134765 by submerging fish in a solution of 130 mg/ liter solution of tricane
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Figure 3. Sample Stations in the Beaufort and Chukchi seas. Samples were taken 
during the Alaska Monitoring and Assessment Program 2010 (AKMAP ’10) and 2011 
(AKMAP ’ 11), Central Beaufort Sea Fish Monitoring 2011 (BeauFish ‘ 11), Russian- 
American Long-Term Census of the Arctic 2012 (RUSALCA ‘ 12), and U.S. 
Transboundary 2012 (Transboundary ‘12) and 2013 (Transboundary ‘13).
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methanesulfonate (MS-222) in seawater. Trawls were sorted on deck and individual fishes were 

frozen in plastic bags. Samples were stored at -20 °C in the field, and then stored frozen at 

-80 °C prior to analysis. In the lab, fishes were weighed wet (to the nearest 0.0001 g) and 

measured for total length (from the most forward point of the head, with the mouth closed, to the 

farthest tip of the tail, to the nearest 1 mm).
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Table 1. Fish Sample Size by Species, Region, and Year. Numbers of individual fish analyzed 
from each species (Arctic Cod, Canadian Eelpout, and Longear Eelpout) by region (Beaufort and 
Chukchi seas) and year (2010-2013).

Arctic Cod Canadian Eelpout Longear Eelpout

Beaufort Sea
2011 20 19 -
2012 19 6 22
2013 22 - 23

Chukchi Sea
2010 11 - -
2011 15 - -
2012 20 - -

Total 107 25 45

Lipid extraction andfatty acid transesterification

Lipids were extracted from whole-body homogenates using a modified Folch extraction 

(Folch et al. 1957) at the Marine Mammal lab in Fairbanks, Alaska. Frozen fish samples were 

homogenized using a heavy-duty stainless steel blender (Waring Commercial, New Hartford,

CT, U.S.A.). Homogenates were sub-sampled into 1.5 g aliquots and lipids were extracted using 

30 ml of 2:1 chloroform (CHCl3, VWR, West Chester, PA, U.S.A.) and methanol (CH4O, VWR, 

West Chester, PA, U.S.A.) with 0.01% butylated hydroxytoluene (v/w) (BHT, 2,6-Di-tert-butyl- 

p-cresol, Spectrum Chemical, Gardena, CA, U.S.A.), where BHT was added to prevent lipid 

oxidation. Vials were flushed with nitrogen and lipids were allowed to extract in this solution 

overnight at 4 °C. Solids were separated from the solution using glass funnels lined with grade 

202 creped filter paper (VWR, West Chester, PA, U.S.A.) and rinsed with the 

chloroform:methanol mixture. A 0.88% sodium chloride (NaCl, ACS grade, VWR International, 

LLC) solution was added to the filtrate and centrifuged to create a biphasic system, such that 

lipids were retained in one layer and non-lipids in another. The top layer containing methanol, 

water, and non-lipid compounds was discarded, and the lower layer containing chloroform and 

lipids was filtered a second time through anhydrous sodium sulfate (Na2SO4, EMD Chemicals
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Inc., Gibbstown, NJ, U.S.A.) to fully dehydrate the solution, because water will prevent the acid- 

catalyzed transesterification. Chloroform was then evaporated off the filtered lipids under 

nitrogen, and the resulting concentrated lipid was weighed to the nearest 0.0001 g.

Extracted fatty acids were converted to fatty acid methyl esters (FAME) as described by 

Budge et al. (2006). Lipid extracts were transesterified with Hilditch reagent (Iverson et al.

2004). A maximum of 0.1 g of the lipid extract was dissolved in 3.0 ml Hilditch reagent [0.5 N 

sulfuric acid (H2SO4, Fischer Scientific, Fair Lawn, NJ, U.S.A.) in methanol] and 1.5 ml 

methylene chloride (MeCl2, VWR, West Chester, PA, U.S.A.) containing 0.01% BHT and 1 mg 

of 25:0 internal standard (Cayman Chemical, Ann Arbor, MI, U.S.A.). The working stock of 

internal standard was prepared using 10 mg of 25:0 in 1 ml of methylene chloride containing 

0.01% BHT. Samples were capped with nitrogen and reaction was carried out at 100 °C for 1 h 

using a digital 2 block heater 120 (VWR, West Chester, PA, U.S.A) to keep temperature 

constant. Hexane (C6H 14, VWR, West Chester, PA, U.S.A.) and water were added after the 

completion of the reaction, and samples were centrifuged to separate the solvent layer containing 

FAMEs from the aqueous layer. The solvent layer was removed and saved, and the hexane-water 

wash was repeated with the aqueous layer twice. The recovered FAME in solvent was 

dehydrated with anhydrous sodium sulfate, and then the solvent was evaporated under a stream 

of nitrogen. The FAME was weighed and solubilized in hexane to a concentration of 50 mg/ ml, 

flushed with nitrogen, capped, and stored at -80 °C until fatty acid analysis.

Fatty acid quantification and identification

Fatty acid analyses were conducted at the University of Alaska Fairbanks’ Kodiak 

Seafood and Marine Science Center. Fatty acids were quantified on a gas chromatogram (GC)
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model 6850N Series II (Agilent Technologies, Wilmington, DE, U.S.A.) coupled to a flame 

ionization detector (FID; Agilent Technologies) and fitted with a DB-23 (60 m x 0.25 mm i.d., 

0.25 p,m film) capillary column (Agilent Technologies) according to Bechtel & Oliveira (2006). 

The GC ChemStation program (Rev.A.08.03 [847]; Agilent Technologies 1990-2000, 

Wilmington, DE) was used with the enhanced integrator program to integrate chromatogram 

peaks. An autosampler model 6850 (Agilent Technologies) injected standards and samples into 

the GC. Each sample was injected in split mode with a 1-p.l volume at a ratio of 75:1 with the 

injector held at 250 °C. The carrier gas was hydrogen (Airgas USA, LLC, Nor Pac region) at 

linear constant flow of 0.9 ml/ min and average velocity of 28 ml/ sec. The detector (FID) was 

held at 275 °C, and constant makeup flows of hydrogen, air, and nitrogen (Airgas USA, LLC, 

Nor Pac region) were maintained at 40, 450, and 35 ml/ min, respectively. Oven programming 

started from an initial temperature of 140 °C and rose at 2 °C/ min to 180 °C, then 0.50 °C/ min 

to 200 °C, and then 1 °C/ min to 215 °C for a final run time of 75 min. If samples appeared too 

concentrated to accurately integrate chromatogram peaks, as observed by tailing of predominant 

peaks in a given sample, the sample was diluted to a ratio of 1:10 sample to hexane and rerun 

under the same column conditions outlined above. The rate of dilution was applied to peak areas 

from diluted samples to standardize results to the concentration of 50 mg FAME/ ml hexane 

before conducting statistical data analyses. Peaks were compared to retention times of 

commercial FAME standards, including FAME Mix C4-C24 Unsaturates (Sigma-Aldrich Co. 

LLC), Bacterial Acid Methyl Esters Mix (Sigma-Aldrich Co. LLC), PUFA No. 1 (marine source, 

Sigma-Aldrich Co. LLC), PUFA No. 2 (animal source, Sigma-Aldrich Co. LLC), PUFA No. 3 

(Menhaden oil, Sigma-Aldrich Co. LLC), 22:3ro3 (docosatrienoic acid, Nu-Check-Prep, Inc., 

Elysian, MN, U.S.A.), 22:4ro6 (adrenic acid, Nu-Check-Prep, Inc.), and 22:5ro6 (osbond acid,
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Nu-Check-Prep, Inc.). Concentrations of individual fatty acids were quantified to mg fatty acid/ 

g lipids using the relationship of internal standard peak area to its known concentration (25:0; 

1mg). Concentrations of individual fatty acids (p,g) in 1 g of wet tissue were calculated using the 

lipid content of the sample. Trends within and across species were reported using p,g fatty 

acid/ g wet tissue. This allows us to examine how these fishes serve as prey items over temporal 

and regional scales. Additionally, comparisons were investigated in mg fatty acid/ g lipid and 

% of total fatty acids to determine if similar or different patterns are apparent through other 

forms of data expression commonly used in fatty acid analysis. Comparing data types, p,g fatty 

acid/ g wet tissue versus mg fatty acid/ g lipid, will infer whether trends in fatty acid 

concentration are differences between sample group fatty acids or simply a function of changes 

in total lipid.

To identify fatty acids not present in commercial standards a subset of individuals from 

each species and sampling expedition was further analyzed using a gas chromatograph GC 

6890N coupled to a mass spectrometer MS5973 (Agilent Technologies) fitted with a DB-23 (60 

m x 0.25 mm i.d., 0.25 p,m film) capillary column (Agilent Technologies) following 

Chantarachoti et al. (2007). An autosampler model 6850 (Agilent Technologies) was used for 

injections of standards and samples at a split ratio of 100:1. The carrier gas used was helium 

(Airgas USA, LLC, Nor Pac region) at a constant flow of 1.0 ml/ min, and an average velocity of 

26 cm/ sec. Inlet temperature was held at 250 °C. Oven programming started from an initial 

temperature of 140 °C and rose at 2 °C/ min to 180 °C, then 0.50 °C/ min to 200 °C, then 

1 °C/ min to 203 °C, and then 20 °C/ min to 220 for a final run time of 65.30 min. The mass 

spectrometer was operated in electron impact mode at 70eV, and the mass range scanned was 

41-440 amu at a rate of 3.42 scans/ sec. Data acquisition started after a 4.50 min solvent delay.
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Transfer line, quadrupole, and source temperatures were 280, 150, and 230 °C, respectively.

Data were collected and analyzed using the MSD ChemStation (Rev. E.02.02.1431, Agilent 

Technologies). Mass spectra of FAMEs were compared to the NIST/EPA/NIH Mass Spectral 

Library (NIST 05 v.2.0, National Institute of Standards and Technology, Gaithersburg, MD, 

U.S.A.). All standards were rerun on the MS for comparison with sample fatty acids. Seventy- 

two fatty acids were identified and quantified for each sample (Table 2).

A five-point calibration curve was generated using FAME Mix C4-C24 Unsaturates to 

determine the response factors (Rf) for 35 fatty acids. The R f were calculated in relation to 18:0 

as proposed by Ackman & Sipos (1964). The R f were used as multipliers for measured peak 

areas of these fatty acids, as they were identified in the samples. For fatty acids not present in 

FAME Mix C4-C24 Unsaturates standard, R f  s were “borrowed” from fatty acids with a similar 

number of double bonds and carbon chain length. Unidentified and non-fatty acid peaks were 

removed from analysis. Fatty acids were named according to the shorthand notation of A:BroX, 

where A is the number of carbon atoms, B is the number of double bonds, and X is the positon of 

the first double bond with respect to the terminal methyl group (Budge et al. 2006).
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Table 2. Fatty Acids Q uantified in Fish Samples. Fatty acids identified and measured in 
whole-body homogenates of Arctic Cod, Canadian Eelpout, and Longear Eelpout from the 
Chukchi and Beaufort seas.

Fatty Acid Fatty Acid Common Name
10:0 decanoic acid
11:0 undecanoic acid
12:0 lauric acid
13:0 tridecanoic acid
iso 14:0 13-methyl-tetradecanoic acid
14:0 myristic acid
14:1®9 physeteric acid
14:1®7 cis-7-tetradecenoic acid
14:1®5 myristoleic acid
iso 15:0 14-methyl-pentadecanoic acid
anteiso 15:0 13-methyl-pentadecanoic acid
15:0 pentadecanoic acid
15:1 pentadecenoic acid
iso 16:0 15-methyl-hexadecanoic acid
anteiso 16:0 14-methyl-hexadecanoic acid
16:0 palmitic acid
16:1m11 cis-5-hexadecenoic acid
16:1®9 hypogeic acid
16:1®7 palmitoleic acid
16:1®5 cis-11-hexadecenoic acid
iso 17:0 16-methyl-heptadecanoic acid
16:1m1 cis-15-hexadecenoic acid
16:2ro6 7,10-hexadecadienoic acid
anteiso 17:0 15-methyl-heptadecanoic acid
16:2ro4 cis-9,12-hexadecadienoic acid
17:0 margaric acid
16:3ro4 cis-6,9,12-hexadecatrienoic acid
17:1®9 cis-8-heptadecenoic acid
18:0 stearic acid
18:1ro13 cis-5-octadecenoic acid
18:1ro9 trans oleic acid
18:1ro11 cis-7-octadecenoic acid
18:1ro9 cis oleic acid
18:1®7 vaccenic acid
18:1®5 cis-13-octadecenoic acid
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Table 2. Continued.

Fatty Acid Fatty Acid Common Name
18:2ro6 cis linoleic acid
18:2ro4 cis-11,14-octadecadienoic acid
18:3ro6 gamolenic acid
18:3ro3 alpha-linolenic acid
18:4ro3 stearidonic acid
18:4ro1 cis-8,11,14,17-octadecatetraenoic acid
20:0 arachidic acid
20:1ro13 cis-7-eicosenoic acid
20:1ro11 gadoleic acid
20:1ro9 gondoic acid
20:1ro7 paullinic acid
22:2A5,11 C22 non-methylene-interrupted
22:2A5,13 C22 non-methylene-interrupted
20:1ro5 cis-15-eicosenoic acid
20:2ro9 cis-8,11-eicosadienoic acid
20:2ro6 eicosadienoic acid
21:0 heneicosanoic acid
20:3ro6 cis-8,11,14-eicosatrienoic acid
20:4ro6 arachidonic acid
20:3ro3 cis-11,14,17-eicosatrienoic acid
20:4ro3 cis-8,11,14,17-eicsoatetraenoic acid
20:5ro3 eicosapentaenoic acid
22:0 behenic acid
22:1ro11 cetoleic acid
22:1ro9 erucic acid
22:1ro7 cis-15-docosenoic acid
22:2A7,13 C22 non-methylene-interrupted
22:2A7,15 C22 non-methylene-interrupted
21:5ro3 cis-6,9,12,15,18-heneicosapentaenoic
22:4ro6 adrenic acid
22:5ro6 osbond acid
22:5ro3 docosapentaenoic acid
24:0 lignoceric acid
22:6ro3 docosahexaenoic acid
24:1ro11 cis-13-tetracosenoic acid
24:1ro9 nervonic acid
24:1ro7 cis-17-tetracosenoic acid

16



Statistical Analysis

To analyze profiles while conferring equal weight to all fatty acid variables, data were 

left untransformed for all analyses. To examine the potential effect of down-weighting the more 

abundant fatty acids, tests were repeated after taking the square root and the log(x+1) of the data. 

Statistical outcome and interpretation were not affected by either square root or a more severe 

log(x+1) transformation (Appendix A). For all tests performed, P < 0.05 was considered 

significant.

Differences in fish wet weight (g) and total lipid content (g lipid/ g wet tissue) between 

regions and years were analyzed using Analysis of Variance (ANOVA) and Tukey HSD tests for 

pairwise comparisons across all sample groups (i.e., 2011, 2012, and 2013 Chukchi Sea Arctic 

Cod; 2010, 2011, and 2012 Beaufort Sea Arctic Cod; 2011 and 2012 Canadian Eelpout; 2012 

and 2013 Longear Eelpout) using R statistical software (R Core Team 2013). ANOVA, Tukey 

HSD, and Welch two-sample t-tests were used to compare mean concentrations of specific fatty 

acids, fatty acid classes, and fatty acid trophic markers (i.e., summed concentrations or ratios of 

individual or summed fatty acids) in R. Multivariate analyses were conducted using the software 

package PRIMER v6 (PRIMER-E Ltd, Plymouth, UK). The 72 fatty acids measured were 

converted from peak area to p,g fatty acid/ g wet tissue by relation to known quantities of an 

internal standard (25:0) as described above. Fatty acid concentrations were also quantified as mg 

fatty acid/ g lipid to determine whether patterns in fatty acid profiles were influenced by 

differences in total lipid among individuals.

