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ABSTRACT

A two-dimensional alternating-direction implicit numerical tidal 
model with unequal grid-spacing is developed and successfully tested.
The method is essentially an extension into two dimensions of a one
dimensional implicit method in which tide heights and flow rates are 
evaluated on the same cross-sections, an approach which permits a river 
to be schematized into a number of sections of differing lengths.

The two-dimensional scheme gives the user considerable control 
over the density of the computation points in a region by virtue of 
the fact that heights and depth-mean currents are evaluated midway 
between the points of intersection of a grid constructed from ortho
gonal lines, the spacing between which may be chosen at will.

The method is applied initally to the Irish Sea using a grid of 
constant spacing. The effects of increasing time step and friction on 
stability and accuracy are investigated, and the model is proved to be 
unconditionally stable. The results match those of previous investi
gators, and some new information on the M2 currents of the region is 
obtained. The second application a? the model is to a 'rectangular*
North Sea, a favorable comparison being obtained when the region is 
schematized by two grids of equal and unequal spacing. Finally, the 
model is applied to Cook Inlet, Alaska, a region of complexity sufficient 
to warrant the use of a scheme possessing the unequal grid-spacing 
feature. Satisfactory results are obtained after tuning the model by 
adjustment of the friction coefficient.

Movie films were made in order to conccptually clarify the tidal 
behaviors of the Irish Sea and Cook Inlet* Each film shows as functions 
of time, perspective views of the sea surface, and current vectors 
superimposed on a contour map of the sea surface.
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CHAPTER I

INTRODUCTION

It has been possible for some sixty years or more to make use 

of numerical tidal models in order to compute the propagation of tides 

in inlets and semi-enclosed seas. The first phase of the development 

was one which was dominated by the use of the equations of motion 

and continuity in a form such that the time dependency was removed. 

Although this restricted the user to solutions that were represented 

by the first few terms of a harmonic series, it provided the investi

gator, armed only with a desk calculator, the means of obtaining an 

insight into the tidal behavior of one-dimensional river networks.

The second phase of the development of numerical tidal models 

occurred with the advent of digital computers: the investigator was 

freed from the restraints of over-simplified equations and series

solutions, and the direct solution of the nonlinear equations of motion
/

and continuity in one or two dimensions became possible. Arbitrary 

boundary conditions could be specified as a function of time, and the 

distribution of heights and flow rates (or currents) could be obtained 

at discrete time steps.

In order to extend the predictive capability of models to cover a 

wide range of problems, considerable efforts have been made recently 

by various workers to increase the performance and flexibility of one- 

and two-dimensional numerical tidal models. The performance of the

1
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models has been improved mostly by the careful selection of finite- 

difference schemes, and guidfc lines as to the effect of choice of 

time step and grid-spacing on error-wave propagation have been 

determined. Attention has been paid to the requirement of flexibility 

with the goal of providing the investigator with a range of models 

to suit his requirements. Examples of possibilities now available 

to the modeller are: ease of application as regards schematization and 

reprogramming, the inclusion of sloping or flooding boundaries, the 

choice of coordinate system, the approximation of tidal bores, the 

inclusion of storm surges, and the study of diffusion.

On considering the above, it was felt that an area needing atten

tion was that of schematization; in particular it seems that the 

modeller is too restricted as to the positioning of computation points 

when using two-dimensional models. Although this problem may be 

alleviated to a certain extent by an appropriate choice of coordinate 

system, a large amount of flexibility isf sacrificed. Furthermore, on the 

one hand the modeller may wish to increase the density of computation 

points in certain areas of interest within the model, and on the other 

hand he may wish to decrease the density of computation points in less 

interesting regions in order to lessen computer core storage requirements, 

and to decrease computer time. This is usually not practical with 

conventional coordinate systems.

The main objective of this investigation is then to present an 

alternative solution; a two-dimensional grid scheme with unequal spacing. 

The user is restricted to an orthogonal grid constructed from vertical 

and horizontal lines; other than this he can choose the spacing between



the lines as he wishes, although he must always consider the possibility 

of distortion of the computed tidal wave due to choice of time step 

and grid spacing and furthermore the user may be limited by the require

ment that violent increases in grid-spacing should be avoided.

It is felt appropriate here to present the layout of the chapters 

that follow. Pertinent background to the proposed scheme is contained 

in Chapters II and III. Two of the most important types of variable 

section-length one-dimensional methods, the harmonic method and a 

sophisticated implicit method, are covered in detail and are applied in 

turn to the same estuary network. The reasons for the selection of 

these particular methods is of importance. The harmonic method was 

developed by Lorentz (1926) for the study of the proposed enclosure 

of the Zuiderzee. The method assumes that the solution for the heights 

and flow rates can be obtained in the form of a single sinusoid. The 

method was later extended to include a steady river-flow term (Mazure, 

1937) and further to include additional harmonics (Dronkers, 1947). 

