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Abstract

The objectives of this research were to investigate the relationships between lateral inflows and 

watershed characteristics within the Kuparuk watershed of Arctic Alaska, as well as to quantify the 

lateral inflows to be used as an input for calibrating and running a process-based instream water 

temperature model. Determination of lateral inflows was accomplished by constructing hydrographs at 

multiple locations along Imnavait Creek and the Kuparuk River using stage and discharge field 

measurements. The hydrographs were then routed between gauging stations downstream (starting 

upstream) using the Muskingum routing method; and finally subtracting the routed hydrograph from 

the downstream measured hydrograph to calculate any additional water that had entered the reach 

between gauging stations. Results showed, as a general trend, that reaches within the northern foothills 

of the Brooks Range experienced larger lateral inflow contributions per square kilometer and had larger 

runoff ratios than subsequent reaches to the north where the terrain flattens out and transitions into 

the coastal plain. Two reaches within the watershed contradicted the general trend. The low-gradient 

reach nearest to the Arctic Ocean experienced larger lateral inflows throughout the summer that were 

unaffected by rainfall precipitation events, this is believed to be caused by snowmelt water initially 

stored in the low gradient terrain and slowly released into the drainage network during summer 

months. This area is rich with wetlands, ponds, and lakes and snow-damming during break up is 

prevalent. The other reach was located upstream of the Kuparuk aufeis field and was observed to lose 

water during the summer of 2013, supporting a hypothesis that the aufeis formation in this area is fed 

throughout the winter by a large talik upstream.
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1. Introduction

Over the past century global surface air temperature has risen 0.6 ± 0.2 °C and is expected to 

continue to rise, the Arctic region is forecasted to experience temperature increases in excess of 40% of 

the global mean (Houghton et al., 2001). Moisture transportation is also expected to increase along 

with temperature (Houghton et al., 2001). Between 1936 and 1999 discharge from six of the largest 

Eurasian rivers into the Arctic Ocean rose by 7% (Peterson et al., 2002), and one model predicts that the 

average discharge of these rivers could increase up to 48% by 2100 (van Vliet et al., 2013). The same 

study also determined that average summer water temperature in the same rivers could increase by 2 

°C (van Vliet et al., 2013).

The dynamic interactions in the Arctic between temperature increases, changes in precipitation 

patterns, lengthening of growing seasons, increasing active layer thicknesses, and animal species are not 

well understood (Hinzman et al., 2005). It is known that changes in instream temperatures have the 

potential to impact migration and reproduction patterns of aquatic life (Cooter & Cooter, 1990), 

including both fresh water and near shore marine fish (Wood & McDonald, 1997). Reductions in fish 

populations inherently have the potential to affect the lives of Alaskans who depend on those fisheries 

for either employment or subsistence.

To better understand the dominant processes that control instream temperatures, a process- 

based instream temperature model is under construction by researchers at Utah State University for the 

streams and rivers of Arctic Alaska. Field data are being implemented into the development, calibration 

and validation/testing of the model. A conceptual diagram for the model is shown in Figure 1.1.
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Surface Fluxes 
I

Figure 1.1: Conceptual diagram for the instream temperature model.
Conceptual diagram for the instream temperature model where the black arrows indicate the 
movement of water and the colored arrows indicate energy transfer.

The model will be used to simulate the possible effects of various changes in climate and hydrology.

Data collection was a collaborative effort between the University of Alaska Fairbanks and Utah State

University and included river stage and discharge, instream temperature, incoming and outgoing

radiative fluxes, river bed temperature profiling, and precipitation monitoring. From the field data the

lateral inflows will be calculated throughout the Kuparuk River watershed and will serve as an important

input to the instream temperature model.

1.1 Research Goals

This thesis focuses on the quantification of lateral inflows to various reaches of Imnavait Creek 

and the Kuparuk River to determine relationships between lateral inflows, precipitation patterns, and 

watershed characteristics. Lateral inflows are not only a source of additional water within a reach but 

also transport potentially large quantities of heat into a given reach, thus impacting the stream's 

thermal regime. Within this project, lateral inflows are the designation given to all additional water
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entering the reach, including contributions from channel precipitation, hillslope runoff due to overland 

or subsurface flow, watertracks, and tributary streams.

To quantify the lateral inflows and determine their relationships to precipitation patterns and watershed 

characteristics, the following steps were taken:

• Stage-discharge relationships were built for each gauging site through the coupling of stage and 

discharge measurements.

• Hydrographs were calculated for each gauging site through the use of the stage-discharge 

relationships, known as gauged hydrographs.

• The gauged hydrographs were routed downstream using a variable parameter version of the 

Muskingum routing method.

• Lateral inflows were determined by subtracting the routed hydrographs from the downstream 

gauged hydrograph.

• Precipitation records were built for sub watersheds using a simple arithmetic average from 

Thiessen polygon networks.

• Cumulative lateral inflows were calculated, and normalized by the contributing watershed area 
for each reach, along with runoff ratio.
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2. Background

2.1 Study Area

The Kuparuk watershed is located on the Northern Slope of Alaska, shown in Figure 2.1. The 

Kuparuk River is fed by numerous tributaries including Imnavait Creek and the Toolik River, in total it 

drains 8,360 km2 of the Alaskan Arctic upon reaching the USGS gauging site (USGS gauge site 15896000). 

The headwaters of both the Kuparuk River and the Toolik River are located in the northern foothills of 

the Brooks Range, from there they flow northward to their confluence on the coastal plain, where they 

continue northward to the Arctic Ocean.

Map showing the Kuparuk and Putuligayuk watersheds on the North Slope of Alaska.

The Kuparuk watershed is composed 62% of what is described as foothills (Kane et al., 2008), 

these glacially carved hills and valleys are vegetated primarily by tussock sedge tundra but also by 

lichens, dwarf willows, and dwarf birches (Walker et al., 1989). Moving north toward the coastline the 

terrain becomes much flatter giving way from hills to thaw lakes in a landscape that was never glaciated 

(Walker et al., 1989). The entire watershed is underlain by continuous permafrost ranging in thickness 

from 250 m near the foothills to over 600 m thick in the areas around the coast (Osterkamp & Payne,
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1981). The surface generally remains frozen from October until mid-May, with the active layer only 

penetrating 25-40 cm below the surface during the summer throughout the majority of the tundra, 

however thaw depths in excess of 100 cm have been measured beneath watertacks (Hinzman et al.,

1991) and areas of well-drained soils.

Investigations into the hydrology of the Kuparuk River, Imnavait Creek, and the Upper Kuparuk 

date back to 1971, 1986, and 1993, respectively (Kane et al., 2008). Initially investigations focused on 

measuring annual precipitation totals and determining discharges during peak runoff events with an 

emphasis on snowfall and snowmelt runoff. Annual precipitation ranges from 193 mm near the coast to 

334 mm in the foothills (Kane et al., 2014). Of the annual precipitation within the watershed 30-40 % is 

in the form of snow, two-thirds of which leaves as runoff during spring break up (Kane et al., 2008). The 

spring break up usually occurs within a period of two weeks or less (McNamara et al., 1998). For most 

basins within the arctic, snowmelt produces the annual peak flood event and for larger basins it is also 

responsible for the record flood. However, for small and intermediate basins within the foothills the 

record flood is more likely to be caused by a summer precipitation event that can blanket the entire 

basin (Kane et al., 2008).

