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Abstract

Permafrost degradation is widespread throughout the circumpolar north, occurring by multiple 

modes and mechanisms on many types o f landscapes. The pan-arctic rate o f permafrost degradation is 

reportedly increasing, and permafrost carbon and nitrogen release are likely to be major contributors to 

global atmospheric greenhouse gas concentrations in coming decades. Locally, liberation o f previously 

frozen substrates, organic materials, and nutrients alters the ecology o f receiving streams, causes 

ecological and hydrobiogeochemical impacts in lake ecosystems, and impacts vegetation through 

disturbance, nutrient release, and succession on altered surfaces.

Understanding the diverse modes o f  permafrost landscape response to climate, within time and 

space, is critical to questions o f future impacts and feedbacks to climate change. Active layer detachment 

sliding and retrogressive thaw slumping are important modes o f  upland permafrost degradation and 

disturbance throughout the low arctic, and have been linked with climate warming trends, ecosystem 

impacts, and permafrost carbon release. In the Brooks Range and foothills study region o f northwest 

Alaska, active layer detachment slides and retrogressive thaw slumps are widespread and prominant 

modes o f  permafrost degradation. Their distribution has been partially correlated with landscape 

properties, especially upper permafrost characteristics. However, drivers o f  active layer detachment slide 

and retrogressive thaw slump distribution and initiation triggering mechanisms, are poorly understood in 

this region, and detailed spatial distribution o f  permafrost characteristics is particularly lacking for the 

entire area.

To better understand retrogressive thaw slump initiation triggers, this research used archived ERS-1 

synthetic aperture RADAR data (1997-2010) to determine the year o f first detection for 21 active 

retrogressive thaw slumps in the Noatak Basin, and examined weather records from remote and regional 

weather stations (1992-2011), along with satellite image-derived seasonal snowpack distribution 

(2000-2012) for

correlations among weather, snowpack duration, and the timing o f  retrogressive thaw slump initiation. 

Most slumps first appeared within a 13 month span beginning June of 2004. Early summer 2004 was 

distinct in the weather records for anomalously warm early thaw-season temperatures, intense rainfall 

events in May, and unusually early dissipation o f  the annual snowpack. Results suggest that, regionally, 

retrogressive thaw slump initiation may be clustered in time, in response to seasonal shifts or anomalous 

weather events, and that future landscape response to climate change may depend on the nature and 

timing o f climate change as much as overall magnitude.

The project examined inter-related and co-varying terrain properties at specific sites to identify

relationships among terrain properties and permafrost characteristics. Consistent relationships among
v



vegetation, surficial geology and permafrost characteristics were found using multiple factor analysis 

ordination o f  empirical data from diverse field sites throughout the region. Ordination results suggest 

relevant relationships among these factors to support regional-scale spatial analysis o f  terrain and 

permafrost properties. Field sites were also found to form consistent groupings from hierarchical 

clustering o f  ordination results, suggesting that relationships among these factors remain relevant across 

diverse gradients o f  landscape conditions in the region.

Several thousand observed feature locations o f  active layer detachment slides and retrogressive 

thaw slumps were then used to examine region-wide terrain suitability based on terrain properties 

including: surficial geology, topography, geomorphology, vegetation and hydrology. Structural equation 

modeling and integrated terrain unit analyses confirmed and identified the nature and relative strength o f  

relationships among terrain factors explaining observed feature distribution. These results may partially 

correspond with permafrost ground ice conditions as well, which is further supported by our ordination 

results. Analysis results drove mapped estimates o f  terrain suitability for active layer detachment slides 

and retrogressive thaw slumps across the region, enabling better estimates o f  permafrost carbon 

vulnerable to release, and ecosystems potentially impacted by these modes o f  permafrost degradation. Up 

to 57% of the study region may contain 'suitable' terrain for one or both o f these features. Results support 

a 'state factor' approach as a useful organizing framework for assessing and describing terrain suitability, 

and for examining drivers o f permafrost characteristics.
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Chapter 1. Introduction

1.0 Permafrost Landscapes

Permafrost degradation is widespread throughout the circumpolar north, occurring by multiple 

modes and mechanisms across diverse landscapes (Serreze et al. 2000, Hinzman et al. 2005, Anisimov 

and Reneva 2006, Jorgenson et al. 2008a). Pan-arctic rates o f permafrost degradation are increasing, and 

permafrost soils are estimated to store roughly 1,700 Pg o f soil carbon, which is more than half o f the 

global soil carbon stock and twice the current atmospheric load (Zimov et al. 2006, Tarnocai et al. 2009, 

Zimov et al. 2009). Permafrost carbon and nitrogen release will likely be major contributors to 

atmospheric greenhouse gas concentrations in coming decades (Schuur et al. 2008, Grosse et al. 2011, 

Schaefer et al. 2011), though estimated amounts and pathways are still under much debate (Slater and 

Lawrence 2013, Schaefer et al. 2014). Carbon and nitrogen released from frozen substrates may 

substantially contribute to atmospheric concentrations o f  CH4 , CO2, and N 2O, and strongly affect global 

biogeochemistry and climate (Walter et al. 2006, Walter et al. 2007, Schuur et al. 2008, Desyatkin et al. 

2009, Gooseff et al. 2009, Tarnocai et al. 2009, Grosse et al. 2011). Locally, liberation o f previously 

frozen substrates, organic materials, and nutrients alters the ecology o f receiving streams (Bowden et al. 

2007, Bowden et al. 2008, Frey and McClelland 2009, Gooseff et al. 2009, Rozell 2009), impacts 

sediment loads o f streams and rivers (Walker et al. 1987, Walker and Hudson 2003, Gooseff et al. 2009), 

and causes ecological and hydrobiogeochemical impacts in lake ecosystems (Kokelj et al. 2005, 

Thompson et al. 2008, Kokelj et al. 2009b, Mesquita et al. 2010). Vegetation within and adjacent to 

permafrost degradation is also directly impacted through disturbance, nutrient release, and succession on 

altered surfaces (Lantz and Kokelj 2008, Lantz et al. 2009).

Diverse permafrost landscapes are critical components o f global climate change, but responses 

and feedbacks depend on ecosystem properties which vary markedly among landscapes throughout the 

low arctic. Permafrost landscape structure develops through a complex interplay among climate, 

substrate and surficial processes operating at multiple spatial and temporal scales (Shur and Jorgenson 

2007). At the interface between the atmosphere above and the deep permafrost below, vegetation, soil, 

and upper-permafrost cryostructures respond to climate shifts and disturbance (Viereck 1973, ACIA 

2005, Jorgenson et al. 2010a, Jorgenson et al. 2013), and mediate the influence o f climate on deeper 

permafrost (Shur and Jorgenson 2007, French and Shur 2010). Vegetation and upper permafrost horizon 

development have been linked with terrain property and climate drivers (Kreig and Reger 1982, Shur 

1988, Shur and Jorgenson 2007, Pastick et al. 2014a), and are mutually influential at local and 

circumarctic scales, though the nature and extent o f  relationships among vegetation and permafrost is 

only partially understood (Raynolds and Walker 2008, Walker et al. 2008, French and Shur 2010, Lantz et
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al. 2010, Kokelj and Jorgenson 2013). Terrain properties and permafrost characteristics co-vary, and 

consistency o f  associations among permafrost, terrain and vegetation may enable landscape-scale analysis 

on that basis (Jorgenson and Kreig 1988, Raynolds and W alker 2008, Jorgenson et al. 2010a, Jorgenson et 

al. 2013, Pastick et al. 2014a).

Local to global impacts o f  permafrost degradation may be highly dependent on the particular 

mode o f  degradation (Abbott 2014, Lamoureux and Lafreniere 2014), and mode o f  degradation is highly 

dependent upon permafrost landscape terrain characteristics (Lewkowicz 1992, Jorgenson et al. 2008a, 

Kokelj and Jorgenson 2013). Distinct modes o f permafrost degradation correlate with specific 

combinations o f  surficial landscape properties, each with a different influence on ecological, 

hydrological, and biogeochemical shifts, and characterized by distinct morphologies and processes 

(Hinzman et al. 2005, Jorgenson et al. 2008b, Schuur et al. 2009, Lafreniere and Lamoureux 2013).

Modes o f  permafrost degradation include active-layer deepening, as well as an array o f  subsidence 

features broadly termed ‘thermokarst’ (Hinzman et al. 2005, Jorgenson et al. 2008b). These different 

modes affect ecosystems at different depths, rates, and scales, in turn driving the nature and magnitude o f  

impacts and feedbacks (Jorgenson et al. 2013). Modes o f permafrost degradation in response to climate 

perturbation or disturbance are driven by local surficial conditions, including thermal properties, thaw 

stability, slope, hydrology and ground ice characteristics (Leibman et al. 2003, Lewkowicz and Harris 

2005, Jorgenson et al. 2008b, Kokelj et al. 2009a, Jorgenson et al. 2010a, Lantuit et al. 2012). Thermal 

properties, thaw stability, and hydrology are influenced by cryostructure distribution and ground ice 

content, vegetation, soil composition and organic layer development (Shur and Jorgenson 2007).

1.1 Active Layer Detachment Slides and Retrogressive Thaw Slumps

Active layer detachment sliding (ALD) and retrogressive thaw slumping (RTS) are widespread 

and are the most prevalent o f  nineteen identified modes o f  permafrost degradation in the Brooks Range 

and foothills o f  northwest Alaska. Active layer detachment sliding and retrogressive thaw slumping 

include thaw of ice-rich permafrost on hill slopes or bluffs, causing soil structural instability and mass- 

wasting subsidence (Burn and Lewkowicz 1990, Leibman 1995, Leibman et al. 2003, Lewkowicz and 

Harris 2005, Jorgenson et al. 2008a). Active layer detachment sliding occurs on hill slopes where shear 

strength o f  active layer soils is exceeded by pore water pressures, and the destabilized active layer slides 

down slope, exposing the permafrost table below (Figure 1.1; Jorgenson and Osterkamp 2005,

Lewkowicz and Harris 2005, Lewkowicz 2007).
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Figure 1.1. Active layer detachment slide.

Active layer detachment slide on a northeast facing 

6° slope, on a deposit o f colluvium and loess in the 

upper Fauna Creek drainage Noatak Basin, northwest 

Alaska. Length from headwall (A) to end o f  

overburden debris flow (A') is 483 m; width at widest 

point (B to B') is 58 m, as o f July 2011. Deepest 

point was 3.5 m in the upper portion near the 

headwall (A). Photo: A. W. Balser, 2011

Warm weather and intense precipitation events have both been observed as ALD triggers 

(Leibman et al. 2003, Lamoureux and Lafreniere 2009), particularly where warm pulses or rainfall 

accelerate thaw front advance through syngenetic cryofacies containing an ice-rich intermediate layer 

beneath the active layer (Shur 1988, French and Shur 2010). Active layer detachment sliding is episodic, 

with features often appearing clustered together in space and time, and with active degradation confined 

to one or two consecutive thawing seasons (Leibman 1995, Lamoureux and Lafreniere 2009, Lamoureux 

and Lafreniere 2014). In some settings, conditions at prior active layer detachment sites redevelop over 

decades or centuries, with repeat initiation in response to triggering events (Leibman 1995, Khomutov

2012).

Retrogressive thaw slump formation can stem from at least several distinct mechanisms leading to 

exposure o f  ice-rich permafrost deposits (including pore, segregation, and massive ice). In coastal and 

riparian settings, lateral thermal erosion o f  protective overburden from adjacent bluffs can expose 

permafrost deposits typically rich with massive ice (Burn and Lewkowicz 1990, Lantuit et al. 2012, 

Kokelj and Jorgenson 2013). Wildfire which removes protective vegetation and organic layers, promoting 

thaw front advance through the active layer, may cause instability and disturbance (Lacelle et al. 2010). 

Channelized flow of surface water over networks o f ice wedge polygons can melt ice wedges, creating 

thermo-erosion gullies with progressive downward and lateral thaw into the permafrost (Jorgenson and 

Osterkamp 2005). Intense precipitation may be a particular trigger for thermo-erosion gullies leading to 

retrogressive thaw slump initiation (Bowden et al. 2008, Balser et al. 2014). Retrogressive thaw slumps 

may develop from any o f  these exposures where conditions promote continued instability with downward
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subsidence o f thawed material (Burn and Lewkowicz 1990, Jorgenson and Osterkamp 2005, Lacelle et al. 

2010, Godin and Fortier 2012, Kokelj and Jorgenson 2013). Once initiated, retrogressive thaw slumps 

continue to deepen and expand, typically forming a steep headwall up to 20 m deep, an arcing headwall 

scarp, a floor o f thawed and flowing debris, and a run out o f re-stabilizing deposits (Figure 1.2; Burn and 

Lewkowicz 1990, Lacelle et al. 2010, Lantuit et al. 2012, Kokelj and Jorgenson 2013).

Figure 1.2. Retrogressive thaw slump. Retrogressive 

thaw slump on a west facing 6° slope on a late 

Pleistocene glaciolacustrine deposit in the upstream 

portion o f  the Aniuk Lowlands, Noatak Basin, Alaska. 

This slump is polycyclic, having initiated in 2004 from a 

previously re-stabilized and inactive retrogressive thaw 

slump. Length from headwall to beginning o f outflow (A 

to A') is 181 m; width at widest point (B to B') is 287 m, 

as o f July 2011. Deepest point was 14m at the base o f the 

headwall near (A). Photo: A. W. Balser, 2011

Headwall retreat rate ranges from several to tens o f meters annually and is correlated with 

headwall height, ice content, and local climate (Kokelj and Jorgenson 2013). Expansion may continue for 

decades i f  thawed debris continues to subside and expose the headwall, and i f  newly exposed deposits are 

ice rich and receive sufficient energy for thaw (Lacelle et al. 2010). Retrogressive thaw slumps are 

frequently polycyclic, alternating between extended periods o f stabilized, revegetated dormancy, and 

active degradation when slumps reinitiate within, or adjacent to, older slump scars. Re-initiation may be 

caused by mechanisms described above (Lantuit et al. 2012, Kokelj and Jorgenson 2013), with sublimnic 

talik expansion as an additional significant driver in kettle lake basin settings (Kokelj et al. 2009a). 

Increased retrogressive thaw slump frequency and expansion rates have been generally linked with 

decadal-scale climate warming trends, but the relative importance o f  a general warming trend compared 

with specific weather events is not well-quantified (Lacelle et al. 2010).

1.2 Degradation Modes and Terrain Properties

Permafrost degradation modes have been linked with characteristic terrain properties, and these 

properties in turn may drive: 1) development of permafrost cryofacies assemblages associated with these 

modes, and 2) vulnerability to thaw (Jorgenson and Osterkamp 2005, Shur and Jorgenson 2007,
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Jorgenson et al. 2008a, Balser et al. 2009, Gooseff et al. 2009, Jorgenson et al. 2010a). Terrain properties 

including parent material/surficial geology, topography, geomorphology, vegetation, hydrology, climate 

and time have been presented as co-varying factors controlling permafrost distribution and active layer 

thickness (Pastick et al. 2014b), permafrost evolution, permafrost ecosystem response to climate and fire 

disturbance (Shur and Jorgenson 2007, Jorgenson et al. 2013), active layer depth (Pastick et al. 2014b) 

and active layer detachment and retrogressive thaw slump occurrence (Jorgenson et al. 2008a, Kokelj and 

Jorgenson 2013). Positive and negative feedbacks among multiple terrain properties have been identified 

as key determinants and mediators o f  landscape response to climate warming and disturbance, and to the 

distribution o f ALD and RTS features (Jorgenson et al. 2008a, Kokelj and Jorgenson 2013) with 

particular influence on thermal properties of substrate profiles (Shur and Jorgenson 2007, Xie and Gough

2013).

1.3 Terrain Properties as State Factors

Terrain properties have been usefully grouped within a ‘state factor’ framework and applied to 

models o f soil, permafrost, and vegetation development and distribution (Jenny 1941, van Cleve et al. 

1991, Jorgenson et al. 2013). The five state factors: 1) parent material, 2) topography, 3) biota, 4) climate 

and 5) time (van Cleve et al. 1991) provide an organizational structure to help ensure inclusion o f all 

generally relevant factors, and for testing the nature and strength o f  relationships among various terrain 

properties by grouping them in general, functional categories. While these principles are generally 

accepted, the importance o f  and relationships among individual terrain properties and state factors as 

drivers o f permafrost conditions and o f overall terrain suitability for active layer detachment slide (ALD) 

and retrogressive thaw slump (RTS) processes are not fully understood, particularly in the Brooks Range 

and foothills o f  northwest Alaska.

1.4 Study Region

The study region spanned a gradient o f  arctic tundra and shrub landscapes abutting the forested, 

arctic-boreal ecotone, from the east-central portion o f Alaska's North Slope (centered on Toolik Field 

Station) west through the central portion o f Alaska's Brooks Range mountains, continuing westward 

through the Noatak Basin to the Mission Lowlands, near the Noatak River delta (Figure 1.3). These 

periglacial landscapes are within the continuous permafrost zone (Jorgenson et al. 2008b) and are part o f 

Arctic Bioclimate Subzone E (CAVM-Team 2003). The study region covers approximately 75,000 km2, 

which is slightly larger than the state o f West Virginia.

Toolik Field Station sits in the northern Brooks Range foothills on Alaska's North Slope within a 

matrix o f  landscapes o f  varying glacial age, and ecotypes. Physiography ranges from low mountains at
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the edge o f the Brooks Range to subtle foothills stretching more than 75 km from the mountains to the 

edge o f the arctic coastal plain. Date since most recent glaciation ranges from early Pleistocene to 

Holocene for field sites surrounding Toolik Field Station, with acidic and nonacidic, graminoid and shrub 

tundra vegetation reflecting duration o f ecosystem development and local site conditions (Walker et al. 

1994, Walker et al. 1995, Hamilton 2003, Walker and Maier 2008). Lake and stream density is variable 

by landscape age-class and related with glacial and periglacial landforms (Hobbie et al. 1991, Kling 1995, 

Hamilton 2003).

Figure 1.3. The central and western Brooks Range and foothills, northern Alaska. Map by A.W. Balser.

The central Brooks Range is primarily mountainous terrain within Gates o f the Arctic National 

Park and Preserve (U.S. National Park Service). From the highest elevation on the horn o f Mt. Igikpak 

(2523 m), landscapes grade through foothills to glacially-sculpted valley bottoms containing major rivers 

flowing radially outward to the north, south, and west. The Noatak River Basin begins in the central 

Brooks Range and flows 730 km along a westward course at approximately 68° N latitude within the 

western sub-ranges o f the Brooks Range Mountains (Figure 1.3). Most o f the basin falls within the 

Noatak National Preserve (U.S. National Park Service) and is recognized as a UNESCO Biosphere 

Reserve. Physiographic provinces include high mountains o f the Central Brooks Range, through
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foothills, valley bottoms and the Aniuk Lowland westward, entering the broad, Mission Lowland at the 

arctic/boreal ecotone near the Noatak mouth (Wahrhaftig 1965, Young 1974).

The study region was periodically glaciated throughout the Pleistocene and contains a patchwork of 

glacial and periglacial landscapes dating from early Pleistocene to present times (Hamilton 2010, 

Hamilton and Labay 2011). Mountain physiographic provinces contain significant expanses of exposed 

bedrock at high elevations, with upper toe slopes covered by thin, often colluvially mixed and re­

deposited soils derived from loess, weathered bedrock, and drift, with local pockets of active solifluction 

(Young 1974, Jorgenson et al. 2010b, Hamilton and Labay 2011). Mountain valley bottoms are primarily 

underlain by late Pleistocene glacial drift deposits with adjacent ice-contact features, terraces, glacial 

inwash and outwash. Areas o f solifluction become larger and more common with decreasing elevation, 

and modern alluvium prevails along narrow, contemporary river corridors at lower elevations where 

mountains grade to foothills (Hamilton 2010, Hamilton and Labay 2011). Rounded foothills interspersed 

with upland valleys, most o f which were overtopped by Pleistocene glaciers, contain a mixture o f thin soil 

deposits over near-surface bedrock on hilltops, below which are loess and middle and late Pleistocene 

glacial drift, with glacial outwash common at drift deposit margins (Y oung 1974, Hamilton 2010, 

Jorgenson et al. 2010b, Hamilton and Labay 2011). Lowland physiographic provinces (Wahrhaftig 1965) 

are characterized by extensive lateral, recessional, and terminal ice-cored moraines, as well as kettle 

topography, all associated with middle and late Pleistocene glacial drift surfaces. Lowland bottoms are 

commonly over-draped with expansive, deep, ice-rich glaciolacustrine deposits from extensive and long- 

lived Pleistocene proglacial lakes (Hamilton 2009, 2010, Balser et al. 2015). Glaciolacustrine deposits 

become thinner along a gradient from lowland bottoms rising toward glacially rounded foothills, and 

large outwash deposits may abut terminal and recessional moraines. Modern alluvium covers broad, 

meandering river corridors, frequently bounded by bluffs o f glacial drift and glaciolacustrine deposits 

exposed through millennia o f erosional down-cutting (Hamilton 2009, 2010). A loess cap o f variable 

thickness is common throughout landscapes in the study region (Jorgenson et al. 2010b, Balser et al. 

2015).

The study region is within the zone o f climate-driven, ecosystem-modified permafrost (Shur and 

Jorgenson 2007), with ground ice conditions suitable for active layer detachment slide and retrogressive 

thaw slump processes distributed among landscapes throughout the region. Upper permafrost in thin soils 

over near-surface bedrock in mountainous terrain is primarily syngenetic (French and Shur 2010). 

Segregated ground ice exceeding 30% by volume, comprised mainly o f ataxitic and reticulate 

cryostructures, has been observed in the top meter of permafrost in these locations (Balser et al. 2015).

An ice-rich intermediate layer (Shur 1988, Shur et al. 2005), with an ice layer o f several centimeters at the
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interface o f the active layer and permafrost table may also be present across hill slopes (Balser et al.

2015). Episodes o f solifluction and colluvial re-deposition contribute to successive syngenetic permafrost 

development above buried soil surfaces, thickening both overall soil and permafrost through time (Balser 

et al. 2015). Regional-scale ground ice estimates for these areas range from low (<10%) to moderate 

(10%-40%) (Jorgenson et al. 2008b).

At low elevations, permafrost o f glacial and glaciolacustrine origin includes extensive deposits of 

deep, ice-rich, syngenetic and epigenetic permafrost, with massive ice deposits (Balser et al. 2015). In the 

Mission and Aniuk Lowland, regional ground ice estimates range from moderate (10%-40%) to high 

(>40%) and include broad areas o f active Holocene and inactive Pleistocene ice wedges (Young 1974, 

Jorgenson et al. 2008b, Balser et al. 2015) with deposits o f relict glacial ice scattered throughout 

(Hamilton 2009, 2010). Late-Pleistocene glaciolacustrine deposits can be especially ice-rich (Balser et al. 

2015), as is common across the low arctic (Shur and Zhestkova 2003). Syngenetic cryofacies at the top of 

the permafrost table have been observed in these lowlands, often within a loess cap up to several 

decimeters thick (Balser et al. 2015). Conditions may be highly variable, corresponding with surficial 

geology, landforms, and vegetation (Balser et al. 2015).

Permafrost in the foothills comprises an intermingling o f conditions characteristic o f alpine and 

lowland landscapes. Upper hill slopes include predominantly syngenetic permafrost cryofacies, 

periodically overtopped by solifluction and colluviation resulting in progressive permafrost aggradation, 

while lower slope positions may also include some ice wedges, relict glacial ice within Pleistocene drift, 

and older syngenetic permafrost associated with Pleistocene glaciolacustrine deposits (Y oung 1974,

Balser et al. 2015). There is no permafrost borehole monitoring within the study region, but adjacent 

boreholes to the north and south report average annual temperatures o f -5°C and 1°C respectively, while 

mean annual air temperature estimates for the study region are -7°C to -12°C (Jorgenson et al. 2008b).

Land cover comprises a broad suite o f vegetation in various landscape settings including arctic and 

alpine tundra, shrublands and lowland boreal forest along the arctic-boreal ecotone (Y oung 1974, Viereck 

et al. 1992, Parker 2006, Jorgenson et al. 2010b). Thirty-six ecotypes have been identified and mapped 

within our study region (Jorgenson et al. 2010b), with more than 50% of the land surface covered by 

various shrub-graminoid ecotypes. Alpine and arctic dwarf shrub tundras are most prevalent in the 

highest elevations, and within north-draining watersheds, while low shrub, tall shrub, and tussock tundras 

are common in mid-elevation valleys and throughout the Noatak Basin. Lowland valleys within the 

southwest portion and along the southern boundary o f the study region are part o f the arctic-boreal
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ecotone, and include open and closed stands of conifer and broadleaf species along floodplains (Young 

1974, Viereck et al. 1992, Parker 2006, Jorgenson et al. 2010b).

Differing lithologies have been strongly linked with soil properties within the study region. 

Carbonate, non-carbonate, mafic and ultramafic lithologies are correlated with differences in soil 

development, soil chemistry, and grain size proportions (Jorgenson et al. 2010b). These are in turn linked 

with vegetation, and with surface organic depth (Jorgenson et al. 2010b). These factors are known to 

influence permafrost characteristics (Davis 2001, Shur and Jorgenson 2007), though the full extent of 

these influences has not been reported for the study region. Lithology may exert more influence in upland 

settings where a larger proportion o f surfaces derive from the adjacent and underlying bedrock, compared 

with lowlands containing deep and extensive deposits o f mixed origin transported from elsewhere through 

glacial and periglacial processes.

Generally, upland hill slopes with an ice-rich intermediate layer may be more favorable for active 

layer detachment sliding, while lowlands o f glacial and glaciolacustrine origin offer prime settings for 

retrogressive thaw slump development, but these relationships are not obligate. Retrogressive thaw 

slumps are widespread along lowland lake margins, river banks, and bluffs. However, they also occur in 

upland settings, often where an active layer detachment slide has exposed the upper permafrost, and prior, 

episodic colluviation has accumulated a layer o f ice-rich, syngenetic, upper permafrost which is more 

than 2 m deep and vulnerable to sustained, retrogressive thaw slumping (Hamilton 2009, Swanson 2010, 

Swanson and Hill 2010, Balser et al. 2014). Active layer detachments are most frequently found on 

broad, upland hill slopes, but have also been observed in lowlands, typically adjacent to river bluffs on 

mild slopes where an ice-rich intermediate layer has developed (Balser et al. 2009, Gooseff et al. 2009, 

Swanson 2010, Balser et al. 2014).

Overall, conditions throughout the region represent a broad range o f typical low-arctic 

landscapes. Alpine, foothill, and valley bottom settings include many characteristic ecotypes of the North 

American low arctic, a suite o f periglacial landforms, diverse lithologies, and a broad continuum of 

permafrost characteristics and cryofacies. Our study deliberately included this breadth o f conditions over 

a large geographic area to represent a diversity o f low-arctic landscapes.

1.5 Goals o f this Research

There is yet much uncertainty regarding factors and processes driving the timing and distribution of 

active layer detachment slides and retrogressive thaw slumps across circumarctic landscapes. Whereas 

terrain properties influence permafrost and ground ice characteristics, and in turn drive conditions 

determining terrain suitability for active layer detachment slide and retrogressive thaw slump processes,
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the nature and strength o f these relationships are poorly understood, particularly within the Brooks Range 

and foothills o f northern Alaska. Prior research suggests that a state factor approach may be useful for 

striking the best balance between inclusion o f all relevant factors, while emphasizing parsimony as much 

as possible. While regional-scale triggering events for active layer detachment slides have been 

documented from multiple locations in the arctic, it is still unclear whether retrogressive thaw slump 

initiation is dispersed through time, with very localized responses to general warming and meteorological 

events, or whether slumps initiate within narrow time windows regionally, responding to shifts in 

seasonal climate patterns and anomalous weather events.

Better estimates of permafrost carbon vulnerability and ecosystem impacts and feedback to 

climate change within this region depend upon answers to questions about ALD and RTS terrain 

suitability and initiation timing. Do surficial characteristics correlate consistently with permafrost 

properties across the region? Can these correlations be exploited for models estimating ALD and RTS 

terrain suitability synoptically across landscapes? Where may these modes o f permafrost degradation be 

most prevalent? How much landscape may be suitable for these modes, and which sorts o f triggers are 

most likely to initiate them? Answers to these questions may help us better identify which ecosystems are 

most likely to be impacted under different climate change scenarios, how they may be impacted, and how 

much permafrost carbon may be vulnerable to release by these modes o f permafrost degradation.

The following overviews introduce our questions and approach for each chapter.

Chapter 2. Timing o f Retrogressive Thaw Slump Initiation in the Noatak Basin, Northwest Alaska

Retrogressive thaw slump frequency and expansion rates have been generally linked with decadal- 

scale climate warming trends, but the relative importance o f a general warming trend compared with 

specific weather events is not well-quantified (Lacelle et al. 2010). While long-term climate warming 

may act as a preconditioning agent, shorter-term weather patterns or specific meteorological events are 

likely required to trigger thaw slump formation (Lewkowicz 1991, Lacelle et al. 2010). Repeat aerial 

photography has revealed increased retrogressive thaw slump activity during the climate warming trend 

dating back to the 1930s (Lantuit and Pollard 2008, Kokelj et al. 2009a, Lacelle et al. 2010, Lantuit et al. 

2012), but the decadal repeat increment o f historic aerial photography does not clearly distinguish 

whether regional-scale feature initiation occurs one by one, dispersed through the years, or rather is 

concentrated in narrow time windows, responding to specific meteorological conditions at a regional 

scale.
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In this chapter, we used archived time-series of synthetic aperture RADAR (SAR) imagery to 

examine timing o f retrogressive thaw slump initiation in the Noatak Basin. Thawing season imagery 

acquired on a bi-weekly basis from 1997 to 2010, and long-term weather station records and satellite- 

derived, interannual snow metrics were examined to 1) determine whether slump initiation occurs evenly 

across years, or is concentrated in specific years, 2) identify possible weather and meteorological triggers 

for slump initiation, and 3) identify correlations among weather patterns, snow cover, and possible 

mechanisms o f permafrost degradation associated with retrogressive thaw slump formation. Our results 

provide new information on the role of weather events and their timing on retrogressive thaw slump 

initiation.

Chapter 3. Relationship of Cryofacies, Surface and Subsurface Terrain Conditions in the Brooks Range 

and foothills o f Northern Alaska

A general approach describing relationships among terrain properties and permafrost, congruent 

with the state factor framework (Shur and Jorgenson 2007), has been developed to better estimate 

permafrost vulnerability among different landscapes. While the importance o f surficial deposits (Kreig 

and Reger 1982, Jorgenson et al. 2008b) and vegetation (Viereck 1973) to ground ice content and 

permafrost development have long been recognized, landscape-scale methods for integrating terrain 

factors are not fully developed. Toward improved terrain factor integration, we hypothesized that: 1) 

vegetation and permafrost properties consistently correlate with specific terrain conditions across 

landscapes due to these relationships, 2) that diverse landscapes may fall into general groupings from 

statistical analysis o f empirical field data for these combined properties, 3) that these relationships can be 

used to help identify which terrain factors, in combination, facilitate spatial characterization o f surficial 

landscape properties in the Brooks Range and foothills o f northern Alaska, and 4) that a state factor 

framework is useful for organizing relevant terrain properties.

Our research tested these ideas statistically using ordination o f empirical field survey data 

collected from sites representing diverse landscapes in the Brooks Range and foothills o f northern Alaska. 

Identifying statistically-supported linkages between permafrost properties including ground ice content 

and cryostructures, and terrain properties including vegetation and surficial geology, may justify and 

facilitate regional scale estimation o f permafrost vulnerability and estimation of ground ice conditions, 

and better inform models examining regional resilience, response and feedbacks to climate.
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Chapter 4. Drivers and Estimates o f Terrain Suitability for Active Layer Detachment Slides and 

Retrogressive Thaw Slumps in the Brooks Range and Foothills o f Northwest Alaska

Inter-relationships among key terrain properties driving permafrost distribution, characteristics and 

degradation have been analyzed and modeled using both integrated terrain unit approaches, and statistical 

analyses o f complex, causal linkages. Both o f these approaches have advanced our understanding of 

terrain property relationships and ecological processes, and have contributed to predictive, spatial 

estimates o f permafrost characteristics, distribution, and degradation at scales ranging from field sites of 

several square meters, to locales o f several dozen square kilometers, up through regional and pan-arctic 

domains (Jorgenson et al. 2008b, Walker et al. 2008, Harris et al. 2009, Daanen et al. 2011, Gruber 2012, 

Khomutov 2012, Pastick et al. 2014a).

This chapter describes: 1) the first analysis testing hypothetical inter-relationships o f specific 

terrain factor drivers o f active layer detachment slide and retrogressive thaw slump distribution at a 

regional scale in the Brooks Range and foothills of northwest Alaska, 2) the first spatial estimates of 

terrain suitability for ALD and RTS features focused on this region, 3) general landscape characteristics 

of ALD and RTS terrain, and 4) the results in context o f the state factor framework.

Figure 1.4. Western Baird Mountains, Brooks Range, northwest Alaska. A complex landscape of 

manifold components and properties, driven by processes interacting across gradients o f spatial and 

temporal scale. It is an expanse o f complex beauty, resisting reductionist quantification, and retaining 

much unseen in the shadows. Photo: A. W. Balser, 2008.
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Chapter 2. Timing of Retrogressive Thaw Slump Initiation in the Noatak Basin, Northwest Alaska1

2.0 Abstract

In the North American low arctic, increased retrogressive thaw slump frequency and headwall 

retreat rates have been linked with climate warming trends since the mid-20th century, but specific 

weather drivers o f slump initiation timing are less clear. We examined relationships among retrogressive 

thaw slump initiation and annual air temperature, precipitation and snow cover using time series of 

satellite imagery and weather station data in northwest Alaska. Synthetic aperture RADAR and optical 

imagery were used to examine retrogressive thaw slump initiation between 1997 and 2010. Over 80% of 

the slump features examined in this study first appear within a 13 month span from late June 2004 to July 

2005. Remote weather station data show that 2004 and 2005 are among several years exhibiting above 

average thawing indices and average summer temperatures between 1992 and 2011. However, 2004 is 

distinct from the rest o f the record, with unusually warm temperatures primarily occurring early in the 

thaw season between April and early June, and including two intense precipitation events in May. 

Regional weather reported by the NOAA National Weather Service also reflects these local findings. 

Snowmelt timing in 2004 corresponded with warmer air temperatures and precipitation between April and 

May, exposing the ground surface more than two weeks earlier than average for 2001-2012 within the 

Noatak Basin. Future rates o f thaw slump initiation may be linked with changing trends in the timing of 

weather, in addition to general climate warming.

2.1 Introduction

Permafrost degradation is widespread throughout the circumpolar north, occurring by multiple 

modes and mechanisms on many types o f landscapes (Serreze et al. 2000, Hinzman et al. 2005, Anisimov 

and Reneva 2006). The pan-arctic rate of permafrost degradation appears to be increasing, and 

permafrost carbon release is likely to be a major contributor to atmospheric greenhouse gas 

concentrations in coming decades (Schuur et al. 2008, Grosse et al. 2011, Schaefer et al. 2011). At 

regional to global scales, carbon and nitrogen released from frozen substrates may substantially contribute 

to atmospheric concentrations o f CH4, CO2, and N2O, with impacts to global biogeochemistry and climate 

(Walter 2006, Walter et al. 2007, Schuur et al. 2008, Desyatkin et al. 2009, Gooseff et al. 2009, Tarnocai 

et al. 2009, Grosse et al. 2011). Locally, liberation o f previously frozen substrates, organic materials, and 

nutrients alters the ecology o f receiving streams (Bowden et al. 2007, Bowden et al. 2008, Frey and 

McClelland 2009, Gooseff et al. 2009, Rozell 2009), impacts sediment loads o f streams and rivers

1 Published as Balser, A. W., J. B. Jones, and R. Gens (2014), Timing o f Retrogressive Thaw Slump 
Initiation in the Noatak Basin, Northwest Alaska, USA, Journal o f  Geophysical Research: Earth Surface, 
2013JF002889, doi:10.1002/2013JF002889.
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(Walker et al. 1987, Walker and Hudson 2003, Gooseff et al. 2009), and causes ecological and 

hydrobiogeochemical impacts in lake ecosystems (Kokelj et al. 2005, Thompson et al. 2008, Kokelj et al. 

2009b, Mesquita et al. 2010). Vegetation within and adjacent to retrogressive thaw slumps scars are also 

directly impacted through disturbance and succession on altered surfaces (Lantz and Kokelj 2008, Lantz 

et al. 2009).

Retrogressive thaw slumping is an important process o f permafrost degradation in which thaw of 

ice-rich permafrost on bluffs or hill slopes causes soil structural instability and mass-wasting subsidence 

(Burn and Lewkowicz 1990). Retrogressive thaw slump frequency and expansion rates have been 

generally linked with decadal-scale climate warming trends, but the relative importance o f a general 

warming trend compared with specific weather events is not well-quantified (Lacelle et al. 2010). Repeat 

aerial photography has revealed increased retrogressive thaw slump activity during the climate warming 

trend dating back to the 1930s (Lantuit and Pollard 2008, Kokelj et al. 2009a, Lacelle et al. 2010, Lantuit 

et al. 2012). While long-term climate warming may act as a preconditioning agent, shorter-term weather 

patterns or specific meteorological events are likely required to trigger thaw slump formation (Lewkowicz 

1991, Lacelle et al. 2010).

Several distinct mechanisms can lead to retrogressive thaw slump formation by exposing deposits 

o f ice-rich permafrost, including pore, segregation, and massive ice. In coastal and riparian settings, 

lateral thermal erosion o f protective overburden from adjacent bluffs can expose permafrost deposits 

(Burn and Lewkowicz 1990, Lantuit et al. 2012, Kokelj and Jorgenson 2013). Wildfire which removes 

protective vegetation and organic layers, promoting thaw front advance through the active layer may 

cause instability and disturbance (Lacelle et al. 2010). Channelized flow of surface water over networks 

o f ice wedge polygons can melt ice wedges and create thermo-erosion gullies (Jorgenson and Osterkamp 

2005), with progressive downward and lateral thaw into the permafrost. Intense precipitation may be a 

particular trigger for thermo-erosion gullies (Bowden et al. 2008). Active layer detachment sliding occurs 

on hill slopes where shear strength o f active layer soils is exceeded by pore water pressures (Lewkowicz 

2007), and the destabilized active layer slides down slope, exposing the permafrost table below 

(Jorgenson and Osterkamp 2005). Warm weather and precipitation events have both been observed as 

slide triggers (Leibman et al. 2003, Lamoureux and Lafreniere 2009), particularly where warm pulses or 

rainfall accelerate thaw front advance through an ice-rich transient layer (Shur et al. 2005) at the bottom 

o f the active layer. Retrogressive thaw slumps may develop from any o f these exposures where 

combined slope and ground ice content in the permafrost promote continued instability with downward 

subsidence o f thawed material (Burn and Lewkowicz 1990, Jorgenson and Osterkamp 2005, Lacelle et al. 

2010, Godin and Fortier 2012, Kokelj and Jorgenson 2013).
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Once initiated, retrogressive thaw slumps continue to deepen and expand, (Fig. 2.1) forming a 

steep headwall up to 20 m deep, an arcing headwall scarp, a floor of thawed and flowing debris, and a run 

out of re-stabilizing deposits (Burn and Lewkowicz 1990, Lacelle et al. 2010, Lantuit et al. 2012, Kokelj 

and Jorgenson 2013). Headwall retreat rates range from several to tens o f meters annually and are 

correlated with headwall height, ice content and local climate (Kokelj and Jorgenson 2013). Expansion 

may continue for decades if  thawed debris continues to subside and expose the headwall, and if  newly 

exposed deposits are ice-rich and receive sufficient energy to thaw (Lacelle et al. 2010).

Retrogressive thaw slumps are frequently polycyclic, alternating between extended periods of 

stabilized dormancy, and active degradation when slumps re-initiate within or adjacent to older slump 

scars. Re-initiation may be caused by mechanisms described above (Lantuit et al. 2012, Kokelj and 

Jorgenson 2013), with sublimnic talik expansion as a significant driver in kettle lake basin settings 

(Kokelj et al. 2009a).

Herein, we use archived time-series o f synthetic aperture RADAR (SAR) imagery to examine 

timing o f retrogressive thaw slump initiation in the Noatak Basin. Thawing season imagery acquired on a 

roughly bi-weekly basis from 1997 to 2010 and long-term weather station records and satellite-derived, 

interannual snow metrics were examined to 1) determine whether slump initiation occurs evenly across 

years, or is concentrated in specific years, 2) identify possible weather and meteorological triggers for 

slump initiation, and 3) identify correlations among weather patterns, snow cover, and possible 

mechanisms o f permafrost degradation associated with retrogressive thaw slump formation. Our results 

provide new information on the role of weather events and their timing on retrogressive thaw slump 

initiation.

2.2 Methods

2.2.1 Study Area

Our research was conducted within the Noatak River Basin in northwest Alaska. The Noatak 

River flows 730 kilometers along a predominantly westward course at approximately 67.5° N latitude 

(Fig. 2.2). Most o f the 33,100 km2 basin falls within the Noatak National Preserve (U.S. National Park 

Service) and is recognized as a UNESCO Biosphere Reserve. This low-arctic region falls within Arctic 

Bioclimate Subzone E (CAVM-Team 2003) abutting the boreal-arctic ecotone, and is underlain by 

continuous permafrost near the boundary between the continuous and discontinuous permafrost zones 

(Jorgenson et al. 2008). The Noatak Basin generally contains climate-driven, ecosystem-modified 

permafrost (Shur and Jorgenson 2007). Land cover includes a suite of arctic and alpine ecotypes, and

17



ranges from high mountain to lowland physiographic provinces (Wahrhaftig 1965, Young 1974, Viereck 

et al. 1992, Parker 2006, Jorgenson et al. 2010).

The Noatak Basin was periodically glaciated throughout the Pleistocene and contains a patchwork 

o f periglacial landforms within numerous surficial geologic units (Hamilton 2010, Hamilton and Labay 

2011). The Aniuk Lowland and Mission Lowland physiographic provinces (Wahrhaftig 1965) are 

characterized by extensive lateral, recessional and terminal ice-cored moraines on mid-late Pleistocene 

glacial drift surfaces. Lowland bottoms are commonly over-draped with deep, ice-rich glaciolacustrine 

deposits from extensive and long-lived, proglacial lakes (Hamilton 2010). Glaciolacustrine deposits 

become thinner along a gradient from lowlands rising into the glacially rounded foothills. Extensive 

deposits o f deep, ice-rich permafrost o f glacial and glaciolacustrine origin in the Mission and Aniuk 

Lowlands offer a favorable setting for retrogressive thaw slump development along lake margins, river 

banks, and bluffs (Hamilton 2009, Swanson and Hill 2010). Retrogressive thaw slumps occur on at least 

six different ecotypes which have active layer depths ranging from 30 to 200 cm, organic layer thickness 

o f 1 to 30 cm , on slopes ranging from 6° to 14° (Balser et al. 2009, Jorgenson et al. 2010). Ground ice 

estimates are moderate (10-40%) to high (>40%) and include extensive active Holocene and inactive 

Pleistocene ice wedges (Y oung 1974, Jorgenson et al. 2008) and widespread deposits o f relict glacial ice 

(Hamilton 2009, 2010) throughout the lowlands. There is no permafrost borehole monitoring within the 

Noatak National Preserve, but adjacent boreholes to the north and south report temperatures o f -5°C and 

1°C respectively, while mean annual air temperatures estimates for the Noatak lowlands are -7°C to -9°C 

(Jorgenson et al. 2008).

2.2.2 Field Surveys o f Retrogressive Thaw Slump Features in the Noatak Basin 

Aircraft-supported field campaigns and airphoto surveys in 2006, 2007, 2010, and 2011 were used 

to identify and map active retrogressive thaw slumps in the Noatak Basin. The initial survey o f 2006 

(Aniuk Lowland) and 2007 (Mission Lowland) was estimated to have covered > 85% of each lowland 

region. Initial fixed-wing surveys were used to identify the general distribution of retrogressive thaw 

slumps, active layer detachment slides and thermo-erosional gullies within the study area. Subsequent 

helicopter-supported surveys were used to mark the location of features in the field with a Garmin eTrex 

GPS, and each feature was noted as active (exposed ground ice melting from headwall) or dormant (no 

exposed ground ice, re-stabilized or re-vegetated slump scar). Vertical aerial photography was acquired 

using a Nikon D2X digital camera mounted within a small, fixed-wing aircraft. The surveys were 

repeated in 2010 (Mission Lowland) and in 2011 (Aniuk Lowland) to ascertain the active/dormant status 

o f known features, and to search for newly formed features. Our geodatabase of retrogressive thaw
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slumps in the Noatak Basin was expanded and augmented through a subsequent National Park Service 

survey o f the Noatak National Preserve using high-resolution satellite imagery (Swanson and Hill 2010).

A subset o f 21 retrogressive thaw slumps from the 326 identified were chosen for inclusion in this 

study (Table 2.1; Fig. 2.2). Minimum criteria for inclusion o f each slump were: 1) confirmed present and 

actively degrading within the survey period of 2006-2011, 2) large enough to be reliably identifiable on 

ERS SAR imagery ( >8 ha and > 100 m in at least one horizontal dimension, not including the feature 

outflow), and 3) within areas o f low to moderate topographic relief (< 15° slope) to minimize 

confounding effects o f topography on SAR image geometry and backscatter return. Prior ground surveys 

of 47 retrogressive thaw slumps distributed from headwater areas to the Noatak valley bottom revealed 

most slumps occurred on slopes between 6° and 14° (mean 9.45°, sd 3.44°), so this criterion also helped 

exclude outliers occurring on steeper slopes. O f the 326 features initially mapped, 298 were excluded by 

size (many were also inactive, and/or abutted flowing water), four by inactivity alone, two by the slope 

criterion alone, and one by proximity to a river with significant lateral erosion (outside the context of this 

study).

2.2.3 Year o f First Detection

Archived ERS-1 and ERS-2 SAR data, available for each slump feature as multiple summer scenes 

in each year throughout the study period, were used to determine year o f first detection. SAR backscatter 

should respond to several key characteristics o f large retrogressive thaw slumps, including feature 

morphology, surface texture (in contrast with the adjacent vegetated landscape), exposed headwall ice, 

and wet headwall and floor surfaces. SAR data were deemed preferable for this application for their 

particular sensitivity to surface geometry, texture, and by dielectric constant, which is strongly influenced 

by the presence and state o f water within surface materials (Ulaby et al. 1982, Cloude and Pottier 1997, 

Lee and Pottier 2009), which are directly influenced by retrogressive thaw slump characteristics. Over 

300 ERS images covering 1997-2010 summer months were preprocessed and analyzed. Images were 

geocoded to average scene elevation as determined using the ASTER DEM (USGS 2009) within ASF 

MapReady 2.3 software, resampled to 25 m pixels using nearest neighbor interpolation with no filtering 

algorithm.

Landsat TM/ETM/ETM+ optical imagery is the only other alternative for continuous satellite data 

during this time period, but lacks consistent annual, cloud-free coverage and cannot readily distinguish 

active from inactive features. However, optical Landsat, airphoto, and high resolution satellite imagery 

were used extensively as corroborative tools for SAR image analysis.
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Visual interpretation (Fig. 2.3) was used to determine the presence or absence o f slumps in SAR 

imagery. Each feature was examined for detection on each available ERS-1 and ERS-2 SAR image from 

1997 through 2010 using snow-free image dates. Because the size o f features (100 m - 300 m) is small 

relative to the ground resolution o f the imagery (~25 m, depending on ground range), misregistration 

errors and mixed pixel effects render automated detection routines unreliable. Slump features had to be 

visually distinct from the immediate surroundings, and consistent in size, location and shape with field 

and airphoto data to be counted as 'detected' in SAR imagery. If  a feature was confirmed detected in at 

least one image in a given year, the feature was counted as 'detected' for that year.

2.2.4 Inter-annual Weather

Daily temperature and precipitation data from two remote weather stations were used to 

characterize overall temperature and seasonal temperature distribution for 1992-2011 (the period of 

record). Thawing season weather was then compared with timing o f retrogressive thaw slump initiation 

to identify correlations between slump initiation and weather at seasonal to inter-annual time scales. 

Weather data were collected through the Remote Automated Weather System (RAWS) program of the 

Western Regional Climate Center (http://www.raws.dri.edu/; Fig. 2.2). For the period o f April 1 - 

September 30 o f each year, we examined average daily air temperature, thawing index (Van Everdingen 

2005), and total number of days with average temperature above 0°C. A center-of-mass timing CT 

calculation, adapted from hydrological discharge analysis, was used to characterize the seasonal 

distribution o f thawing degree days for each year (Stewart et al. 2005). This calculation provides the 

median day o f a given year around which total thawing degree days are evenly distributed. (CT) is 

calculated as:

Ct = Z(ti^i)/ (2.1)

where ti is day o f year (Julian date) and qi is thawing degree days on day ti.

One period (April 23 - June 8, 2004 for the Noatak RAWS Station) had to be gap-filled using 

empirical data from the Kelly and Kavet RAWS stations. Gap-filling was done by regressing all existing 

inter-annual Noatak RAWS daily temperature data for the April 23 - June 8 time period against 

corresponding Kelly and Kavet RAWS data for the period o f record (1992-2011). Regression results 

(Equations 2.2 & 2.3) for average and maximum daily temperatures were statistically significant and were 

used to calculate gap-fill values for missing period in the Noatak RAWS data.
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NoTAve = 0.22(KeTA ve) + 0.88 (KaTA ve) - 11.49 

n = 487, R2 = 0.87, p-value < 0.05

(2.2)

NoTM ax = 0.36(KeTM ax) + 0.65(KaTM ax) - 6.60 (2.3)

n = 487, R2 = 0.81, p-value < 0.05

where TAve is average daily temperature (°C), TM ax is maximum daily temperature (°C), and Ka, Ke and 

No are the Kavet, Kelly River and Noatak RAW stations.

Frequent data gaps in the precipitation portion o f the RAWS datasets precluded statistical analysis 

o f precipitation at inter-annual time scales, though individual precipitation events were examined. Gap 

filling o f precipitation data was attempted for critical periods for the Kelly River and Noatak RAW 

stations. Regression results for precipitation data among the Kavet, Kelly and Noatak RAW stations for 

those periods throughout the 1992-2011 record were not sufficient to support gap-filling o f precipitation 

data for the RAWS stations (best result: R2 = 0.34, p-value > 0.05).

Annual values for average thawing season temperature, total thawing degrees, thaw degree days, 

and seasonal thawing degree distribution were plotted against averages for the 1992 to 2011 period to 

detect warmer than average periods driving retrogressive thaw slump initiation could have occurred. 

Results from the Noatak RAW station were used for primary interpretation because that station is 

proximal to 19 of 21 slump features examined (Fig. 2.2).

Regional weather data from the National Oceanic and Atmospheric Administration (NOAA) 

National Weather Service climate stations were used to compare weather within the Noatak Basin with 

the surrounding region and to provide broader context for our results (Fig. 2.4). Temperature and 

precipitation data for NOAA climate stations are available through monthly and annual statewide reports 

distributed through the NOAA National Environmental Satellite, Data and Information Service (NESDIS, 

http://www.ncdc.noaa.gov/IPS/cd/cd.html). Monthly temperature and precipitation for the Kotzebue and 

Bettles climate stations, active since 1941 and 1944, respectively, and regional estimates for the Arctic 

Drainage division as a whole, which have been calculated since 1950, were examined to ascertain if 

relevant weather events captured at local RAW stations were also reflected in regional data. Our analysis 

also included data from the NOAA climate station at Noatak Village, which only reports precipitation 

from December 1996 through November 2009.
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2.2.5 Inter-annual Snow Cover

The MODIS-derived Snow Metrics (2001-2012) dataset (Zhu and Lindsay 2013) was used to 

examine inter-annual variation in snow cover for the combined Noatak and Wulik River basins. Data 

were clipped to basin spatial boundaries as defined using the ASTER DEM (USGS 2009) within an 

ArcGIS 9.3 watershed delineation analysis. MODIS-derived snow metrics describe the full snow season 

(FSS), which includes dates in the autumn and spring with temporally discontinuous snow cover, and the 

continuous snow season (CSS), representing unbroken consecutive dates o f snow cover. The data do not 

include snowpack properties such as depth or snow water equivalence. Snow metrics depicting the start 

and end dates and total number o f days for both FSS and CSS were spatially examined and then 

statistically summarized for each year for the combined Noatak and Wulik basins, with average values 

calculated for each year from all pixels within the basin boundaries.

2.3 Results

2.3.1 Initiation Timing o f Retrogressive Thaw Slumps

O f the 21 retrogressive thaw slumps examined, eight were confirmed polycyclic retrogressive thaw 

slumps, associated with visible, adjacent, re-stabilized scars. No new slump features were observed 

during the 2010 and 2011 resurveys o f the same area. Sixteen of the twenty-one retrogressive thaw slump 

features first appear in ERS imagery in either 2004 or 2005, three features predate the study period (pre- 

1997), and one slump appeared in 1998 (Fig. 2.5). In every case, a slump detected in a given year was 

detected in all subsequent years. Some SAR images were excluded from analysis due to the confounding, 

combined influence o f ground range (for particular ascending and descending satellite passes) and local 

topography on SAR backscatter.

2.3.2 Inter-annual Weather Patterns

Overall summer temperature in 2004 was warmer than average within the Noatak Basin, but the 

early seasonal distribution o f thawing degrees in 2004 sets it apart from all other years (Fig. 2.6). 2004 

was among the warmest years from 1992 to 2011, but it was only slightly above average in thawing 

index, with a comparatively short thawing season at the Noatak RAW Station (Fig. 2.6). Several 

measures o f inter-annual temperature showed years containing significant departures from average values 

from 1992 through 2011, but only CT was markedly different in 2004, with the earliest thawing 

temperature distribution o f any year. The total distribution o f thawing degree days throughout the season 

was significantly earlier than average in 2004 at both Kelly River and Noatak RAW stations, while only 

one other year was significantly earlier than average for CT within the entire data record (Fig. 2.6g & 

2.6h).
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The early season warming anomaly was regional but most concentrated from Kotzebue, near the 

mouth o f the Noatak River, through the Noatak Basin attenuating in the central Brooks Range near the 

Noatak headwaters (Fig. 2.4). Temperatures remained well above average for April, May and June of 

2004 at Kotzebue, Bettles and both RAW stations (Fig. 2.7). For the Arctic Drainage as a whole, which 

is weighted toward the Arctic Coastal Plain north o f the Brooks Range (Fig. 2.4), temperatures for this 

period are close to average. Temperature at Bettles, while above average, showed less warming anomaly 

than at Kotzebue or the RAW stations.

Maximum temperatures rose above freezing almost every day from April through June at the RAW 

stations, Kotzebue, and Bettles, and include maximum values well above freezing beginning in April at 

all stations (Table 2.2). By 10 April 2004, daily maximum temperature had exceeded 5°C at all stations 

and had exceeded 10°C at all but the Kotzebue station by April 30. Maximum temperatures exceeded 

20°C in May, and 30°C by June 8 for all stations except Kotzebue (which is a coastal location). NOAA 

reported that temperatures included multiple record highs during both May and June at Kotzebue and 

Bettles.

May 2004 had unusually high precipitation in the region, including two intense precipitation events. 

NOAA stations reported above average precipitation at the Kotzebue, Noatak Village, and Bettles 

stations, while the Arctic Drainage division overall reported average precipitation (Fig. 2.7). RAW 

stations did not provide a consistent enough data record to calculate monthly averages. Two intense 

precipitation events occurred across much o f the region between May 6 and 11, and May 22 and 24 

(Table 2.3) accounting for 5.9 cm o f the May total o f 6.9 cm at Noatak Village, and 6.7 cm of May total 

o f 8.1 cm at Kelly River. The May precipitation anomaly and the intensity o f the two events increases 

from Kotzebue, up the Noatak drainage through Noatak village and the Kelly River RAW station, and 

attenuates somewhere between the Kelly River RAW station and Bettles, though missing data for the 

Noatak RAW station leave it less clear where this occurred. Only Bettles and Kotzebue have long enough 

continuous data for NOAA to acknowledge record values for precipitation events, with the Kotzebue 

station reporting record rainfall in May 2004.

2.3.3 Inter-annual Snow Cover

Snow cover in the study area showed a corresponding, anomalous seasonal shift in 2004 (Fig. 2.8). 

Both the full and continuous snow seasons ended earlier than any other year within the 2001-2012 data 

record, with both ending 15 days earlier in the spring than the average (Fig. 2.8b & 2.8d). At the start of 

the 2004 snow season (autumn 2003), the first detected snow cover also came anomalously early in the 

autumn (Fig. 2.8a), with the continuous snow season beginning 12 days later (Fig. 2.8c & 2.8e). Both the
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full and continuous snow seasons were shorter than average in 2004 (Fig. 2.8e & 2.8f), with the entirety 

o f the shortening at the end o f the season in the spring. Spatially, the anomaly in snow season end dates 

for 2004 was greatest toward the westward portion o f the study area (Fig. 2.9). Snow cover analyses were 

duplicated for just the Noatak watershed from the headwaters through the Mission Lowland, to evaluate 

the influence of the westward portion on the overall results. Resulting statistical patterns from both 

analysis boundaries were similar, though systematically offset by calendar date (Table 2.4).

2.4 Discussion

In the Noatak Basin, general warming likely serves as a preconditioning agent, while specific 

weather events are linked with particular triggering mechanisms. While weather events comparable to 

those in 2004 occur periodically in the data record, their timing early in the thaw season is unusual. The 

combination o f warm periods and heavy precipitation provide the basis for slump initiation by multiple 

mechanisms. The timing o f the events, all in the early thaw season, increased the likelihood o f slump 

initiation in 2004. Five o f the eight polycyclic slumps and 11 o f 13 non-polycyclic slumps, occurring 

among six ecotypes, were first detected in 2004 and 2005. Together, these findings suggest weather 

events and their timing in 2004 were significant enough to drive retrogressive thaw slump initiation 

among diverse conditions and by multiple mechanisms throughout the Noatak region.

2.4.1 Timing o f Weather Events

Early thawing season temperature and precipitation events in 2004 drove early snowmelt, 

advanced the timing and likely increased the intensity of energy transfer to the ground surface, and 

extended the thawing season. Initial warm temperature coincided with the first intense precipitation event 

from May 6 to11 which closely correlates with the end o f the continuous snow season in the Noatak 

watershed (Table 2.4, Fig. 2.9). This was likely the signature event ending the continuous snow season in

2004. Continued warm temperature likely initiated seasonal thaw front advance through the active layer, 

allowing rainfall between May 22 and 24 to penetrate upper soil layers. Rainwater was potentially an 

important vector o f energy transfer to the upper permafrost. As channelized runoff, rainwater contributed 

to thermal erosion, while rainwater penetrating the soil transferred heat initially by advection, then by 

conducting energy from solar radiation and ambient air masses as daily maximum temperatures continued 

to rise in the following weeks.

Early snowmelt may be especially important for potential solar energy flux to the upper permafrost. 

Early snowpack removal exposes the ground surface during the period approaching summer solstice, 

when the sun angle is highest and daily potential solar exposure is longest. In addition, cloud cover is 

typically minimized during this part o f the thawing season due to remaining sea ice cover on the adjacent
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Beaufort and Chukchi Seas (Fig. 2.4). Maps provided by the National Snow and Ice Data Center 

(http://nsidc.org) show May 2004 sea ice still completely covering the Beaufort and Chukchi Seas and 

extending south into the Bering Sea, even though overall arctic sea ice extent in 2004 was at a then record 

low for the month o f May. Coupled with the high daily maximum temperature before, between, and after 

the two precipitation events, this suggests that cloud cover was minimal for much of that period. Also, 

plant activity is not fully active during this period, with reduced deciduous leaf area and correspondingly 

minimized interception o f incident solar radiation by leaf structures. Together, these factors could 

significantly increase the amount o f energy from solar radiation reaching the ground surface and 

accelerating thaw front advance.