Fatty acids were grouped into classes based on the number of double bonds: saturated 

fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids 

(PUFA). In addition to fatty acid classes, fatty acid trophic markers were examined to investigate
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potential food habits and food web conditions. Fatty acid trophic markers measured included the 

sum of 20:1ro9 and 22:1ro11, a marker for calanoid copepods (Graeve et al. 1997, Auel et al. 

2002, Falk-Petersen et al. 2002), the ratio of 18:1ro9/ 18:1ro7 as a marker for carnivory (Graeve 

et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2009), and the ratio of ro7/ ro9 fatty acids as a 

marker for benthic feeding (Budge et al. 2007). The relative proportion of diatoms to flagellates 

in the fish diet was investigated using the diatom marker 16:1ro7/ 16:0 (Viso & Marty 1993, St. 

John & Lund 1996, Falk-Petersen et al. 2002) and the diatom versus dinoflagellate marker 

20:5ro3/ 22:6ro3 (Falk-Petersen et al. 2002, Dalsgaard et al. 2003).

Concentration data (in p,g fatty acid/ g wet tissue and mg fatty acid/ g lipid) for the full 

suite of 72 fatty acids were used to test the null hypotheses of no difference in fatty acid profiles 

of Arctic forage fishes among species, years, or between regions. Analysis of Similarity 

(ANOSIM) and Permutational Analysis of Variance (PERMANOVA) were used for hypothesis- 

testing based on Bray-Curtis similarity matrices (Bray & Curtis 1957). PERMANOVA was used 

to determine whether fatty acid profiles differed among species, or within species among regions 

and years. Fish weight and sampling depth were also included in PERMANOVA tests as 

covariates to determine whether fatty acid profiles varied with fish weight, or across the depths at 

which they were sampled. Covariates were fit first into the model, and then, given the effect of 

these factors, the individual terms of interest (i.e., species, region, and year) were fit into the 

model in the order they appear in Tables 3 and 4 from top to bottom. With few outliers, fish 

weight was correlated to length (Figure 4). Consequently, weight and length had similar effects 

on fatty acid profile and were thus considered as analogous variables for fish size. For simplicity, 

all results presented here used total fish wet weight (g) as a proxy for fish size. For tests that 

showed significant differences between sample groups, Similarity Percentages (SIMPER) tests
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were used to investigate the contribution of specific fatty acids to differences among species, 

regions, and years. Only fatty acids that contributed to 90% of the cumulative dissimilarity 

among sample sets were reported. Differences in fish fatty acid profiles were visualized using 

Non-Metric Multidimensional Scaling (nMDS) based on the Bray-Curtis similarity matrix.

Table 3. PERMANOVA of Fatty Acid Profiles and Covariates Corrected to Total Tissue 
Mass. Results of PERMANOVA tests for all fish sample fatty acid profiles in pg fatty acids/ g 
wet tissue to test the effect of species (Arctic Cod, Canadian Eelpout, and Longear Eelpout), 
region (Beaufort and Chukchi seas), and years (2010-2013). Fish wet weight and station depth 
were included in the model as covariates. Summary includes degrees of freedom (df), sum of 
squares (SS), mean square (MS), pseudo-F statistic (Pseudo-F), P-values, and number of unique 
permutations (Unique perms). Significant P-values (P < 0.05) are given in bold._____________

Df SS MS Pseudo-F P-value Unique perms
A ll Fishes
W eight 1 3806 3806 4.241 0.011 998
Depth 1 26460 26460 29.486 0.001 998
Species 2 47510 23755 26.471 0.001 998
Region 1 12463 12463 13.888 0.001 998
Year 3 29111 9703.8 10.813 0.001 998
Residuals 168 150760 897.39
Total 176 270110

Table 4. PERMANOVA of Fatty Acid Profiles and Covariates Corrected to Total Lipid.
Results of PERMANOVA tests for all fish fatty acid profiles in mg fatty acids/ g lipid to test the 
effect of species (Arctic Cod, Canadian Eelpout, and Longear Eelpout), region (Beaufort and 
Chukchi seas), and year (2010-2013). Fish wet weight and station depth were included in the 
model as covariates. Summary includes degrees of freedom (df), sum of squares (SS), mean 
square (MS), pseudo-F statistic (Pseudo-F), P-values, and number of unique permutations
(Unique perms). Significant P-values (P < 0.05) are given in bold.

Df SS MS Pseudo-F eluv-P Unique perms
A ll Fishes
W eight 1 8340.7 8340.7 11.982 0.001 999
Depth 1 13324 13324 19.142 0.001 999
Species 2 24469 12234 17.576 0.001 999
Region 1 3127.4 3127.4 4.493 0.005 998
Year 3 12438 4145.8 5.956 0.001 998
Residuals 168 116940 696.08
Total 176 178640
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RESULTS 

Interspecific variation

Mean fish weights, lengths, and total lipid content by species, region, and year are 

summarized in Table 5. Total lipid content was highest for Arctic Cod pooled for all collection 

years and regions at a mean of 0.04 ± 0.02 g lipid/ g wet tissue. Although, when pooled for all 

collection years, Longear Eelpout were significantly heavier (95.57 g ± 111.75) than Arctic Cod

250.00

200.00

150.00

£
-  iMUUU 
£

50.00

0.00

2010

■ 2011

□ 2012

□ 2013

a

_L
a

_JL_

2011 2012 2013 
Beaufort Sea 
Arctic Cod

a

2010 2011 2012

Chukchi Sea 
Arctic Cod

2011 2012 2012 2013
Beaufort Sea Beaufort Sea 

Canadian Eelpout Longear Eelpout
Sample Group Averages

b

b

a
a

a a

Figure 5. M ean Fish Sample W et W eight. Mean wet weight (g) for sample sets: for: 
2011-2012 Beaufort Sea Arctic Cod, 2010-2012 Chukchi Sea Arctic Cod, 2011-2012 
Beaufort Sea Canadian Eelpout, 2012-2013 Beaufort Sea Canadian Eelpout. Error bars 
represent 1 standard deviation, and lower-case letters above bars represent significant 
differences among sample sets (i.e., 2010, 2011, and 2012 Beaufort Sea Arctic Cod; 2011, 
2012, and 2013 Chukchi Sea Arctic Cod; 2011 and 2012 Canadian Eelpout; 2012 and 2013 
Longear Eelpout; P < 0.05); same letter means no difference. Bars are shaded according to 
year.
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(9.73 g ± 0.01; P = 0.001) and Canadian Eelpout (12.66 g ± 25.25; P = 0.001; Figure 5), both 

Eelpout species had significantly less total lipid than Arctic Cod (P = 0.001 for both 

comparisons; Table 5, Figure 6). Total lipid content did not differ significantly between the two 

Eelpout species when all years were pooled (P = 0.350). Classification of species using statistical 

analysis of fatty acid profiles can be improved by taking into account size or age classes of 

species (Iverson et al. 2002). In this study, weight (which was positively correlated to fish length 

for all three study species) had a significant effect on fatty acid profile; however, when included
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Figure 6. M ean Fish Lipid Content. Mean total lipid content (g lipid/ g wet tissue) for: 
2011-2012 Beaufort Sea Arctic Cod, 2010-2012 Chukchi Sea Arctic Cod, 2011-2012 
Beaufort Sea Canadian Eelpout, 2012-2013 Beaufort Sea Canadian Eelpout. Error bars 
represent 1 standard deviation, and lower-case letters above bars represent significant 
differences among sample sets (i.e., 2010, 2011, and 2012 Beaufort Sea Arctic Cod; 2011, 
2012, and 2013 Chukchi Sea Arctic Cod; 2011 and 2012 Canadian Eelpout; 2012 and 2013 
Longear Eelpout; P < 0.05); same letter means no difference. Bars are shaded according to 
year.
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Table 5. Length, W eight, and Lipid Content of Arctic Cod, Canadian Eelpout, and Longear Eelpout. Mean length (mm), weight 
(g), and total lipid content (g lipid/ g wet tissue) of Arctic Cod by region (Beaufort and Chukchi seas) and year (2010-2013), Canadian 
Eelpout by year (2011-2012), and Longear Eelpout by year (2012-2013). Values are reported as mean ± 1 standard deviation.

Beaufort Sea Arctic Cod
2011 2012 2013

Length (mm) 98.95 ± 26.84 126.74 ± 32.71 117.36 ± 26.38
Weight (g) 7.86 ± 6.46 14.13 ± 12.06 10.99 ± 6.53
Lipid Content (g lipid/ g wet tissue) 0.06 ± 0.01 0.03 ± 0.01 0.02 ± 0.01

Chukchi Sea Arctic Cod
2010 2011 2012

Length (mm) 89.64 ± 21.37 84.67 ± 24.73 118.30 ± 17.37
Weight (g) 5.39 ± 3.10 4.81 ± 6.26 12.13 ± 6.01
Lipid Content (g lipid/ g wet tissue) 0.03 ± 0.01 0.07 ± 0.02 0.06 ± 0.01

Beaufort Sea Canadian Eelpout
2011 2012

Length (mm) 101.53 ± 48.99 106.83 ± 56.34
Weight (g) 12.89 ± 27.69 11.96 ± 17.96
Lipid Content (g lipid/ g wet tissue) 0.02 ± 0.01 0.02 ± 0.00

Beaufort Se a Longear Eelpout
2012 2013

Length (mm) 214.41 ± 114.30 211.83 ± 99.23
Weight (g) 87.18 ± 98.06 103.60 ± 125.14
Lipid Content (g lipid/ g wet tissue) 0.02 ± 0.01 0.01 ± 0.01



in the PERMANOVA model, other factors (i.e., species, region, year) affected fatty acid profile 

beyond the observed differences based on weight alone (Tables 3 -  4).

Seventy-two fatty acids were identified and quantified for each sample, which accounted 

for an average of 90.1% of the total peak area measured (the remaining 9.9% included 

unidentified fatty acids and non-fatty acid molecules). Mean concentrations of fatty acids, fatty 

acid classes, and trophic markers by species, regions, and years are summarized in Appendix B 

Tables 11 -  16. When all samples were pooled across regions and years, fish species had a 

significant effect on fatty acid profile when fatty acids were expressed as p,g fatty acid/ g wet 

tissue and mg fatty acid/ g lipid (P = 0.001; Tables 3 -  4). Most noticeably, Arctic Cod had a 

significantly different profile than those of both Eelpout species, in both tests with all samples 

pooled and comparisons with only 2012 samples from the Beaufort Sea (Tables 6 and 7, Figure 

7a). The two Eelpout species, Canadian Eelpout and Longear Eelpout, did not demonstrate 

significantly different fatty acid profiles expressed in ^g fatty acid / g wet tissue when all sample 

years were pooled (P = 0.062; Table 6, Figure 7a). However, when data were converted to units 

of mg fatty acid/ g lipid, fatty acid profiles of Canadian Eelpout and Longear Eelpout did differ 

significantly (P = 0.001; Table 7).

Mean concentrations of individual fatty acids, fatty acid classes, and fatty acid trophic 

markers for Arctic Cod, Canadian Eelpout and Longear Eelpout are summarized in Appendix B 

Tables 11-16 as p,g fatty acid/ g wet tissue and mg fatty acid/ g lipid. With all sample years 

pooled, Arctic Cod had higher concentrations of total MUFAs/ g wet tissue and as % of total 

fatty acids than Canadian and Longear Eelpout (P = 0.001 for both comparisons; Figure 8a and 

c). However, as total MUFAs/ g lipid, Longear Eelpout had the highest mean concentration of 

total MUFAs, followed by Arctic Cod and then Canadian Eelpout, with Longear and Canadian
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Eelpout total MUFAs differing significantly (P = 0.042; Figure 8b). Arctic Cod and Longear 

Eelpout also differed significantly in total SFA/ g wet tissue (P = 0.002), but all three species had 

similar amounts of total PUFA (P = 0.926; Figure 8a). When converted to total SFAs/ g lipid and 

PUFAs/ g lipid, mean concentrations of total SFAs and PUFAs were highest in Longear Eelpout, 

followed by Canadian Eelpout, with Arctic Cod displaying the lowest mean concentrations of 

both fatty acid classes and differing significantly from Longear Eelpout (SFA: P = 0.003, PUFA: 

P = 0.001; Figure 8b).

Six fatty acids, 16:1ro7, 20:1ro9, 16:0, 22:1ro11, 22:6ro3, and 18:1ro9 cis, in order of 

decreasing contribution, accounted for 64.5% of the dissimilarities in fatty acid profiles among 

Arctic Cod and Eelpout species (Table 8 a-b; Figure 9). When concentration data were examined 

in units of p,g fatty acid/ g wet tissue, these six fatty acids had higher mean concentrations in 

Arctic Cod than both Eelpout species. However, when data were expressed as mg fatty acid/ g 

total lipid, 16:0, 22:6ro3, and 18:1ro9 cis displayed higher mean concentrations in Eelpout species 

compared with Arctic Cod, and the mean concentration of 16:1ro7 was highest in Longear 

Eelpout, followed by Arctic Cod and Canadian Eelpout. Mean concentrations of the long-chain 

MUFAs 20:1ro9 and 22:1ro11 were significantly higher in Arctic Cod than both Eelpout species 

(relative to both wet tissue weight and total lipid; P = 0.001 for both data types, fatty acids, and 

species). Mean concentrations of non-methylene-interrupted fatty acids (NMIs), an indicator of 

benthic food sources (Budge et al. 2007, Cooper et al. 2009), were highest in Longear Eelpout, 

followed by Canadian Eelpout (Figure 10). NMIs 22:2A7,13 and 22:2A7,15 were significantly 

higher in Longear Eelpout than Canadian Eelpout (P = 0.01 and 0.03, respectively). NMIs were 

not identified in any Arctic Cod samples. The ratio of total ro7/ ro9 fatty acids for species group 

means was also used as an indicator of benthic feeding (Budge et al. 2007). Canadian Eelpout
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and Longear Eelpout displayed significantly higher ratios of ro7/ ro9 fatty acids compared with

Arctic Cod (P = 0.001; Figure 11).

Table 6. ANOSIM  Tests for Differences in Fatty  Acid Profiles Between Sample Sets 
Corrected to Total Tissue Mass. Results of ANOSIM test of fatty acid profiles (pg fatty acids/ 
g wet tissue) for differences among species (all samples pooled), test for among-species 
differences in Beaufort Sea fish (all years pooled), test for among-species differences in 2012 
Beaufort Sea fish, test for regional and interannual differences in pooled Beaufort and Chukchi 
Sea Arctic Cod from 2011 and 2012, and tests for interannual differences in Beaufort Sea Arctic 
Cod (2011-2013), Chukchi Sea Arctic Cod (2010-2012), Canadian Eelpout (Beaufort Sea, 
2011-2012), and Longear Eelpout (Beaufort Sea, 2012-2013). Significant P-values (P < 0.05) 
are given in bold.