Water balances conducted on the whole Kuparuk River as well as on the Upper Kuparuk and 

Imnavait Creek found summer precipitation had an average rainfall runoff ratio of 0.35, 0.65, and 0.45 

respectively (Lilly et al., 2000). Investigations into Imnavait Creek revealed that after extended periods 

of drought approximately 15 mm of rainfall was required before the hillslopes would begin producing 

runoff (Kane et al., 1989) and an increase in stream flow was observed. Runoff throughout the Upper 

Kuparuk and Imnavait Creek was observed to move downslope primarily though the upper organic layer, 

which ranges in thickness from 5 cm along the ridges to 20 cm near the valley bottoms (Hinzman et al., 

1993). The hydraulic conductivity within the organic layer ranges from 10-100 times greater than that of 

the underlying mineral soil (Hinzman et al., 1991). Due to the high hydraulic conductivity of the organic
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layer, surface runoff rarely occurs due to rainfall rates exceeding infiltration rates, but instead occurs 

when the organic layer becomes saturated (Kane et al., 1989). As summer progresses and the active 

layer increases in depth more of the soil profile contributes to runoff leading to longer recession periods 

after storm events (Hinzman et al., 1991). During the growth of the active layer it has been observed 

that the melt water within the soil has little or no contribution to stream flow (Kane et al., 1989).

Hydrologic studies of the coastal plain region have mainly been conducted within the 

neighboring watershed of the Putuligayuk River, shown in Figure 2.1, a catchment confined solely to the 

coastal plain. The Putuligayuk River watershed is adjacent to the East side of the Kuparuk watershed 

and has an area of 471 km2 (Bowling et al., 2003). Within this low gradient watershed precipitation 

events occurring after spring break up were followed by little to no discernable streamflow response. 

This was caused by a disconnection in the drainage network induced by the low gradient terrain which 

lead to greater evaporation than precipitation (Bowling et al., 2003).

Located within the Kuparuk watershed is an aufeis field, shown in Figure 2.2, an ice sheet that 

forms throughout the winter from groundwater flowing up to the surface where it freezes. The ice 

initially freezes and fills in the river channel, as the winter progresses the water continues to flow out of 

the ground and over the ice forming thicker layers while also expanding the ice sheet both downriver 

and laterally out into the floodplain (Yoshikawa et al., 2007). A ten year study (Yoshikawa et al., 2007) of 

the Kuparuk aufeis field from 1996 to 2005 using SAR analysis estimated that the average maximum 

volume of ice is roughly 23,384,000 m3 and estimated that the aufeis comprised 27-30% of the annual 

groundwater discharge from the nearby spring. The potential size of aufeis fields makes them the 

second largest temporary storage of fresh water behind the snow cover in unglaciated basins (Kane & 

Slaughter, 1972).
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Figure 2.2 Images of the Kuparuk aufeis.
Areal photo of the Kuparuk aufeis field taken using Utah State University's AggieAir payload 
mounted on a helicopter on August 6, 2013 (left), Bethany Neilson next to the Kuparuk aufeis 
during June 2013 (right).

Many aufeis fields within the arctic are fed by springs emitting from subpermafrost groundwater 

(Kane et al., 2013). Comparisons of water temperature and chemical composition between the spring 

feeding the Kuparuk aufeis and other springs found throughout the North Slope suggest that the source 

for the Kuparuk aufeis is not subpermafrost but instead a near surface talik below the river (Yoshikawa 

et al., 2007). The Kuparuk River has been observed to lose water and occasionally run dry both 

immediately above the aufeis field as well as farther up river in the foothills (Betts & Kane, 2015 In 

Press). It is hypothesized that water lost from the Kuparuk River recharges a near surface talik that 

supplies water to the spring feeding the Kuparuk aufeis in winter.

2.2 Site Selection

Gauging sites throughout the Kuparuk watershed at which field measurements were made were 

chosen to isolate variations in watershed characteristics, to provide a variety of spatial scales, and to 

utilize gauging locations already in operation. The drainage areas for the subwatersheds are shown in
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Table 2.1; for the location of the individual gauging sites throughout the watershed for 2013 and 2014

see Figure 2.3 and Figure 2.4 respectively.

Table 2.1: Drainage areas :or the subwatersheds gauged in 2013 and 2014.

Sub-Watershed Area (km2)
Above Kuparuk River Stilling Well 
(Upper Kuparuk)

133

Above Imnavait Creek Weir 2.1

Imnavait Creek Weir to 
Imnavait Creek Confluence

15.2

Kuparuk River Stilling Well to 
Site 8

56.6

Site 8 to Site 7 38.4

Site 7 to Site 5 306

Site 4 to Site 3T 1210

Site 3T to Site 2A 2350

Site 4 to Site 3B 2570

Site 3B to Site 2A 1433

Toolik River Watershed 2840

Site 2A to USGS Gauging Site 986

9



Figure 2.3 Watershed map showing instrumented sites in 2013.
Map of the Kuparuk watershed showing the 2013 gauging locations and the extent of the 
contributing area for those gauging locations.

10



Figure 2.4 Watershed map showing instrumented sites in 2014.
Map of the Kuparuk watershed showing the 2014 gauging locations and the extent of the 
contributing area for those gauging locations.
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The Kuparuk River stilling well site and Imnavait weir site (the two southernmost sites) are long­

term flow monitoring stations operated by the Water and Environmental Research Center (WERC) at the 

University of Alaska, Fairbanks. The site of for the stilling well is a straight section of the Kuparuk River 

located within walking distance of the Dalton Highway that allows for convenient discharge 

measurements to be made at both low flow and high flow conditions. The watershed area upstream of 

this site referred to as the area above the Kuparuk stilling well in this paper is also referred to as the 

Upper Kuparuk earlier in the text. At the Imnavait weir site, a compound weir consisting of a V-notch for 

low flow conditions and trapezoidal sides for medium and high flow conditions has been installed with 

wing walls extending out laterally as well as down into the active layer in order to concentrate the flow 

through the weir opening (Figure 2.5). The USGS Kuparuk River gauging site was used to mark the 

northernmost extent of the Kuparuk watershed, near where the river drains into the Arctic Ocean. It 

was beneficial to use the site gauged by the USGS as access to the Kuparuk River is restricted due its 

location on the Prudhoe Bay oil-field. Further, the river at this location is a challenge to gauge, even at 

low flow conditions, without the use of a motorized vessel.

Figure 2.5 Images of the Imnavait Creek weir.
The weir on Imnavait Creek is shown from upstream at medium flow conditions (left) and from 
downstream at low flow conditions (right).
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Proceeding northward from the Kuparuk River stilling well and Imnavait weir, site 8 was located 

approximately 8.3 km north of the Dalton Highway just below where Imnavait Creek joins the Kuparuk 

River. Imnavait Creek was gauged upstream of the confluence in order to avoid any possible effects 

from backwater, providing an opportunity to investigate inflows on a smaller stream as well as to isolate 

the Kuparuk River between the stilling well and site 8. Site 7 was chosen 5.1 km to the north-west of 

site 8 to provide a shorter, more intensive study reach, where river and tributary temperatures could be 

more closely investigated for the energy balance model. Site 5 was 13 km north of site 7 and south of 

the aufeis field; it was intended to avoid locations where the river had been observed to significantly 

lose water and go dry in previous years.

Site 4 is located 21 km north of site 5 where the various braided streams emerging from the 

aufeis field have come back together. Site 4 works as a reset point within our investigation, a point for 

which no upstream data are available due to a lack of understanding of the processes surrounding the 

aufeis field. Site 4 also marks the beginning of the physiographic transition out of the foothills and onto 

the coastal plain. Site 3T (also known as OKB for the instream temperature model and located within 

the main channel of Kuparuk) was initially located 62 km north of site 4 in 2013 before being shifted an 

additional 4.0 km downriver in 2014 and becoming site 3B. The shift moved the gauging site from 

upriver (above) to downriver (below) of the confluence with what we refer to as the White Hills River. 