Conditions during the preceding autumn and winter are also likely relevant to these interpretations, 

but the nature of their role is less clear. Average weather conditions prevailed throughout most o f the 

winter in the study region, but anomalously high temperature (October) and precipitation (November) 

were recorded at the NOAA and RAW stations throughout the study region (Fig. 2.7). We suspect these 

early winter conditions are also an important explanatory component, but gauging the nature and 

magnitude o f their impact is speculative, especially given that both anomalies occurred after onset of the 

continuous snow season (Fig. 2.8).

2.4.2 Weather & Initiation Mechanisms

Weather events in 2004 were sufficient to trigger retrogressive thaw slumping through both active 

layer detachment slides and thermo-erosional gullies. Warm temperature and precipitation both 

accelerated thaw front advance through the active layer, promoting high pore pressures and active layer 

detachment. Though the proportional contributions o f temperature and precipitation are unknown, their 

co-occurrence likely increased thaw front, especially through drier, less thermally conductive active 

layers which may have better resisted thaw from either warm weather or rainfall occurring in isolation. 

Active layer detachment slides are extensively reported in the Noatak Basin (Balser et al. 2009, Gooseff 

et al. 2009, Swanson and Hill 2010), with ice-rich transient layers (Shur et al. 2005) evident in active 

features. Active layer detachment slides in this area are primarily associated with non-acidic graminoid 

vegetation, over colluvial deposits (Balser et al. 2009, Gooseff et al. 2009). Lowland sites of 

retrogressive thaw slumps in this study also include a high proportion of acidic tussock and low shrub 

tundra, glaciolacustrine and glacial drift deposits, extensive networks o f active ice wedge polygons 

(Young 1974, Jorgenson et al. 2008, Balser et al. 2009, Hamilton 2010), which are more likely settings 

for thermo-erosional gullies. Intense precipitation events in May 2004 likely drove thermal erosion and 

new gulley formation within ice wedge polygon networks. This is especially likely since the continuous 

snow season ended with the first precipitation event, exposing the ground surface for the second event.

25

http://nsidc.org


Warm temperatures and precipitation support both active layer detachment sliding and thermo-erosional 

gullies as mechanisms, their co-occurrence may have enhanced thaw front penetration for a broader range 

of active layer conditions, and early timing likely increased their impact within the 2004 thawing season.

Wildfires are not considered a trigger for retrogressive thaw slumping in the Noatak in 2004 and

2005. Throughout interior Alaska, 2004 was the warmest and driest year on record, and consequently the 

most extreme Alaskan wildfire year on record (Shulski et al. 2005). However, within the Noatak Basin 

overall 2004 temperature was not as extreme as in the rest o f the interior, and only one wildfire is 

recorded in the Alaska Fire Service database within 15 km of any o f our study features for any year 

between 1990 and 2010 (1999; 4 km from RTS 2).

Considered in the broader context o f climate change, early thawing-season warmth and snowmelt 

may be a critical factor in landscape to regional scale change trajectories, impacts, and feedbacks from 

retrogressive thaw slumps. Active layer deepening, which occurs with general climate warming 

(Osterkamp and Romanovsky 1999, Frauenfeld et al. 2004), is at least partially reversible with subsequent 

cooling. Deeper degradation and mobilization o f upper permafrost layers, as with retrogressive thaw 

slumping, may be a more permanent phenomenon with differing and stronger impacts locally and 

globally. The temporal pattern of climate change may therefore be critical in determining rate of 

retrogressive thaw slump initiation and associated impacts and feedbacks, with potentially very different 

outcomes depending upon future changes in temporal weather patterns.

2.5 Conclusions

Retrogressive thaw slump initiation in the Noatak Basin was heavily influenced by early thawing- 

season warming, snowmelt and precipitation in 2004. The early season timing o f these weather events 

likely increased their capacity to advance the thaw front through the active layer, as well as lengthening 

the thaw season. The timing o f weather events, as well as their magnitude, may critically influence 

retrogressive thaw slump initiation. Future rates of thaw slump initiation will likely be linked with 

changing trends in the timing o f weather, in addition to general climate warming.
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Figure 2.1. Retrogressive thaw slump No. 14 (Fig. 2.2, Table 2.1). This retrogressive thaw slump sits 

on a west-facing 6° slope on a late Pleistocene glaciolacustrine deposit in the upstream portion o f the 

Aniuk Lowlands, Noatak Basin, Alaska. This slump is polycyclic, having initiated in 2004 from a 

previously re-stabilized and inactive retrogressive thaw slump. Length from headwall to beginning of 

outflow (A to A') is 181 m; width at widest point (B to B') is 287 m, as o f July 2011. Deepest point 

was 14 m at the base o f the headwall near A. Photo: A.W. Balser, 2011
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Figure 2.2. Study area in the Noatak Basin in northwest Alaska. RTS 1 is set back from the north bank of 

the Wulik River on land administered by the State o f Alaska. All other RTS features are within the 

Noatak National Preserve, US National Park Service. RTSs are predominantly but not exclusively within 

lowland physiographic provinces (Tables 2.1 & Appendix 1), with some occupying polycyclic thaw 

slump basins surrounding kettle lakes, and others are situated on hill slopes flanking floodplains.

Features directly adjacent to flowing water were excluded from analysis to eliminate hydrothermal 

erosion as a possible mechanism of initiation.
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Figure 2.3. Imagery for RTS 9 and RTS 10 in the Cutler River drainage, Noatak Basin, Alaska.

A. IKONOS image, CIR composite, (8/9/2008); B. Landsat ETM image, CIR composite, (7/29/2002); C. Landsat 

ETM+ image, bands 543 composite (7/21/2005); D. ERS2 image (8/61997); E. ERS2 image (7/31/1998); F. ERS2 

image (8/20/1999); G. ERS2 image (6/26/2002); H. ERS2 image (7/8/2002); I. ERS2 image (9/27/2004); J. ERS2 

image (7/23/2005); K. ERS2 image (9/25/2006); L. ALOS PALSAR image, HV polarization (9/18/2006). RTS 10 

re-initiated in 1998 from the scar of a pre-existing, stabilized, polycyclic slump, and is apparent as a growing feature 

in imagery from 1998 - 2007. RTS 9 is not detectable in any imagery through 2003, appearing first in July 2004 and 

in all subsequent years of analysis. RTS 9 initiated ~220 m from the river, at ~40 m higher elevation than the river 

bank based on ground reconnaissance and image analysis, eliminating hydrothermal erosion as a plausible triggering 

mechanism.

Ground resolution for each image type is: IKONOS = 3.3 m; Landsat = 28.5 m, ERS, ~25 m (varies with ground 

range), ALOS PALSAR ~10 m (varies with ground range).
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Figure 2.4. Locations of NOAA National Weather Service climate stations in northwest Alaska, active 

during 2003 and 2004. Data from stations within the Arctic Drainage division contributed to monthly 

mean values for temperature and precipitation reported for northern and northwest Alaska. Data from the 

Bettles station were also examined in this study due to its proximity to the upper Noatak Basin, 

representing a more continental climate in the interior.
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Figure 2.5. Year of first detection for 21 retrogressive thaw slumps in the Noatak Basin. Bars in this 

graph represent only the initial detection o f each retrogressive thaw slump in the study. Every slump in 

the study was also detected in every subsequent year after initial detection, suggesting that all slumps 

remained active from time of initiation through at least 2010.
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Figure 2.6. Average daily summer temperature, thawing index, number o f days averaging above 0°C, and 

seasonal thawing temperature distribution (as center o f mass, CT) from two remote automated weather 

(RAW) stations in the Noatak basin, 1992-2011. Panels a. & b. show average daily air temperature (April 

1 - September 30) 1992-2011 for the (a.) Kelly River and (b.) Noatak RAW Stations. Panels c. & d. show 

thawing index > 0°C (Van Everdingen 2005), April 1 - September 30; 1992-2011. Panels e. & f. show 

number o f days with average daily temperature > 0°C, April 1 - September 30; 1992-2011. Panel g. 

depicts seasonal center o f mass for daily average temperature (CTave, Eq. 2.1) in degrees Celsius, April 1 -
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September 30; 1992-2011. Panel h. depicts seasonal center of Mass for daily maximum temperature 

(CTmax, Eq. 2.1) in degrees Celsius, April 1 - September 30; 1992-2011.

Figure 2.7. Monthly temperature and precipitation estimates as a departure from average, winter o f 2003 

through 2004. Panel a. shows estimates from NOAA National Weather Service climate stations at 

Kotzebue and Bettles, and for the Arctic Drainage division as a whole, while panel b. shows estimates 

from Kelly River and Noatak RAWS stations. Panel c. includes monthly precipitation estimates from 

NOAA climate stations as a departure from average. The data record begins in 1996 for Noatak Village, 

1941 for Kotzebue, 1944 for Bettles, and in 1950 for the Arctic Drainage division NOAA stations. Data 

for June and July 2004 were unavailable for the Noatak Village station. Winter precipitation data for 

RAW stations are incomplete for most years and preclude calculating average statistics.
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Figure 2.8. Snow cover metrics spatially clipped for the combined Noatak River and Wulik River 

watersheds (Figure 2.9), from the MODIS Snow Climatology (2001-2012) dataset. Panels a. & b. show 

start and end dates for the full snow season, by year. Panels c. & d. show start and end dates for the 

longest period of continuous snow cover, by year. Start and end dates are organized by contiguous snow 

year; e.g. start dates for the 2004 snow year occurred during the autumn of 2003, while end dates for the 

2004 snow year occurred during the spring o f 2004. Julian dates from original data have been converted 

to calendar dates to eliminate the effect o f leap years within the figure, and for ease o f interpretation. 

Panels e. & f. show total days o f snow cover for the full snow season and the continuous snow season. 

Trend lines are significant at p<0.1.
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Figure 2.9. Spatial distribution o f 2004 continuous snow season end date, as a difference from the mean 

end date for 2001 through 2012, calculated from the MODIS Snow Climatology (2001-2012) NASA 

dataset.
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Table 2.1. Retrogressive thaw slump features in the Noatak Basin chosen for this study.

Physiographic provinces from Wahrhaftig (1965). NPS Code' cross links these data with the National 

Park Service database for the Arctic Network o f Parks (Swanson and Hill 2010). 'ARCSS/TK Code' 

cross links these data with the NSF - ARCSS/Thermokarst project.

No. Name NPS Code ARCSS/TK Code Physiographic Province

1 Wulik n/a FT2010-16A DeLong Mountains

2 Rainbucket NOAT750 FT579A Mission Lowland

3 Granddad NOAT039 F35A Aniuk Lowland

4 FT173Z NOAT190 FT173Z Aniuk Lowland

5 FT176Z NOAT042 FT176Z Aniuk Lowland

6 Okoklik NOAT038 FT34A Aniuk Lowland

7 Gavia Familia NOAT262 FT2011-14A Aniuk Lowland

8 Quebec NOAT261 FT2011-15A Aniuk Lowland

9 Cutler Ice N NOAT148 FT2011-12A Aniuk Lowland

10 Cutler Ice S NOAT151 FT2011-16X Aniuk Lowland

11 Cutler Hill NOAT248 FT2012-2X Cutler River Upland

12 Good Twin NOAT068 FT2011-9A Aniuk Lowland

13 Evil Twin NOAT069 FT2011-20Z Aniuk Lowland

14 Third Twin NOAT070 FT2011-10A Aniuk Lowland

15 Dropstone Lake S NOAT071 FT2011-17X Aniuk Lowland

16 Dropstone Lake NW NOAT073 FT2011-18X Aniuk Lowland

17 Dropstone Lake SW NOAT072 FT2011-19X Aniuk Lowland

18 Sock Lake 1 NOAT074 FT2012-3X Central Brooks Range

19 Rico Lake 1 NOAT076 FT2012-4X Central Brooks Range

20 Anvil Lake 1 NOAT159 FT104Z Central Brooks Range

21 Aussie Lake 1 NOAT160 FT2012-5X Central Brooks Range
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Table 2.2. Maximum temperature and number o f days with temperature above freezing for NOAA and

RAWS stations proximal to the study area (Fig. 2.4).

April May June

Station
Max. Temp. Max > 0°C Max. Temp. Max > 0°C Max. Temp. Max > 0°C

°C No. of days °C No. of days °C No. of days

Kotzebue NOAA 5.0 20 12.7 31 + 28.9 30 +

Kelly River RAWS 9.4 24 22.2 31 30.6 30

Noatak RAWS 10.7 18 29.4 * 31 * 34.5 30

Bettles NOAA 10.5 26 21.6 31 + 31.1 30 +
* includes some gap-filled values 
+ includes multiple record high temperatures
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Table 2.3. May 2004 precipitation at the NOAA and RAWS stations in the study area (Fig. 2.4).

5/6 to 5/11 
cm

May 2004 
5/22 to 5/24 

cm
total
cm

Kotzebue NOAA 2.2 0.58 3.5 +

Kelly River RAWS 3.9 2.8 8.1

Noatak Village NOAA 3.5 1.8 6.9

Noatak RAWS N/A N/A N/A

Bettles NOAA 1.2 0.2 4.2

+ includes record rainfall
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Table 2.4. Full snow season (FSS) and continuous snow season (CSS) end date metrics for 2004 in 

the combined Noatak and Wulik River basin study area, and in the smaller subset o f the Noatak River 

basin from the headwaters through the Mission Lowlands (Fig. 2.9).

Analysis
Boundary

FSS End 
2001-2012 
mean date 
(sd, days)

FSS End 2004 
Date 

(diff. from mean)

CSS End 
2001-2012 
mean date 
(sd, days)

CSS End 2004 
Date 

(diff. from mean)

Noatak & Wulik May 23 (8) May 8 (-15) May 16 (8) May 1 (-15)

Noatak May 25 (8) May 12 (-13) May 18 (7) May 6 (-12)
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Appendix 2. Retrogressive thaw slump features in the Noatak National Preserve from Chapter 2.

Table A2.1. Retrogressive thaw slump feature locations in the Noatak National Preserve. Data developed 

from ARCSS/TK aerial and field surveys conducted 2006-2011 (Balser et al. 2009), and from National 

Park Service(NPS) satellite image analysis (Swanson and Hill 2010) . 'NPS Code' cross links these data 

with the National Park Service database for the Arctic Network o f Parks 'ARCSS/TK Code' cross links 

these data with the NSF - ARCSS/Thermokarst project.

NPS Code ARCSS/TK Code Latitude (NAD83) Longitude (NAD83)
NOAT001 FT121Y 68.03334 °N 158.51775 °W
NOAT002 FT184Z 68.05279 °N 158.56249 °W
NOAT003 n/a 68.06853 °N 159.23989 °W
NOAT004 n/a 68.07031 °N 159.24418 °W
NOAT005 n/a 68.07269 °N 159.25147 °W
NOAT006 n/a 68.08330 °N 159.32616 °W
NOAT007 n/a 68.08189 °N 159.32315 °W
NOAT008 n/a 67.97844 °N 160.25284 °W
NOAT009 n/a 67.97282 °N 160.25395 °W
NOAT010 n/a 67.97141 °N 160.25249 °W
NOAT011 n/a 67.97087 °N 160.25234 °W
NOAT012 n/a 67.95385 °N 160.21667 °W
NOAT013 n/a 67.95436 °N 160.21585 °W
NOAT014 n/a 67.87646 °N 160.63092 °W
NOAT015 n/a 67.90887 °N 160.71330 °W
NOAT016 n/a 67.90904 °N 160.72318 °W
NOAT017 n/a 67.90082 °N 160.82549 °W
NOAT018 n/a 67.90226 °N 160.82915 °W
NOAT019 n/a 67.89851 °N 160.81624 °W
NOAT020 n/a 67.89949 °N 160.91541 °W
NOAT021 n/a 67.91995 °N 160.91194 °W
NOAT022 n/a 67.92061 °N 160.91425 °W
NOAT023 n/a 67.91768 °N 160.90648 °W
NOAT029 n/a 67.99699 °N 161.29088 °W
NOAT030 n/a 67.99772 °N 161.29939 °W
NOAT031 n/a 67.99794 °N 161.30280 °W
NOAT032 n/a 67.99809 °N 161.30445 °W
NOAT033 n/a 68.00434 °N 161.45043 °W
NOAT034 n/a 68.00362 °N 161.45283 °W
NOAT037 FT2007_22A 67.98678 °N 161.87443 °W
NOAT037 n/a 67.98526 °N 161.87393 °W
NOAT037 n/a 67.98639 °N 161.87164 °W
NOAT038 FT34A 68.01470 °N 159.25452 °W
NOAT039 FT35A 68.03589 °N 159.29135 °W
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NOAT040 FT175Z 68.02665 °N 159.22937 °W
NOAT041 FT175Z 68.02721 °N 159.22966 °W
NOAT042 FT176Z 68.02386 °N 159.23461 °W
NOAT043 FT129Y 67.97465 °N 158.52016 °W
NOAT044 FT128Y 67.97390 °N 158.51884 °W
NOAT045 FT127Y 67.97275 °N 158.51785 °W
NOAT046 FT125Y 67.97129 °N 158.51487 °W
NOAT047 FT124Y 67.97029 °N 158.51184 °W
NOAT048 FT126Y 67.97181 °N 158.51739 °W
NOAT049 n/a 67.95465 °N 158.47456 °W
NOAT050 n/a 67.95610 °N 158.47488 °W
NOAT051 n/a 67.83972 °N 156.58271 °W
NOAT052 n/a 67.84914 °N 156.61588 °W
NOAT053 n/a 67.85062 °N 156.61327 °W
NOAT054 n/a 67.85100 °N 156.61317 °W
NOAT056 n/a 67.91812 °N 158.02284 °W
NOAT057 n/a 67.91715 °N 158.02288 °W
NOAT068 FT2011_9A 67.96099 °N 156.78836 °W
NOAT069 FT2011_20Z 67.96060 °N 156.79265 °W
NOAT070 FT2011_10A 67.95841 °N 156.82358 °W
NOAT070 FT2011_10B 67.95921 °N 156.82832 °W
NOAT071 FT2011_17X 67.94264 °N 156.80026 °W
NOAT072 FT2011_19X 67.94366 °N 156.80660 °W
NOAT073 FT2011_18X 67.94758 °N 156.81894 °W
NOAT074 FT2012_3X 67.89784 °N 156.60043 °W
NOAT075 n/a 67.89236 °N 156.59822 °W
NOAT076 FT2012_4X 67.89433 °N 156.60442 °W
NOAT077 n/a 67.89202 °N 156.57757 °W
NOAT079 n/a 67.96650 °N 156.84105 °W
NOAT080 n/a 67.96628 °N 157.09421 °W
NOAT081 FT2011_13A 67.98125 °N 157.07528 °W
NOAT082 n/a 67.89455 °N 157.25434 °W
NOAT082 n/a 67.89446 °N 157.25329 °W
NOAT083 n/a 67.89629 °N 157.24773 °W
NOAT084 n/a 67.90608 °N 156.69762 °W
NOAT085 n/a 67.90582 °N 156.69770 °W
NOAT086 n/a 67.90550 °N 156.69750 °W
NOAT087 n/a 67.90517 °N 156.69646 °W
NOAT088 n/a 67.89368 °N 156.62703 °W
NOAT089 n/a 67.89312 °N 156.62576 °W
NOAT090 n/a 67.89260 °N 156.62491 °W
NOAT091 n/a 67.89272 °N 156.62368 °W
NOAT092 n/a 67.89266 °N 156.62223 °W
NOAT093 n/a 67.89270 °N 156.62142 °W
NOAT094 n/a 67.89543 °N 156.60444 °W
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NOAT095 n/a 67.98625 °N 157.68913 °W
NOAT108 n/a 67.90137 °N 157.41653 °W
NOAT095 n/a 67.98077 °N 157.41860 °W
NOAT176 n/a 67.98152 °N 157.41483 °W
NOAT096 n/a 67.98147 °N 157.41231 °W
NOAT097 n/a 67.98138 °N 157.42129 °W
NOAT098 n/a 67.98084 °N 157.42069 °W
NOAT099 n/a 68.05890 °N 157.76813 °W
NOAT104 FT10A 68.07933 °N 157.62717 °W
NOAT109 FT9A 68.07931 °N 157.62505 °W
NOAT110 FT8A 68.07904 °N 157.61800 °W
NOAT105 n/a 68.07893 °N 157.61612 °W
NOAT106 n/a 68.07867 °N 157.61316 °W
NOAT102 n/a 68.07753 °N 157.60869 °W
NOAT107 FT11A 68.07717 °N 157.56861 °W
NOAT111 n/a 68.07736 °N 157.57423 °W
NOAT112 n/a 68.07623 °N 157.57572 °W
NOAT113 FT12A 68.07662 °N 157.56633 °W
NOAT114 n/a 68.07347 °N 157.54499 °W
NOAT115 n/a 68.07494 °N 157.54430 °W
NOAT116 n/a 68.07608 °N 157.54599 °W
NOAT117 n/a 68.07486 °N 157.54758 °W
NOAT118 n/a 68.06585 °N 157.45293 °W
NOAT119 n/a 68.02436 °N 157.85493 °W
NOAT146 n/a 68.00267 °N 157.19802 °W
NOAT148 FT2011_12A 67.87676 °N 157.53235 °W
NOAT149 n/a 67.90181 °N 157.41200 °W
NOAT150 n/a 67.89925 °N 157.38847 °W
NOAT151 FT2011_16X 67.86285 °N 157.52668 °W
NOAT153 n/a 67.80366 °N 157.89732 °W
NOAT154 n/a 67.83530 °N 157.41018 °W
NOAT155 n/a 67.83603 °N 157.41232 °W
NOAT156 n/a 67.83473 °N 157.36882 °W
NOAT157 n/a 67.83254 °N 157.35241 °W
NOAT158 n/a 67.82688 °N 157.34956 °W
NOAT159 FT104Z 67.88304 °N 156.73583 °W
NOAT160 FT2012_5X 67.88113 °N 156.73525 °W
NOAT161 n/a 67.89352 °N 156.54770 °W
NOAT161 n/a 67.89301 °N 156.54582 °W
NOAT162 n/a 67.86172 °N 156.66156 °W
NOAT163 n/a 67.85773 °N 156.65427 °W
NOAT164 n/a 67.87380 °N 156.75980 °W
NOAT165 n/a 67.87432 °N 156.75221 °W
NOAT166 n/a 67.87405 °N 156.75833 °W
NOAT169 n/a 67.84408 °N 157.13806 °W
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NOAT170 n/a 67.84225 °N 157.11533 °W
NOAT172 n/a 67.80643 °N 156.68164 °W
NOAT175 n/a 67.80098 °N 156.76809 °W
NOAT267 FT104ZC 67.88329 °N 156.73751 °W
NOAT177 n/a 67.94714 °N 156.81531 °W
NOAT178 n/a 67.94329 °N 156.80352 °W
NOAT180 n/a 68.05457 °N 159.64726 °W
NOAT180 n/a 68.05275 °N 159.64812 °W
NOAT183 FT2A 68.08785 °N 158.63906 °W
NOAT184 n/a 68.08701 °N 159.18238 °W
NOAT185 n/a 68.08767 °N 159.18178 °W
NOAT188 n/a 68.01996 °N 158.70861 °W
NOAT189 FT174Z 68.02809 °N 159.23927 °W
NOAT189 FT174Z 68.02844 °N 159.23732 °W
NOAT190 FT173Z 68.03361 °N 159.28723 °W
NOAT194 FT175Z 68.02782 °N 159.23027 °W
NOAT207 n/a 67.90050 °N 158.05920 °W
NOAT208 n/a 67.89910 °N 158.06268 °W
NOAT209 FT181Z 67.85119 °N 158.33407 °W
NOAT222 n/a 67.85694 °N 158.27643 °W
NOAT212 n/a 67.80501 °N 157.97156 °W
NOAT213 n/a 67.79261 °N 157.98444 °W
NOAT215 n/a 67.79747 °N 158.47198 °W
NOAT216 n/a 67.79189 °N 158.47167 °W
NOAT217 n/a 67.79056 °N 158.47154 °W
NOAT220 n/a 67.78388 °N 158.33236 °W
NOAT223 n/a 67.78138 °N 157.66112 °W
NOAT226 n/a 67.80153 °N 156.76805 °W
NOAT225 n/a 67.78753 °N 156.69310 °W
NOAT229 n/a 67.73322 °N 158.66719 °W
NOAT230 n/a 67.73044 °N 158.66659 °W
NOAT231 n/a 67.73203 °N 158.67144 °W
NOAT232 n/a 67.73148 °N 158.60186 °W
NOAT228 n/a 67.73367 °N 158.65859 °W
NOAT236 n/a 67.73333 °N 158.14458 °W
NOAT237 n/a 67.70493 °N 157.93539 °W
NOAT238 n/a 67.70405 °N 157.93604 °W
NOAT239 n/a 67.70571 °N 157.32923 °W
NOAT240 n/a 67.70551 °N 157.32699 °W
NOAT241 n/a 67.70294 °N 157.31894 °W
NOAT242 n/a 67.70203 °N 157.31464 °W
NOAT243 n/a 67.70243 °N 157.31290 °W
NOAT244 n/a 67.70069 °N 157.31179 °W
NOAT251 n/a 67.69133 °N 157.26403 °W
NOAT247 n/a 67.66974 °N 157.85169 °W

48



NOAT248 FT2012_2X 67.67070 °N 157.85285 °W
NOAT249 n/a 67.67169 °N 157.85449 °W
NOAT250 n/a 67.67228 °N 157.85321 °W
NOAT152 n/a 67.80435 °N 157.89493 °W
NOAT261 FT2011_12A 68.08791 °N 158.04023 °W
NOAT262 FT2011_14A 68.08375 °N 158.02692 °W
NOAT263 n/a 68.08242 °N 158.02099 °W
NOAT265 n/a 67.94688 °N 161.09126 °W
NOAT266 n/a 67.94850 °N 161.07638 °W
NOAT266 n/a 67.94741 °N 161.07644 °W
NOAT266 n/a 67.94765 °N 161.07468 °W
NOAT270 n/a 68.16894 °N 157.56485 °W
NOAT281 n/a 68.15882 °N 157.08467 °W
NOAT325 n/a 68.06351 °N 156.49344 °W
NOAT326 n/a 68.06398 °N 156.49405 °W
NOAT327 n/a 68.06448 °N 156.49490 °W
NOAT327 n/a 68.06467 °N 156.49572 °W
NOAT331 n/a 68.08817 °N 155.90028 °W
NOAT332 n/a 68.08753 °N 155.89988 °W
NOAT333 n/a 68.08328 °N 155.86213 °W
NOAT334 n/a 68.08030 °N 155.80049 °W
NOAT335 n/a 68.07969 °N 155.79896 °W
NOAT336 n/a 68.07921 °N 155.79826 °W
NOAT470 n/a 68.22815 °N 157.15002 °W
NOAT471 n/a 68.28109 °N 157.12691 °W
NOAT472 n/a 68.28237 °N 157.13269 °W
NOAT472 n/a 68.28243 °N 157.13399 °W
NOAT473 n/a 68.27850 °N 157.12403 °W
NOAT489 FT359X 68.27191 °N 157.88248 °W
NOAT490 FT299X 68.27429 °N 157.88515 °W
NOAT491 FT547X 68.27336 °N 157.88983 °W
NOAT492 n/a 68.27378 °N 157.87947 °W
NOAT505 FT377X 68.27889 °N 157.79493 °W
NOAT608 FT24A 68.23288 °N 158.33989 °W
NOAT609 FT25A 68.23102 °N 158.33418 °W
NOAT609 FT26A 68.23081 °N 158.33348 °W
NOAT610 FT167Z 68.19846 °N 159.47967 °W
NOAT611 FT168Z 68.20111 °N 159.47627 °W
NOAT612 FT169Z 68.20657 °N 159.46245 °W
NOAT613 FT170Z 68.20901 °N 159.45968 °W
NOAT631 n/a 68.53666 °N 160.10576 °W
NOAT644 FT14A 68.32479 °N 157.89185 °W
NOAT646 n/a 67.80498 °N 159.20327 °W
NOAT647 n/a 67.80441 °N 159.20169 °W
NOAT647 n/a 67.80359 °N 159.20258 °W
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NOAT648 n/a 67.80167 °N 159.20583 °W
NOAT648 n/a 67.80132 °N 159.20652 °W
NOAT647 n/a 67.80382 °N 159.20521 °W
NOAT650 n/a 68.41579 °N 160.85692 °W
NOAT652 FT2007_18A 68.32304 °N 161.39026 °W
NOAT653 FT2007_1A 68.29209 °N 161.36458 °W
NOAT654 n/a 68.18955 °N 161.17762 °W
NOAT686 FT2007_8A 67.95591 °N 162.13584 °W
NOAT686 FT2007_9A 67.95618 °N 162.13618 °W
NOAT687 FT2007_20A 67.97359 °N 161.79731 °W
NOAT687 FT2007_20B 67.97370 °N 161.79612 °W
NOAT688 FT2007_20C 67.97498 °N 161.80024 °W
NOAT688 FT2007_20D 67.97490 °N 161.79904 °W
NOAT688 n/a 67.97465 °N 161.79826 °W
NOAT689 FT2007_21A 67.96973 °N 161.79829 °W
NOAT690 FT2007_21B 67.96881 °N 161.79856 °W
NOAT691 FT2007_21C 67.96829 °N 161.79847 °W
NOAT692 n/a 67.96802 °N 161.79787 °W
NOAT693 FT2007_19A 67.95938 °N 161.74303 °W
NOAT694 FT2007_19B 67.96068 °N 161.74355 °W
NOAT695 FT2007_19C 67.96096 °N 161.74364 °W
NOAT696 n/a 67.96658 °N 161.67807 °W
NOAT697 n/a 67.96681 °N 161.67888 °W
NOAT712 n/a 67.99308 °N 161.22251 °W
NOAT718 n/a 67.95998 °N 161.10841 °W
NOAT719 n/a 67.95384 °N 161.11060 °W
NOAT720 n/a 67.95324 °N 161.11110 °W
NOAT713 n/a 67.96606 °N 161.46904 °W
NOAT721 n/a 68.05971 °N 160.76811 °W
NOAT722 n/a 68.04412 °N 160.77664 °W
NOAT723 n/a 68.03463 °N 160.75558 °W
NOAT724 n/a 68.03699 °N 160.79310 °W
NOAT750 FT579A 67.94347 °N 162.35573 °W
NOAT754 FT2007_13A 67.56131 °N 161.77272 °W
NOAT767 FT2007_14A 67.58750 °N 161.61978 °W
NOAT767 FT2007_15A 67.58710 °N 161.61933 °W
NOAT778 FT2007_10A 67.61210 °N 161.57027 °W
NOAT779 FT2007_12A 67.60949 °N 161.53688 °W
NOAT782 FT2007_16A 67.59523 °N 161.59777 °W
NOAT788 FT578D 67.92763 °N 161.96554 °W
NOAT789 FT578C 67.92761 °N 161.97085 °W
NOAT790 FT578A 67.92805 °N 161.97232 °W
NOAT793 FT2007_2A 67.92566 °N 161.68138 °W
NOAT794 FT2007_3A 67.92613 °N 161.68129 °W
NOAT798 FT578B 67.92853 °N 161.96181 °W
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NOAT809 n/a 67.91445 °N 160.90042 °W
NOAT842 n/a 67.88888 °N 160.82847 °W
NOAT842 n/a 67.88898 °N 160.82741 °W
NOAT842 n/a 67.88899 °N 160.82640 °W
NOAT842 n/a 67.88921 °N 160.82520 °W
NOAT842 n/a 67.88932 °N 160.82443 °W
NOAT265 n/a 67.94757 °N 161.09385 °W
NOAT265 n/a 67.94810 °N 161.09248 °W
NOAT265 n/a 67.94803 °N 161.09004 °W
NOAT265 n/a 67.94804 °N 161.09066 °W
NOAT265 n/a 67.94742 °N 161.09080 °W
NOAT265 n/a 67.94724 °N 161.09076 °W
NOAT265 FT2010_21A 67.94745 °N 161.09229 °W
NOAT265 FT2010_21B 67.94728 °N 161.09209 °W
NOAT265 n/a 67.94738 °N 161.09349 °W
NOAT845 n/a 67.90608 °N 160.46555 °W
NOAT846 n/a 67.90544 °N 160.46030 °W
NOAT847 n/a 67.90621 °N 160.78598 °W
NOAT847 n/a 67.90577 °N 160.78592 °W
NOAT848 n/a 67.88479 °N 160.35155 °W
NOAT852 FT2007_4A 67.85049 °N 161.33475 °W
NOAT853 FT2007_5A 67.85156 °N 161.32800 °W
NOAT854 FT569A 67.85891 °N 161.31608 °W
NOAT907 n/a 67.83676 °N 160.71961 °W

NOAT1140 n/a 67.78399 °N 160.70112 °W
NOAT1141 n/a 67.78742 °N 160.71386 °W
NOAT1142 n/a 67.78819 °N 160.71284 °W
NOAT1143 n/a 67.78558 °N 160.71948 °W
NOAT1131 n/a 67.80876 °N 160.58928 °W
NOAT1132 n/a 67.80865 °N 160.59132 °W
NOAT1133 n/a 67.81761 °N 160.61431 °W
NOAT1134 n/a 67.81760 °N 160.61171 °W
NOAT1135 n/a 67.81751 °N 160.61059 °W
NOAT1136 n/a 67.81648 °N 160.60323 °W
NOAT1137 n/a 67.81303 °N 160.57685 °W
NOAT983 FT2007_6A 67.67004 °N 161.57580 °W

NOAT1016 FT2010_15A 67.64841 °N 161.60614 °W
NOAT1021 FT2007_17A 67.58718 °N 161.59151 °W
NOAT1027 FT2007_7A 67.66096 °N 161.50148 °W
NOAT1045 FT2007_11A 67.60503 °N 161.52407 °W
NOAT1053 n/a 67.68936 °N 160.46550 °W
NOAT1100 n/a 67.93909 °N 160.22285 °W
NOAT1101 n/a 67.94431 °N 159.83957 °W
NOAT1102 n/a 67.92030 °N 159.83648 °W
NOAT1102 n/a 67.92008 °N 159.83878 °W
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NOAT1102 n/a 67.91980 °N 159.83953 °W
NOAT1102 n/a 67.92018 °N 159.84003 °W
NOAT1104 n/a 67.94471 °N 159.69674 °W
NOAT1118 n/a 68.00343 °N 160.16666 °W
NOAT1119 n/a 67.99322 °N 160.17338 °W
NOAT1120 n/a 67.99219 °N 160.17853 °W
NOAT1121 n/a 67.96789 °N 160.24902 °W
NOAT1122 n/a 67.96819 °N 160.25019 °W
NOAT1127 FT165Z 68.19500 °N 159.54500 °W
NOAT1128 FT166Z 68.19534 °N 159.54512 °W

n/a FT2010-16A 67.84741 °N 163.88147 °W

Balser, A., M. N. Gooseff, J. Jones, and W. B. Bowden (2009), Thermokarst distribution and

relationships to landscape characteristics in the Feniak Lake region, Noatak National Preserve, 

Alaska; Final Report to the National Park Service, Arctic Network (ARCN), Fairbanks, AK.

Swanson, D. K., and K. Hill (2010), Monitoring o f Retrogressive Thaw Slumps in the Arctic Network,

2010 Baseline Data: Three-dimensional Modeling with Small-format Aerial Photographs, edited, 

p. 58, U.S. Department of the Interior, National Park Service, Natural Resource Data Series 

NPS/ARCN/NRDS— 2010/123, Natural Resource Program Center, Fort Collins, CO.
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Chapter 3. Relationship of Cryofacies, Surface and Subsurface Terrain Conditions in the 

Brooks Range and Foothills of Northern Alaska1

3.0 Abstract

Permafrost landscape responses to climate change and disturbance impact local ecology and global 

greenhouse gas concentrations, but the nature and magnitude o f response is linked with vegetation, terrain 

and permafrost properties which vary markedly across landscapes. As a subsurface property, permafrost 

conditions are difficult to characterize across landscapes, and modelled estimates rely upon relationships 

among permafrost characteristics and surface properties. While a general relationship among landscape 

and permafrost properties has been recognized throughout the arctic, the nature o f these relationships is 

poorly documented in many regions, limiting modelling capability. We examined relationships among 

permafrost, terrain and vegetation within the Brooks Range and foothills of northern Alaska using field 

data from diverse sites within a multiple factor analysis ordination to identify and describe these 

relationships in this region, and to facilitate future modelling and ecological research. Terrain, vegetation 

and permafrost conditions were correlated throughout the region, with field sites falling into four 

statistically-separable groups based on ordination results. Our results identify index variables for honing 

field sampling and statistical analysis, illustrate the nature of relationships in the region, support future 

modelling o f permafrost properties, and suggest a state factor approach for organizing data and ideas 

relevant for modelling o f permafrost properties at a regional scale.

3.1 Introduction

Permafrost landscape responses are critical components o f global climate change, but responses and 

feedbacks depend on ecosystem properties, which vary markedly throughout the arctic. Permafrost 

landscape structure develops through a complex interplay among climate, substrate, and surficial 

processes operating at multiple spatial and temporal scales (Shur and Jorgenson 2007). At the interface 

between the atmosphere and deep permafrost, processes o f vegetation, soil, and upper-permafrost 

cryostructures respond to climate shifts and disturbance (Viereck 1973, ACIA 2005, Jorgenson et al. 

2010a, Jorgenson et al. 2013), and mediate the influence o f climate on deeper permafrost (Shur and 

Jorgenson 2007, French and Shur 2010). Vegetation and upper permafrost horizon development have 

been linked with terrain properties and climate (Kreig and Reger 1982, Shur 1988, Shur and Jorgenson 

2007, Pastick et al. 2014), and are mutually influential at local and circumarctic scales, though the nature 

and extent o f relationships among vegetation and permafrost is only partially understood (Raynolds and 

Walker 2008, Walker et al. 2008, French and Shur 2010, Lantz et al. 2010, Kokelj and Jorgenson 2013).

1 Submitted to Permafrost and Periglacial Processes. Balser, A. W., J. B. Jones, and M. T. Jorgenson, 
March 2015.
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In the Brooks Range and foothills o f northern Alaska, multiple modes o f permafrost degradation 

appear to be accelerating (Jorgenson et al. 2006, Bowden et al. 2008, Jorgenson et al. 2008a, Balser et al. 

2009, Gooseff et al. 2009), but relationships among terrain properties, vegetation, and upper permafrost 

characteristics are weakly documented (Jorgenson et al. 2008b, Jorgenson et al. 2010b). Region-wide 

estimates o f future landscape resilience and response to climate perturbation depend on spatially-explicit 

representations of conditions (Callaghan et al. 2004), but subsurface permafrost properties across the 

landscape are difficult to observe directly. Determination o f permafrost properties in remote, northern 

Alaska depends on understanding these relationships, and applying them at a regional scale. Determining 

which specific terrain properties and groups o f terrain properties are most correlated with vegetation and 

upper permafrost conditions within this region, and the degree to which correlations apply across diverse 

landscapes, is central to future estimates of resilience, responses, and feedbacks to climate in the Brooks 

Range and foothills of northern Alaska.

3.1.1 Responses and Feedbacks to Climate

Permafrost degradation rate has been increasing in recent decades throughout the circumarctic and 

is anticipated to continue or accelerate (ACIA 2005, Hinzman et al. 2005, Schuur and Abbott 2011). 

Marked impacts and feedbacks are expected across the cryosphere, with shifts in ecosystem structure and 

function (Callaghan et al. 2004, Osterkamp et al. 2009, Goetz et al. 2011, Myers-Smith et al. 2011), local 

and global hydrologic cycles (Peterson et al. 2002, Hinzman et al. 2006, Frey et al. 2007), and 

biogeochemistry and carbon release (Tarnocai et al. 2009, Grosse et al. 2011, Schaefer et al. 2011).

Distinct modes o f permafrost degradation correlate with specific combinations o f surficial 

landscape properties, each with a different influence on ecological, hydrological, and biogeochemical 

shifts, and characterized by distinct morphologies and processes (Hinzman et al. 2005, Jorgenson et al. 

2008a, Schuur et al. 2009, Lafreniere and Lamoureux 2013). Modes o f permafrost degradation include 

active-layer deepening, as well as an array o f subsidence features broadly termed ‘thermokarst’ (Hinzman 

et al. 2005, Jorgenson et al. 2008a). Each mode affects ecosystem properties and processes at different 

depths, rates, and scales, in turn driving the nature and magnitude of overall impacts (Jorgenson et al. 

2013). Modes o f permafrost degradation in response to climate perturbation or disturbance are coupled 

with local surficial conditions, including thermal properties, thaw stability, slope, hydrology and ground 

ice characteristics (Leibman et al. 2003, Lewkowicz and Harris 2005, Jorgenson et al. 2008a, Kokelj et al. 

2009, Jorgenson et al. 2010a, Lantuit et al. 2012). Thermal properties, thaw stability, and hydrology, in 

turn, are influenced by cryostructure distribution and ground ice content, vegetation, and soil composition 

and organic layer development (Shur and Jorgenson 2007) .
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3.1.2 Landscape Variability

Vegetation development on the surface and cryostructure development in the upper-permafrost are 

dynamically linked ecosystem processes organized in complex but potentially generalizable patterns 

across landscapes. Mutual influences between vegetation and permafrost (Raynolds and Walker 2008) 

are linked with terrain characteristics, surficial thermal properties, and hydrology (Shur and Jorgenson 

2007, French and Shur 2010). These may be considered within the ‘state factor’ framework, which 

groups terrain properties within five umbrella categories: biota, parent material, topography, climate, and 

time (Jenny 1941, van Cleve et al. 1991, Jorgenson et al. 2013).

On newly deposited surfaces, topography, surficial geology, climate, and potential recruitment 

drive initial development o f vegetation and new cryostructures, and influence the fate o f pre-existing 

ground ice, such as relict glacial ice (Washburn 1980, Walker et al. 2008, French and Shur 2010). With 

time, vegetation and cryostructure development exert increasing influence at the surface, mediating heat 

flux, soil moisture, and decomposition rate o f organic matter, which in turn feeds back on vegetation and 

cryostructure development (Davis 2001, Hobbie and Gough 2004, Walker et al. 2008). Vegetation, 

active-layer depth, and the nature and degree o f permafrost and cryostructure development across 

heterogeneous landscapes are a product o f these interactions (Shur and Jorgenson 2007, Raynolds and 

W alker 2008, Walker et al. 2008, French and Shur 2010, Walker et al. 2011). Correlations among 

vegetation and permafrost characteristics are recognized from studies at specific sites (Kreig and Reger 

1982, Shur and Jorgenson 2007, Walker et al. 2008, Kanevskiy et al. 2011, Epstein et al. 2012), and from 

regional to circumarctic-scale studies (Raynolds and Walker 2008, Gruber 2012, Pastick et al. 2014).

3.1.3 Integrating Terrain Properties

A general approach describing relationships among terrain properties and permafrost, congruent 

with the state factor framework (Shur and Jorgenson 2007), has been developed to better estimate 

permafrost vulnerability among different landscapes. Terrain properties and permafrost characteristics 

co-vary, and consistency o f associations among permafrost, terrain and vegetation enable landscape-scale 

analysis on that basis (Jorgenson and Kreig 1988, Raynolds and Walker 2008, Jorgenson et al. 2010a, 

Jorgenson et al. 2013, Pastick et al. 2014). While the importance o f surficial deposits (Kreig and Reger 

1982, Jorgenson et al. 2008b) and vegetation (Viereck 1973) to ground ice and permafrost development 

have long been recognized, landscape-scale methods for integrating terrain factors are not fully 

developed. Toward improved terrain factor integration, we hypothesized that: 1) vegetation and 

permafrost properties consistently correlate with specific terrain conditions across landscapes due to these 

relationships, 2) that diverse landscapes may fall into general groupings from statistical analysis of 

empirical field data for these combined properties, and 3) that these relationships can be used to help
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identify which terrain factors, in combination, facilitate spatial characterization of surficial landscape 

properties in the Brooks Range and foothills of northern Alaska.

Our research tested these ideas statistically using ordination o f empirical, field survey data collected 

from sites representing diverse landscapes in the Brooks Range and foothills o f northern Alaska. 

Identifying statistically-supported linkages between permafrost properties including ground ice content 

and cryostructures, and terrain properties including vegetation and surficial geology, can facilitate 

regional scale estimation o f permafrost vulnerability and estimation o f ground ice conditions, and better 

inform models examining regional resilience, response and feedbacks to climate change.

3.2 Methods

3.2.1 Study Region

Our research spanned a gradient o f arctic tundra and shrub landscapes within Alaska's Brooks 

Range and foothills, from the east-central portion o f Alaska's North Slope westward through the Noatak 

Basin to the Mission Lowlands, near the Noatak delta (Figure 3.1). These periglacial landscapes are 

within the continuous permafrost zone (Jorgenson et al. 2008b) and are part of Arctic Bioclimate Subzone 

E (CAVM-Team 2003). The northeast portion of the study region was centered around Toolik Field 

Station on the north slope of Alaska, while the central and western study region followed the Noatak 

Basin from near its headwaters downstream to the Mission Lowlands, near the Noatak River delta.

Toolik Field Station is located in the northern Brooks Range foothills within a matrix o f landscapes 

of varying glacial ages and ecotypes. Physiography ranges from low mountains at the edge o f the Brooks 

Range to subtle foothills stretching more than 75 km from the mountains to the edge o f the arctic coastal 

plain. Date since most recent glaciation ranges from early Pleistocene to Holocene for field sites 

surrounding Toolik Field Station, with acidic and nonacidic, graminoid and shrub tundra vegetation 

reflecting duration o f ecosystem development and local site conditions (Walker et al. 1994, Walker et al. 

1995, Hamilton 2003, Walker and Maier 2008). Lake and stream density is variable by landscape age- 

class and related with glacial and periglacial landforms (Hobbie et al. 1991, Kling 1995, Hamilton 2003).

The Noatak River flows 730 km along a westward course at approximately 67.5° N latitude (Figure

3.1). Most o f the 33,100-km2 basin falls within the Noatak National Preserve (U.S. National Park Service) 

and is recognized as a UNESCO Biosphere Reserve. The Noatak Basin was periodically glaciated 

throughout the Pleistocene and contains a patchwork o f glacial and periglacial landforms ranging in age 

from early Pleistocene to contemporary (Hamilton 2010, Hamilton and Labay 2011). Physiographic 

provinces include high mountains of the east-central Brooks Range, through foothills and valley bottoms
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to the Mission Lowlands at the arctic-boreal ecotone near the Noatak mouth (Wahrhaftig 1965, Young 

1974). Land cover spans a gradient o f ecotypes including arctic and alpine tundra, shrublands and 

lowland boreal forest (Young 1974, Viereck et al. 1992, Parker 2006, Jorgenson et al. 2010b).

Landscape conditions throughout this 500 km wide region represent a broad range o f typical low- 

arctic landscapes (Figure 3.2). Alpine, foothill, and valley bottom settings include many characteristic 

ecotypes o f the North American low arctic, a suite o f periglacial landforms, diverse surficial geology and 

lithology, and a broad continuum of permafrost characteristics and cryostructures. While a geographic 

gap exists between the Toolik and Noatak subregions, substantial overlap among terrain properties and 

permafrost cryostratigraphy link them conceptually. Our study deliberately included a breadth of 

conditions over a large geographic area to represent a diversity o f low-arctic landscapes in the region.

3.2.2 Field Surveys

Our regional survey identified areas o f surface-exposed and degrading permafrost distributed 

among diverse landscapes, from which we selected field sites representing a range o f low-arctic 

conditions. Aircraft-supported field campaigns and airphoto analysis in 2006, 2007, and 2008 were used 

to identify watersheds with actively degrading permafrost exposures representing different modes of 

degradation (and by proxy, differing ground-ice conditions). Several thousand permafrost degradation 

feature locations were recorded in an ArcGIS GeoDatabase, which was later expanded and augmented 

through a subsequent National Park Service survey which included both Gates of the Arctic National Park 

and Preserve and Noatak National Preserve, using high-resolution satellite imagery to census these 

features throughout both park units (Balser et al. 2009, Swanson and Hill 2010). These data drove spatial 

analyses identifying diverse combinations of ecotype, lithology and surficial geology among 

subwatersheds accessible by helicopter from field camps at Kelly River, Feniak Lake, and Toolik Field 

Station (Figure 3.1). During subsequent helicopter-based visits in 2009, 2010, and 2011, field sites were 

chosen for detailed examination based on: 1) best accessibility to exposures of permafrost, and 2) 

inclusive representation among terrain properties including ecotype, lithology, and surficial geology.

At each field site, we measured and described general landscape characteristics and specific 

conditions at the site of permafrost exposure. A subset o f categorical and quantitative data collection 

protocols and field codes (Appendix 3) were adopted from Jorgenson et al. (2010b) to characterize 

ambient surface properties (within approximately 100 m of the permafrost exposure) and to catalog the 

specific combination o f vegetation, soil, surficial geology and cryostratigraphy immediately at the site of 

permafrost exposure (Table 3.1). Basic geomorphology, lithology, surficial geology, topography, and 

landforms were recorded to represent the area within approximately 100 m o f the permafrost exposure.
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Vegetation was recorded both by class (Viereck et al. 1992) and as a list of predominant overstory and 

understory species o f vascular plants, and functional groups o f bryophytes within 20 m of the permafrost 

exposure.

Permafrost profile exposures were described in detail to characterize and quantify live vegetation, 

contemporary soil (organic and mineral), parent material and archaic soils, coarse fraction, ice content, 

cryostratigraphy, and interpretations o f mechanisms of cryogenesis. Permafrost exposures were 

predominantly comprised o f vertical scarps at actively degrading edges of retrogressive thaw slumps, 

active layer detachment slides and thermo-erosional gullies (Figure 3.3). Permafrost exposures were 

prepared using hand tools to remove previously thawed material and expose an intact permafrost profile 

from the top (ground surface) down to the greatest accessible depth within the thaw feature (Figure 3.4). 

Exposures were prepared to a width o f at least 1 m, with categorical and quantitative tabular data taken 

for each discernible layer in the profile (Figure 3.4) from vegetation at the surface to the bottom of the 

exposure. Data from each discernible subsurface layer were weighted by layer thickness and integrated to 

generate overall values for: a) contemporary soil; and b) archaic soil layers and parent material (Table

3.2). Hand-drawn cryostratigraphic maps roughly following Kanevskiy et al. (2011), and detail photos 

for each permafrost profile complement data and general site photos and were used for interpretation and 

summarization.

3.2.3 Data Analysis

3.2.3.1 Data Reduction

To statistically analyze our 46 field sites by terrain and permafrost properties, we began with data 

reduction to eliminate extraneous independent variables with minimal contribution to our model, and to 

reduce redundancy in the data. We employed Pearson (r) correlations in two separate steps to examine 

redundancy and to identify variables with minimal contribution to ordination results. In the first step, a 

Pearson correlation analysis o f all variables against one another with R statistical software was used to 

examine inter-variable relationships and identify groups that might be represented by a single integrator 

variable. Where a set o f variables was grouped by Pearson scores > 0.60 for all pairings, the group was 

considered a candidate for integration.

In the second step, all variables went through a pilot, three-axis non-metric multidimensional 

scaling (NMS) ordination with 50 runs o f 250 iterations in PC-ORD to generate Pearson correlation 

values for each variable against each ordination axis. This ordination was used to examine the 

contribution of each variable to the ordination and eliminate those with minimal analytical value. For this 

analysis, categorical data were transformed to binary numbers for each categorical unit o f each
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categorical variable, while continuous and ordinal data were scaled 0 to 1 (precision to the hundredth) to 

conform with NMS analysis assumptions for a valid distance matrix (McCune and Grace 2002, McCune 

2013). Those variables with NMS Pearson scores < 0.30 for each axis were deemed extraneous and 

excluded from subsequent ordination. From each grouping o f highly correlated variables identified in 

step one, a single integrator variable was chosen from the group based on highest cumulative Pearson 

score across all axes in step two.

3.2.3.2 Multiple Factor Analysis Ordination

Relationships among permafrost and terrain properties were examined using multiple factor 

analysis (MFA) ordination o f 46 surveyed field sites. Traditional ordination is conducted on datasets 

where all variables are comparable and o f the same type (e.g., vegetative species by percent cover).

While the goals o f our analysis were similar to outcomes derived from traditional ordination (e.g., site 

similarity and clustering in multidimensional space as determined by a distance matrix), our dataset 

comprised different logical groupings o f data for each site (e.g., ice, substrate and vegetation) and 

dissimilar data types, such as coarse fragment size class (ordinal), vegetation type (categorical), and ice 

percentage (continuous).

Multiple factor analysis (MFA), a recent adaptation o f principal component analysis (PCA), was 

chosen for this application o f ordination because it is designed to integrate dissimilar data types and 

different logical groupings o f data (termed 'blocks') for each observation within a single ordination run 

(Escofier and Pages 1994). While other ordination techniques, such as NMS, can also be applied after 

data transformation and scaling (McCune and Grace 2002, McCune 2013), MFA offers two distinct 

advantages over NMS and other ordination techniques under these conditions. First, end-user data 

transformation is unnecessary because MFA performs data normalization in an initial PCA step, using the 

square root o f the first eigenvalue in a manner comparable to Z-score normalization (Abdi et al. 2013). 

These normalized data are then merged to form the analysis matrix, enabling valid distance matrices to be 

calculated from what were initially incongruous variables. Second, MFA provides the option to define 

blocks o f data, which are conceptually coherent groups o f variables pertaining to all observations (Abdi et 

al. 2013). The chief advantage o f a block approach is that individual blocks o f data (e.g., vegetation, 

substrate, ice) are inhibited from dominating the ordination results while other blocks become de­

emphasized. MFA achieves this parity by normalizing the input data by block, and by handling each 

block as a sub-matrix o f the whole. The first principal component o f each block is scaled to 1 in the 

normalization step, which ensures that no block will dominate the model through disproportionate inertia 

in the final ordination (Abdi et al. 2013). Finally, each block must contain variables o f the same data type
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for the normalization step to produce valid results. Thus, conceptual blocks containing multiple data 

types were split by type.

Data were originally recorded by segment o f the study site (Tables 3.1 and 3.2), but were 

reorganized for statistical analysis into response variables and independent variables, and by block. To 

effectively address the hypothesis that terrain properties consistently influence cryostructure, ground ice, 

and vegetation across sites, we divided the dataset into response variables and independent variables from 

the perspective o f the current ecosystem. Site characteristics that predate and may potentially influence 

the current ecosystem (e.g., surficial geology) were classed as independent variables, while properties 

influenced by contemporary ecosystem processes (e.g., vegetation, microtopography and upper 

permafrost cryostructures) were classed as response variables and assigned to blocks. Response 

variables, termed 'active' variables in MFA, were the basis o f ordination calculations. Potential 

explanatory or 'supplemental' variables were employed as overlays on graphs o f analysis results to 

illustrate underlying drivers o f statistically demonstrated relationships among permafrost, substrate and 

vegetation. The final set o f variables, selected through Pearson score analyses and reorganized for MFA, 

were assigned to blocks (Table 3.3) and ordinated by MFA with three dimensions using the FactoMineR 

package within R statistical software (Le et al. 2008).

Finally, ordination results were used for hierarchic clustering in FactoMineR to produce a 

dendrogram depicting relative similarity/dissimilarity among sites, and to delineate statistical groupings 

o f sites. Euclidean distance and Ward's method (0.75 inertia level) were used to generate the dendrogram 

and delineate groupings (Husson et al. 2010).

3.3 Results

MFA ordination revealed complex but consistent patterns of correlation among terrain and 

permafrost properties across sites, and subsequent hierarchical clustering analysis produced four primary 

groupings, two of which were further divided into subgroups based on subtle but consistent differences 

among sites. Correspondence among categorical variables within the ordination spanned across different 

MFA blocks (Figure 3.5), indicating that factors across the three blocks o f vegetative, substrate, and 

permafrost/ice properties were co-varying among sites. Coarse and fine fraction (substrate), primary 

permafrost cryostructure (permafrost/ice), and ecotype (vegetative) all contributed to consistent, statistical 

separation among sites, while specific values for these variables were distributed across sites in complex 

combinations.
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While co-varying, factors organized by block were not redundant in the ordination. Each of the 

first three ordination axes were driven by differential influences from each block, with axis one driven 

most by substrate then vegetation, axis two driven most by permafrost/ice then by vegetation, and axis 

three driven by roughly equivalent influence o f all three blocks (Figure 3.6).

3.3.1. Hierarchically Clustered Groupings

Hierarchical clustering o f ordination results produced four groupings from 46 sites in the study 

region (Figure 3.7). Group E1 contained six sites, E2 comprised 22 sites, E3 had five sites, and group E4 

was made up o f 13 sites. Groups E2 and E4 were further subdivided, based upon statistical differences 

driven by identifiable, single factors within the ordination. Each group was characterized by 

combinations o f terrain and permafrost properties.

Group E1.

The E1 grouping was found on late-Pleistocene moraine deposits where: 1) carbonate lithologies 

comprise more than 10% of clast composition in the substrate, 2) the surface soils were well-drained, 

nonacidic, and had thin organic layers, and low percentages o f massive and segregation ice, and 3) 

vegetation was dominated by calciphilic species (Table 3.4 and Figure 3.9). Substrates were 

characterized by glacial till overlain by silt, and are generally ice-poor throughout the profile, with low 

content o f massive and segregation ice. Approaching the bottom o f profile exposures, glacial till 

occasionally contained isolated masses o f relict glacial ice, and rarely ice-wedges, with combined massive 

and segregated ice content generally less than 10 % by volume throughout the substrate profile. Clasts 

typically comprised more than 30% of the parent substrate, and often included stone to boulder size 

specimens (250 - 950 mm). Where proglacial lakes were once present, a mantle o f glaciolacustrine 

deposits occasionally flanked the moraine atop the glacial till with increasing thickness from the moraine 

crest downward. Thin, post-glacial loess deposits comprised the uppermost substrate, with no evidence of 

colluvial re-deposition contributing to the profile at any o f the sites examined, and minimal buried organic 

material (3.5% average, by volume). While the active layer was comparatively well drained, the upper 

permafrost horizon was typically saturated with pore ice. Small lenticular and thin lamellar 

cryostructures were usually present, though sparsely dispersed near the top o f the permafrost. Total 

organic layer depth averaged 7.3 cm and was primarily composed o f graminoid detritus.

Vegetation was dominated by upland and alpine graminoid dwarf shrub vegetation, and non­

tussock forming sedges and Dryas integrifolia dominated all sites. Common calciphilic species included 

Oxtropis nigrescens, and the ericad Rhododendron lapponicum. Eriophorum vaginatum was present at
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half o f the sites but lacked tussock morphology. Dwarf willow species (primarily Salix reticulata), Geum 

rossii, Astragalus umbellatus and Pedicularis capitata were also prevalent at all sites.

Group E2.

E2 sites are found on mild hill slopes where drainage is moderate, uppermost substrates are more 

90% silt, shallow surficial deposits overlie bedrock or till sheets, and acidic tundra is underlain by 

cryofacies assemblages o f primarily syngenetic, segregated-ice cryostructures (Table 3.4 and Figure 3.9). 

Contemporary soils averaged 99% silt with minimal microtopography on slopes averaging 5° (sd = 2.5°). 

At least two landscape settings are associated with class E2: 1) mid and lower hill slope settings in broad 

valleys on glacial till sheets with a loess cap, and 2) on upper hill slope settings where a loess cap sits 

atop highly fractured, noncarbonate, near-surface bedrock. Primarily syngenetic cryofacies within the 

parent material occasionally included isolated lenses o f intrusive, massive, or epigenetic cryostructures, or 

were (rarely) ice-poor. Upper substrates were greater than 90% silt regardless o f setting or evidence of 

colluvial processes. Upper permafrost within loess contains 25 to 70% segregation ice by volume, 

primarily including reticulate, ataxitic, and bedded cryostructures, with occasional lenticular structures or 

veins.