Groups R Statistic P-value
A ll fishes
Global Test 0.375 0.001
Arctic Cod vs. C anadian Eelpout 0.470 0.001
Arctic Cod vs. Longear Eelpout 0.400 0.001
Canadian Eelpout vs. Longear Eelpout 0.074 0.062

Beaufort Sea
Global Test 0.258 0.001
Arctic Cod vs. C anadian Eelpout 0.352 0.001
Arctic Cod vs. Longear Eelpout 0.291 0.001
Canadian Eelpout vs. Longear Eelpout 0.074 0.061

Beaufort Sea 2012
Global Test 0.198 0.003
Arctic Cod vs. C anadian Eelpout 0.231 0.045
Arctic Cod vs. Longear Eelpout 0.246 0.001
Canadian Eelpout vs. Longear Eelpout 0.044 0.302

Arctic Cod 2011 & 2012
B eaufort Sea vs. Chukchi Sea 0.297 0.001
2011 vs. 2012 0.315 0.001

Arctic Cod Beaufort Sea
Global Test 0.339 0.001
2011 vs. 2012 0.439 0.001
2011 vs. 2013 0.532 0.001
2012 vs. 2013 0.047 0.097
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Table 6. Continued

Groups R  Statistic P-value
Arctic Cod Chukchi Sea
Global Test 0.386 0.001
2010 vs. 2011 0.627 0.001
2010 vs. 2012 0.513 0.001
2011 vs. 2012 0.166 0.009

Canadian Eelpout
2011 vs. 2012 0.062 0.296

Longear Eelpout
2012 vs. 2013 0.036 0.099
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Figure 7. M ultivariate Representation of Fatty Acid Profiles of Species, Regions, and 
Years. Non-metric multidimensional scaling (nMDS) plots of fatty acid profiles based on 
Bray-Curtis similarity matrices for (a) all samples, (b) 2011 and 2012 Arctic Cod from 
the Chukchi and Beaufort seas, (c) Beaufort Sea Arctic Cod, (d) Chukchi Sea Arctic Cod, 
(e) Beaufort Sea Canadian Eelpout, and (f) Beaufort Sea Longear Eelpout. Each data 
point represents the fatty acid profile of one individual fish.
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Table 7. ANOSIM  Tests for Differences in Fatty  Acid Profiles Between Sample Sets 
Corrected to Total Lipid. Results of ANOSIM test of fatty acid profiles (mg fatty acids/ g lipid) 
for differences among species (all samples pooled), test for among-species differences in 
Beaufort Sea fish (all years pooled), test for among-species differences in 2012 Beaufort Sea 
fish, test for regional and interannual differences in pooled Beaufort and Chukchi Sea Arctic Cod 
from 2011 and 2012, and tests for interannual differences in Beaufort Sea Arctic Cod (2011
2013), Chukchi Sea Arctic Cod (2010-2012), Canadian Eelpout (Beaufort Sea, 2011-2012), and 
Longear Eelpout (Beaufort Sea, 2012-2013). Significant P-values (P < 0.05) are given in bold.

Groups R  Statistic P-value
A ll fishes
Global Test 0.466 0.001
Arctic Cod vs. C anadian Eelpout 0.528 0.001
Arctic Cod vs. Longear Eelpout 0.483 0.001
Canadian Eelpout vs. Longear Eelpout 0.222 0.001

Beaufort Sea
Global Test 0.384 0.001
Arctic Cod vs. C anadian Eelpout 0.448 0.001
Arctic Cod vs. Longear Eelpout 0.424 0.001
Canadian Eelpout vs. Longear Eelpout 0.222 0.001

Beaufort Sea 2012
Global Test 0.345 0.001
Arctic Cod vs. C anadian Eelpout 0.538 0.003
Arctic Cod vs. Longear Eelpout 0.377 0.001
Canadian Eelpout vs. Longear Eelpout 0.127 0.153

Arctic Cod 2011 & 2012
B eaufort Sea vs. Chukchi Sea 0.197 0.001
2011 vs. 2012 0.302 0.001

Arctic Cod Beaufort Sea
Global Test 0.217 0.001
2011 vs. 2012 0.360 0.001
2011 vs. 2013 0.291 0.001
2012 vs. 2013 0.025 0.193

Arctic Cod Chukchi Sea
Global Test 0.337 0.001
2010 vs. 2011 0.712 0.001
2010 vs. 2012 0.231 0.009
2011 vs. 2012 0.231 0.001
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Table 7. Continued.

Groups R  Statistic Significance Level (P-value)
Canadian Eelpout
2011 vs. 2012 -0.001 0.448

Longear Eelpout
2012 vs. 2013 0.237 0.001
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Table 8. Individual Fatty Acids Contributing to Differences in Fatty Acid Profiles Between 
Sample Sets, Corrected to Total Tissue Mass. Average dissimilarity (Av. Diss) between 
sample sets and percent contribution of individual fatty acids to the dissimilarity between 
species, region, and year. Only fatty acids contributing up to 90% of cumulative dissimilarity 
among sample sets were reported. Dashes represent fatty acids that did not contribute up to the 
90% cumulative dissimilarity among sample sets. Comparison between groups (a) Arctic Cod 
and Canadian Eelpout (Beaufort Sea 2012), (b) Arctic Cod and Longear Eelpout (Beaufort Sea 
2012), (c) Chukchi and Beaufort seas Arctic Cod (2011 & 2012), (d) 2011 and 2012 Beaufort 
Sea Arctic Cod, (e) 2011 and 2013 Beaufort Sea Arctic Cod, (f) 2010 and 2011 Chukchi Sea 
Arctic Cod, (g) 2010 and 2012 Chukchi Sea Arctic Cod, and (h) 2011 and 2012 Chukchi Sea 
Arctic Cod. Comparisons were only reported for those that displayed significant differences 
based on ANOSIM (Table 6).

Comparison a b c d e f g h
Av. Diss. 57.38 53.16 41.83 48.83 54.65 40.75 46.83 33.92
14:0 3.91 4.17 5.58 5.17 5.55 7.39 6.47 4.44
16:0 10.82 10.44 10.35 9.35 10.98 9.46 8.55 8.18
16:1«7 15.22 16.39 13.25 17.36 17.30 8.97 14.35 12.64
16:2«4 - - - - - - - 0.84
17:0 - - - - - - 1.08 1.16
18:0 1.85 1.40 1.46 1.14 1.31 - 1.15 1.27
18:1«11 1.71 1.68 1.43 1.58 1.52 1.77 1.10 1.34
18:1«9 cis 6.60 6.85 6.93 6.79 6.75 4.06 6.16 6.52
18:1«7 4.10 3.99 3.61 3.44 3.46 1.61 3.55 3.99
18:1«5 0.99 1.00 - - - - - -
18:4«3 - - 0.95 - - - 1.34 1.43
20:1«11 1.20 1.22 4.27 1.73 1.67 4.62 3.96 4.65
20:1«9 14.07 13.90 16.94 17.48 17.79 26.09 18.09 15.48
20:1«7 1.59 1.88 1.27 2.62 2.43 - - -
20:4«6 1.71 2.45 - - - - - -
20:5«3 5.84 5.80 5.88 3.30 2.87 1.98 8.21 9.96
22:1«11 10.42 10.49 11.86 12.38 11.74 18.82 10.75 11.02
22:1«9 2.45 2.43 1.96 3.25 3.14 2.78 1.58 1.45
22:6«3 8.14 6.28 4.35 4.67 3.50 2.64 4.21 5.67
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Intraspecific variation

Regional differences in Arctic Cod

Within-species differences among regions were only examined for Arctic Cod as Eelpout 

were not collected in the Chukchi Sea. When pooled across years, mean Arctic Cod size did not 

significantly differ between the Chukchi and Beaufort seas (P = 0.061; Figure 5). Mean lipid 

content of Arctic Cod was higher in the Chukchi Sea than in the Beaufort Sea in 2011 and 2012 

(Figure 6), but the difference was only significant in 2012 (P = 0.001). When data from all years 

were pooled, Arctic Cod had higher lipid content in the Chukchi Sea than in the Beaufort Sea 

(P = 0.001).
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Figure 9. M ean Concentration of Individual Fatty Acids Contributing to Differences 
Among Arctic Cod and Eelpout Species. Fatty acids (p,g fatty acid/ g wet tissue) that 
contribute the most to dissimilarity among species based on similarity percentages test 
(SIMPER). Error bars represent 1 standard deviation.
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Fatty acid profiles of Arctic Cod also differed between the Chukchi and Beaufort seas 

(P = 0.001; Table 6, Figure 7b). However, when the variation explained by sampling depth was 

removed from the PERMANOVA model, region no longer had an effect on the fatty acid profile 

when expressed in relation to total lipid (P = 0.141), suggesting that apparent regional 

differences in fatty acid profiles may actually reflect differences in sampling depth (mean 

Beaufort Sea sampling depth was 236 m compared with 49 m in the Chukchi Sea). When fatty

acid concentrations were expressed as
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Figure 10. Non-M ethylene-Interrupted Fatty 
Acids (NMI) in Eelpout Species. Mean 
concentrations of NMIs (pg fatty acid/ g wet tissue) 
for Canadian Eelpout and Longear Eelpout. Error 
bars represent 1 standard deviation.

pg fatty acid/ g wet tissue, region had a 

significant effect on fatty acid profile (P 

= 0.032) even when removing the effect 

of depth in the PERMANOVA model. 

However, when variation explained by 

fish weight was also removed, the 

regional effect disappeared (P = 0.066). 

This could suggest that sample depth 

and fish weight were better predictors 

of within-species variation in fatty acid 

profile than region alone.

The six fatty acids 20:1ro9, 

16:1ro7, 22:1ro11, 16:0, 18:1ro9 cis, and 

20:5ro3 (in order of decreasing 

contribution) contributed to 65.2% of 

the difference in Arctic Cod fatty acid
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profiles between regions with all years pooled (Table 8c, Figure 12). Concentrations of long- 

chain MUFAs exhibited some of the greatest differences between regions, such as 20:1ro9 

(P = 0.001) and 22:1ro11 (P = 0.001). Essential fatty acid 20:5ro3 (EPA; p,g/ g wet tissue) was 

significantly higher in Chukchi Sea Arctic Cod (P = 0.004; Figure 13a), but did not differ 

significantly from Beaufort Sea fish when expressed as mg/ g lipid or % of total fatty acid 

(P = 0.433 and 0.242, respectively; Figure 13b and c). The mean concentration of 22:6ro3 (DHA; 

p,g/ g wet tissue) was slightly higher in Chukchi Sea Arctic Cod than in the Beaufort Sea, though

not significantly different (P = 0.156; 

Figure 13 a); however, when expressed as 

mg/ g lipid and % of total fatty acid, mean 

concentration of 22:6ro3 was significantly 

lower in Chukchi Sea fish (P = 0.028 and 

0.001, respectively; Figure 13b and c).

Total SFA (P = 0.001), MUFA 

(P = 0.004), and PUFA (P = 0.012) per g 

wet tissue were higher in the Chukchi Sea 

than the Beaufort Sea (Figure 14a); 

however, when expressed on a total lipid 

basis, only total SFA were higher in the

Chukchi Sea than the Beaufort Sea

Figure 11. Com parison of co7/ co9 Fatty Acids . . .  A A A& v  J (P = 0.003), while total MUFA and PUFA
among Forage Fish Species. Mean ratios of
total co7 to co9 fatty acids for Arctic Cod, were not significantly different (Figure
Canadian Eelpout, and Longear Eelpout. Error
bars represent 1 standard deviation. 14b; P = 0.274 and 0.824, respectively) and
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when expressed as % of total fatty acids total PUFA were lower in the Chukchi Sea than the 

Beaufort Sea (P = 0.018) and total SFA and MUFA did not change ( P = 0.061 and 0.212, 

respectively; Figure 14c).

Interannual differences

In the Beaufort Sea, mean Arctic Cod weight did not differ between years (P = 0.084; 

Figure 5). However, lipid content (g lipid/ g wet tissue) in Beaufort Sea Arctic Cod was 

significantly higher in 2011 than 2012 and 2013 (P = 0.001; Figure 6). In Chukchi Sea Arctic 

Cod, both mean body weight and lipid content varied significantly with year (P = 0.001 and 

0.001, respectively). Fish from 2012 in the Chukchi Sea had significantly higher mean weight 

than 2010 and 2011 (P = 0.001; Figure 5), while 2010 had significantly lower lipid content than 

2011 and 2012 (P = 0.001; Figure 6).

When fatty acid profiles of Arctic Cod were examined within each region, they differed 

among years in almost all pairwise comparisons (Table 6, Figure 7c-d). In the Beaufort Sea, 

profiles differed significantly between 2011 and 2012 (P = 0.001) and 2011 and 2013 

(P = 0.001), but not between 2012 and 2013 (P = 0.097; Table 6, Figure 7c). In the Chukchi Sea, 

profiles differed significantly among all three sampling years (2010-2011, P = 0.001; 2010

2012, P = 0.001; 2011-2012, P = 0.009; Table 6, Figure 7d).

In Beaufort Sea Arctic Cod, total SFA and MUFA decreased from 2011 to 2013 when 

data were expressed as p,g fatty acid/ g wet tissue (P = 0.001 and 0.001, respectively ; Figure 

15a). When expressed as mg fatty acid/g lipid total PUFA decreased from 2011 to 2013 

(P = 0.001; Figure 15b), and when expressed as % of total fatty acid PUFA increased from 2011 

to 2013 (P = 0.001; Figure 15c). The same fatty acids (14:0, 16:0, 16:1ro7, 18:1ro9 cis, 20:1ro9,
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20:5ro3, 22:1ro11, 22:6ro3) contributed to the majority of differences among years in the Beaufort 

Sea as well as the Chukchi Sea Arctic Cod (Table 8d-e). However, while concentrations 

(pg fatty acid/ g wet tissue and mg fatty acid/ g lipid) of most of these eight fatty acids increased 

or did not change during the study period in the Chukchi Sea, they decreased in the Beaufort Sea 

(Figure 12). Two exceptions were 20:5ro3 and 22:6ro3, which increased significantly from 2011 

to 2012 in the Beaufort Sea when fatty acid concentration was corrected to total lipid (P = 0.001 

and 0.001, respectively).

When data were expressed as pg fatty acid/ g wet tissue, total SFA, MUFA, and PUFA 

increased from 2010 to 2012 in Chukchi Sea Arctic Cod (P = 0.001, 0.001, and 0.001; Figure 

16a). Trends were similar when data were expressed as mg fatty acid/ g lipid (Figure 16b).
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However, when data were expressed as % of total fatty acids total SFA decreased significantly 

from 2010 to 2011 (P = 0.001), total MUFA increased from 2010 to 2011 (P = 0.001) then 

decreased in 2012 (P = 0.001), and total PUFA was significantly lower in 2011 (P = 0.001;

Figure 16c). When comparing all three sample years (2010-2012) for Chukchi Sea Arctic Cod, 

the fatty acid 20:1ro9, which has been used as an ice-algal marker (North et al. 2014), contributed 

to the most dissimilarity among years (Table 8f-h). The fatty acids 16:0 and 16:1ro7 showed a 

similar pattern of increase from 2010 to 2012 (P = 0.003 and 0.001, respectively), and mean 

concentrations of 20:1ro9 and 22:1ro11 increased from 2010 to 2011 (P = 0.001 and 0.001, 

respectively), but did not change significantly from 2011 to 2012 (P = 0.947 and 0.812, 

respectively; Figure 12).

Eelpout were only sampled in the Beaufort Sea, and each species was only sampled in 

two years. Canadian Eelpout were sampled in 2011 and 2012, and Longear Eelpout were 

sampled in 2012 and 2013. While no significant difference was found in fatty acid profiles 

between years for Canadian Eelpout when data were corrected to total wet tissue or lipid weight 

(2011 and 2012; P = 0.296 and 0.448, respectively), Longear Eelpout fatty acid profiles showed 

significant differences between years (2012 and 2013) when data were expressed as mg fatty 

acid/ g lipid (P = 0.001), but not when data were expressed as pg fatty acid/ g wet tissue 

(P = 0.099; Tables 5 and 6, Figure 7e-f). In order of decreasing contribution, fatty acids 16:0, 

16:1ro7, 22:6ro3, 18:1ro9, 20:5ro3, and 18:1ro7 contributed to 65.1% of the difference between 

fatty acid profiles of Longear Eelpout from the two sampling years (Table 9, column m).
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Table 9. Individual Fatty Acids Contributing to Differences in Fatty Acid Profiles Between Sample Sets, Corrected to Total 
Lipid. Average dissimilarity (Av. Diss) between sample sets and percent contribution of individual fatty acids to the dissimilarity 
between species, region, and year. Only fatty acids contributing up to 90% of cumulative dissimilarity among sample sets were 
reported. Dashes represent fatty acids that did not contribute up to the 90% cumulative dissimilarity among sample sets. Comparison 
between groups (a) Arctic Cod and Canadian Eelpout (Beaufort Sea 2012), (b) Arctic Cod and Longear Eelpout (Beaufort Sea 2012), 
(c) Canadian Eelpout and Longear Eelpout (Beaufort Sea 2012), (d) Chukchi and Beaufort seas Arctic Cod (2011 & 2012), (e) 2011 
and 2012 Beaufort Sea Arctic Cod, (f) 2011 and 2013 Beaufort Sea Arctic Cod, (g) 2010 and 2011 Chukchi Sea Arctic Cod, (h) 2010 
and 2012 Chukchi Sea Arctic Cod, (k) 2011 and 2012 Chukchi Sea Arctic Cod, and (m) 2012 and 2013 Longear Eelpout. Comparisons 
were only reported for those that displayed significant differences based on ANOSIM (Table 7).