The relocation of site 3T to 3B in 2014 significantly increased the drainage area by incorporating the 

White Hills River into the subwatershed. This new 3B subwatershed has similar characteristics to that of 

3T and clearly separates the land downstream of the confluence which has a significantly lower 

hydraulic gradient.

Site 2A was located on the Kuparuk River just upriver of the confluence with the Toolik River, 38 

km north-east of site 3B and 47 km south-west of the USGS gauging site. The Toolik River was also 

gauged near the confluence to isolate the coastal plain between site 2A and the USGS site as well as
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enable possible comparison at the watershed scale between the Toolik watershed and the Kuparuk 

watershed. During the 2013 field season a very limited amount of data were collected for the Toolik 

River, this was due to trouble isolating the main channel, a problem caused by the river being near flood 

stage at the time of initial installation. As a result the lateral inflows between the confluence of the 

Toolik River with the Kuparuk River and the USGS gauging site could not be determined in 2013.

2.3 Muskingum Routing

In order to compare the upstream hydrograph to the downstream hydrograph and determine 

the lateral inflows within a reach, the upstream hydrograph was first be routed through the reach. Of 

the available methods to route flows through a reach, a variable parameter version of the Muskingum 

method was selected based on the limited availability of data for the selection of physical parameters of 

each reach.

The Muskingum method was developed by McCarthy around 1934 as a linear time-invariant 

system for routing flood waves (Guang-Te & Singh, 1992). The Muskingum method relates the storage 

(w) within a river reach to the inflow (/) and outflow (0) of the reach using two parameters, K 

representing the travel time of the reach and X  a weighting factor for attenuation (Guang-Te & Singh,

1992):

w  = K[X*I + (1-X)*0]  Eqn (1)

In a simplified form solved for the outflow, Equation 1 can be represented as (Guang-Te & Singh, 1992):

0(i+i) = Ci* /((+i) + C2 * /(j) + C3 * 0(i) Eqn (2)

where i indicates the timestep and the coefficients C1, C2, and C3 can be calculated using the timestep 

size of the inflow hydrograph (At) via (Guang-Te & Singh, 1992):

0 .5*A  t-K*X
C1 = -----------------—  Eqn (3)

1 0.5*At+(l-X)*K

0 .5*A  t+K*X
C2 = -----------------—  Eqn (4)

2 0.5*At+(l-X)*K
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-0.5*At+(l-X)*K
C3 = ----------     Eqn (5)

3 0.5*At+(l-X)*K

The sum of C1, C2,and C3 should equal to 1. This method is implemented by dividing a river 

reach into several segments and routing the upstream hydrograph down river one segment at a time. 

The number of segments used can be used as a calibration tool, along with K  and X, but is subject to the 

stability requirement (Lawler, 1964):

2 * K * X < A t < K  Eqn (6)

Traditionally K  and X  were assumed to be constant between segments and timesteps, an 

assumption that holds true if the storage-flow is linear (Guang-Te & Singh, 1992). Realistic values of X 

have been shown to vary between 0 and 0.5, where a value of 0.5 provides equal weight to inflow and 

outflow and a value of 0 simply translates the wave downstream (Bedient et al., 2013), with values for 

natural streams ranging from 0.1 to 0.3 (Wurbs & James, 2002). In the past, values for K  and X  have 

been determined though calibration by matching the routed hydrograph from a known inflow 

hydrograph to a measured outflow hydrograph using trial and error, a least squares method (Gill, 1978), 

or graphically (Bedient et al., 2013). Most natural systems do not have a linear relation between storage 

and flow, for these situations K  and X  must be varied as the flow varies. An early method to account 

for changing values of K  and X  was the segmented curve method, in which the flow was divided into 

subgroups based on the magnitude of the discharge, each subgroup then had different values for 

K  and X  that were applied when flows were within that subgroup (Gill, 1978). Values of the parameters 

were also derived using physical characteristics of the reach from the St. Venant equations such that 

(Cunge, 1969; Guang-Te & Singh, 1992):

T. Ax*A , >
K  =  T~^  Eqn (7)P*Q

X  =  - * (1 ------------) Eqn (8)
2 v S0*c*AxJ M '

where Ax is the length of the river reach, A is the channel area, ft is an exponent, Q is total discharge, q
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is unit discharge, S0 is the channel bed slope, and c is the wave celerity.

This project uses an approximation of the values for K, such that:

K  =  a *  Q Y Eqn (9)

where Q is the discharge, and a and y are constants that vary between river reaches. For this project X 

was selected to be a value of 0.25 whenever possible as recommended for natural systems (Wurbs & 

James, 2002). To confirm the validity of this method, the routed hydrograph produced using the 

Muskingum method for several of the river reaches was compared to a routed hydrograph for the same 

section determined using a kinematic wave model (personal communication, Bethany Neilson, Utah 

State University).
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3. Field Measurements

To determine the lateral inflows along various reaches of the rivers within the Kuparuk 

watershed, ten seasonal monitoring stations were deployed over the summer of 2013 and 2014. At 

each of these monitoring stations continuous measurements of river stage were recorded and multiple 

point discharge measurements were taken throughout both summers to create a stage-discharge 

relationship and convert the time dependent river stage into discharge. To relate river conditions to 

rainfall events throughout the summer, precipitation data were collected at several seasonal monitoring 

stations as well as from preexisting meteorological stations.

To enable the analysis of this research, the following measurements were made as described in 

more detail in the following sub-sections:

• Precipitation.

• River Stage.

• Discharge.

• Surveys of Pressure Transducer Height.

3.1 Precipitation

Summer precipitation was measured at 8 sites in 2013 and 7 sites in 2014 within the Kuparuk 

watershed as well as at the nearby Franklin Bluffs meteorological site located on the coastal plain in the 

adjacent Sagavanirktok River watershed. Precipitation was measured at each site using one of two 

types of tipping buckets, either the Texas Electronics TE525WS or the TE525MM, connected to a data 

logger. The gauges function by funneling precipitation to a tipping bucket that tips over when full, 

emptying itself and sending an electronic pulse that is recorded by the data logger. The TE525WS model 

features a 20.3 cm (8 in) diameter funnel collector which drains into a tipping bucket that holds 0.254 

mm (0.01 in) of water, while the TE525MM model features a 24.5 cm (9.65 in) diameter collector and a 

tipping bucket that holds 0.1 mm (0.004 in) of water (Figure 3.1).
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Figure 3.1 A TE525MM tipping bucket surrounded by a metal alter shield.

The tipping buckets were generally installed at a height between 0.7-1.0 m off the ground 

attached to a singular supporting rod and surrounded by a metal alter shield. Potential sources of 

systematic error include undercatch due to: wind, evaporation and wetting losses, and trace events that 

contained precipitation at a level not significant enough to fill the tipping bucket (Yang et al., 1998). 

Insufficient data were available at all sites to correct for these errors, so for consistency no corrections 

were made. The tipping buckets were also observed to deviate from level during the year due to 

freeze/thaw within the active layer. All rainfall gauges were equipped with the alter shield to reduce 

uncertainty associated with gauge undercatch due to wind.

3.2 River Stage

The river stage, or water level, was recorded at monitoring stations throughout the watershed 

for the Kuparuk River, Imnavait Creek, and the Toolik River as shown in Figures 2.1 and 2.2. Preliminary 

locations were selected as previously described in site selection. The exact locations for equipment 

installation were selected so that the river was channelized into a single channel with no bends 

immediately upstream or downstream, where discharge measurements could be performed during both 

high-flow and low-flow conditions, and to minimize potential risk to the pressure transducers from 

debris within the river.