Vegetation was dominated by moist acidic tundra (Walker and Maier 2008), almost exclusively of 

the Upland Dwarf Birch-Tussock Shrub ecotype, which has an average soil pH of 4.7 (0.7 standard 

deviation reported for sites in northern foothills o f the Brooks Range in Alaska (Jorgenson et al. 2010b). 

Organic layer depth averaged 21 cm (min 15 cm, max 23 cm), with moss-dominated detritus. Dominant 

vegetation included Eriophorum vaginatum, Betula nana and dwarf and low willow and ericaceous 

species with a sphagnum and feathermoss understory.

Subgroups ‘a’ and ‘b ’ are distinguished by total organic layer depth (Oa). Subgroup 'a' has an 

average total organic layer depth o f 15 cm (sd = 4.5 cm) whereas subgroup 'b' averaged 22 cm (sd = 7.7 

cm). The two subgroups partially coincide with regional geography (Figure 3.8) and strongly correlate 

with estimated time since last deglaciation. More than 85% of landscapes containing sites in subgroup ‘a ’ 

sit atop surfaces estimated as late-Pleistocene/Holocene. Those o f subgroup ‘b ’ are atop mid to late- 

Pleistocene surfaces, with more than 40% estimated as mid-Pleistocene (Hamilton 2003, Hamilton 2010).

Group E3.

E3 occurred on thin deposits o f silty colluvium over near-surface bedrock, typically on upper hill 

slopes near exposed-bedrock hilltops, where ambient slope averaged 5.4° (sd = 1.3°; Table 3.4 and Figure 

3.9). Nonacidic, primarily herbaceous vegetation lay atop one to many deposits o f colluvial material and 

syngenetic cryostructures, with interleaved layers or turbated fragments o f relict vegetation. In contrast
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with other groups, substrate composition was relatively similar and consistent among sites. Colluvial 

surficial deposits were an admixture o f silt and gravels, with silt generally comprising most o f the 

material in the contemporary soil (mean = 90 %; sd = 9 %) versus a more even proportion in the parent 

material (mean = 68 %; sd = 19 %). Most sites occurred on hill slopes below exposed outcrops of 

micaceous shales containing < 1 % quartzite in thin veins. The silt component frequently derived from 

some proportion o f Pleistocene and Holocene loess (Hamilton 2010) mixed with silts from weathered 

shale, though the proportion is unknown either for any specific site or for these sites as a whole. Gravel 

clast lithology was a mixture o f shale and quartzite. Generally, increased distance from exposed bedrock 

correlated with increased proportion o f weathering-resistent fragments o f quartzite. Permafrost profiles 

were almost exclusively comprised o f syngenetic cryostructures, with an average 29 % (sd = 16 %) 

segregated ice by volume. Ataxitic and reticulate cryostructures were typically co-dominant, with ice- 

rich intermediate layers at both current and relict permafrost tables. Vegetation was nonacidic, with a 

community gradient appearing to correlate with surface hydrology. Communities situated near or within 

preferential surface flowpaths contained higher proportions non-tussock forming sedges (Eriophorum 

angustifolium, Carex spp.) with sparse cover o f dwarf shrub (e.g., Cassiope tetragona, Dryas spp. Salix 

spp.) and low shrub (Salix spp.), and an understory o f unidentified feathermosses. The most hydric sites 

supported relatively deep surface organic layers o f up to 33 cm of feathermoss-dominated material, with 

diffuse surface flow up to 20 cm deep. Dwarf shrub, forb and low shrub cover increases moving away 

from the hydric end o f the gradient, with rapidly decreasing E. angustifolium cover. This group was 

distributed primarily in the Noatak Basin (Figure 3.8), with only one site found in the North Slope 

foothills.

Group E4.

Sites in group E4 were distributed across a highly variable suite of lowland sites where deep, ice- 

rich, non-carbonate glacial deposits underlay acidic or nonacidic low shrub communities. The most 

prominent common characteristic of this group was a deep deposit o f ice-rich, diamictous, glacial till of 

primarily or exclusively noncarbonate lithology. At more than half o f these sites, glacial till was 

overridden by, or interspersed with, glaciolacustrine, glaciofluvial, fluvial, or aeolian deposits, and 

typically appeared within kettle topography, on lower hill slopes, or along contemporary or relict river 

bluffs. The coarse fraction varied from 1 % to 75 % of the parent material by volume, including clast 

sizes from gravel to 2 m wide boulders (Table 3.4 and Figure 3.9). Massive ice was typically present in at 

least one form, including relict glacial ice, injection ice, and ice wedges. Ice wedges ranged from absent 

to dominant (> 90 % by volume) within the permafrost profile. Contemporary soils frequently included a 

loess cap, or less frequently appeared to develop directly from glacial deposits. Syngenetic cryostructures
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were common in the upper permafrost horizon. Vegetation was typically low shrub dominated, with both 

acidic and nonacidic vegetation observed. While low shrubs tended to dominate across sites, community 

composition and organic layer depth varied markedly among these sites. Tussock cover ranged from 

absent to > 50 % cover.

Subgroupings were driven by outlier values for specific site properties. Subgroup ‘a ’ represents the 

general characteristics o f sites in this group. Subgroup ‘b ’ included sites where ice wedges comprise > 40 

% of the permafrost by volume. Subgroup ‘c’ was restricted to two sites within the same glacial deposit 

in the North Slope foothills containing > 75 % coarse fraction in the permafrost, with multiple boulder 

size clasts up to 1.9 m.

3.3.2 Relationships Among Sites and Groups

Spatial distribution o f groups o f sites partially corresponded with regional geography (Figure 3.8). 

While sites from all four groups occurred both on the North Slope and within the Noatak Basin, all 

groupings exhibited regional tendencies. E1 sites had the strongest geographic affiliation, with five out of 

six sites concentrated within a 25 km radius in the upper Noatak Basin. Sites grouped E2 were more 

common on the North Slope, with only two examples in the Noatak Basin, while E3 was distributed 

throughout the Noatak Basin, but occurred only once on the North Slope. E4 sites occurred across the 

study region, however only one o f its three subgroups (E4a) was evenly distributed, with E4b primarily 

located in the Noatak Valley bottom, and E4c comprised o f only two sites, both located within the same 

surficial geologic deposit on the North Slope.

The two sites grouped E4c behaved as outliers within the initial run o f the MFA ordination, and 

were removed in the final ordination. These two sites were distinct in the sample, containing > 75% 

boulder-sized (6 0 0 -1900mm) clasts by volume in the near-surface parent material, which was 

characteristic o f that local moraine deposit. Removal o f these two sites produced a more even spread of 

the remaining sites along graphed ordination axes, indicating a better representation o f total variability 

among all sites. These two sites (36 and 38) were added back into the final grouping hierarchy as a 

subgroup, because all other site properties were comparable to those o f the primary group with which 

they were associated in the pilot ordination.

3.4 Discussion

Broad scale modelling o f permafrost and terrain properties is frequently limited by the variability of 

relationships among regions, which is difficult to quantify and describe due to the cost o f field sampling 

to characterize conditions and relationships within regions (Riseborough et al. 2008). As a result, maps of
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permafrost distribution and properties are either broad in scale but very general in content, or more 

specific in content but limited in spatial scale (Jorgenson et al. 2008b, Gruber 2012, Jorgenson et al. 2014, 

Pastick et al. 2014). Results from this study should support and inform future modelling o f permafrost 

conditions in the central and western Brooks Range by providing further evidence o f the relationship 

between permafrost conditions and landscape characteristics, and by illustrating the nature o f these 

relationships for this region.

No single terrain factor emerged as the dominant driver o f permafrost conditions in our study 

region. For example, while soil coarse fraction was a strongly influential factor driving the ordination, 

considered alone it failed to explain key differences among sites and groupings. Groups E1 and E3 

(Figure 3.5) both comprised sites with gravelly surficial substrates, but sites grouped E1 occurred in xeric 

to mesic conditions with Dryas-dominated vegetation and ice-poor permafrost, while E3 sites were 

located in more hydric settings with wet sedge meadow vegetation and primarily reticulate and syngenetic 

cryostructures, frequently including an ice-rich intermediate layer. As no single factor was identified as a 

dominant driver of the ordination, estimation of upper permafrost conditions by proxy should incorporate 

multiple terrain factors.

Gradients and divisions among sites and site groupings were driven by terrain properties which 

generally correspond with state factors, suggesting that examination of properties organized by state 

factor may provide better insight and more complete, parsimonious information for estimating landscape 

permafrost conditions. MFA blocks representing vegetative and substrate factors were important, 

complementary drivers in the ordination, and correspond with two o f the five state factors (biota and 

parent material). The data reduction step in our analyses revealed index variables in the data, which were 

correlated with multiple variables organized within logical data blocks. At landscape to regional scales, 

selection of the most statistically relevant and representative index variables from groups o f variables 

defined by state factors may offer the most parsimonious method for analyzing terrain properties driving 

upper-permafrost characteristics. The complexity, broad diversity, and remote nature o f landscapes 

throughout the low arctic present difficult challenges for estimating subsurface conditions such as 

permafrost, which are fundamental to landscape processes and critical to understanding climate change 

impacts and feedbacks at regional scales. Exploiting relationships among terrain and permafrost 

properties within a state factor framework may offer the most effective and efficient approach for 

estimation of permafrost-related properties and processes in remote, arctic regions.

Results o f this analysis are also suggestive o f the spatial distribution o f prevalent ecological 

processes including paludification and development of the permafrost intermediate layer through quasi-
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syngenetic permafrost aggradation (Shur 1988), and support the idea that these relationships may be 

modelled to better understand landscape distributions o f cryofacies (French 1998, Shur and Jorgenson 

2007, Jorgenson et al. 2014). Together, these provide insights for conceptual models o f landscape 

development and response (Jorgenson et al. 2010a), which may in turn be empirically tested at landscape 

to regional scales using structural equation modeling, integrated terrain unit analysis, and other 

approaches which rely upon a-priori knowledge from which to construct initial models. Also, the results 

help identify which permafrost, vegetation and terrain properties may be most germane for modelling 

within this region, enabling more efficient and targeted field data collection.

Results o f this study further support prior findings correlating permafrost properties and vegetation 

with terrain conditions, identifying which permafrost, vegetation and terrain factors are most closely 

correlated, and illustrating specific examples o f these relationships from landscapes within our study 

region. The correlations o f terrain conditions across a diversity o f sites may provide for proxy estimation 

o f certain permafrost properties within this region (Figures 3.5 - 3.7). Whereas our groupings o f sites 

were at least partially a product o f biased sampling, the groupings demonstrate that specific terrain 

properties are correlated with surficial conditions across a diversity o f landscapes in the region, and that 

they likely influence surficial conditions in a generally consistent manner along landscape gradients. 

Relative estimates o f some subsurface properties should therefore be possible across landscapes in the 

study region.

These results are generally consistent with those obtained from studies o f other, differing 

permafrost regions and studies conducted at different scales, and offer detail for this region to support 

modelled estimates o f permafrost properties. General relationships among terrain, vegetation, active layer 

and upper permafrost horizon properties and cryostructures have been described for regions throughout 

the arctic (Wolfe et al. 2001, Shur and Jorgenson 2007, Raynolds and Walker 2008, French and Shur 

2010, Daanen et al. 2011, Jorgenson et al. 2013, Mishra and Riley 2014, Pastick et al. 2014) and for 

specific localities (Viereck 1973, Murton and French 1994, French 1998, Walker et al. 2008), and support 

early assertions o f a general correlation between upper permafrost conditions and landscape 

characteristics throughout the arctic (Washburn 1980, Shur 1988). While inter-related correlations among 

terrain, vegetation, and permafrost have been found at broad scales throughout the arctic (Shur and 

Jorgenson 2007, Raynolds and Walker 2008, Kokelj and Jorgenson 2013), the nature and strength of 

relationships among terrain, vegetation and permafrost vary significantly by region (Shur and Jorgenson 

2007, Jorgenson et al. 2010a, Pastick et al. 2014).
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3.5 Conclusions

Correlations among terrain and permafrost properties offer opportunities to better understand 

distributions o f ground ice and cryostructures, and provide evidence o f cryogenic processes across 

landscape gradients. Statistically-supported groupings o f sites across a broad diversity o f landscapes 

suggest consistent, though complex, inter-relationships among terrain and permafrost properties in the 

study region. These are a potential basis for improved spatially-explicit, proxy estimations of conditions 

in upper permafrost horizons, and for identifying areas prone to particular modes o f permafrost 

degradation in response to climate warming and disturbance across the study region. In the Brooks Range 

and foothills o f northern Alaska, where diverse landscapes abutting the arctic-boreal ecotone may be 

especially prone to multiple modes o f permafrost degradation with climate change, and where remote 

settings severely limit direct observation o f permafrost properties, this approach facilitates better 

estimation of extents, trajectories and magnitudes o f different permafrost degradation modes and their 

future impacts.
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Figure 3.1. Study region in northern Alaska. Field sites were identified and selected through aerial 

survey, with ground visits by helicopter from Feniak Lake Camp and Kelly River Ranger Station in the 

Noatak National Preserve, and by helicopter and on foot from Toolik Field Station on Alaska's North 

Slope.

75

No69 
No89 

N
o/.9



Figure 3.2. Generalized landscape characteristics o f the study region. All field sites (red dots) are within 

the continuous permafrost zone (Jorgenson et al. 2008), within Arctic Bioclimate Subzone E (Walker et 

al. 2003), and are generally Climate-driven Ecosystem-modified permafrost landscapes (Shur and 

Jorgenson 2007). While these ancillary data sets provide valuable insight into regional landscape 

composition, this study is focused on terrain and upper permafrost horizon properties at finer scales.
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Figure 3.3. Permafrost degradation features providing access to permafrost profile exposures. Photos 

show (a) general morphology from oblique airphotos and (b) unprepared permafrost exposures from 

ground photos. Retrogressive thaw slumps (1), thermo-erosional gullies (2) and active layer detachment 

slides (3) were the predominant permafrost degradation features in the study area and comprised all 

feature types examined in this study. Photos 2a and 2b courtesy W. B. Bowden, 2004.
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Figure 3.4. Upper permafrost profile exposure. Photos show (a) profile preparation, (b) a profile 

prepared for examination, and (c) schematic cryostratigraphic map o f the permafrost profile, substrate and 

vegetation which complements tabular data for each profile layer.
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Figure 3.5. Field sites displayed by grouping and with active categorical variables overlain on graphed MFA results. Colors 
o f groupings correspond with the dendrogram and map (Figures 3.8 & 3.8).
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Figure 3.6. Influence o f quantitative variables, shown by block, on the 3-dimensional MFA ordination 

driving clustered site groupings. Variables are shown by MFA block: VQ (red) = Vegetative, SQ (green) 

= substrate, IQ (blue) = Ice/Permafrost. Dimensions 1 and 2 are shown on left, dimensions 1 and 3 on the 

right.
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Figure 3.7. Dendrogram from hierarchic clustering o f MFA results, showing groupings E1-E4. Colors 

correspond with ordination group overlay graph (Figure 3.5), and with map o f sites by grouping (Figure 

3.8).
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Figure 3.8. Distribution o f field sites by grouping. E2a and E2b are similar sub-groups, differentiated 

mainly by the effects o f a deeper organic horizon for E2a. E2 is found predominantly on the North Slope, 

with the two occurrences in the Noatak Basin o f subtype ‘a’, possibly associated with warmer, drier 

conditions compared with a stronger maritime influence promoting cooler and damper summertime 

conditions on the north slope. E3 is found only once on the north slope, but is more common in the 

Noatak Basin associated with noncarbonate colluvial deposits prevalent on upper hill slopes there. We 

consider all of these sites to occur within Climate-Driven Ecosystem-Modified permafrost landscapes 

proposed by Shur and Jorgenson (2007), and all occur within Arctic Bioclimate Subzone E (CAVM- 

Team 2003).
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E1

E2

E3

E4

Figure 3.9. Photos of sites from groups E1, E2, E3 and E4. 'a' = substrate and upper permafrost profile, 'b' 
vegetation. E1. Site 19; E2. Site 25; E3. Site 18; E4. Site 15.
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Table 3.1. Variables characterizing conditions in the vicinity o f each permafrost profile exposure.
Segment Name Type Source

Landscape Physiographic position Categorical * Appendix. 2.; Jorgenson et al., (2010b)
Landscape Surficial Geology Categorical * Hamilton, (2003 & 2010)
Landscape Lithology Categorical * Appendix. 2.; Jorgenson et al., (2010b)
Landscape Bedrock Geology Categorical § Beikman (1982)
Landscape Glacial Geology Categorical § Hamilton, (2003 & 2010)

Site Surface Elevation Quantitative * Garmin eTrex GPS
Landscape Elevation Quantitative § ASTER DEM

Site Surface Slope Quantitative * Brunton inclinometer
Landscape Slope Quantitative § ASTER DEM

Site Surface Aspect Quantitative * Brunton compass (declination adjusted)
Landscape Aspect Quantitative § ASTER DEM
Landscape Topographic Position Index Quantitative § ASTER DEM, Jenness (2006)
Landscape Macrotopography Categorical * Appendix. 2.; Jorgenson et al., (2010b)

Site Surface Microtopography Categorical * Appendix. 2.; Jorgenson et al., (2010b)
Landscape Geomorphic unit Categorical * Appendix. 2.; Jorgenson et al., (2010b)

Site Surface Permafrost degradation mode Categorical * Jorgenson et al., (2008)
Site Surface Vegetation Categorical * Viereck et al., (1992); Jorgenson et al., (2010b)
Landscape Vegetation complex Categorical § Walker et al., (2002); Jorgenson et al., (2010b)

Site Surface Dominant flora [over & understory] Species * Hulten (1968) & Parker (2006)
Landscape Summer Warmth Index Quantitative § Raynolds et al., (2008)

Site Surface Ecotype Categorical * Jorgenson et al., (2010b)
Site Surface Acidic (from mean pH per Ecotype) Categorical * Jorgenson et al., (2010b)

* recorded in the field
§ derived from spatial (GIS & remote sensing) analyses
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Table 3.2. Variables characterizing soil and permafrost properties in the vicinity o f each permafrost profile exposure.
Name Segment Type Integrator Variable Units / Source
Depth o f Active Layer Profile Quantitative cm
Total Depth o f Profile Profile Quantitative cm
Wedge/Intrusive Ice Percentage Profile Quantitative % of profile exposure
Litter Layer Thickness (Oi) Soil Quantitative cm
Organic Layer Thickness (Oa) Soil Quantitative cm
Depth o f Contemporary Soil Soil Quantitative cm
Coarse Fraction Percentage Soil Quantitative § Coarse & Fine Fraction % of profile exposure
Maximum Clast Size Soil Quantitative * cm
Segregation Ice Percentage Soil Quantitative * % of profile exposure
Segregation Ice Max. Width Soil Quantitative * cm
Lithofacies Soil Categorical § Coarse & Fine Fraction Appendix. 2; Jorgenson et al. (2010b)
Coarse & Fine Fraction Soil Categorical Appendix. 2; Jorgenson et al. (2010b)
Coarse Fraction Shape Soil Ordinal * Appendix. 2; Jorgenson et al. (2010b)
Peat Type Soil Categorical * Appendix. 2; Jorgenson et al. (2010b)
Primary Cryostructures Parent Categorical Appendix. 2; Jorgenson et al. (2010b)
Secondary Cryostructures Parent Categorical * Appendix. 2; Jorgenson et al. (2010b)
Lithofacies Parent Categorical § Coarse & Fine Fraction Appendix. 2; Jorgenson et al. (2010b)
Coarse & Fine Fraction Parent Categorical Appendix. 2; Jorgenson et al. (2010b)
Coarse Fraction Shape Parent Ordinal Appendix. 2; Jorgenson et al. (2010b)
Buried Organics Percentage Parent Quantitative % of profile exposure
Primary Cryostructures Parent Categorical Appendix. 2; Jorgenson et al. (2010b)
Secondary Cryostructures Parent Categorical Appendix. 2; Jorgenson et al. (2010b)
Coarse Fraction Percentage Parent Quantitative § Coarse & Fine Fraction % of profile exposure
Maximum Clast Size Parent Quantitative § Coarse & Fine Fraction cm
Segregation Ice Percentage Parent Quantitative % of profile exposure
Segregation Ice Max. Width Parent Quantitative cm

* excluded from MFA analysis; Pearson's r < .300 in pilot ordination
§ excluded from MFA analysis; information captured within a separate integrator variable (Pearson Correlation)
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Table 3.3. Active (response) and supplemental (explanatory) variables used for statistical analysis, and subsequent grouping by hierarchical 
clustering. Active variables drive ordination results, while supplemental variables are used as overlays on ordination graphs to examine 
correspondence o f that variable with ordination results.__________________________________________________________________________
Name Block Type Class
Vegetation class 
Acidic
Litter Layer Thickness (O i)
Organic Layer Thickness (Oa)
Buried Organics Percentage 
Depth o f Contemporary Soil 
Depth o f Active Layer
Coarse Fraction Percentage (contemporary soil) 
Microtopography
Coarse & Fine Fraction (contemporary soil)
Coarse & Fine Fraction (archaic soil/parent material) 
Ice percentage
Segregation Ice Maximum Lens Width 
Wedge/Intrusive Ice Percentage 
Total Depth o f Profile 
Primary Cryostructures 
Secondary Cryostructures 
Acidity (mean Ecotype pH)
Elevation
Aspect
Topographic Position Index 
Summer Warmth Index 
Slope
Surficial Geology
Bedrock Geology
Glacial Geology
Vegetation Complex
Ecotype
Lithology
Macrotopography
Permafrost Degradation Mode
Lithofacies

Vegetative Categorical Active
Vegetative Categorical Active
Vegetative Quantitative Active
Vegetative Quantitative Active
Vegetative Quantitative Active
Substrate Quantitative Active
Substrate Quantitative Active
Substrate Quantitative Active
Substrate Categorical Active
Substrate Categorical Active
Substrate Categorical Active

Ice Quantitative Active
Ice Quantitative Active
Ice Quantitative Active
Ice Quantitative Active
Ice Categorical Active
Ice Categorical Active
n/a Quantitative Supplemental
n/a Quantitative Supplemental
n/a Quantitative Supplemental
n/a Quantitative Supplemental
n/a Quantitative Supplemental
n/a Quantitative Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
n/a Categorical Supplemental
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Table 3.4. Summary values for field-estimates characterizing soil and permafrost properties in the vicinity o f each permafrost profile exposure, 
presented by grouping from hierarchical clustering o f MFA ordination results._________________________________________________________

Units Segment E1
mean std

E2
mean std

E3
mean std

E4
mean std

Elevation m Site 576 70 633 240 657 167 469 314
Slope O Site 5.7 0.8 5.0 2.5 5.4 1.3 9.4 4.0
Aspect O Site 251 102 216 110 128 109 165 119
Depth o f Active Layer cm Profile 156 55 58 16 82 21 64 23
Total Depth o f Profile cm Profile 432 230 133 45 175 66 382 272
Wedge/Intrusive Ice % Profile 16 16 3 7 0 0 23 25
Litter Layer Thickness (Oi) cm Soil 1.5 0.5 9.3 5.6 6.1 4.6 3.9 2.1
Organic Layer Thickness (Oa) cm Soil 7.3 6.6 20.6 7.8 21.2 8.6 10.9 7.3
Depth o f Contemporary Soil cm Soil 63 31 42 13 57 9 52 33
Coarse Fraction % Soil 15 9 1 3 10 9 9 20
Maximum Clast Size cm Soil 50 18 8 17 42 44 63 118
Segregation Ice % Soil 0 0 3 8 0 0 1 4
Segregation Ice Max.Width mm Soil 0 0 3 7 0 0 7 28
Buried Organics % Parent 3.5 6.2 8.8 6.9 7.0 8.7 6.3 7.3
Coarse Fraction % Parent 32 4 12 16 32 19 32 22
Maximum Clast Size cm Parent 501 332 41 41 88 46 559 483
Segregation Ice % Parent 9 15 29 19 29 16 56 24
Segregation Ice Max.Width mm Parent 75 86 65 107 52 55 947 1017



Table 3.5. Site groupings compared by permafrost degradation mode.

Site Grouping Permafrost Degradation Mode
ALDS Soil Pit RTS TEG Total

E1 0 0 6 0 6
E2a 4 0 1 2 7
E2b 2 1 6 8 17
E3 7 0 2 0 9
E4a 0 0 3 0 3
E4b 0 0 9 1 10

E4c 0 0 2 0 2

Total 13 1 29 11

ALDS = Active Layer Detachment Slide 
RTS = Retrogressive Thaw Slump 
TEG = Thermo-Erosional Gulley
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Table 3.6. Field sites by group with ground coordinates (Geographic decimal degrees, NAD83).
Site N am e Group Subgroup Latitude Longitude
19 Third Twin A E1 67.95835 -156.81985
20 Third Twin B E1 67.95835 -156.81985
21 Third Twin C E1 67.95835 -156.81985
22 G ood Twin E1 67.95929 -156.78624
23 W oodpile E1 67.89927 -156.48472
34 Itkillik-2 E1 68.66615 -149.81720
6 Sushi E2 a 67.86342 -161.48044
9 B ear Patch E2 a 67.73697 -161.42747

25 C otton H ollow E2 a 68.98551 -150.71714
26 V oTK E2 a 68.96278 -150.67086
47 GTH89 E2 a 68.52534 -149.54644
50 I-M inus-2 A E2 a 68.54345 -149.52273
53 TRTK  A E2 a 68.69177 -149.20751
24 Helios E2 b 68.91054 -150.74004
27 V oTK E2 b 68.96067 -150.66970
28 V oTK  Control E2 b 68.96210 -150.66755
31 Ptarm igan B lu ff E2 b 68.87620 -150.54552
32 H orn Lake A E2 b 68.96068 -150.31443
33 H orn Lake B E2 b 68.96068 -150.31443
39 N stk-3u A E2 b 68.87147 -149.57768
40 N stk-3u B E2 b 68.87148 -149.57768
41 G TH88 A E2 b 68.50785 -149.57474
42 G TH88 B E2 b 68.50806 -149.57433
43 I-M inus-1 A E2 b 68.55244 -149.57229
44 I-M inus-1 B E2 b 68.55253 -149.57169
45 I-M inus-1 C E2 b 68.55231 -149.57081
49 G TH89 A E2 b 68.52510 -149.53815
51 I-M inus-2 B E2 b 68.54337 -149.52260
52 GTH86 E2 b 68.61919 -149.42786
54 TRTK  H E2 b 68.69360 -149.20430
5 R em ora E3 67.64853 -161.60562
7 Saddle E3 67.81790 -161.44655
8 Eli E3 67.71618 -161.43026
10 Slopbucket E3 67.92515 -161.41811
14 O ld Ironslides E3 68.27005 -157.68447
16 M afic M onks E3 68.26651 -157.47338
17 Jaded Plover E3 67.98045 -157.07511
18 Bloodslide E3 68.28070 -157.05966
37 G TH88 C E3 68.50267 -149.58873
2 R ainbucket E4 a 67.94305 -162.35649
4 L oon Lake A E4 a 67.92730 -161.96506
12 Q uebec E4 a 68.08735 -158.04102
13 G avia Fam ilia E4 a 68.08324 -158.02727
15 C utler Ice E4 a 67.87649 -157.53053
29 Lobelia A E4 a 68.87938 -150.55647
30 Lobelia B E4 a 68.87938 -150.55647
35 N E-14 E4 a 68.67904 -149.62320
46 I-M inus-1 D E4 a 68.55272 -149.56517
48 G TH89 B E4 a 68.52585 -149.54500
1 W ulik E4 b 67.84770 -163.88159
3 L oon Lake B E4 b 67.92794 -161.97230
11 G randaddy E4 b 68.03481 -159.29156
36 G TH88 D E4 c 68.50268 -149.58901
38 G TH88 E E4 c 68.51121 -149.58395
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A3.1. Field Code Data Sheets used for Field Surveys in Chapter 3. The data sheets presented below are 
formatted for two-sided printing for lamination and and field use. Codes were adapted from methods 
developed for the Ecological Land Survey andLlandcover Map of the Arctic Network by M. Torre 
Jorgenson for Alaska Biological Research and Alaska EcoScience (Jorgenson et al. 2010).

Jorgenson, M. T., J. E. Roth, P. F. Miller, M. J. Macander, M. S. Duffy, A. F. Wells, G. V. Frost, and E. 

R. Pullman (2010), An ecological land survey and landcover map of the Arctic Network. Natural 

Resource Technical Report NPS/ARCN/NRTR—2009/270., edited, National Park Service, Fort 

Collins, Colorado.

Appendix 3. Field Codes for Site Survey in Chapter 3
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CODES USED FOR FIELD SURVEY -  NORTHERN ALASKA 2009-2011

bo

AMBIENT SITE 
CONDITIONS

I . EN STEvQ X M EN TA L P L O T  
D A T A

Lat(ddS3):
Long(dd83):
ElevGPS(m):
Physiography:
A Alpine
U Upland
L Lowland
P Lacustrine (ponded)
R Riverine
C Coastal
Thaw Depth (cm):
C n  oTu rb : Pres ent or Abs ent 
SurfOrg: depth o f top layer (cm) 
CumOrg4Q: total or? in top 40 
DomMineraUO: dominant minerd text, 

in top 40 cm

B Bouldery (md. >15%crse ;>76 mm)
K Blockv (ang.. >76 mm)
G Gravelly (rounded. 2-76 mm)
R Rubblv (angular. >15% rocks)
S Sandy (grSa to 1 Sa; <15% gravel)
L Loamv (CL to SL)
C Clayey (SC to C)
G Organic-rich (20-40 cm org.)
P  Peat (>40 cm organics)
Do m l  ext40i dominant text. (O or M) < 4,0cm 
SurfaceFrag (%):
R ockD ep th^ lS 1̂ ) :  cm 
SoiEPH: to 0.1 units from paste 
S oflE C : uS.'cm from paste 
SampDepthlO1:
SampMeth (Sampling Method):
P  pit
L plug 
A  auger 
C corer 
E bank exposure 
S surface 
M  metal probe 
LM plug + probe 
LA plug + auger
FrostBoil(% cov): %cov. barren active 

fro st boils

S oflCla s s: NRC S taxonomy 2003 
VegClassfL IV ): Viereck Level IV 
EeoType: sequencial coding for 
Physiograph. DomMin40. SoilMoist. 
Chemistry. Veg Structure

n. TERRAIN UNITS

COLLUYIAL DEPOSITS
C Colluvial Deposits
Ch Hillslope Colluvium
Cl Landslide Deposit
Cs Solifluction Deposits
EOLI AN DEPOSITS 
Esa Eolian Active Sand
Esi Eolian Inactive Sand
Essi Eolian Inactive Sand Sheet
FLUVIAL DEPOSITS 
Fu Fluvial undifferentiated

Fd Delta Flo odplain
Fdra Delta Active Channel Deposit
Fdri Delta Inactive Channel Deposit

(High-water Channel)
F doa D elta Active Overbank D epo sit
Fdoi Delta Inactive Overbank Deposit
Fdob Delta Abandoned Overbank Dep
Fpm  M eander Flo odplain
Frnr Meander Channel Dep (riverbed)
Fmrac Meand Course Active Chan. Dep.
Fmrif Meander Fine Inactive Chan D ep.
Fmo Meander Overbank Deposit

(complex)
Fmoa Meander Active Overbank Dep
Fmoi Meander Inactive Overbank Dep
Fmob Mean. Abandoned Overbank Dep
Fb Braid ed Flo o d plain
Fbr Braided Channel Dep(riverbed)
Fbrac Braided Course Active ChanDep.
Fbrif Braided Fine Inactive ChanDep.
Fbo Braided Overbank Dep (complex)
Fboa Braided Active Overbank Deposit
Fboi Braided Inactive Overbank Dep
Fbob Braided Abandoned Ovrbank D sp
Fhl Headwater Lowland Flo odplain
Fto Old Terrace (lower terraces)
Ff Alluvial Fan
GLACIAL AND NON-G.DEPOSITS 
FGp Alluvial Plain Deposits
GLACIAL DEPOSITS 
Gmo Older Moraine

Gmy Younger Moraine
Gto Older Till Sheet
Gty Youneer Till Sheet
GL ACIOFLUYI AL DEPOSITS 
GFo Glaciofluvial Outwash
GFk Kame Deposits
GLACIOLACUSTRINE DEPOSITS 
GL Glaciolacustrine Deposits
L LACUSTRINE DEPOSITS
Ltnu Ice-poor Thaw B as in (young)
Ltnc Ice-poor centers
Ltnm Ice-poor margins
Ltiu Ice-rich Thaw Basin (old)
Ltic Ice rich centers
Ltmi Ice rich margins
Ltip Ice-rich-pins;o3
ORGANIC DEPOSIT S (Org >40cm) 
O f Organic Fens
Ob Bogs

m .  ^ L V C K Q T Q P Q G K A P H Y
C L A S S E S :

C Top, Crest. Summit Or Rid^e
Th Plateau (High Plats)

Sh Shoulder Slope
XP Piugo
Steep Slopes
Sb Bluff or B ank (nuconsolidated)
Sbs Steep blnff r outli facing
Sc Cliff (rocky)
Sbr Riverbahks
Sn UPPER SLOPE (convex, creep)
Sue poncave (water gathering)
Suv Convex (water shedding)

Sup Plan;
SI LOW ER SL OPE (concave)
Sic Concave (water gathering)
Slch Nivationhollows. Snowbanks.
Slv Convex (water shedding)

Sip Plane
T IO E  Slope
D Drain age or Water Track

B BASINS OR DEPRESSIONS
Bd Drained B=i in
Bk Ketde
F FLAT OR F L IT , R FL A IE D
Fn Xonpattemed
Fm Flats margins (transition)
Fc Channel, swale or gut
Fi Interfluv or flat bank
FI Levee
Fb Bar (point lateral, mid-channel)
Fs Crevasse splay
Ft Terrace
Ff Flood Basin (behind levee)

IV . ^ H C R O  T O P O G R A P H Y
C L A S S E S

N  NONPATTERNED 
FROST FEATURES 
Fh Hummocks (mineral cored)
Fr Reticulate 
F f Frost Scars and B oils
Fc Circles (non-sorted, sorted)
F s Stripes (non-sorted. sorted)
Fn Nets (non-sorted. sorted)
Ft Steps (non-sorted. sorted)

Polygons
Pd Disjunct polygon rims
Pill Low-cent.. low-relief, low-density 
Pllh Low-cent.. low-relief. high-density 
Plhh Low-cent.. high-relief: high-density 
Pm Mixed high and low polygons 
Phi High-cent.. low-relief (flat-cent.) 
Phh High-centered, hagh-relief

Therm okarst
Tm Mixed thermokarst pits and 
polygons
Tb Beaded stream 
MOUNDS (ice and peat related)
Mi Ice-cored mounds 
Mpm Peat mounds 
Ms String (strang)

Mg Gelifluctkm lobes (saturated flow)
Mir Ice-shoved ridge
Mid Ice-rafted debris
Mrb Rocks. Blockfields
M nn Rocky Mounds (s oil covered rocks)
Mw Mounds caused by wildlife
Mh Mounds caus ed by humans
Mu Undifferentiated mounds (distinct)
DRAINAGE or EROSION RELATED
Dt Water tracks (non-incised
drainages)
D f Feather pattern (in fens)
Dr Ripples
Dd Flow dunes
D s Scour channels -ridges

EOLIAN RELATED
Es Small dune
Eb Scour depression
X COMPLEXES

V . ^ T G E T A T IQ N  C L A SS E S 

CLASS
(use Alaska Veg. Class; Level IV) 

ECOTYPE VEG STRUCTURE
BP Barrens. Patti ally Vegetated
FA Aquatic F orb
SE Sedge Marsh
GE Grass Marsh
FE ForbMarsh
SM Sedge Meadow
GM Grass Meadow
FM F orb Meadow
TM Tussodi
EM Salt-killed Meadow
DS DwarfShrub
LS Low Shrub
TS Tall Shrub
Ow Open Water

Coding system adopted from methods developed by Jorgenson etal. (2010]



CODES USED FOR FIELD SURVEY -  NORTHERN ALASKA 2009-2011

P E R M A F R O S T  P R O F I L E  BotDepth:an

VI. SOIL LAYER
Lithofariies:
B Block? (angular>3 SO mm.
R Rubbl e (ang, 2-3 S 0mm. >60%)
S Stony (md, >250 mm; >60%)
Gm 'Gravel (md. massive. >60%)
Gfm Gravw/fine, massive. 15-60%
G1 Gravel (2-250 mm): layered
Sm Sands. mas sive
Si Sands, indined
SI Sands, layerd
Soi Sands with org. indined
Sr Sands, rippled
Sor Sands with, org, indined
Sgm S ands w/tr gravel, mas sive
Sgrnt S an ds w/tr gravd, turbated
Om Organic., massive
01 Organ..layered (>10% org)
Olt Organic, layered, turbated 
Oa Organic, limnic
Fm Fines, massive
Fom Fines w/organics. massive 
Fomt F ines with, organics. mas sive, 

turbated
Fgm F ines w/tr grav (tr-15% gr)
FI Fines, layered
Fr Fines, rippled
For Fines with organics,  rippled 
Fern F ines with day. mas sive 
F d  Fines with day. layered
Fa Fines with algae, limnic

Horizon: used NRCS codes 
Master horizon:
O. A. AB, AE, A-B, AE.A'CAC, E, E-A BA 
B, BC. B'C. C.L. W, R_
Horizon suffixes:
a,,b. c, co., dr dir e, f; ff., gr h r i. j .  jj. k, m, 
ma. n, o, p. q, r, s, ss, t, v, w, y, z,

C o u se  fragm ent con ten t: (>2mm) 
Combine content + s s e  fegr,,x&v)

0%,,no crs frag modifier 3 trace to 15 % (grs 3il)
15 to 35 %; no modifier 

v 3 5 to 60%  (cbssil) 
x 60-90 %(grxSiL)

>90%; use crs frg alone (eg. gr)

Crse fragm ent size class (>2mm); largest 
fl flagstones (flat. 150-3SO mm)
cn channery (flat, 2-1.50 mm) 
by boulder ( round, >  600 mm) 
st stone (round, 250 -  600 mm)
cb cobble (round. 75 -  250 mm)
gr gravel (round, 2 — 75 mm)

Fine frac tio n  (<2 m m ) codes: 
s sand
vcos very coarse s and (1-2 mm)
cos coarse sand (0.5—1 mm)
ms medium ssnd (0.25-0.5 mm)
fs fine sand (0.1—.2.5 mm)
vfs very fine sand (0.05-0.1 mm)
lcos loamy coarse sand
Is loamy sand
lfs loamy fine sand
lvfs loamy very fine sand
cosl coarse sandy loam
si s an dy loam
fsl fine sandy loam
vfsl very fine s andy loam
1 loam
sil silt loam
si silt: (0.002-0.05 mm)
sd sandy day loam
d day loam
sid silty day loam
sc sandy day loam
sic silty day
c day (<0.02 mm)

Oasil Organic Silt (A horizon)
Organic S oils

Oi slightlydeconra posedOe i nterme-di ate decoren pos i tion.
Oa highly decomposed
mk mucky peat (>10% OM,< 17% 

fibers

Peat Iypes (Peat):
G Graminoid or sedge 
G f Gramin., fine (<2 mm wide)
Gc Gram, coarse (>2 mm wide)
H  Herbaceous 
A  Allochtonous (drifted)
Mb B ro w  mosses (fens)
M d dicranumPolytrichum 
M f fealhennoss 
Ms Sphag 
M l Live mosses 
W  Woody
S S edimentary (algal, coprogen)

C a arse Fragm ent C ontent: % 
CoarseFragm ent Size: maximum (mm)

Coarse Fragm ent Shape:
Av very angular,
A  angular.
As subangular 
Rs subrounded.
R rounded 
Rw well rounded

Ice Stincture  Vol: % visible

Primary (dominant) and Secondary
(subordinate)lee Struetures:
Combine primary., secondary, and tertiary 
structures (Pnv, Abl, Mww)
Primary- (continuity):
P Pore (;structurdes;sa)
O Organk-matrix 
C Crustal 
V  Vein (vertical)
B Layered, B edded (horizontal)
L Lenticular

R Reticulate
A  Ataxitic (50-95% ke)
M Mas sive (solid) (>10 cm duck)
Secondary (shape or bedding):
For Pore, Organic, Crustal, Vein, 
n Nonvisible
u Uniform
i Irregular
For Lenticular, Bedded 
h Horizontal or planar
w  Wavy
c Curved
x Cros sbedded or indined
For Reticulate: 
t  Trapezoidal (prismatic)
1 Lattice (regular, blocky)
For Ataxitic: 
r Round
b Blocky or Angular
p Platy
For Massive
n Non-stratified, massive
h Sheet, horizontally stratified., 
w  Wedge, vertically stratified, 
v Vertically stratified
i Irregularly stratified
f  Fractured
d Discontinuous or porous
c Columnar
Tertiary (size or clarity):
Ice thickness for Pore, Organic, Crustal 
Vein, Bedded Reticulate ice structures 
v Very fine (<0.5 mm)
f  Fine (0.5 -< 1 mm)
m Medium (1-3 mm)
c Coarse (3-5 mm)
1 Large (5-10 mm)
e Extremdv large (>10 mm)
Soil width h r  ataxitic ice structure 

Same sizes above 
Clarify for mass be ice 
c Clear
s Clear soil indusions
w  Opaque, dean, white,
i Opaque, soil indusions
r  Opaque., rock indusions
o Organic-rich, brown

Leas Thickness: maximum (mm)

T opDepth: cm from surf (exc live moss)

Coding system adopted from methods developed by Jorgenson et al. (2010)
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Chapter 4. Drivers and Estimates of Terrain Suitability for Active Layer Detachment Slides and

Retrogressive Thaw Slumps in the Brooks Range and Foothills of Northwest Alaska 1

4.0 Abstract

Active layer detachment sliding and retrogressive thaw slumping are important modes o f upland 

permafrost degradation and disturbance in permafrost regions, and have been linked with climate 

warming trends, ecosystem impacts, and permafrost carbon release. In the Brooks Range and foothills of 

northwest Alaska, these features are widespread, with distribution linked to multiple landscape properties. 

Inter-related and co-varying terrain properties, including surficial geology, topography, geomorphology, 

vegetation and hydrology, are generally considered key drivers o f permafrost landscape characteristics 

and responses to climate perturbation. However, these inter-relationships as collective drivers of terrain 

suitability for active layer detachment and retrogressive thaw slump processes are poorly understood in 

this region. We empirically tested and refined a hypothetical model o f terrain factors driving active layer 

detachment and retrogressive thaw slump terrain suitability, and used final model results to generate 

synoptic terrain suitability estimates across the study region. Spatial data for terrain properties were 

examined against locations o f 2,492 observed active layer detachments and 805 observed retrogressive 

thaw slumps using structural equation modelling and integrated terrain unit analysis. Factors significant 

to achieving model fit were found to substantially hone and constrain region-wide terrain suitability 

estimates, suggesting that omission o f relevant factors leads to broad overestimation o f terrain suitability. 

Resulting probabilistic maps o f terrain suitability, and a threshold-delineated mask o f suitable terrain, 

were used to quantify and describe landscape settings typical o f these features. 51% of the study region is 

estimated suitable terrain for retrogressive thaw slumps, compared with 35% for active layer detachment 

slides, while 29% of the study region is estimated suitable for both. Results improve current 

understanding o f arctic landscape vulnerability and responses to climate warming, and enhance the 

capability to estimate quantities of permafrost carbon potentially subject to release through these modes 

o f permafrost degradation.

4.1 Introduction

Permafrost degradation is widespread throughout the circumpolar north, occurring by multiple 

modes and mechanisms across diverse landscapes (Serreze et al. 2000, Hinzman et al. 2005, Anisimov 

and Reneva 2006, Jorgenson et al. 2008a). The pan-arctic rate o f permafrost degradation is increasing, 

and permafrost carbon release will likely be a major contributor to atmospheric greenhouse gas

1 Submited to Journal o f  Geophysical Research: Earth Surface. Balser, A. W. and J. B. Jones, March 
2015
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concentrations in coming decades (Schuur et al. 2008, Grosse et al. 2011, Schaefer et al. 2011), yet spatial 

distribution and variability o f these processes are poorly understood. Carbon and nitrogen released from 

frozen substrates may substantially contribute to atmospheric concentrations o f CH4, CO2, and N2O, and 

strongly affect global biogeochemistry and climate (Walter et al. 2006, Walter et al. 2007, Schuur et al.

2008, Desyatkin et al. 2009, Gooseff et al. 2009, Tarnocai et al. 2009, Grosse et al. 2011), with 

biogeochemical pathways and amplitudes for permafrost carbon and nitrogen flux potentially dependent 

upon mode o f permafrost degradation (Abbott et al. 2014, Lamoureux and Lafreniere 2014). Locally, 

active layer detachment sliding and retrogressive thaw slumping mobilize previously frozen substrates, 

organic materials, and nutrients which alter the ecology o f receiving streams (Bowden et al. 2008, Frey 

and McClelland 2009, Gooseff et al. 2009, Rozell 2009, Abbott et al. 2014, Lamoureux and Lafreniere

2014), impact sediment loads and productivity o f streams and rivers (Walker et al. 1987, Walker and 

Hudson 2003, Gooseff et al. 2009, Bowden et al. 2012, Kokelj et al. 2013), and cause ecological and 

hydrobiogeochemical impacts to lake ecosystems (Thompson et al. 2008, Kokelj et al. 2009b, Mesquita et 

al. 2010, Bowden et al. 2012). Vegetation within and adjacent to these features is directly impacted 

through turbation, soil and hydrologic modification, and succession on altered surfaces (Leibman and 

Streletskaya 1997, Ukraintseva and Leibman 2007, Lantz and Kokelj 2008, Balser et al. 2009, Lantz et al.

2009, Bowden et al. 2012). An improved understanding o f the extent and distribution of landscapes 

prone to these modes o f permafrost degradation is needed to better estimate the nature and magnitude of 

ecological impacts both locally and within the global climate system.

Active layer detachment sliding (ALD) and retrogressive thaw slumping (RTS) are important 

permafrost degradation processes in which thaw of ice-rich permafrost on hill slopes or bluffs causes soil 

structural instability and mass-wasting subsidence (Burn and Lewkowicz 1990, Leibman 1995, Leibman 

et al. 2003, Lewkowicz and Harris 2005, Jorgenson et al. 2008a). ALDs occur on hill slopes where shear 

strength o f active layer soils is exceeded by pore water pressures and the destabilized active layer slides 

down slope, exposing the permafrost table below (Figure 4.1; Jorgenson and Osterkamp 2005,

Lewkowicz and Harris 2005, Lewkowicz 2007). Warm weather and precipitation can trigger sliding 

(Leibman et al. 2003, Lamoureux and Lafreniere 2009, Balser et al. 2014), particularly where warm air 

temperature pulses or rainfall accelerate thaw front advance through syngenetic cryofacies containing an 

ice-rich intermediate layer directly beneath the active layer (Shur 1988, French and Shur 2010). Active 

layer detachment sliding is episodic, with features often appearing clustered together in space and time, 

and with active degradation confined to one or two consecutive thawing seasons (Leibman 1995, 

Lamoureux and Lafreniere 2009, Lamoureux and Lafreniere 2014). In some settings, conditions at a prior
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ALD site can redevelop over decades or centuries, with repeat initiation in response to triggering events 

(Leibman 1995, Khomutov 2012).

Retrogressive thaw slump formation can stem from several distinct mechanisms leading to 

exposure o f ice-rich permafrost deposits (including pore, segregation, and massive ice). In coastal and 

riparian settings, lateral thermal erosion o f protective overburden from adjacent bluffs can expose 

permafrost deposits rich with massive ice (Burn and Lewkowicz 1990, Lantuit et al. 2012, Kokelj and 

Jorgenson 2013). Wildfire that removes protective vegetation and organic layers, and promotes thaw front 

advance through the active layer may cause instability and disturbance (Lacelle et al. 2010). Channelized 

flow of surface water over networks of ice wedge polygons can melt ice wedges, creating thermo-erosion 

gullies with progressive downward and lateral thaw into the permafrost (Jorgenson and Osterkamp 2005). 

Intense precipitation may be a particular trigger for thermo-erosion gullies leading to RTS initiation 

(Bowden et al. 2008, Balser et al. 2014). RTSs may develop from any o f these exposures where 

conditions promote continued instability with downward subsidence o f thawed material (Burn and 

Lewkowicz 1990, Jorgenson and Osterkamp 2005, Lacelle et al. 2010, Godin and Fortier 2012, Kokelj 

and Jorgenson 2013). Once initiated, RTSs continue to deepen and expand along the headwall, typically 

forming a steep headwall up to 20 m deep, an arcing headwall scarp, a floor of thawed and flowing debris, 

and a run out o f re-stabilizing deposits (Figure 4.2; Burn and Lewkowicz 1990, Lacelle et al. 2010,

Lantuit et al. 2012, Kokelj and Jorgenson 2013). Headwall retreat rate ranges from several to tens o f 

meters annually, and is correlated with headwall height, ice content, and local climate (Kokelj and 

Jorgenson 2013). Expansion may continue for decades if  thawed debris continues to subside and expose 

the headwall, and if  newly exposed headwall deposits are ice rich and receive sufficient energy for thaw 

and subsidence (Lacelle et al. 2010). RTSs are frequently polycyclic, alternating between decades of 

stabilized, revegetated dormancy, and active degradation when slumps reinitiate within, or adjacent to, 

older slump scars. Re-initiation may be caused by mechanisms described above (Lantuit et al. 2012, 

Kokelj and Jorgenson 2013), with sublimnic talik expansion as a significant additional driver in kettle 

lake basin settings (Kokelj et al. 2009a).

Active layer detachment sliding and retrogressive thaw slumping are widespread in the Brooks 

Range and foothills of northwest Alaska, and in this region are the most prominent o f the nineteen 

described modes o f permafrost degradation for Alaska (Jorgenson et al. 2008b). ALD and RTS features 

are linked with characteristic terrain properties which drive development o f permafrost conditions 

associated with these modes and vulnerability to thaw (Jorgenson and Osterkamp 2005, Shur and 

Jorgenson 2007, Jorgenson et al. 2008a, Balser et al. 2009, Jorgenson et al. 2010a). Terrain properties 

including parent material/surficial geology, topography, geomorphology, vegetation, hydrology, climate,
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and time have been presented as co-varying factors controlling permafrost distribution and active layer 

thickness (Pastick et al. 2014b), permafrost evolution, ecosystem response to climate and fire disturbance 

(Shur and Jorgenson 2007, Jorgenson et al. 2013), active layer depth (Pastick et al. 2014b), and ALD and 

RTS distribution (Jorgenson et al. 2008a, Kokelj and Jorgenson 2013). Positive and negative feedbacks 

among multiple terrain properties have been identified as key determinants and mediators o f landscape 

response to climate warming and disturbance, and to the distribution o f ALD and RTS features 

(Jorgenson et al. 2008a, Kokelj and Jorgenson 2013) with particular influence on thermal properties of 

substrate profiles (Shur and Jorgenson 2007, Xie and Gough 2013). Terrain properties have been usefully 

grouped within a ‘state factor’ framework and applied to models o f soil, permafrost, and vegetation 

development and distribution (Jenny 1941, van Cleve et al. 1991, Jorgenson et al. 2013). These principles 

are generally accepted, however the importance of, and relationships among, individual terrain properties 

and state factors as drivers o f overall terrain suitability for ALD and RTS processes in the Brooks Range 

and foothills o f northwest Alaska are not fully understood and have not been integrated to estimate terrain 

suitability focused on this region.

Inter-relationships among key terrain properties influencing permafrost distribution, 

characteristics, and degradation have been analyzed and modelled using both integrated terrain unit (ITU) 

approaches (Walker 1996, Jorgenson et al. 2010b, Jorgenson et al. 2014), and using statistical analyses of 

complex, causal linkages. Both o f these approaches have advanced our understanding o f terrain property 

relationships, ecological processes, and have contributed to predictive, spatial estimates o f permafrost 

characteristics, distribution, and degradation at scales ranging from field sites o f several square meters, to 

locales o f several dozen square kilometers, up through regional and pan-arctic domains (Jorgenson et al. 

2008b, Walker et al. 2008, Harris et al. 2009, Daanen et al. 2011, Gruber 2012, Khomutov 2012, Pastick 

et al. 2014a). Herein, we tested inter-relationships among specific terrain factors driving ALD and RTS 

distribution at a regional scale in the Brooks Range o f northwest Alaska, and generated estimates of 

terrain suitability for ALD and RTS formation. We specifically chose the term 'suitability' to convey that 

these estimates are not hard spatial predictions o f future feature occurrence, but rather a depiction of 

appropriateness o f terrain. Suitability does not directly infer probability or vulnerability.

4.2 Methods

4.2.1 Study Region

Our study region spanned a gradient o f arctic tundra and shrub landscapes abutting the forested, 

arctic-boreal ecotone, from the central portion o f Alaska's Brooks Range mountains westward through the 

Noatak Basin to the Mission Lowlands, near the Noatak River delta (Figure 4.3). This periglacial
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landscape is within the continuous permafrost zone (Jorgenson et al. 2008b) and is part o f Arctic 

Bioclimate Subzone E (CAVM-Team 2003). The study region extended 63,707 km2, which is slightly 

larger than the state o f West Virginia, and covered Gates o f the Arctic National Park and Preserve and 

Noatak National Preserve. Physiographic provinces include high mountains o f the central Brooks Range, 

through foothills, valley bottoms and the Aniuk Lowland westward, entering the broad, Mission Lowland 

at the arctic/boreal ecotone near the Noatak mouth (Wahrhaftig 1965, Young 1974).

The study region is within the zone o f climate-driven, ecosystem-modified permafrost (Shur and 

Jorgenson 2007), with ground ice conditions suitable for ALD and RTS processes distributed among 

landscapes throughout the region. Conditions differ markedly for alpine and lowland settings, with 

permafrost in the foothills comprising an intermingling o f conditions characteristic o f alpine and lowland 

landscapes. In alpine terrain, upper permafrost in thin soils over near-surface bedrock is primarily 

syngenetic (French and Shur 2010). Segregated ground ice exceeding 30% by volume, comprised mainly 

o f ataxitic and reticulate cryostructures, has been observed in the top meter o f permafrost in these 

locations (Balser et al. 2015). An ice-rich intermediate layer (Shur 1988, Shur et al. 2005), with an ice 

layer of several centimeters at the interface o f the active layer and permafrost table may also be present 

across hill slopes (Balser et al. 2015). Episodes o f solifluction and colluvial re-deposition contribute to 

successive syngenetic permafrost development above buried soil surfaces, thickening both overall soil 

and permafrost through time (Balser et al. 2015). Regional-scale ground ice estimates for these alpine 

areas range from low (<10%) to moderate (10%-40%) (Jorgenson et al. 2008b).

At low elevations, permafrost o f glacial and glaciolacustrine origin includes extensive deposits of 

deep, ice-rich, syngenetic and epigenetic permafrost, with massive ice deposits (Balser et al. 2015). In the 

Mission and Aniuk Lowland, regional ground ice estimates range from moderate (10%-40%) to high 

(>40%) and include broad areas o f active Holocene and inactive Pleistocene ice wedges (Young 1974, 

Jorgenson et al. 2008b, Balser et al. 2015) with deposits o f relict glacial ice scattered throughout 

(Hamilton 2009, 2010). Syngenetic cryofacies at the top o f the permafrost table have been observed in 

these lowlands, often within a loess cap up to several decimeters thick (Balser et al. 2015). Upper 

permafrost conditions may be highly variable, corresponding with surficial geology, landforms, 

vegetation, and glacial history (Hamilton 2009, 2010, Hamilton and Labay 2011, Balser et al. 2015).

There is no permafrost borehole monitoring within the study region, but adjacent boreholes to the north 

and south report average annual temperatures o f -5°C and 1°C respectively, while mean annual air 

temperature estimates for the study region are -7°C to -12°C (Jorgenson et al. 2008b).
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Land cover comprises a broad suite o f vegetation in various landscape settings including arctic and 

alpine tundra, shrublands, and lowland boreal forest along the arctic-boreal ecotone (Young 1974,

Viereck et al. 1992, Parker 2006, Jorgenson et al. 2010b). Thirty-six ecotypes have been identified and 

mapped within our study region (Jorgenson et al. 2010b), with more than 50% of the land surface covered 

by shrub-graminoid ecotypes. Alpine and arctic dwarf shrub tundras are most prevalent at the highest 

elevations, and within north-draining watersheds, while low shrub, tall shrub, and tussock tundras are 

common in mid-elevation valleys and throughout the Noatak Basin. Lowland valleys within the 

southwest portion and along the southern boundary o f the study region are part o f the arctic-boreal 

ecotone, and include open and closed stands o f conifer and broadleaf species along floodplains (Young 

1974, Viereck et al. 1992, Parker 2006, Jorgenson et al. 2010b).

Generally, upland hill slopes with an ice-rich intermediate layer may be more favorable for active 

layer detachment sliding, while lowlands o f glacial and glaciolacustrine origin offer prime settings for 

retrogressive thaw slump development, but these relationships are not obligate. RTSs are widespread 

along lowland lake margins, river banks, and bluffs. However, they can also occur in upland settings, 

often where an ALD has exposed the upper permafrost, and prior, episodic colluviation has accumulated a 

deeper layer o f ice-rich, syngenetic, upper permafrost vulnerable to retrogressive thaw slumping 

(Hamilton 2009, Swanson 2010, Swanson and Hill 2010, Balser et al. 2014). ALDs are most frequently 

found on broad, upland hill slopes, but have also been observed in lowlands, typically adjacent to river 

bluffs on mild slopes where an ice-rich intermediate layer has developed (Balser et al. 2009, Gooseff et al. 

2009, Swanson 2010, Balser et al. 2014).

Conditions throughout the study region represent a broad range o f typical low-arctic landscapes. 

Alpine, foothill, and valley bottom settings include many characteristic ecotypes o f the North American 

low arctic, a suite o f periglacial landforms, diverse lithologies, and a broad continuum of permafrost 

characteristics and cryofacies. Our study deliberately included this breadth o f conditions to represent the 

diversity o f landscapes within the region.

4.2.2 Analysis Overview

A conceptual diagram (Figure 4.4) depicts our initial, general hypothesis for inter-relationships 

among landscape characteristics o f terrain suitability for ALD and RTS development in the central and 

western Brooks Range o f northern Alaska. This diagram directed our approach and was iteratively tested 

and refined, with final terrain suitability estimates for the study region derived from the results.
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Terrain suitability analysis and estimation involved four primary stages: 1) collection and 

preparation o f input data, 2) integrated terrain unit (ITU) analysis, 3) structural equation modeling (SEM) 

analysis, and 4) terrain suitability estimation combining ITU and SEM results. Input data included a 

geodatabase of ALD and RTS locations (Table 4.1 and Appendix 5), and spatial data layers o f categorical 

and continuous data covering the entire study region (Table 4.1). The study region boundary was defined 

by the geographic intersection o f spatial data available for the region (Table 4.1 and Figure 4.3). All 

spatial data were clipped to the study region boundary, and landscape metrics were derived from 

continuous data (Table 4.2).

ITU and SEM analyses identified drivers, and relationships among drivers for terrain suitability, 

and were conducted separately for ALD and RTS features (Figure 4.5). ITU and SEM results were 

combined to produce a final dataset of estimated terrain suitability for each o f the two feature types. 

Terrain suitability threshold values were calculated for each type o f feature, and used to delineate areas of 

suitable and highly suitable terrain, by which landscape properties were summarized and tabulated from 

spatial data (Tables 1 and 2).