Stability problems are totally absent due to the removal of the time- 

dependency. Despite the criticism of Harleman and Lee (1969, p. 5) that 

the programming of methods such as the harmonic method represents a step 

backwards on account of the use of linearized equations, it is felt that 

the method is still of considerable interest. The use of models extends 

beyond that of accurate prediction —  a suitably designed model can aid 

in gaining an insight into the relationship between the variables of the 

system being studied (an example of this is given in Chapter X). The 

analogy between river networks and electrical transmission lines also
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way be helpful. Furthermore the harmonic method was designed for hand 

computation, and thus can be used when a computer is not available.

As no detailed references in English are available except that of 

Dronkers (1964), who concentrates mainly on the theory of what might 

be called the multiple harmonic method, it is felt that a useful purpose 

will be served by a detailed description.

The implicit method described in Chapter III is the so-called 

third implicit method of Dronkers (1969). As it is the extension of 

this method into two dimensions that forms the basis of the proposed 

two-dimensional model with unequal grid-spacing, it is felt that a 

full description of the method is mandatory. Unfortunately in his 

1969 publication Dronkers gave only the briefest mention of the additions 

necessary for the solution of problems involving networks. The so-called 

down-river recursion formulae are presented in an overly compact form, 

and only one paragraph is devoted to networks. For this reason particu

lar attention has been devoted to a full presentation of the method as 

needed for the solution of river network problems.

The description of the proposed scheme is presented in Chapter IV. 

The concept of extending the method described in Chapter III to that of 

applying pairs of equations alternately to rows and columns arose as 

a combination of the one-dimensional implicit method and of the 

altemating-direction method of carrying out implicit computations in 

two dimensions. Besides mention of previous two-dimensional methods 

that compare to a certain degree with the proposed unequal grid-spacing 

method, Chapter IV includes descriptions of the grid scheme and the



finite-difference forms of the equations of motion and continuity, and 

of the arrangement in time and space of the computation points required 

by each pair of finite-difference equations. Compact versions of the 

finite-difference equations in forms suitable for solution by the double 

sweep method are given in Chapter V. Although the elements of the method 

of solution were described in Chapter III, the method is covered in 

detail in Chapter V for the sake of completeness.

It was decided that a description of programming and analysis con

siderations as applied to numerical tidal modelling should be included 

in Chapter VI. Although most experienced modellers will doubtless have 

their own approach to the problem of organizing the programs, the chapter 

may perhaps be of interest to anyone entering the field.

Chapters VII, VIII, and IX are concerned with three series of 

tests to which the proposed scheme was subjected. The first two series 

are based on the application of the model to areas for which solutions 

of the tidal regime are available (the Irish Sea and a 'rectangular*

North Sea). The tests were conducted to compare the model results 

with these previous results, to determine the effect of unequal grid- 

spacing, and to investigate the effect of time step, depth, grid-spacing, 

and friction on stability. The third and last series of tests was to 

apply the model to the relatively unstudied region of Cook Inlet for 

which results were required. Owing to its size and complexity the region 

is such that the investigation could not have been conveniently under

taken without the unequal grid-spacing scheme. The results were compared 

with tidal constants obtained from the United States Coast and Geodetic



Survey. It is felt that this application constitutes a realistic test 

of the model.

The results of the three series of tests were in close agreement 

with the previously calculated or observed values of other investi

gators. Because the tests on the Irish Sea and Cook Inlet were 

performed with realistic schematirations it was felt that it would 

be a pity not to make additional use of the data produced. Some time 

was spent in devising meaningful ways of presenting in condensed form 

the great quantity of data that is generated by finite-difference models. 

In particular it was decided that the information could best be presented 

via perspective views of the sea surface, and via plots of current vectors 

along with contours of tide height for any desired time step. To this 

end 35 mm films were produced using a cathode ray tube graphic output 

device at the National Center for Atmospheric Research. Chapter X 

contains representative frames from these films for each lunar hour of 

the M2 tidal cycle. To increase the information content, the two types 

of output, perspective and plan view, were rephotographed side-by-side, 

as this could not be done during the computation for reasons of resolu

tion. It is hoped that the resulting pictures of the Irish Sea will 

make a useful contribution to the literature on the Irish Sea. The 

pictures of Cook Inlet may also be of use to those concerned with 

shipping, oil-well operations, and future investigations.



CHAPTER II

HYDRAULIC CALCULATIONS USING THE HARMONIC METHOD 

Introduction

The harmonic method, developed during preliminary studies on 

the closure of the Zuiderzee (Lorentz, 1926), was the first of the 

hydraulic computation methods that permitted the inclusion of sections 

of different lengths. It will be discussed in some detail because 

of this, and also because it is currently being used and is amenable 

to hand computation. For more detailed information on the harmonic 

method the reader is referred to Dronkers and Schonfeld (1955) and to 

Dronkers (1964).