River stage was monitored at the Kuparuk River stilling well and Imnavait Creek weir in 2013 

using two Global Water WL400 Series vented pressure transducers at each location. The pressure
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transducers at the Imnavait Creek weir were located inside a corrugated metal stilling well that was 

hydraulically connected to the creek to maintain the position of the pressure transducer and minimize 

surface undulations of the water. The pressure transducers located at the Kuparuk River stilling well 

were initially deployed with one pressure transducer within a corrugated metal stilling well and the 

second within a protective metal sleeve secured to a plate weight with the purpose of holding its 

position on the bottom of the river. During the summer of 2013 a large precipitation event washed out 

the stilling well and its corresponding pressure transducer, which was subsequently replaced by a 

second pressure transducer in a protective metal sleeve secured to a plate weight. During both years 

the plate weights were not observed to move. At each site both of the pressure transducers were 

connected to a single data logger that converted electrical current into river stage, readings were taken 

once every minute and averaged over 15 minute periods.

During the 2014 field season, river stage at the Imnavait Creek weir was measured using a Hobo 

U20 water level logger pressure transducer located within the corrugated stilling well. The Hobo U20 

took a pressure reading once every minute and recorded the 15 minute average. The Hobo U20 water 

level logger is not vented and therefore had to be adjusted to account for variations in atmospheric 

pressure. This was done using a BaroTROLL 15psi data logger from In-Situ Inc. that took and recorded a 

singular measurement every 30 minutes.

For both the 2013 and 2014 field seasons the water level at the confluence of Imnavait Creek 

with the Kuparuk River was measured and recorded using a YSI 600LS Sonde equipped with a vented 

cable. The YSI 600LS was attached to a piece of rebar driven into the creek bottom to hold it in place. 

River stage was measured every minute with the average being recorded every 15 minutes.

At the remaining sites in 2013 and then also including the Kuparuk River stilling well in 2014 

river stage was recorded using a Campbell Scientific CS451 pressure transducer with a vented cable 

connected to a data logger. The pressure transducers were installed within a pvc housing for protection
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that was then attached to a studded T-Post driven into the river bottom to hold it in location (Figure 

3.2). At all locations, readings were taken at 1 minute intervals but recording averages varied between 

15 minute and 30 minute time intervals.

Figure 3.2 Sensor instalation on the Kuparuk River.
A pressure, temperature, and conductivity sensor secured within the pvc housing (left) which is 
then secured to a t-post in the river (right).

3.3 Discharge

Discharge measurements were made periodically at every location where pressure transducers 

were installed to build a stage-discharge relationship and enable the conversion of the continuous stage 

measurements into a hydrograph for each site. The timing and number of discharge measurements at 

each site varied, but an effort was made to collect discharges across the full range of stages witnessed; 

however, measurement opportunities were often affected by the availability of helicopter support to 

reach sites, plus weather restricting travel. Special effort was made to obtain measurements at high-
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flow and low-flow conditions as discharges outside of the measured bounds would have to be 

extrapolated by extending the rating curves which could induce additional error.

The method of measuring discharge was determined at each site depending on the flow 

conditions and channel bathymetry. Whenever possible, the discharge was measured using an Acoustic 

Doppler Current Profiler (ADCP) or more specifically, the StreamPro from Teledyne RD Instruments, as 

the StreamPro is able to take significantly more measurements across the transect as well as throughout 

the water column. However during lower flow conditions the river was often not deep enough for the 

StreamPro to operate, at which point discharge measurements were taken using an Acoustic Doppler 

Velocimeter (ADV). This was done using the FlowTracker Handheld ADV from SonTek coupled with a top 

setting rod. In instances of smaller cross sections and/or significantly low flows, as were present at the 

Imnavait Weir, a USGS Pygmy Meter was used in conjunction with a digital readout and top setting rod.

Discharge measurements taken using the StreamPro ADCP were done in one of two ways. For 

deeper and wider river sections the StreamPro was mounted to an inflatable kayak and paddled across 

the river. For narrower transects a tagline was erected and the StreamPro was shuttled back and forth 

across the channel mounted on a Tri-Maran, a 3 pontoon hard plastic boat, tethered to the tagline. The 

two methods are shown in Figure 3.3.
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Figure 3.3 The two methods of taking a measurement with the StreamPro.
Tyler King paddles the StreamPro across the river while Levi Overbeck operates the laptop on
the far bank (left) and the Tri-Maran tethered to a tag line (right).

Before any measurements were made, the ADCP diagnostic and quality tests were performed as 

well as a compass calibration. The StreamPro was shuttled across the channel once measuring the 

depth and velocity to determine the maximum water depth and maximum water velocity which were 

used to adjust the settings before any measurements were recorded. Measurements were then made 

utilizing the bottom tracking feature as GPS tracking was not an option. A minimum of four transects 

were recorded at each site consisting of two in each direction across the river to detect any directional 

bias in the measurement. During the measurement process the coefficient of variation (standard 

deviation/mean) was used to gauge the overall quality of the transects measured. If the coefficient of 

variation was greater than 5% additional transects were measured (Turnipseed & Sauer, 2010). After 

transects were recorded a moving bed test was performed to detect, and enable if necessary, any 

adjustments required for sediment transport along the river bottom affecting the StreamPro's 

performance. After a measurement was completed the files were reviewed for quality control. During 

the review, the ADCP settings were audited and individual transects were evaluated for bad or missing 

data as well as ratio of measured to estimated flow. Transects were also compared to one another for 

consistency in width, area, discharge, and flow direction. Afterwards the mean discharge of the 

accepted transects was used.
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Velocity measurements were performed using the FlowTracker, shown in Figure 3.4, and the 

USGS pygmy meter; discharges were calculated using the Velocity-Area Method. The velocities used in 

the calculations were a singular measurement consisting of a 60 second average from 0.6 depth (D) 

down from the surface if the depth was below 0.75 m or the average of two measurements made at 0.2 

D and 0.8 D if the depth was equal to or greater than 0.75 m. Measurements were made spanning the 

channel at intervals in the attempt to restrict the flow corresponding to each measurement to less than 

5% of the total discharge.

Figure 3.4 Velocity measurement using the Flow Tracker.
Levi Overbeck (left) and Tyler King (right) perform a velocity measurement using the Flow 
Tracker on the Kuparuk River.

3.4 Surveying and Field Measurements of Pressure Transducer Height

Pressure transducer height was surveyed during both years in relation to local temporary 

benchmarks. In 2013, they were surveyed using a transit, and in 2014 using a Trimble m3 Total Station. 

Field measurements of the pressure transducers included top-down measurements, where a wooden 

tape measure was used to measure from the water surface or top of a support down to the top of a 

sensor head. These measurements were used to adjust the stage record and account for adjustments in 

the pressure transducers location during a field season.
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4. Analysis

4.1 Hydrograph Creation

The first step in creating the seasonal hydrographs for each site was to review and adjust the 

river stage records so that all stage readings were relative to a single datum. Adjustments to the stage 

record became necessary any time the pressure transducer was moved during a field season as well as 

from year to year. Movement of the pressure transducers occurred for a multitude of reasons including 

but not limited to: adjustment for changes in water level, the need to replace batteries, or debris within 

the river had shifted or broken the support that held the pressure transducer in place. Adjustments 

were determined through the use of the river stage record itself as well as through surveying and top 

down measurements made before and after shifting of the pressure transducer.