4.2.3. Steps for Terrain Suitability Analysis and Estimation

4.2.3.1 Collection and Preparation o f Input Data

Feature Locations

Aircraft-supported field campaigns and airphoto surveys in 2006, 2007, 2010, and 2011 were used 

to map active layer detachment slides and retrogressive thaw slumps in the Noatak Basin. Initial fixed- 

wing surveys were used to identify the general distribution of RTSs and ALDs within the study area, and 

subsequent helicopter-supported surveys were used to mark the location o f features in the field by GPS. 

Vertical aerial photography for areas with dense feature distributions was acquired using a Nikon D2X 

digital camera mounted beneath a small, fixed-wing aircraft. Airphoto lines were digitally stitched 

together, then manually georectified against pan-sharpened Landsat TM satellite ortho-imagery (Balser et 

al. 2009). Each feature location was manually marked within airphoto coverage. Our initial geodatabase 

of ALDs and RTSs in the Noatak Basin was expanded and augmented through a subsequent National 

Park Service survey, which included both Gates of the Arctic National Park and Preserve and Noatak 

National Preserve, using high-resolution satellite imagery to census these features throughout both park 

units (Figure 4.6; Balser et al. 2009, Swanson and Hill 2010). Randomly assigned control point locations 

were generated throughout the study region to represent areas without RTS or ALD features. Randomly 

generated points that fell within 200 m of mapped features were considered co-located with those features 

and were excluded. Separate datasets were constructed for ALDs and RTSs respectively, with each

101



dataset containing mapped feature locations and an equal number of randomly generated control point 

locations.

Landscape Properties and Metrics

We used thematic spatial datasets covering the entire study region that included both categorical 

and continuous data, deriving additional analysis variables from the continuous data (Table 4.1). 

Categorical data used in terrain unit analysis included lithology, surficial (glacial) geology, and ecotype. 

Lithology data were drawn from mapped eco-subsections for the region, following the National 

Hierarchical Framework for Ecological Units (ECOMAP 1993, Cleland et al. 1997, Jorgenson et al.

2001), and were grouped as either ‘carbonate’ or non-carbonate’ for analysis. Surficial geology was 

mapped at a scale o f 1:250,000 from compiled reports and field surveys conducted throughout the study 

region over the course o f several decades (Hamilton 2010, Hamilton and Labay 2011). For analysis, 

surficial geologic units were summarized by surficial deposit type (e.g. glacial drift, colluvium, alluvium) 

as presented by the authors. Ecotypes were mapped with Landsat ETM+ imagery from mapping 

algorithms trained and validated using extensive field data from the study region (Jorgenson et al. 2010b). 

Grid cells were resampled from their original 30 m cell size to 60 m cell size using the nearest neighbor 

method, but ecotype data were not thematically summarized for our analyses.

Two sources o f continuous data were used to derive additional metrics used in SEM analysis (Table 

4.1): 1) The National Elevation Dataset (NED) distributed by the U.S. Geological Survey (Gesch et al.

2002), and 2) monthly normalized difference vegetation index (NDVI) values, calculated from Moderate- 

resolution Imaging Spectrometer data by the U.S. Geological Survey for the 2000-2013 time span 

(Jenkerson et al. 2010). NED elevation was directly extracted, and geomorphologic, topographic and 

hydrologic derivatives were calculated from the NED (Table 4.2). Monthly NDVI data from 2000-2013 

were analyzed first on an annual basis to extract peak growing season NDVI values for each pixel in the 

study region for each year. Next, these peak annual NDVI datasets were statistically summarized across 

all years (excluding 2000, which had incomplete data) to produce decadal values for peak growing season 

NDVI (Table 4.2). Variables were derived using ERDAS Imagine 2011, and using ArcGIS 9.3 and 10.1 

software, including the “Geomorphometric and Gradient Metrics Toolbox” (Cushman et al. 2010, Evans 

et al. 2013). Values for derived variables were standardized prior to inclusion in SEM runs.

4.2.3.2 Integrated Terrain Unit Analysis

Integrated terrain unit analyses were conducted using ArcGIS 9.3 for ALD and RTS feature 

distribution among landscape units within lithology, ecotype and glacial geology data layers (Figure 4.5). 

Values for each landscape unit within each data layer were extracted using ALD and RTS locations from
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the geodatabase, then tabulated to examine feature distribution among landscape units. Percentage 

feature distribution across units was compared with areal percentages o f units within the study region, and 

a differential between them was calculated for each unit. Differentials were calculated as the percentage 

feature distribution for each unit divided by the study area percentage o f that unit. These differentials 

informed weights assigned to each landscape unit within each data layer for ALD and RTS features, 

respectively. Landscape unit types consisting o f exposed bedrock, open water, and snow from the 

ecotype layer, and active glacier/snowfield from the glacial geology layer, were considered obligate 

unsuitable for ALD and RTS features, and were automatically weighted to 0. Unit weights for ecotype, 

surficial geology and lithology were then combined with the result scaled 0 to 100, producing an ITU- 

derived terrain suitability estimate layer for ALD features and a separate ITU-derived terrain suitability 

estimate layer for RTS features throughout the study region.

4.2.3.3 Structural Equation Modelling

SEM was used to test and refine our hypothesized conceptual model o f inter-relationships 

influencing terrain suitability, and incorporated both observed and latent variables (Grace 2006). In our 

models, all exogenous variables (those not a product o f processes represented in the model) were 

observed, all endogenous variables (those influenced by processes within the model) were latent, and no 

composite variables were used.

Analyses were conducted separately for ALD and RTS datasets using the Lavaan 0.5-16 package 

written for R statistical software (Rosseel 2012). All variables used in SEM analyses were assessed 

against each other prior to SEM runs using Pearson correlation coefficients, calculated from all values 

throughout the study region (Table 4.3 and Figure 4.3). Pairs of variables with Pearson correlation 

coefficients greater than 0.7 were not used simultaneously in any o f the analysis iterations. Each variable 

was also examined for statistical distribution (normal vs. non-normal) to determine the appropriate 

statistical estimator for analysis.

Numeric data for SEM runs (Tables 1 and 2) were extracted using locations in the feature and 

control point datasets. Feature and control locations were used as response variables, where features were 

assigned a value o f 100, while control locations were assigned 0. The weighted least squares estimator, 

also known as asymptotically distribution free, was chosen as the estimator for all analyses in Lavaan due 

to non-normal distribution o f several numeric variables. Our response variable was identified as 

‘ordered’, and the orthogonal option was set to ‘false’, as no latent variables were exogenous within our 

models. No prior weighting o f variables was used.
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SEM runs testing ALD and RTS terrain suitability drivers used our hypothesized conceptual model 

(Figure 4.4) as the starting structural equation model. The model was iteratively refined using SEM fit 

metrics, and R2 values generated for each variable (Joreskog and Sorbom 1996, Grace 2006, Hooper et al. 

2008). Each model run was evaluated using recommended ‘good-fit’ thresholds for four fit metrics: 1) 

compound fit index, 2) Tucker-Lewis fit index, 3) root mean square error of approximation and 4) 

standardized root mean square residual (Hooper et al. 2008). Variables were placed within the model 

based upon their group (Figure 4.4 and Table 4.2). Model diagram structure and selection o f variables 

used were refined through subsequent runs until all four fit metrics indicated good model fit, with the best 

fitting models used as the final models for ALDs and RTSs respectively. Final models were bootstrapped 

to confirm good fit, and to generate multi-run, averaged coefficients and intercepts for each exogenous 

and latent variable. Coefficients and intercepts were plugged into the final model diagram for each 

feature type, and run within ArcGIS 9.3 with data for the entire study region to produce SEM-based 

terrain suitability estimate layers, scaled 0 to 100, for ALD and RTS features separately.

4.2.3.4 Final Terrain Suitability Estimates (combined ITU and SEM results)

Terrain suitability estimates derived from independent ITU and SEM results were combined within 

ArcGIS 9.3 to create final terrain suitability estimates for ALD and RTS features (Figure 4.5). For each 

feature type, ITU-derived estimates were multiplied by SEM-derived estimates, and the result scaled 0 to 

100. Numeric thresholds were used to delineate spatial masks o f suitable and highly suitable terrain for 

each feature type, enabling calculations of areal extent and comparative summaries o f landscape 

properties within suitable and highly suitable terrain for each feature type (Figure 4.5). Final terrain 

suitability estimate values for each feature type were extracted using the ALD and the RTS point location 

datasets. Mean and standard deviation o f terrain suitability values were calculated for the extracted ALD 

and RTS feature locations. ‘Suitable terrain’ was defined as all terrain with values greater than or equal 

to one standard deviation below the mean value among feature locations, per feature type. ‘Highly 

suitable terrain’ was defined as terrain with values greater than or equal to the mean value for each feature 

type .

Suitable and highly suitable terrain areas were extracted as new spatial data layers from the final 

ALD and RTS terrain suitability datasets to characterize suitable landscapes (Figure 4.5). Areal extent for 

each suitability level was calculated, and the suitability data layers were used to clip thematic, spatial 

datasets used in the prior analyses, and also to clip ancillary datasets o f soil carbon estimates (Hugelius et 

al. 2013) and decadal temperatures (SNAP 2014). Highly suitable terrain was extracted as a subset of 

suitable terrain, and did not represent additional area.
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4.3 Results

4.3.1 Final Terrain Suitability Estimates

Terrain suitability estimates for feature formation in the study region (Figure 4.7) include large 

areas o f terrain generally unsuited to either retrogressive thaw slump or active layer detachment 

processes, a significant area highly suited for both types o f feature, and a continuum in between. Roughly 

half o f the study region (51%) was estimated suitable for retrogressive thaw slumps, 35% was estimated 

suitable for active layer detachment slides, and 29% was estimated suitable for both, demonstrating 

significant overlap between RTS and ALD terrain suitability (Table 4.4 and Figure 4.8). Estimated area 

o f highly suitable terrain was substantially lower than suitable terrain, at 24% for RTS features and 17% 

for ALD features (Table 4.4 and Figure 4.8), with 9% spatial overlap between highly suitable RTS and 

ALD terrain (Figures 8 and 9). ITU analyses produced slightly larger estimates o f suitable terrain area 

than SEM analyses (Table 4.4 and Figure 4.8). The final model, combining ITU and SEM results, 

estimated less suitable terrain area than either ITU or SEM alone (Table 4.4 and Figure 4.8), with partial 

spatial correspondence between ITU-derived and SEM-derived estimated areas. Landscape properties 

related to vegetation, topography, hydrology, geomorphology, soil, and air temperature were correlated 

with observed ALD and RTS features, and also with estimated suitable terrain.

4.3.2 Active Layer Detachment Slide & Retrogressive Thaw Slump Terrain Descriptions 

Active layer detachment slides and retrogressive thaw slumps both occur across gradients of

landscape conditions, yet some typical settings can be identified for each. In uplands, the most suitable 

ALD terrain frequently occurs across broad, generally smooth hill slopes, and is sometimes concentrated 

along upper toe slopes beneath exposures o f non-carbonate bedrock on rounded foothills (Figure 4.10), 

where ALD features frequently appear in clusters. Soils are typically thin, over near-surface bedrock, and 

in many places are subject to periodic colluvial re-deposition. With increasing distance downhill from the 

toe slope, ALD suitability remains high or mildly attenuates, while RTS suitability typically rises as 

colluvial deposits containing ice-rich, syngenetic permafrost become deeper, and hill slopes include more 

geomorphic variability. Toward valley bottoms, especially in larger valleys, ALD suitability attenuates 

more sharply as RTS suitability rises. This often reflects rougher geomorphological landscape texture, as 

well as shifts toward glacial drift and ice-contact features near valley bottoms, where ice-wedges and 

relict glacial ice may contribute to the ground-ice content of permafrost, where kettle topography often 

develops, and where soil physical properties are more variable. Both ALD and RTS suitability may drop 

markedly in upland drainage bottoms, where deposits o f modern alluvium, fans, glacial outwash, and 

aeolian sands may include minimal topographic and geomorphic variability, and / or offer poor conditions 

for development o f ice-rich cryofacies. As a general toposequence, vegetation grades from moderately
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well-vegetated ericaceous and dryas dwarf shrub-graminoid tundras, through shrub-tussock and low shrub 

tundra on lower hillslopes, with riparian tall shrubs in valley bottoms. Small inclusions o f wet-sedge 

meadow, coinciding with diffuse-flow watertracks, may be observed within larger patches of tundra 

ecotypes, primarily on mid and upper hillslopes, and have been noted as sites of ALD feature initiation 

(Balser et al. 2009).

In lowland settings, ALD terrain suitability is highest on mild slopes on upper portions o f rolling 

terrain, frequently underlain by glacial drift with a loess cap, where syngenetic cryostructures and an ice- 

rich intermediate layer may be prevalent near the permafrost table (Figure 4.11). Predominant ecotypes 

may include dwarf shrub tundra on hilltops flanked by low-shrub and shrub-tussock tundra on descending 

slopes. Inclusions o f wet-sedge meadow within diffuse flow watertracks are rare or absent from these 

settings, though channelized-flow watertracks may be common. ALD suitability typically attenuates 

rapidly moving away downslope, though small patches o f ALD terrain may sometimes be found near 

bluff tops. Suitable RTS terrain is widespread in lowland settings under a variety o f conditions. On 

rolling, higher elevation terrain, patches o f highly suitable RTS terrain appear where geomorphic features 

have begun forming from adjacent hydrothermal erosion, around margins o f dispersed lakes, and in 

patches on mid-hillslopes. These high suitability terrain patches frequently occur atop glacial drift or 

lacustrine and glaciolacustrine surfaces. RTS suitability generally increases toward lower slopes and 

valley bottoms, where deposits may include glacial drift, lacustrine and glaciolacustrine surfaces, ice- 

contact features, and occasionally where inactive alluvial surfaces sit atop these deposits. Landscape 

rugosity is generally high in these settings compared with suitable terrain elsewhere in the study region, 

and is often the result o f kettle-forming processes. Predominant ecotypes include low-shrub and shrub- 

tussock tundras, though more ecotype variability is evident within suitable RTS terrain in these settings, 

with isolated pockets of white spruce forest included in suitable terrain primarily in the Mission Lowland 

in southwest portion o f the study region. Deep, ice-rich permafrost may be both extensive and 

heterogeneous in these areas, comprised o f relict glacial ice, Pleistocene and Holocene ice-wedges, 

archaic syngenetic and epigenetic ice in lacustrine and glaciolacustrine sediments, cave ice, pore ice, and 

syngenetic cryofacies associated with contemporary soils and loess caps.

4.3.3 Integrated Terrain Unit Analysis Results

Distributions o f ALD and RTS features within ecotype, glacial geology, and lithology units were 

disproportional to the areas o f those landscape units within the study region (Table 4.5). Carbonate 

lithologies rarely contained features (< 2% of ALD features and < 1% of RTS features), though carbonate 

lithologies comprise > 10% o f the landscape. More than 95% of ALD features occurred on only three
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surficial geology units: thin soils over near-surface bedrock, colluvium, and glacial drift. O f these, 

occurrences within colluvium were the most disproportionate, containing 20% of ALD occurrences, while 

comprising only 7% of land area in the study region (Table 4.5). Disproportion o f RTS feature 

distribution by glacial geology was slightly less pronounced, with 97% of features occurring across five 

glacial geology units: alluvium, thin soils over near-surface bedrock, colluvium, glacial drift, and 

lacustrine/glaciolacustrine. O f these, glacial drift was most disproportionate, hosting 46% of RTS 

features but comprising 16% of the land area in the study region (Table 4.5). ALD and RTS features 

were preferentially distributed among certain ecotypes as well, with the majority o f both feature types 

occurring within three shrub tundra/shrub-tussock tundra ecotypes (Table 4.5). However, ALD and RTS 

features were more broadly distributed among ecotypes than among glacial geology or lithology units.

4.3.4 Structural Equation Modeling Results

Final SEM models incorporated geomorphologic, topographic, and vegetative factors for both 

ALD and RTS features. The model representing the original hypothesis fell short o f recommended good 

fit values for both ALD and RTS analyses by all four fit measures used. However, refined, final models 

for both feature types were estimated to have good fit by all four SEM fit metrics (Table 4.6). For ALD 

features, the final model with best fit (Figure 4.12) incorporated the decadal average o f inter-annual peak 

NDVI, the inter-annual variability o f peak NDVI, heat load index, slope, slope position, topographic 

position index, and surface curvature. The strongest influences on ALD model fit were vegetative and 

topographic (Table 4.7 and Figure 4.12). The final model for RTS features (Figure 4.13) incorporated 

variability o f inter-annual peak NDVI, topographic position index, dissection, compound topographic 

index, slope position and heat load index, where geomorphologic and topographic factors exerted greatest 

influence on the model (Table 4.7). This model also included a latent variable for upper permafrost and 

active layer conditions, comprised o f both geomorphologic and vegetative factors. Within the final SEM 

results, the influence of each individual variable, and of each group of variables, differed appreciably. 

However, iterative testing revealed that good model fit could not be achieved for either ALD or RTS 

features in absence o f any one o f the variable groups o f vegetation, topography or geomorphology; each 

was necessary in some form to support an explanatory relationship in the model.

4.3.5 Terrain Suitability Values and Thresholds

All terrain suitability estimates (ITU, SEM, and combined) included overlapping values between 

observed features and control point locations, with values at feature locations skewed toward higher 

suitability and with control point locations skewed toward low suitability. ITU-derived terrain suitability 

included an asymptotal distribution for the lowest suitability values o f control point locations (Figure
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4.14), mainly corresponding with areas masked as obligate unsuitable, while suitability values at ALD 

and RTS feature locations were normally distributed, and mainly within the highest 50% of estimated 

values (Figure 4.14). Estimated terrain suitability derived from SEM results was normally distributed for 

both feature locations and for control points, with feature locations skewed toward higher suitability 

values (Figure 4.14). Final, combined, ITU and SEM terrain suitability estimates produced clear 

separation between feature location and control point values, with ALD features showing especially stark 

separation from control point locations (Figure 4.14), where both ITU and SEM analyses contributed to 

separation from control for both ALD and RTS features (Figure 4.14). Thresholds for suitable and highly 

suitable terrain, as determined from the mean and standard deviation o f values at observed feature 

locations, include overlap with values at control point locations (Figure 4.14).

4.3.6 Landscape Properties by Final Terrain Suitability

Values for individual landscape properties within suitable and highly suitable ALD and RTS 

estimated terrain, compared with the study region, ranged from very different to very similar, though no 

single factor emerged as dominant. Most numeric landscape values for both suitable ALD and suitable 

RTS terrain were consistently different from the mean value for the study region, but still within one 

standard deviation o f the mean value for the study region (Table 4.8), and were generally comparable 

with values extracted from observed feature locations (Table 4.9). The suitable terrain area within 

individual landscape units was generally much less than the total area o f those individual landscape units 

in the study region, with differing results between suitable ALD and RTS terrain. For example, thin soils 

over near-surface bedrock contained the single largest percentage o f suitable terrain for both ALDs and 

RTSs, yet less than half o f the total area of that unit within the study region was suitable for either feature 

type (Figure 4.15). Most of the total area o f the upland dwarf birch tussock shrub ecotype was suitable 

for RTS features, but less than half of it was suitable for ALD features (Figure 4.15).

Suitable ALD terrain and suitable RTS terrain display separate trends toward certain combinations 

o f landscape properties based on numeric variables representing geomorphology, topography and 

vegetation. Suitable ALD terrain (Table 4.8) tended toward mid-lower reaches o f watersheds (slope 

position < 0), on well-vegetated surfaces with minimal inter-annual variability in peak growing-season 

greenness (inter-annual average peak NDVI > 0.7, inter-annual standard deviation o f peak NDVI < 0.05), 

just below mid-hillslope locations (topographic position index just below 0.5), on very slightly concave 

surfaces (surface curvature just below 0) (McNab 1993).

Suitable RTS terrain (Table 4.8) occurred primarily in lower portions o f watersheds (slope position 

< 0), on well-vegetated surfaces with minimal inter-annual variability in peak growing-season greenness

108



(inter-annual average peak NDVI > 0.7, inter-annual standard deviation o f peak NDVI < 0.05), in lower 

portions o f hillslope catenas with high soil wetness (high compound topographic index values), just below 

mid-hillslope locations (topographic position index at or just below 0.5), and at neither the top nor bottom 

of geomorphological features (dissection at or just below 0.5). Dissection and topographic position index 

(Table 4.2) shared a moderately strong, positive Pearson correlation coefficient across the entire study 

region (0.70; Table 4.3), but this positive correlation graded steadily downward through suitable RTS 

terrain (0.62), and highly suitable RTS terrain (0.58), to weakly negative when calculated only at RTS 

feature locations (-0.24).

4.4 Discussion

Both observed features and terrain suitability for active layer detachment slides and retrogressive 

thaw slumps are distributed across landscape gradients defined by multiple landscape properties. While 

specific terrain factors, and groups o f factors, exerted varying influence on SEM results, no single 

landscape property was revealed as an obligate, or even dominant, positive indicator o f suitable terrain. 

Landscape properties describing geomorphology, vegetation, topography, surficial geology and lithology 

all correlate with observed feature distribution (Balser et al. 2009), and are supported as drivers of 

suitable terrain conditions by these results. Adjacent regions in Alaska within different bioclimate 

subzones (Walker et al. 2005) exhibit similarly complex inter-relationships among multiple landscape 

properties and upper permafrost conditions (Jorgenson et al. 2014, Pastick et al. 2014a), as do landscapes 

elsewhere in the low arctic (Postoev et al. 2008, Khomutov 2012), though the nature o f relationships 

varies among regions.

While meteorological and disturbance trigger events for ALD and RTS formation are not directly 

addressed in this study, they are relevant to the interpretation o f our results, as the intensity o f trigger 

events greatly influences feature initiation (Burn and Lewkowicz 1990, Leibman 1995, Lewkowicz and 

Harris 2005, Atkinson et al. 2006, Lamoureux and Lafreniere 2009, Balser et al. 2014). Trigger events 

vary in mode, duration and intensity, such that ALD and RTS formation is a function o f both relative 

terrain suitability and strength o f perturbation. Consequently, terrain suitability may best be considered 

on a continuous, relative basis, with threshold delineators beneficially employed for summary and 

comparative purposes, but not as means for definitive, positive designation as ‘suitable’. In the simplest 

terms, suitable terrain is comprised o f three, basic conditions enabling thaw, melting and subsidence 

associated with ALD and RTS features: 1) adequate ground-ice concentration and distribution, 2) 

adequate topographic or geomorphic gradient, and, 3) adequate surface and upper-soil thermal properties.
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A fourth condition, an adequate meteorological or disturbance trigger, is required for actual feature 

initiation.

‘Adequacy’ o f any one o f the conditions depends on the context o f the others, and it appears likely, 

based on our cumulative results, that a suite of individual factors are co-contributing and / or mutually 

compensating as drivers of suitable terrain conditions. For example, within a particular surficial geology 

and ecotype, terrain with lower slope but higher ground ice percentage might be equally suitable to terrain 

with higher slope but lower ground ice percentage for RTS development. Adequacy o f ground ice 

percentage in this example, then, is really a function o f cumulative conditions. While this simplistic 

example illustrates the concept, our results strongly suggest that complex interactions, rather than simple 

pair-wise correlations, drive suitability.

Due to the complexity o f interactions, considering all relevant factors in concert serves to improve 

and constrain spatial estimates of suitable terrain. The existence of co-contributing and mutually- 

compensating factors as terrain suitability drivers is supported by several aspects o f our results. If 

interactions among factors were lacking, we might expect to see narrow ranges o f values for each relevant 

factor describing suitable terrain. Instead, the distributions o f observed features and suitable terrain were 

not associated with narrow value ranges for individual landscape variables. While the ranges of values 

we observed do tend to show consistent differences compared with the overall study region, they also 

tend to remain well within the standard deviations o f study region values. However, suitable terrain area 

is only a subset o f total area within any o f these individual value ranges, and areal coverage o f suitable 

terrain is substantially lower within the final, combined estimates, compared with ITU and SEM estimates 

separately. This suggests that: 1) while individual landscape properties may strongly contribute to 

suitability, relevant factors should be considered in concert for more accurate results, 2) suitability may 

range from low to high within any individual categorical landscape unit, and 3) there are no defining 

numeric values from individual landscape variables driving terrain suitability; values indicating suitability 

vary spatially depending on the context o f other relevant variables.

We therefore expect that our estimates o f terrain suitability would be further refined by the 

inclusion of both: a) additional factors, and b) more accurate and precise data for the study region.

Several factors o f known importance to permafrost development were not available as continuous data 

layers for the study region, including ground ice percentage, soil physical properties (e.g. percentages by 

clast size), and soil organic layer thickness. Some o f these exist as estimated average values within other 

categorical datasets (Jorgenson et al. 2008b, Jorgenson et al. 2010b), but these were excluded from our 

analyses either because they were mapped at coarser scales than were appropriate for this work, or
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because the value ranges reported were deemed too broad to be meaningful within these analyses. We 

also expect that a higher precision DEM would better resolve fine-scale geomorphology and increase the 

precision of terrain suitability estimates.

Results support a state factor framework (Jenny 1941, van Cleve et al. 1991) for assessing ALD and 

RTS terrain suitability at broad scales, at least within regions dominated by climate-driven, ecosystem- 

modified permafrost (Shur and Jorgenson 2007) to help ensure inclusion o f relevant variables. In our 

models, each o f three state factors (represented by groups o f variables in our analyses: vegetation, parent 

material, and topography) contributed key explanatory information, and served to substantially hone 

terrain suitability estimates. The two other state factors, climate and time, were not explicitly included 

within the model. However, both were included implicitly, as feature occurrence itself within the study 

region indicates both climate drivers and time for permafrost terrain development. In a broad context of 

climate and time, expanses o f suitable terrain might be considered a moving target; these areas have likely 

been shifting geographically over decadal to millennial timescales since the Pleistocene in response to 

shifting climate (ACIA 2005, Shur and Jorgenson 2007, Rowland et al. 2010, Aalto et al. 2014).

Given that shifting climate does not translate to wholesale geographic shifts o f ecosystems in 

precise analog form, but rather involves adjustments in ecosystem structure and function (Callaghan et al. 

2004, Jorgenson et al. 2010a), the relative importance o f each contributing factor, and the particular 

factors best defining favorable conditions likely adjust through space and time as well. Also, suitable 

terrain within the study region may exist along a gradient between landscapes in warmer versus colder 

settings, possibly reflecting time and climate within an overall warming scenario. The warmest areas of 

the study region, defined by annual and seasonal air temperatures, may be approaching climate conditions 

warmer than what is most associated with current ALD and RTS feature distributions and may primarily 

represent suitable terrain of the past and present, while colder settings may become the focus o f increased 

feature frequency in a future warming scenario.

As with trigger events for ALD and RTS formation, which vary in duration and intensity, terrain 

suitability in low arctic regions may best be considered on a continuous, relative basis, with value- 

threshold delineators used for comparative and summary purposes, but not as means for definitive, 

positive classification as ‘suitable’. Under this rubric, we posit that as much as 57% of the terrestrial 

landscape within the study region may be termed ‘suitable’ terrain for either ALD or RTS feature 

development, and as much as 29% may be ‘suitable’ for both, but that these estimates may vary 

depending upon the desired degree of sensitivity in interpretation. We further expect that future inclusion 

o f measured or modelled values for additional factors, especially ground ice percentage, physical soil
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characteristics, and organic layer properties, would likely refine analysis results to make these estimates 

more conservative, while higher resolution, higher accuracy continuous source data would add precision 

to analytical results.

4.5 Conclusions

ALD and RTS terrain suitability is determined by gradients defined across multiple landscape 

properties, where no single factor or group o f factors, in isolation, emerges as a definitive indicator of 

suitable terrain. A suite o f factors with co-contributing and mutually compensating interactions drive 

terrain suitability in the study region, such that modelling relevant factors in concert produces better 

estmates than analyzing individual factors and aggregating the results. Each relevant terrain factor serves 

to constrain suitability estimates; exclusion o f relevant terrain factors from models generally causes 

overestimation o f the spatial extent o f suitable terrain. At least 32%, and up to 57% of the study region 

may be suitable terrain for either ALD or RTS formation, depending on the sensitivity o f the chosen 

suitability threshold and the intensity o f future trigger events. Similar proportions o f suitable terrain may 

prevail in other low arctic regions. However, accurate estimates for other locales would likely require 

analogous, empirically modelled results to account for region-specific variability among terrain, 

vegetation and upper permafrost relationships. Modelled terrain suitability estimates enable better spatial 

quantification o f permafrost degradation impacts, including vulnerable soil carbon stocks and ecological 

responses, and better identification of vulnerable ecosystems. Future addition o f physical soil and soil 

organic layer properties, with further model refinement and field validation, might also produce 

reasonable, modelled spatial estimates o f ground ice percentage and / or cryofacies distribution.
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Figure 4.1. Active layer detachment, Noatak Basin, northwest Alaska. Active layer detachment slide on 

a northeast facing 6° slope on a deposit o f colluvium and loess in the upper Fauna Creek drainage Noatak 

Basin, northwest Alaska. Length from headwall to end o f overburden debris flow (A to A') is 483 m; 

width at widest point (B to B') is 58 m, as o f July 2011. Deepest point was 3.5 m in the upper portion near 

the headwall. Photo: Andrew Balser, 2011
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Figure 4.2. Retrogressive thaw slump, Noatak Basin, northwest Alaska. Retrogressive thaw slump on a 

west facing 6° slope on a late Pleistocene glaciolacustrine deposit in the upstream portion o f the Aniuk 

Lowlands, Noatak Basin, Alaska. This slump is polycyclic, having initiated in 2004 from a previously re­

stabilized and inactive retrogressive thaw slump. Length from headwall to beginning o f outflow (A to A') 

is 181 m; width at widest point (B to B') is 287 m, as o f July 2011. Deepest point was 14m at the base of 

the headwall near A. Photo: Andrew Balser, 2011
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123 Figure 4.3. Map of the study region. The study region spans a physiographic gradient from the central portion o f Alaska's Brooks Range 

mountains in Gates of the Arctic National Park and Preserve, westward through the Noatak River Basin in the Noatak National Preserve. 

Physiographic provinces include the high mountains o f the Central Brooks Range in the eastern half o f the study region through foothills and 

valley bottoms to the westward, with the broad, Mission Lowlands within the arctic/boreal ecotone near the Noatak mouth (Wahrhaftig, 1965). 

From the highest elevations (>2,000 m) in the Central Brooks Range, landscapes grade through foothills to glacially-sculpted valley bottoms 

containing major rivers emanating outward to the north, south and west. The study region boundary was determined by the geographic 

intersection o f spatial datasets used in terrain suitability analyses.



Figure 4.4. Initial conceptual model diagram of hypothesized landscape drivers o f terrain suitability for 

active layer detachment slide (ALD) and retrogressive thaw slump (RTS) features. Boxes represent 

measurable variables; circles represent properties which include unknown factors. Dashed outlines and 

lines represent factors and relationships not included in the modeling analysis. Time and climate are 

considered drivers for all other properties and processes included in the diagram. The five State Factors 

(Jenny 1941, van Cleve et al. 1991); time, climate, parent material, topography, and biota are indicated 

with an *.
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Figure 4.5. Overview of analysis approach for estimating active layer detachment slide (ALD) and retrogressive 
thaw slump (RTS) terrain suitability in the central and western Brooks Range, Alaska. Analysis included four 
general steps.

A) Categorical landscape properties (glacial geology, ecotype and lithology) underwent point-in-polygon analysis 
with our database of observed ALD and RTS feature locations for integrated terrain unit (ITU) analysis within 
the study region. Analytical results were used to assign ALD and RTS weights to all categorical landscape 
units, which were then combined by overlay into two datasets: one for categorically-derived ALD terrain 
suitability estimates, and one for categorically-derived RTS terrain suitability estimates. Values were scaled 0 
to 100, and the layers were rasterized to 60 m grid cells.

B) Continuous, numeric variable values (derived from the National Elevation Dataset DEM and inter-annual 
MODIS NDVI data) were extracted for observed ALD and RTS locations, and for randomly-generated 
landscape control locations. These were run as structural equation model (SEM) iterations to find the model 
diagram with best fit for ALD and RTS features versus control respectively. Final SEM coefficients and 
intercepts were used to generate two datasets: one for SEM-derived ALD terrain suitability, and one for SEM- 
derived RTS terrain suitability.

C) For each feature type (ALD vs RTS), terrain suitability results from A) ITU analysiss and B) SEM analysis 
were scaled 0 to 100, then multiplied together. The resulting, combined (final) terrain suitability datasets (one 
for ALD and one for RTS) were then scaled 0 to 100.

D) Estimated terrain suitability values from each raster dataset (ITU, SEM and combined; for ALD and RTS 
respectively), were extracted using observed feature locations. Mean and standard deviation of values at 
observed features were used to define suitability thresholds. ‘Suitable terrain’ was defined by values greater 
than one standard deviation below the mean for each feature type. ‘Highly suitable terrain’ was defined by 
values greater than the mean for each feature type.
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Figure 4.6. Map o f observed active layer detachment slides and retrogressive thaw slumps within the study region in the western Brooks Range 

and foothills o f northern Alaska. Feature locations derive from aerial photo analysis, and airborne and ground based field reconnaissance 

(Balser et al., 2009; Balser et al., 2014) and from high-resolution satellite image analysis by the National Park Service (Swanson & Hill, 2010). 

The analysis dataset contained 2492 active layer detachment slides and 805 retrogressive thaw slumps.



127

164°W 163°W 162°W I61°W  I60°W  159°W 158°W 157°W 156°W 155°W 154°W 153°W 152°W 151°W 150°W 149°W

163°W 162°W 161° W  160°W 159°W 158°W 157°W 156°W 155°W 154°W 153°W 152°W 151°W 150°W 149°W

Figure 4.7. Map of estimated terrain suitability for active layer detachment slides (green) and retrogressive thaw slumps (red) for the study region 

in the western Brooks Range o f northern Alaska.



Figure 4.8. Areal estimates o f suitability for active layer detachment (ALD) and retrogressive thaw 

slump (RTS) terrain from integrated terrain unit (ITU) analysis, structural equation modeling 

(SEM) analysis, and from the final, combined model. Estimated values at observed active layer 

detachment slide and retrogressive thaw slump features were used to define “suitable” and “highly 

suitable” terrain. “Suitable” was defined as estimated values greater than or equal to one standard 

deviation below the mean. “Highly suitable” was defined as estimated values greater than or equal 

to the mean. ALD and RTS terrain share significant overlap, as shown by bars representing terrain 

which is suitable/highly suitable for both ALD and RTS.
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Figure 4.9. Areas estimated as highly suitable terrain for A) active layer detachment slides (green) and B) retrogressive thaw slumps (red) for 

the study region in the western Brooks Range o f northern Alaska.
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Figure 4.10. Active layer detachment slide and retrogressive thaw slump terrain suitability in an upland setting.

A) Estimated terrain suitability for active layer detachment slides (green) and retrogressive thaw slumps (red) and for both 
(yellow) near the headwaters of the Nigu River in the northwest portion of Gates of the Arctic National Park and Preserve, west- 
central Brooks Range, northern Alaska; (1) A cluster of active layer detachment slides within colluvial deposits (s), upslope of 
late-Pleistocene outwash deposits (ioi) (Hamilton, 2011), along a toe slope bemeath exposed and partially-exposed, non­
carbonate bedrock (Jorgenson et al. 2001), (dark, upland features on the map). The surface is generally smooth latitudinally 
across the hillslope, with some convacity longitudinally down the hillslope, where slope angle decreases slightly at the toe below 
exposed bedrock. Predominant ecotypes include upland birch-ericaceous-willow low shrub, upland dwarf birch-tussock shrub, 
and alpine ericaceous dwarf shrub (Jorgenson et al. 2010b); (2) Similar conditions to (1), but the presence of several RTS 
features suggest locally deeper, ice-rich colluvial deposits where permafrost exposed by active layer detachment sliding is 
vulnerable to retrogressive thaw slumping; (3) Similar geomorphic conditions to (1) and (2), but underlain by a combination of 
thin soils over near-surface bedrock and late-Pleistocene glacial drift (id1) (Hamilton, 2011), and with primarily alpine dryas 
dwarf shrub and upland birch-ericaceous-willow low shrub ecotypes (Jorgenson et al, 2010b); (4) Retrogressive thaw slumps 
within valley-bottom, ice-contact, kame and kame terrace deposits (ik3) and glacial drift (id3), both of the late-Pleistocene 
(Hamilton, 2011). Small, mild hills interspersed with ponds and lakes characterize this kettle-lake area. Predominant ecotypes 
include upland dwarf birch-tussock tundra, upland birch-ericaceous-willow low shrub, lowland birch-ericaceous-willow low 
shrub and lowland sedge fen (Jorgenson et al. 2010b).

B) Active layer detachment slides in thin deposits of upper hillslope colluvium, along (1) a toe slope below non-carbonate, 
exposed bedrock (micaeuous shale) 50 km west of the map frame (A) in the upper Fauna Creek drainage in the Noatak Basin, 
northwest Alaska. The hill is a smooth, 6° slope, with tracks from migrating caribou visible across the hillslope at the bottom of 
the image. (2) Predominantly upland birch-ericaceous-willow low shrub, with graminoid cover > 50% over much of the area.
(3) Wet sedge meadow along a watertrack below the feature. This active layer detachment is 483 m long from the headwall to 
the bottom of the run out, 58 m wide at the widest point, near the headwall, and 3.5 m deep at the deepest point, also near the 
headwall. Recorded at the headwall, the active layer depth was 110 cm deep, including a 33 cm organic layer, loess from 33 to 
60 cm, and colluvially re-transported gravel (55%) and silt (45%) from 60 to 100 cm. Below the permafrost table, ice-rich, 
syngenetic permafrost is composed of segregated ice (50 to 70%, ataxitic and reticulate), gravel (25 to 35%), and silt (15 to 25%). 
These conditions continued to the bottom of the headwall profile at 248 cm. Photo: Andrew Balser, 2011.
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Figure 4.11. Active layer detachment slide and retrogressive thaw slump terrain suitability in a lowland setting.

A) Estimated terrain suitability for active layer detachment slides (green) and retrogressive thaw slumps (red) and both 
(yellow) at the western edge of the Aniuk Lowland, adjacent to the mainstem Noatak River in the Noatak National Preserve, 
northwest Alaska. (1) Retrogressive thaw slumps along a bluff adjacent to the Noatak River, within late-Pleistocene 
glaciolacustrine deposits (igl1B and igl2) which over-drape late-Pleistocene glacial drift deposits (id1B)(Hamilton, 2010). 
Progressive down-cutting and hydro-thermal erosion since the Pleistocene have left a bluff complex 15 -  80 m tall (Hamilton, 
2009) containing ice-rich, deep permafrost. Behind the bluff are mild hills and smaller geomorphic features among small ponds 
and lakes. Predominant ecotypes are upland dwarf birch-tussock shrub and upland birch-ericaceous-willow low shrub (Jorgenson 
et al. 2010b). These conditions cover the majority of terrain north of the Noatak River within the map frame. (2) Retrogressive 
thaw slumps on the margins of kettle lakes within late-Pleistocene glacial drift deposits (id1B). A patch of suitable ALD terrain is 
visible on a bluff top on the south side of the Noatak River, north of Lake Kangilipak and east of several, smaller lakes. Surface 
conditions include mild hills and smaller geomorphic features among small ponds and lakes, and predominant ecotypes are 
upland dwarf birch-tussock shrub and upland birch-ericaceous-willow low shrub (Jorgenson et al. 2010b).

B) A retrogressive thaw slump on a kettle lake within a glacial drift deposit (id1B); indicated by an arrow on the map (A). 
(1) Gently sloped hilltop just upslope of the retrogressive thaw slump with primarily dwarf and low shrub-tussock tundra 
ecotypes (Jorgenson et al. 2010b). Geomorphic features become more pronounced approaching the Noatak River bluffs in the 
distance. (2) Mixed low shrub and dwarf shrub tundra ecotypes along a mid-hillslope with moderate, meso-scale geomorphic 
variability. Hill slope is roughly 9°. (3) Retrogressive thaw slump which has been active since at least 1980 (Balser et al., 2014). 
Dimensions were 191 m at the widest point, 122 m long from the apex of the headwall to the end of the run out fan, and 18 m 
deep at the deepest location along the headwall, with the headwall retreating roughly 12 m between the summers of 2006 and 
2011. Deposits within the headwall are comprised of 60% massive ice, where roughly two thirds are Pleistocene and Holocene 
ice wedges, and roughly one third is relict glacial ice. The widest deposit of massive ice was 2.5 m across. The glacial drift 
included up to 55% angular and sub-angular coarse fragments, at clast sizes from gravel up to boulders of over 50 cm. Within 1 
m of the surface, deposits were composed of Aeolian loess and sand (> 1 m), active layer depth of roughly 45 cm, with primarily 
pore and lenticular ice and occasional pockets of reticulate ice below the permafrost table. The surface was covered with a 
relatively thin organic layer (roughly 4 cm) (Balser et al., 2015). Photo: Andrew Balser, 2010.
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Figure 4.12. Final, fitted structural equation model (SEM) diagram for active layer detachment slide 

(ALD) terrain suitability (as represented by field observations versus randomly generated control point 

locations for model fitting). Bracketed labels refer to boxes in the original hypothesis and conceptual 

model hypothesis diagram (Figure 4.4). Boxes represent observed, exogenous variables, while circles 

represent latent, endogenous variables. Line weights represent the strength o f the modeled causal 

relationship. Numbers next to lines are final model coefficients, averaged from ten bootstrapped model 

runs using standardized data. S represents unknown measurement error for observed, exogenous 

variables. Z represents unknown error for latent, endogenous variables.
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Figure 4.13. Final, fitted structural equation model (SEM) diagram for retrogressive thaw slump (RTS) 

terrain suitability (as represented by field observations versus randomly generated control point locations 

for model fitting). Bracketed labels refer to boxes in the original hypothesis and conceptual model 

hypothesis diagram (Figure 4.4). Boxes represent observed, exogenous variables, while circles represent 

latent, endogenous variables. Line weights represent the strength o f the modeled causal relationship. 

Numbers next to lines are final model coefficients, averaged from ten bootstrapped model runs using 

standardized data. S represents unknown measurement error for observed, exogenous variables. Z 

represents unknown error for latent, endogenous variables.
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A) ITU B) SEM C) ITU / SEM Combined (Final)

Figure 4.14. Frequency distributions o f estimated terrain suitability for active layer detachment slide features, retrogressive thaw slump features, 

and randomly generated landscape control points within the study region in the central and western Brooks Range, Alaska. A) Terrain suitability 

estimated with integrated terrain unit (ITU) analysis o f categorical variables. B) Terrain suitability estimated using structural equation modeling 

analysis coefficients of numeric landscape variables. C) Final estimates o f terrain suitability combining results from A. and B. Estimated values 

at observed active layer detachment slide and retrogressive thaw slump features were used to define “suitable” and “highly suitable” terrain. 

“Suitable” was defined as estimated values greater than or equal to one standard deviation below the mean. “Highly suitable” was defined as 

estimated values greater than or equal to the mean.
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Figure 4.15. Areal extent of categorical landscape properties by active layer detachment slide (ALD) and retrogressive thaw slump (RTS) terrain 

suitability, and for the study region in the central and western Brooks Range, Alaska. A) Distribution among the four most prevalent ecotypes 

within suitable terrain. B) Distribution among the four most prevalent glacial geology units within suitable terrain, and distribution of 

noncarbonate lithology. Estimated values at observed active layer detachment slide and retrogressive thaw slump features (i.e. excluding the 

randomly generated control point locations) were used to define “suitable” and “highly suitable” terrain. “Suitable” was defined as estimated 

values greater than or equal to one standard deviation below the mean. “Highly suitable” was defined as estimated values greater than or equal to 

the mean.
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Table 4.1. Input data sets used for terrain suitability analyses for active layer detachment slides (ALD) and retrogressive thaw slumps (RTS) within 

the study region in the central and western Brooks Range o f northern Alaska.

Dataset Cell Size Source Type Reference
ALD and RTS Feature Locations n / a University of Alaska Fairbanks /

U.S. National Park Service (Arctic Network)
ArcGIS point geodatabase (Balser 2009; Swanson and Hill, 

2010)

Glacial / Surficial Geology n / a U.S. Geological Survey, Alaska Science Center ArcGIS polygon geodatabase (Hamilton, 2010; Hamilton and 
Labay 2011)

Lithology n / a Alaska Biological Research Inc. /
U.S. National Park Service, Arctic Network

ArcGIS polygon shapefile (Jorgenson et al., 2001)

Ecotype 30m Alaska Biological Research Inc. /
U.S. National Park Service, Arctic Network

ArcGIS raster geodatabase (Jorgenson et al., 2010b)

National Elevation Dataset (NED) 60m U.S. Geological Survey, EROS Data Center ArcGIS raster image (Gesch et al., 2002)

2001 - 2012 Normalized Difference 
Vegetation Index (NDVI), 
Moderate-resolution Imaging 
Spectrometer (MODIS)

250m U.S. Geological Survey, EROS Data Center ArcGIS raster image (Jenkerson et al., 2010)
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Table 4.2. Derived variables used in structural equation model (SEM) analyses. All variables derive from either A) National Elevation Dataset (NED) data from 
the U.S. Geological Survey, or B) Moderate-resolution Imaging Spectrometer (MODIS) 2001-2012 monthly Normalized Difference Vegetation Index (NDVI) 
data (Table 1). ‘Group’ refers to boxes in Figure U. * resampling was conducted after calculation of statistical values using the ‘cubic convolution’ method.

Variable Group Calculation Source Data 
Cell Size (m)

Derived Variable 
Cell Size (m)

Cell Neighborhood 
of Calculation

Compound Topographic Index (CTI) Hydrology ln(Facc / tan(sloperad)), where:
Facc = flow accumulation 
sloperad = slope in radians

60 60 Contributing watershed 
(values smoothed using 
3 x 3 focalmean kernel)

Surface Curvature Geomorphology Concavity / Convexity
(Bolstad’s Variant)

60 60 5 x 5

Dissection (m) Geomorphology (z -  zmn) / ( zmax -  z^), where: 
z = cell elevation 
zmax = neighborhood max. elev. 
zmin = neighborhood min. elev.

60 60 3 x 3

Topographic Position Index (TPI)(m) Geomorphology (zmean — zmin) / ( zmax — zmin), whe^
zmean= neighborhood mean elev. 
zmax = neighborhood max. elev. 
zmin = neighborhood min. elev.

60 60 5 x 5

Elevation (m) Topography Data value from NED dataset 60 60 not derived

Heat Load Index (HLI) Topography (1-cos(aspect -  45)) / 2, where:
Aspect = degrees from north

60 60 3 x 3

Slope ° Topography (arctan(Rise / Run) x 57.29578) 60 60 3 x 3

Slope Position (m) Topography z - zmean, where:
z = cell elevation
zmean= neighborhood mean elev.

60 60 500 x 500

NDVI Annual Peak, 2001-2013 Vegetation Maximum NDVI per pixel, per year 250 1 x 1

- Average
- Maximum
- Minimum
- Standard Deviation
- Range

Average peak value among years 
Maximum peak value among years 
Minimum peak value among years 
SD of peak values among years 
Range of peak values among years

* 
* 

** 
*

O
O

O
O

O
6

6
6

6
6
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Table 4.3. Pearson correlation coefficients for variables tested with structural equation modeling, calculated for the entire study region. Values greater than 0.5 
or less than -0.5 are shown in bold.

Hydrology, Topography and Geomorphology NDVI Annual Peak 2001-2012
Slope

CTI Curv. Diss. Elev. HLI Slope ° Pos. TPI Ave Max Min Range Std.
CTI 1.00

Curv. -0.30 1.00

Diss. -0.42 0.52 1.00
Hyd.
Topo. Elev. -0.57 0.12 0.17 1.00

&
Geom.

HLI -0.08 0.00 0.01 0.07 1.00

Slope ° -0.76 0.05 0.13 0.64 0.10 1.00

SPos. -0.49 0.23 0.24 0.57 0.06 0.48 1.00

TPI -0.35 0.27 0.70 0.18 0.01 0.13 0.28 1.00

Ave 0.34 -0.05 -0.07 -0.61 -0.09 -0.45 -0.57 -0.08 1.00
NDVI
Ann.

Max 0.20 -0.01 -0.04 -0.37 -0.09 -0.27 -0.36 -0.06 0.70 1.00

Peak Min 0.37 -0.07 -0.08 -0.66 -0.06 -0.51 -0.60 -0.09 0.97 0.63 1.00
2001­
2012 Range -0.32 0.09 0.06 0.52 -0.02 0.44 0.44 0.06 -0.54 -0.02 -0.68 1.00

Std. -0.32 0.10 0.07 0.51 -0.03 0.44 0.44 0.07 -0.52 -0.03 -0.66 0.96 1.00

Table 4.4. Areal estimates of active layer detachment slide (ALD) and retrogressive thaw slump (RTS) terrain suitability for integrated terrain unit (ITU) and 
structural equation model (SEM) analyses, and for the final model which combines ITU and SEM results.

ITU SEM Final
(Combined ITU & SEM)

Highly Suitable Suitable Highly Suitable Suitable Highly Suitable Suitable
km2 (% study region) km2 (% study region) km2 (% study region) km2 (% study region) km2 (% study region) km2 (% study region)

ALD Terrain 30,937 (49) 44,843 (70) 20,346 (32) 35,549 (56) 11,046 (17) 22,464 (35)
RTS Terrain 32,757 (51) 47,760 (75) 24,513 (38) 41,156 (65) 15,537 (24) 32,174 (51)
ALD & RTS Terrain n/a n/a n/a n/a 5,841 (9) 18,235 (29)
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Table 4.5. Categorical landscape properties as a percentage study region, by percentage retrogressive thaw slump (RTS) and active layer detachment slide (ALD) 
distribution, and differential (Feature % / Study Area %). Ecotypes which are present within the study region but comprise less than 0.5% feature distribution are 
excluded from this table.

Ecotype % of Study Region % of RTS Features % Differential % of ALD Features % Differential
Alpine Dryas Dwarf Shrub 19.0 15.7 0.8 20.0 1.1
Alpine Ericaceous Dwarf Shrub 0.0 0.0 0.0 5.0 2.5
Alpine Ericaceous Dwarf Shrub 2.0 2.8 1.4 0.0 0.0
Alpine Wet Sedge Meadow 1.0 1.0 1.0 1.0 1.5
Lowland Birch-Ericaceous-Willow Low Shrub 3.0 2.4 0.8 0.0 0.0
Lowland Sedge Fen 1.0 2.8 2.8 0.0 0.0
Riverine Alder or Willow Tall Shrub 1.0 1.6 1.6 0.0 0.0
Riverine Birch-Willow Low Shrub 1.0 2.0 2.0 0.0 0.0
Riverine Wet Sedge Meadow 1.0 1.2 1.2 0.0 0.0
Riverine Willow Low Shrub 1.0 0.9 0.9 0.0 0.0
Upland Alder-Willow Tall Shrub 4.0 6.8 1.7 9.0 2.3
Upland Birch-Ericaceous-Willow Low Shrub 12.0 23.7 2.0 23.0 1.9
Upland Dwarf Birch-Tussock Shrub 19.0 19.2 1.0 29.0 1.5
Upland Sedge-Dryas Meadow 6.0 9.6 1.6 6.0 1.0
Upland White Spruce Forest 4.0 3.0 0.8 1.0 0.3
Upland Willow Low Shrub 0.0 0.0 0.0 3.0 1.5
Upland Willow Low Shrub 2.0 2.9 1.4 0.0 0.0

Glacial Geology % of Study Region % of RTS Features % Differential % of ALD Features % Differential
Alluvium 6.1 7.0 1.1 1.0 0.2
Thin Soil over Near-surface Bedrock 53.8 26.0 0.5 54.0 1.0
Colluvium 6.9 7.0 1.0 20.0 2.9
Glacial Drift 16.4 46.0 2.8 22.0 1.3
Fan Deposits 1.8 0.3 0.2 0.2 0.1
Gravel 0.1 0.1 0.7 0.0 0.0
Ice Contact 0.5 1.0 2.1 0.0 0.1
Inwash / Outwash 1.5 0.4 0.3 0.1 0.1
Lacustrine / Glaciolacustrine 9.4 11.0 1.2 2.0 0.2
Organic 0.0 0.0 0.0 0.0 0.0
Other (Active Glacier / Snowfield) 0.7 0.0 0.0 0.5 0.7
Sand 0.6 0.2 0.3 0.0 0.0
Silt 1.0 0.0 0.0 0.0 0.0
Terrace 1.2 1.0 0.8 0.0 0.0

Lithology % of Study Region % of RTS Features % Differential % of ALD Features % Differential
Noncarbonate 89.8 99.2 1.1 98.3 1.1
Carbonate 10.2 0.8 0.1 1.7 0.2
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Table 4.6. Structural equation model fit metrics (Hooper et al., 2008) from ten bootstrapped model runs for active layer detachment slide (ALD) 

and ten bootstrapped model runs for retrogressive thaw slump (RTS) terrain suitability in the central and western Brooks Range, Alaska. The 

ALD model uses 2492 observed ALD feature locations, and an equal number of randomly generated, non-ALD control locations. The model uses 

805 observed RTS feature locations, and an equal number o f randomly generated, non-RTS control locations. Coefficients and intercepts from the 

ten bootstrap runs were used to produce ALD and RTS terrain suitability estimates, mapped for the study region (Figure 8). Mean values for the 

ten runs shown in bold.

Fit metric; recommended threshold value for good fit 1 2 3 4
SEM ALD Bootstrap Run 

5 6 7 8 9 10 mean

Comparative Fit Index (CFI); > 0.950 0.977 0.970 0.977 0.973 0.972 0.971 0.979 0.976 0.971 0.978 0.974

Tucker-Lewis Index (TLI); > 0.950 0.958 0.952 0.959 0.953 0.942f 0.955 0.946f 0.959 0.948f 0.957 0.953

Root mean square error of approximation (RMSEA); < 0.07 0.037 0.036 0.037 0.033 0.037 0.030 0.035 0.035 0.037 0.036 0.035

Standardized Root Mean Square Residual (SRMR); < 0.50 0.029 0.029 0.033 0.029 0.032 0.032 0.031 0.031 0.028 0.032 0.031
SEM RTS Bootstrap Run

Fit metric; recommended threshold value for good fit 1 2 3 4 5 6 7 8 9 10 mean

Comparative Fit Index (CFI); > 0.950 0.994 0.991 0.982 0.990 0.990 0.991 0.983 0.977 0.988 0.983 0.987

Tucker-Lewis Index (TLI); > 0.950 0.980 0.968 0.979 0.974 0.980 0.972 0.986 0.967 0.976 0.975 0.976

Root mean square error of approximation (RMSEA); < 0.07 0.027 0.030 0.032 0.034 0.033 0.049 0.038 0.044 0.063 0.043 0.039

Standardized Root Mean Square Residual (SRMR); < 0.50 0.019 0.036 0.031 0.026 0.030 0.030 0.023 0.031 0.026 0.028 0.028
f does not meet recommended value for good fit
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Table 4.7. Structural equation model R2 values from ten bootstrapped model runs for active layer detachment slide (ALD) and 

ten bootstrapped model runs for retrogressive thaw slump (RTS) terrain suitability in the central and western Brooks Range, 

Alaska. R2 represents the variation among endogenous variables in the model explained by that factor (Joreskog and Sorbom, 

1996). The ALD model uses 2492 observed ALD feature locations, and an equal number o f randomly generated, non-ALD

control locations. The RTS model uses 805 observed RTS feature locations, and an equal number of randomly generated, non- 

RTS control locations. Mean values for the ten runs shown in bold.

Variable 1 2 3

SEM ALD Bootstrap Run R2 Values 

4 5 6 7 8 9 10 mean
Peak NDVI Inter-annual average 0.61 0.59 0.61 0.59 0.59 0.60 0.60 0.60 0.56 0.54 0.59
Peak NDVI Inter-annual standard deviation 0.35 0.40 0.37 0.41 0.42 0.41 0.43 0.43 0.40 0.42 0.40
Curvature 0.29 0.35 0.29 0.27 0.28 0.32 0.33 0.30 0.34 0.38 0.31
Topographic Position Index (TPI) 0.29 0.24 0.26 0.28 0.30 0.27 0.29 0.29 0.24 0.24 0.27
Slope Position 0.50 0.52 0.52 0.50 0.52 0.54 0.51 0.48 0.51 0.51 0.51
Heat Load Index (HLI) 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00
Slope (°) 0.17 0.18 0.18 0.19 0.19 0.17 0.16 0.17 0.17 0.19 0.18

SEM RTS Bootstrap Run R2 Values

Variable 1 2 3 4 5 6 7 8 9 10 mean
Peak NDVI Inter-annual standard deviation 0.07 0.05 0.08 0.06 0.06 0.04 0.07 0.09 0.06 0.05 0.06

Topographic Position Index (TPI) 0.68 0.63 0.74 0.71 0.72 0.68 0.70 0.74 0.66 0.70 0.69

Dissection 0.88 0.88 0.83 0.84 0.80 0.79 0.73 0.82 0.85 0.80 0.82

Slope Position 0.39 0.36 0.48 0.40 0.44 0.33 0.37 0.39 0.46 0.40 0.40

Heat Load Index (HLI) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

Compound Topographic Index (CTI) 0.35 0.39 0.35 0.42 0.34 0.40 0.37 0.37 0.34 0.34 0.37
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Table 4.8. Numeric landscape properties within the study region, and by terrain suitability for active layer detachment slides and retrogressive

thaw slumps. Original source data from: * (Hugelius et al., 2013), and I (Jorgenson et al., 2010b).

Landscape Property Study Region Active Layer Detachment Slide Terrain Retrogressive Thaw Slump Terrain
Highly Suitable Suitable Highly Suitable Suitable

mean std mean std | mean std mean std | mean std
Peak NDVI Inter-annual Ave. f 0.700 0.155 0.801 0.046 0.777 0.061 0.790 0.048 0.780 0.056
Peak NDVI Inter-annual SD f 0.062 0.033 0.175 0.045 0.048 0.016 0.046 0.014 0.049 0.015
Heat Load Index (HLI) f 5,257 1,320 5,276 1,266 5,254 1,248 5,090 842 5,144 940
Topographic Position Index (TPI) f 0.47 0.10 0.48 0.07 0.48 0.08 0.50 0.09 0.49 0.09
Dissection f 0.47 0.16 0.49 0.11 0.49 0.12 0.50 0.15 0.48 0.15
Compound Topographic Index (CTI) f 7.1 1.9 6.8 1.3 6.8 1.3 7.8 1.5 7.6 1.5
Surface Curvature f 0.01 2.10 -0.12 1.53 -0.09 1.68 -0.16 1.09 -0.17 1.26
Slope (°)f 13.1 10.9 13.2 8.0 13.0 8.4 7.7 6.9 8.7 7.7
Slope Position f 0.4 217.0 8.5 143.2 -5.1 159.5 -83.7 133.4 -73.1 146.8
Soil Organic Carbon Top 2m (kg/m2) * 10.2 10.5 8.9 8.8 8.8 9.3 8.7 8.7 8.6 9.2
Soil Organic Carbon Top 3m (kg/m2) * 11.2 11.5 9.9 9.6 9.7 10.1 9.6 9.4 9.4 10.0
Surface Organic Depth (cm) I 9.6 7.0 10.9 4.4 10.2 4.8 13.5 5.2 13.1 5.8
pH I 5.5 0.9 5.1 0.3 5.2 0.4 5.2 0.6 5.2 0.6

f Included in structural equation modelling (SEM)
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Table 4.9. Numeric landscape properties for randomly-assigned control locations, and for observed active layer detachment slide and 

retrogressive thaw slump features. Original source data from: * (Hugelius et al., 2013), and J (Jorgenson et al., 2010b).