Comparison a b c d e f g h k m
Av. Diss. 47.75 46.59 47.84 32.16 36.03 38.34 31.10 32.72 31.69 41.83
14:0 3.02 2.03 1.94 4.80 3.87 4.72 3.58 4.98 3.97 1.60
16:0 9.07 9.57 12.34 7.34 5.10 6.66 8.78 9.34 8.08 14.58
16:1«7 12.41 11.77 13.64 14.98 14.99 15.42 6.30 11.70 13.65 13.21
16:1«5 - - 0.63 - 1.00 - - - - -
16:2«4 - - - - - - - - 0.96 -
17:0 - - - - - - - - 1.31 -
18:0 2.99 3.71 3.88 1.43 1.49 1.46 3.86 2.81 1.49 5.17
18:1«11 1.59 1.03 0.79 1.52 1.60 1.52 - 1.30 1.30 0.94
18:1«9 cis 6.67 8.15 9.16 7.30 6.95 7.00 5.82 6.97 7.10 9.92
18:1«7 5.73 7.21 7.26 3.97 3.30 3.25 4.95 4.48 4.48 6.78
18:1«5 0.83 0.67 0.87 0.87 - 1.08 - - - -
18:2«6 cis - - 0.65 - - - - - - 0.62
18:4«3 - - - 1.02 - - - 1.21 1.61 -
20:1«11 1.11 0.94 1.13 4.60 1.62 1.45 4.74 4.46 4.79 1.00
20:1«9 12.56 7.47 3.82 14.83 14.58 15.21 18.31 16.62 13.15 4.08
20:1«7 1.48 1.72 1.83 1.58 2.51 2.32 - - - 1.48
20:4«6 3.12 6.06 5.33 - - - - - - 6.13
20:5«3 6.71 9.60 11.04 6.21 6.84 5.45 7.59 7.10 11.26 8.17
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Table 9. Continued.

Comparison a B c d e f g h k m
22:1«11 9.82 6.66 0.94 10.89 11.95 10.77 13.86 10.41 8.93 1.20
22:1«9 2.22 1.36 1.95 3.02 2.67 1.89 1.35 1.16 -
22:5w6 - - - - - - - - - 0.61
22:5w3 0.78 1.42 1.54 - - - - - 0.74 1.27
22:6w3 10.04 10.42 12.55 7.07 11.51 11.51 10.83 6.20 6.67 12.45
24:1w9 - 0.74 0.87 - - - - - - 1.18



DISCUSSION

This study investigated inter- and intra-species variations in fatty acid profiles, lipid 

content, and fatty acid trophic markers of Alaskan Arctic forage fish. Differing patterns in fatty 

acid classes, thus indicating variations in energy storage, suggest variable feeding conditions and 

fluctuations in forage fish quality as prey in the Alaskan Arctic. Regional and interannual 

variations in fatty acid profiles were observed in Arctic Cod from the Beaufort and Chukchi seas, 

potentially signifying that the Chukchi Sea supports a more energy-dense Arctic Cod than the 

Beaufort Sea. Variations in climate and ice conditions affecting food sources for forage fishes 

may cause interannual fluctuations in the fatty acid profile of this important prey base for higher 

trophic levels in either region. In addition to regional variation within Arctic Cod, this study 

measured significant differences in fatty acid profiles among different forage fish species in the 

Beaufort Sea. Differences in lipid content, fatty acid classes, and fatty acid trophic markers 

among Arctic Cod and Eelpout species are consistent with previous findings of Arctic Cod 

feeding on mainly pelagic prey (Lowry & Frost 1981, Bradstreet & Cross 1982, Ajiad & 

Gjos^ter 1990), and Eelpout feeding on mainly benthic prey (Aydin et al. 2007, Wienerroither et 

al. 2011). While there was some overlap in fatty acid profiles among species, these differences 

support differential habitat use between these three taxa in the Alaskan Arctic.

Species-specific variation in feeding preferences

This study demonstrated significant differences in fatty acid profiles between Arctic Cod 

and the two Eelpout species, confirming niche separation in foraging habits of these fishes. 

Previous studies have found that fish and invertebrates with similar foraging ecologies have 

similar fatty acid profiles, such that groups of similar species could be clustered through fatty
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acid mixing models (Iverson et al. 2002). However, the utility of fatty acid tracers in food web 

studies is limited without accurate data on how their composition varies between species, and 

across regional and temporal scales. Furthermore, the interpretation of fatty acid data may 

change depending on how fatty acids are quantified.

In this study, differentiation of Eelpout species by fatty acid profile was dependent on 

data type and sampling year. Canadian Eelpout and Longear Eelpout could not be differentiated 

based on fatty acid profiles when concentrations were corrected to total wet tissue mass. In 

contrast, profiles of the two Eelpout species were distinguishable when data were corrected to 

total lipid. Subtle differences in diet may yield small differences in the composition and 

concentrations of fatty acids as a part of the total lipid pool in each species, but their nutritional 

value as prey items (as indicated by concentration of fatty acids per g of tissue mass) is likely 

similar. Interestingly, profiles were more similar between species in some years than in others, 

particularly when expressed as mg fatty acid/ g lipid. In 2012, the only year in which both 

Eelpout species were sampled, Canadian Eelpout did not differ significantly from Longear 

Eelpout for either form of data expression. Thus, inter-species differences observed when data 

are pooled across years could actually reflect interannual differences rather than real differences 

in foraging ecology between species. Based on fatty acid concentration relative to total tissue 

mass, Canadian Eelpout did not differ from 2011 to 2012, but Longear Eelpout did differ from 

2012 to 2013. Longear Eelpout were also larger and had higher total lipid content in 2013, yet 

fatty acid concentrations (relative to total lipid content) of the top six fatty acids that contributed 

the most to differences between years (16:0, 16:1ro7, 22:6ro3, 18:1ro9 cis, 20:5ro3, and 18:1ro7) 

were higher in 2012 samples. Because Canadian Eelpout were not measured for 2013, the 

interannual differences observed in Longear Eelpout could be responsible for the differences in
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fatty acid profiles of total pooled Eelpout species rather than true differences between the 

species.

Fatty acid trophic markers measured here confirm feeding differences between Arctic 

Cod and Eelpout species. Data on specific diets of Canadian Eelpout and Longear Eelpout have 

not been reported previously for the Beaufort Sea region, but Eelpout in the Bering Sea have 

shown a predominance of epibenthic feeding on invertebrates, such as shrimp, polychaetes, and 

mysids (Aydin et al. 2007). Not surprisingly, the ratio of ro7/ ro9 fatty acids, a marker for benthic 

feeding (Budge et al. 2007), was higher in Eelpout than Arctic Cod. Additionally, NMIs, which 

indicate feeding on benthic gastropods and bivalves (Joseph 1982, Cooper et al. 2009), were only 

found in Eelpout species and were not present in any Arctic Cod samples. Some NMIs 

previously identified as benthic mollusk markers (22:2A7,13 and 22:2A7,15; Budge et al. 2007, 

Thiemann et al. 2007) were significantly higher in Longear Eelpout than Canadian Eelpout. As 

suggested by Budge et al. (2007) for marine mammals, the difference in NMIs may suggest that 

while both species are feeding on benthic prey, Canadian Eelpout and Longear Eelpout focus 

their feeding on different prey items.

Similar to what is reported here, Arctic Cod have previously been identified as having 

high levels of 20:1ro9 and 22:1ro11 indicative of pelagic feeding on calanoid copepods (Dahl et 

al. 2000). While SFAs and shorter chain MUFAs are abundant in marine food webs and can be 

synthesized by zooplankton and fishes (Ackman et al. 1980), marine fishes commonly lack the 

enzymes necessary to elongate short-chain to long-chain fatty acids, and must obtain these higher 

molecular weight MUFAs through diet (Bell et al. 1986). However, long-chain MUFAs such as 

20:1ro9 and 22:1ro11 can be synthesized de novo by calanoid copepods, and their abundance in 

fish tissues has been taken to indicate consumption of large herbivorous copepods (Graeve et al.
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1997, Scott et al. 2002). The relatively high levels of long-chain MUFAs we observed here 

suggest Arctic Cod is feeding on calanoid copepods. Alternatively, Arctic Cod could be feeding 

on predators of Calanus spp., such as carnivorous amphipods, which can have similar fatty acid 

signatures (Auel et al. 2002). While many studies indicate that Arctic Cod diet is made up of 

mainly copepods and other zooplankton species (Lowry & Frost 1981, Craig et al. 1982,

Walkusz et al. 2013), Rand et al. (2013) focused on demersal Arctic Cod and reported a diet 

dominated by fishes. However, although samples used in this study were also collected in 

benthic trawls, the absence of NMIs and low levels of other markers indicative of benthic 

feeding suggest that Arctic Cod relied little on benthic prey. Rather, these results are consistent 

with stomach content analyses that indicate Beaufort and Chukchi sea Arctic Cod were feeding 

primarily on pelagic prey (Lowry & Frost 1981).

Recent work using compound-specific stable carbon isotope analyses of individual fatty 

acids has suggested that Beaufort Sea Arctic Cod are not ultimately dependent on sea ice-derived 

particulate organic matter for their fatty acids (Graham et al. 2014), although earlier studies 

indicated feeding on ice-associated calanoid copepods, which consume under-ice algae 

(Bradstreet & Cross 1982). Ice algal communities are commonly made up largely of diatoms, 

whereas open water phytoplankton commonly has relatively greater proportions of flagellates 

(Falk-Petersen et al. 1998, Von Quillfeldt et al. 2003). In Arctic systems, 16:1ro7 and 20:5ro3 

have been used as indicators of diatoms in the food web, and these diatoms could be sea ice 

algae (Kirsch et al. 1998, Wang et al. 2014). High levels of diatom fatty acids (16:1ro7 and 

20:5ro3) and calanoid copepod fatty acids (20:1ro9 and 22:1ro11) observed in Arctic Cod may 

suggest that they are dependent on copepods that feed on ice-associated algae. 20:1ro9 has also

48



been used as a marker of ice algae (North et al. 2014), so its high abundance in Arctic Cod 

further supports the link to sea ice-derived primary production.

The differences in fatty acid profiles across forage fishes suggest species-specific diets, 

yet physiological differences between species could also be contributing to the differences 

observed here. Differences in rates of organic matter assimilation can cause the chemical makeup 

of tissues to represent differing timescales (Weems et al. 2012). All fish were sampled in August 

and September, and are assumed to be exhibiting fatty acid profiles reflective of diet from similar 

time frames, but this assumption may be invalid if  forage fishes have differing metabolic rates. 

For example, metabolic rates can be relatively high in visual predators, whereas deep-sea fishes, 

which are less likely to actively pursue prey, may have lower selective pressure for high 

metabolic rates (Seibel & Drazen 2007). Similarly, Arctic Cod feeding pelagically may have 

higher metabolic rates than the demersal (and presumably more sedentary) Eelpout species.

While controlled diet studies have not been performed on the species here, new fatty acids from 

a change in diet may show up in fish lipid composition in as little as a few weeks (Skonberg et 

al. 1994, Kirsch et al. 1998). Because metabolic rates will affect the rate of incorporation of fatty 

acids into tissues (Tocher 2003), metabolic effects could be contributing to the inter-species 

differences observed here. Thus, if  Arctic Cod metabolize lipids faster than Eelpout, their fatty 

acid profile will be representative of more recent seasonal feeding than Eelpout, which will 

display signatures from earlier in the season. The seasonal progression of phytoplankton 

communities coincides with a succession of lipid production that is then incorporated into 

zooplankton and on up the food web (Fraser et al. 1989, Pethybridge et al. 2014, Mayzaud & 

Boutoute 2015). Therefore, even if these fishes feed on similar diets, their fatty acid profiles may
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reflect different timeframes, making interspecies studies using fatty acid profiles difficult to 

accurately interpret without experimental feeding studies or stomach content analysis.

Tem poral and regional variations in feeding of Arctic Cod

The spatial variation observed in Arctic Cod fatty acid profiles may be influenced by 

large-scale regional differences in primary production and environmental characteristics in the 

Beaufort and Chukchi seas. Although Arctic Cod have a broad distribution throughout diverse 

habitats in both regions, (Lowry & Frost 1981, Carmack & Wassmann 2006, Crawford et al.

2012), concentrations of certain fatty acids such as 20:5ro3 were higher in the Chukchi Sea. The 

fatty acid 20:5ro3 is often interpreted as an indicator of the presence of diatoms or sea ice-derived 

particulate organic matter (Pethybridge et al. 2014, Wang et al. 2014). When combined with 

higher total lipid, SFA, and MUFA content, high 20:5ro3 concentration may also indicate a 

superior feeding environment of higher available lipid quality and/or quantity prey (Stowasser et 

al. 2012) in the Chukchi Sea relative to the Beaufort Sea. Due to processes required for 

biochemical breakdown, each double bond present in a fatty acid reduces the number of ATPs 

that can be derived in energy production, making SFAs the most energy dense fatty acid class 

followed by MUFAs (Trumble & Kanatous 2012). High concentrations of MUFAs in Chukchi 

Sea fish tissues may represent an energetic advantage, because MUFAs can be catabolized to 

generate metabolic energy more readily than PUFAs (Sargent et al. 1999). Higher total lipid 

content in Chukchi Sea Arctic Cod relative to the Beaufort Sea fish could make them better prey 

for higher trophic levels, although overall they were not higher in PUFAs, which are especially 

important to many physiological functions in fishes and their predators (Parrish 2013).
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Regional differences in Arctic Cod were most apparent in 2012, which was a low-ice 

year that resulted in high primary productivity across the Arctic, especially in the Chukchi Sea 

(Dolan et al. 2014). Variation in lipid content and fatty acids have been tied to year-to-year 

variations in primary and secondary production in other regions as well (Pethybridge et al. 2014). 

While average PUFA content was similar in both regions, Chukchi Sea Arctic Cod did have 

elevated levels of PUFAs in 2012 over Beaufort Arctic Cod, providing further evidence of better 

feeding conditions in that year. Interestingly, the essential fatty acids 20:5ro3 and 22:6 ro3, 

generally thought to be indicators of fish health and nutritional quality (Sargent et al. 1999), were 

also high in 2012 Chukchi Sea Arctic Cod, although total lipid content was slightly lower. 

Although Arctic Cod use sea ice for feeding and protection against predators (Bradstreet & Cross 

1982, Gradinger & Bluhm 2004), the high nutritional density of Arctic Cod during a low ice year 

could suggest that this species encounters favorable feeding conditions under this environmental 

regime. Consequently, Arctic Cod may continue to be a desirable food source under decreased 

sea ice levels. However, without controlled feeding experiments to measure the turnover rates of 

fatty acids in Arctic Cod, correlating fatty acid data to interannual or seasonal conditions is only 

speculative.

Similar to trends in the Chukchi Sea, when looking at concentration of fatty acids 

corrected to total lipid, Beaufort Sea Arctic Cod displayed an increase in the PUFAs 20:5ro3 and 

22:6ro3 from 2011 to 2012. Alternatively, the significantly higher total SFA and MUFA in 2011 

than 2012 in Beaufort Sea Arctic Cod suggests that periods of favorable feeding conditions in the 

Beaufort and Chukchi seas do not always coincide. Long chain MUFAs 20:1ro9 and 22:1ro11 

decreased significantly from 2011 to 2012 in Beaufort Sea Arctic Cod, whereas there was no 

significant difference in in these fatty acids in Chukchi Sea Arctic Cod over the same time frame.
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These results support differences in Arctic Cod fatty acid trends between the Chukchi and 

Beaufort seas and encourage the use of fatty acids in monitoring regional variations in ecosystem 

dynamics. However, in this study fish weight and collection depth were found to be significant 

covariates with fatty acid profile. Similarly, size-related shifts in prey items have been observed 

in Arctic Cod (Matley et al. 2013), and lipids change with length in sardine (Caponio et al.