For each site, a stage-discharge relation was developed by plotting the measured discharges as a 

function of river stage at the time of the measurement and then fitting the points with a power function 

(Linsley JR. et al., 1975) of the form:

Q = fl*S * Eqn (10)

where Q is the predicted discharge, S is the final adjusted stage, and f l and  ̂are constants. When 

multiple years of corrected stage data were present for a single site, subsequent years were shifted so 

stage values would correspond to the initial year's datum through the use of an additional offset. This 

offset was determined using:

Offset =  I‘1̂(ST̂ SCi) Eqn (11)

where ST is the river stage value during the year to be adjusted, SC is the river stage calculated using 

the stage-discharge relationship of the previous year, and n is the number of measurements being used 

in the determination of the offset. During the determination of the offset only discharges that fell 

within the range of discharges previously measured and used in the building of the stage-discharge
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relation were used in order to avoid extrapolation errors. If surveying data were available to relate 

pressure transducer location from year to year it was compared to the calculated offset for 

confirmation. Once the offset was determined, discharge measurements from the newest year were 

added to the stage-discharge relation to increase its accuracy and range. The cumulative stage- 

discharge relation was then used to convert the stage data into hydrographs, within this paper 

hydrographs created using the stage-discharge relations are referred to as gauged hydrographs.

4.2 Muskingum Routing

For each reach the gauged hydrograph at the upstream location was routed to the next gauging 

site downstream. The only exception is the northernmost reach of the Kuparuk River (Lower Kuparuk) 

located on the coastal plain. For this reach, the gauged hydrographs for site 2A and the Toolik River 

were added together and the resulting hydrograph was routed downstream to the USGS gauging site.

Hydrographs for each gauging site were routed downstream using the Muskingum method.

Each reach was divided into a number of segments to satisfy the stability requirement in Equation 6, the 

number of segments varied between reaches as well as between years. The hydrographs were routed 

downstream one segment at a time using Equations 5-9, the output of one segment being used as the 

input for the next. For the determination of the values of K  to be used, travel times were estimated for 

rain events with peak discharges that were discernable in both the upstream and downstream 

hydrographs. These travel times were then plotted as a function of the value of the upstream discharge 

associated with that individual peak. The points were then fit with a power curve to determine a and y 

used in Equation 9. The upstream hydrograph was then routed and compared to the measured 

downstream hydrograph, at which point the values of a and y were adjusted and the process repeated 

until the rising limbs and peaks of the routed hydrograph lined up with the downstream measured 

hydrograph.
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The number of segments used in each reach was selected in order to be the minimum number 

of segments that still satisfied the second part of the stability requirement in Equation 6, At < K. A 

value of 0.25 was used for the attenuation coefficient X  whenever possible. To satisfy the first part of 

the stability requirement, 2KX < At, the value of the attenuation coefficient was reduced, resulting in a 

reduction of attenuation of the hydrograph. Reduction in the attenuation coefficient was generally only 

required during peaks in the hydrograph.

4.3 Routing Comparison

The error induced by this version of the Muskingum method was investigated through the 

comparison of the upstream gauged hydrograph and the routed hydrograph. The total discharge was 

calculated by integrating each hydrograph. The % increase in discharge due to routing was then 

calculated by subtracting the total discharge of the upstream gauged hydrograph from that of the 

routed hydrograph and dividing the result by the total discharge of the upstream gauged hydrograph.

The routed hydrographs determined using the Muskingum method were also compared to the 

routed hydrographs determined using a kinematic wave model, developed by Bethany Neilson and Tyler 

King of Utah State University for the instream temperature model, for the reaches from site 8 to site 7 

and site 7 to site 5. To compare the hydrographs produced by the Muskingum method to those 

produced by the kinematic wave model the Nash-Sutcliffe Model Efficiency Coefficient (Krause et al., 

2005) was calculated for each reach each year. For the Nash-Sutcliffe coefficient the closer the value is 

to 1 the more exact the match, where 1 represents an exact match and a value of 0 would result if a 

constant value of the mean were used.

4.4 Lateral Inflows and Runoff Ratios

The lateral inflow along each reach was determined by subtracting the routed upstream 

hydrograph from the downstream gauged hydrograph. For the Kuparuk River stilling well and Imnavait 

weir sites the lateral inflows were accepted as the gauged hydrograph as there were no upstream sites
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that could be routed to their location. In order to compare the lateral inflows along the various reaches 

the values were normalized by dividing by the contributing area for the reach. For each year the final 

value at the end of each summer for the cumulative lateral inflow was divided by the final value of the 

cumulative precipitation to calculate a runoff ratio for each reach.

There were some exceptions in the calculations for the reaches between the Kuparuk River 

stilling well to site 5. For the reach from the Kuparuk River stilling well to site 8 the Imnavait confluence 

gauged hydrograph was also subtracted from the site 8 gauged hydrograph in addition to the routed 

hydrograph from the Kuparuk River stilling well. Due to a lack of high flow measurements at site 7 the 

rating curve was insufficient to calculate high flow discharges, as a result the lateral inflows for the 

reaches from site 8 to site 7 and site 7 and site 5 could not be determined individually. Flows were 

instead routed downstream from site 8 to site 5 combining the two reaches into a singular larger reach.

4.5 Geospatial Measurements

The contributing area used in the determination of lateral inflows and in the construction of 

precipitation records for each reach within the watershed was measured in ArcGIS. The Digital Elevation 

Model (DEM) used during processing was built using two separate DEMs. A 5m resolution DEM that 

covers the majority of the Kuparuk watershed (Nolan, 2003) was supplemented with a 25m resolution 

DEM of the North Slope, Data Credit: National Elevation Dataset http://ned.usgs.gov/, both DEMs were 

downloaded from http://toolik.alaska.edu/gis/data/ on September 15, 2014. The hydrology toolset 

within the spatial analyst toolbox of ArcGIS was used to delineate the contributing area corresponding 

to each gauging location. For each year a Thiessen polygon network was built for the available 

meteorological stations using the proximity toolset within the analysis tools toolbox.

4.6 Precipitation

Available gauged precipitation datasets were examined for abnormalities and gaps in the record 

before being accepted. Precipitation records for each reach were constructed based on the coverage of
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the Thiessen polygons over the contributing area (Wurbs & James, 2002). The stations used and their 

corresponding weights in building the precipitation record for each reach varied between 2013 and 

2014, as seen in Appendix D, due to the addition and removal of monitoring stations to the network.
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5. Results

5.1 Hydrograph Creation

To enable the merging of the 2013 and 2014 discharge measurements an offset was required to 

adjust the 2014 stage data to the 2013 datum, this was done using curve matching. The offsets 

determined using curve matching along with those determined using surveying data are shown in Table

5.1 for comparison, at the sites for which surveying data was available.

Table 5.1 Offsets for the adjustment of the 2014 stage data to the 2013 datum at sites for which
surveying data were available for comparison against the curve matching met od.

Site Curve Matching (cm) Surveying (cm)

Imnavait Confluence -5.07 -2.71
Site 8 -0.82 -1.75

Site 7 -17.42 -16.89

The discharge measurements for both the 2013 and 2014 field seasons were plotted with 

respect to their final adjusted stage value and fit with a power curve of the form of Equation 10. Table

5.2 provides a summary of the constants f l, ^, and the R2 value of the fitted curve for each site. The 

rating curve for each site is located in Appendix A.
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Table 5.2 Constants for the stage-discharge relationship for each site and the corresponding R2 value.

Site Q n R2

Kuparuk River Stilling Well 2.662E-07 3.835 0.996
Imnavait Weir (Low Flow) 1.494E+03 4.556 0.864

Imnavait Weir (High Flow) 4.747E+02 2.919 0.937

Imnavait Confluence 4.612E+00 2.777 0.992
Site 8 2.396E-10 5.044 0.993

Site 7 3.195E-08 4.434 0.985
Site 5 5.735E-06 3.338 0.984

Site 4 1.191E-04 2.768 0.996

Site 3T 8.382E-04 2.254 0.996
Site 3B 1.352E-03 2.258 0.991

Site 2A 2.338E-06 3.510 0.998

Toolik River 4.286E-05 2.968 0.993

Equation 10 was then used with the corresponding constants from Table 5.1 to convert the 

stage record for both years at each site into continuous hydrographs. The hydrographs for each site, 

located in Appendix B, show the calculated discharge for each gauging site as well as when the 

calculated discharge exceeds the maximum measured discharge by more than 20% or drops below 80% 

of the minimum measured discharge.