Landscape Property Control
mean std

Active Layer Detachment Slides 
mean std

Retrogressive Thaw Slumps 
mean std

Peak NDVI Inter-annual Ave. f 0.700 0.157 0.776 0.051 0.768 0.050
Peak NDVI Inter-annual SD f 0.062 0.035 0.048 0.015 0.051 0.018
Heat Load Index (HLI) f 5,253 1,322 5,228 1,143 5,103 998
Topographic Position Index (TPI) f 0.47 0.11 0.47 0.06 0.47 0.09
Dissection f 0.47 0.16 0.47 0.08 0.47 0.14
Compound Topographic Index (CTI) f 7.1 1.9 7.3 1.1 7.6 1.1
Surface Curvature f -0.01 2.12 -0.42 0.92 -0.37 0.98
Slope (°)f 13.2 10.9 11.9 7.1 9.8 5.6
Slope Position f 0.2 216.3 -44.2 133.9 -113.6 126.2
Soil Organic Carbon Top 2m (kg/m2) * 7.3 9.8 5.3 6.6 10.0 10.1
Soil Organic Carbon Top 3m (kg/m2) * 8.1 11.1 5.9 7.2 11.1 11.0
Surface Organic Depth (cm) J 9.0 5.7 10.9 4.4 11.3 4.7
pH J 5.4 0.9 5.1 0.4 5.4 0.6

f Included in structural equation modelling (SEM)
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Appendix 4. Extended Methods and Results for Chapter 4

A4.1 Extended Methods 

A4.1.1 Study Region

Our study region spanned a gradient o f arctic tundra and shrub landscapes abutting the forested, 

arctic-boreal ecotone, from the central portion o f Alaska's Brooks Range mountains westward through the 

Noatak Basin to the Mission Lowlands, near the Noatak River delta (Figure A4.1.1). This periglacial 

landscape is within the continuous permafrost zone (Jorgenson et al. 2008) and is part o f Arctic 

Bioclimate Subzone E (CAVM-Team 2003). The study region extended 63,707 km2, which is slightly 

larger than the state o f West Virginia, and covered Gates o f the Arctic National Park and Preserve and 

Noatak National Preserve.

The central Brooks Range transitions from Mt. Igikpak (2523 m), through mountains and foothills, 

to glacially-sculpted valley bottoms containing major rivers flowing radially outward to the north, south, 

and west. The Noatak River Basin begins in the central Brooks Range and flows 730 km along a 

westward course at approximately 67.5° N latitude within the western sub-ranges o f the Brooks Range 

(Figure A4.1.1), and is recognized as a UNESCO Biosphere Reserve. Physiographic provinces include 

high mountains of the central Brooks Range, through foothills, valley bottoms and the Aniuk Lowland 

westward, entering the broad, Mission Lowland at the arctic/boreal ecotone near the Noatak mouth 

(Wahrhaftig 1965, Young 1974).

The study region was periodically glaciated throughout the Pleistocene and contains a patchwork of 

glacial and periglacial landscapes dating from early Pleistocene to present times (Hamilton 2010, 

Hamilton and Labay 2011). Alpine physiographic provinces contain significant expanses o f exposed 

bedrock at high elevations, with upper toe slopes covered by thin, often colluvially mixed and re­

deposited soils derived from loess, weathered bedrock, and drift, with local pockets o f active solifluction 

(Young 1974, Jorgenson et al. 2010, Hamilton and Labay 2011). Mountain valley bottoms are primarily 

underlain by late Pleistocene glacial drift deposits with adjacent ice-contact features, terraces, glacial 

inwash and outwash. Areas o f solifluction become larger and more common with decreasing elevation, 

and modern alluvium prevails along narrow, contemporary river corridors at lower elevations where 

mountains grade to foothills (Hamilton 2010, Hamilton and Labay 2011). Rounded foothills interspersed 

with upland valleys, most o f which were overtopped by Pleistocene glaciers, contain a mixture o f thin soil 

deposits over near-surface bedrock on hilltops, below which are loess and middle and late Pleistocene 

glacial drift, with glacial outwash common at drift deposit margins (Y oung 1974, Hamilton 2010, 

Jorgenson et al. 2010, Hamilton and Labay 2011). Lowland physiographic provinces (Wahrhaftig 1965)
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are characterized by extensive lateral, recessional, and terminal ice-cored moraines, as well as kettle 

topography, all associated with middle and late Pleistocene glacial drift surfaces. Lowland valley bottoms 

are commonly over-draped with expansive, deep, ice-rich glaciolacustrine deposits from extensive and 

long-lived, Pleistocene proglacial lakes (Hamilton 2009, 2010, Balser et al. 2015). Glaciolacustrine 

deposits become thinner along a gradient from lowland valley bottoms rising toward glacially rounded 

foothills, and large outwash deposits may abut terminal and recessional moraines. Modern alluvium 

covers broad, meandering river corridors, frequently bounded by bluffs o f glacial drift and 

glaciolacustrine deposits exposed through millennia o f erosional down-cutting (Hamilton 2009, 2010). A 

loess cap o f variable thickness is common throughout these landscapes (Jorgenson et al. 2010, Balser et 

al. 2015).

The study region is within the zone o f climate-driven, ecosystem-modified permafrost (Shur and 

Jorgenson 2007), with ground ice conditions suitable for ALD and RTS processes dispersed among 

landscapes throughout the region. In alpine terrain, upper permafrost in thin soils over near-surface 

bedrock is primarily syngenetic (French and Shur 2010). Segregated ground ice exceeding 30% by 

volume, comprised mainly o f ataxitic and reticulate cryostructures, has been observed in the top meter of 

permafrost in these locations (Balser et al. 2015). An ice-rich intermediate layer (Shur 1988, Shur et al. 

2005), with an ice layer of several centimeters at the interface o f the active layer and permafrost table 

may also be present across hill slopes (Balser et al. 2015). Episodes o f solifluction and colluvial re­

deposition contribute to successive syngenetic permafrost development above buried soil surfaces, 

thickening both overall soil and permafrost through time (Balser et al. 2015). Regional-scale ground ice 

estimates for these alpine areas range from low (<10%) to moderate (10%-40%) (Jorgenson et al. 2008).

At low elevations, permafrost o f glacial and glaciolacustrine origin includes extensive deposits of 

deep, ice-rich, syngenetic and epigenetic permafrost, with massive ice deposits (Balser et al. 2015). In the 

Mission and Aniuk Lowland, regional ground ice estimates range from moderate (10%-40%) to high 

(>40%) and include broad areas o f active Holocene and inactive Pleistocene ice wedges (Young 1974, 

Jorgenson et al. 2008, Balser et al. 2015) with deposits o f relict glacial ice scattered throughout (Hamilton 

2009, 2010). Late-Pleistocene glaciolacustrine deposits can be especially ice-rich (Balser et al. 2015), as 

is common across the low arctic (Shur and Zhestkova 2003). Syngenetic cryofacies at the top o f the 

permafrost table have been observed in these lowlands, often within a loess cap up to several decimeters 

thick (Balser et al. 2015). Upper permafrost conditions may be highly variable, corresponding with 

surficial geology, landforms, vegetation, and glacial history (Hamilton 2009, 2010, Hamilton and Labay 

2011, Balser et al. 2015).
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Permafrost in the foothills comprises an intermingling o f conditions characteristic o f alpine and 

lowland landscapes. Upper hill slopes include predominantly syngenetic cryofacies, periodically 

overtopped by solifluction and colluviation resulting in progressive permafrost aggradation, while lower 

slope positions may also include some ice wedges, relict glacial ice within Pleistocene drift, and older 

syngenetic permafrost associated with Pleistocene glaciolacustrine deposits (Y oung 1974, Balser et al.

2015). There is no permafrost borehole monitoring within the study region, but adjacent boreholes to the 

north and south report average annual temperatures o f -5°C and 1°C respectively, while mean annual air 

temperature estimates for the study region are -7°C to -12°C (Jorgenson et al. 2008).

Land cover comprises a broad suite o f vegetation in various landscape settings including arctic and 

alpine tundra, shrublands, and lowland boreal forest along the arctic-boreal ecotone (Young 1974,

Viereck et al. 1992, Parker 2006, Jorgenson et al. 2010). Thirty-six ecotypes have been identified and 

mapped within our study region (Jorgenson et al. 2010), with more than 50% of the land surface covered 

by shrub-graminoid ecotypes. Alpine and arctic dwarf shrub tundras are most prevalent at the highest 

elevations, and within north-draining watersheds, while low shrub, tall shrub, and tussock tundras are 

common in mid-elevation valleys and throughout the Noatak Basin. Lowland valleys within the 

southwest portion and along the southern boundary o f the study region are part o f the arctic-boreal 

ecotone, and include open and closed stands of conifer and broadleaf species along floodplains (Young 

1974, Viereck et al. 1992, Parker 2006, Jorgenson et al. 2010).

Differing lithologies have been strongly linked with soil properties within the study region. 

Carbonate, non-carbonate, mafic and ultramafic lithologies are correlated with differences in soil 

development, soil chemistry, and grain size proportions (Jorgenson et al. 2010). These are in turn linked 

with vegetation, and with surface organic depth (Jorgenson et al. 2010). These factors are known to 

influence permafrost characteristics (Davis 2001, Shur and Jorgenson 2007), though the full extent of 

these influences has not been reported for the study region. We suspect that lithology exerts more 

influence in upland settings where a larger proportion o f surfaces derive from the adjacent and underlying 

bedrock, compared with lowlands containing extensive deposits mixed origin transported from elsewhere 

through glacial and periglacial processes.

Generally, upland hill slopes with an ice-rich intermediate layer may be more favorable for active 

layer detachment sliding, while lowlands o f glacial and glaciolacustrine origin offer prime settings for 

retrogressive thaw slump development, but these relationships are not obligate. RTSs are widespread 

along lowland lake margins, river banks, and bluffs. However, they can also occur in upland settings, 

often where an ALD has exposed the upper permafrost, and prior, episodic colluviation has accumulated a
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layer of ice-rich, syngenetic, upper permafrost which is more than 2 m deep and vulnerable to sustained, 

retrogressive thaw slumping (Hamilton 2009, Swanson 2010, Swanson and Hill 2010, Balser et al. 2014). 

ALDs are most frequently found on broad, upland hill slopes, but have also been observed in lowlands, 

typically adjacent to river bluffs on mild slopes where an ice-rich intermediate layer has developed 

(Balser et al. 2009, Gooseff et al. 2009, Swanson 2010, Balser et al. 2014).

Overall, conditions throughout the study region represent a broad range o f typical low-arctic 

landscapes. Alpine, foothill, and valley bottom settings include many characteristic ecotypes of the North 

American low arctic, a suite o f periglacial landforms, diverse lithologies, and a broad continuum of 

permafrost characteristics and cryofacies. Our study deliberately included this breadth of conditions over 

a large geographic area to represent a diversity o f low-arctic landscapes.

A4.1.2 Overview o f terrain suitability analysis

A conceptual diagram (Figure A4.1.2) depicts our initial, general hypothesis for inter-relationships 

among landscape characteristics o f terrain suitability for ALD and RTS development in the central and 

western Brooks Range o f northern Alaska. This diagram directed our approach and was iteratively tested 

and refined, with final terrain suitability estimates for the study region derived from the results.

Terrain suitability analysis and estimation involved four primary stages: 1) collection and 

preparation o f input data, 2) integrated terrain unit (ITU) analysis, 3) structural equation modeling (SEM) 

analysis, and 4) terrain suitability estimation combining ITU and SEM results. Input data included a 

geodatabase of ALD and RTS locations (Table A4.1.1 and Appendix 5), and spatial data layers of 

categorical and continuous data covering the entire study region (Table A4.1.1). The study region 

boundary was defined by the geographic intersection o f spatial data available for the region (Table A4.1.1 

and Figure A4.1.1). All spatial data were clipped to the study region boundary, and landscape metrics 

were derived from continuous data (Table A4.1.2).

ITU and SEM analyses identified drivers, and relationships among drivers for terrain suitability, 

and were conducted separately for ALD and RTS features (Figure A4.1.3). The combined ITU and SEM 

results were used to produce a final dataset o f estimated terrain suitability for each o f the two feature 

types. Terrain suitability threshold values were calculated for each type of feature, and used to delineate 

areas o f suitable and highly suitable terrain, by which landscape properties were summarized and 

tabulated from spatial data (Table A4.1.1 and Table A4.1.2).
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A4.1.3. Steps for terrain suitability analysis and estimation

A4.1.3.1 Collection and preparation o f input data

Feature locations

Aircraft-supported field campaigns and airphoto surveys in 2006, 2007, 2010, and 2011 were used 

to map active layer detachment slides and retrogressive thaw slumps in the Noatak Basin. Initial fixed- 

wing surveys were used to identify the general distribution o f RTSs and ALDs within the study area, and 

subsequent helicopter-supported surveys were used to mark the location o f features in the field by GPS. 

Vertical aerial photography for areas with dense feature distributions was acquired using a Nikon D2X 

digital camera mounted beneath a small, fixed-wing aircraft. Airphoto lines were digitally stitched 

together, then manually georectified against pan-sharpened Landsat TM satellite ortho-imagery (Balser et 

al. 2009). Each feature location was manually marked within airphoto coverage. Our initial geodatabase 

o f ALDs and RTSs in the Noatak Basin was expanded and augmented through a subsequent National 

Park Service survey, which included both Gates o f the Arctic National Park and Preserve and Noatak 

National Preserve, using high-resolution satellite imagery to census these features throughout both park 

units (Figure A4.1.4; Balser et al. 2009, Swanson and Hill 2010). Randomly assigned control point 

locations were generated throughout the study region to represent areas without RTS or ALD features. 

Randomly generated points that fell within 200 m of mapped features were considered co-located with 

those features and were excluded. Separate datasets were constructed for ALDs and RTSs respectively, 

with each dataset containing mapped feature locations and an equal number o f randomly generated 

control point locations.

Landscape properties and metrics

We used thematic spatial datasets covering the entire study region that included both categorical 

and continuous data, deriving additional analysis variables from the continuous data (Table A4.1.1). 

Categorical data used in terrain unit analysis included lithology, surficial (glacial) geology, and ecotype. 

Lithology data were drawn from mapped eco-subsections for the region, following the National 

Hierarchical Framework for Ecological Units (ECOMAP 1993, Cleland et al. 1997, Jorgenson et al.

2001), and were grouped as either ‘carbonate’ or non-carbonate’ for analysis. Glacial (surficial) geology 

was mapped at a scale o f 1:250,000 from compiled reports and field surveys conducted throughout the 

study region over the course o f several decades (Hamilton 2010, Hamilton and Labay 2011). For 

analysis, surficial geologic units were summarized by surficial deposit type (e.g. glacial drift, colluvium, 

alluvium) as presented by the authors. Ecotypes were mapped with Landsat ETM+ imagery from 

mapping algorithms trained and validated using extensive field data from the study region (Jorgenson et
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al. 2010). Grid cells were resampled from their original 30 m cell size to 60 m cell size using the nearest 

neighbor method, but ecotype data were not thematically summarized for our analyses.

Two sources o f continuous data were used to derive additional metrics used in SEM analysis (Table 

A4.1.1): 1) The National Elevation Dataset (NED) distributed by the U.S. Geological Survey (Gesch et al.

2002), and 2) monthly normalized difference vegetation index (NDVI) values, calculated from Moderate- 

resolution Imaging Spectrometer data by the U.S. Geological Survey for the 2000-2013 timespan 

(Jenkerson et al. 2010). Geomorphologic, topographic and hydrologic derivatives were calculated from 

the NED (Table A4.1.2), and included compound topographic index (Moore et al. 1993), surface 

curvature (McNab 1993), dissection (Evans 1972), topographic position index (Jenness 2006), heat load 

index (McCune and Keon 2002), and slope position. Elevation, not derived but taken directly from the 

NED data, was also used. Monthly NDVI data from 2000-2013 were first analyzed on an annual basis to 

extract peak growing season NDVI values for each pixel in the study region for each year. Next, these 

annual peak NDVI datasets were statistically summarized across all years (excluding 2000, which had 

incomplete data) to produce decadal values for peak growing season NDVI (Table A4.1.2). Variables 

were derived using ERDAS Imagine 2011, and using ArcGIS 9.3 and 10.1 software, including the 

“Geomorphometric and Gradient Metrics Toolbox” (Cushman et al. 2010, Evans et al. 2013). Values for 

derived variables were standardized prior to inclusion in SEM runs.

A4.1.3.2 Integrated terrain unit analysis

Integrated terrain unit analyses were conducted using ArcGIS 9.3 for ALD and RTS feature 

distribution among landscape units within lithology, ecotype and glacial geology data layers (Figure 

A4.1.3). Values for each landscape unit within each data layer were extracted using ALD and RTS 

locations from the geodatabase, then tabulated to examine feature distribution among landscape units. 

Percentage feature distribution across units was compared with areal percentages o f units within the study 

region, and a differential between them was calculated for each unit. Differentials were calculated as the 

percentage feature distribution o f each unit divided by the study area percentage o f that unit. These 

differentials informed unit weights assigned to each landscape unit within each data layer for ALD and 

RTS features, respectively (Table A4.1.3). Landscape unit types consisting o f exposed bedrock, open 

water, and snow from the ecotype layer, and active glacier/snowfield from the glacial geology layer, were 

considered obligate unsuitable for ALD and RTS features, and were automatically weighted to 0. The 

unit weights for ecotype, surficial geology and lithology were then combined with the result scaled 0 to 

100, producing an ITU-derived terrain suitability estimate layer for ALD features and a separate ITU- 

derived terrain suitability estimate layer for RTS features throughout the study region.
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A4.1.3.3 Structural equation modelling

SEM was used to test and refine our hypothesized conceptual model o f inter-relationships 

influencing terrain suitability, and incorporated both observed and latent variables (Grace 2006).

Structural equation modeling (SEM) was used to iteratively test hypothesized relationships among 

numeric landscape variables as drivers o f terrain suitability for ALD and RTS processes (Figure A4.1.3). 

SEM is a statistically rigorous method designed to test and refine hypothesized complex, causal inter­

relationships in cases where measured observations may not be available for all factors perceived relevant 

in the modeled relationships (Grace 2006). The technique has been employed effectively in ecosystems 

research including spatially explicit applications, and within arctic and boreal settings (Johnstone et al. 

2009, Lamb et al. 2014). Factors not fully defined by existing measurements are termed ‘latent 

variables’(Grace 2006). These may either be single, well-defined factors for which measurements are not 

available, or they may comprise combined landscape properties (e.g. permafrost conditions) where some 

contributing factors are both measured and known, while others may be known but unmeasured, or if  it is 

suspected that factors beyond those identified may be relevant. It should be noted that this is distinct 

from what are termed ‘composite’ variables; variables comprised o f multiple properties for which all 

properties are known, measured and accounted for. This approach allows a conceptual hypothesis to be 

tested and modified in the absence o f complete data for all relevant factors (Grace 2006). In our models, 

all exogenous variables (those not a product of processes represented in the model) were observed, all 

endogenous variables (those influenced by processes within the model) were latent, and no composite 

variables were used.

Analyses were conducted separately for ALD and RTS datasets using the Lavaan 0.5-16 package 

written for R statistical software (Rosseel 2012). All variables used in SEM analyses were assessed 

against each other prior to SEM runs using Pearson correlation coefficients, calculated from all values 

throughout the study region (Table A4.1.4 and Figure A4.1.1). Pairs of variables with Pearson correlation 

coefficients greater than 0.7 were not used simultaneously in any o f the analysis iterations. Each variable 

was also examined for statistical distribution (normal vs. non-normal) to determine the appropriate 

statistical estimator for analysis.

Numeric data for SEM runs (Table A4.1.1 and Table A4.1.2) were extracted using locations in the 

feature and control point datasets. Feature and control locations were used as response variables, where 

features were assigned a value o f 100, while control locations were assigned 0. The weighted least 

squares estimator, also known as asymptotically distribution free, was chosen as the estimator for all 

analyses in Lavaan due to non-normal distribution o f several numeric variables. Our response variable
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was identified as ‘ordered’, the orthogonal option was set to ‘false’, as no latent variables were exogenous 

within our models. No prior weighting o f variables was used.

SEM runs testing ALD and RTS terrain suitability drivers used our hypothesized conceptual model 

(Figure A4.1.2) as the starting structural equation model. The model was iteratively refined using output 

fit metrics, and R2 values generated for each variable (Joreskog and Sorbom 1996, Grace 2006, Hooper et 

al. 2008). Each model run was evaluated using recommended ‘good-fit’ thresholds for four SEM fit 

metrics: 1) compound fit index, 2) Tucker-Lewis fit index, 3) root mean square error o f approximation 

and 4) standardized root mean square residual (Hooper et al. 2008). Variables were placed within the 

model based upon their group (Figure A4.1.2 and Table A4.1.2). Selection o f variables used in models 

and in model diagrams was refined through subsequent runs until all four fit metrics indicated good 

model fit, with the best fitting model used as the final model for ALDs and RTSs respectively. Final 

models were bootstrapped to confirm good model fit, and to generate multi-run, averaged coefficients and 

intercepts for each exogenous and latent variable. Coefficients and intercepts were plugged into the final 

model diagram for each feature type, and run within ArcGIS 9.3 with data for the entire study region to 

produce SEM-based terrain suitability estimate layers, scaled 0 to 100, for ALD and RTS features 

separately.

A4.1.3.4 Final terrain suitability estimates (combined ITU and SEM results)

Terrain suitability estimates derived from independent ITU and SEM results were combined within 

ArcGIS 9.3 to create final terrain suitability estimates for ALD and RTS features (Figure A4.1.3). For 

each feature type, ITU-derived estimates were multiplied by SEM-derived estimates, and the result scaled 

0 to 100. These final estimates were packaged as a two-band image for color composite display, with 

ALD terrain suitability as band 1, and RTS terrain suitability as band 2.

A4.1.3.5 Terrain suitability thresholds

Numeric thresholds were used to delineate areas o f suitable and highly suitable terrain for each 

feature type, enabling calculations o f areal extent and comparative summaries o f landscape properties 

within suitable and highly suitable terrain for each feature type (Figure A4.1.3). Final terrain suitability 

estimate values for each feature type were extracted using the ALD and the RTS point location datasets. 

Mean and standard deviation o f terrain suitability values were calculated for the extracted ALD and RTS 

feature locations. ‘Suitable terrain’ was defined as all terrain with values greater than or equal to one 

standard deviation below the mean value at feature locations, per feature type. ‘Highly suitable terrain’ 

was defined as terrain with values greater than or equal to the mean value for each feature type.
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A4.1.4 Landscape properties by terrain suitability 

Suitable and highly suitable terrain areas were extracted as new spatial data layers from the final 

ALD and RTS terrain suitability datasets to characterize suitable landscapes (Figure A4.1.3). Areal 

extent for each suitability level was calculated, and the suitability data layers were used to clip thematic, 

spatial datasets used in the prior analyses, and also to clip ancillary datasets o f soil carbon estimates 

(Hugelius et al. 2013) and decadal temperatures (SNAP 2014). Highly suitable terrain was extracted as a 

subset of suitable terrain, and does not represent additional area.

A4.2. Extended results

A4.2.1 Final terrain suitability estimates

Terrain suitability estimates for feature formation in the study region (Figure A4.2.5) include large 

areas o f terrain generally unsuited to either retrogressive thaw slump or active layer detachment 

processes, a significant area highly suited for both types o f feature, and a continuum in between. Roughly 

half o f the study region (51%) was estimated suitable for retrogressive thaw slumps, 35% was estimated 

suitable for active layer detachment slides, and 29% was estimated suitable for both, demonstrating 

significant overlap between RTS and ALD terrain suitability (Table A4.2.5 and Figure A4.2.6).

Estimated area of highly suitable terrain was substantially lower than suitable terrain, at 24% for RTS 

features and 17% for ALD features (Table A4.2.5 and Figure A4.2.6), with 9% spatial overlap between 

highly suitable RTS and ALD terrain (Figures A4.2.6 and A4.2.7). ITU analyses produced slightly larger 

estimates o f suitable terrain area than SEM analyses (Table A4.2.5 and Figure A4.2.6). The final model, 

combining ITU and SEM results, estimated significantly less suitable terrain area than either ITU or SEM 

alone (Table A4.2.5 and Figure A4.2.6), with partial spatial correspondence between ITU-derived and 

SEM-derived estimated areas (Table A4.2.6). Landscape properties related to vegetation, topography, 

hydrology, geomorphology, soil, and air temperature were correlated with observed ALD and RTS 

features, and also with estimated suitable terrain.

A4.2.2 Active layer detachment slide and retrogressive thaw slump terrain descriptions 

Active layer detachment slides and retrogressive thaw slumps both occur across gradients of 

landscape conditions, yet some typical settings can be identified for each. In uplands, the most suitable 

ALD terrain frequently occurs across broad, generally smooth hill slopes, and is sometimes concentrated 

along upper toe slopes beneath exposures o f non-carbonate bedrock on rounded foothills (Figure A4.2.8), 

where ALD features frequently appear in clusters. Soils are typically thin, over near-surface bedrock, and 

are frequently subject to periodic colluvial re-deposition. With increasing distance from the toe slope,
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ALD suitability remains high or mildly attenuates, while RTS suitability typically rises as colluvial 

deposits containing ice-rich, syngenetic permafrost become deeper, and hill slopes include more 

geomorphic variability. Toward valley bottoms, especially in larger valleys, ALD suitability attenuates 

more sharply as RTS suitability rises. This often reflects rougher geomorphological landscape texture, as 

well as shifts toward glacial drift and ice-contact features near valley bottoms, where ice-wedges and 

relict glacial ice may contribute to the ground-ice content of permafrost, where kettle topography often 

develops, and where soil physical properties are more variable. Both ALD and RTS suitability may drop 

markedly in upland drainage bottoms, where deposits o f modern alluvium, fans, glacial outwash, and 

aeolian sands may include minimal topographic and geomorphic variability, and / or offer poor conditions 

for development o f ice-rich cryofacies. As a general toposequence, vegetation grades from moderately 

well-vegetated ericaceous and dryas dwarf shrub-graminoid tundras, through shrub-tussock and low shrub 

tundra on lower hillslopes, with riparian tall shrubs in valley bottoms. Small inclusions o f wet-sedge 

meadow, coinciding with diffuse-flow watertracks, may be observed within larger patches o f tundra 

ecotypes, primarily on mid and upper hillslopes, and have been noted as sites of ALD feature initiation 

(Balser et al. 2009).

In lowland settings, ALD terrain suitability is highest on mild slopes on upper portions o f rolling 

terrain, frequently underlain by glacial drift with a loess cap, where syngenetic cryostructures and an ice- 

rich intermediate layer may be prevalent near the permafrost table (Figure A4.2.9). Predominant ecotypes 

may include dwarf shrub tundra on hilltops flanked by low-shrub and shrub-tussock tundra on descending 

slopes. Inclusions o f wet-sedge meadow within diffuse flow watertracks are rare or absent from these 

settings, though channelized-flow watertracks may be common. ALD suitability typically attenuates 

rapidly moving away downslope, though small patches o f ALD terrain may sometimes be found near 

bluff tops. Suitable RTS terrain is widespread in lowland settings under a variety o f conditions. On 

rolling, higher elevation terrain, patches o f highly suitable RTS terrain appear where geomorphic features 

have begun forming from adjacent hydrothermal erosion, around margins o f dispersed lakes, and in 

patches on mid-hillslopes. These patches frequently occur atop glacial drift or lacustrine and 

glaciolacustrine surfaces. RTS suitability generally increases toward lower slopes and valley bottoms, 

where deposits may include glacial drift, lacustrine and glaciolacustrine surfaces, ice-contact features, and 

occasionally where inactive alluvial surfaces sit atop these deposits. Landscape rugosity is generally high 

in these settings compared with suitable terrain elsewhere in the study region, and is often the result of 

kettle-forming processes. Predominant ecotypes include low-shrub and shrub-tussock tundras, though 

more ecotype variability is evident within suitable RTS terrain in these settings, with isolated pockets of 

white spruce forest included in suitable terrain primarily in the Mission Lowland in southwest portion of
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the study region. Deep, ice-rich permafrost may be both extensive and heterogeneous in these areas, 

comprised o f relict glacial ice, Pleistocene and Holocene ice-wedges, archaic syngenetic and epigenetic 

ice in lacustrine and glaciolacustrine sediments, cave ice, pore ice, and syngenetic cryofacies associated 

with contemporary soils and loess caps.

A4.2.3 Integrated terrain unit (ITU) analysis results

Distributions of ALD and RTS features within ecotype, glacial geology, and lithology units were 

disproportional to the areas o f those landscape units within the study region (Table A4.2.7). Carbonate 

lithologies rarely contained features (< 2% of ALD features and < 1% of RTS features), though carbonate 

lithologies comprise > 10% o f the landscape. Ultramafic lithologies were found to correspond with an 

analogous, exposed bedrock unit from the ecotype layer, which had already been masked out, and were 

thus excluded from further analysis as a discreet lithology unit. More than 95% of ALD features occurred 

on only three surficial geology units: thin soils over near-surface bedrock, colluvium, and glacial drift. Of 

these, occurrences within colluvium were the most disproportionate, containing 20% of ALD 

occurrences, while comprising only 7% of land area in the study region (Table A4.2.7). Disproportion of 

RTS feature distribution by glacial geology was slightly less pronounced, with 97% of features occurring 

across five glacial geology units: alluvium, thin soils over near-surface bedrock, colluvium, glacial drift, 

and lacustrine/glaciolacustrine. O f these, glacial drift was most disproportionate, hosting 46% of RTS 

features but comprising 16% of the land area in the study region (Table A4.2.7). ALD and RTS features 

were preferentially distributed among certain ecotypes as well, with the majority of both feature types 

occurring in three shrub tundra/shrub-tussock tundra units (Table A4.2.7). However, ALD and RTS 

features were more broadly distributed among ecotypes than among glacial geology or lithology units.

A4.2.4 Structural equation modeling (SEM) analysis results

Final SEM models, refined from the original hypothesis describing relationships influencing terrain 

suitability, incorporated geomorphological, topographic, and vegetative factors for both ALD and RTS 

features. The model representing the original hypothesis fell short o f recommended good fit values for 

both ALD and RTS analyses by all four fit measures used. However, refined, final models for both 

feature types were estimated to have good fit by all four SEM fit metrics. For ALD features, the final 

model with best fit (Figure A4.2.10) incorporated the decadal average o f inter-annual peak NDVI, the 

inter-annual variability o f peak NDVI, heat load index, slope, slope position, topographic position index, 

and surface curvature. This model performed consistently well across ten bootstrap runs, with only three 

individual fit values below the recommended good fit threshold, and all mean values across runs 

exceeding the threshold for good fit (Table A4.2.8). The strongest influences on ALD model fit were
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vegetative (average and variability o f inter-annual peak NDVI) and topographic (slope position; Table 

A4.2.9 and Figure A4.2.10). The final model for RTS features (Figure A4.2.11) incorporated variability 

of inter-annual peak NDVI, topographic position index, dissection, compound topographic index, slope 

position and heat load index. This model also incorporated a latent variable for upper permafrost and 

active layer conditions, comprised o f both geomorphological and vegetative factors. The final RTS 

model produced good fit values across all metrics for all bootstrap runs, with mean fit values well in 

excess o f recommended thresholds (Table A4.2.8). Geomorphologic (dissection and topographic position 

index) and topographic (slope position) factors exerted greatest influence on the model (Table A4.2.9). 

Within the final SEM results, the influence o f each individual variable, and o f each groups o f variables, 

differed appreciably. However, iterative testing revealed that good model fit could not be achieved for 

either ALD or RTS features in absence o f any one of the variable groups o f vegetation, topography or 

geomorphology; each was necessary in some form to support an explanatory relationship in the model.

A4.2.5 Terrain suitability values and thresholds

All terrain suitability estimates (ITU, SEM and combined) included overlapping values between 

observed features and control point locations, with values at feature locations skewed toward higher 

suitability and with control point locations skewed toward low suitability. ITU-derived terrain suitability 

included an asymptotal distribution for the lowest suitability values o f control point locations (Figure 

A4.2.12), mainly corresponding with areas masked as obligate unsuitable, while suitability values at ALD 

and RTS feature locations were normally distributed, and mainly within the highest 50% of estimated 

values (Figure A4.2.12). Estimated terrain suitability derived from SEM results was normally distributed 

for both feature locations and for control points, with feature locations skewed toward higher suitability 

values (Figure A4.2.12). Final, combined ITU and SEM terrain suitability estimates produced clear 

separation between feature location and control point values, with ALD features showing especially stark 

separation from control point locations (Figure A4.2.12). ITU analyses produced greater separation 

between features and control than SEM analyses for ALD features, while the opposite was true for RTS 

features. However, both ITU and SEM analyses contributed to separation from control for both ALD and 

RTS features (Figure A4.2.12). Thresholds for suitable and highly suitable terrain, as determined from 

the mean and standard deviation o f values at observed feature locations, include overlap with values at 

control point locations (Figure A4.2.12).

A4.2.6 Landscape properties by final terrain suitability

Values for individual landscape properties, within suitable and highly suitable ALD and RTS 

estimated terrain, ranged from very different to very similar when compared with the entire study region,
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though no single factor emerged as dominant. Glacial geology and lithology both contained landscape 

units disproportionately represented in suitable terrain compared with the study region (Table A4.2.10). 

Nearly all suitable and highly suitable terrain for both feature types occurred within non-carbonate 

lithologies, while three glacial geology units (thin soils over near-surface bedrock, colluvium and drift) 

accounted for almost all suitable ALD terrain, and four glacial geology units (thin soils over near-surface 

bedrock, colluvium, drift and lacustrine/glaciolacustrine) comprised 88% of suitable RTS terrain (Table 

A4.2.10). Over 90% of suitable ALD terrain falls within seven ecotypes, while 90% suitable RTS terrain 

occurs within eight ecotypes, o f which more than 50% is within either dwarf shrub-tussock or low shrub 

tundra ecotypes (Table A4.2.11).

The suitable terrain area within individual landscape units was generally much less than the total 

area o f those individual landscape units in the study region, with differing results between suitable ALD 

and RTS terrain. For example, thin soils over near-surface bedrock contained the single largest 

percentage o f suitable terrain for both ALDs and RTSs, yet less than half o f the total area o f that unit 

within the study region was suitable for either feature type (Table A4.2.10 and Figure A4.2.13). Most of 

the total area o f the upland dwarf birch tussock shrub ecotype was suitable for RTS features, but less than 

half o f it was suitable for ALD features (Table A4.2.11 and Figure A4.2.13). For one landscape unit, the 

upland alder-willow tall shrub ecotype, more than half o f the total area within the study region was not 

only suitable, but highly suitable, for both feature types, though this ecotype covered 2,528 km2, 

comprising only 4% of the study region (Table A4.2.11 and Figure A4.2.13).

Suitable ALD terrain and suitable RTS terrain display separate trends toward certain combinations 

of landscape properties based on numeric variables representing geomorphology, topography and 

vegetation. Suitable ALD terrain (Table A4.2.12) tended toward mid-lower reaches o f watersheds (slope 

position < 0), on well-vegetated surfaces with minimal inter-annual variability in peak growing-season 

greenness (inter-annual average peak NDVI > 0.7, inter-annual standard deviation o f peak NDVI < 0.05), 

just below mid-hillslope locations (topographic position index just below 0.5), on very slightly concave 

surfaces (surface curvature just below 0) . The subset o f highly suitable ALD terrain shows sharp trends 

toward higher inter-annual variability in peak growing-season greenness, slope positions higher up in 

watersheds (slope position > 0), and mild trends toward more concave surfaces (Table A4.2.12). The 

trend toward higher peak NDVI variability is most likely driven by mixed pixels, since much o f the most 

suitable ALD terrain occurs on well-vegetated surfaces immediately below exposed bedrock. The high 

variability then, is more a function o f intra-sample mixing than o f inter-annual variability in the vigor of 

the vegetation.
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Suitable RTS terrain (Table A4.2.12) occurred primarily in lower portions o f watersheds (slope 

position < 0), on well-vegetated surfaces with minimal inter-annual variability in peak growing-season 

greenness (inter-annual average peak NDVI > 0.7, inter-annual standard deviation o f peak NDVI < 0.05), 

in lower portions o f hillslope catenas with high soil wetness (high compound topographic index values), 

just below mid-hillslope locations (topographic position index at or just below 0.5), and at neither the top 

nor bottom of geomorphological features (dissection at or just below 0.5). The smaller subset o f highly 

suitable RTS terrain included slightly higher values for NDVI, topographic position index, dissection and 

compound topographic index, and a significantly lower slope position (Table A4.2.12). Dissection and 

topographic position index (Table A4.1.2) shared a moderately strong, positive Pearson correlation 

coefficient across the entire study region (0.70; Table A4.1.4), but this positive correlation graded steadily 

downward through suitable RTS terrain (0.62), and highly suitable RTS terrain (0.58), to weakly negative 

when calculated only at RTS feature locations (-0.24). Most numeric landscape values for both suitable 

ALD and suitable RTS terrain were consistently different from the mean value for the study region, but 

still within one standard deviation o f the mean value for the study region (Table A4.2.12), and were 

generally comparable with values extracted from observed feature locations (Table A4.2.13).
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Figure A4.1.1. Map of the study region. The study region spans a physiographic gradient from the central portion o f Alaska's Brooks Range 

mountains in Gates of the Arctic National Park and Preserve, westward through the Noatak River Basin in the Noatak National Preserve. 

Physiographic provinces include the high mountains o f the Central Brooks Range in the eastern half o f the study region through foothills and 

valley bottoms to the westward, with the broad, Mission Lowlands within the arctic/boreal ecotone near the Noatak mouth (Wahrhaftig, 1965). 

From the highest elevations (>2,000 m) in the Central Brooks Range, landscapes grade through foothills to glacially-sculpted valley bottoms 

containing major rivers emanating outward to the north, south and west. The study region boundary was determined by the geographic 

intersection o f spatial datasets used in terrain suitability analyses.



Figure A4.1.2. Conceptual Model. Initial conceptual model diagram o f hypothesized landscape drivers 

o f terrain suitability for active layer detachment slide (ALD) and retrogressive thaw slump (RTS) 

features. Boxes represent measurable variables; circles represent properties which include unknown 

factors. Dashed outlines and lines represent factors and relationships not included in the modeling 

analysis. Time and climate are considered drivers for all other properties and processes included in the 

diagram. The five State Factors (Jenny 1941); time, climate, parent material, topography, and biota are 

indicated with an *.
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Figure A4.1.3. Overview of analysis approach for estimating active layer detachment slide (ALD) and retrogressive 
thaw slump (RTS) terrain suitability in the central and western Brooks Range, Alaska. Analysis included four 
general steps.

E) Categorical landscape properties (glacial geology, ecotype and lithology) underwent point-in-polygon analysis 
with our database of observed ALD and RTS feature locations for integrated terrain unit (ITU) analysis within 
the study region. Analytical results were used to assign ALD and RTS weights to all categorical landscape 
units, which were then combined by overlay into two datasets: one for categorically-derived ALD terrain 
suitability estimates, and one for categorically-derived RTS terrain suitability estimates. Values were scaled 0 
to 100, and the layers were rasterized to 60 m grid cells.

F) Continuous, numeric variable values (derived from the National Elevation Dataset DEM and inter-annual 
MODIS NDVI data) were extracted for observed ALD and RTS locations, and for randomly-generated 
landscape control locations. These were run as structural equation model (SEM) iterations to find the model 
diagram with best fit for ALD and RTS features versus control respectively. Final SEM coefficients and 
intercepts were used to generate two datasets: one for SEM-derived ALD terrain suitability, and one for SEM- 
derived RTS terrain suitability.

G) For each feature type (ALD vs RTS), terrain suitability results from A) ITU analysiss and B) SEM analysis 
were scaled 0 to 100, then multiplied together. The resulting, combined (final) terrain suitability datasets (one 
for ALD and one for RTS) were then scaled 0 to 100.

H) Estimated terrain suitability values from each raster dataset (ITU, SEM and combined; for ALD and RTS 
respectively), were extracted using observed feature locations. Mean and standard deviation of values at 
observed features were used to define suitability thresholds. ‘Suitable terrain’ was defined by values greater 
than one standard deviation below the mean for each feature type. ‘Highly suitable terrain’ was defined by 
values greater than the mean for each feature type.
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Figure A4.1.4. Observed active layer detachment slides and retrogressive thaw slumps within the study region in the western Brooks Range and 

foothills o f northern Alaska. Feature locations derive from aerial photo analysis, and airborne and ground based field reconnaissance (Balser et 

al., 2009; Balser et al., 2014) and from high-resolution satellite image analysis by the National Park Service (Swanson & Hill, 2010). The 

analysis dataset contained 2492 active layer detachment slides and 805 retrogressive thaw slumps.
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Figure A4.2.5. Estimated terrain suitability for active layer detachment slides (green) and retrogressive thaw slumps (red) for the study region in 

the western Brooks Range o f northern Alaska.



Figure A4.2.6. Areal estimates o f suitability for active layer detachment (ALD) and retrogressive 

thaw slump (RTS) terrain from integrated terrain unit (ITU) analysis, structural equation modeling 

(SEM) analysis, and from the final, combined model. Estimated values at observed active layer 

detachment slide and retrogressive thaw slump features were used to define “suitable” and “highly 

suitable” terrain. “Suitable” was defined as estimated values greater than or equal to one standard 

deviation below the mean. “Highly suitable” was defined as estimated values greater than or equal 

to the mean. ALD and RTS terrain share significant overlap, as shown by bars representing terrain 

which is suitable/highly suitable for both ALD and RTS.
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Figure A4.2.7. Areas estimated as highly suitable terrain for A) active layer detachment slides (green) and B) retrogressive thaw slumps (red) 

for the study region in the western Brooks Range o f northern Alaska.
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Figure A4.2.8. Active layer detachment slide (ALD) and retrogressive thaw slump (RTS) terrain suitability in an 
upland setting.

C) Estimated terrain suitability for active layer detachment slides (green) and retrogressive thaw slumps (red) and for both 
(yellow) near the headwaters of the Nigu River in the northwest portion of Gates of the Arctic National Park and Preserve, west- 
central Brooks Range, northern Alaska; (1) A cluster of active layer detachment slides within colluvial deposits (s), upslope of 
late-Pleistocene outwash deposits (ioi) (Hamilton, 2011), along a toe slope bemeath exposed and partially-exposed, non­
carbonate bedrock (Jorgenson et al., 2001), (dark, upland features on the map). The surface is generally smooth latitudinally 
across the hillslope, with some convacity longitudinally down the hillslope, where slope angle decreases slightly at the toe below 
exposed bedrock. Predominant ecotypes include upland birch-ericaceous-willow low shrub, upland dwarf birch-tussock shrub, 
and alpine ericaceous dwarf shrub (Jorgenson et al., 2010); (2) Similar conditions to (1), but the presence of several RTS features 
suggest locally deeper, ice-rich colluvial deposits where permafrost exposed by active layer detachment sliding is vulnerable to 
retrogressive thaw slumping; (3) Similar geomorphic conditions to (1) and (2), but underlain by a combination of thin soils over 
near-surface bedrock and late-Pleistocene glacial drift (id1) (Hamilton, 2011), and with primarily alpine dryas dwarf shrub and 
upland birch-ericaceous-willow low shrub ecotypes (Jorgenson et al., 2010); (4) Retrogressive thaw slumps within valley- 
bottom, ice-contact, kame and kame terrace deposits (ik3) and glacial drift (id3), both of the late-Pleistocene (Hamilton, 2011). 
Small, mild hills interspersed with ponds and lakes characterize this kettle-lake area. Predominant ecotypes include upland dwarf 
birch-tussock tundra, upland birch-ericaceous-willow low shrub, lowland birch-ericaceous-willow low shrub and lowland sedge 
fen (Jorgenson et al., 2010).

D) Active layer detachment slides in thin deposits of upper hillslope colluvium, along (1) a toe slope below non-carbonate, 
exposed bedrock (micaeuous shale) 50 km west of the map frame (A) in the upper Fauna Creek drainage in the Noatak Basin, 
northwest Alaska. The hill is a smooth, 6° slope, with tracks from migrating caribou visible across the hillslope at the bottom of 
the image. (2) Predominantly upland birch-ericaceous-willow low shrub, with graminoid cover > 50% over much of the area.
(3) Wet sedge meadow along a watertrack below the feature. This active layer detachment is 483 m long from the headwall to 
the bottom of the run out, 58 m wide at the widest point, near the headwall, and 3.5 m deep at the deepest point, also near the 
headwall. Recorded at the headwall, the active layer depth was 110 cm deep, including a 33 cm organic layer, loess from 33 to 
60 cm, and colluvially re-transported gravel (55%) and silt (45%) from 60 to 100 cm. Below the permafrost table, ice-rich, 
syngenetic permafrost is composed of segregated ice (50 to 70%, ataxitic and reticulate), gravel (25 to 35%), and silt (15 to 25%). 
These conditions continued to the bottom of the headwall profile at 248 cm. Photo: Andrew Balser, 2011.
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Figure A4.2.9. Active layer detachment slide (ALD) and retrogressive thaw slump (RTS) terrain suitability in a 
lowland setting.

A) Estimated terrain suitability for active layer detachment slides (green) and retrogressive thaw slumps (red) and both 
(yellow) at the western edge of the Aniuk Lowland, adjacent to the mainstem Noatak River in the Noatak National Preserve, 
northwest Alaska. (1) Retrogressive thaw slumps along a bluff adjacent to the Noatak River, within late-Pleistocene 
glaciolacustrine deposits (igl1B and igl2) which over-drape late-Pleistocene glacial drift deposits (id1B)(Hamilton, 2010). 
Progressive down-cutting and hydro-thermal erosion since the Pleistocene have left a bluff complex 15 -  80 m tall (Hamilton, 
2009) containing ice-rich, deep permafrost. Behind the bluff are mild hills and smaller geomorphic features among small ponds 
and lakes. Predominant ecotypes are upland dwarf birch-tussock shrub and upland birch-ericaceous-willow low shrub (Jorgenson 
et al., 2010). These conditions cover the majority of terrain north of the Noatak River within the map frame. (2) Retrogressive 
thaw slumps on the margins of kettle lakes within late-Pleistocene glacial drift deposits (id1B). A patch of suitable ALD terrain is 
visible on a bluff top on the south side of the Noatak River, north of Lake Kangilipak and east of several, smaller lakes. Surface 
conditions include mild hills and smaller geomorphic features among small ponds and lakes, and predominant ecotypes are 
upland dwarf birch-tussock shrub and upland birch-ericaceous-willow low shrub (Jorgenson et al., 2010).

B) A retrogressive thaw slump on a kettle lake within a glacial drift deposit (id1B); indicated by an arrow on the map (A). 
(1) Gently sloped hilltop just upslope of the retrogressive thaw slump with primarily dwarf and low shrub-tussock tundra 
ecotypes (Jorgenson et al., 2010). Geomorphic features become more pronounced approaching the Noatak River bluffs in the 
distance. (2) Mixed low shrub and dwarf shrub tundra ecotypes along a mid-hillslope with moderate, meso-scale geomorphic 
variability. Hill slope is roughly 9°. (3) Retrogressive thaw slump which has been active since at least 1980 (Balser et al., 2014). 
Dimensions were 191 m at the widest point, 122 m long from the apex of the headwall to the end of the run out fan, and 18 m 
deep at the deepest location along the headwall, with the headwall retreating roughly 12 m between the summers of 2006 and 
2011. Deposits within the headwall are comprised of 60% massive ice, where roughly two thirds are Pleistocene and Holocene 
ice wedges, and roughly one third is relict glacial ice. The widest deposit of massive ice was 2.5 m across. The glacial drift 
included up to 55% angular and sub-angular coarse fragments, at clast sizes from gravel up to boulders of over 50 cm. Within 1 
m of the surface, deposits were composed of Aeolian loess and sand (> 1 m), active layer depth of roughly 45 cm, with primarily 
pore and lenticular ice and occasional pockets of reticulate ice below the permafrost table. The surface was covered with a 
relatively thin organic layer (roughly 4 cm) (Balser et al., 2015). Photo: Andrew Balser, 2010.

170



Figure A4.2.10. Final, fitted structural equation model (SEM) diagram for active layer detachment slide 

(ALD) terrain suitability (as represented by field observations versus randomly generated control point 

locations for model fitting). Bracketed labels refer to boxes in the original hypothesis and conceptual 

model hypothesis diagram (Figure A4.1.2). Boxes represent observed, exogenous variables, while circles 

represent latent, endogenous variables. Line weights represent the strength o f the modeled causal 

relationship. Numbers next to lines are final model coefficients, averaged from ten bootstrapped model 

runs using standardized data. S represents unknown measurement error for observed, exogenous 

variables. Z represents unknown error for latent, endogenous variables.
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Figure A4.2.11. Final, fitted structural equation model (SEM) diagram for retrogressive thaw slump 

(RTS) terrain suitability (as represented by field observations versus randomly generated control point 

locations for model fitting). Bracketed labels refer to boxes in the original hypothesis and conceptual 

model hypothesis diagram (Figure A4.1.2). Boxes represent observed, exogenous variables, while circles 

represent latent, endogenous variables. Line weights represent the strength o f the modeled causal 

relationship. Numbers next to lines are final model coefficients, averaged from ten bootstrapped model 

runs using standardized data. S represents unknown measurement error for observed, exogenous 

variables. Z represents unknown error for latent, endogenous variables.
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A) ITU B) SEM C) ITU / SEM Combined (Final)

Figure A4.2.12. Frequency distributions o f estimated terrain suitability for active layer detachment slide features, retrogressive thaw slump 

features, and randomly generated landscape control points within the study region in the central and western Brooks Range, Alaska. A) Terrain 

suitability estimated with integrated terrain unit (ITU) analysis o f categorical variables. B) Terrain suitability estimated using structural equation 

modeling analysis coefficients o f numeric landscape variables. C) Final estimates o f terrain suitability combining results from A. and B. 

Estimated values at observed active layer detachment slide and retrogressive thaw slump features were used to define “suitable” and “highly 

suitable” terrain. “Suitable” was defined as estimated values greater than or equal to one standard deviation below the mean. “Highly suitable” 

was defined as estimated values greater than or equal to the mean.
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Figure A4.2.13. Areal extent o f categorical landscape properties by active layer detachment slide (ALD) and retrogressive thaw slump (RTS) 

terrain suitability, and for the study region in the central and western Brooks Range, Alaska. A) Distribution among the four most prevalent 

ecotypes within suitable terrain. B) Distribution among the four most prevalent glacial geology units within suitable terrain, and distribution of 

noncarbonate lithology. Estimated values at observed active layer detachment slide and retrogressive thaw slump features (i.e. excluding the 

randomly generated control point locations) were used to define “suitable” and “highly suitable” terrain. “Suitable” was defined as estimated 

values greater than or equal to one standard deviation below the mean. “Highly suitable” was defined as estimated values greater than or equal to 

the mean.
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Table A4.1.1. Input data sets used for terrain suitability analyses for active layer detachment slides (ALD) and retrogressive thaw slumps (RTS) 

within the study region in the central and western Brooks Range o f northern Alaska.

Dataset Cell Size Source Type Reference
ALD and RTS Feature Locations n / a University of Alaska Fairbanks /

U.S. National Park Service (Arctic Network)
ArcGIS point geodatabase (Balser, 2009; Swanson and Hill, 

2010)

Glacial / Surficial Geology n / a U.S. Geological Survey, Alaska Science Center ArcGIS polygon geodatabase (Hamilton, 2010; Hamilton and 
Labay 2011)

Lithology n / a Alaska Biological Research Inc. /
U.S. National Park Service, Arctic Network

ArcGIS polygon shapefile (Jorgenson et al., 2001)

Ecotype 30m Alaska Biological Research Inc. /
U.S. National Park Service, Arctic Network

ArcGIS raster geodatabase (Jorgenson et al., 2010)

National Elevation Dataset (NED) 60m U.S. Geological Survey, EROS Data Center ArcGIS raster image (Gesch et al., 2002)

2001 - 2012 Normalized Difference 
Vegetation Index (NDVI), 
Moderate-resolution Imaging 
Spectrometer (MODIS)

250m U.S. Geological Survey, EROS Data Center ArcGIS raster image (Jenkerson et al., 2010)
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Table A4.1.2. Derived variables used in structural equation model (SEM) analyses. All variables derive from either A) National Elevation Dataset (NED) data 
from the U.S. Geological Survey, or B) Moderate-resolution Imaging Spectrometer (MODIS) 2001-2012 monthly Normalized Difference Vegetation Index 
(NDVI) data (Table A4.1.1). ‘Group’ refers to boxes in Figure A4.1.2. * resampling was conducted after calculation of statistical values using the ‘cubic 
convolution’ method.

Variable Group Calculation Source Data 
Cell Size (m)

Derived Variable 
Cell Size (m)

Cell Neighborhood 
of Calculation

Compound Topographic Index (CTI) 
(Moore et al., 1993)

Hydrology ln(Facc / tan(sloperad)), where:
Facc = flow accumulation 
sloperad = slope in radians

60 60 Contributing watershed 
(values smoothed using 
3 x 3 focalmean kernel)

Surface Curvature 
(McNab, 1993)

Geomorphology Concavity / Convexity
(Bolstad’s Variant)

60 60 5 x 5

Dissection (m) 
(Evans, 1972)

Geomorphology (z -  zmn) / ( zmax -  z^), where: 
z = cell elevation 
zmax = neighborhood max. elev. 
zmin = neighborhood min. elev.

60 60 3 x 3

Topographic Position Index (TPI)(m) 
(Jenness, 2006)

Geomorphology (zmean — zmin) / ( zmax — zmin), Where:
zmean= neighborhood mean elev. 
zmax = neighborhood max. elev. 
zmin = neighborhood min. elev.

60 60 5 x 5

Elevation (m) Topography Data value from NED dataset 60 60 not derived

Heat Load Index (HLI)
(McCune & Keon, 2002)

Topography (1-cos(aspect -  45)) / 2, where:
Aspect = degrees from north

60 60 3 x 3

Slope ° Topography (arctan(Rise / Run) x 57.29578) 60 60 3 x 3

Slope Position (m) Topography z - zmean, where:
z = cell elevation
zmean= neighborhood mean elev.

60 60 500 x 500

NDVI Annual Peak, 2001-2013 Vegetation Maximum NDVI per pixel, per year 250 1 x 1

- Average
- Maximum
- Minimum
- Standard Deviation
- Range

Average peak value among years 
Maximum peak value among years 
Minimum peak value among years 
SD of peak values among years 
Range of peak values among years

60*
60*
60*
60*
60*



Table A4.1.3. Variables and values used for categorical analysis of terrain suitability for the study region in the 
central and western Brooks Range, Alaska. Numeric values were assigned based on point-in-polygon overlay 
analyses using points from our active layer detachment slide (ALD)/retrogressive thaw slump (RTS) GIS database, 
and using GIS datasets available for the study region (as cited below).

ALD RTS
Lithology * Noncarbonate 1 1

Carbonate 0.02 0.02

Glacial Geology f Alluvium 0.02 1
Near-surface Bedrock 1 1
Colluvium 1 1
Glacial Drift 1 1
Fan Deposits 0.02 0.02
Gravel 0.02 0.02
Ice Contact 0.02 1
Inwash / Outwash 0.02 0.02
Lacustrine / Glaciolacustrine 0.02 1
Organic 0.02 1
Other (Active Glacier / Snowfield) 0 0
Sand 0.02 0.02
Silt 0.02 0.02
Terrace 0.02 0.02

Ecotype J Alpine Lake 0.0 0.0
Alpine Rocky Circumneutral Wet Sedge Meadow 1.5 1.0
Alpine Rocky Dry Acidic Barrens 0.1 0.0
Alpine Rocky Dry Alkaline Barrens 0.0 0.0
Alpine Rocky Dry Dryas Dwarf Shrub 1.1 0.8
Alpine Rocky Dry Mafic Barrens 0.0 0.0
Alpine Rocky Moist Ericaceous Dwarf Shrub 2.5 1.4
Lowland Acidic Ericaceous Shrub Bog 0.0 0.2
Lowland Circumacidic Sedge Fen 0.0 2.8
Lowland Lake 0.0 0.0
Lowland Moist Dwarf Birch-Ericaceous-Willow Low Shrub 0.0 0.8
Lowland Moist Sedge-Dryas Meadow 0.0 0.2
Lowland Organic-rich Wet Acidic Black Spruce Forest 0.0 0.2
Lowland Organic-rich Wet Circumacidic Alder Tall Shrub 0.0 0.2
Lowland Organic-rich Wet Circumacidic Willow Low Shrub 0.0 0.2
Riverine Gravelly Dry Alkaline Dryas Dwarf Shrub 0.0 0.2
Riverine Gravelly Moist Circumalkaline Barrens 0.0 0.0
Riverine Gravelly-loamy Moist Circumalkaline Poplar Forest 0.0 0.2
Riverine Gravelly-loamy Moist Circumalkaline White Spruce-Poplar Forest 0.0 0.2
Riverine Gravelly-loamy Moist Circumalkaline White Spruce-Willow Forest 0.0 0.2
Riverine Gravelly-loamy Moist Circumalkaline Willow Low Shrub 0.0 0.9
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Ecotype J Riverine Loamy Moist Alder or Willow Tall Shrub 0.0 1.6
Riverine Loamy Moist Circumacidic Birch-Willow Low Shrub 0.0 2.0
Riverine Loamy Wet Circumacidic Wet Sedge Meadow 0.0 0.2
Riverine Water 0.0 0.0
Shadow/Indeterminate 0.0 0.0
Snow 0.0 0.0
Upland Loamy Moist Circumalkaline Willow Low Shrub 1.5 1.4
Upland Moist Dwarf Birch-Ericaceous-Willow Low Shrub 1.9 2.0
Upland Organic-rich Moist Acidic Dwarf Birch-Tussock Shrub 1.5 1.0
Upland Rocky-loamy Moist Alkaline Sedge-Dryas Meadow 1.0 1.6
Upland Rocky-loamy Moist Circumacidic Alder-Willow Tall Shrub 2.3 1.7
Upland Rocky-loamy Moist Circumacidic Birch F orest 0.0 0.2
Upland Rocky-loamy Moist Circumacidic Spruce-Birch Forest 0.0 0.2
Upland Rocky-loamy Moist White Spruce Forest 0.3 0.8

_______________ Upland Sandy Dry Acidic White Spruce-Lichen Woodland_______________________0^______02

* (Jorgenson et al., 2001) 
f (Hamilton & Labay, 2011; Hamilton, 2010) 
J (Jorgenson et al., 2010)
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Table A4.1.4. Pearson correlation coefficients for variables tested with structural equation modeling, calculated for the entire study region. Values greater than 
0.5 or less than -0.5 are shown in bold.

Hydrology, Topography and Geomorphology NDVI Annual Peak 2001-2012
Slope

CTI Curv. Diss. Elev. HLI Slope ° Pos. TPI Ave Max Min Range Std.
CTI 1.00

Curv. -0.30 1.00

Diss. -0.42 0.52 1.00
Hyd.
Topo. Elev. -0.57 0.12 0.17 1.00

&
Geom.

HLI -0.08 0.00 0.01 0.07 1.00

Slope ° -0.76 0.05 0.13 0.64 0.10 1.00

SPos. -0.49 0.23 0.24 0.57 0.06 0.48 1.00

TPI -0.35 0.27 0.70 0.18 0.01 0.13 0.28 1.00

Ave 0.34 -0.05 -0.07 -0.61 -0.09 -0.45 -0.57 -0.08 1.00
NDVI
Ann.