2004). Differences in sampling depth between regions, or differences in the sizes of fish 

available for this study could be responsible for the differences in fatty acids observed between 

the Chukchi and Beaufort seas. Further analysis of Alaskan Arctic fish fatty acids over a greater 

size and depth range is needed to fully investigate the differences in Arctic Cod between the two 

Arctic regions.

Future directions

This study demonstrated the utility of fatty acid profiles for investigating within- and 

among-species variation in Arctic forage fishes. The total lipid content and specific fatty acid 

composition, essentially the quality of forage fish, are connected to the health and physiological 

condition of higher trophic level predators (Rosen & Trites 2005, Jeanniard du Dot et al. 2008). 

However, because this was a single trophic level study with no analysis of prey, lipid turnover, 

or other physiological measures, results cannot be definitively matched to specific diet items. 

While fatty acid trophic markers have been identified as useful indicators of prey items or food 

web trends (Graeve et al. 1994, St. John & Lund 1996, Falk-Petersen et al. 1998), the same fatty 

acids can be derived or vary from different sources, making it difficult to accurately delineate 

food sources. Future studies should attempt to mitigate this complication by incorporating fatty 

acid analysis of phytoplankton and zooplankton matched to region and year of study, as well as
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utilizing other diet analysis techniques, such as stomach content and compound-specific stable 

isotopes to verify the trends observed in fatty acids.

As the Arctic is a region especially vulnerable to climate change in the coming years, 

tools for annual monitoring of key species are needed to assess ecosystem change. Significant 

variation was observed in fatty acid profiles of fish collected from different years. This suggests 

that fatty acids could be a useful tool in interannual monitoring, such that the nutritional content 

of these fish can indicate the energy transfer and nutritional quality of the food chain they are 

feeding on and how these fish vary in quality for higher trophic level predators. Other studies 

have shown fatty acid profiles to be useful in temporal studies of forage fishes (Pethybridge et al. 

2014). In addition to monitoring species themselves, fatty acid profiles could be used as a tool to 

identify ecosystem variability (Iverson et al. 2007, Parrish et al. 2014, Pethybridge et al. 2015) 

and changes associated with high and low ice years.

Despite significant within-species variation based on sampling year and region, fatty acid 

profiles of Arctic Cod were significantly different than those of Eelpout in all forms of data 

expression. Conversely, the two Eelpout species were not reliably differentiated based on fatty 

acid profiles. These results are consistent with previous studies that found fatty acids profiles to 

be distinguished based on species groups of different foraging ecologies, though more difficult to 

discriminate between closely related species (Budge et al. 2002, Iverson et al. 2002). Where prey 

species or groups such as forage fish and invertebrates in the Alaskan Arctic can be defined by 

fatty acid profile regardless of regional or temporal variations, fatty acid analysis could be 

reliably used to estimate predator diets (Iverson,et al. 2004, Nordstrom et al. 2008, Wang et al. 

2010).
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CONCLUSIONS

In summary, fatty acid profiles were consistent with previous diet studies of Alaskan 

Arctic forage fishes, supporting the use of fatty acids as tools for diet analysis along with 

traditional methods. Significant regional and interannual variation was also revealed, suggesting 

fluctuations in lipid transport through the food web. Vital nutrients, such as fatty acids, are 

transferred through the food web via forage species, and it is critical to assess spatial and 

temporal patterns in forage fish fatty acids to understand how their variability may influence 

regional food webs and higher trophic level consumers. A number of studies have demonstrated 

the utility of fatty acid profiles in diet analysis of Arctic top predators (Budge et al. 2008, Tucker 

et al. 2009, Loseto et al. 2009, Bromaghin et al. 2013), yet, all such studies depend on 

construction of a library of fatty acid data for relevant prey taxa. While this study documented 

significant within-species variation across regions and years, there was also evidence that 

regardless of sampling variables (region, year, depth, and weight), Arctic Cod and Eelpout can 

be distinguished based on fatty acid profile. This was consistent with other quantitative fatty acid 

studies that were able to classify prey to species groups based on fatty acid profiles despite 

regional, temporal, and body size variations (Iverson et al. 1997, 2002, Pethybridge et al. 2014). 

The information gained from this study can inform future food web modeling by indicating 

necessary levels of temporal and regional differences required to be included in prey libraries to 

capture natural lipid variability in forage fish species. However, it is important to note that 

inferences based on fatty acid profiles will depend on the form of data used (i.e., pg fatty acid/ g 

wet tissue versus mg fatty acid/ g lipid). When investigating the nutritional value of forage fish 

as prey, it is practical to use concentration of fatty acids in relation to total tissue mass because 

that is applicable to how they will be consumed by predators. Alternatively, when attempting to
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use fatty acids as trophic markers or tracers of food web sources, it may be more effective to use 

concentration of fatty acids in relation to total lipid. As demonstrated here, expressing fatty acids 

as mg fatty acid/ g lipid may reveal similarities or differences in fatty acids when comparing fish 

of differing lipid content that are not apparent in % of total fatty acids (a common approach in 

food web studies) or pg fatty acid/ g wet tissue. In addition to providing information on the prey 

base of higher trophic level predators in the Alaskan Arctic, the investigation of forage fish fatty 

acids furthers our understanding of their diet habits and processes affecting the base of the food 

web.
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Analysis of the Effect of Transformations on Data Interpretation

APPENDIX A

Select analyses were compared under multiple data transformations: square root, 

log(x+1), and untransformed data. Transformations were not found to differ in statistical 

significance of the main quantitative hypotheses tests from the original untransformed data 

(Table 9) or the visualization of data (Figure 17-19). Due to the lack of effect from 

transformation, all analyses were conducted and reported on untransformed data.

Table 10. Analysis of Transform ations. Comparison of main statistical tests used to analyze 

differences in fatty acid profiles among species, regions, and years under no transformation, 

square root transformation, and log (x+1) transformation of sample data. Significant P-values (P

< 0.05) are given in bold.

No
Transform ation

Square
Root

Log (x+1)

A ll fishes: PERM ANOVA
W eight 0.004 0.003 0.009
Depth 0.001 0.001 0.001
Species 0.001 0.001 0.001
Region 0.001 0.001 0.001
Year 0.001 0.001 0.001

Beaufort Sea 2012: A N O SIM
Global Test 0.002 0.001 0.001
Arctic Cod vs. C anadian Eelpout 0.041 0.002 0.014
Arctic Cod vs. Longear Eelpout 0.003 0.002 0.001
Canadian Eelpout vs. Longear Eelpout 0.306 0.227 0.293

Arctic Cod 2011 & 2012: A N O SIM
Beaufort Sea vs. Chukchi Sea 0.001 0.001 0.001
2011 vs. 2012 0.001 0.001 0.001
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Figure 17. Effect of Transform ations to all Fish Fatty Acid Profiles by Species. Non
metric multidimensional scaling (nMDS) plots of fatty acid profiles based on Bray-Curtis 
similarity matrices for all fish samples by species (Arctic Cod, Canadian Eelpout, and 
Longear Eelpout) with (a) no transformation, (b) square root, and (c) log(x+1) 
transformations.
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Figure 18. Effect of Transform ations to Beaufort Sea Fish Fatty  Acid Profiles by 
Species. Non-metric multidimensional scaling (nMDS) plots of fatty acid profiles based on 
Bray-Curtis similarity matrices for Beaufort Sea 2012 fish samples by species (Arctic Cod, 
Canadian Eelpout, and Longear Eelpout) with (a) no transformation, (b) square root, and (c) 
log(x+1) transformations.
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Figure 19. Effect of Transform ations to Arctic Cod Fatty Acid Profiles by Region and 
Year. Non-metric multidimensional scaling (nMDS) plots of fatty acid profiles based on 
Bray-Curtis similarity matrices for 2011 and 2012 Arctic Cod from Beaufort and Chukchi 
seas with (a) no transformation, (b) square root, and (c) log(x+1) transformations.
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L9

Mean Concentrations of Fatty Acids, Fatty Acid Classes, and Trophic Markers by Species, Region, and Year.

APPENDIX B

Table 11. Fatty Acid Concentrations of Beaufort Sea Arctic Cod C orrected to Total Tissue Mass. Fatty acid concentrations in pg 
fatty acid/ g wet tissue of Beaufort Sea Arctic Cod by year (2011-2013). Values are reported as mean ± 1 standard deviation. (a) 
Calanoid copepod marker (Graeve et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2002), (b) Carnivory marker (Graeve et al. 1997, 
Auel et al. 2002, Falk-Petersen et al. 2009), (c) Benthic feeding marker (Budge et al. 2007), (d) Diatom marker (Viso & Marty 1993, 
St. John & Lund 1996, Falk-Petersen et al. 2002), (e) Diatom versus dinoflagellate dominated system marker (Falk-Petersen et al. 
2002, Dalsgaard et al. 2003).

Arctic Cod - Beaufort Sea
2011 2012 2013

Fatty Acids (ug fatty acid/ g wet tissue)
10:0 24.70 ± 36.54 28.68 ± 10.11 0.17 ± 0.38
11:0 25.79 ± 23.34 2.18 ± 4.92 0.00 ± 0.00
12:0 75.81 ± 36.45 15.47 ± 12.09 8.80 ± 8.29
13:0 17.15 ± 12.48 2.67 ± 3.62 1.86 ± 4.43
iso 14:0 9.85 ± 13.18 2.62 ± 3.17 1.41 ± 4.07
14:0 1957.33 ± 881.67 575.05 ± 400.80 573.12 ± 875.76
14:1«9 101.37 ± 71.14 34.36 ± 23.40 37.54 ± 55.25
14:1«7 11.62 ± 15.51 5.37 ± 4.41 1.71 ± 3.94
14:1«5 47.24 ± 35.57 13.12 ± 12.81 14.29 ± 20.91
iso 15:0 121.31 ± 130.31 37.48 ± 24.83 21.17 ± 27.29
anteiso 15:0 27.88 ± 39.27 7.68 ± 6.02 6.13 ± 9.78
15:0 152.42 ± 88.88 69.93 ± 44.35 47.37 ± 49.59
15:1 17.72 ± 14.94 4.95 ± 4.14 5.62 ± 8.16
iso 16:0 31.39 ± 39.90 18.30 ± 8.31 3.05 ± 5.15
anteiso 16:0 0.84 ± 2.70 0.00 ± 0.00 0.00 ± 0.00
16:0 4686.27 ± 1919.01 2275.49 ± 1022.89 1879.52 ± 1487.14
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Table 11. Continued.

Arctic Cod - B eaufort Sea
2011 2012 2013

16:1«11 193.32 ± 155.55 66.06 ± 44.15 49.61 ± 46.61
16:1«9 100.94 ± 112.01 47.70 ± 28.60 33.84 ± 27.83
16:1«7 7140.26 ± 4516.04 2269.08 ± 1642.10 2267.90 ± 2441.11
16:1«5 346.16 ± 364.98 126.37 ± 72.53 65.87 ± 60.93
iso 17:0 47.06 ± 48.42 28.75 ± 16.92 21.84 ± 19.57
16:1«1 47.68 ± 41.69 14.87 ± 11.51 5.88 ± 8.34
16:2«6 9.48 ± 9.37 7.01 ± 5.89 0.00 ± 0.00
anteiso 17:0 46.41 ± 59.73 23.72 ± 17.77 8.13 ± 8.95
16:2«4 136.68 ± 87.01 63.25 ± 43.44 52.01 ± 52.63
17:0 117.26 ± 115.82 59.28 ± 36.48 30.47 ± 36.11
16:3«4 128.19 ± 98.82 23.20 ± 17.30 17.52 ± 27.20
17:1«9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:0 628.33 ± 429.51 409.36 ± 176.92 284.36 ± 180.84
18:1w13 47.75 ± 67.34 1.74 ± 5.24 1.24 ± 5.80
18:1w9 trans 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:1«11 714.66 ± 725.98 293.92 ± 241.36 226.22 ± 187.80
18:1w9 cis 3263.65 ± 3669.08 1310.03 ± 950.76 1073.69 ± 943.92
18:1w7 1664.59 ± 1449.82 677.35 ± 396.99 578.38 ± 425.32
18:1«5 527.73 ± 581.24 188.33 ± 121.06 107.49 ± 109.31
18:2w6 cis 215.57 ± 247.92 98.55 ± 79.49 91.33 ± 74.12
18:2w4 45.13 ± 31.66 17.05 ± 10.92 14.68 ± 15.92
18:3w6 5.84 ± 14.37 17.98 ± 15.22 3.04 ± 4.49
18:3«3 97.36 ± 139.32 55.83 ± 46.57 35.69 ± 35.84
18:4w3 197.55 ± 221.15 117.47 ± 102.53 68.08 ± 82.07
18:4w1 3.02 ± 9.64 0.82 ± 3.59 2.83 ± 6.25
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Table 11. Continued.

Arctic Cod - B eaufort Sea
2011 2012 2013

20:0 9.79 ± 16.87 0.00 ± 0.00 0.00 ± 0.00
20:1«13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1«11 629.04 ± 468.56 164.08 ± 158.80 132.78 ± 113.11
16:1«5 346.16 ± 364.98 126.37 ± 72.53 65.87 ± 60.93
iso 17:0 47.06 ± 48.42 28.75 ± 16.92 21.84 ± 19.57
16:1w1 47.68 ± 41.69 14.87 ± 11.51 5.88 ± 8.34
16:2w6 9.48 ± 9.37 7.01 ± 5.89 0.00 ± 0.00
anteiso 17:0 46.41 ± 59.73 23.72 ± 17.77 8.13 ± 8.95
16:2w4 136.68 ± 87.01 63.25 ± 43.44 52.01 ± 52.63
17:0 117.26 ± 115.82 59.28 ± 36.48 30.47 ± 36.11
16:3«4 128.19 ± 98.82 23.20 ± 17.30 17.52 ± 27.20
17:1w9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:0 628.33 ± 429.51 409.36 ± 176.92 284.36 ± 180.84
18:1w13 47.75 ± 67.34 1.74 ± 5.24 1.24 ± 5.80
18:1w9 trans 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:1«11 714.66 ± 725.98 293.92 ± 241.36 226.22 ± 187.80
18:1w9 cis 3263.65 ± 3669.08 1310.03 ± 950.76 1073.69 ± 943.92
18:1w7 1664.59 ± 1449.82 677.35 ± 396.99 578.38 ± 425.32
18:1w5 527.73 ± 581.24 188.33 ± 121.06 107.49 ± 109.31
18:2«6 cis 215.57 ± 247.92 98.55 ± 79.49 91.33 ± 74.12
18:2w4 45.13 ± 31.66 17.05 ± 10.92 14.68 ± 15.92
18:3w6 5.84 ± 14.37 17.98 ± 15.22 3.04 ± 4.49
18:3w3 97.36 ± 139.32 55.83 ± 46.57 35.69 ± 35.84
18:4«3 197.55 ± 221.15 117.47 ± 102.53 68.08 ± 82.07
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Table 11. Continued.