5.2 Routing

The Muskingum method with variable travel time was used in order to route flows downstream 

from one gauging site to the next. The values of a and y used in the determination of travel times, 

Equation 9, along with the minimum value of X  that was used to satisfy the stability requirement, 

Equation 6, are shown in Table 5.3. Comparison between the upstream gauged hydrograph and the 

routed hydrograph revealed that the Muskingum method resulted in a slight increase in total discharge 

during routing, the percent increases in flow that occurred within each reach are shown in Table 5.3.
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Table 5.3 Constants used for the calculation travel time for routing along with the minimum value of the 
attenuation coefficient, "X", and percent increase in flow within each reach due to routing for
each year.

Reach a Y
2013 2014

Min "X" % Increase 
in Flow

Min "X" % Increase 
in Flow

Kuparuk River 
Stilling Well to Site 8 10.48 -0.692 0.043 0.83 0.067 0.56

Imnavait Weir to 
Imnavait Confluence 2.14 -0.940 0.110 9.68 0.085 6.42
Site 8 to Site 7 9.55 -0.663 0.064 0.67 0.083 0.50

Site 7 to Site 5 9.95 -0.388 0.065 0.94 0.114 0.84
Site 8 to Site 5 12.50 -0.414 0.110 0.81 0.152 1.31

Site 4 to Site 3T/3B 100.95 -0.382 0.099 7.69 0.161 2.17

Site 3T/3B to Site 2A 86.52 -0.375 0.214 2.19 0.210 0.37

Site 2A and 2T.1 to 
the USGS Gauge 68.83 -0.311 N/A 0.237 0.31

The routed hydrographs for the Muskingum method and the kinematic wave model for the 

reaches from site 8 to site 7, site 7 to site 5, and site 8 to site 5 are shown in Figure 5.1 for the 2013 field 

season and in Figure 5.2 for the 2014 field season. The routed hydrographs for the final rain event 

experienced in 2014 are shown in Figure 5.3.

33



Figure 5.1 Comparison of the kinematic wave model to the Muskingum method for the reaches from site 
8 to site 7, site 7 to site 5, and site 8 to site 5 in 2013.
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Figure 5.2 Comparison of the kinematic wave model to the Muskingum method for the reaches from site 
8 to site 7, site 7 to site 5, and site 8 to site 5 in 2014.
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Figure 5.3 Comparison of the kinematic wave model to the Muskingum method for the reaches from site 
8 to site 7, site 7 to site 5, and site 8 to site 5 for the final rain event of 2014.

The Nash-Sutcliffe Model Efficiency Coefficients comparing the routed hydrographs created using the

Muskingum method to those of the kinematic wave model for each reach each year are shown in Table

5.4.

Table 5.4 Nash-Sutcliffe Model Efficiency Coefficients comparing the hydrographs routed using the 
Muskingum method to the hydrographs routed using the kinematic wave model.

Reach
Nash-Sutcliffe Mode Efficiency Coefficient

2013 2014

Site 8 to Site 7 0.9996 0.9998
Site 7 to Site 5 0.9933 0.9930

Site 8 to Site 5 0.9948 0.9964

5.3 Lateral Inflows and Precipitation

The routed hydrographs produced using the Muskingum method were subtracted from the 

downstream gauged hydrographs to determine the lateral inflows. The cumulative lateral inflows were 

calculated throughout each summer and normalized by the contributing drainage area for each reach. 

The cumulative lateral inflows for each reach are shown for 2013 and 2014 collectively in Figure 5.4 and 

Figure 5.5, respectively, and individually in Appendix C. Maps showing the meteorological stations and
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Thiessen polygon networks used to calculate the precipitation records are located in Appendix D, the 

cumulative precipitation records were calculated over the same period of record for which the lateral 

inflow data were available for each reach and are shown in Figure 5.6 for 2013 and Figure 5.7 for 2014.

The runoff ratios, calculated by dividing the cumulative later inflow by the cumulative 

precipitation at the end of each summer, are shown in Table 5.5.
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Figure 5.6 Cumulative precipitation for each reach during the 2013 field season.

Figure 5.7 Cumulative precipitation for each reach during the 2014 field season.
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Table 5.5 Runoff Ratios for each reach by year.

Reach
Runof : Ratio

2013 2014
Above the Kuparuk River 
Stilling Well 0.92 0.96
Above Imnavait Weir 0.48 0.65

Imnavait Weir to Confluence 0.23 0.59
Kuparuk River Stilling Well to 
Site 8 0.79 0.88
Site 8 to Site 5 0.12 0.56

Site 4 to Site 3T 0.42 N/A
Site 4 to Site 3B N/A 0.57

Site 3T to Site 2A 0.15 N/A

Site 3B to Site 2A N/A 0.35

Site 2A to USGS Site N/A 1.33
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6. Discussion

6.1 Hydrographs

The agreement between the two years of discharge measurements shown in Appendix A, the R2 

values in Table 5.2, and the agreement between the two methods of determination shown in Table 5.1 

indicate that the year to year stage adjustment used was appropriate. Also, any morphological changes 

occurring within the channel between the two years did not alter the rating curve significantly. The R2 

values of Table 5.2 also attest to the suitability of the stage-discharge equations used to calculate the 

discharge while flows are within the measured range. Flows that exceed the measured range were 

estimated using the rating curve and are believed to exceed the actual flow within the channel, 

extension of the rating curve beyond the measured range requires the assumption that the channel 

geometry at higher flows was consistent with that of the channel geometry at lower flows during which 

the rating curve was developed. These estimates become less accurate as the stage continues to 

increase beyond the measured range, but serve as the best estimates currently available. These 

overestimates of the discharge result in overestimation of the lateral inflows and runoff ratio for the 

upstream reach, and an underestimation of the lateral inflows and runoff ratio of the downstream 

reach. The majority of flows throughout the two field seasons of record were within the 

maximum/minimum measured values, as shown in Appendix B.

Flows at the Toolik River site, site 2A, and site 3B exceeded the measured range repeatedly 

throughout the summer, more so than the other sites. This was due to the remote location of the sites 

and compounded by the fact that there was only one year of discharge measurements available to be 

used in the building of the stage-discharge relationships for the Toolik River site and site 3B. The 

discharges of site 8, site 7, and the Imnavait confluence site also exceeded the largest measured 

discharge, these occurrences were due to the flashy response of runoff to precipitation at these sites. 

The peaks at these sites were short in duration often making it difficult to arrive at the site while flows
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were high, and occasionally upon arrival it was observed that the flows had increased to where it was no 

longer safe to enter the water and obtain a measurement. Although flows exceeded the measured 

range repeatedly throughout both field seasons the periods of exceedance were short in duration 

leaving the majority of the record unaffected and enabling the impacts to be isolated and traced.

The hydrographs for site 7 in Appendix B show that during peak flow events the extrapolated 

discharge exceeds the measured range by up to 7 times in 2013 and 4 times in 2014. The frequent 

occurrence and scale of exceedance resulted in the removal of site 7 and the merging of the reaches 

from site 8 to site 7 and site 7 to site 5 for the calculation of lateral inflows. We hope to erase this 

problem during the 2015 field season.