Max 0.20 -0.01 -0.04 -0.37 -0.09 -0.27 -0.36 -0.06 0.70 1.00

Peak Min 0.37 -0.07 -0.08 -0.66 -0.06 -0.51 -0.60 -0.09 0.97 0.63 1.00
2001­
2012 Range -0.32 0.09 0.06 0.52 -0.02 0.44 0.44 0.06 -0.54 -0.02 -0.68 1.00

Std. -0.32 0.10 0.07 0.51 -0.03 0.44 0.44 0.07 -0.52 -0.03 -0.66 0.96 1.00

Table A4.2.5. Areal estimates of active layer detachment slide (ALD) and retrogressive thaw slump (RTS) terrain suitability for integrated terrain unit (ITU) and 
structural equation model (SEM) analyses, and for the final model which combines ITU and SEM results.

ITU SEM Final
(Combined ITU & SEM)

Highly Suitable Suitable Highly Suitable Suitable Highly Suitable Suitable
km2 (% study region) km2 (% study region) km2 (% study region) km2 (% study region) km2 (% study region) km2 (% study region)

ALD Terrain 30,937 (49) 44,843 (70) 20,346 (32) 35,549 (56) 11,046 (17) 22,464 (35)
RTS Terrain 32,757 (51) 47,760 (75) 24,513 (38) 41,156 (65) 15,537 (24) 32,174 (51)
ALD & RTS Terrain n/a n/a n/a n/a 5,841 (9) 18,235 (29)
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Table A4.2.6. Pearson correlations for active layer detachment slide (ALD) and 
retrogressive thaw slump (RTS) terrain suitability estimates from integrated terrain unit
(ITU) and structural equation model (SEM) analyses.

ITU

ALD RTS

SEM

ALD RTS
ALD 1

ITU
RTS 0.695 1

ALD 0.440 0.461 1
SEM

RTS 0.007 0.289 -0.063 1
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Table A4.2.7. Categorical landscape properties as a percentage study region, by percentage retrogressive thaw slump (RTS) and active layer detachment slide 
(ALD) distribution, and differential (Feature % / Study Area %). Ecotypes which are present within the study region but comprise less than 0.5% feature 
distribution are excluded from this table.

Ecotype % of Study Region % of RTS Features % Differential % of ALD Features % Differential
Alpine Dryas Dwarf Shrub 19.0 15.7 0.8 20.0 1.1
Alpine Ericaceous Dwarf Shrub 0.0 0.0 0.0 5.0 2.5
Alpine Ericaceous Dwarf Shrub 2.0 2.8 1.4 0.0 0.0
Alpine Wet Sedge Meadow 1.0 1.0 1.0 1.0 1.5
Lowland Birch-Ericaceous-Willow Low Shrub 3.0 2.4 0.8 0.0 0.0
Lowland Sedge Fen 1.0 2.8 2.8 0.0 0.0
Riverine Alder or Willow Tall Shrub 1.0 1.6 1.6 0.0 0.0
Riverine Birch-Willow Low Shrub 1.0 2.0 2.0 0.0 0.0
Riverine Wet Sedge Meadow 1.0 1.2 1.2 0.0 0.0
Riverine Willow Low Shrub 1.0 0.9 0.9 0.0 0.0
Upland Alder-Willow Tall Shrub 4.0 6.8 1.7 9.0 2.3
Upland Birch-Ericaceous-Willow Low Shrub 12.0 23.7 2.0 23.0 1.9
Upland Dwarf Birch-Tussock Shrub 19.0 19.2 1.0 29.0 1.5
Upland Sedge-Dryas Meadow 6.0 9.6 1.6 6.0 1.0
Upland White Spruce Forest 4.0 3.0 0.8 1.0 0.3
Upland Willow Low Shrub 0.0 0.0 0.0 3.0 1.5
Upland Willow Low Shrub 2.0 2.9 1.4 0.0 0.0

Glacial Geology % of Study Region % of RTS Features % Differential % of ALD Features % Differential
Alluvium 6.1 7.0 1.1 1.0 0.2
Thin Soil over Near-surface Bedrock 53.8 26.0 0.5 54.0 1.0
Colluvium 6.9 7.0 1.0 20.0 2.9
Glacial Drift 16.4 46.0 2.8 22.0 1.3
Fan Deposits 1.8 0.3 0.2 0.2 0.1
Gravel 0.1 0.1 0.7 0.0 0.0
Ice Contact 0.5 1.0 2.1 0.0 0.1
Inwash / Outwash 1.5 0.4 0.3 0.1 0.1
Lacustrine / Glaciolacustrine 9.4 11.0 1.2 2.0 0.2
Organic 0.0 0.0 0.0 0.0 0.0
Other (Active Glacier / Snowfield) 0.7 0.0 0.0 0.5 0.7
Sand 0.6 0.2 0.3 0.0 0.0
Silt 1.0 0.0 0.0 0.0 0.0
Terrace 1.2 1.0 0.8 0.0 0.0

Lithology % of Study Region % of RTS Features % Differential % of ALD Features % Differential
Noncarbonate 89.8 99.2 1.1 98.3 1.1
Carbonate 10.2 0.8 0.1 1.7 0.2
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Table A4.2.8. Structural equation model fit metrics (Hooper et al., 2008) from ten bootstrapped model runs for active layer detachment slide 

(ALD) and ten bootstrapped model runs for retrogressive thaw slump (RTS) terrain suitability in the central and western Brooks Range, Alaska. 

The ALD model uses 2492 observed ALD feature locations, and an equal number o f randomly generated, non-ALD control locations. The model 

uses 805 observed RTS feature locations, and an equal number o f randomly generated, non-RTS control locations. Coefficients and intercepts 

from the ten bootstrap runs were used to produce ALD and RTS terrain suitability estimates, mapped for the study region (Figure A4.2.5). Mean 

values for the ten runs shown in bold.

Fit metric; recommended threshold value for good fit 1 2 3 4
SEM ALD Bootstrap Run 

5 6 7 8 9 10 mean

Comparative Fit Index (CFI); > 0.950 0.977 0.970 0.977 0.973 0.972 0.971 0.979 0.976 0.971 0.978 0.974

Tucker-Lewis Index (TLI); > 0.950 0.958 0.952 0.959 0.953 0.942f 0.955 0.946f 0.959 0.948f 0.957 0.953

Root mean square error of approximation (RMSEA); < 0.07 0.037 0.036 0.037 0.033 0.037 0.030 0.035 0.035 0.037 0.036 0.035

Standardized Root Mean Square Residual (SRMR); < 0.50 0.029 0.029 0.033 0.029 0.032 0.032 0.031 0.031 0.028 0.032 0.031
SEM RTS Bootstrap Run

Fit metric; recommended threshold value for good fit 1 2 3 4 5 6 7 8 9 10 mean

Comparative Fit Index (CFI); > 0.950 0.994 0.991 0.982 0.990 0.990 0.991 0.983 0.977 0.988 0.983 0.987

Tucker-Lewis Index (TLI); > 0.950 0.980 0.968 0.979 0.974 0.980 0.972 0.986 0.967 0.976 0.975 0.976

Root mean square error of approximation (RMSEA); < 0.07 0.027 0.030 0.032 0.034 0.033 0.049 0.038 0.044 0.063 0.043 0.039

Standardized Root Mean Square Residual (SRMR); < 0.50 0.019 0.036 0.031 0.026 0.030 0.030 0.023 0.031 0.026 0.028 0.028
f does not meet recommended value for good fit
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Table A4.2.9. Structural equation model R2 values from ten bootstrapped model runs for active layer detachment slide (ALD) 

and ten bootstrapped model runs for retrogressive thaw slump (RTS) terrain suitability in the central and western Brooks Range, 

Alaska. R2 represents the variation among endogenous variables in the model explained by that factor (Joreskog and Sorbom, 

1996). The ALD model uses 2492 observed ALD feature locations, and an equal number o f randomly generated, non-ALD

control locations. The RTS model uses 805 observed RTS feature locations, and an equal number of randomly generated, non- 

RTS control locations. Mean values for the ten runs shown in bold.

Variable 1 2 3

SEM ALD Bootstrap Run R2 Values 

4 5 6 7 8 9 10 mean
Peak NDVI Inter-annual average 0.61 0.59 0.61 0.59 0.59 0.60 0.60 0.60 0.56 0.54 0.59
Peak NDVI Inter-annual standard deviation 0.35 0.40 0.37 0.41 0.42 0.41 0.43 0.43 0.40 0.42 0.40
Curvature 0.29 0.35 0.29 0.27 0.28 0.32 0.33 0.30 0.34 0.38 0.31
Topographic Position Index (TPI) 0.29 0.24 0.26 0.28 0.30 0.27 0.29 0.29 0.24 0.24 0.27
Slope Position 0.50 0.52 0.52 0.50 0.52 0.54 0.51 0.48 0.51 0.51 0.51
Heat Load Index (HLI) 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00
Slope (°) 0.17 0.18 0.18 0.19 0.19 0.17 0.16 0.17 0.17 0.19 0.18

SEM RTS Bootstrap Run R2 Values

Variable 1 2 3 4 5 6 7 8 9 10 mean
Peak NDVI Inter-annual standard deviation 0.07 0.05 0.08 0.06 0.06 0.04 0.07 0.09 0.06 0.05 0.06

Topographic Position Index (TPI) 0.68 0.63 0.74 0.71 0.72 0.68 0.70 0.74 0.66 0.70 0.69

Dissection 0.88 0.88 0.83 0.84 0.80 0.79 0.73 0.82 0.85 0.80 0.82

Slope Position 0.39 0.36 0.48 0.40 0.44 0.33 0.37 0.39 0.46 0.40 0.40

Heat Load Index (HLI) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

Compound Topographic Index (CTI) 0.35 0.39 0.35 0.42 0.34 0.40 0.37 0.37 0.34 0.34 0.37
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Table A4.2.10. Areal extent of glacial geology units and noncarbonate lithologies within the study region, and by terrain suitability for active layer detachment 

slides (ALD) and retrogressive thaw slumps (RTS) in the central and western Brooks Range, Alaska. * (Hamilton, 2009; Hamilton and Labay, 2010), f 

(Jorgenson et al., 2001)

Glacial Geology* Study Region Active Layer Detachment Slide Terrain Retrogressive Thaw Slump Terrain
Highly Suitable Suitable Highly Suitable Suitable

km2 % km2 % | km2 % km2 % | km2 %
Alluvium 3,899 6 1 0 19 0 801 5 1,732 5
Thin soils over near-surface bedrock 34,244 54 7,916 72 14,908 66 5,263 34 12,705 39
Colluvium 4,388 7 1,041 9 2,135 10 1,471 9 2,716 8
Drift 10,464 16 2,085 19 5,353 24 4,462 29 8,144 25
Fan 1,121 2 1 0 17 0 12 0 107 0
Gravel 86 0 0 0 2 0 1 0 11 0
Ice contact 308 0 0 0 2 0 130 1 235 1
Inwash / outwash 985 2 0 0 9 0 8 0 89 0
Lacustrine / glaciolacustrine 5,998 9 0 0 11 0 2,709 17 5,254 16
Organic 8 0 0 0 0 0 1 0 1 0
Other 552 1 0 0 0 0 0 0 0 0
Sand 367 1 0 0 0 0 0 0 4 0
Silt 634 1 0 0 5 0 293 2 525 2
Terrace 755 1 0 0 3 0 386 2 642 2
Total 63,707 100 11,046 100 22,464 100 15,536 100 32,166 100

Lithologyf
Noncarbonate 57,336 90 10,988 100 22,343 100 15,443 100 31,970 100
Carbonate 6,371 10 1 0 5 0 1 0 6 0
Total 63,707 100 10,989 100 22,348 100 15,444 100 31,976 100
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Table A4.2.11. Areal extent o f ecotypes within the study region, and by terrain suitability for active layer detachment slides and retrogressive thaw 

slumps. Ecotypes which are present in the study region but comprised less than 1% of suitable terrain are excluded from this table. * (Jorgenson 

et al., 2010)

Ecotype* Study Region Active Layer Detachment Slide Terrain Retrogressive Thaw Slump Terrain
Highly Suitable Suitable Highly Suitable Suitable

km2 % km2 % | km2 % km2 % | km2 %
Upland Birch-Ericaceous-Willow Low Shrub 7,560 12 3,271 30 5,080 23 4,549 29 6,555 20
Upland Dwarf Birch-Tussock Shrub 12,375 19 2,567 23 5,022 22 4,705 30 10,306 32
Alpine Dryas Dwarf Shrub 11,806 19 1,688 15 5,443 24 816 5 3,786 12
Upland Alder-Willow Tall Shrub 2,528 4 1,332 12 1,778 8 1,374 9 2,116 7
Alpine Ericaceous Dwarf Shrub 1,583 2 706 6 1,165 5 142 1 715 2
Upland Willow Low Shrub 1,221 2 446 4 694 3 644 4 983 3
Upland Sedge-Dryas Meadow 3,555 6 442 4 1,388 6 1,451 9 2,580 8
Upland White Spruce Forest 2,813 4 289 3 755 3 370 2 1,579 5
Alpine Wet Sedge Meadow 538 1 120 1 292 1 78 1 243 1
Alpine Acidic Barrens 6,950 11 95 1 465 2 36 0 217 1
Lowland Birch-Ericaceous-Willow Low Shrub 1,750 3 17 0 100 0 443 3 1,122 3
Lowland Alder Tall Shrub 323 1 10 0 28 0 71 0 181 1
Lowland Willow Low Shrub 262 0 4 0 16 0 68 0 163 1
Lowland Sedge Fen 684 1 3 0 21 0 330 2 470 1
Lowland Ericaceous Shrub Bog 333 1 0 0 3 0 96 1 176 1
Riverine Birch-Willow Low Shrub 437 1 0 0 0 0 154 1 271 1
Total 54,717 87 10,990 99 22,251 99 15,328 99 31,462 98
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Table A4.2.12 Numeric landscape properties within the study region, and by terrain suitability for active layer detachment slides and retrogressive

thaw slumps. Original source data from: * (Hugelius et al., 2013), and I (Jorgenson et al., 2010).

Landscape Property Study Region Active Layer Detachment Slide Terrain Retrogressive Thaw Slump Terrain
Highly Suitable Suitable Highly Suitable Suitable

mean std mean std | mean std mean std | mean std
Peak NDVI Inter-annual Ave. f 0.700 0.155 0.801 0.046 0.777 0.061 0.790 0.048 0.780 0.056
Peak NDVI Inter-annual SD f 0.062 0.033 0.175 0.045 0.048 0.016 0.046 0.014 0.049 0.015
Heat Load Index (HLI) f 5,257 1,320 5,276 1,266 5,254 1,248 5,090 842 5,144 940
Topographic Position Index (TPI) f 0.47 0.10 0.48 0.07 0.48 0.08 0.50 0.09 0.49 0.09
Dissection f 0.47 0.16 0.49 0.11 0.49 0.12 0.50 0.15 0.48 0.15
Compound Topographic Index (CTI) f 7.1 1.9 6.8 1.3 6.8 1.3 7.8 1.5 7.6 1.5
Surface Curvature f 0.01 2.10 -0.12 1.53 -0.09 1.68 -0.16 1.09 -0.17 1.26
Slope (°)f 13.1 10.9 13.2 8.0 13.0 8.4 7.7 6.9 8.7 7.7
Slope Position f 0.4 217.0 8.5 143.2 -5.1 159.5 -83.7 133.4 -73.1 146.8
Soil Organic Carbon Top 2m (kg/m2) * 10.2 10.5 8.9 8.8 8.8 9.3 8.7 8.7 8.6 9.2
Soil Organic Carbon Top 3m (kg/m2) * 11.2 11.5 9.9 9.6 9.7 10.1 9.6 9.4 9.4 10.0
Surface Organic Depth (cm) I 9.6 7.0 10.9 4.4 10.2 4.8 13.5 5.2 13.1 5.8
pH I 5.5 0.9 5.1 0.3 5.2 0.4 5.2 0.6 5.2 0.6

f Included in structural equation modelling (SEM)
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Table A4.2.13. Numeric landscape properties for randomly-assigned control locations, and for observed active layer detachment slide and

retrogressive thaw slump features. Original source data from: * (Hugelius et al., 2013), and J (Jorgenson et al., 2010).

Landscape Property Control
mean std

Active Layer Detachment Slides 
mean std

Retrogressive Thaw Slumps 
mean std

Peak NDVI Inter-annual Ave. f 0.700 0.157 0.776 0.051 0.768 0.050
Peak NDVI Inter-annual SD f 0.062 0.035 0.048 0.015 0.051 0.018
Heat Load Index (HLI) f 5,253 1,322 5,228 1,143 5,103 998
Topographic Position Index (TPI) f 0.47 0.11 0.47 0.06 0.47 0.09
Dissection f 0.47 0.16 0.47 0.08 0.47 0.14
Compound Topographic Index (CTI) f 7.1 1.9 7.3 1.1 7.6 1.1
Surface Curvature f -0.01 2.12 -0.42 0.92 -0.37 0.98
Slope (°)f 13.2 10.9 11.9 7.1 9.8 5.6
Slope Position f 0.2 216.3 -44.2 133.9 -113.6 126.2
Soil Organic Carbon Top 2m (kg/m2) * 7.3 9.8 5.3 6.6 10.0 10.1
Soil Organic Carbon Top 3m (kg/m2) * 8.1 11.1 5.9 7.2 11.1 11.0
Surface Organic Depth (cm) J 9.0 5.7 10.9 4.4 11.3 4.7
pH J 5.4 0.9 5.1 0.4 5.4 0.6

f Included in structural equation modelling (SEM)
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Table A4.2.14. Area of suitable climate conditions for active layer detachment slides and retrogressive thaw slumps for the 1910-1919 and 1990­

1999 timeframes: within the study region, and by terrain suitability for active layer detachment slides (ALD) and retrogressive thaw slumps 

(RTS). Original climate source data from SNAP (2014).

Climate Metric Study Region 

km2

Active Layer Detachment Slide Terrain 
Highly Suitable Suitable 

km2 | km2

Retrogressive Thaw Slump Terrain 
Highly Suitable Suitable 

km2 | km2

Suitable Climate Conditions ALD 1990-1999 km2 39,402 5,538 11,614

Suitable Climate Conditions ALD 1910-1919 km2 35,107 5,669 11,638

Suitable Climate Conditions RTS 1990-1999 km2 28,029 6,186 12,394

Suitable Climate Conditions RTS 1910-1919 km2 22,636 5,247 11,104
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Table A4.2.15. Climate metrics for randomly-assigned control locations, and for observed active layer detachment slide and retrogressive thaw

slump features. Original climate source data from SNAP (2014).

Climate Metric Control
mean std

Active Layer Detachment Slides 
mean std

Retrogressive Thaw Slumps 
mean std

Summer Warmth Index (SWI) 29.2 5.1 28.4 2.1 29.5 3.0

Mean Annual Air Temperature (MAAT) °C, 
1910-1999 -7.8 1.7 -8.4 1.7 -7.6 1.3

Mean Annual Air Temperature (MAAT) °C, 
1910-1919 -8.1 1.7 -8.8 1.7 -8.0 1.3

Mean Annual Air Temperature (MAAT) °C, 
1910-1939 -8.0 1.7 -8.6 1.7 -7.8 1.3

Mean Annual Air Temperature (MAAT) °C, 
1970-1999 -7.5 1.7 -8.1 1.7 -7.3 1.3

Mean Annual Air Temperature (MAAT) °C, 
1990-1999 -7.0 1.7 -7.6 1.7 -6.8 1.3

Mean Annual Air Temperature Increase (MAAT) °C, 
1990-1999 vs 1910-1919 1.08 0.32 1.19 0.29 1.18 0.26

Mean Annual Air Temperature Increase (MAAT) °C, 
1970-1999 vs 1930-1939 0.50 0.40 0.50 0.04 0.50 0.03
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Table A4.2.16. Climate metrics within the study region, and by terrain suitability for active layer detachment slides and retrogressive thaw slumps. 
Original climate source data from SNAP (2014).

Climate Metric Study Region 

mean std

Active Layer Detachment Slide Terrain 
Highly Suitable Suitable 

mean std | mean std

Retrogressive Thaw Slump Terrain 
Highly Suitable Suitable 
mean std | mean std

Summer Warmth Index (SWI) 27.9 7.9 29.5 6.5 28.6 6.4 30.6 6.8 30.5 6.9

Mean Annual Air Temperature (MAAT) °C, 
1910-1999 -7.8 1.7 -7.5 1.8 -7.7 1.8 -7.8 1.7 -7.8 1.7

Mean Annual Air Temperature (MAAT) °C, 
1910-1919 -8.1 1.7 -7.8 1.8 -8.0 1.8 -8.1 1.7 -8.1 1.7

Mean Annual Air Temperature (MAAT) °C, 
1910-1939 -8.0 1.7 -7.7 1.9 -7.9 1.8 -8.0 1.7 -8.0 1.8

Mean Annual Air Temperature (MAAT) °C, 
1970-1999 -7.5 1.7 -7.2 1.9 -7.4 1.8 -7.5 1.7 -7.5 1.8

Mean Annual Air Temperature (MAAT) °C, 
1990-1999 -7.1 1.7 -6.8 1.9 -6.9 1.9 -7.1 1.7 -7.0 1.8

Mean Annual Air Temperature Increase (MAAT) °C, 
1990-1999 vs 1910-1919 1.09 0.32 1.06 0.30 1.10 0.29 1.05 0.30 1.06 0.31

Mean Annual Air Temperature Increase (MAAT) °C, 
1970-1999 vs 1930-1939 0.50 0.03 0.51 0.03 0.50 0.03 0.51 0.03 0.50 0.03



Chapter 5. Conclusions

5.1 Summary

Roughly half the surface terrain in the central and western Brooks Range and foothills of northern 

Alaska is suitable for active layer detachment sliding and retrogressive thaw slumping, which is 

widespread and has become more common in recent decades. Understanding and representing complex, 

co-varying relationships among terrain and permafrost properties is necessary to accurately estimate the 

spatial distribution o f terrain suitable for these permafrost mass-wasting disturbances. No single 

landscape property is a definitive indicator o f terrain suitability, and each relevant property serves to 

constrain spatial estimates and increase overall model accuracy. A bottom-up approach using 

empirically-driven modelling enables us to scale estimates o f vulnerable area up from regions to the pan- 

arctic, and enhances our ability to spatially quantify impacts from and feedbacks to ecosystems, 

permafrost carbon stocks, weather and climate. Specific weather events and patterns, in conjunction with 

a general warming press, determine initiation o f active layer detachment slides and retrogressive thaw 

slumps, such that future change trajectories may hinge largely on the timing o f weather events and on 

seasonal shifts. Forecasting future conditions in the cryosphere depends on synthesizing weather and 

climate patterns with spatially explicit information on terrain and permafrost relationships.

5.2 Synthesis

Forecasting potential future conditions throughout the cryosphere depends upon understanding 

complex interactions among terrain conditions, weather events, and climate patterns at relatively short 

time intervals for small areas, and then scaling that knowledge across broad regions o f highly diverse 

landscapes in context of weather events and seasonal shifts which are superimposed over climate changes 

occurring at decadal to millennial time scales. Effects o f any given weather event or climate trend vary 

greatly by location. A seasonal weather shift which simultaneously triggers widespread permafrost mass- 

wasting on some landscapes may have little impact elsewhere, while a steady warming trend may deepen 

the active layer enough to catalyze a marked vegetation shift on some landscapes but leave carbon stocks 

in the permafrost relatively unaffected. Understanding how different combinations o f surface and 

subsurface conditions respond to each type o f perturbation, and how these combinations are arrayed 

across landscapes, enables better quantification o f impacts and feedbacks at regional and global scales 

and aids better forecasting for trajectories o f changing conditions in the cryosphere.

In Alaska's central and western Brooks Range, increased frequency o f active layer detachment 

sliding and retrogressive thaw slumping is widespread, but is tied with particular weather events and 

terrain settings. General climate warming likely serves as a preconditioning agent, warming upper
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permafrost and enhancing the potential for weather events and seasonal shifts to accelerate thaw front 

advance through the active layer, melting ground ice in the upper permafrost and leading to active layer 

detachment sliding and retrogressive thaw slumping. Early thawing-season warmth and snowmelt, linked 

with slump initiation, may be a critical factor in landscape to regional-scale change trajectories, impacts, 

and feedbacks from retrogressive thaw slumps. Active layer deepening, which occurs with general 

climate warming, is at least partially reversible with subsequent cooling. Deeper degradation and 

mobilization o f upper permafrost layers, as with retrogressive thaw slumping, may release frozen soil 

carbon and be a more permanent phenomenon with differing and stronger impacts locally and globally. 

The temporal pattern o f climate change may therefore be critical in determining rate of retrogressive thaw 

slump initiation and associated impacts and feedbacks, with potentially very different outcomes 

depending upon future changes in the timing o f weather events, as well as their magnitude.

A bottom-up approach to understanding relationships among terrain and permafrost properties 

provides the opportunity to characterize conditions across regions, and eventually link different types of 

landscapes with impacts from, and feedbacks to, climate and weather shifts. Broad scale modelling of 

permafrost and terrain properties is limited by the variability o f relationships among regions, which are 

difficult to quantify and describe due to the cost o f field sampling to characterize conditions and 

relationships within regions. As a result, maps of permafrost distribution and properties are either broad 

in spatial scale but very general in content, or more specific in content but limited in scale. Assessing 

relationships among terrain and permafrost conditions across diverse sites within a region facilitates an 

understanding o f the gradients within that region, providing better modelling capacity for that area and 

evidence o f prevalent landscape dynamics and processes. As an overall strategy, assessing regions 

separately and then scaling up to global models by aggregating regional results is more time consuming 

and costly, but may reduce error and imprecision inherent to coarser scale approaches which may identify 

trends incorrectly for constituent regions.

Across diverse Brooks Range landscapes, statistically-supported groupings o f sites suggest 

consistent, though complex, inter-relationships among terrain and permafrost properties in the study 

region. These are a potential basis for improved spatially-explicit, proxy estimations o f conditions in 

upper permafrost horizons, and for identifying areas prone to particular modes o f permafrost degradation, 

including active layer detachment sliding and retrogressive thaw slumping. In this region, where diverse 

landscapes abutting the arctic-boreal ecotone may be especially prone to multiple modes o f permafrost 

degradation with climate change, and where remote settings severely limit direct observation of 

permafrost properties, this approach facilitates better estimation o f extents, trajectories and magnitudes of 

different permafrost degradation modes and their future impacts.
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Spatial distribution o f groups o f sites partially corresponded with regional geography in the central 

and western Brooks Range. While sites from all groups occurred both on the North Slope and within the 

Noatak Basin, all groupings exhibited regional tendencies. One group had a strong geographic affiliation, 

with five out o f six sites concentrated within a 25 km radius in the upper Noatak Basin. Two groups were 

more common either on the North Slope or in the Noatak Basin but were widely distributed, while a final 

group was distributed throughout the study region, but exhibited differences in particular terrain 

properties corresponding with local geography.

Gradients and divisions among sites and site groupings were driven by terrain properties which 

generally correspond with state factors, suggesting that examination of properties organized by state 

factor may provide better insight and more complete, parsimonious information for estimating permafrost 

conditions across landscapes. At landscape to regional scales, selection o f the most statistically relevant 

and representative index variables from groups o f variables defined by state factors may offer the most 

parsimonious method for analyzing terrain properties driving upper-permafrost characteristics, and for 

identifying the most effective and efficient field sampling strategy for estimation o f permafrost-related 

properties and processes in remote, arctic regions.

Identifying which terrain properties are relevant is critical to constrain spatial estimates of 

suitable terrain for active layer detachment slides and retrogressive thaw slumps. Both observed features 

and terrain suitability for active layer detachment slides and retrogressive thaw slumps are spatially 

distributed across landscape gradients defined by multiple landscape properties. While specific terrain 

factors, and groups of factors, exerted varying influence on overall terrain suitability, no single landscape 

property emerged as an obligate, or even dominant, positive indicator o f suitable terrain. Landscape 

properties describing geomorphology, vegetation, topography, surficial geology and lithology all correlate 

with observed feature distribution, and are supported as drivers o f suitable terrain conditions in the central 

and western Brooks Range. A complex but coherent combination o f co-varying relationships determines 

terrain suitability for active layer detachment slides and retrogressive thaw slumps, such that individual 

landscape properties are only truly relevant when considered in concert with, and in context of, all other 

relevant properties.

At least 32%, and up to 57% of central and western Brooks Range landscape area is suitable terrain 

for either active layer detachment sliding or retrogressive thaw slumping, depending on the sensitivity of 

the chosen suitability threshold and the intensity o f trigger events. Similar proportions o f suitable terrain 

may prevail in other low arctic regions. Future feature initiation on these surfaces is uncertain, depending 

on future trends and shifts in weather and climate. Similar proportions o f suitable terrain may prevail in
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other low arctic regions. However, accurate estimates for other locales would likely require analogous, 

empirically modelled results to account for region-specific variability among terrain, vegetation and upper 

permafrost relationships. Modelled terrain suitability estimates enable better spatial quantification of 

permafrost degradation impacts, including vulnerable soil carbon stocks and ecological responses, and 

better identification o f vulnerable ecosystems. Future addition o f physical soil and soil organic layer 

properties, with further model refinement and field validation, might also produce reasonable, modelled 

spatial estimates o f ground ice percentage and / or cryofacies distribution.
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Appendices

Appendix A. Active layer detachment slide and retrogressive thaw slump locations within the study
region.

Locations for features are given in geographic coordinates, NAD83. Initial location data were developed
through the University o f Alaska Fairbanks (Balser et al. 2009, Gooseff et al. 2009 and Balser et al.
2014), and were significantly expanded by the U.S. National Park Service (Swanson and Hill 2010).
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Table AA.1. Active layer detachment slides and retrogressive thaw slump locations within the study region; central and western Brooks Range, 
Alaska.

Database ID 
(ARCSS-TK / 

NPS)
Feature Type Source Group Year 

(GPS / Imagery) Latitude Longitude

FT104Z Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 67.88324 -156.73721
FT105Z Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 67.76704 -156.34677
FT107Z Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 67.67092 -155.91830
FT110Z Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 68.23462 -157.71762
FT111Z Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 68.23590 -157.72273
FT114Y Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 68.48897 -159.14814
FT115Y Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 68.48937 -159.14649
FT116Y Active Layer Detachment Slide Field GPS U. of Alaska Fairbanks 2006 68.48831 -159.14861
FT118Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 68.03853 -158.52225
FT119Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 68.03749 -158.51876
FT120Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 68.03631 -158.51643
FT121Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 68.03515 -158.51538
FT122Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 68.04035 -158.52200
FT123Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 68.04149 -158.52456
FT124Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.97018 -158.50768
FT125Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.97085 -158.50967
FT126Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.97189 -158.51258
FT127Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.97379 -158.51672
FT128Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.97453 -158.51822
FT129Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.97603 -158.51927
FT130Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.85559 -158.35374
FT131Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.86143 -158.38172
FT132Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.86491 -158.39166
FT133Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.86445 -158.38743
FT134Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.86398 -158.38569
FT135Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.86355 -158.38528
FT136Y Retrogressive Thaw Slump Field GPS U. of Alaska Fairbanks 2006 67.86301 -158.38411
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FT137Y Retrogressive Thaw Slump Field GPS
FT138Y Retrogressive Thaw Slump Field GPS
FT139Y Retrogressive Thaw Slump Field GPS
FT140Y Retrogressive Thaw Slump Field GPS
FT142Y Active Layer Detachment Slide Field GPS
FT146Y Active Layer Detachment Slide Field GPS
FT147Y Active Layer Detachment Slide Field GPS
FT148Y Active Layer Detachment Slide Field GPS
FT149Z Active Layer Detachment Slide Field GPS
FT154Z Active Layer Detachment Slide Field GPS
FT159Z Active Layer Detachment Slide Field GPS
FT160Z Active Layer Detachment Slide Field GPS
FT161Z Active Layer Detachment Slide Field GPS
FT162Z Active Layer Detachment Slide Field GPS
FT165Z Retrogressive Thaw Slump Field GPS
FT167Z Retrogressive Thaw Slump Field GPS
FT171Z Active Layer Detachment Slide Field GPS
FT172Z Retrogressive Thaw Slump Field GPS
FT173Z Retrogressive Thaw Slump Field GPS
FT178Z Active Layer Detachment Slide Field GPS
FT181Z Retrogressive Thaw Slump Field GPS
FT183Z Retrogressive Thaw Slump Field GPS
FT184Z Retrogressive Thaw Slump Field GPS
FT185Z Retrogressive Thaw Slump Field GPS
FT187Z Retrogressive Thaw Slump Field GPS
FT188Z Retrogressive Thaw Slump Field GPS
FT189Z Active Layer Detachment Slide Field GPS
FT190Z Active Layer Detachment Slide Field GPS
FT191Z Retrogressive Thaw Slump Field GPS
FT192Z Retrogressive Thaw Slump Field GPS
FT195Z Active Layer Detachment Slide Field GPS
FT196Z Active Layer Detachment Slide Field GPS



U. of Alaska Fairbanks 2006 67.85766 -158.36826
U. of Alaska Fairbanks 2006 67.85784 -158.37111
U. of Alaska Fairbanks 2006 67.85852 -158.37321
U. of Alaska Fairbanks 2006 67.85891 -158.37519
U. of Alaska Fairbanks 2006 68.26778 -157.30949
U. of Alaska Fairbanks 2006 68.26728 -157.31006
U. of Alaska Fairbanks 2006 68.26808 -157.30991
U. of Alaska Fairbanks 2006 68.26861 -157.30958
U. of Alaska Fairbanks 2006 68.25142 -157.90627
U. of Alaska Fairbanks 2006 68.26370 -157.29374
U. of Alaska Fairbanks 2006 68.45438 -158.97491
U. of Alaska Fairbanks 2006 68.45168 -158.97390
U. of Alaska Fairbanks 2006 68.45534 -159.05866
U. of Alaska Fairbanks 2006 68.47945 -159.17736
U. of Alaska Fairbanks 2006 68.16111 -159.55474
U. of Alaska Fairbanks 2006 68.15463 -159.57100
U. of Alaska Fairbanks 2006 68.05341 -159.64712
U. of Alaska Fairbanks 2006 68.01296 -159.25386
U. of Alaska Fairbanks 2006 68.03417 -159.28272
U. of Alaska Fairbanks 2006 68.17480 -158.56306
U. of Alaska Fairbanks 2006 67.84861 -158.33163
U. of Alaska Fairbanks 2006 68.00376 -158.47685
U. of Alaska Fairbanks 2006 68.04581 -158.58311
U. of Alaska Fairbanks 2006 68.00185 -158.58830
U. of Alaska Fairbanks 2006 68.04343 -158.63505
U. of Alaska Fairbanks 2006 68.13034 -158.72775
U. of Alaska Fairbanks 2006 68.16480 -158.70499
U. of Alaska Fairbanks 2006 68.19123 -158.64402
U. of Alaska Fairbanks 2006 68.08284 -158.96152
U. of Alaska Fairbanks 2006 68.11407 -158.96053
U. of Alaska Fairbanks 2006 68.25162 -157.97818
U. of Alaska Fairbanks 2006 68.14685 -157.43647
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FT198Z Active Layer Detachment Slide Field GPS
FT199Z Active Layer Detachment Slide Field GPS
FT200X Active Layer Detachment Slide Airphoto(AHAP)
FT201X Active Layer Detachment Slide Airphoto(AHAP)
FT202X Active Layer Detachment Slide Airphoto(AHAP)
FT203X Active Layer Detachment Slide Airphoto(AHAP)
FT204X Active Layer Detachment Slide Airphoto(AHAP)
FT205X Active Layer Detachment Slide Airphoto(AHAP)
FT206X Active Layer Detachment Slide Airphoto(AHAP)
FT208X Retrogressive Thaw Slump Airphoto(AHAP)
FT209X Active Layer Detachment Slide Airphoto(AHAP)
FT210X Active Layer Detachment Slide Airphoto(AHAP)
FT211X Retrogressive Thaw Slump Airphoto(AHAP)
FT212X Retrogressive Thaw Slump Airphoto(AHAP)
FT213X Active Layer Detachment Slide Airphoto(AHAP)
FT214X Active Layer Detachment Slide Airphoto(AHAP)
FT215X Active Layer Detachment Slide Airphoto(AHAP)
FT216X Active Layer Detachment Slide Airphoto(AHAP)
FT217X Active Layer Detachment Slide Airphoto(AHAP)
FT218X Active Layer Detachment Slide Airphoto(AHAP)
FT219X Active Layer Detachment Slide Airphoto(AHAP)
FT220X Retrogressive Thaw Slump Airphoto(AHAP)
FT221X Retrogressive Thaw Slump Airphoto(AHAP)
FT222X Active Layer Detachment Slide Airphoto(AHAP)
FT224X Retrogressive Thaw Slump Airphoto(AHAP)
FT225X Retrogressive Thaw Slump Airphoto(AHAP)
FT226X Retrogressive Thaw Slump Airphoto(AHAP)
FT227X Retrogressive Thaw Slump Airphoto(AHAP)
FT228X Retrogressive Thaw Slump Airphoto(AHAP)
FT229X Active Layer Detachment Slide Airphoto(AHAP)
FT230X Active Layer Detachment Slide Airphoto(AHAP)
FT231X Active Layer Detachment Slide Airphoto(AHAP)



U. of Alaska Fairbanks 2006 68.16018 -157.98005
U. of Alaska Fairbanks 2006 68.19228 -158.03011
U. of Alaska Fairbanks 1978 68.24374 -157.81451
U. of Alaska Fairbanks 1978 68.24313 -157.81479
U. of Alaska Fairbanks 1978 68.24188 -157.81536
U. of Alaska Fairbanks 1978 68.24461 -157.79860
U. of Alaska Fairbanks 1978 68.24119 -157.79776
U. of Alaska Fairbanks 1978 68.24198 -157.79926
U. of Alaska Fairbanks 1978 68.25346 -157.79999
U. of Alaska Fairbanks 1978 68.24900 -157.76760
U. of Alaska Fairbanks 1978 68.24152 -157.78810
U. of Alaska Fairbanks 1978 68.24413 -157.79234
U. of Alaska Fairbanks 1978 68.24736 -157.76669
U. of Alaska Fairbanks 1978 68.24624 -157.76585
U. of Alaska Fairbanks 1978 68.22581 -157.76864
U. of Alaska Fairbanks 1978 68.22496 -157.76614
U. of Alaska Fairbanks 1978 68.22443 -157.76551
U. of Alaska Fairbanks 1978 68.22432 -157.76268
U. of Alaska Fairbanks 1978 68.22526 -157.75619
U. of Alaska Fairbanks 1978 68.22671 -157.75946
U. of Alaska Fairbanks 1978 68.22740 -157.76113
U. of Alaska Fairbanks 1978 68.23982 -157.79417
U. of Alaska Fairbanks 1978 68.23970 -157.79278
U. of Alaska Fairbanks 1978 68.24069 -157.79121
U. of Alaska Fairbanks 1978 68.23863 -157.80087
U. of Alaska Fairbanks 1978 68.23876 -157.80276
U. of Alaska Fairbanks 1978 68.23887 -157.79766
U. of Alaska Fairbanks 1978 68.23897 -157.79556
U. of Alaska Fairbanks 1978 68.23901 -157.79856
U. of Alaska Fairbanks 1978 68.25167 -157.94785
U. of Alaska Fairbanks 1978 68.25327 -157.94596
U. of Alaska Fairbanks 1978 68.25341 -157.94770
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FT232X Active Layer Detachment Slide Airphoto(AHAP)
FT233X Active Layer Detachment Slide Airphoto(AHAP)
FT234X Active Layer Detachment Slide Airphoto(AHAP)
FT235X Active Layer Detachment Slide Airphoto(AHAP)
FT236X Active Layer Detachment Slide Airphoto(AHAP)
FT237X Active Layer Detachment Slide Airphoto(AHAP)
FT238X Active Layer Detachment Slide Airphoto(AHAP)
FT239X Active Layer Detachment Slide Airphoto(AHAP)
FT240X Active Layer Detachment Slide Airphoto(AHAP)
FT241X Active Layer Detachment Slide Airphoto(AHAP)
FT242X Retrogressive Thaw Slump Airphoto(AHAP)
FT243X Active Layer Detachment Slide Airphoto(AHAP)
FT244X Active Layer Detachment Slide Airphoto(AHAP)
FT245X Active Layer Detachment Slide Airphoto(AHAP)
FT246X Active Layer Detachment Slide Airphoto(AHAP)
FT247X Active Layer Detachment Slide Airphoto(AHAP)
FT250X Active Layer Detachment Slide Airphoto(AHAP)
FT252X Active Layer Detachment Slide Airphoto(AHAP)
FT253X Active Layer Detachment Slide Airphoto(AHAP)
FT254X Active Layer Detachment Slide Airphoto(AHAP)
FT255X Active Layer Detachment Slide Airphoto(AHAP)
FT256X Active Layer Detachment Slide Airphoto(AHAP)
FT257X Active Layer Detachment Slide Airphoto(AHAP)
FT258X Active Layer Detachment Slide Airphoto(AHAP)
FT259X Active Layer Detachment Slide Airphoto(AHAP)
FT260X Active Layer Detachment Slide Airphoto(AHAP)
FT261X Active Layer Detachment Slide Airphoto(AHAP)
FT262X Active Layer Detachment Slide Airphoto(AHAP)
FT263X Active Layer Detachment Slide Airphoto(AHAP)
FT264X Active Layer Detachment Slide Airphoto(AHAP)
FT265X Active Layer Detachment Slide Airphoto(AHAP)
FT266X Active Layer Detachment Slide Airphoto(AHAP)



U. of Alaska Fairbanks 1978 68.25239 -157.94823
U. of Alaska Fairbanks 1978 68.25412 -157.89484
U. of Alaska Fairbanks 1978 68.24992 -157.90883
U. of Alaska Fairbanks 1978 68.24989 -157.92408
U. of Alaska Fairbanks 1978 68.25073 -157.95475
U. of Alaska Fairbanks 1978 68.24961 -157.95889
U. of Alaska Fairbanks 1978 68.25105 -157.95266
U. of Alaska Fairbanks 1978 68.25056 -157.95387
U. of Alaska Fairbanks 1978 68.25048 -157.94994
U. of Alaska Fairbanks 1978 68.24321 -157.92735
U. of Alaska Fairbanks 1978 68.24602 -157.91152
U. of Alaska Fairbanks 1978 68.24452 -157.89454
U. of Alaska Fairbanks 1978 68.24467 -157.89578
U. of Alaska Fairbanks 1978 68.25016 -157.90132
U. of Alaska Fairbanks 1978 68.23882 -157.88194
U. of Alaska Fairbanks 1978 68.24644 -157.87995
U. of Alaska Fairbanks 1978 68.24508 -157.87710
U. of Alaska Fairbanks 1978 68.25043 -157.87115
U. of Alaska Fairbanks 1978 68.24985 -157.87240
U. of Alaska Fairbanks 1978 68.25000 -157.87204
U. of Alaska Fairbanks 1978 68.25275 -157.87388
U. of Alaska Fairbanks 1978 68.25048 -157.85776
U. of Alaska Fairbanks 1978 68.25067 -157.85709
U. of Alaska Fairbanks 1978 68.25357 -157.83788
U. of Alaska Fairbanks 1978 68.25252 -157.83833
U. of Alaska Fairbanks 1978 68.25159 -157.83858
U. of Alaska Fairbanks 1978 68.25310 -157.84052
U. of Alaska Fairbanks 1978 68.25614 -157.84351
U. of Alaska Fairbanks 1978 68.25490 -157.84377
U. of Alaska Fairbanks 1978 68.24817 -157.83473
U. of Alaska Fairbanks 1978 68.24545 -157.83141
U. of Alaska Fairbanks 1978 68.24752 -157.83984
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FT267X Active Layer Detachment Slide Airphoto(AHAP)
FT268X Active Layer Detachment Slide Airphoto(AHAP)
FT269X Active Layer Detachment Slide Airphoto(AHAP)
FT270X Active Layer Detachment Slide Airphoto(AHAP)
FT271X Active Layer Detachment Slide Airphoto(AHAP)
FT272X Active Layer Detachment Slide Airphoto(AHAP)
FT273X Active Layer Detachment Slide Airphoto(AHAP)
FT274X Active Layer Detachment Slide Airphoto(AHAP)
FT275X Active Layer Detachment Slide Airphoto(AHAP)
FT276X Active Layer Detachment Slide Airphoto(AHAP)
FT277X Active Layer Detachment Slide Airphoto(AHAP)
FT278X Active Layer Detachment Slide Airphoto(AHAP)
FT279X Active Layer Detachment Slide Airphoto(AHAP)
FT280X Active Layer Detachment Slide Airphoto(AHAP)
FT281X Active Layer Detachment Slide Airphoto(AHAP)
FT282X Active Layer Detachment Slide Airphoto(AHAP)
FT283X Active Layer Detachment Slide Airphoto(AHAP)
FT284X Active Layer Detachment Slide Airphoto(AHAP)
FT285X Active Layer Detachment Slide Airphoto(AHAP)
FT286X Active Layer Detachment Slide Airphoto(AHAP)
FT287X Active Layer Detachment Slide Airphoto(AHAP)
FT288X Active Layer Detachment Slide Airphoto(AHAP)
FT289X Active Layer Detachment Slide Airphoto(AHAP)
FT292X Retrogressive Thaw Slump Airphoto(AHAP)
FT293X Active Layer Detachment Slide Airphoto(AHAP)
FT294X Active Layer Detachment Slide Airphoto(AHAP)
FT295X Active Layer Detachment Slide Airphoto(AHAP)
FT296X Active Layer Detachment Slide Airphoto(AHAP)
FT297X Active Layer Detachment Slide Airphoto(AHAP)
FT298X Active Layer Detachment Slide Airphoto(AHAP)
FT299X Active Layer Detachment Slide Airphoto(AHAP)
FT303X Active Layer Detachment Slide Airphoto(AHAP)



U. of Alaska Fairbanks 1978 68.24529 -157.83440
U. of Alaska Fairbanks 1978 68.24379 -157.81763
U. of Alaska Fairbanks 1978 68.24433 -157.81664
U. of Alaska Fairbanks 1978 68.24413 -157.82076
U. of Alaska Fairbanks 1978 68.24369 -157.82281
U. of Alaska Fairbanks 1978 68.24451 -157.82297
U. of Alaska Fairbanks 1978 68.24427 -157.81916
U. of Alaska Fairbanks 1978 68.24272 -157.81884
U. of Alaska Fairbanks 1978 68.24272 -157.82325
U. of Alaska Fairbanks 1978 68.24458 -157.82805
U. of Alaska Fairbanks 1978 68.24947 -157.86284
U. of Alaska Fairbanks 1978 68.24318 -157.86216
U. of Alaska Fairbanks 1978 68.23606 -157.84473
U. of Alaska Fairbanks 1978 68.23505 -157.83078
U. of Alaska Fairbanks 1978 68.23428 -157.83133
U. of Alaska Fairbanks 1978 68.23407 -157.83303
U. of Alaska Fairbanks 1978 68.24107 -157.82654
U. of Alaska Fairbanks 1978 68.25563 -157.74648
U. of Alaska Fairbanks 1978 68.25444 -157.69488
U. of Alaska Fairbanks 1978 68.25707 -157.68690
U. of Alaska Fairbanks 1978 68.25349 -157.69308
U. of Alaska Fairbanks 1978 68.25472 -157.68615
U. of Alaska Fairbanks 1985 68.27034 -158.08197
U. of Alaska Fairbanks 1985 68.26975 -158.12172
U. of Alaska Fairbanks 1985 68.25659 -158.06031
U. of Alaska Fairbanks 1985 68.25950 -158.03684
U. of Alaska Fairbanks 1985 68.25962 -158.03592
U. of Alaska Fairbanks 1985 68.25980 -158.03183
U. of Alaska Fairbanks 1985 68.25528 -158.05220
U. of Alaska Fairbanks 1985 68.25537 -158.05599
U. of Alaska Fairbanks 1985 68.26131 -157.90704
U. of Alaska Fairbanks 1985 68.26681 -157.99564
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FT304X Active Layer Detachment Slide Airphoto(AHAP)
FT305X Active Layer Detachment Slide Airphoto(AHAP)
FT306X Active Layer Detachment Slide Airphoto(AHAP)
FT307X Active Layer Detachment Slide Airphoto(AHAP)
FT308X Active Layer Detachment Slide Airphoto(AHAP)
FT309X Active Layer Detachment Slide Airphoto(AHAP)
FT310X Active Layer Detachment Slide Airphoto(AHAP)
FT311X Active Layer Detachment Slide Airphoto(AHAP)
FT312X Active Layer Detachment Slide Airphoto(AHAP)
FT313X Active Layer Detachment Slide Airphoto(AHAP)
FT323X Active Layer Detachment Slide Airphoto(TT)
FT324X Active Layer Detachment Slide Airphoto(TT)
FT325X Active Layer Detachment Slide Airphoto(TT)
FT326X Active Layer Detachment Slide Airphoto(TT)
FT327X Active Layer Detachment Slide Airphoto(TT)
FT328X Active Layer Detachment Slide Airphoto(TT)
FT329X Active Layer Detachment Slide Airphoto(TT)
FT330X Active Layer Detachment Slide Airphoto(TT)
FT331X Active Layer Detachment Slide Airphoto(TT)
FT332X Active Layer Detachment Slide Airphoto(TT)
FT333X Active Layer Detachment Slide Airphoto(TT)
FT334X Active Layer Detachment Slide Airphoto(TT)
FT335X Active Layer Detachment Slide Airphoto(TT)
FT336X Active Layer Detachment Slide Airphoto(TT)
FT337X Active Layer Detachment Slide Airphoto(TT)
FT338X Active Layer Detachment Slide Airphoto(TT)
FT339X Active Layer Detachment Slide Airphoto(TT)
FT340X Active Layer Detachment Slide Airphoto(TT)
FT343X Active Layer Detachment Slide Airphoto(TT)
FT344X Active Layer Detachment Slide Airphoto(TT)
FT345X Active Layer Detachment Slide Airphoto(TT)
FT346X Active Layer Detachment Slide Airphoto(TT)



U. of Alaska Fairbanks 1985 68.26329 -157.99109
U. of Alaska Fairbanks 1985 68.25666 -157.93146
U. of Alaska Fairbanks 1985 68.25809 -157.93253
U. of Alaska Fairbanks 1985 68.25799 -157.92656
U. of Alaska Fairbanks 1985 68.25624 -157.92813
U. of Alaska Fairbanks 1985 68.25653 -157.92666
U. of Alaska Fairbanks 1985 68.25867 -157.92875
U. of Alaska Fairbanks 1985 68.25737 -157.93432
U. of Alaska Fairbanks 1985 68.25792 -157.92973
U. of Alaska Fairbanks 1985 68.26774 -157.71379
U. of Alaska Fairbanks 2006 68.25728 -157.97759
U. of Alaska Fairbanks 2006 68.25972 -157.96862
U. of Alaska Fairbanks 2006 68.26012 -157.93282
U. of Alaska Fairbanks 2006 68.26153 -157.92475
U. of Alaska Fairbanks 2006 68.26184 -157.92052
U. of Alaska Fairbanks 2006 68.25884 -157.93292
U. of Alaska Fairbanks 2006 68.25770 -157.93206
U. of Alaska Fairbanks 2006 68.25849 -157.92576
U. of Alaska Fairbanks 2006 68.25406 -157.92832
U. of Alaska Fairbanks 2006 68.25299 -157.92977
U. of Alaska Fairbanks 2006 68.24986 -157.95498
U. of Alaska Fairbanks 2006 68.24334 -157.95452
U. of Alaska Fairbanks 2006 68.24528 -157.91670
U. of Alaska Fairbanks 2006 68.24118 -157.88893
U. of Alaska Fairbanks 2006 68.24231 -157.90763
U. of Alaska Fairbanks 2006 68.24422 -157.89726
U. of Alaska Fairbanks 2006 68.24370 -157.89394
U. of Alaska Fairbanks 2006 68.24384 -157.89297
U. of Alaska Fairbanks 2006 68.24050 -157.87341
U. of Alaska Fairbanks 2006 68.23943 -157.86403
U. of Alaska Fairbanks 2006 68.24068 -157.87293
U. of Alaska Fairbanks 2006 68.24549 -157.87433



FT349X Active Layer Detachment Slide Airphoto(TT)
FT350X Active Layer Detachment Slide Airphoto(TT)
FT351X Active Layer Detachment Slide Airphoto(TT)
FT352X Active Layer Detachment Slide Airphoto(TT)
FT353X Active Layer Detachment Slide Airphoto(TT)
FT354X Active Layer Detachment Slide Airphoto(TT)
FT355X Active Layer Detachment Slide Airphoto(TT)
FT356X Active Layer Detachment Slide Airphoto(TT)
FT357X Active Layer Detachment Slide Airphoto(TT)
FT358X Active Layer Detachment Slide Airphoto(TT)
FT359X Active Layer Detachment Slide Airphoto(TT)
FT360X Active Layer Detachment Slide Airphoto(TT)
FT361X Active Layer Detachment Slide Airphoto(TT)
FT362X Active Layer Detachment Slide Airphoto(TT)
FT363X Active Layer Detachment Slide Airphoto(TT)
FT364X Active Layer Detachment Slide Airphoto(TT)
FT365X Active Layer Detachment Slide Airphoto(TT)
FT366X Active Layer Detachment Slide Airphoto(TT)
FT367X Active Layer Detachment Slide Airphoto(TT)
FT368X Active Layer Detachment Slide Airphoto(TT)
FT369X Active Layer Detachment Slide Airphoto(TT)
FT370X Active Layer Detachment Slide Airphoto(TT)
FT371X Active Layer Detachment Slide Airphoto(TT)
FT372X Active Layer Detachment Slide Airphoto(TT)
FT373X Active Layer Detachment Slide Airphoto(TT)
FT374X Active Layer Detachment Slide Airphoto(TT)
FT375X Active Layer Detachment Slide Airphoto(TT)
FT376X Active Layer Detachment Slide Airphoto(TT)
FT377X Active Layer Detachment Slide Airphoto(TT)
FT378X Active Layer Detachment Slide Airphoto(TT)
FT379X Active Layer Detachment Slide Airphoto(TT)
FT380X Active Layer Detachment Slide Airphoto(TT)



U. of Alaska Fairbanks 2006 68.25022 -157.86837
U. of Alaska Fairbanks 2006 68.24980 -157.86178
U. of Alaska Fairbanks 2006 68.25015 -157.86224
U. of Alaska Fairbanks 2006 68.25005 -157.87503
U. of Alaska Fairbanks 2006 68.25110 -157.87448
U. of Alaska Fairbanks 2006 68.25126 -157.87420
U. of Alaska Fairbanks 2006 68.25171 -157.86606
U. of Alaska Fairbanks 2006 68.25155 -157.86777
U. of Alaska Fairbanks 2006 68.25019 -157.86660
U. of Alaska Fairbanks 2006 68.25655 -157.87332
U. of Alaska Fairbanks 2006 68.25712 -157.87097
U. of Alaska Fairbanks 2006 68.25482 -157.86756
U. of Alaska Fairbanks 2006 68.25373 -157.86976
U. of Alaska Fairbanks 2006 68.25329 -157.87174
U. of Alaska Fairbanks 2006 68.25267 -157.87415
U. of Alaska Fairbanks 2006 68.25185 -157.85336
U. of Alaska Fairbanks 2006 68.25373 -157.85847
U. of Alaska Fairbanks 2006 68.25064 -157.85467
U. of Alaska Fairbanks 2006 68.25137 -157.83456
U. of Alaska Fairbanks 2006 68.24923 -157.83782
U. of Alaska Fairbanks 2006 68.24328 -157.83046
U. of Alaska Fairbanks 2006 68.24471 -157.85855
U. of Alaska Fairbanks 2006 68.23430 -157.85424
U. of Alaska Fairbanks 2006 68.23357 -157.83444
U. of Alaska Fairbanks 2006 68.23707 -157.82703
U. of Alaska Fairbanks 2006 68.23153 -157.83696
U. of Alaska Fairbanks 2006 68.23509 -157.83193
U. of Alaska Fairbanks 2006 68.25732 -158.00647
U. of Alaska Fairbanks 2006 68.27298 -157.74122
U. of Alaska Fairbanks 2006 68.27361 -157.73190
U. of Alaska Fairbanks 2006 68.27443 -157.74045
U. of Alaska Fairbanks 2006 68.27466 -157.72863
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FT381X Active Layer Detachment Slide Airphoto(TT)
FT382X Active Layer Detachment Slide Airphoto(TT)
FT383X Active Layer Detachment Slide Airphoto(TT)
FT384X Active Layer Detachment Slide Airphoto(TT)
FT385X Active Layer Detachment Slide Airphoto(TT)
FT386X Active Layer Detachment Slide Airphoto(TT)
FT388X Active Layer Detachment Slide Airphoto(TT)
FT389X Active Layer Detachment Slide Airphoto(TT)
FT392X Active Layer Detachment Slide Airphoto(TT)
FT393X Active Layer Detachment Slide Airphoto(TT)
FT394X Active Layer Detachment Slide Airphoto(TT)
FT395X Active Layer Detachment Slide Airphoto(TT)
FT396X Active Layer Detachment Slide Airphoto(TT)
FT397X Active Layer Detachment Slide Airphoto(TT)
FT398X Active Layer Detachment Slide Airphoto(TT)
FT399X Active Layer Detachment Slide Airphoto(TT)
FT400X Active Layer Detachment Slide Airphoto(TT)
FT401X Active Layer Detachment Slide Airphoto(TT)
FT453X Active Layer Detachment Slide Airphoto(TT)
FT454X Active Layer Detachment Slide Airphoto(TT)
FT455X Active Layer Detachment Slide Airphoto(TT)
FT456X Active Layer Detachment Slide Airphoto(TT)
FT457X Active Layer Detachment Slide Airphoto(TT)
FT458X Active Layer Detachment Slide Airphoto(TT)
FT459X Active Layer Detachment Slide Airphoto(TT)
FT460X Active Layer Detachment Slide Airphoto(TT)
FT461X Active Layer Detachment Slide Airphoto(TT)
FT466X Active Layer Detachment Slide Airphoto(TT)
FT467X Active Layer Detachment Slide Airphoto(TT)
FT468X Active Layer Detachment Slide Airphoto(TT)
FT469X Active Layer Detachment Slide Airphoto(TT)
FT470X Active Layer Detachment Slide Airphoto(TT)



U. of Alaska Fairbanks 2006 68.27920 -157.68623
U. of Alaska Fairbanks 2006 68.27595 -157.68426
U. of Alaska Fairbanks 2006 68.27603 -157.68347
U. of Alaska Fairbanks 2006 68.27982 -157.67118
U. of Alaska Fairbanks 2006 68.27765 -157.67320
U. of Alaska Fairbanks 2006 68.27795 -157.66911
U. of Alaska Fairbanks 2006 68.27730 -157.67040
U. of Alaska Fairbanks 2006 68.27865 -157.67291
U. of Alaska Fairbanks 2006 68.26107 -157.75232
U. of Alaska Fairbanks 2006 68.26128 -157.75052
U. of Alaska Fairbanks 2006 68.26222 -157.75238
U. of Alaska Fairbanks 2006 68.26337 -157.74980
U. of Alaska Fairbanks 2006 68.26355 -157.74671
U. of Alaska Fairbanks 2006 68.25806 -157.74124
U. of Alaska Fairbanks 2006 68.25552 -157.74238
U. of Alaska Fairbanks 2006 68.26168 -157.72437
U. of Alaska Fairbanks 2006 68.25175 -157.71757
U. of Alaska Fairbanks 2006 68.26341 -157.70030
U. of Alaska Fairbanks 2006 68.26563 -157.67298
U. of Alaska Fairbanks 2006 68.26526 -157.67013
U. of Alaska Fairbanks 2006 68.24360 -157.79245
U. of Alaska Fairbanks 2006 68.24311 -157.81226
U. of Alaska Fairbanks 2006 68.25072 -157.79591
U. of Alaska Fairbanks 2006 68.25188 -157.79721
U. of Alaska Fairbanks 2006 68.24512 -157.73977
U. of Alaska Fairbanks 2006 68.24100 -157.72506
U. of Alaska Fairbanks 2006 68.23686 -157.72490
U. of Alaska Fairbanks 2006 68.22362 -157.75857
U. of Alaska Fairbanks 2006 68.22299 -157.75843
U. of Alaska Fairbanks 2006 68.22246 -157.75773
U. of Alaska Fairbanks 2006 68.22235 -157.75622
U. of Alaska Fairbanks 2006 68.22243 -157.75703