Simplification of the Equations of Motion and Continuity

The form in which the equations of motion and continuity are used
/.

is as follows (Dronkers, 1964):

r

and

g ‘ b H " °  . (2.2)

h is the height of the water surface above some horizontal datum, 

q is the flow rate in the x-direction, and b is the width of the



channel at the water surface. A is the cross-sectional area, ar
is the hydraulic radius (cross-sectional area divided by wetted peri

meter), C is the Chezy friction coefficient, and g is the gravita

tional acceleration. In this simplified description of the harmonic 

method, both flow rate and tide height will be represented by one 

harmonic only, of angular frequency u . Furthermore, the steady-state 

flow rate and the change of mean water level with distance will be taken 

as zero, thus,

q « q cos(ut-ot) (2.3)

h«*hg + h^ = 0 + h cos(ut-B) . (2.4a,b)

The object of the harmonic method is to arrive at a set of equations 

from which the time-dependence has been removed. Once this has been 

achieved, there will be no need of a form of solution (as is usually 

the case) involving repeated time steps.

The first step is to linearize equation (2.1). The approach of 

Lorentz (1926) was to ensure that the total energy lost in the form of 

friction over a full tidal cycle should be the same in the nonlinear 

and linearized friction terms. Thus at any instant of time, the work 

per unit mass done against friction in the nonlinear and linearized 

forms during time fit is

where k is the constant to be determined, and 6x ** (q/A)6t . Thus, over

i_ a k L ix . and £Ja_sx
r r

(2.5a,b)



9

a complete tidal cycle of period T we have

$_ahLadt 
A 2., A

(2 .6)

Substituting equation (2.3) into equation (2.6):

rT
k[9 cos(at)]2|q cos (at) | dt

A 3,
g k[q cos(tot)]

r2A3* C A

or

rT
ty

cos (wt)|cos(wt)| dt

cos («t)dt

(2.7)

(2 .8)

Finally,

sin (ait) _ sin (tot) 
u 3u

T/4

0

t sin (ut) cos (ut) 
2 2w

T74 * 

0

or

8

(2.9)

k ■ ~  q ® nijq . (2.10a,b)

The numerical quantity 8/(3ir) , which is equal to 0.8488 , is sometimes 

called Lorentz's number.
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Thus equation (2.1) becomes

(2 . 11)

The second step is to include, in simple form, the effect of the 

variation of the cross-sectional area and hydraulic radius with tide 

height. To achieve this, mean values will be used along with time- 

independent corrections. The development of these two terms follows 

closely that of Stroband (1970a).

Referring to Figure 2.1, the following new quantities are 

introduced:

a ■ total water depth

aQ » depth of bottom below datum

a « depth of bottom below mean water levelm 1

b ■ mean stream width s

The quantity l/(gA) in equation (2.11) is found as follows:
/■

or

Expanding the quantity in the brackets



surface  
mwl 
datum

Figure 2.1. Location of dimensions referred to in Chapters 
2 and 3.
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or

M
* 2 * f 2

♦ -- --- cos(wt-8) ♦ cos2(wt-$) + .... I.
2a amm 2a*m

(2 .12)

(fci retaining only the time-independent part of equation (2.12). 

N_
M

*
(2.13)

where

_ _ , » - 1 + , m s m * o n 2 * (2.14a,b)
2a.m

A being the mean cross-sectional area of the section, m
2 2The quantity 1/(C A ay) in equation (2.11) is found as follows.

W ,2.2
1

X T T

a

r h 17_2, 2 3 1C b a a 1 + -i-s __r m Va

or

W «

♦H
t

-3
r hi i1 ♦ -L

-3
a aL m J L m J

X ?C b a a m s rm m
am

<C A *r>.

where C and a__ are respectively the mean friction coefficient m rm * •

and the mean hydraulic radius.



V - — 5-y-----J 1 - 3 ♦ 6 ( r ) 2 -
(C A ar)m |  a \  m / j

or

W ■ — -*-i-----< 1 ♦ - —  cos(ut-B) * cos2(»t-B)
(CA a ) ) a‘ ra a'r m l m m

(2.15).