6.2 Routing

The Muskingum method was used with variable travel times to route flows from one gauging 

location downstream to the next. The minimum values of the attenuation coefficient “X" shown in 

Table 5.3 indicate that during peak flows attenuation of the routed hydrograph was reduced in order to 

satisfy the stability requirement. The values for the % increase in flow, shown in Table 5.3, indicate that 

the routing did not alter the total discharge from the routed hydrograph at the downstream end of the 

reach from that of the inflow hydrograph at the upstream end of the reach, except in the case of the 

reaches from the Imnavait weir to the Imnavait confluence and site 4 to site 3T. In these cases, the 

increase in total discharge due to routing would have the effect of underestimating the lateral inflows, 

and result in a reduced runoff ratio.

This Muskingum method was compared to the kinematic wave routing method, which will be 

used for the instream temperature model, for the reaches from site 8 to site 7, from site 7 to site 5, and 

site 8 to site 5 as these were the only reaches for which the kinematic wave model had been calibrated. 

It should be noted that although the kinematic wave method used a number of physical parameters, 

several of them were estimated and then adjusted to make the routed hydrographs match the
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downstream measured hydrographs in a similar method to that of the calibration process used for the 

Muskingum method.

It can be seen in Figures 5.1-5.3 the hydrographs routed using the Muskingum method 

experienced a slight increase in the attenuation of the peaks and an overall greater amount of 

smoothing. The routed hydrographs from the two methods appeared very similar to one another, to 

determine the level of similarity for each pair of hydrographs, the Nash-Sutcliffe Model Efficiency 

Coefficient was calculated. The values shown in Table 5.1 (with a minimum value of 0.9930 for the six 

comparisons) indicate that the Muskingum method is a close approximation to the kinematic wave 

method, and is suitable for our purposes.

6.3 Lateral Inflows and Precipitation

The routed hydrographs were subtracted from the downstream hydrographs to determine the 

lateral inflows along each reach; the lateral inflows were then summed throughout the study period and 

these cumulative lateral inflows are shown in Figure 5.4 and Figure 5.5. The values for the cumulative 

precipitation of each sub watershed plotted in Figures 5.6 and 5.7 were consistent with previous studies 

(Kane et al., 2008; Kane et al., 2014) that showed summer precipitation increases moving away from the 

coast and into the foothills. The accuracy of the precipitation estimates became increasing problematic 

moving north within the watershed as the area attributed to each meteorological station increased. The 

total precipitation and total cumulative lateral inflow for each sub watershed were used to calculate the 

runoff ratios for the study period in Table 5.5.

Figures 5.4 and 5.5 show the general trend of progressively increasing values for the cumulative 

lateral inflows of reaches located farther south; similarly, subwatersheds located farther south, closer to 

the foothills, were determined to have higher values for the runoff ratio. Three reaches appear to be 

anomalies to both trends in 2013 (the Kuparuk River stilling well to site 8, the Imnavait weir to Imnavait
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confluence, and site 8 to site 5) and one reach in 2014 (the confluence between the Toolik River and the 

Kuparuk River to the USGS gauging site).

Quantitative comparisons were attempted to investigate possible relationships between lateral 

inflows and watershed slope and shape. The results were inconclusive due to variations between 

watersheds in the duration, intensity, and cumulative amount of precipitation experienced leading up 

to, during, and after precipitation events. Comparisons were further stymied by the varying level of 

error introduced during the extrapolation of high flow discharge values between gauging sites.

For the majority of the 2013 field season the reach from the Kuparuk River Stilling well to site 8 

was observed to lose water, positive lateral inflows (gains) to the reach were only experienced following 

precipitation events. The hydrograph for site 8 in 2013, located in Appendix B, shows a direct relation 

between the extrapolated discharge following a large rain event on the 19th and 20th of July and a 

dramatic gain in the cumulative lateral inflows for the reach, suggesting that the lateral inflows 

surrounding the event are inflated, which would also result in an over estimation of the runoff ratio for 

the reach. In 2013 the adjacent reach to the north, from site 8 to site 5, experienced minimal lateral 

inflows throughout the summer. The overestimation of discharge at site 8 following the 

aforementioned rain event resulted in a reduction in the cumulative lateral inflows for the reach from 

site 8 to site 5, and an underestimation of the runoff ratio. The water lost along the reach from the 

Kuparuk River stilling well to site 8 was not observed to reenter the river upstream of the Kuparuk 

aufeis, this in conjunction with the low lateral inflows and runoff ratio for the reach from site 8 to site 5 

suggests that water from the Kuparuk River is entering into storage along these two reaches. This 

supports the existence of a talik which acts as the source of the water feeding the aufeis formation 

(Figure 2.2) along the Kuparuk River (Yoshikawa et al., 2007). The same behavior was not observed 

during the 2014 field season, this is believed to be due to the increase of precipitation experienced in 

these reaches (approximately 50% more) during the study period.
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During 2013 the reach from the Imnavait weir to Imnavait confluence also experienced reduced 

lateral inflows and a lower than expected runoff ratio. However, this occurrence is not believed to be 

connected with the losing of water to the talik feeding the Kuparuk aufeis and it is currently 

unexplained.

The reach above the USGS gauging site experienced lateral inflows at a nearly constant rate, 

decreasing slightly as the summer progressed, but for the most part was unaffected by precipitation.

The runoff coefficient calculated had a value greater than 1 indicating that more water was gained by 

the river within the reach than was supplied to the subwatershed through precipitation, suggesting that 

snowmelt runoff continues to contribute to the Kuparuk River well into the summer. This long runoff 

time for snowmelt and little to no response to summer precipitation events can be explained by the 

coupling of the very low natural hydraulic gradient of the area and the abundance of lakes, ponds and 

wetlands which are often poorly connected hydraulically and slow to drain after snowmelt.

The increasing value of the runoff coefficients observed in the reaches to the south indicates 

that increases in precipitation are not solely responsible for the increased lateral inflows. The increasing 

values of the runoff coefficients is believed to be due to a combination of steeper slopes within the 

southern watersheds, vegetation variability, and watershed shape. Examination of the lateral inflow 

graphs, Appendix C, show that the reaches located farther to the south also experience larger 

contributions per square kilometer during low flow conditions than those located farther north.
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7. Conclusion

The calculated offsets enabled the multiple years of stage data and discharge measurements to 

be collated. The composite stage-discharge relation for each site provides an adequate estimation of 

the discharge while the flows remained within the measured range, and the best available estimation of 

those outside the measured range.

The Muskingum method with variable coefficients used was a suitable method of the flow 

routing for the Kuparuk River on the North Slope of Alaska, and provided travel times and attenuations 

that approximates those of the kinematic wave model for the reaches of which comparison was 

available.

In moving north through the Kuparuk watershed from the foothills to coastal plain the 

cumulative lateral inflow contribution and low flow lateral inflow contribution to the river per square 

kilometer decreased, as did the runoff ratio as a general trend. These were caused by changes in the 

precipitation, hillslope gradient, vegetation, and watershed shape. There were three reaches that were 

exceptions to this trend: the reach from the Kuparuk River stilling well to site 8, the reach from site 8 to 

site 5, and the reach between the confluence of the Kuparuk River with Toolik River and the USGS 

gauging location.

Along the reach from the stilling well to site 8, the Kuparuk River was observed to lose water 

during the summer of 2013, during which the adjacent reach to the north, site 8 to site 5, also 

experienced minimal lateral inflows and a reduced runoff ratio. Although the river is situated atop 

continuous permafrost, it is hypothesized that this water recharges a large talik that acts as the source
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of the water feeding the downstream aufeis field throughout the winter while the river is frozen 

(Yoshikawa et al., 2007).