FT471X Active Layer Detachment Slide Airphoto(TT)
FT472X Active Layer Detachment Slide Airphoto(TT)
FT473X Active Layer Detachment Slide Airphoto(TT)
FT474X Active Layer Detachment Slide Airphoto(TT)
FT475X Active Layer Detachment Slide Airphoto(TT)
FT476X Active Layer Detachment Slide Airphoto(TT)
FT477X Active Layer Detachment Slide Airphoto(TT)
FT478X Active Layer Detachment Slide Airphoto(TT)
FT479X Active Layer Detachment Slide Airphoto(TT)
FT480X Active Layer Detachment Slide Airphoto(TT)
FT481X Active Layer Detachment Slide Airphoto(TT)
FT482X Active Layer Detachment Slide Airphoto(TT)
FT483X Active Layer Detachment Slide Airphoto(TT)
FT484X Active Layer Detachment Slide Airphoto(TT)
FT485X Active Layer Detachment Slide Airphoto(TT)
FT486X Active Layer Detachment Slide Airphoto(TT)
FT487X Active Layer Detachment Slide Airphoto(TT)
FT488X Active Layer Detachment Slide Airphoto(TT)
FT489X Active Layer Detachment Slide Airphoto(TT)
FT490X Active Layer Detachment Slide Airphoto(TT)
FT491X Active Layer Detachment Slide Airphoto(TT)
FT492X Active Layer Detachment Slide Airphoto(TT)
FT493X Active Layer Detachment Slide Airphoto(TT)
FT494X Active Layer Detachment Slide Airphoto(TT)
FT495X Active Layer Detachment Slide Airphoto(TT)
FT496X Active Layer Detachment Slide Airphoto(TT)
FT497X Active Layer Detachment Slide Airphoto(TT)
FT498X Active Layer Detachment Slide Airphoto(TT)
FT499X Active Layer Detachment Slide Airphoto(TT)
FT500X Active Layer Detachment Slide Airphoto(TT)
FT501X Active Layer Detachment Slide Airphoto(TT)
FT502X Active Layer Detachment Slide Airphoto(TT)



U. of Alaska Fairbanks 2006 68.24088 -157.78491
U. of Alaska Fairbanks 2006 68.23298 -157.77241
U. of Alaska Fairbanks 2006 68.24019 -157.79631
U. of Alaska Fairbanks 2006 68.27414 -158.22880
U. of Alaska Fairbanks 2006 68.27416 -158.22829
U. of Alaska Fairbanks 2006 68.27714 -158.22060
U. of Alaska Fairbanks 2006 68.27975 -158.21656
U. of Alaska Fairbanks 2006 68.27985 -158.21616
U. of Alaska Fairbanks 2006 68.27976 -158.21445
U. of Alaska Fairbanks 2006 68.27954 -158.21357
U. of Alaska Fairbanks 2006 68.27757 -158.25533
U. of Alaska Fairbanks 2006 68.27748 -158.25343
U. of Alaska Fairbanks 2006 68.27734 -158.25318
U. of Alaska Fairbanks 2006 68.28205 -158.19622
U. of Alaska Fairbanks 2006 68.28178 -158.19288
U. of Alaska Fairbanks 2006 68.28122 -158.18930
U. of Alaska Fairbanks 2006 68.28962 -158.16656
U. of Alaska Fairbanks 2006 68.27448 -158.17344
U. of Alaska Fairbanks 2006 68.26827 -158.14978
U. of Alaska Fairbanks 2006 68.26743 -158.15012
U. of Alaska Fairbanks 2006 68.26244 -158.13630
U. of Alaska Fairbanks 2006 68.25847 -157.93904
U. of Alaska Fairbanks 2006 68.25811 -157.94277
U. of Alaska Fairbanks 2006 68.25509 -157.94986
U. of Alaska Fairbanks 2006 68.25252 -157.94717
U. of Alaska Fairbanks 2006 68.25427 -157.94638
U. of Alaska Fairbanks 2006 68.25349 -157.94195
U. of Alaska Fairbanks 2006 68.25251 -157.90695
U. of Alaska Fairbanks 2006 68.25229 -157.90563
U. of Alaska Fairbanks 2006 68.25277 -157.90295
U. of Alaska Fairbanks 2006 68.25162 -157.90076
U. of Alaska Fairbanks 2006 68.25395 -157.90165



FT503X Active Layer Detachment Slide Airphoto(TT)
FT504X Active Layer Detachment Slide Airphoto(TT)
FT505X Active Layer Detachment Slide Airphoto(TT)
FT506X Active Layer Detachment Slide Airphoto(TT)
FT507X Active Layer Detachment Slide Airphoto(TT)
FT508X Retrogressive Thaw Slump Airphoto(TT)
FT509X Active Layer Detachment Slide Airphoto(TT)
FT510X Active Layer Detachment Slide Airphoto(TT)
FT513X Active Layer Detachment Slide Airphoto(TT)
FT514X Active Layer Detachment Slide Airphoto(TT)
FT515X Active Layer Detachment Slide Airphoto(TT)
FT516X Active Layer Detachment Slide Airphoto(TT)
FT517X Active Layer Detachment Slide Airphoto(TT)
FT518X Active Layer Detachment Slide Airphoto(TT)
FT519X Active Layer Detachment Slide Airphoto(TT)
FT520X Active Layer Detachment Slide Airphoto(TT)
FT521X Active Layer Detachment Slide Airphoto(TT)
FT522X Active Layer Detachment Slide Airphoto(TT)
FT523X Active Layer Detachment Slide Airphoto(TT)
FT524X Active Layer Detachment Slide Airphoto(TT)
FT525X Active Layer Detachment Slide Airphoto(TT)
FT526X Active Layer Detachment Slide Airphoto(TT)
FT527X Active Layer Detachment Slide Airphoto(TT)
FT528X Active Layer Detachment Slide Airphoto(TT)
FT529X Active Layer Detachment Slide Airphoto(TT)
FT530X Active Layer Detachment Slide Airphoto(TT)
FT531X Active Layer Detachment Slide Airphoto(TT)
FT532X Active Layer Detachment Slide Airphoto(TT)
FT533X Active Layer Detachment Slide Airphoto(TT)
FT534X Retrogressive Thaw Slump Airphoto(TT)
FT535X Active Layer Detachment Slide Airphoto(TT)
FT536X Active Layer Detachment Slide Airphoto(TT)



U. of Alaska Fairbanks 2006 68.25489 -157.90526
U. of Alaska Fairbanks 2006 68.27043 -158.08345
U. of Alaska Fairbanks 2006 68.26803 -158.08388
U. of Alaska Fairbanks 2006 68.26989 -158.07852
U. of Alaska Fairbanks 2006 68.26903 -158.07882
U. of Alaska Fairbanks 2006 68.26972 -158.06987
U. of Alaska Fairbanks 2006 68.27032 -158.08291
U. of Alaska Fairbanks 2006 68.26954 -158.08257
U. of Alaska Fairbanks 2006 68.27329 -158.12741
U. of Alaska Fairbanks 2006 68.27332 -158.12500
U. of Alaska Fairbanks 2006 68.27356 -158.12373
U. of Alaska Fairbanks 2006 68.25756 -158.08706
U. of Alaska Fairbanks 2006 68.25670 -158.07040
U. of Alaska Fairbanks 2006 68.25623 -158.06203
U. of Alaska Fairbanks 2006 68.25477 -158.05930
U. of Alaska Fairbanks 2006 68.25691 -158.05934
U. of Alaska Fairbanks 2006 68.26094 -158.04535
U. of Alaska Fairbanks 2006 68.26025 -158.04985
U. of Alaska Fairbanks 2006 68.26014 -158.05128
U. of Alaska Fairbanks 2006 68.25942 -158.03487
U. of Alaska Fairbanks 2006 68.25958 -158.03316
U. of Alaska Fairbanks 2006 68.25881 -158.03474
U. of Alaska Fairbanks 2006 68.25981 -158.03976
U. of Alaska Fairbanks 2006 68.25505 -158.05801
U. of Alaska Fairbanks 2006 68.26112 -158.04329
U. of Alaska Fairbanks 2006 68.26411 -158.05361
U. of Alaska Fairbanks 2006 68.26360 -158.04949
U. of Alaska Fairbanks 2006 68.26330 -158.05227
U. of Alaska Fairbanks 2006 68.26587 -158.04929
U. of Alaska Fairbanks 2006 68.27914 -158.07297
U. of Alaska Fairbanks 2006 68.27424 -158.02457
U. of Alaska Fairbanks 2006 68.27391 -158.02692



FT537X Active Layer Detachment Slide Airphoto(TT)
FT538X Active Layer Detachment Slide Airphoto(TT)
FT539X Active Layer Detachment Slide Airphoto(TT)
FT540X Active Layer Detachment Slide Airphoto(TT)
FT541X Active Layer Detachment Slide Airphoto(TT)
FT542X Active Layer Detachment Slide Airphoto(TT)
FT543X Active Layer Detachment Slide Airphoto(TT)
FT544X Active Layer Detachment Slide Airphoto(TT)
FT545X Active Layer Detachment Slide Airphoto(TT)
FT546X Active Layer Detachment Slide Airphoto(TT)
FT547X Active Layer Detachment Slide Airphoto(TT)
FT548X Active Layer Detachment Slide Airphoto(TT)
FT549X Active Layer Detachment Slide Airphoto(TT)
FT550X Active Layer Detachment Slide Airphoto(TT)
FT551X Active Layer Detachment Slide Airphoto(TT)
FT552X Active Layer Detachment Slide Airphoto(TT)
FT553X Active Layer Detachment Slide Airphoto(TT)
FT554X Active Layer Detachment Slide Airphoto(TT)
FT555X Active Layer Detachment Slide Airphoto(TT)
FT556X Active Layer Detachment Slide Airphoto(TT)
FT557X Active Layer Detachment Slide Airphoto(TT)
FT558X Active Layer Detachment Slide Airphoto(TT)
FTIOA Retrogressive Thaw Slump Field GPS
FTllA Retrogressive Thaw Slump Field GPS
FTllB Retrogressive Thaw Slump Field GPS
FTllC Retrogressive Thaw Slump Field GPS
FT12A Retrogressive Thaw Slump Field GPS
FT13A Active Layer Detachment Slide Field GPS
FT13B Active Layer Detachment Slide Field GPS
FT14A Active Layer Detachment Slide Field GPS
FT15A Active Layer Detachment Slide Field GPS
FT15B Active Layer Detachment Slide Field GPS



U. of Alaska Fairbanks 2006 68.27098 -158.02245
U. of Alaska Fairbanks 2006 68.26624 -158.02110
U. of Alaska Fairbanks 2006 68.26706 -158.00826
U. of Alaska Fairbanks 2006 68.26698 -158.00973
U. of Alaska Fairbanks 2006 68.26721 -158.01028
U. of Alaska Fairbanks 2006 68.26279 -158.03207
U. of Alaska Fairbanks 2006 68.25164 -157.92939
U. of Alaska Fairbanks 2006 68.26080 -157.92085
U. of Alaska Fairbanks 2006 68.26128 -157.92225
U. of Alaska Fairbanks 2006 68.26091 -157.91153
U. of Alaska Fairbanks 2006 68.26048 -157.90810
U. of Alaska Fairbanks 2006 68.24975 -157.95180
U. of Alaska Fairbanks 2006 68.24913 -157.94657
U. of Alaska Fairbanks 2006 68.25930 -158.02905
U. of Alaska Fairbanks 2006 68.25873 -158.03084
U. of Alaska Fairbanks 2006 68.25732 -158.03257
U. of Alaska Fairbanks 2006 68.26331 -157.99166
U. of Alaska Fairbanks 2006 68.26528 -157.99419
U. of Alaska Fairbanks 2006 68.27208 -158.00762
U. of Alaska Fairbanks 2006 68.27047 -157.97173
U. of Alaska Fairbanks 2006 68.26586 -157.97094
U. of Alaska Fairbanks 2006 68.26703 -157.96607
U. of Alaska Fairbanks 2006 68.07963 -157.62363
U. of Alaska Fairbanks 2006 68.07708 -157.56521
U. of Alaska Fairbanks 2006 68.07835 -157.56649
U. of Alaska Fairbanks 2006 68.07894 -157.56718
U. of Alaska Fairbanks 2006 68.07707 -157.56278
U. of Alaska Fairbanks 2006 68.25406 -158.19807
U. of Alaska Fairbanks 2006 68.24789 -158.20479
U. of Alaska Fairbanks 2006 68.32557 -157.88768
U. of Alaska Fairbanks 2006 68.31688 -157.92696
U. of Alaska Fairbanks 2006 68.31575 -157.92589



FT16B Active Layer Detachment Slide
FT17A Active Layer Detachment Slide
FT17B Active Layer Detachment Slide
FT17C Active Layer Detachment Slide
FT19A Active Layer Detachment Slide
FT1A Retrogressive Thaw Slump
FT20A Active Layer Detachment Slide
FT21A Active Layer Detachment Slide
FT24A Retrogressive Thaw Slump
FT25A Retrogressive Thaw Slump
FT26A Retrogressive Thaw Slump
FT29A Retrogressive Thaw Slump
FT2A Retrogressive Thaw Slump
FT30A Retrogressive Thaw Slump
FT31A Active Layer Detachment Slide
FT32A Active Layer Detachment Slide
FT33A Active Layer Detachment Slide
FT34A Retrogressive Thaw Slump
FT34B Retrogressive Thaw Slump
FT35A Retrogressive Thaw Slump
FT4A Active Layer Detachment Slide
FT4B Active Layer Detachment Slide
FT4C Active Layer Detachment Slide
FT4D Active Layer Detachment Slide
FT6A Active Layer Detachment Slide
FT7A Active Layer Detachment Slide
FT8A Retrogressive Thaw Slump
FT9A Retrogressive Thaw Slump

FT581A Active Layer Detachment Slide
FT582A Active Layer Detachment Slide

GAAR0001 Retrogressive Thaw Slump
GAAR0002 Retrogressive Thaw Slump

Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 
Field GPS 

IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview



U. of Alaska Fairbanks 2006 68.31568 -157.92555
U. of Alaska Fairbanks 2006 68.23682 -157.84747
U. of Alaska Fairbanks 2006 68.23651 -157.84581
U. of Alaska Fairbanks 2006 68.23510 -157.84294
U. of Alaska Fairbanks 2006 68.23860 -157.82732
U. of Alaska Fairbanks 2006 68.21769 -158.31030
U. of Alaska Fairbanks 2006 68.23858 -157.82441
U. of Alaska Fairbanks 2006 68.23771 -157.81593
U. of Alaska Fairbanks 2006 68.23364 -158.33745
U. of Alaska Fairbanks 2006 68.23275 -158.33302
U. of Alaska Fairbanks 2006 68.23186 -158.33097
U. of Alaska Fairbanks 2006 68.46083 -158.99083
U. of Alaska Fairbanks 2006 68.08833 -158.63656
U. of Alaska Fairbanks 2006 68.45888 -158.99104
U. of Alaska Fairbanks 2006 68.18636 -158.55246
U. of Alaska Fairbanks 2006 68.21260 -158.52734
U. of Alaska Fairbanks 2006 68.18139 -158.55370
U. of Alaska Fairbanks 2006 68.01547 -159.25122
U. of Alaska Fairbanks 2006 68.01592 -159.25282
U. of Alaska Fairbanks 2006 68.03597 -159.28823
U. of Alaska Fairbanks 2006 68.23937 -158.09557
U. of Alaska Fairbanks 2006 68.24388 -158.09712
U. of Alaska Fairbanks 2006 68.24615 -158.09665
U. of Alaska Fairbanks 2006 68.24605 -158.10187
U. of Alaska Fairbanks 2006 67.70168 -155.56229
U. of Alaska Fairbanks 2006 68.08998 -157.51568
U. of Alaska Fairbanks 2006 68.07917 -157.62093
U. of Alaska Fairbanks 2006 68.07983 -157.62222
U. of Alaska Fairbanks 2010 67.71954 -161.54893
U. of Alaska Fairbanks 2010 67.71978 -161.54877

NPS 2010 67.81390 -156.50759
NPS 2010 67.80429 -156.50043



GAAR0003 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0004 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0005 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0006 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0007 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0008 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0009 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0010 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAROOll Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0012 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0013 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0014 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0015 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0016 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0017 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0018 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0019 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0020 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0021 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0022 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0023 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0024 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0025 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0026 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0027 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0028 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0029 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0030 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0031 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0032 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0033 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0034 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.80929 -156.56505
67.80906 -156.56687
67.81051 -156.56492
67.81426 -156.57417
67.72229 -156.04237
67.90101 -156.48631
67.89789 -156.49960
68.38353 -154.68033
67.65837 -155.89169
67.66913 -155.96046
67.66596 -155.95914
67.67293 -155.92891
67.67253 -155.92664
67.67302 -155.92405
67.67299 -155.92067
67.67308 -155.91776
67.66144 -155.88922
67.66251 -155.89171
67.66356 -155.88796
67.66445 -155.89063
67.65394 -155.88881
67.65269 -155.89518
67.65420 -155.89245
67.64981 -155.89319
67.64931 -155.89457
67.66258 -155.78181
67.65936 -155.78507
67.65909 -155.78681
67.65695 -155.78553
67.62245 -155.52941
67.62483 -155.53306
67.62351 -155.47903



GAAR0035 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0036 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0037 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0038 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0039 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0040 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0041 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0042 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0043 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0044 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0045 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0046 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0047 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0048 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0049 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0050 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0051 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0052 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0053 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0054 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0055 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0056 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0057 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0058 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0059 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0061 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0062 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0063 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0067 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0068 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0069 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0070 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.62270 -155.47906
67.72061 -155.00326
67.72001 -155.00390
67.71737 -155.00897
67.71735 -155.01060
67.71582 -155.01167
67.71411 -155.00792
67.71441 -155.00627
67.71504 -155.00288
67.71919 -155.00500
67.72118 -155.00980
67.72081 -155.01148
67.71504 -154.99674
68.10528 -154.16550
68.10348 -154.15890
68.10107 -154.16036
68.10133 -154.16185
68.10024 -154.16274
68.09811 -154.16003
68.09680 -154.16061
68.09645 -154.15920
67.96868 -154.80121
67.96641 -154.80518
67.97450 -154.78071
67.96229 -154.81591
67.96399 -154.82001
67.95920 -154.85164
68.36228 -154.50716
68.34595 -153.89835
68.33888 -152.65234
68.33700 -152.65465
68.33675 -152.65619



GAAR0071 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0072 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0073 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0074 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0075 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0076 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0077 Retrogressive Thaw SlumpN IKONOS/Geoeye/W orldview
GAAR0078 Retrogressive Thaw SlumpN IKONOS/Geoeye/W orldview
GAAR0079 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0080 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0081 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0082 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0083 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0084 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0085 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0086 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0087 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0088 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0089 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0090 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0091 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0092 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0093 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0094 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0095 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0096 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0097 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0098 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0099 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0100 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAROlOl Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0102 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.33559 -152.65778
68.33599 -152.66039
68.34815 -152.68018
68.34423 -152.68281
67.96246 -155.00330
68.30825 -154.18560
68.30746 -154.18750
68.30703 -154.18829
68.02330 -155.89103
68.02426 -155.87870
68.02078 -155.87035
68.02089 -155.87613
68.02129 -155.86573
68.02153 -155.86706
68.02061 -155.86563
68.02579 -155.87858
68.02612 -155.86735
68.01956 -155.86010
68.01830 -155.85309
68.01181 -155.86746
68.01258 -155.87148
68.01267 -155.87363
68.01015 -155.86862
68.00992 -155.88255
68.00950 -155.88112
68.00779 -155.87440
68.00494 -155.87287
68.00373 -155.86072
68.00299 -155.85867
68.01148 -155.85673
68.00229 -155.87482
68.00248 -155.87759



GAAR0103 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0104 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0105 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0106 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0107 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0108 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0109 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0110 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAROlll Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0112 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0113 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0114 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0115 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0116 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0117 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0118 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0119 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0120 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0121 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0122 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0123 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0124 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0125 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0126 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0127 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0128 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0129 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0130 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0131 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0132 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0133 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0134 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.00152 -155.87296
67.99962 -155.86547
67.99436 -155.87785
67.99878 -155.87916
67.99825 -155.88515
67.99733 -155.86199
67.99553 -155.88717
67.99583 -155.86557
67.99316 -155.89456
67.99449 -155.89157
67.99481 -155.89148
67.99553 -155.89172
67.99622 -155.89486
67.99768 -155.88431
67.99773 -155.88677
67.99671 -155.90017
67.99907 -155.92277
67.99674 -155.93761
68.00022 -155.93650
68.00312 -155.92096
68.00800 -155.93564
68.00495 -155.92811
68.01432 -155.91338
68.01709 -155.90349
68.01961 -155.89715
68.01607 -155.86090
68.01565 -155.85947
68.01649 -155.86034
68.01601 -155.85806
68.01615 -155.85674
68.01654 -155.85040
68.01743 -155.84240
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GAAR0135
GAAR0136
GAAR0137
GAAR0138
GAAR0139
GAAR0140
GAAR0141
GAAR0142
GAAR0143
GAAR0144
GAAR0145
GAAR0146
GAAR0147
GAAR0148
GAAR0149
GAAR0150
GAAR0151
GAAR0152
GAAR0153
GAAR0154
GAAR0155
GAAR0156
GAAR0157
GAAR0158
GAAR0159
GAAR0160
GAAR0161
GAAR0162
GAAR0163
GAAR0164
GAAR0166
GAAR0167

Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide

IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.01578 -155.84309
68.01194 -155.84443
68.01198 -155.84156
68.01226 -155.83886
68.01134 -155.83865
68.01300 -155.83670
68.01470 -155.83804
68.01409 -155.83583
68.01532 -155.83768
68.01541 -155.83589
68.01805 -155.83475
68.01473 -155.82813
67.99889 -155.77090
68.01491 -155.79358
68.01215 -155.78868
68.00810 -155.78015
67.99757 -155.77278
68.01134 -155.77926
68.01110 -155.76718
68.01156 -155.77480
68.01242 -155.77963
68.00410 -155.79304
68.00346 -155.78695
68.00240 -155.79123
68.00060 -155.79058
67.99953 -155.78850
67.99729 -155.81402
67.99691 -155.81791
67.99873 -155.81770
67.99458 -155.81361
67.99316 -155.82662
67.99427 -155.84735



GAAR0169 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0170 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0171 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0172 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0173 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0174 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0175 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0176 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0177 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0178 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0179 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0180 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0181 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0182 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0183 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0184 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0185 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0186 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0187 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0188 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0189 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0190 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0191 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0192 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0193 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0194 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0198 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0199 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0200 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0201 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0202 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0203 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.99384 -155.84805
67.99744 -155.84945
67.99338 -155.83955
68.01960 -155.82244
68.08001 -155.58716
68.08050 -155.57639
68.07965 -155.57215
68.08378 -155.56509
68.08048 -155.56122
68.08306 -155.56304
68.08302 -155.56161
68.08290 -155.55872
68.08314 -155.55704
68.07755 -155.56423
68.08478 -155.48909
68.07925 -155.45700
68.08031 -155.45005
68.08094 -155.44865
67.92850 -154.88488
67.93861 -154.90222
68.33567 -152.66361
68.33960 -152.65070
68.34092 -152.64753
68.34280 -152.64866
68.34406 -152.65069
68.33693 -152.66688
67.96713 -156.44476
67.97062 -156.43312
67.97802 -156.31366
67.95508 -156.31269
67.93656 -156.12115
67.93438 -156.11892
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GAAR0204
GAAR0205
GAAR0206
GAAR0207
GAAR0208
GAAR0209
GAAR0210
GAAR0211
GAAR0212
GAAR0213
GAAR0214
GAAR0215
GAAR0216
GAAR0217
GAAR0218
GAAR0219
GAAR0220
GAAR0221
GAAR0222
GAAR0223
GAAR0224
GAAR0225
GAAR0226
GAAR0227
GAAR0228
GAAR0229
GAAR0230
GAAR0231
GAAR0232
GAAR0233
GAAR0234
GAAR0235

Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide

IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.93276 -156.12150
67.90580 -156.45720
67.91447 -156.24293
67.98317 -155.95660
67.98009 -155.95664
67.97848 -155.96183
67.98135 -155.97819
67.98216 -155.94227
67.97918 -155.96658
67.97862 -155.96894
67.97919 -155.97237
67.97860 -155.97238
67.98349 -155.97020
67.99289 -155.93385
67.98844 -155.93438
67.98552 -155.93937
67.98419 -155.93698
67.99033 -155.89065
67.98480 -155.88878
67.98138 -155.89198
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67.97014 -155.88985
67.97221 -155.90036
67.97416 -155.89913
67.80454 -155.75067
67.74285 -155.75184
67.74401 -155.73400
67.74453 -155.72468
67.74521 -155.72246
67.73957 -155.71868
67.73976 -155.71924
67.73733 -155.71837
67.75860 -155.95220
67.77836 -155.96006
67.74866 -155.95699
67.73845 -155.92417
67.73786 -155.92926
67.73803 -155.93122
67.73816 -155.93275
67.73914 -155.94670
67.72756 -155.96979
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67.72435 -155.97523
67.72505 -155.97490
67.72531 -155.97525
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67.72598 -155.98093
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67.72559 -155.98093
67.72536 -155.98049
67.72555 -155.98404
67.72666 -155.98340
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67.72079 -155.97083
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67.72535 -155.98929
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67.72216 -155.96112
67.72066 -155.96326
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67.82298 -156.55310
67.82259 -156.55123
67.82156 -156.57265
67.80337 -156.50574
67.80616 -156.51962
67.80526 -156.51897
67.81018 -156.51396
67.81320 -156.50801
67.81755 -156.50300
67.81783 -156.50163
67.81801 -156.50038
67.80195 -156.62383
67.87978 -156.17850
67.86228 -155.83443
67.88734 -155.84861
67.88272 -155.84428
67.86996 -155.77829
67.86506 -155.78124
67.86173 -155.77255
67.86471 -155.76834
67.86535 -155.76317
67.86285 -155.76433
67.86811 -155.78007
67.86721 -155.76905
67.86764 -155.76704
67.86865 -155.76378
67.86897 -155.76073
67.86948 -155.76401
67.87693 -155.75954
67.84908 -155.75822
67.84830 -155.75833
67.84723 -155.76577
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67.84636 -155.76153
67.84609 -155.76483
67.82209 -155.75580
67.82351 -155.76052
67.82531 -155.76594
67.81957 -155.77241
67.82017 -155.76954
67.82359 -155.75421
67.82029 -155.76282
67.73169 -156.57990
67.79161 -156.37607
67.79864 -156.15555
67.79748 -156.15559
67.79800 -156.15173
67.79397 -156.14959
67.79501 -156.15631
67.79271 -156.15450
67.79171 -156.15110
67.79220 -156.15717
67.79065 -156.15801
67.78755 -156.08665
67.75380 -156.09539
67.75100 -156.09751
67.75063 -156.09645
67.75007 -156.09638
67.76012 -156.14391
67.76044 -156.14396
67.75989 -156.14063
67.77900 -156.35507
67.77566 -156.35424
67.76396 -156.33643
67.74745 -156.35986
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67.75069 -156.37111
67.72394 -156.32856
67.72191 -156.32009
67.72473 -156.30998
67.72687 -156.31159
67.73008 -156.01464
67.73270 -156.02318
67.72331 -155.77905
67.67046 -155.77533
67.67060 -155.78705
67.67092 -155.78788
67.67344 -155.79393
67.67261 -155.78915
67.67139 -155.79679
67.65939 -155.76018
67.66120 -155.76943
67.65680 -155.76194
67.65470 -155.78459
67.65451 -155.78270
67.65470 -155.77912
67.65187 -155.77876
67.65168 -155.77232
67.65037 -155.78887
67.65043 -155.79389
67.65275 -155.79951
67.63752 -155.79324
67.69255 -156.21993
67.65517 -156.19903
67.65259 -156.20432
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GAAR0853 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0854 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0855 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0856 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0858 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0859 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0860 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0861 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0862 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.32196 -154.52285
68.32084 -154.34602
68.32222 -154.34065
68.31885 -154.34130
68.43398 -153.44594
67.77990 -155.70872
67.77822 -155.70876
67.78278 -155.70952
67.77530 -155.66634
67.80924 -155.55149
67.73836 -155.47050
67.73796 -155.46804
67.73922 -155.46267
67.73900 -155.46665
67.74996 -155.70216
67.75044 -155.70167
67.75029 -155.69960
67.74212 -155.55050
67.74097 -155.55254
67.74174 -155.55834
67.73299 -155.59348
67.73417 -155.59621
67.72834 -155.59961
67.73320 -155.58113
67.73243 -155.57574
67.73212 -155.57170
67.73231 -155.57111
67.74159 -155.72363
67.74296 -155.72890
67.98970 -153.50628
67.98904 -153.50439
67.98943 -153.49539
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GAAR0863 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0864 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0865 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0866 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0867 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0868 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0869 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0870 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0871 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0872 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0873 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0874 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0875 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0876 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0877 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0878 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0879 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0880 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0881 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0882 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0883 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0884 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0885 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0886 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0887 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0888 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0889 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0890 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0891 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0892 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0893 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0894 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.00812 -153.43701
68.00694 -153.44182
67.97557 -153.40631
67.94270 -153.37800
67.93116 -153.58926
67.93267 -153.59207
68.00963 -153.13760
67.99208 -153.14926
67.98572 -153.14964
67.98505 -153.14765
67.98474 -153.14978
67.98465 -153.15166
67.98405 -153.14990
67.98368 -153.15398
68.00255 -153.11761
67.99485 -153.11606
67.95534 -153.03041
67.95430 -153.03409
67.97001 -153.04874
67.96923 -153.05667
67.96991 -153.06120
67.96889 -153.05983
67.98100 -153.14563
67.98090 -153.15035
67.97953 -153.15071
67.98157 -153.15487
67.98084 -153.15587
67.97441 -153.16039
67.97632 -153.16376
67.97568 -153.16441
67.97073 -153.16956
67.94990 -153.22799
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GAAR0895 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0896 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0897 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0898 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0899 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0900 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0901 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0902 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0903 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0904 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0905 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0906 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0907 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0908 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0909 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0910 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0911 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0912 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0913 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0914 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0915 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0916 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0917 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0918 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0919 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0920 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0921 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0922 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0923 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0924 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0925 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0926 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.92917 -153.10955
67.92756 -153.11547
67.92785 -153.11583
67.92797 -153.11614
67.92821 -153.11640
67.92423 -153.02537
67.92509 -153.02663
67.92197 -152.97653
67.94691 -152.96531
68.09738 -153.94306
68.09863 -153.93713
68.09862 -153.93224
68.09905 -153.92816
68.10380 -153.92744
68.10327 -153.92751
68.10397 -153.92050
68.10422 -153.91785
68.08838 -153.78699
68.09844 -153.78659
68.12119 -153.65523
68.12248 -153.62998
68.12172 -153.65265
68.12244 -153.65151
68.11418 -153.67950
68.03865 -153.66824
68.04068 -153.66774
68.03985 -153.66890
68.03951 -153.67156
68.02674 -153.64092
68.02735 -153.62066
68.02644 -153.61942
68.03128 -153.64408
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GAAR0927 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0928 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0929 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0930 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0931 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0932 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0933 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0934 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0935 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0936 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0937 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0938 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0939 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0940 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0941 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0942 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0943 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0944 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0945 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0946 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0947 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0948 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0949 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0950 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0951 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0952 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0953 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0954 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0955 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0956 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0957 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0958 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.03295 -153.63866
68.03260 -153.64292
68.02995 -153.64072
68.03027 -153.63615
68.03784 -153.44396
68.03689 -153.44271
67.77651 -153.99163
67.77424 -153.78874
67.76797 -153.78520
67.76783 -153.78830
67.76846 -153.78550
67.79232 -153.21769
67.79199 -153.21673
67.79186 -153.21408
67.79230 -153.21115
67.79017 -153.21726
67.78945 -153.21964
67.78942 -153.22058
67.78898 -153.22179
67.78868 -153.21970
67.79297 -153.22132
67.79402 -153.22839
67.79574 -153.22822
67.79579 -153.23031
67.78983 -153.20844
67.78901 -153.20991
67.78874 -153.21162
67.78801 -153.21309
67.78795 -153.21044
67.78788 -153.21964
67.78719 -153.21563
67.79016 -153.21021
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GAAR0959 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0960 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0961 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0962 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0963 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0964 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0965 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0966 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0967 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0968 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0969 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0970 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0971 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0972 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0973 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0974 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0975 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0976 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0977 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0978 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0979 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0980 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0981 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0982 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0983 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0984 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0985 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0986 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0987 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0988 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0989 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0990 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.78797 -153.20193
67.78664 -153.20267
67.78721 -153.20076
67.78533 -153.20137
67.78815 -153.19611
67.78494 -153.20482
67.78514 -153.20981
67.78384 -153.20330
67.78384 -153.20116
67.78539 -153.19091
67.78545 -153.19599
67.79220 -153.20359
67.79446 -153.21156
67.79060 -153.20014
67.78145 -153.19916
67.77803 -153.20947
67.80517 -153.19429
67.79945 -153.15119
67.78437 -153.00252
67.77529 -152.99174
67.77602 -152.99330
67.71140 -153.27445
67.74528 -153.19422
67.70594 -153.27757
67.62600 -153.91381
67.62780 -153.91475
67.62983 -153.91376
67.62952 -153.90842
67.62270 -153.89244
67.67200 -153.54912
67.67072 -153.55125
67.67268 -153.54875
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GAAR0991 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0992 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR0993 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0994 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0995 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0996 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0997 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0998 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR0999 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1000 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAARlOOl Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1002 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1003 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1004 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1005 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1006 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1007 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1008 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1009 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAARIOIO Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1011 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1012 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1013 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1014 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1015 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1016 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1017 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1018 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1019 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1020 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1021 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1022 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.61165 -153.55956
67.60771 -153.56220
67.91493 -153.59502
67.82910 -153.68872
67.82877 -153.68901
67.82876 -153.68538
67.82589 -153.68951
67.82592 -153.68765
67.82953 -153.71928
67.81322 -153.70811
67.81360 -153.70895
67.81868 -153.70833
67.81386 -153.71114
67.81356 -153.70167
67.81204 -153.19555
67.81215 -153.19178
67.81104 -153.18937
67.80643 -153.19441
67.80791 -153.18815
67.81153 -153.18957
67.80747 -153.18624
67.80742 -153.18296
67.48573 -154.80763
67.48656 -154.80351
67.47408 -154.80349
67.47237 -154.80409
67.48656 -154.04970
68.27024 -155.59950
68.27040 -155.59589
68.26974 -155.59406
68.26447 -155.37799
68.26294 -155.36684
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GAAR1023 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1024 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1025 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1026 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1027 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1028 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1029 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1030 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1031 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1032 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1033 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1034 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1035 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1036 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1037 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1038 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1039 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1040 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1041 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1042 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1043 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1044 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1045 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1046 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1047 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1048 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1049 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1050 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1051 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1052 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1053 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1054 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.26325 -155.37413
68.24630 -155.39548
68.24948 -155.39065
68.23016 -155.34615
68.23425 -155.35324
68.22383 -155.41435
68.22468 -155.40680
68.28100 -155.19953
68.28064 -155.13530
68.29771 -155.03075
68.26963 -154.89252
67.72641 -155.72548
67.72664 -155.71780
67.72643 -155.70751
67.72227 -155.69515
67.72178 -155.69375
67.72168 -155.69303
67.72165 -155.69253
67.72116 -155.68726
67.72462 -155.69294
67.72519 -155.69461
67.72512 -155.68821
67.72378 -155.55154
67.72222 -155.54745
67.72437 -155.56295
67.72109 -155.54203
67.72116 -155.53846
67.71790 -155.55056
67.71742 -155.54686
67.71813 -155.54340
67.71998 -155.53915
67.70592 -155.52972
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GAAR1055 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1056 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1057 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1058 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1059 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1060 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1061 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1062 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1063 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1064 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1065 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1066 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1067 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1068 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1069 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1070 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1071 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1072 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1073 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1074 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1075 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1076 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1077 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1078 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1079 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1080 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1081 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1082 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1083 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1084 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1085 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1086 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.70570 -155.52565
67.69871 -155.52024
67.69988 -155.51750
67.70587 -155.50948
67.70375 -155.50384
67.71470 -155.47851
67.71499 -155.47581
67.71377 -155.47805
67.72139 -155.46440
67.72030 -155.46214
67.71514 -155.45737
67.72183 -155.45543
67.72285 -155.45295
67.71909 -155.43436
67.71850 -155.42673
67.71992 -155.42714
67.72104 -155.42533
67.71974 -155.43494
67.71222 -155.43793
67.70853 -155.45209
67.70903 -155.44406
67.70909 -155.44598
67.71109 -155.45348
67.72736 -155.42663
67.72598 -155.43429
67.72045 -155.40931
67.72012 -155.40565
67.72235 -155.37648
67.72308 -155.40487
67.69314 -155.42912
67.69014 -155.43511
67.68848 -155.43212



249

GAAR1087 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1088 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1089 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1090 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1091 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1092 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1093 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1094 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1095 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1096 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1097 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1098 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1099 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1100 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1101 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1102 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1103 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1104 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1105 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1106 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1107 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1108 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1109 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1110 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1 111 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1112 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1113 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1114 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1115 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1116 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1117 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1118 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.68749 -155.43385
67.68811 -155.43338
67.68771 -155.43266
67.64997 -155.62031
67.64734 -155.61758
67.64526 -155.61472
67.64454 -155.61347
67.64374 -155.53492
67.64117 -155.55538
67.63379 -155.52000
67.63510 -155.51996
67.63568 -155.51900
67.63847 -155.51905
67.63759 -155.45013
67.63572 -155.45762
67.63411 -155.46076
67.63354 -155.47171
67.72001 -155.30240
67.71986 -155.30116
67.72089 -155.29083
67.72171 -155.29066
67.72209 -155.28893
67.72092 -155.29340
67.71347 -155.21202
67.71631 -155.22499
67.71663 -155.22528
67.71746 -155.22619
67.71772 -155.22580
67.71746 -155.22861
67.70112 -155.11714
67.70310 -155.11654
67.70687 -155.12387
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GAAR1119 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1120 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1121 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1122 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1123 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1124 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1125 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1126 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1127 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1128 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1129 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1130 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1131 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1132 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1133 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1134 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1135 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1136 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1137 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1138 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1139 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1140 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1141 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1142 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1143 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1144 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1145 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1146 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1147 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1148 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1149 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1150 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.70728 -155.12251
67.70625 -155.12499
67.70586 -155.12293
67.70542 -155.12441
67.71794 -155.01242
67.72283 -154.99835
67.71040 -154.96901
67.70977 -154.96662
67.70839 -154.97265
67.70345 -154.97492
67.70698 -154.97867
67.70795 -154.95798
67.70673 -154.95921
67.70614 -154.95867
67.70800 -154.96085
67.71656 -154.88417
67.71615 -154.88555
67.71613 -154.89036
67.66547 -155.18682
67.66409 -155.19380
67.68403 -155.19600
67.69084 -155.19224
67.66258 -155.18296
67.72575 -154.82310
67.72303 -154.82137
67.72310 -154.81709
67.72295 -154.81581
67.72401 -154.82313
67.71934 -154.77464
67.72066 -154.77661
67.72122 -154.77688
67.71844 -154.78120



GAAR1151 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1152 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1153 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1154 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1155 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1156 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1157 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1158 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1159 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1160 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1161 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1162 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1163 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1164 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1165 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1166 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1167 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1168 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1169 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1170 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1171 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1172 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1173 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1174 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1175 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1176 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1177 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1178 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1179 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1180 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1181 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1182 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.71791 -154.77402
67.72271 -154.74737
67.72202 -154.75395
67.72097 -154.75132
67.72602 -154.74937
67.72658 -154.74629
67.72132 -154.76195
67.71276 -154.56135
67.71418 -154.55673
67.71643 -154.57635
67.71791 -154.57277
67.70757 -154.59559
67.70502 -154.59054
67.70225 -154.58335
67.70169 -154.57613
67.70797 -154.45938
67.71181 -154.45093
67.71252 -154.44568
67.71328 -154.45096
67.71398 -154.45086
67.68087 -154.43685
67.67656 -154.44526
67.66254 -154.61320
67.66293 -154.61341
67.66185 -154.61714
67.66313 -154.60861
67.66274 -154.60634
67.64840 -154.69772
67.71698 -154.59722
67.70293 -154.24716
67.70581 -154.21492
67.72056 -154.20657
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GAAR1183 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1184 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1185 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1186 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1187 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1188 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1189 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1190 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1191 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1192 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1193 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1194 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1195 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1196 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1197 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1198 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1199 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1200 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1201 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1202 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1203 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1204 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1205 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1206 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1207 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1208 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1209 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1210 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1211 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1212 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1213 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1214 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.71923 -154.20817
67.69977 -154.21221
67.70162 -154.21525
67.69959 -154.21359
67.69870 -154.21513
67.69549 -154.21470
67.69490 -154.21335
67.69325 -154.21501
67.70085 -154.18028
67.70121 -154.17893
67.70028 -154.18338
67.69924 -154.10782
67.69965 -154.11240
67.69980 -154.11012
67.69228 -154.10312
67.69178 -154.10329
67.71637 -154.03845
67.72026 -154.00055
67.67746 -154.11494
67.67797 -154.11884
67.68613 -154.12196
67.68543 -154.11973
67.68749 -154.12540
67.68927 -154.12290
67.69003 -154.12430
67.68188 -154.20154
67.68216 -154.20095
67.68233 -154.20118
67.68259 -154.20080
67.68298 -154.20009
67.68342 -154.19964
67.68439 -154.19880
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GAAR1215 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1216 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1217 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1218 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1219 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1220 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1221 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1222 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1223 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1224 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1225 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1226 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1227 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1228 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1229 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1230 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1231 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1232 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1233 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1234 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1235 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1236 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1237 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1238 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1239 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1240 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1241 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1242 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1243 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1244 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1245 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1246 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.68384 -154.19681
67.67817 -154.19429
67.67723 -154.18753
67.67739 -154.18723
67.67884 -154.18815
67.67989 -154.18459
67.68026 -154.18885
67.68142 -154.18506
67.66784 -154.23636
67.66828 -154.24590
67.66847 -154.24555
67.67413 -154.22730
67.67460 -154.22789
67.67209 -154.23374
67.67210 -154.23298
67.67197 -154.23205
67.67305 -154.30201
67.66785 -154.30220
67.67053 -154.29225
67.66879 -154.30870
67.66466 -154.28947
67.66500 -154.29496
67.66030 -154.32127
67.66508 -154.32423
67.66020 -154.32754
67.67235 -154.41242
67.68806 -154.38043
67.64124 -154.22933
67.62656 -155.52680
67.62694 -155.52230
67.62694 -155.51946
67.62865 -155.52465
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GAAR1254
GAAR1255
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GAAR1258
GAAR1259
GAAR1260
GAAR1261
GAAR1262
GAAR1263
GAAR1264
GAAR1265
GAAR1266
GAAR1267
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67.62869 -155.51700
67.62468 -155.52224
67.62481 -155.52196
67.62606 -155.52163
67.62526 -155.52102
67.62546 -155.52271
67.62518 -155.52172
67.62743 -155.52008
67.62766 -155.52011
67.62855 -155.52104
67.62958 -155.52043
67.62945 -155.51618
67.62964 -155.51482
67.62947 -155.51512
67.61449 -155.54253
67.61639 -155.53981
67.61532 -155.52988
67.59332 -155.40937
67.59390 -155.40875
67.61872 -155.38775
67.62220 -155.38055
67.62418 -155.37394
67.61833 -155.37764
67.61817 -155.37155
67.61883 -155.36364
67.62165 -155.36231
67.62181 -155.36840
67.62089 -155.37173
67.61946 -155.37470
67.61298 -155.21022
67.59219 -155.25681
67.59178 -155.25515
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67.59136 -155.25595
67.59921 -155.25005
67.57977 -154.86566
67.57905 -154.86416
67.57500 -154.40140
68.18903 -155.42044
68.20728 -155.42222
68.19888 -155.21142
68.19445 -155.21415
68.19317 -155.21395
68.15438 -155.55532
68.12526 -155.62328
68.11985 -155.62410
68.11494 -155.51827
68.11461 -155.38656
68.11385 -155.38958
68.11347 -155.39048
68.11245 -155.39011
68.12309 -155.30348
68.11342 -155.31267
68.11428 -155.31073
68.11199 -155.31049
68.11311 -155.30346
68.11475 -155.31793
68.11452 -155.31833
68.11104 -155.33395
68.11071 -155.33821
68.10868 -155.32790
68.11208 -155.39806
68.11032 -155.39864
68.17761 -155.18408
68.15920 -155.12888
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68.14702 -154.77981
68.12426 -154.70597
68.00028 -155.76681
67.99837 -155.75830
67.99723 -155.76068
67.97438 -155.57609
67.96585 -155.56966
67.96541 -155.56558
67.91722 -155.69259
67.91625 -155.69776
67.91449 -155.69294
67.91853 -155.69390
68.00569 -155.31056
68.00575 -155.30838
68.00542 -155.30623
68.00572 -155.29969
68.00440 -155.30816
68.00442 -155.31065
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68.00384 -155.30798
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67.98669 -155.04165
67.99005 -155.02978
67.91049 -155.09509
68.00012 -154.87301
67.94976 -154.53077
67.96754 -154.58587
67.96055 -154.58883
67.94509 -154.52890
67.94167 -154.63111
67.94330 -154.61441
67.95157 -154.69888
67.95917 -154.85574
67.95866 -154.85986
67.96097 -154.78815
67.96123 -154.78962
67.95668 -154.85523
67.94595 -154.27422
67.92103 -154.34179
67.92030 -154.34418
67.91667 -154.34286
67.91272 -154.34303
67.92667 -154.18438
67.88122 -155.73360
67.88044 -155.73092
67.88147 -155.73024
67.88608 -155.73112
67.88281 -155.73113
67.84662 -155.62152
67.84642 -155.62164
67.88488 -155.74339
67.88156 -155.75641
67.88140 -155.75415
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GAAR1391 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
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67.88074 -155.75392
67.88004 -155.75358
67.87908 -155.75235
67.87924 -155.75579
67.87738 -155.74823
67.87623 -155.74853
67.87503 -155.73843
67.83962 -155.72529
67.83607 -155.73985
67.83491 -155.73980
67.83423 -155.74025
67.83097 -155.74772
67.83439 -155.72355
67.82366 -155.74683
67.82296 -155.75058
67.82662 -155.75050
67.87104 -155.74443
67.87166 -155.74922
67.86998 -155.75171
67.87714 -155.75813
67.87715 -155.75706
67.87497 -155.75745
67.87394 -155.75553
67.87375 -155.75472
67.86707 -155.75678
67.86663 -155.75706
67.86646 -155.75707
67.86551 -155.75224
67.86535 -155.75588
67.85389 -155.75566
67.85263 -155.73608
67.85539 -155.74556
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67.85399 -155.73475
67.85056 -155.74986
67.84885 -155.74781
67.84790 -155.74968
67.84454 -155.74997
67.84600 -155.75463
67.84308 -155.74455
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67.81618 -155.73295
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67.81635 -155.72135
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67.82721 -155.63745
67.82217 -155.60382
67.82264 -155.60167
67.81902 -155.59376
67.81836 -155.64010
67.81870 -155.63992
67.81865 -155.62887
67.81057 -155.59326
67.81441 -155.57221
67.81346 -155.57571
67.89381 -154.35492
67.89306 -154.35492
67.89061 -154.35878
67.90363 -154.30331
67.86733 -154.23609
67.76239 -155.03618
67.76330 -155.04339
67.76385 -155.03537
67.76229 -155.03186
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IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.76616 -155.04728
67.75301 -155.22124
67.74942 -155.22127
67.73376 -155.23370
67.74361 -154.91626
67.74263 -154.91223
67.74284 -154.90940
67.73166 -154.93264
67.73701 -154.83410
67.73667 -154.83428
67.73649 -154.83418
67.73596 -154.83404
67.73229 -154.82761
67.73237 -154.82635
67.73174 -154.82659
67.73002 -154.82747
67.73307 -154.75438
67.73031 -154.75422
67.73029 -154.75930
67.73053 -154.76146
67.72956 -154.74920
67.72977 -154.74409
67.81894 -153.94366
67.81447 -153.93314
68.58079 -152.92321
68.02588 -149.83747
68.02700 -149.83732
68.02547 -149.84847
68.03114 -149.84039
68.02981 -149.84348
68.03125 -149.82445
68.03275 -149.82387



GAAR1473 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1474 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1475 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1476 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1477 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1478 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1479 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1480 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1481 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1482 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1483 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1486 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1487 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1488 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1489 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1490 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1491 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1492 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1493 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1494 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1495 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1496 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1497 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1498 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1499 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1500 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1501 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1502 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1503 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1504 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1505 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1506 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.02985 -149.81693
68.04245 -149.82151
68.04494 -149.81974
68.01937 -149.92702
68.01961 -149.92300
68.01571 -149.87445
68.09711 -151.54755
68.09485 -151.54702
68.09162 -151.55836
68.09284 -151.55891
68.09422 -151.56283
68.15536 -152.75295
68.15596 -152.75867
68.16517 -152.75545
68.13759 -151.99232
68.13603 -151.97817
67.90248 -151.90215
67.90199 -151.90135
67.90155 -151.90007
67.90031 -151.89687
67.90074 -151.90284
67.90351 -151.89467
67.88977 -151.91507
67.89162 -151.90952
67.88803 -151.91354
67.87935 -151.90052
67.74400 -151.65694
67.74166 -151.62628
67.75459 -151.55575
67.71455 -151.54556
67.71528 -151.54664
67.71588 -151.54980



262

GAAR1507 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1508 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1509 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1510 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1511 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1512 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1513 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1514 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1515 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1516 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1517 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1518 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1519 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1520 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1521 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1522 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1523 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1524 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1525 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1526 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1527 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1528 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1529 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1530 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1531 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1532 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1533 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1534 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1535 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1536 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1537 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1538 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.71223 -151.88049
67.70855 -151.85808
67.67845 -151.82806
67.67884 -151.82853
67.67916 -151.82870
67.67809 -151.85260
67.67845 -151.84910
67.73261 -151.51325
67.73241 -151.50811
67.73236 -151.50676
67.73135 -151.51210
67.73096 -151.51112
67.73040 -151.51292
67.73367 -151.51465
67.73724 -151.51814
67.74120 -151.50571
67.74083 -151.50791
67.74110 -151.50874
67.74160 -151.50875
67.73847 -151.51043
67.73812 -151.50868
67.73878 -151.50589
67.73991 -151.50648
67.71666 -150.67338
67.59310 -151.27165
67.60869 -150.34131
67.57948 -151.30766
67.55796 -151.32628
67.95236 -151.43832
67.95258 -151.46398
67.94928 -151.44665
67.94651 -150.87089
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GAAR1539 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1540 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1541 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1542 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1543 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1544 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1545 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1546 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1547 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1548 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1549 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1550 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1551 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1552 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1553 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1554 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1555 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1556 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1557 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1558 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1559 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1560 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1561 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1562 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1563 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1564 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1565 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1566 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1567 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1568 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1569 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1570 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.98206 -150.48803
67.97963 -150.48985
67.95034 -150.50117
67.98699 -150.08379
67.98622 -149.94448
67.99056 -149.90448
68.02668 -149.84198
67.97383 -152.91672
67.97067 -152.90710
67.96933 -152.89868
67.96698 -152.88543
67.96421 -152.88272
67.96259 -152.88271
67.95326 -152.86062
67.95057 -152.85256
67.94899 -152.83666
67.94048 -152.85439
67.95125 -152.61797
67.95384 -152.61154
67.95457 -152.61177
67.93412 -152.49982
67.98984 -152.14247
67.97746 -152.11869
67.91647 -152.16616
67.77909 -152.99361
67.77690 -152.99545
67.79142 -152.85827
67.78991 -152.86133
67.78977 -152.86300
67.78732 -152.85966
67.78681 -152.86104
67.78816 -152.86766
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GAAR1571 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1572 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1573 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1574 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1575 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1576 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1577 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1578 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1579 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1580 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1581 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1582 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1583 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1584 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1585 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1586 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1587 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1588 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1589 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1590 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1591 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1592 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1593 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1594 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1595 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1596 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1597 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1598 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1599 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1600 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1601 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1602 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.78726 -152.87086
67.80000 -152.70242
67.80412 -152.67844
67.80099 -152.68203
67.74331 -152.65276
67.72916 -152.79623
67.72982 -152.79517
67.74055 -152.80150
67.73972 -152.79603
67.74217 -152.80205
67.71614 -152.84502
67.74370 -152.80414
67.70912 -152.72179
67.70939 -152.72216
67.71049 -152.72004
67.70818 -152.72434
67.70778 -152.72412
67.74712 -152.62726
67.74662 -152.63458
67.79531 -152.62261
67.78643 -152.36628
67.78367 -152.24281
67.80293 -152.25586
67.72834 -152.31356
67.72910 -152.31398
67.76029 -152.34176
67.76109 -152.34777
67.74222 -152.31785
67.74496 -152.32465
67.74436 -152.31158
67.80331 -152.22549
67.80284 -152.22162
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GAAR1603 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1604 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1605 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1606 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1607 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1608 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1609 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1610 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1611 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1612 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1613 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1614 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1615 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1616 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1617 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1618 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1619 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1620 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1621 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1622 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1623 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1624 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1625 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1626 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1627 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1628 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1629 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1630 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1631 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1632 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1633 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1634 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.80177 -152.23368
67.80076 -152.23139
67.80018 -152.23285
67.80320 -152.23655
67.80207 -152.23709
67.80113 -152.22880
67.80191 -152.22945
67.79822 -152.24023
67.80058 -152.19164
67.79280 -152.18668
67.78861 -152.18809
67.80446 -152.20940
67.78452 -152.21059
67.78733 -152.20495
67.78978 -152.21099
67.77702 -152.23629
67.77315 -152.17069
67.77313 -152.16249
67.77387 -152.16580
67.79164 -152.14499
67.78685 -152.11149
67.78856 -152.11378
67.78903 -152.11183
67.78358 -151.94903
67.80143 -151.88437
67.78651 -151.87839
67.78125 -151.88302
67.78139 -151.88011
67.77581 -151.87652
67.74668 -151.97394
67.74825 -151.97673
67.74399 -151.96927
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GAAR1635
GAAR1636
GAAR1637
GAAR1638
GAAR1639
GAAR1640
GAAR1641
GAAR1642
GAAR1643
GAAR1644
GAAR1645
GAAR1646
GAAR1647
GAAR1648
GAAR1649
GAAR1650
GAAR1651
GAAR1652
GAAR1653
GAAR1654
GAAR1655
GAAR1656
GAAR1657
GAAR1658
GAAR1659
GAAR1660
GAAR1661
GAAR1662
GAAR1663
GAAR1664
GAAR1665
GAAR1666

Retrogressive Thaw Slump 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Retrogressive Thaw Slump 
Active Layer Detachment Slide 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump

IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.74427 -151.96929
67.74076 -152.03895
67.73896 -152.03968
67.73953 -152.03910
67.75792 -151.99124
67.76053 -151.98260
67.75578 -152.06472
67.75651 -152.06615
67.75455 -152.06318
67.76488 -152.15041
67.76577 -152.14430
67.77011 -152.14597
67.76911 -152.14136
67.76889 -152.13952
67.76895 -152.13840
67.76947 -152.14027
67.76854 -152.13445
67.76763 -152.13080
67.73121 -152.21613
67.72068 -152.22525
67.72081 -152.22427
67.72064 -152.22139
67.72127 -152.22212
67.72082 -152.21417
67.72447 -152.21847
67.72120 -152.20265
67.72209 -152.20125
67.71117 -152.23113
67.71107 -152.22938
67.70984 -152.23036
67.71124 -152.22466
67.71236 -152.22472
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GAAR1667 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1668 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1669 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1670 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1671 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1672 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1673 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1674 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1675 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1676 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1677 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1678 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1679 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1680 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1681 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1682 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1683 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1684 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1685 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1686 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1687 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1688 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1689 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1690 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1691 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1692 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1693 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1694 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1695 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1696 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1697 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1698 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.71017 -152.22795
67.70784 -152.22777
67.70679 -151.88183
67.69524 -152.13995
67.67396 -152.73128
67.70153 -152.71640
67.70445 -152.70969
67.70031 -152.71027
67.69613 -152.68864
67.63780 -152.80688
67.63800 -152.80615
67.63931 -152.80959
67.68659 -152.06965
67.67439 -151.99648
67.67880 -152.00872
67.68103 -152.01033
67.68128 -152.01079
67.66171 -151.92755
67.66291 -151.93346
67.64130 -151.95985
67.64998 -152.13109
67.65534 -152.19372
67.61471 -151.97466
67.81207 -151.81969
67.80644 -151.81410
67.80935 -151.80642
67.77851 -151.63776
67.77764 -151.64016
67.77739 -151.64040
67.77338 -151.64392
67.76629 -151.80930
67.75451 -151.70924



268

GAAR1699
GAAR1700
GAAR1701
GAAR1702
GAAR1703
GAAR1704
GAAR1705
GAAR1706
GAAR1707
GAAR1708
GAAR1709
GAAR1710
GAAR1711
GAAR1712
GAAR1713
GAAR1714
GAAR1715
GAAR1716
GAAR1717
GAAR1718
GAAR1719
GAAR1720
GAAR1721
GAAR1722
GAAR1723
GAAR1724
GAAR1725
GAAR1726
GAAR1727
GAAR1728
GAAR1729
GAAR1730

Active Layer Detachment Slide 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Retrogressive Thaw Slump 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Retrogressive Thaw Slump 
Active Layer Detachment Slide 
Retrogressive Thaw Slump 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide 
Active Layer Detachment Slide

IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.75319 -151.71174
67.77888 -151.65737
67.77863 -151.65823
67.84016 -151.33621
67.81933 -151.33683
67.88655 -152.74091
67.88366 -152.73807
67.88306 -152.73819
67.88439 -152.72134
67.85849 -152.73061
67.85954 -152.71922
67.92928 -152.64484
67.89010 -152.28777
67.89060 -152.28227
67.86051 -152.57416
67.85793 -152.56491
67.85515 -152.56671
67.89181 -151.93155
67.89247 -152.07510
67.91433 -152.10653
67.89587 -152.22379
67.89953 -152.27141
67.89916 -152.27856
67.89818 -152.27943
67.89759 -152.27944
67.89721 -152.27762
67.89772 -152.26985
67.89668 -152.27382
67.89672 -152.27521
67.89087 -152.27799
67.89334 -152.28268
67.89338 -152.28449
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GAAR1731 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1732 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1733 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1734 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1735 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1736 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1737 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1738 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1739 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1740 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1741 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1742 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1743 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1744 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1745 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1746 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1747 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1748 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1749 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1750 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1751 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1752 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1753 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1754 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1755 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1756 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1757 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1758 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1759 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1760 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1761 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1762 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.89317 -152.28463
67.86503 -152.12250
67.85845 -152.07397
67.85694 -152.05909
67.86208 -152.03804
67.86841 -152.00897
67.86991 -151.98977
67.83381 -152.85415
67.87625 -151.93917
67.81975 -151.94736
67.82811 -152.00614
67.84439 -152.01020
67.82786 -152.03941
67.84794 -152.09638
67.81673 -152.12691
67.81685 -152.12082
67.81938 -152.12295
67.82618 -152.21227
67.82602 -152.23411
67.82499 -152.23214
67.81005 -152.04019
68.37533 -154.28520
68.36954 -154.28445
68.33694 -154.13685
68.33762 -154.14609
68.33787 -154.15086
68.33771 -154.15562
68.33982 -154.15767
68.33928 -154.16657
68.33519 -154.16773
68.33302 -154.15349
68.34510 -154.14707
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GAAR1763 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1764 Retrogressive Thaw SlumpO IKONOS/Geoeye/W orldview
GAAR1765 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1766 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1767 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1768 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1769 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1770 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1771 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1772 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1773 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1774 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1775 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1776 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1777 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1778 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1779 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1780 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1781 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1782 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1783 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1784 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1785 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1786 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1787 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1788 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1789 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1790 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
GAAR1791 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1792 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
GAAR1793 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOOOl Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.34397 -154.15086
68.30972 -154.17877
67.60938 -156.24250
67.94046 -152.85239
68.10984 -155.39271
67.76954 -152.89616
67.78670 -152.87150
68.05857 -155.45446
67.95726 -154.85327
67.93739 -152.88779
67.69028 -155.35173
67.71659 -152.84486
68.04606 -154.63955
67.96507 -154.81233
67.74283 -152.80302
67.72208 -155.40653
67.66517 -155.95666
67.98465 -155.78432
67.77464 -155.97676
67.77561 -155.97252
68.02017 -155.87608
67.99979 -155.87208
67.98559 -155.77489
67.99454 -155.88009
67.65304 -156.20439
67.65624 -156.19993
67.65742 -155.76761
67.82922 -155.63658
67.76282 -152.33352
67.76878 -152.13617
68.05465 -155.48802
68.03367 -158.51800



NOAT0002 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0003 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0004 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0005 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0006 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0007 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0008 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0009 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOOIO Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOOll Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0012 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0013 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOOM Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0015 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOOI6 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0017 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOOI8 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0019 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0020 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0021 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0022 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0023 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0024 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0025 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0026 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0027 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0028 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0029 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0030 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0031 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0032 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOQ33 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.05311 -158.56274
68.06885 -159.24018
68.07064 -159.24448
68.07301 -159.25176
68.08363 -159.32645
68.08221 -159.32345
67.97876 -160.25319
67.97314 -160.25430
67.97173 -160.25284
67.97119 -160.25269
67.95417 -160.21701
67.95468 -160.21619
67.87677 -160.63129
67.90918 -160.71368
67.90935 -160.72356
67.90114 -160.82587
67.90257 -160.82953
67.89882 -160.81661
67.89981 -160.91579
67.92027 -160.91233
67.92092 -160.91463
67.91800 -160.90686
67.96446 -161.10893
67.97686 -161.14081
67.99884 -161.20776
68.00047 -161.21091
68.00094 -161.21193
67.99730 -161.29128
67.99804 -161.29980
67.99825 -161.30321
67.99840 -161.30486
68.00466 -161.45085



272

NOAT0034 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0035 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0036 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0037 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0038 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0039 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0040 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0041 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0042 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0043 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0044 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0045 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0046 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0047 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0048 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0049 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0050 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0051 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0052 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0055 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0056 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0057 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0058 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0059 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0060 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0061 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0062 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0063 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0064 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0065 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0066 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATOQ67 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.00394 -161.45324
67.95394 -161.63501
67.95368 -161.63448
67.98710 -161.87486
68.01502 -159.25482
68.03621 -159.29165
68.02698 -159.22966
68.02754 -159.22996
68.02418 -159.23490
67.97497 -158.52041
67.97422 -158.51909
67.97307 -158.51810
67.97161 -158.51512
67.97061 -158.51210
67.97213 -158.51765
67.95497 -158.47481
67.95642 -158.47513
67.84003 -156.58286
67.84946 -156.61602
67.91311 -156.95429
67.91844 -158.02307
67.91747 -158.02310
67.88192 -158.21464
67.88145 -158.21603
67.88129 -158.21679
67.88012 -158.22628
67.86920 -158.24945
67.87346 -158.24809
67.87742 -158.24687
67.91551 -158.35599
67.91621 -158.35649
67.91819 -158.35720
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NOAT0068 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0069 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0070 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0071 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0072 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0073 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0074 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
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67.95953 -156.82848
67.94296 -156.80042
67.94399 -156.80676
67.94791 -156.81910
67.89817 -156.60057
67.89268 -156.59836
67.89466 -156.60457
67.89234 -156.57772
67.96564 -156.83869
67.96682 -156.84121
67.96660 -157.09439
67.98158 -157.07546
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67.89661 -157.24791
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67.89293 -156.62506
67.89304 -156.62383
67.89298 -156.62238
67.89303 -156.62156
67.89576 -156.60459
67.98658 -157.68934
67.98180 -157.41250
67.98171 -157.42148
67.98116 -157.42088
68.05923 -157.76834



274

NOATOIOO Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATOlOl Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0102 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0103 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0104 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0105 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOIO6 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0107 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOIO8 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0109 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOllO Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOlll Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH2 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH3 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH4 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH5 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH6 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH7 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH8 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATOH9 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT0120 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO121 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO122 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO123 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO124 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO125 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO126 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO127 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO128 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATO129 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT0130 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATQ131 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.07215 -157.73918
68.07490 -157.64906
68.07786 -157.60890
68.07969 -157.62370
68.07966 -157.62737
68.07926 -157.61632
68.07900 -157.61336
68.07749 -157.56881
67.90169 -157.41672
68.07963 -157.62526
68.07937 -157.61820
68.07769 -157.57443
68.07656 -157.57592
68.07694 -157.56653
68.07380 -157.54519
68.07526 -157.54450
68.07640 -157.54619
68.07519 -157.54778
68.06618 -157.45312
68.02468 -157.85515
68.08944 -156.93590
68.08913 -156.92858
68.08914 -156.91848
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68.07331 -156.69854
68.07476 -156.69652
68.07397 -156.69605
68.08431 -156.59221
68.05131 -156.68777
68.03103 -156.74664
68.03010 -156.74416
68.02698 -156.73944
68.04715 -156.77572
68.03345 -156.82210
68.03772 -157.09267
68.00299 -157.19820
68.02185 -156.51960
67.87708 -157.53254
67.90213 -157.41219
67.89957 -157.38866
67.86317 -157.52687
67.80467 -157.89514
67.80398 -157.89753
67.83562 -157.41037
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67.84440 -157.13824
67.84257 -157.11551
67.81636 -157.17243
67.80675 -156.68179
67.80130 -156.76825
67.98185 -157.41502
67.94747 -156.81547
67.94361 -156.80368
68.05308 -159.64844
68.00451 -158.57965
68.08817 -158.63931
68.08734 -159.18267
68.08799 -159.18207
68.00199 -158.58436
68.00686 -158.64983
68.02029 -158.70887
68.02841 -159.23956
68.03394 -159.28752
67.95098 -159.65669
67.95278 -159.65472
67.95425 -159.82655
68.02814 -159.23056
67.94934 -159.47097
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67.95122 -159.46197
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67.94949 -159.46005
67.94818 -159.46151
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67.78978 -158.38556
67.79778 -158.47223
67.79220 -158.47192
67.79088 -158.47179
67.78623 -158.33839
67.78537 -158.33690
67.78420 -158.33260
67.78361 -158.37248
67.85725 -158.27666
67.78169 -157.66133
67.72473 -157.70455
67.78784 -156.69325
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67.77081 -160.28824
67.76478 -160.27686
67.76983 -160.20621
67.76903 -160.20164
67.76753 -160.20458
67.76575 -160.20618



304

NOAT1089 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1090 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1091 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1092 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1093 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1094 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1095 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1096 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1097 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1098 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1099 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATllOO Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOATllOl Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1102 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1103 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1104 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1105 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATIIO6 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1107 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATIIO8 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1109 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOATlllO Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1 111 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1112 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1113 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1114 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1115 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1116 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1117 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1118 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1119 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1120 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.78825 -160.18805
67.78480 -160.19501
67.78472 -160.19552
67.78235 -160.19806
67.75680 -160.21201
67.77785 -160.23583
67.77280 -160.07920
67.80143 -160.02162
67.78281 -160.14336
67.78299 -160.13987
67.78860 -160.02754
67.93941 -160.22320
67.94462 -159.83989
67.92062 -159.83681
67.92716 -159.72228
67.94503 -159.69706
67.95013 -159.73806
67.95027 -159.69920
67.91250 -159.64119
67.91665 -159.64666
67.91022 -159.62862
67.90854 -159.63253
67.90876 -159.62527
67.88687 -159.71803
67.89409 -159.71461
67.91766 -159.76780
67.89482 -159.80210
67.88074 -159.95415
67.85687 -159.50490
68.00375 -160.16701
67.99354 -160.17372
67.99251 -160.17887
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NOAT1121 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1122 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1123 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1124 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1125 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1126 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1127 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1128 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1129 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT113C) Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1131 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1132 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1133 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1134 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1135 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1136 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1137 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1138 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1139 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT114C) Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1141 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1142 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1143 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1144 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1145 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1146 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1148 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1149 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1150 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1151 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1152 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1153 Active Layer Detachment Slide IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
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NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

67.96821 -160.24937
67.96850 -160.25053
67.95308 -159.84644
67.95366 -159.84421
67.95278 -159.84275
67.95263 -159.84128
68.19533 -159.54531
68.19567 -159.54543
68.29839 -157.23420
67.97623 -156.48396
67.80908 -160.58964
67.80896 -160.59168
67.81792 -160.61468
67.81791 -160.61208
67.81782 -160.61096
67.81680 -160.60360
67.81334 -160.57721
67.80205 -160.73005
67.80206 -160.72940
67.78430 -160.70149
67.78774 -160.71423
67.78851 -160.71322
67.78589 -160.71985
67.76846 -160.58510
67.73901 -160.46363
67.67127 -161.90117
68.26168 -157.82167
68.11833 -156.78252
67.98109 -157.41879
67.83258 -161.13556
67.70958 -161.41256
67.59216 -161.60698
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NOAT1154 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1155 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1156 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1157 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1158 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1159 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1160 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1161 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1162 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1163 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1164 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1165 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1166 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1167 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1168 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1169 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1170 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1171 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1172 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1173 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1174 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1175 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1176 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1177 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1178 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1179 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1180 Active Layer Detachment Slide IKONOS/Geoeye/W orldview
NOAT1181 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1182 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1183 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1184 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview
NOAT1185 Retrogressive Thaw Slump IKONOS/Geoeye/W orldview



NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
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NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010
NPS 2010

68.02886 -155.88838
68.02746 -155.89351
67.64729 -161.61153
68.23117 -157.97520
67.71876 -161.43244
68.27498 -157.24021
68.26175 -157.72729
67.77549 -161.21874
67.74440 -161.30918
67.73624 -161.31832
67.73558 -161.31966
67.73617 -161.32079
67.73507 -161.31450
67.73467 -161.31427
67.73406 -161.31265
67.73284 -161.31123
67.73215 -161.31078
67.72873 -161.31351
67.72458 -161.31050
67.72363 -161.30541
67.73140 -161.38410
67.73056 -161.38176
67.72784 -161.36900
67.72660 -161.37354
67.72827 -161.37883
67.72563 -161.45685
67.70337 -161.40173
67.69967 -161.40589
67.70224 -161.39727
67.70108 -161.40268
67.70252 -161.40054
68.10503 -155.93826
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NOAT1186 Retrogressive Thaw Slump
NOAT1187 Active Layer Detachment Slide

T561 Active Layer Detachment Slide
T564 Retrogressive Thaw Slump
T565 Retrogressive Thaw Slump

T590A____ Retrogressive Thaw Slump

IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview 
IKONOS/Geoeye/W orldview



NPS 2010 68.10443 -155.93896
NPS 2010 68.00007 -155.67149
NPS 2010 67.90859 -161.67982
NPS 2010 67.95337 -161.63149
NPS 2010 67.95410 -161.63199
NPS 2010 68.29255 -161.36024
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Appendix B. Elevated Dissolved Organic Carbon Biodegradability from Thawing and Collapsing
Permafrost1

AB.1 Key Points

• Dissolved organic carbon from thawing permafrost is highly biodegradable

• Elevated biodegradability only persists during permafrost collapse

• Controls on dissolved organic carbon processing are tested

AB.2 Abstract

As high latitudes warm, a portion of the large organic carbon pool stored in permafrost will become 

available for transport to aquatic ecosystems as dissolved organic carbon (DOC). If  permafrost DOC is 

biodegradable, much will be mineralized to the atmosphere in freshwater systems before reaching the 

ocean, accelerating carbon transfer from permafrost to the atmosphere, whereas if recalcitrant, it will 

reach marine ecosystems where it may persist over long time periods. We measured biodegradable DOC 

(BDOC) in water flowing from collapsing permafrost (thermokarst) on the North Slope o f Alaska and 

tested the role of DOC chemical composition and nutrient concentration in determining biodegradability. 

DOC from collapsing permafrost was some of the most biodegradable reported in natural systems. 

However, elevated BDOC only persisted during active permafrost degradation, with a return to pre­

disturbance levels once thermokarst features stabilized. Biodegradability was correlated with background 

nutrient concentration, but nutrient addition did not increase overall BDOC, suggesting that chemical 

composition may be a more important control on DOC processing. Despite its high biodegradability, 

permafrost DOC showed evidence o f substantial previous microbial processing and we present four 

hypotheses explaining this incongruity. Because thermokarst features form preferentially on river banks 

and lake shores and can remain active for decades, thermokarst may be the dominant short-term 

mechanism delivering sediment, nutrients, and biodegradable organic matter to aquatic systems as the 

Arctic warms.

AB.3 Key words

Thermokarst, permafrost carbon, DOC, dissolved organic carbon, DOM, lability, biolability, 

biodegradability, arctic tundra, thermo-erosion gully, thaw slump

1 Published as Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B., and Balser, A. W., Elevated 
dissolved organic carbon biodegradability from thawing and collapsing permafrost, Journal o f  
Geophysical Research: Biogeosciences, doi: 10.1002/2014JG002678, 2014. 2014JG002678.
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AB.4 Introduction

Arctic rivers deliver between 34-38 Tg yr -1 o f dissolved organic carbon (DOC) to the Arctic Ocean 

and surrounding basins [Holmes et al., 2012]. Another 37-84 Tg yr -1 o f DOC is delivered to inland 

waters but respired to the atmosphere or buried in lakes and streams before reaching the ocean 

[Aufdenkampe et al., 2011; McGuire et al., 2009]. As permafrost volume shrinks due to climate change, 

more o f the 1670 Pg o f soil organic carbon (C) contained in the permafrost region [Tarnocai et al., 2009] 

will thaw and some portion will become available for transport to aquatic ecosystems as DOC. The 

quantity and quality o f DOC release will depend on changes in local and regional hydrology [Frey and 

McClelland, 2009; O'Donnell et al., 2012; Tank et al., 2012]. The importance o f this permafrost DOC to 

regional and global C cycles depends largely on its biodegradability—the degree to which DOC is 

available for uptake and mineralization by microorganisms [McDowell et al., 2006]. If permafrost DOC is 

largely biodegradable, a larger portion will be mineralized in soil and freshwater systems before reaching 

the ocean, accelerating C transfer from permafrost to the atmosphere, whereas if  this DOC is recalcitrant, 

more will reach marine ecosystems where it may persist on long time scales [Amon andM eon, 2004; 

Bianchi, 2011]. In arctic and boreal systems, biodegradable DOC (BDOC) ranges from <10% in soil 

water from the seasonally thawed active layer to 90% for some vegetation-derived DOC [Kalbitz et al., 

2003; Michaelson et al., 1998; Wickland et al., 2007]. Riverine BDOC varies seasonally from <10-40% 

with highest biodegradability typically during snowmelt [Holmes et al., 2008; Mann et al., 2012; 

Wickland et al., 2012]. However, very little is known about BDOC from thawing permafrost, with 

conflicting evidence showing higher and lower biodegradability compared to DOC from litter and active 

layer soil [Balcarczyk et al., 2009; Cory et al., 2013; Vonk et al., 2013].

Before permafrost DOC can enter the modern C cycle, regardless o f its biodegradability, it has to 

come into contact with surface or ground waters. Because hydraulic conductivity in arctic mineral soil is 

often very low [Frampton et al., 2011; Zhang et al., 2000], much permafrost C may be inaccessible to 

hydrologic export, even after thaw. However, in soil where ice volume exceeds pore space, permafrost 

thaw is accompanied by ground subsidence, or thermokarst [Jorgenson et al., 2008], which can rapidly 

mobilize sediment, nutrients, and C [Bowden et al., 2008]. On hillslopes, riverbanks, and lakeshores, 

thermokarst can release permafrost DOC from meters below the active layer [Vonk et al., 2013], and may 

impact watershed-level BDOC and nutrient concentrations [Bowden et al., 2008; Woods et al., 2011]. The 

term thermokarst includes a suite o f thermo-erosional features with different morphologies determined 

primarily by ice content, substrate type, landscape position, and slope [Osterkamp et al., 2009]. In upland 

landscapes, the three most common thermokarst morphologies are retrogressive thaw slumps, active layer 

detachment slides, and thermo-erosion gullies [Jorgenson and Osterkamp, 2005]. In addition to surface
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subsidence due to ground ice loss, mechanical erosion and mass wasting play a role in the formation of 

these features, however, we will refer to them collectively as thermokarst following literature convention 

[Kokelj and Jorgenson, 2013]. Thaw slumps have a retreating headwall and are fueled by a variety of 

ground ice types, active layer detachment slides form when the seasonally thawed surface layer of 

vegetation and soil slips downhill over an ice-rich intermediate layer, and thermo-erosion gullies form 

due to ice wedge melt, growing with a generally linear or dendritic pattern (Supplementary Fig. AB. 1). 

These three morphologies currently impact approximately 1.5% of the landscape in the western foothills 

o f the Brooks Range [Krieger, 2012] and could affect up to 30% of the North Slope o f Alaska with 

moderate warming [Jorgenson et al., 2006].

In this study we measured the biodegradability o f DOC released by thermokarst across common 

tundra vegetation and permafrost types on the North Slope o f Alaska. We hypothesized that permafrost 

DOC would be more biodegradable than DOC from the active layer due to two non-mutually exclusive 

mechanisms. First, permafrost DOC may contain more biodegradable chemical compounds due to limited 

prior microbial processing or differences in original vegetation sources. Second, high nutrient 

concentrations in permafrost meltwater may accelerate DOC breakdown by relieving nutrient limitation 

o f heterotrophic microorganisms. If DOC chemical composition is the main driver o f biodegradability, we 

predicted that DOC aromaticity and the C:N ratio o f dissolved organic matter (DOM) would be 

negatively correlated with biodegradability. If  nutrient concentration is the dominant driver o f DOC 

biodegradability, we predicted that the addition o f nutrients would stimulate DOC processing, particularly 

at sites with low ambient nutrient concentrations. Likewise, we predicted that BDOC would differ by 

modern vegetation community and thermokarst type since these factors influence DOC chemical 

composition and nutrient concentration. We tested these hypotheses and predictions by 1) characterizing 

DOC composition released by thermokarst, 2) incubating DOC with and without added nutrients, 3) 

comparing BDOC between feature and vegetation types, and 4) developing relationships between DOC 

composition, nutrient content, and BDOC.

AB.5 Methods

AB.5.1 Study sites

We collected water from 19 thermokarst features and 8 reference water tracks in arctic We 

collected water from 19 thermokarst features and 8 reference water tracks in arctic tundra near the Toolik 

Field Station and Feniak Lake (Fig. AB.1, Table AB. 1). Both areas are situated in the foothills of the 

Brooks Range on the North Slope o f Alaska. Toolik Field Station is located 254 km north o f the Arctic 

Circle and 180 km south o f the Arctic Ocean. The average annual temperature is -10°C and average 

monthly temperatures range from -25°C in January to 11.5°C in July. The Toolik area receives 320 mm of
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precipitation annually with 200 mm falling between June and August [Toolik Environmental Data Center 

Team, 2011]. Feniak Lake is located 360 km west o f Toolik in the central Brooks Range at the northeast 

boarder o f the Noatak National Preserve. The Feniak Lake region receives more precipitation than the 

Toolik area with annual average precipitation at 450 mm [WRCC, 2011]. Both Toolik and Feniak Lake 

are underlain by continuous permafrost with glacial till, bedrock, and loess parent materials ranging in 

age from 10-400 ka [Hamilton, 2003].

AB.5.2 Sample collection and analysis

We collected water from thermokarst feature outflows and reference water tracks near the Toolik 

Field Station (June to August in 2011 and August 2012) and near Feniak Lake (July 2011). In the Toolik 

area we sampled eight retrogressive thaw slumps (hereafter thaw slump), one active layer detachment 

slide, six thermo-erosion gullies (hereafter gully), and six reference water tracks. In the Feniak area we 

sampled two thaw slumps, one active layer detachment slide, one gully, and two reference water tracks. 

At each site, we collected four replicate samples from the main channel, which we filtered (0.7 ^m 

effective pore size, Advanctec GF-75) into 250 ml amber LDPE bottles for transport to the lab where we 

performed photometric analysis and set up incubations within 24 hours o f collection. For most sites a 60 

ml HDPE bottle for background nutrient concentrations was also filtered (0.7 ^m) in the field and frozen 

upon return to the lab until analysis, typically within three months.

We measured DOC with a Shimadzu TOC-5000 connected to an Antek 7050 chemiluminescent 

detector to quantify total dissolved nitrogen (N) after combustion to NOx. We characterized DOC 

composition by UV absorbance at 254 nm (SUVA254), a photometric measure of DOC aromaticity 

[Weishaar et al., 2003], and the C:N of DOM, an indicator of DOM source and degree o f prior processing 

[Amon et al., 2012]. UV absorbance was measured on a Shimadzu UV-1601 using a 1.0 cm quartz cell, 

and SUVA254 was calculated by dividing UV absorbance by DOC concentration. NO3", NH4+, PO43-, and 

K were analyzed on a Dionex DX-320 ion chromatograph. Dissolved organic N (DON) was calculated by 

subtracting inorganic N (NO3-, NH+, and NO2") from total dissolved N. To distinguish rain from 

snowmelt and permafrost meltwater, S D and S18O were analyzed on a Picarro L1102-i via cavity 

ringdown spectroscopy.

AB.5.3 BDOC assays

DOC biodegradability is the degree to which DOC is available for uptake and mineralization by 

microorganisms. Operationally, biodegradable DOC (BDOC) is often defined as the percent DOC 

mineralized or taken up over a certain time period, usually 7-40 days [McDowell et al., 2006], though 

DOC breakdown can also be characterized by single or multiple exponential models [Wickland et al.,
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2007]. We assessed DOC biodegradability by DOC drawdown after 10 and 40 days. After initial 

collection and filtration in the field, 31 ml aliquots from each field bottle were filtered through 0.22 ^m 

polyethersulfone membrane filters (Sterivex GP 0.22, Millipore) to remove bacteria, and were placed in 

70 ml glass incubation vials. To control for variability in microbial community among sites, we made a 

common inoculum by shaking the 0.22 ^m filters from all sites with 100 ml o f de-ionized water and 

allowing them to soak for 30 minutes. Prior to initial sampling, 1 ml o f this bacterial inoculum was added 

to each incubation vial. In 2011, all vials received a nutrient amendment, increasing ambient 

concentrations by 80 ^M  NH4+/NO3" and 10 ^M  PO43- [Holmes et al., 2008], to relieve potential nutrient 

limitation o f DOC processing and facilitate comparison with other studies [McDowell et al., 2006]. In 

2012, we compared DOC drawdown between amended and ambient nutrient incubations performed in 

tandem, to test the effect o f added nutrients on DOC processing. Samples were stored in the dark at room 

temperature for the duration o f the incubation. Incubation vials were tightly capped to limit evaporation 

but were opened and wafted weekly to ensure adequate oxygen supply.

To quantify DOC loss, we sampled each vial three times during the incubation, at day 0, day 10, 

and day 40 (t0, t 10, and t40 respectively). At samplings, 5 ml was drawn from each vial, filtered (0.22 ^m) 

into acid-washed, glass scintillation vials, and acidified with 100 ^l o f 2N HCl to remove inorganic C and 

kill any residual bacteria not removed during filtration. Because this method removes microbial biomass 

before measuring DOC, the change in DOC concentration represents DOC loss due to both mineralization 

and microbial uptake. Acidified samples were stored tightly capped in the dark at room temperature until 

analysis within three months. Average DOC concentration of the four analytical replicates for each site 

and sampling time step was used to calculate loss. Analytical replicates with evidence of contamination or 

analytical error were excluded from the means, though this occurred less than 5% of the time and never 

resulted in dropping a site or sampling time step.

Because no single metric of DOC biodegradability is agreed upon as the most ecologically relevant, 

we characterized DOC biodegradability in several ways. We hereafter refer to the DOC loss by t40 as 

biodegradable DOC (BDOC), and further separate fast BDOC as loss from t0-t10 and slow BDOC as loss 

from ti0-t40. We refer to DOC remaining at t40 as recalcitrant. To compare fast and slow BDOC in a single 

metric we calculated the proportion o f fast BDOC (fast BDOC ^M/total BDOC ^M). The 10-day 

increment for fast BDOC corresponds to the average stream transport time of 10.9 days (range o f 3-20 

days) for rivers in the study area based on average stream velocity and channel length [Dery et al., 2005; 

McNamara et al., 1998]. Because this simplified estimate of residence time does not include transient 

storage within the channel or layovers in lakes and estuaries, the 40-day increment may better represent 

typical transit time from headwater to sea.
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AB.5.4 Nutrients and DOC chemical composition 

We used Pearson product-moment correlation and multiple linear regression to compare the relative 

importance o f nutrients and DOC composition to BDOC. All regression and correlation analyses were 

based on BDOC data from nutrient amended incubations and therefore test indirect correlations between 

nutrients and other factors such as vegetation type, flowpath, DOM source, or micronutrients rather than 

direct effects of N or phosphorus (P) on BDOC. We compared the explanatory power o f NH4+, NO3", 

PO43-, K, S18O, SUVA254, DOC:DON, DOC:DIN, and thermokarst activity level (defined below) in 

predicting fast, slow, and total BDOC. Activity was recoded low to high and treated as a continuous 

variable for correlations but was excluded from other analyses since it is non-parametric and was highly 

correlated with both potassium (K) and ammonium (NH4 ). Akaike information criterion (AIC) was used 

to identify the most parsimonious models and rank predictors within each model. To determine 

differences between amended and ambient nutrient treatments for fast, slow, and total BDOC, we applied 

a single population two-way t-test.

AB.5.5 Thermokarst activity, type, and vegetation 

To understand the release of BDOC as thermokarst features develop through time, we classified 

features on a 0 -  3 activity index based on turbidity o f outflow, rate o f thermo-degradation, and state of 

revegetation. This qualitative index uses space for time substitution to follow the development o f a 

hypothetical feature from before initiation (0) to after stabilization (3). Activity levels are defined as 

follows: 0. No apparent present or past thermo-degradation, 1. Active thermo-degradation (>25% of 

headwall is actively expanding) with completely turbid outflow, 2. Moderate thermo-degradation (<25% 

of headwall is expanding) with somewhat turbid outflow, 3. Stabilized or limited thermo-degradation with 

complete or partial revegetation and clear outflow. We performed a one-way analysis o f variance 

(ANOVA), testing for differences in BDOC between thermokarst activity levels, and applied Tukey's 

HSD to determine significant differences.

Because vegetation community influences both active layer and permafrost DOC composition and 

nutrient concentration, we grouped sites into three broad vegetation classes (Table AB.1): moist acidic 

tundra, moist nonacidic tundra, and shrub tundra. We tested for differences in total BDOC, SUVA254,

C:N, and nutrient concentration between the three vegetation types. Because feature activity varied 

between classes, we tested for differences between vegetation classes with an analysis o f covariance 

(ANCOVA) that compared adjusted means after controlling for activity. To test how ground ice type and 

thermokarst morphology influence BDOC we performed an ANCOVA comparing BDOC from gullies 

and thaw slumps independent o f activity. Comparisons with active layer detachment slides or more
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involved vegetation classifications such as ecotype [Jorgenson et al., 2009] were not possible due to 

limited sample size.

AB.5.6 Seasonal changes in BDOC 

To quantify seasonal variability o f BDOC, repeat measurements were taken at the four most 

accessible sites (two gullies and adjacent water tracks) four times from June 15-August 18 2011, and 

repeat measurements were taken opportunistically at seven other sites. A two-way t-test for unequal 

variance was performed on the range (max-min) o f BDOC to compare variability at impacted and 

reference sites through the 2011 season.

AB.5.7 Additional statistics 

Repeat measurements from four features (two gullies, one thaw slump, and one water track) were 

included in the regression analysis as independent samples because o f substantial variability in BDOC 

and chemistry between sample dates, which were more than two months apart in every case. Repeat 

measurements from 12 sites (four gullies, four thaw slumps, and four water tracks) were also included as 

independent samples in ANOVAs and ANCOVAs for the same reasons and to capture seasonal 

variability in biodegradability and water chemistry.

For all analyses, we evaluated normality with normal probability plots and equal variance by 

plotting observed values against residuals. For multiple linear regression models, highly correlated 

predictors were removed prior to running the full model or applying AIC, and in addition to visual 

assessment, variance inflation factor, RESET, Breusch-Pagan, and Durbin-Watson tests were used to 

check colinearity, linearity, equal variance, and autocorrelation respectively. Variables were natural log 

transformed, raised to the 0.25 exponent, and/or were centered on zero by subtracting the mean when 

necessary to meet these assumptions. For ANCOVA analysis, homogeneity o f regression slopes was 

checked with interaction plots between site activity and the variable o f interest. A polynomial term for 

S18O was included to capture the non-linear relationship with BDOC due to depleted S18O both in 

snowmelt early in the season and ground ice in the mid to late season. All statistical tests were evaluated 

with a  = 0.05 and analysis was performed in R (version 3.0.2). See acknowledgments for access to the 

complete dataset.

AB.6 Results

AB.6.1 Site activity

Sites occurred on a variety o f tundra vegetation and permafrost types and exhibited a range of 

activity levels (Table AB.1). Thermokarst increased BDOC relative to reference waters, with greatest 

impact at the most active features with concentrations approaching reference in the more stable features
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(Fig. AB.2, Table AB.2). DOC loss exceeded 50% after 10 days at several sites and reached 67% loss 

after 40 days at thaw slump 7 located in Pleistocene-aged Yedoma. Total BDOC varied significantly by 

activity (F3,46 = 9.09, p < 0.001) with means of 12.8, 40.9, 31.8, and 20.6% for activity levels 0-3, 

respectively (Fig. AB.2, Table AB.2). BDOC of the two highest activity levels differed significantly from 

reference water tracks (p < 0.001 and p = 0.02), but there was no significant difference in BDOC between 

stabilized sites and reference water tracks (levels 3 and 0; p = 0.31).

DOC concentrations from active thermokarst features (levels 1 and 2) were highly variable with 

average concentration over three times higher than in reference water tracks (Table AB.2). Differences in 

DON were even more pronounced with concentrations in active features nearly eight times higher than 

reference concentrations. Consequently, C:N of DOM for active features was half that o f reference sites. 

Similarly, SUVA254 values at impacted sites were half as high as in reference waters, indicating less 

aromatic DOC compounds in thermokarst outflow. Nutrient concentrations were generally much higher in 

thermokarst water (70, 39, and 15 times higher for K, NH4+, and PO43- respectively), though NO3" 

concentration in the most active features was only 1.3 times higher than reference waters. Rainwater was 

enriched in S18O (-16.56%o, SD = 3.46) relative to ground ice from feature headwalls (-24.11%o, SD = 

3.98) and snow meltwater (-27.58%o, SD = 3.15).

The proportion fast BDOC (fast BDOC/total BDOC) did not vary significantly with thermokarst 

activity (p = 0.24, n = 50, SE = 0.34), with an overall average o f 0.58 o f the total DOC loss occurring by 

t10 (Fig. AB.1). However the proportion fast BDOC varied widely among individual sites, from less than 

0.01 to 1.0.

AB.6.2 Nutrients and DOC chemical composition

We used correlation and multiple linear regression to assess the strength o f associations between 

nutrients and DOC composition with DOC biodegradability. Pearson product-moment correlations 

revealed moderate to strong relationships between the four metrics o f BDOC and both DOC chemical 

composition and nutrient concentration (Table AB.3). Individual parameters were correlated with fast, 

slow, and total BDOC (%) as well as total BDOC concentration (^M). PO43- had the strongest positive 

correlation with both fast and total BDOC, and PO43- and C:N were equally correlated with total BDOC 

concentration. Thermokarst activity had the strongest relationship with slow BDOC. Fast BDOC was not 

significantly correlated with slow BDOC (Pearson's r = 0.27, n = 50, p = 0.054). All parameters, except 

the S18O terms, were correlated with thermokarst activity, with K and NH4+ expressing the strongest 

relationships (Pearson's r = 0.85 and 0.82 respectively, n = 27, p < 0.001; Table AB.3).
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Multiple linear regression models accounted for 67 -  83% of the variation in the four metrics of 

BDOC, with chemical composition, nutrient content, and water isotopes all included as significant 

predictors in the various models (Table AB.4). PO43- and NH4+ were retained after stepwise AIC for all 

four o f the BDOC metrics, with SUVA254 and S18O making three of the four final models (Table AB.4). 

Most predictors were individually significant (a < 0.05) in their specific model with the exception of 

SUVA254 and C:N in the fast BDOC model; DOC, PO43-, and SUVA254 in the slow BDOC model; and 

C:N and S18O in the BDOC concentration model (p = 0.07, 0.06, 0.07, 0.16, 0.13, 0.06, and 0.25, 

respectively). However, these terms were retained in the final models since they improved the AIC score 

and were not overly correlated with other predictors in their models. The model estimating fast BDOC 

had the weakest relationship with measured BDOC (R2 = 0.67) and the BDOC concentration model had 

the strongest relationship (R2 = 0.83; Fig. AB.3). Variance inflation factor was low for all parameters (<

3) and the RESET, Breusch-Pagan, and Durbin-Watson tests were all non-significant, indicating 

acceptable colinearity, linearity, equal variance, and autocorrelation.

We tested the effect o f nutrient concentration on DOC processing by comparing amended and 

ambient nutrient incubations. The addition o f inorganic N and P nearly doubled the amount o f fast BDOC 

(SE = 3.48, t6 = 3.1, p = 0.02), which averaged 9.2% for vials without added nutrients and 17.5% in 

amended incubations, but did not significantly affect slow BDOC (non-significant decrease o f 2.7%, SE = 

1.63, t6 = -1.64, p = 0.15) or total BDOC (non-significant increase o f 5.5%, SE = 3.01, t6 = 1.84, p = 0.12; 

Fig. AB.4). Furthermore, variation in the response to nutrient addition was positively correlated with DIN 

concentration (R2 = 0.79, F1, 5 = 19.4, p = 0.007), with sites higher in DIN showing a stronger response to 

nutrient addition (A fast BDOC (%) = 0.13 [DIN (^M)] + 1.5, Fig. AB.5).

AB.6.3 Feature and vegetation type

We compared BDOC by feature and vegetation type to test for differences due to how DOC is 

released from permafrost and original DOC source. Slumps were higher in BDOC than gullies (F129, p = 

0.026) with adjusted means o f 37.9% versus 25.0% total BDOC after controlling for differences in 

activity (Fig. AB.6). BDOC differed with vegetation type independent o f activity (F2,46, p = 0.006), with 

greater BDOC at sites located on moist non-acidic tundra compared to moist acidic tundra, with adjusted 

means o f 36.6 and 21.2% total BDOC (Fig. AB.7). SUVA254 varied by vegetation (F244, p = 0.0001), with 

non-acidic sites lower than acidic sites with adjusted means o f 4.3 and 2.2 L mg C-1 m-1, but C:N ratio, 

DIN, and PO43- did not significantly vary across vegetation types (F2, 28, p = 0.28, 0.43, and 0.44 

respectively). For all parameters, shrubs were intermediate between acidic and non-acidic tundra and did 

not vary significantly from either type.
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AB.6.4 Seasonal patterns o f BDOC 

While individual sites had high variability in BDOC between samplings through the season, there 

was no clear trend in BDOC seasonality for reference or impacted waters (Fig. AB.8). The average of 

BDOC range (max -  min values for an individual site over the season) varied by up to 50% with an 

overall average o f 20.4% (n = 12, SE = 4.8). Impacted sites were more variable than reference water 

tracks with a mean BDOC range o f 28.7% compared to the reference mean of 12.4% (t8.83 = -2.4, p = 

0.04). For the two gullies and water tracks where repeat measurements were taken at least monthly, 

BDOC was highest in the mid to late season (July and August). Lowest BDOC for all sites occurred early 

in the season on 6/15.

AB.7 Discussion

AB.7.1 Permafrost DOC pools and biodegradability 

DOC from collapsing permafrost on the North Slope is some of the most biodegradable reported in 

natural systems. Across multiple vegetation types, landscape ages, and thermokarst morphologies, DOC 

from permafrost is consistently more biodegradable than surface-derived DOC. High BDOC is 

accompanied by elevated DOC concentrations, resulting in extremely high rates o f DOC mineralization 

from waters impacted by permafrost collapse. However, elevated BDOC only persists during active 

permafrost degradation, and BDOC returns to pre-disturbance levels once thermokarst features stabilize 

and start to revegetate. This finding informs the importance o f thermokarst morphology in determining 

BDOC release from permafrost. Though gully and active layer detachment features are more common on 

the landscape and make up a larger portion o f total thermokarst area [Krieger, 2012], they typically 

stabilize within a few years [Godin and Fortier, 2012; Lewkowicz and Harris, 2005]. Thaw slumps, 

however, can remain active for decades [Lantuit et al., 2012; Lantz and Kokelj, 2008], mobilizing 

biodegradable permafrost DOC from meters below the surface.

AB.7.2 DOC composition 

DOC aromaticity and C:N of DOM were negatively related to biodegradability, supporting our 

hypothesis that chemical composition o f permafrost DOC contributes to its high biodegradability. The 

fact that fast and slow BDOC were poorly correlated and responded differently to nutrient addition is 

evidence that multiple pools o f DOC with differing degrees o f biodegradability are at play.

Arctic river DOC is typically most biodegradable during snowmelt [Holmes et al., 2008; Mann et 

al., 2012], when recently fixed vascular plant inputs dominate DOM sources [Neff et al., 2006; Spencer et 

al., 2008]. This DOM released during snowmelt has high SUVA254 (~ 4.0), high C:N (> 40), and has 

undergone little microbial processing due to rapid transport across frozen soil [Holmes et al., 2012; Mann
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et al., 2012; Spencer et al., 2008]. In contrast, permafrost DOM has low SUVA254 (1.9) and low C:N

(21.7) in the range o f soil or microbially-derived DOM (10 -  25), suggesting considerable prior 

processing [Amon and Meon, 2004; Amon et al., 2012; Kawahigashi et al., 2004; N e ff et al., 2006]. Yet 

permafrost DOM is more biodegradable than DOM released during snowmelt. This inconsistency 

highlights the complexity o f predicting BDOC, particularly when comparing fresh and degraded DOM. 

While the chemical composition o f permafrost DOM is distinct from arctic snowmelt DOM, it is similar 

to late-winter DOM in the Yukon basin, which has high BDOC (40%), low SUVA254 (2.0), and low C:N

(20.7) [O'Donnell et al., 2012; Wickland et al., 2012]. A possible explanation for this similarity is that 

some o f the DOM in wintertime baseflow is coming from permafrost via soilwater, groundwater, or 

thermokarst inputs. The Yukon basin is underlain by discontinuous permafrost and has experienced 

substantial warming and changes in precipitation [Chapin et al., 2010] with large areas experiencing 

permafrost degradation [Belshe et al., 2013; Lu andZhuang, 2011; Osterkamp, 2005]. The only other 

published estimate o f pre-snowmelt, riverine BDOC is from the Kolyma basin in Eastern Siberia, where 

BDOC was less than 5% [Mann et al., 2012]. If permafrost DOM is the source of winter BDOC in the 

Yukon, this could explain the large difference between these catchments. The Kolyma is underlain by 

continuous permafrost and has experienced less severe summer and winter warming [Chapin et al., 2005; 

Serreze et al., 2000], therefore the contribution o f permafrost DOM to winter BDOC should be relatively 

lower than in the Yukon.

AB.7.3 Nutrients

Nutrient addition had mixed effects on BDOC, in line with previous findings [Balcarczyk et al., 

2009; Holmes et al., 2008]. The fact that sites with high DIN showed a greater response to nutrient 

addition was contrary to our prediction that low-nutrient sites would respond most strongly and does not 

support the hypothesis that nutrient availability limits DOC processing. Because DIN is highly correlated 

with site activity, the relationship between DIN and response to nutrient addition may indicate that sites 

with more biodegradable, permafrost-derived DOC are more sensitive to nutrient addition. This 

interaction coincides, albeit on a much faster time scale, with observations of bulk soil C processing in 

tundra soil, where higher nutrient availability enhances labile C processing but suppresses recalcitrant C 

processing [Lavoie et al., 2011].

Regression and correlation analysis revealed that inorganic nutrients, particularly PO43- and NH4+, 

are associated with DOC biodegradability. These relationships were robust in predicting the 

biodegradability o f both surface and permafrost-derived DOM (Fig. AB.4), suggesting common controls 

on biodegradability, regardless o f source. However, the fact that NH4+ was highly correlated with site 

activity may mean that its relationship with BDOC is partially or primarily correlative. PO43- was
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relatively less correlated with activity and was generally a better predictor o f BDOC, suggesting an 

influence on BDOC separate from activity. It is important to note that correlation and regression analysis 

was based on data from incubations with added nutrients. As such, relationships between initial nutrient 

concentration and BDOC are likely due to indirect correlations between nutrients and other factors such 

as vegetation type, flowpath, DOM source, or micronutrients rather than direct effects o f N or P on 

BDOC.

Mineral soil in the arctic is enriched in inorganic N relative to organic soil [Harms et al., 2013; 

Keuper et al., 2012] and increased active layer depth could modify hydrologic flowpaths, causing the 

simultaneous export o f biodegradable permafrost DOC and DIN on a local or landscape scale [Harms et 

al., 2013; Jones et al., 2005; Striegl et al., 2005; Wickland et al., 2012]. Similarly, in the case of 

thermokarst, nutrient concentration is highly associated with feature activity, resulting in the features 

releasing the most permafrost DOC also releasing highest concentrations of inorganic nutrients. Another 

possibility explaining the correlation between BDOC and inorganic nutrients is that the nutrients 

associated with water rich in BDOC are at least partially derived from the DOM itself during 

mineralization.

AB.7.4 Acidic and nonacidic tundra DOM biodegradability

Sites draining moist non-acidic tundra sites had higher BDOC than those draining moist acidic 

tundra sites. This pattern may be due to more decomposable DOM inputs from non-acidic tundra or 

accelerated decomposition o f DOM in acidic tundra soil before reaching the stream. While litter decay 

rates are similar between acidic and non-acidic tundra, decomposition can occur up to 84% more rapidly 

at acidic sites, potentially due to increased N availability and differences in microbial community [Hobbie 

and Gough, 2004; Hobbie et al., 2005; Nordin et al., 2004]. If  DOM is processed faster in acidic tundra, a 

larger portion o f BDOC would be consumed before reaching the stream or being incorporated into 

permafrost, leading to lower BDOC in moist acidic tundra ground ice and surface water. Alternatively, 

there is evidence that DOM biodegradability may be inversely correlated with biodegradability o f the 

plant residue from which it leached. Litter from sedges decomposes fastest, followed by deciduous 

shrubs, and mosses [Hobbie, 1996]. Leachate biodegradability follows the opposite pattern, with very 

high BDOC in moss-derived DOM, followed by deciduous shrubs, and sedges [Wickland et al., 2007]. If 

this pattern holds, DOM from non-acidic sites with lower litter and soil decay rates may have higher 

BDOC.
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AB.7.5 BDOC and thermokarst morphology

Differences in the biodegradability o f DOC released from thaw slumps and gullies suggest that 

ground ice type influences BDOC (Fig. AB.2). However, lower BDOC in gully outflow may be due to 

dilution o f permafrost meltwater by surface water inputs, rather than differences in ground ice BDOC. 

Gullies often form in convergent topography with a larger upslope catchments than thaw slumps [Krieger, 

2012]. Consequently, gully outflow has a lower proportion o f permafrost versus surface-derived water 

and DOM. This explanation is supported by the fact that the gully with the highest BDOC (gully 7, Table 

AB.1) was the only one without surface water input.

AB.7.6 Why is permafrost DOC so biodegradable?

Different mechanisms potentially account for elevated BDOC in wedge and relic glacial ice 

formations, which are the most common ground ice types in our study area and are widespread 

throughout the arctic [French and Shur, 2010; T Zhang et al., 1999]. Ice wedges form when spring runoff 

flows into surface cracks formed from thermal contraction during extreme cold in the previous winter 

[Fortier and Allard, 2004]. Because ice wedges are filled during the later stages o f snowmelt [Lauriol et 

al., 1995] the water that fills them is rich in the same litter and winter microbial activity-derived DOC that 

fuels patterns o f high BDOC in arctic surface waters during snowmelt. Over centuries and millennia this 

unprocessed spring leachate could build up in ice wedges, providing a labile BDOC source upon thaw. 

However, the low C:N and SUVA254 of permafrost DOM suggests it is derived from microbial or soil 

sources as opposed to fresh plant matter. If  snowmelt DOM is the major source o f ice wedge DOM, 

considerable processing must take place during or after incorporation. As for the source o f BDOC in 

buried glacial ice, modern glacial ice can contain highly biodegradable DOC derived from microbial 

production (Hood et al. 2009), which more closely matches the DOM characteristics we observed in 

thermokarst outflows. If such DOC was present when relic glacial ice was stranded and buried, 

microbially-derived C could explain high BDOC in thaw slumps fueled by buried glacial ice. However, 

DOC concentrations in modern glacial ice are typically low, and ice ablation or another concentrating 

process would be necessary to produce the high concentrations of BDOC observed in thermokarst 

outflow.

If nutrient availability does not enhance BDOC, how can DOM from ground ice types such as ice 

wedges and transition ice be more biodegradable than the surface sources from which they derive? We 

hypothesize four potential mechanisms that could increase DOC biodegradability relative to modern DOC 

sources. First, permafrost mineral soil strongly sorbs hydrophobic C species, which tend to be recalcitrant 

[Kawahigashi et al., 2006; Kawahigashi et al., 2004]. Upon permafrost thaw, the DOC available for 

export could have a higher biodegradability since the less bioavailable compounds have effectively been
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filtered by the mineral soil. Second, repeated freeze thaw cycles can release highly biodegradable DOC 

from the microbial community [Schimel and Clein, 1996]. This release is typically taken up rapidly or 

respired by microorganisms that survived the cycle [Schimel and Clein, 1996]. However, if  these pulses 

of bioavailable DOC were released near a freezing front at the permafrost table, or near an ice wedge 

crack they could be incorporated into ground ice. Third, microbial metabolism has been shown to 

continue well below the freezing point [Wilhelm et al., 2012] and it is not known what portion of 

microbial biomass and metabolites is incorporated into permafrost as DOC rather than respired. Although 

microbial metabolism rates are low at temperatures typical of continuous permafrost—processing 1-2 ^g 

g -1 C day-1 [Mikan et al., 2002; Osterkamp, 2005]— sub-zero metabolism could process a substantial 

portion of available soil organic matter over several millennia. Incomplete breakdown o f frozen soil 

organic matter, either during freeze-thaw cycles or sub-zero metabolism, could lead to the accumulation 

of simple carbon compounds such as acetate, which could explain the low C:N and SUVA254 of 

permafrost-derived DOM. Finally, some vegetation paleo-communities may have produced relatively 

biodegradable DOM compared to modern communities. This seems a likely explanation for the extremely 

high BDOC in Pleistocene-aged loess deposits where C derives primarily from grasses [Zimov et al., 

2006]. However, for other permafrost types on the North Slope, pollen records reveal spatially 

heterogeneous community shifts, rather than a landscape-scale pattern o f more biodegradable DOM 

sources [Anderson et al., 1994; Fritz et al., 2012; Oswald et al., 2003].

An additional factor not considered here, which may further enhance DOC mineralization after 

release from permafrost, is high photodegradability o f permafrost DOM when exposed to sunlight after 

reaching the surface [Cory et al., 2013]. Several features included in our study (ALD 1, gullies 1 and 2, 

and thaw slumps 2-4, and 8) showed more than a 40% increase in microbial conversion o f DOC to CO2 

when exposed to sunlight [Cory et al., 2013]. Actual rates o f permafrost DOC mineralization may be 

higher than measured in our dark incubations in field conditions when exposed to sunlight.

AB.8 Conclusions

As the Arctic warms, DOC from thawing permafrost will play an increasingly important role 

governing freshwater and estuarine C and nutrient dynamics through the season. The overall ecological 

importance o f thermokarst BDOC depends on the number o f features, their location on the landscape, and 

the length o f their active period. Approximately a third o f permafrost has ice content in excess o f 10% [T 

Zhang et al., 1999] and is susceptible to thermokarst upon thaw [Jorgenson et al., 2006]. With up to 80% 

of near surface permafrost projected to degrade by 2100 if  human greenhouse gas emissions are not 

reduced [Slater and Lawrence, 2013], thermokarst could impact up to 5.5x106 km2 by the end o f the 

century.
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Since thermal disturbance from flowing or standing water often triggers gully and thaw slump 

formation, thermokarst may be the dominant short-term mechanism delivering sediment, nutrients, and 

biodegradable organic matter to aquatic systems as the Arctic warms. This could have significant local, 

landscape, and global consequences [Bowden et al., 2008; Thienpont et al., 2013]. Thermokarst outflow is 

most active when temperature is high in the mid to late summer, precisely when arctic surface water 

BDOC is lowest [Holmes et al., 2008; Mann et al., 2012; Wickland et al., 2012]. Chronic loading of 

BDOC from widespread thermokarst could cause a substantial shift in late-season DOC dynamics in 

arctic streams, lakes, and estuaries. Permafrost BDOC release could also be important for the global C 

cycle, enhancing the permafrost C feedback due to direct CO2 release from the decomposition of 

permafrost DOC and enhanced heterotrophic processing o f non-permafrost DOC due to the priming effect 

[Bianchi, 2011; Guenet et al., 2010].

High lability o f permafrost DOC should be considered when estimating changes in DOC delivery to 

aquatic ecosystems. Due to substantial DOC losses on timescales less than residence time of many arctic 

waters, monitoring o f river mouth or estuarine DOC could miss a large portion o f DOC released from 

degrading permafrost which was processed in transit.
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Figure AB.2 D O C loss in w ater from  collapsing perm afrost and reference w ater tracks after 40 

days o f  lab incubation at room  tem perature and initial D O C concentration. See Table AB.1 or 

tex t for com plete definition o f  activity index but 0=reference, 1=most active, and 3=stabilized. 

Box plots represent m edian, quartiles, m inim um  and m axim um  w ithin 1.5 tim es the interquartile 

range, and outliers beyond 1.5 IQR. D ifferent letters represent significant differences betw een 

activity levels, a  = 0.05.
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Supplem entary Figure AB.1 Photos o f  the three m ost com m on upland therm okarst m orphologies 

in the foothills o f  the Brooks R ange on the N orth  Slope o f  Alaska. R etrogressive thaw  slum ps 

(panels a,b), active layer detachm ent slides (c,d), and therm o-erosion gullies (e,f). Photo in panel 

c by A.W . B alser and panel d by J.R. Larouche.
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T b l. A B .1 . Summary of site characteristics including7) QC concentration andtiodegradafcilitv. feature tn.pe. vegetation. and ecotype

Site ID
Ai'erase Average 

BDOC (<H) DOC(ulM) SUVAa,
Activity
indei’

# times 
sampled

F rs u iy  ground ice 
type Tundra vegetation" Ecotype"

Map
ID

Coordinates
(UTU)

ALD I 21.1 219 1.3S 'J : 7ratisition Glacial Low lo tall shrutluid^ - 24 6S>701 - L493435
AID  2 3S.5 34- 2 40 3 : Transition Moist nonacidic tutidti" 1 1 6S.2S66 -1573640
GLT 1 14.B 1159 S.42 3 - Ic s 'w ^ s M>ist acidic cutidti 3 19 6S.5435 -149.5225
GLT 2 21.4 1180 3.71 3 - Ice vsdge (PleisfcKsns) M>ist acidic tutidti 3 26 6S.6923 -149.2067
GLT 3 12.0 1946 XD : !;r w j& r M>ist acidic tundra" 3 9 69.22 7 S -1 50.553-
GLT 4 213 60S i l l 3 : Ice wedje iPlsistocHis) Dwilf to low sllfubl Itldi: 3 6S.15S9-156.9533
GLT 5 23.1 1498 3.90 3 Ice wsdge :Pl;ijtcciti;) 2vfcist acidic tutidti “i i 5 6S.5524-149.5652
GLT 6 29.7 1075 3.33 j 3 Ics 2vfcist acidic tutidti “i 17 6S.55-1 -149.557’
GLT 7 34.6 469 3.70 ~i : !:? w j& i EKi.gr: to low shrub Linds 23 6S.6523-149.4202

T S i 10 6 4036 2.41 3 : Glacial lacustrine 2vi>t£t acidic tundra" 3 n 6S.951--150.1943
TS 2 563 17£7 0.97 : Glacial Moist nonacidic tundra 4 s 6S.S793 -1503563
TC3 39. i "943 0.77 ~i ~i Glacial Lacustrine M>ist acidic tundra" 3 10 6S 9614-1503154
TS - 50.0 66" 2.12 ~i Glacial Dwarf to low shrub Litids 3 :4 6S.5 5 54 -1493747
TS 5 36.1 '612 196 3 : Par? ics Moist nonacidic tutidti" 3 i : 6S.6666-149.S1SS
TS 6 242 434 1.75 3 ~i Glacial Low to tall sluu-tLands. 4 13 6S.67Si -149.6242
TS 7 59.2 5750 0.95 i 3 Ics ™<%e :;T stoma} Mjist non-acidic' ~i 7 69.56S3-150.S701
TS S 26.3 359 1.22 i : Gla;ial Dnarf to low slirublinds" 3 IS 6S.5254 -149343S
Ts9 34. S 9S3 1.2S i : Glacial lacustrine Moist nonacidic tutidt i" 3 6 67.9620-1567SS9

TS 10 39.6 1225 0.97 i : Glacial Lacustrine Moist nonacidic tutidt i" ~ 5 67.9619 -156.7920
w t  i 93 740 440 0 - ni SsAtt. moss tutidti (feti) i 20 6S.5442 -149321-
WT2 13.2 1043 7 01 3 - ni Sfd??. mo a  tundta (poor fen) 3 25 6S.6911 -14920S4
WTH 3S.6 356 2.39 3 : til Moist nonacidic tutidti" i -i 6S.2S67 -1573627
WT4 21.7 509 3.75 0 : til Low to tall shrub lands'" i - 6S. 1591 -156.9451
WT5 11.4 S92 4.4S 0 ~i til Moist nonacidic tundra 16 6S.5537 -14935SS
WT6 S. 9 439 2.62 0 : til Low to tall slirutimds 'J'J 6S.6515 -149.4223
WT7 10.9 907 2.S9 0 : til M>ist acidic tutidti 1 2: 6S. 5270-149311;
WTS 192 701 4.S1 0 ~i til Low to tall slirutimds 3 11 6S.6906 -149.1922
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Tbl. AB.2 Carbon, nitrogen and water chem istry param eters by therm okarst activity level.
Activity level 0 J 2 3

Median Mean SE Median Mean 5E Median Mean SE Median Mean 5E
Parameler

DOC 716 727 59 1400 2254 588 796 2B28 1363 943 1071 189
BDOC (%) 11-4 12-8 2.0 39,6 40.9 4,7 24.4 31.8 7.3 16.4 20,6 2.8
Proportion fa.M 0.67 0.66 0.09 0.52 0.4S 0.06 0.55 0.57 0.09 0.59 0.61 0.05
DON 17,0 L6.6 2.2 J 71,8 109.5 36.2 22.9 145,0 124.9 22.3 26,3 5,64
DOC: DON 40.4 4J.2 3.55 20.7 21-7 1.51 20.5 23.7 510 320 35.4 3.68
NO, 0,10 2.32 2.19 2,73 3.61 0.81 2,74 4,87 3,48 0.21 4,87 3 48
NH/ 1.64 1-63 0.26 35,3 64.5 18L7 33.5 25, t 11.9 205 4,35 2.00
POtJ 0,009 0.015 0.008 0,156 0.242 0.082 0.054 0.144 0.094 0.036 0.063 0,020
SUVA.^ 4.26 4.(3 0.29 1,25 1.94 0,3* 3,09 2-64 0.52 4.52 4.97 0.70
SpO -20.495 -20.932 1.04 -21,569 -22.927 1.304 -22.380 -22.804 0.614 -19.550 -19.227 0,626



T bl. A B .3  Correlations between w ater chem istry parameters. site ac ti\ i t \ . and D O C  hiodeiiradahilitv.

Activity Fast BDOC Slow BDOC Total BDOC Total BDOC
(In %) (%) (%) (In iiM)

Metrics o f DOC Biodegradability
Fast BDOC (In %) 0,33 *
Slow BDOC (%) 0 72 *** 0.27
Total BDOC (%) 0.62 *** 0,82 *** 0.68 ***
Total BDOC (In \iM) 0,59 ** 0.58 *** 0.68 *** 0.81 ***

Predictor variables
Initial DOC (In nM) 0,3 5 * 0.17 0.41 ** 0,41 ** 0.84 ***
SUVA2S4 (In (L mg C 1 m '1)) -0,56 *** -0,54 *** -0,45 ** -0.62 *** -0.52 ***
DOC :DON -0,73 *** -0.51 ** -0.66 *** -0.62 *** -0.68 ***
NH4T(ln nM) 0,82 *** 0.37 * 0.68 *** 0.66 *** 0.66 ***
N O / i j iM ) ^ 0,55 ** 0.28 0,2 0.28 -0.03
D IN (mMJ 0.60 *** 0.47 *** 0.48 ** 0.64 *** 0.64 ***
P O ^ ( jiM)0̂ 0.60 *** 0.64 *** 0.67 *** 0.78 *** 0.68 ***
1C (In fiM) 0,85 *** 0 .5 0 ** 0.64 *** 0.64 *** 0.59 ***
tsO (In (63)) 0,05 0 .3 9 * 0.02 0.31 0.29
1sO (S) -0.31 -0.23 -0.11 -0.3 -0.36 *
DOC: DIN (In) -0.49 ** -0.31 -0.08 -0,27 0.00
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Tbl. A B .4  M ultip le  linear regression  m odels io r four m etrics o f  D O C  biodegradab ility .
V ariab le E quation R- F

Fast BDOC (In %) ■0.36 ]n(5UVA+0.25) + -0.02 I (DOC:DON> -  0.20 k i( (S '\> -  2 1.2)') - 0.60 ln[DOC] + 2.52 [PO.tf ' “ + 6 .1 0.67 12.4

Slow BDOC (%) 9.48 [P 0 4]":s - 2-57 lu(SUVA+0.25) 4 4.87 ln[DOC] * 3-30 ln[NHJ + i .50 (5 liO+2] -2) - 22.8 0.70 13.9

Total BDOC (%> 28.2 [P04f :3 + 3.46 ]n((5|yO + 2U V J - S,84 lti(SUVA+0.25) + 0.616 (5lsO + 21.2) + 6.35 InfNHJ + 4.57 0.79 21.5

Total 13DOC fin nM) 0.054 f5tK0  + 21.2) - 0.023 f DOC:DON) + 0.1SK latfSlsO + 21,2)'l + 0,385 InfNH* 1 + 2.51 | P O j'h;' + 3.56 0.S3 27,8