Arctic Cod - Beaufort Sea
2011 2012 2013

18:4«1 3.02 ± 9.64 0.82 ± 3.59 2.83 ± 6.25
20:0 9.79 ± 16.87 0.00 ± 0.00 0.00 ± 0.00
20:1«13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1«11 629.04 ± 468.56 164.08 ± 158.80 132.78 ± 113.11
20:1«9 6921.81 ± 4974.98 1883.35 ± 1505.06 1600.67 ± 1677.11
20:1w7 821.12 ± 605.09 144.87 ± 151.01 220.71 ± 309.65
22:2A5,11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A5,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1w5 57.80 ± 56.19 22.39 ± 22.66 12.73 ± 23.41
20:2w9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:2w6 50.07 ± 83.77 32.48 ± 24.95 27.17 ± 21.16
21:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:3w6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:4«6 59.46 ± 89.76 75.27 ± 39.74 68.82 ± 41.38
20:3w3 8.46 ± 37.83 0.00 ± 0.00 0.00 ± 0.00
20:4w3 90.48 ± 192.56 48.90 ± 33.81 30.89 ± 25.05
20:5w3 1663.07 ± 1390.17 1500.90 ± 676.76 1028.05 ± 651.51
22:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:1w11 4294.41 ± 2642.34 1358.39 ± 1580.20 1315.25 ± 1523.89
22:1«9 1130.84 ± 662.91 306.98 ± 316.86 275.65 ± 289.22
22:1w7 291.67 ± 208.85 58.66 ± 65.54 81.85 ± 105.11
22:2A7,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A7,15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
21:5w3 0.00 ± 0.00 20.44 ± 19.97 4.49 ± 8.18
22:4«6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
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Table 11. Continued.

Arctic Cod - Beaufort Sea
2011 2012 2013

22:5«6 0.00 ± 0.00 0.72 ± 2.25 1.56 ± 4.14
22:5«3 149.49 ± 96.48 139.65 ± 83.67 96.23 ± 58.71
24:0 0.00 ± 0.00 0.92 ± 2.87 0.00 ± 0.00
22:6«3 1752.73 ± 1975.22 1969.12 ± 714.94 1547.89 ± 863.52
24:1w11 19.28 ± 30.56 1.39 ± 6.06 0.00 ± 0.00
24:1w9 210.13 ± 129.20 129.73 ± 59.31 117.76 ± 103.78
24:1w7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Fatty Acid Classes (ug fatty acid/ g wet tissue)
ESFA 7979.58 ± 3700.66 3557.58 ± 1734.44 2887.38 ± 2648.99
EMUFA 28600.79 ± 19172.82 9123.08 ± 6767.26 8226.68 ± 8234.08
EPUFA 4612.58 ± 4354.53 4188.63 ± 1747.01 3090.28 ± 1855.72

Fatty Acid Trophic M arkers
pg  fa tty  acid/ g  wet tissue
20:1«9 + 22:1«11a 11216.22 ± 7102.32 3241.74 ± 2938.32 2915.92 ± 3180.53

Ratio
18:1«9/ 18:1w7b 1.82 ± 0.46 1.89 ± 0.31 1.84 ± 0.45

w7/ w9 fatty acidsc 0.87 ± 0.23 0.85 ± 0.26 0.95 ± 0.22

16:1w7/ 16:0d 1.50 ± 0.75 0.87 ± 0.34 1.03 ± 0.49

20:5w3/ 22:6«3e 1.17 ± 0.57 0.75 ± 0.17 0.68 ± 0.25
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Table 12. Fatty Acid Concentrations of Chukchi Sea Arctic Cod C orrected to Total Tissue Mass. Fatty acid concentrations in pg 
fatty acid/ g wet tissue of Chukchi Sea Arctic Cod by year (2010-2012). Values are reported as mean ± 1 standard deviation. (a) 
Calanoid copepod marker (Graeve et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2002), (b) Carnivory marker (Graeve et al. 1997, 
Auel et al. 2002, Falk-Petersen et al. 2009), (c) Benthic feeding marker (Budge et al. 2007), (d) Diatom marker (Viso & Marty 1993, 
St. John & Lund 1996, Falk-Petersen et al. 2002), (e) Diatom versus dinoflagellate dominated system marker (Falk-Petersen et al. 
2002, Dalsgaard et al. 2003).

Arctic Cod - Chukchi Sea
2010 2011 2012

Fatty Acids (ug fatty acid/ g wet tissue)
10:0 0.00 ± 0.00 2.36 ± 5.94 63.87 ± 39.58
11:0 0.00 ± 0.00 6.61 ± 5.71 28.00 ± 19.25
12:0 14.49 ± 3.77 50.05 ± 17.44 76.11 ± 51.15
13:0 6.27 ± 2.84 28.31 ± 14.51 13.39 ± 8.16
iso 14:0 1.11 ± 1.99 13.12 ± 6.02 14.16 ± 11.43
14:0 646.23 ± 155.94 2413.02 ± 1037.76 3006.58 ± 1559.26
14:1«9 24.81 ± 14.93 84.50 ± 41.51 121.27 ± 79.97
14:1«7 7.69 ± 3.86 12.38 ± 5.79 6.09 ± 9.06
14:1«5 12.88 ± 3.43 45.05 ± 16.90 69.40 ± 48.19
iso 15:0 36.65 ± 12.54 130.61 ± 57.44 137.56 ± 96.07
anteiso 15:0 8.19 ± 3.16 36.68 ± 18.37 34.51 ± 28.38
15:0 97.58 ± 25.77 202.90 ± 76.78 190.22 ± 97.19
15:1 7.88 ± 7.55 17.51 ± 11.80 19.99 ± 20.05
iso 16:0 5.76 ± 8.44 36.57 ± 22.00 42.93 ± 28.49
anteiso 16:0 0.00 ± 0.00 0.00 ± 0.00 7.84 ± 14.20
16:0 3320.89 ± 634.00 5539.67 ± 1507.83 6671.24 ± 3350.78
16:1«11 77.23 ± 22.54 239.20 ± 103.84 223.25 ± 146.54
16:1«9 56.64 ± 13.64 88.75 ± 29.73 110.00 ± 73.49
16:1«7 2250.49 ± 570.32 4178.27 ± 1404.52 7960.54 ± 4885.42
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Table 12. Continued.

Arctic Cod - Chukchi Sea
2010 2011 2012

16:1«5 146.13 ± 53.77 335.60 ± 168.36 349.59 ± 222.99
iso 17:0 69.75 ± 23.93 101.94 ± 33.21 67.46 ± 34.88
16:1«1 9.88 ± 2.67 16.43 ± 6.23 45.06 ± 39.76
16:2«6 0.00 ± 0.00 0.00 ± 0.00 46.81 ± 29.64
anteiso 17:0 23.61 ± 8.19 38.25 ± 13.38 72.00 ± 48.69
16:2«4 59.52 ± 15.61 86.21 ± 30.84 379.29 ± 235.03
17:0 53.15 ± 17.00 65.07 ± 21.09 476.44 ± 432.32
16:3w4 24.93 ± 7.79 8.54 ± 15.60 224.08 ± 152.41
17:1w9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:0 718.02 ± 200.99 705.67 ± 194.47 962.74 ± 555.09
18:1w13 4.92 ± 12.28 2.77 ± 10.73 102.41 ± 185.16
18:1«9 trans 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:1w11 255.11 ± 159.41 648.69 ± 261.49 532.05 ± 400.85
18:1w9 cis 1599.61 ± 418.15 2350.33 ± 699.33 4065.66 ± 3002.59
18:1«7 980.94 ± 253.64 1103.33 ± 295.86 2380.15 ± 1778.10
18:1w5 249.29 ± 105.06 406.89 ± 158.81 433.72 ± 275.78
18:2w6 cis 122.66 ± 38.29 163.20 ± 44.33 313.31 ± 199.73
18:2w4 25.53 ± 5.27 30.78 ± 15.03 73.04 ± 46.35
18:3«6 0.99 ± 3.28 0.00 ± 0.00 69.96 ± 47.21
18:3w3 54.77 ± 21.48 60.63 ± 19.74 184.69 ± 137.24
18:4w3 124.58 ± 70.09 132.46 ± 44.49 646.12 ± 468.18
18:4w1 0.00 ± 0.00 0.00 ± 0.00 58.06 ± 45.18
20:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1w13 0.00 ± 0.00 34.57 ± 133.88 0.00 ± 0.00
20:1«11 533.67 ± 469.52 1354.10 ± 1394.57 1808.48 ± 1406.06
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Table 12. Continued.

Arctic Cod - Chukchi Sea
2010 2011 2012

20:1«9 1341.29 ± 911.71 7589.57 ± 3886.20 8054.56 ± 5513.29
20:1«7 83.75 ± 18.58 231.38 ± 68.62 286.89 ± 192.73
22:2A5,11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A5,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1«5 26.60 ± 19.17 73.16 ± 47.14 13.34 ± 19.59
20:2«9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:2«6 32.45 ± 10.15 18.38 ± 25.46 66.75 ± 60.28
21:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:3w6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:4w6 80.92 ± 20.08 32.10 ± 38.60 136.60 ± 117.00
20:3w3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:4«3 39.86 ± 23.19 28.33 ± 34.96 144.09 ± 95.93
20:5w3 1248.80 ± 371.81 974.15 ± 296.57 4517.68 ± 2903.54
22:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:1w11 971.30 ± 790.96 5495.48 ± 3023.13 4921.47 ± 3123.96
22:1w9 135.78 ± 65.26 799.66 ± 374.03 722.54 ± 469.21
22:1w7 16.16 ± 18.78 127.91 ± 76.81 110.05 ± 70.93
22:2A7,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A7,15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
21:5w3 9.09 ± 20.22 0.00 ± 0.00 129.67 ± 94.10
22:4w6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:5w6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:5w3 81.89 ± 31.16 47.70 ± 48.21 283.40 ± 171.99
24:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:6w3 1669.79 ± 492.05 1153.69 ± 296.90 3196.11 ± 2015.44
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Table 12. Continued.

Arctic Cod - Chukchi Sea
2010 2011 2012

24:1«11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
24:1«9 118.97 ± 36.17 250.82 ± 117.25 233.17 ± 122.15
24:1«7 0.00 ± 0.00 1.37 ± 5.30 0.00 ± 0.00

Fatty Acid Classes (ug fatty acid/ g wet tissue)
ESFA 5001.69 ± 998.36 9370.85 ± 2815.43 11865.07 ± 6135.08
EMUFA 8911.00 ± 2631.56 25487.71 ± 10364.24 32569.69 ± 19950.04
EPUFA 3575.79 ± 1084.61 2736.17 ± 758.56 10469.66 ± 6585.14

Fatty Acid Trophic M arkers
pg  fa tty  acid/ g  wet tissue
20:1«9 + 22:1«11a 2312.60 ± 1636.83 13085.05 ± 6717.68 12976.03 ± 8549.38

Ratio
18:1«9/ 18:1«7b 1.66 ± 0.28 2.14 ± 0.27 1.73 ± 0.18

w7/ w9 fatty acidsc 1.13 ± 0.41 0.56 ± 0.19 0.82 ± 0.17

16:1w7/ 16:0d 0.68 ± 0.10 0.75 ± 0.17 1.14 ± 0.28

20:5w3/ 22:6«3e 0.75 ± 0.07 0.85 ± 0.14 1.39 ± 0.19



Table 13. Fatty Acid Concentrations of Beaufort Sea Arctic Cod C orrected to Total Lipid.
Fatty acid concentrations in mg fatty acid/ g lipid of Beaufort Sea Arctic Cod by year (2011
2013). Values are reported as mean ± 1 standard deviation. (a) Calanoid copepod marker (Graeve 
et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2002), (b) Carnivory marker (Graeve et al.
1997, Auel et al. 2002, Falk-Petersen et al. 2009), (c) Benthic feeding marker (Budge et al.
2007), (d) Diatom marker (Viso & Marty 1993, St. John & Lund 1996, Falk-Petersen et al.
2002), (e) Diatom versus dinoflagellate dominated system marker (Falk-Petersen et al. 2002, 
Dalsgaard et al. 2003).

Arctic Cod - Beaufort Sea
2011 2012 2013

Fatty Acids (mg fatty acid/ g lipid)
10:0 0.44 ± 0.68 1.05 ± 0.44 0.01 ± 0.03
11:0 0.46 ± 0.43 0.05 ± 0.11 0.00 ± 0.00
12:0 1.40 ± 0.71 0.48 ± 0.29 0.39 ± 0.33
13:0 0.31 ± 0.23 0.07 ± 0.08 0.06 ± 0.15
iso 14:0 0.18 ± 0.24 0.07 ± 0.07 0.05 ± 0.14
14:0 35.23 ± 16.28 17.51 ± 7.25 22.05 ± 30.34
14:1«9 1.83 ± 1.31 1.12 ± 0.62 1.45 ± 1.95
14:1«7 0.22 ± 0.28 0.16 ± 0.11 0.06 ± 0.14
14:1«5 0.85 ± 0.65 0.36 ± 0.25 0.53 ± 0.72
iso 15:0 2.23 ± 2.41 1.16 ± 0.44 0.82 ± 0.93
anteiso 15:0 0.52 ± 0.72 0.23 ± 0.11 0.23 ± 0.34
15:0 2.77 ± 1.65 2.20 ± 0.70 1.96 ± 1.75
15:1 0.32 ± 0.27 0.14 ± 0.11 0.18 ± 0.26
iso 16:0 0.59 ± 0.74 0.62 ± 0.19 0.11 ± 0.18
anteiso 16:0 0.02 ± 0.08 0.00 ± 0.00 0.00 ± 0.00
16:0 85.30 ± 36.63 75.83 ± 18.02 82.72 ± 59.76
16:1«11 3.54 ± 2.89 2.05 ± 0.78 2.11 ± 1.68
16:1«9 1.87 ± 2.08 1.58 ± 0.78 1.47 ± 0.99
16:1«7 127.92 ± 82.34 68.31 ± 35.77 88.52 ± 88.34
16:1«5 6.37 ± 6.82 4.08 ± 1.51 2.72 ± 2.10
iso 17:0 0.88 ± 0.91 0.92 ± 0.27 0.92 ± 0.68
16:1«1 0.86 ± 0.76 0.46 ± 0.28 0.22 ± 0.30
16:2«6 0.18 ± 0.17 0.20 ± 0.14 0.00 ± 0.00
anteiso 17:0 0.88 ± 1.12 0.71 ± 0.32 0.33 ± 0.29
16:2«4 2.46 ± 1.57 1.98 ± 1.19 1.98 ± 1.75
17:0 2.10 ± 2.10 1.97 ± 0.97 1.32 ± 1.51
16:3«4 2.29 ± 1.81 0.69 ± 0.40 0.64 ± 0.90
17:1«9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
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Table 13. Continued.

Arctic Cod - Beaufort Sea
2011 2012 2013

18:0 11.62 ± 8.18 13.83 ± 3.37 13.36 ± 9.18
18:1«13 0.82 ± 1.23 0.04 ± 0.11 0.10 ± 0.47
18:1«9 trans 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:1«11 13.11 ± 13.47 9.24 ± 6.67 9.67 ± 8.28
18:1«9 cis 60.12 ± 68.36 40.95 ± 16.40 46.02 ± 32.12
18:1«7 30.48 ± 26.98 21.87 ± 8.55 25.07 ± 17.12
18:1«5 9.66 ± 10.90 5.93 ± 2.33 4.38 ± 3.79
18:2«6 cis 3.99 ± 4.63 3.07 ± 1.51 3.99 ± 2.97
18:2«4 0.82 ± 0.58 0.54 ± 0.28 0.58 ± 0.60
18:3«6 0.11 ± 0.28 0.52 ± 0.36 0.13 ± 0.17
18:3«3 1.82 ± 2.57 1.67 ± 0.82 1.52 ± 1.31
18:4«3 3.63 ± 4.08 3.47 ± 1.93 2.91 ± 3.20
18:4«1 0.05 ± 0.16 0.02 ± 0.09 0.08 ± 0.18
20:0 0.16 ± 0.27 0.00 ± 0.00 0.00 ± 0.00
20:1«13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1w11 11.60 ± 8.95 5.15 ± 4.47 5.48 ± 4.39
20:1w9 124.57 ± 91.94 57.14 ± 33.75 61.19 ± 56.16
20:1w7 14.26 ± 10.45 4.57 ± 4.82 8.63 ± 11.17
22:2A5,11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A5,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1w5 1.02 ± 1.04 0.65 ± 0.55 0.45 ± 0.82
20:2w9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:2w6 0.95 ± 1.56 0.99 ± 0.49 1.19 ± 0.92
21:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:3«6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:4w6 1.17 ± 1.71 2.71 ± 1.36 3.52 ± 2.46
20:3w3 0.14 ± 0.61 0.00 ± 0.00 0.00 ± 0.00
20:4w3 1.68 ± 3.47 1.52 ± 0.68 1.39 ± 1.26
20:5w3 30.83 ± 26.27 51.16 ± 19.41 48.61 ± 36.57
22:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:1w11 76.39 ± 46.55 42.95 ± 53.70 50.75 ± 53.29
22:1w9 19.86 ± 11.45 10.03 ± 10.88 10.78 ± 10.01
22:1w7 5.05 ± 3.57 1.90 ± 2.29 3.22 ± 3.86
22:2A7,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A7,15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
21:5«3 0.00 ± 0.00 0.61 ± 0.52 0.21 ± 0.33
22:4w6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
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Table 13. Continued.