The coastal plain between the confluence of the Kuparuk River and the Toolik River and the 

USGS gauging location experienced a significantly higher lateral inflow contribution throughout the 

summer than the areas to the south, and the lateral inflow was for the most part independent of 

precipitation. It is hypothesized that this is due to snowmelt stored in the low gradient topography 

composed of an abundance of slow draining lakes, ponds and wetlands. This conclusion is supported by 

prior research in the Putuligayuk watershed (Bowling et al., 2003).
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8. Future work

This research would be further improved with the collection of additional years of field data. 

One more year of data collection is currently scheduled for the summer of 2015. Discharge 

measurements should be targeted such that high flow conditions are captured to increase the range of 

the stage-discharge relations. The new stage-discharge relations should then be used to recalculating 

the flows at each site for the 2013 and 2014 seasons as well as calculate the flows for the 2015 season. 

All flows should then be routed down river and the lateral inflows calculated; these lateral inflows 

should then be compared with special attention paid to the reaches from the Kuparuk River stilling well 

to site 8, site 8 to site 5 (if site 7 is still unusable), and from the confluence of the Kuparuk River with the 

Toolik River to the USGS gauging site for consistency with the previous years.

The determined lateral inflows will be used as inputs to calibrate the surface water temperature 

model. Once the model is calibrated it will be used to run possible climate change scenarios.

The Kuparuk River should be investigated from the Kuparuk River stilling well to the aufeis field 

to determine the nature of the talik that exists. It would be beneficial to the understanding of the 

hydrologic processes of the area to know the locations of connectivity between the talik and the river as 

well as the storage capacity of the talik and the residency time of the water within it.
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Appendix A: Rating curves used to convert stage values to discharge values

Appendix A
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Figure A.1: Rating curve for the Kuparuk River stilling well.
Rating curve used to convert stage values to discharge values at the Kuparuk River stilling well 
site in 2014.
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Figure A.2: Rating Curve for the Imnavait Creek Weir.
Rating Curve used to convert stage values to discharge values at the Imnavait Creek weir site in 
2014, the low flow stage-discharge relation was used for stages under 0.49 ft.

55



Figure A.3: Rating curve for the Imnavait Creek confluence.
Rating curve used to convert stage values to discharge values at the Imnavait Creek confluence 
site in 2013 and 2014.

Figure A.4: Rating curve for site 8.
Rating curve used to convert stage values to discharge values at site 8 in 2013 and 2014.
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Rating curve used to convert stage values to discharge values at site 7 in 2013 and 2014.
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Figure A.6: Rating curve for site 5.
Rating curve used to convert stage values to discharge values at site 5 in 2013 and 2014.
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Figure A.7: Rating curve for site 4.
Rating curve used to convert stage values to discharge values at site 4 in 2013 and 2014.
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Figure A.8: Rating curve for site 3T.
Rating curve used to convert stage values to discharge values at site 3T, above the White Hills 
River confluence, in 2013.
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Figure A.9: Rating curve for site 3B
Rating curve used to convert stage values to discharge values at site 3B, below the White Hills 
River confluence, in 2014.
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Figure A.10: Rating curve for site 2A.
Rating curve used to convert stage values to discharge values at site 2A, above the Toolik River 
confluence, in 2013 and 2014.
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Figure A.11: Rating curve for the Toolik River.
Rating curve used to convert stage values to discharge values at the Toolik River site in 2014.
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Appendix B: Gauged hydrographs for each year at each site

Extrapolated discharge values reflect values that are at least 20% outside of measured values.

Appendix B

Figure B.1: Hydrograph for the Kuparuk River Stilling well in 2013.
Hydrograph for the Kuparuk River stilling well in 2013 as reported by the WERC.
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Figure B.2: Hydrograph for the Kuparuk River stilling well in 2014.
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Figure B.3: Hydrograph for the Imnavait Creek weir in 2013.
Hydrograph for the Imnavait Creek weir in 2013 as reported by the WERC.
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Figure B.7: Hydrograph for site 8 in 2013.
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Figure B.8: Hydrograph for site 8 in 2014.
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Figure B.9: Hydrograph for site 7 in 2013.
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Figure B.10: Flydrograph for site 7 in 2014.
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Figure B.11: Hydrograph for site 5 in 2013.
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Figure B.12: Hydrograph for site 5 in 2014.
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Figure B.13: Hydrograph for site 4 in 2013.
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Figure B.14: Hydrograph for site 4 in 2014.
Hydrograph for site 4 in 2014, the sensor was out of the water from 6/15 to 6/23.
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Figure B.15: Hydrograph for site 3T in 2013.
Hydrograph for site 3T, above the White Hills River confluence, in 2013.
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Figure B.16: Hydrograph for site 3B in 2014.
Hydrograph for site 3B, below the White Hills River confluence, in 2014.
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Figure B.17: Hydrograph for site 2A in 2013.
Hydrograph for site 2A, above the Toolik River confluence, in 2013.
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Figure B.18: Flydrograph for site 2A in 2014.
Hydrograph for site 2A, above the Toolik River confluence, in 2014.
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Figure B.19: Hydrograph for the Toolik River site in 2014.
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Figure B.20: Hydrograph for the USGS site in 2013.
Hydrograph for the USGS Kuparuk River site as reported by the USGS in 2013.
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Figure B.21: Hydrograph for the USGS site in 2014.
Hydrograph for the USGS Kuparuk River site as reported by the USGS in 2014.
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Appendix C: Calculated lateral inflows for each year at each reach

Appendix C
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Figure C.1: Calculated lateral inflow for the reach above the Kuparuk River stilling well in 2013.
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Figure C.2: Calculated lateral inflow for the reach above the Kuparuk River stilling well in 2014.
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2013 Above Imnavait Weir Lateral Inflow
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Figure C.3: Calculated lateral inflow for the reach above the Imnavait Creek weir in 2013.
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Figure C.4: Calculated lateral inflow for the reach above the Imnavait Creek weir in 2014.
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Figure C.5: Calculated lateral inflow for the reach from the Imnavait Creek weir to the Imnavait Creek 
Confluence in 2013.
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Figure C.6: Calculated lateral inflow for the reach from the Imnavait Creek weir to the Imnavait Creek 
Confluence in 2014.
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Figure C.7: Calculated lateral inflow for the reach from the Kuparuk River stilling well to site 8 in 2013.
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Figure C.8: Calculated lateral inflow for the reach from the Kuparuk River stilling well to site 8 in 2014.
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2013 Site 8 to Site 7 Lateral Inflow
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Figure C.9: Calculated lateral inflow for the reach from site 8 to site 7 in 2013.
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Figure C.10: Calculated lateral inflow for the reach from site 8 to site 7 in 2014.
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Figure C.11: Calculated lateral inflow for the reach from site 7 to site 5 in 2013.

Figure C.12: Calculated lateral inflow for the reach from site 7 to site 5 in 2014.
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Figure C.13 Calculated lateral inflow for the reach from site 8 to site 5 in 2013
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Figure C.14 Calculated lateral inflow for the reach from site 8 to site 5 in 2014.
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Figure C.15: Calculated lateral inflow for the reach from site 4 to site 3T in 2013.
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Figure C.16: Calculated lateral inflow for the reach from site 4 to site 3B in 2014.
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Figure C.17: Calculated lateral inflow for the reach from site 3T to site 2A in 2013.
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Figure C.18: Calculated lateral inflow for the reach from site 3B to site 2A in 2014.
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Figure C.19: Calculated lateral inflow for the reach from the confluence of the Kuparuk River with the 
Toolik River to the USGS gauging site in 2014.
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Appendix D: Maps showing the meteorological stations used and their Thiessen polygons

Appendix D

Figure D.1 Map of the Kuparuk watershed showing the meteorological stations used in 2013 and the 
corresponding Thiessen polygons.
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Figure D.2 Map of the Kuparuk watershed showing the meteorological stations used in 2014 and the 
corresponding Thiessen polygons.
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