Arctic Cod - Beaufort Sea
2011 2012 2013

22:5«6 0.00 ± 0.00 0.04 ± 0.11 0.11 ± 0.29
22:5«3 2.74 ± 1.79 4.87 ± 2.93 4.58 ± 3.47
24:0 0.00 ± 0.00 0.05 ± 0.16 0.00 ± 0.00
22:6«3 33.29 ± 37.54 70.48 ± 28.88 77.96 ± 55.37
24:1w11 0.31 ± 0.50 0.06 ± 0.25 0.00 ± 0.00
24:1w9 3.82 ± 2.42 4.49 ± 1.79 5.15 ± 3.80
24:1w7 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Fatty Acid Classes (mg fatty acid/ g lipid)
ESFA 145.11 ± 69.87 116.76 ± 28.76 124.33 ± 99.00
EMUFA 514.85 ± 354.45 283.22 ± 169.13 328.12 ± 288.64
EPUFA 86.15 ± 82.34 144.55 ± 52.06 149.40 ± 105.83

Fatty Acid Trophic M arkers
mg fa tty  acid/ g  lipid
20:1«9 + 22:1«11a 200.96 ± 130.21 100.09 ± 85.29 111.93 ± 108.74

Ratio
18:1«9/ 18:1w7b 1.82 ± 0.46 1.89 ± 0.31 1.84 ± 0.45

w7/ w9 fatty acidsc 0.87 ± 0.23 0.85 ± 0.26 0.95 ± 0.22

16:1w7/ 16:0d 1.50 ± 0.75 0.87 ± 0.34 1.03 ± 0.49

20:5w3/ 22:6w3e 1.17 ± 0.57 0.75 ± 0.17 0.68 ± 0.25
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Table 14. Fatty Acid Concentrations of Chukchi Sea Arctic Cod C orrected to Total Lipid.
Fatty acid concentrations in mg fatty acid/ g lipid of Chukchi Sea Arctic Cod by year (2010
2012). Values are reported as mean ± 1 standard deviation. (a) Calanoid copepod marker (Graeve 
et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2002), (b) Carnivory marker (Graeve et al.
1997, Auel et al. 2002, Falk-Petersen et al. 2009), (c) Benthic feeding marker (Budge et al.
2007), (d) Diatom marker (Viso & Marty 1993, St. John & Lund 1996, Falk-Petersen et al.
2002), (e) Diatom versus dinoflagellate dominated system marker (Falk-Petersen et al. 2002, 
Dalsgaard et al. 2003).

Arctic Cod - Chukchi Sea
2010 2011 2012 

Fatty Acids (mg fatty acid/ g lipid)
10:0 0.00 ± 0.00 0.03 ± 0.07 1.11 ± 0.78
11:0 0.00 ± 0.00 0.08 ± 0.06 0.47 ± 0.33
12:0 0.51 ± 0.18 0.75 ± 0.16 1.29 ± 0.89
13:0 0.22 ± 0.08 0.40 ± 0.12 0.23 ± 0.14
iso 14:0 0.03 ± 0.06 0.19 ± 0.05 0.24 ± 0.20
14:0 22.12 ± 3.14 34.95 ± 7.48 51.85 ± 29.65
14:1«9 0.82 ± 0.44 1.21 ± 0.37 2.05 ± 1.38
14:1«7 0.26 ± 0.13 0.19 ± 0.07 0.10 ± 0.16
14:1«5 0.45 ± 0.13 0.67 ± 0.18 1.19 ± 0.88
iso 15:0 1.23 ± 0.23 1.89 ± 0.47 2.35 ± 1.70
anteiso 15:0 0.27 ± 0.06 0.52 ± 0.16 0.59 ± 0.50
15:0 3.35 ± 0.69 2.99 ± 0.61 3.26 ± 1.77
15:1 0.25 ± 0.22 0.26 ± 0.17 0.33 ± 0.34
iso 16:0 0.20 ± 0.28 0.51 ± 0.23 0.74 ± 0.50
anteiso 16:0 0.00 ± 0.00 0.00 ± 0.00 0.14 ± 0.28
16:0 114.38 ± 11.73 84.24 ± 13.96 114.89 ± 64.50
16:1«11 2.62 ± 0.40 3.47 ± 0.79 3.85 ± 2.70
16:1«9 1.94 ± 0.33 1.34 ± 0.36 1.91 ± 1.40
16:1«7 77.96 ± 17.38 62.61 ± 15.87 137.41 ± 93.35
16:1«5 4.88 ± 0.93 4.77 ± 1.22 6.00 ± 4.02
iso 17:0 2.37 ± 0.60 1.53 ± 0.31 1.16 ± 0.63
16:1«1 0.34 ± 0.06 0.26 ± 0.09 0.78 ± 0.74
16:2«6 0.00 ± 0.00 0.00 ± 0.00 0.80 ± 0.54
anteiso 17:0 0.80 ± 0.19 0.58 ± 0.18 1.23 ± 0.87
16:2«4 2.05 ± 0.39 1.34 ± 0.48 6.55 ± 4.40
17:0 1.81 ± 0.44 1.00 ± 0.30 8.43 ± 8.61
16:3«4 0.86 ± 0.25 0.18 ± 0.33 3.84 ± 2.70
17:1«9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

79



Table 14. Continued.

Arctic Cod - Chukchi Sea
2010 2011 2012

18:0 24.59 ± 5.03 11.31 ± 4.86 16.55 ± 10.11
18:1«13 0.21 ± 0.54 0.06 ± 0.24 1.77 ± 3.18
18:1«9 trans 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:1«11 8.21 ± 4.23 9.54 ± 2.50 9.20 ± 7.23
18:1w9 cis 54.74 ± 9.12 36.64 ± 12.27 70.51 ± 56.37
18:1«7 34.21 ± 9.16 17.43 ± 6.45 41.57 ± 34.89
18:1w5 8.22 ± 2.18 5.97 ± 1.41 7.45 ± 4.95
18:2w6 cis 4.16 ± 0.68 2.55 ± 0.78 5.38 ± 3.59
18:2w4 0.88 ± 0.14 0.49 ± 0.23 1.27 ± 0.87
18:3«6 0.04 ± 0.14 0.00 ± 0.00 1.20 ± 0.88
18:3w3 1.87 ± 0.55 0.96 ± 0.38 3.16 ± 2.42
18:4w3 4.17 ± 1.72 2.19 ± 1.07 10.98 ± 7.97
18:4w1 0.00 ± 0.00 0.00 ± 0.00 1.01 ± 0.82
20:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1w13 0.00 ± 0.00 0.71 ± 2.77 0.00 ± 0.00
20:1«11 17.47 ± 14.93 19.12 ± 16.88 31.75 ± 25.82
20:1w9 43.11 ± 24.89 107.37 ± 37.05 136.27 ± 94.39
20:1w7 2.91 ± 0.56 3.54 ± 1.14 4.96 ± 3.64
22:2A5,11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A5,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1«5 0.87 ± 0.57 1.00 ± 0.49 0.22 ± 0.33
20:2w9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:2w6 1.11 ± 0.23 0.37 ± 0.48 1.15 ± 1.10
21:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:3w6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:4w6 2.85 ± 0.85 0.65 ± 0.75 2.40 ± 2.26
20:3«3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:4w3 1.32 ± 0.62 0.57 ± 0.66 2.47 ± 1.69
20:5w3 43.16 ± 10.33 16.30 ± 8.17 78.12 ± 54.13
22:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:1w11 32.07 ± 27.42 76.15 ± 26.18 84.20 ± 55.53
22:1w9 4.53 ± 1.84 11.31 ± 2.54 12.29 ± 8.18
22:1«7 0.51 ± 0.59 1.76 ± 0.69 1.91 ± 1.30
22:2A7,13 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:2A7,15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
21:5w3 0.25 ± 0.57 0.00 ± 0.00 2.24 ± 1.75
22:4w6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

80



Table 14. Continued.

Arctic Cod - Chukchi Sea
2010 2011 2012

22:5«6 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:5«3 2.78 ± 0.70 0.94 ± 0.93 4.90 ± 3.17
24:0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
22:6«3 57.41 ± 11.47 18.83 ± 7.53 55.75 ± 38.89
24:1w11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
24:1w9 4.05 ± 0.79 3.59 ± 0.94 4.01 ± 2.20
24:1w7 0.00 ± 0.00 0.04 ± 0.15 0.00 ± 0.00

Fatty Acid Classes (mg fatty acid/ g lipid)
ESFA 171.88 ± 16.50 140.96 ± 21.00 204.53 ± 117.91
EMUFA 300.66 ± 44.79 369.02 ± 76.49 559.75 ± 367.01
EPUFA 122.92 ± 26.33 45.37 ± 20.48 181.22 ± 123.31

Fatty Acid Trophic M arkers
mg fa tty  acid/ g  lipid
20:1«9 + 22:1«11a 75.18 ± 50.34 183.52 ± 59.62 220.47 ± 148.44

Ratio
18:1«9/ 18:1w7b 1.66 ± 0.28 2.14 ± 0.27 1.73 ± 0.18

w7/ w9 fatty acidsc 1.13 ± 0.41 0.56 ± 0.19 0.82 ± 0.17

16:1w7/ 16:0d 0.68 ± 0.10 0.75 ± 0.17 1.14 ± 0.28

20:5w3/ 22:6w3e 0.75 ± 0.07 0.85 ± 0.14 1.39 ± 0.19
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Table 15. Fatty Acid Concentrations of Beaufort Sea Eelpout Species Corrected to Total Tissue Mass. Fatty acid concentrations 
in pg fatty acid/ g wet tissue of Eelpout by species (Canadian Eelpout and Longear Eelpout) and year (2011-2013). Values are 
reported as mean ± 1 standard deviation. (a) Calanoid copepod marker (Graeve et al. 1997, Auel et al. 2002, Falk-Petersen et al. 
2002), (b) Carnivory marker (Graeve et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2009), (c) Benthic feeding marker (Budge et al. 
2007), (d) Diatom marker (Viso & Marty 1993, St. John & Lund 1996, Falk-Petersen et al. 2002), (e) Diatom versus dinoflagellate 
dominated system marker (Falk-Petersen et al. 2002, Dalsgaard et al. 2003).

C anadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea
20H  2012 2012 2013

Fatty Acids (ug fatty acid/ g wet tissue)
10:0 63.53 ± 108.97 123.88 ± 125.52 5.49 ± 5.65 2.34 ± 1.56
11:0 0.84 ± 3.03 0.19 ± 0.46 0.02 ± 0.10 0.00 ± 0.00
12:0 21.50 ± 27.89 37.29 ± 50.68 13.04 ± 9.94 10.47 ± 14.84
13:0 1.07 ± 2.53 4.49 ± 6.13 4.49 ± 7.04 1.04 ± 2.61
iso 14:0 0.58 ± 1.03 2.71 ± 4.55 2.87 ± 4.57 0.64 ± 2.21
14:0 258.09 ± 341.29 428.34 ± 407.09 444.94 ± 542.44 207.20 ± 313.30
14:1«9 2.53 ± 3.98 9.10 ± 10.87 5.36 ± 5.09 5.29 ± 10.41
14:1«7 3.60 ± 5.32 11.64 ± 9.11 13.47 ± 18.91 7.18 ± 12.80
14:1«5 4.20 ± 6.09 14.31 ± 14.44 41.59 ± 83.72 12.62 ± 27.47
iso 15:0 19.22 ± 28.70 38.69 ± 39.55 38.57 ± 46.09 15.48 ± 18.71
anteiso 15:0 4.78 ± 6.80 10.39 ± 10.19 9.62 ± 10.17 4.13 ± 4.94
15:0 50.80 ± 82.70 100.96 ± 85.41 67.19 ± 64.68 28.01 ± 25.61
15:1 0.54 ± 2.37 1.21 ± 2.03 6.28 ± 6.64 8.14 ± 5.48
iso 16:0 23.55 ± 46.49 37.43 ± 33.39 42.37 ± 57.44 10.02 ± 15.56
anteiso 16:0 5.43 ± 9.12 44.20 ± 64.33 1.14 ± 5.33 0.22 ± 0.53
16:0 1775.32 ± 2949.61 2469.23 ± 2073.17 1765.99 ± 1668.46 1354.53 ± 1135.42
16:1«11 42.89 ± 59.46 101.63 ± 99.66 61.22 ± 50.36 48.66 ± 40.86
16:1«9 39.41 ± 58.93 73.46 ± 74.76 70.44 ± 69.90 47.69 ± 43.90
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Table 15. Continued.

Canadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea
2011 2012 2012 2013

16:1«7 963.81 ± 1540.60 1732.06 ± 1554.11 2599.17 ± 3845.66 1706.06 ± 2856.36
16:1«5 52.33 ± 93.55 141.26 ± 180.27 125.93 ± 112.86 39.73 ± 39.46
iso 17:0 48.56 ± 88.29 73.95 ± 62.76 49.83 ± 46.65 29.41 ± 21.68
16:1«1 0.00 ± 0.00 0.00 ± 0.00 15.02 ± 38.78 5.78 ± 14.11
16:2«6 1.10 ± 3.48 8.33 ± 11.52 1.38 ± 4.78 0.87 ± 4.16
anteiso 17:0 29.04 ± 50.06 49.43 ± 38.84 48.16 ± 54.10 21.50 ± 15.97
16:2«4 18.39 ± 24.95 36.63 ± 39.44 28.66 ± 29.33 24.14 ± 47.44
17:0 91.92 ± 167.05 108.94 ± 82.03 41.57 ± 29.43 23.05 ± 11.82
16:3«4 13.72 ± 17.94 22.34 ± 21.06 9.62 ± 10.73 6.45 ± 17.15
17:1w9 3.71 ± 9.31 2.03 ± 3.30 0.00 ± 0.00 0.00 ± 0.00
18:0 567.14 ± 1020.96 600.77 ± 456.22 389.70 ± 256.31 355.12 ± 215.15
18:1«13 20.71 ± 34.29 44.14 ± 36.04 67.92 ± 76.91 31.55 ± 22.62
18:1 w9 trans 0.25 ± 1.11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:1w11 23.89 ± 29.86 92.80 ± 109.18 59.20 ± 81.73 108.18 ± 186.86
18:1w9 cis 1032.65 ± 1651.71 1695.69 ± 1689.61 1427.28 ± 1674.26 1148.06 ± 1474.37
18:1«7 1047.10 ± 1898.96 1242.60 ± 1041.88 1276.64 ± 1400.35 700.52 ± 649.55
18:1w5 71.36 ± 127.31 193.72 ± 256.00 185.81 ± 183.97 56.10 ± 64.83
18:2w6 cis 77.12 ± 141.47 116.83 ± 113.30 101.44 ± 106.51 67.63 ± 80.14
18:2«4 13.94 ± 23.04 19.35 ± 17.21 23.69 ± 29.79 7.09 ± 14.15
18:3w6 22.64 ± 39.74 32.85 ± 26.06 8.74 ± 12.81 11.82 ± 19.73
18:3w3 19.40 ± 36.85 155.96 ± 243.28 27.44 ± 30.59 17.12 ± 32.48
18:4w3 30.55 ± 44.84 78.35 ± 114.60 39.74 ± 38.03 39.14 ± 86.03
18:4w1 0.51 ± 2.24 0.00 ± 0.00 5.86 ± 12.56 0.00 ± 0.00
20:0 1.07 ± 1.90 0.00 ± 0.00 0.00 ± 0.00 0.21 ± 1.02
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Table 15. Continued.

Canadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea
2011 2012 2012 2013

20:1«13 0.67 ± 2.38 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1«11 48.69 ± 73.05 117.31 ± 102.52 188.67 ± 255.17 96.65 ± 100.47
20:1«9 155.88 ± 202.39 565.57 ± 708.44 377.75 ± 384.23 456.59 ± 665.65
20:1«7 117.31 ± 159.37 251.11 ± 202.67 422.13 ± 550.12 118.84 ± 120.04
22:2A5,11 0.00 ± 0.00 5.16 ± 12.64 7.96 ± 29.83 9.09 ± 23.45
22:2A5,13 1.48 ± 4.90 3.87 ± 9.48 13.81 ± 27.65 1.02 ± 3.65
20:1w5 0.00 ± 0.00 20.64 ± 31.35 11.26 ± 14.65 2.04 ± 7.31
20:2w9 1.69 ± 7.36 4.30 ± 10.53 18.27 ± 31.09 1.16 ± 3.26
20:2w6 26.55 ± 50.42 49.04 ± 37.51 54.64 ± 71.76 31.51 ± 22.47
21:0 0.00 ± 0.00 0.00 ± 0.00 9.42 ± 17.81 16.62 ± 15.77
20:3w6 3.55 ± 7.49 6.20 ± 15.18 0.00 ± 0.00 0.00 ± 0.00
20:4w6 407.76 ± 898.05 626.60 ± 529.86 563.07 ± 597.35 366.09 ± 295.28
20:3w3 0.00 ± 0.00 0.00 ± 0.00 7.48 ± 19.00 0.00 ± 0.00
20:4«3 2.82 ± 7.47 9.21 ± 16.57 27.91 ± 42.49 13.53 ± 34.39
20:5«3 1074.43 ± 2019.00 1727.67 ± 1369.67 1896.81 ± 1714.55 980.64 ± 938.62
22:0 1.19 ± 5.21 0.00 ± 0.00 14.78 ± 18.91 9.52 ± 11.86
22:1w11 9.51 ± 15.40 70.50 ± 89.32 77.10 ± 130.14 147.41 ± 309.96
22:1w9 21.51 ± 29.03 55.34 ± 64.22 58.44 ± 57.16 58.20 ± 91.67
22:1w7 24.30 ± 37.03 24.00 ± 21.43 4.37 ± 15.51 0.94 ± 4.52
22:2A7,13 2.64 ± 11.49 9.11 ± 22.33 24.98 ± 56.22 23.94 ± 43.05
22:2A7,15 2.94 ± 11.06 5.93 ± 14.52 69.84 ± 135.48 5.15 ± 14.21
21:5«3 3.92 ± 9.54 7.09 ± 11.01 19.43 ± 31.76 8.19 ± 23.03
22:4w6 17.04 ± 48.48 35.93 ± 47.53 45.41 ± 55.73 25.56 ± 18.59
22:5w6 42.95 ± 94.90 73.41 ± 64.50 56.54 ± 46.56 29.75 ± 27.25
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Table 15. Continued.

C anadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea
2011 2012 2012 2013

22:5«3 104.47 ± 187.48 193.52 ± 129.70 217.60 ± 184.47 120.87 ± 90.45
24:0 19.38 ± 42.61 5.58 ± 9.28 0.00 ± 0.00 0.00 ± 0.00
22:6«3 1431.69 ± 3121.17 2074.63 ± 1898.80 1338.65 ± 706.92 1075.47 ± 807.11
24:1w11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
24:1w9 80.53 ± 128.10 144.68 ± 154.81 64.68 ± 44.36 68.09 ± 45.44
24:1w7 22.81 ± 49.65 15.46 ± 20.25 9.93 ± 26.49 6.58 ± 10.74

Fatty Acid Classes (ug fatty acid/ g wet tissue)
ESFA 2983.01 ± 4910.92 4136.46 ± 3523.55 2949.19 ± 2739.76 2089.53 ± 1710.02
EMUFA 3790.18 ± 5523.26 6620.24 ± 6206.59 7169.66 ± 8302.21 4880.91 ± 6608.03
EPUFA 3314.26 ± 6702.27 5278.24 ± 4495.87 4492.38 ± 3361.67 2827.02 ± 2269.94

Fatty Acid Trophic M arkers
pg  fa tty  acid/ g  wet tissue
20:1«9 + 22:1«11a 165.39 ± 204.90 636.07 ± 796.76 454.85 ± 510.40 604.00 ± 972.48

Ratio
18:1«9/ 18:1«7b 1.07 ± 0.31 1.29 ± 0.26 1.18 ± 0.47 1.42 ± 0.37

w7/ w9 fatty acidsc 1.60 ± 0.76 1.45 ± 0.30 1.91 ± 0.95 1.42 ± 0.50

16:1«7/ 16:0d 0.52 ± 0.43 0.68 ± 0.28 1.07 ± 0.58 0.97 ± 0.63

20:5w3/ 22:6w3e 0.87 ± 0.35 0.89 ± 0.23 1.32 ± 0.79 0.89 ± 0.28
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Table 16. Fatty Acid Concentrations of Beaufort Sea Eelpout Species Corrected to Total Lipid. Fatty acid concentrations in mg 
fatty acid/ g lipid of Eelpout by species (Canadian Eelpout and Longear Eelpout) and year (2011-2013). Values are reported as mean 
± 1 standard deviation. (a) Calanoid copepod marker (Graeve et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2002), (b) Carnivory 
marker (Graeve et al. 1997, Auel et al. 2002, Falk-Petersen et al. 2009), (c) Benthic feeding marker (Budge et al. 2007), (d) Diatom 
marker (Viso & Marty 1993, St. John & Lund 1996, Falk-Petersen et al. 2002), (e) Diatom versus dinoflagellate dominated system 
marker (Falk-Petersen et al. 2002, Dalsgaard et al. 2003).

Canadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea
2011 2012 2012 2013

Fatty Acids (mg fatty acid/ g lipid) 
10:0 4.43 ± 8.26 7.13 ± 7.04 0.29 ± 0.32 0.68 ± 0.67
11:0 0.03 ± 0.08 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.00
12:0 1.49 ± 2.11 2.08 ± 2.78 0.72 ± 0.44 1.55 ± 1.13
13:0 0.06 ± 0.16 0.26 ± 0.34 0.16 ± 0.16 0.15 ± 0.30
iso 14:0 0.04 ± 0.08 0.15 ± 0.25 0.10 ± 0.12 0.02 ± 0.07
14:0 16.23 ± 21.68 23.41 ± 22.46 18.59 ± 11.73 24.09 ± 13.54
14:1«9 0.14 ± 0.20 0.50 ± 0.60 0.34 ± 0.37 0.41 ± 0.47
14:1«7 0.20 ± 0.23 0.61 ± 0.49 0.51 ± 0.41 0.71 ± 0.50
14:1«5 0.25 ± 0.34 0.69 ± 0.62 1.30 ± 1.63 0.84 ± 0.76
iso 15:0 1.35 ± 2.19 2.11 ± 2.19 1.68 ± 1.09 2.43 ± 1.93
anteiso 15:0 0.35 ± 0.53 0.56 ± 0.57 0.44 ± 0.31 0.70 ± 0.70
15:0 3.59 ± 6.31 5.45 ± 4.70 3.20 ± 1.72 4.93 ± 3.82
15:1 0.01 ± 0.06 0.05 ± 0.09 0.31 ± 0.30 1.90 ± 1.74
iso 16:0 1.74 ± 3.56 2.03 ± 1.85 1.82 ± 1.65 1.49 ± 2.36
anteiso 16:0 0.39 ± 0.70 2.40 ± 3.54 0.02 ± 0.11 0.08 ± 0.20
16:0 123.26 ± 223.44 135.83 ± 115.44 86.24 ± 43.49 249.29 ± 201.51
16:1«11 2.97 ± 4.53 5.43 ± 5.49 3.15 ± 1.78 7.74 ± 5.09
16:1«9 2.79 ± 4.52 3.92 ± 4.12 3.26 ± 1.58 7.60 ± 5.13
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Table 16. Continued.

Canadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea
2011 2012 2012 2013

16:1«7 53.25 ± 63.21 91.63 ± 84.94 97.84 ± 75.71 177.05 ± 94.80
16:1«5 3.70 ± 7.14 7.71 ± 9.93 6.41 ± 4.27 6.64 ± 4.71
iso 17:0 3.53 ± 6.77 4.05 ± 3.52 2.42 ± 1.35 5.16 ± 3.91
16:1«1 0.00 ± 0.00 0.00 ± 0.00 0.42 ± 0.74 0.26 ± 0.39
16:2w6 0.04 ± 0.11 0.42 ± 0.62 0.04 ± 0.12 0.02 ± 0.09
anteiso 17:0 2.13 ± 3.86 2.65 ± 2.16 2.19 ± 1.65 4.69 ± 4.42
16:2w4 1.09 ± 1.36 1.97 ± 2.18 1.36 ± 0.92 1.94 ± 1.47
17:0 6.38 ± 12.58 5.90 ± 4.53 2.29 ± 1.36 5.43 ± 4.65
16:3w4 0.81 ± 1.02 1.19 ± 1.15 0.44 ± 0.35 0.26 ± 0.51
17:1w9 0.28 ± 0.71 0.09 ± 0.14 0.00 ± 0.00 0.00 ± 0.00
18:0 40.64 ± 78.04 33.32 ± 25.82 22.09 ± 12.75 81.33 ± 75.16
18:1«13 1.54 ± 2.68 2.20 ± 1.48 2.99 ± 2.04 7.34 ± 6.83
18:1w9 trans 0.01 ± 0.05 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
18:1w11 1.57 ± 2.11 4.98 ± 6.02 3.45 ± 4.04 10.46 ± 5.81
18:1w9 cis 72.28 ± 125.89 91.10 ± 93.61 62.25 ± 33.58 157.33 ± 91.53
18:1«7 74.54 ± 144.98 67.76 ± 59.59 58.78 ± 40.27 117.74 ± 77.55
18:1w5 5.03 ± 9.71 10.55 ± 14.11 8.95 ± 4.85 8.25 ± 5.10
18:2w6 cis 5.56 ± 10.83 6.34 ± 6.35 4.73 ± 2.41 10.44 ± 6.53
18:2«4 0.97 ± 1.75 1.06 ± 0.97 0.99 ± 0.65 0.48 ± 0.57
18:3w6 1.61 ± 3.04 1.82 ± 1.47 0.46 ± 0.50 1.92 ± 2.14
18:3w3 1.40 ± 2.79 7.95 ± 13.10 1.20 ± 0.79 1.54 ± 1.36
18:4w3 2.03 ± 3.34 4.23 ± 6.30 2.00 ± 1.41 2.54 ± 2.14
18:4w1 0.03 ± 0.11 0.00 ± 0.00 0.23 ± 0.47 0.00 ± 0.00
20:0 0.09 ± 0.18 0.00 ± 0.00 0.00 ± 0.00 0.29 ± 1.38
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Table 16. Continued

Canadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea
2011 2012 2012 2013

20:1«13 0.05 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
20:1«11 3.56 ± 5.97 5.90 ± 5.23 7.55 ± 6.21 13.78 ± 8.01
20:1«9 10.81 ± 15.40 30.45 ± 39.05 20.86 ± 17.40 53.08 ± 31.15
20:1«7 8.25 ± 12.37 12.62 ± 8.95 18.13 ± 17.36 16.78 ± 7.99
22:2A5,11 0.00 ± 0.00 0.21 ± 0.52 0.36 ± 1.15 1.58 ± 3.20
22:2A5,13 0.12 ± 0.41 0.16 ± 0.39 0.40 ± 0.68 0.09 ± 0.33
20:1w5 0.00 ± 0.00 1.10 ± 1.72 0.76 ± 0.91 0.27 ± 0.96
20:2w9 0.14 ± 0.62 0.18 ± 0.43 0.70 ± 1.07 0.19 ± 0.58
20:2w6 1.99 ± 3.85 2.58 ± 2.04 2.32 ± 1.72 6.29 ± 5.36
21:0 0.00 ± 0.00 0.00 ± 0.00 0.39 ± 0.67 4.83 ± 4.97
20:3w6 0.25 ± 0.49 0.50 ± 1.23 0.00 ± 0.00 0.00 ± 0.00
20:4w6 30.39 ± 68.52 34.82 ± 31.41 31.74 ± 24.74 92.70 ± 99.94
20:3w3 0.00 ± 0.00 0.00 ± 0.00 0.22 ± 0.49 0.00 ± 0.00
20:4w3 0.16 ± 0.40 0.42 ± 0.74 1.02 ± 1.17 0.50 ± 0.94
20:5w3 77.21 ± 154.72 92.52 ± 77.39 94.13 ± 60.77 157.23 ± 109.78
22:0 0.10 ± 0.43 0.00 ± 0.00 1.05 ± 1.22 2.70 ± 3.46
22:1w11 0.56 ± 0.92 3.70 ± 4.91 4.21 ± 6.68 9.34 ± 9.49
22:1«9 1.48 ± 2.18 2.93 ± 3.60 2.87 ± 2.03 6.45 ± 3.97
22:1w7 1.67 ± 2.68 1.50 ± 1.61 0.14 ± 0.45 0.08 ± 0.37
22:2A7,13 0.22 ± 0.96 0.37 ± 0.91 0.69 ± 1.41 2.72 ± 4.70
22:2A7,15 0.24 ± 0.92 0.24 ± 0.59 2.39 ± 3.64 0.42 ± 1.19
21:5w3 0.29 ± 0.76 0.31 ± 0.48 0.74 ± 0.97 0.24 ± 0.64
22:4w6 1.33 ± 3.74 1.81 ± 2.33 2.17 ± 2.76 6.73 ± 5.57
22:5w6 3.25 ± 7.22 4.00 ± 3.69 3.23 ± 2.20 8.60 ± 8.91
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Table 16. Continued.

Canadian Eelpout - Beaufort Sea Longear Eelpout - Beaufort Sea

22:5«3 7.69
2011

± 14.45 10.26
2012

± 7.30 11.22
2012

± 8.03 21.84
2013

± 15.68
24:0 1.47 ± 3.24 0.39 ± 0.72 0.00 ± 0.00 0.00 ± 0.00
22:6«3 105.04 ± 238.31 112.64 ± 107.07 82.00 ± 47.70 214.53 ± 199.35
24:1«11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
24:1«9 5.73 ± 9.80 7.97 ± 8.50 4.34 ± 2.94 17.07 ± 15.52
24:1w7 1.70 ± 3.77 1.10 ± 1.60 0.74 ± 1.95 2.91 ± 5.72

Fatty Acid Classes (mg fatty acid/ g lipid)
ESFA 207.30 ± 371.99 227.74 ± 196.15 143.70 ± 72.49 389.85 ± 314.57
EMUFA 252.39 ± 403.27 354.49 ± 343.51 309.56 ± 182.48 624.02 ± 320.85
EPUFA 241.26 ± 512.91 285.02 ± 254.55 240.94 ± 139.66 527.98 ± 440.45

Fatty Acid Trophic M arkers 
mg fa tty  acid/ g  lipid 
20:1«9 + 22:1«11a 11.37 ± 15.47 34.15 ± 43.92 25.07 ± 23.86 62.41 ± 36.79

Ratio
18:1«9/ 18:1«7b 1.07 ± 0.31 1.29 ± 0.26 1.18 ± 0.47 1.42 ± 0.37

w7/ « 9  fatty acidsc 1.60 ± 0.76 1.45 ± 0.30 1.91 ± 0.95 1.42 ± 0.50

16:1w7/ 16:0d 0.52 ± 0.43 0.68 ± 0.28 1.07 ± 0.58 0.97 ± 0.63

20:5«3/ 22:6w3e 0.87 ± 0.35 0.89 ± 0.23 1.32 ± 0.79 0.89 ± 0.28