The subscript ’m' indicates that a mean value of the quantity in 

brackets is to be used. Again, retaining only the time independent 

part of equation (2.15),

W - — j 4 -----  ( 1 ♦ ̂ 4 ^ - )  . (2.16)
<C A “A  '  4  /

Finally, for convenience, we put

mi 3
R = m. q W » — s—o  x (2.17a)

'C A s).

where

N ■ 1 ♦ » <2‘17b)
am ra

so that equation (2.11) becomes

|| + M ♦ R q - 0 . (2.18)

Again,

On expanding,

(2 . 2)



Derivation of Time-Independent Equations Of Motion and Continuity 

First, equations (2.3) and (2.4b) are put into complex form:
n+ -

q « exp(iwt) + exp(-iwt) , (2.19)

and

h « exp(iwt) + ~  exp(-icot) , (2.20)

where

Q+ ■ q exp(-io); Q~ « q exp(io) (2.21a,b)

and

H* » exp(-iB); H“ = fi exp(i&) . (2.22a,b)

Substituting equations (2.19) and (2.20) into equations (2.18) and (2.2), 

upon equating terms containing exp(iwt) one obtains:

+ (iwM + R)Q4 - 0 (2.23)

and

+ lab H+ « 0 , (2.24)

Combining equations (2.23) and (2.24),

d 2H+ 2 ♦* - k V  - 0 , (2.25)
dx2

where

k2 • -u2bH ♦ iubR . (2.26)

Assuming a solution to equation (2.25) of the form

H+(x) ■ A exp(kx) ♦ B exp(-kx) (2.27)
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so that

H*(0) « A + B , (2.28)

one arrives at

H(x) « L H(0) + M Q(0) (2.29)

and

Q(x) « N H(0) ♦ 0 Q(0) , (2.30)

(where the ’+* superscript has been dropped for convenience), and

L ■ cosh(kx) (2.31)

M a 5F sinh(k0 (2.32)

N » - sinh(kx) (2.33)

0 » cosh(kx). (2.34)

It should be noted that (L0 - MN) * 1 

Also, as a reminder,

H = exp(-i0); Q » q exp(-ia) , (2.35a,b)

so that

- y  Hr + Hi J tan  ̂■ - ip (2.36a,b)

and

r

a f~2 2~ ^i“ J Qj. ♦ Q* J tana «■ - (2.37a,b)

where the suffixes r and i denote respectively real and imaginary parts,
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The significance of equations (2.29) and (2.30) is that given a 

section of length t , once one has estimated h and q in the center 

of the section and calculated the complex quantities L , M , N , 

and 0 , the complex values of height and flow rate at x»i. may be found 

in terms of those at x=0 .

The Development of Recursion Formulae for a River Branch

To calculate the tides in a river branch, the branch must first be 

divided into a number of sections, and the mean stream width, cross- 

sectiotial area, hydraulic radius, and Chezy coefficient determined for 

each. A distinct advantage of the harmonic method is that the sections 

need not be of equal length, and so may be chosen as is most convenient. 

At the start of each iteration values for and ^  are selected

for the center of each section and L , M , N and C) are thenm m m m
calculated for each of the M-l sections (see Figure 2.2). An example

of the calculation of L , M , N and o' is given in Appendix I.m m m m
The next step in the procedure is to express Hm and in terms 

of and (the height and flow rate at the right-hand end of

the branch) —  both of which are assumed for the moment to be unknown. 

The n«e«ssary recursion formulae are developed using the repeated appli

cation of equations (2.29) and (2.30). Thus for section M-l

Vi ■ ‘n-A * 'Vi-îh (2-38)
'Vt-l * IW m * * (2.39)
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H,Q.
h

(I)

H2 H3
Q 2 Q 3 
1 . . 1 -•

(2)

Hm-i
Q m - i  

+

H m
Q m  
+

(m-l) (m)

Hm+i H m-i 
Qm+i Q m- i

— h - - - f
(M-l)

H m
Q m
— I

Figure 2*2. Location of quantities for the Harmonic Method
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and for section M-2

fiM-2 “ (LM-2LM-1 * V̂l-2NM-l) “m + ( ̂ -2^-1 * hlM-2°M-l) ^M

(2.40)

^M-2 “ CNM-2LM-1 + °M-2NM-l) ^  * CNM-2MM-1 + °M-2°M-l) %!*

(2.41)

In general,

H» ■ *i ̂  ♦ m; %  t2-42’

^  ■ "i «M ♦ °i s. « - 43’

for m «= M-l, M-2, ..., 2, 1,

where

*14-1 * Sl-l ; KVl-l * ^-1 ; NM-1 " NM-1 * °M-1 * °M-1 »

and

■ w  ■ «h.i l: * C i  k  t2-44’

m;.i m»-i <2-45>

N' . - N . L* «■ ° , N > (2.46)m-i m-i m m-l m

0* « N . M» + 0 . 0 ’ (2.47)m-i m-l m m-l m

for m » M-l, M-2, ..., 2.

Of interest is the fact that, if (LO - MN) » 1 , then we also have

(L'O* - M'N’) » 1 . Equations (2.44) through (2.47) are used to

calculate L’ , M* , N* , and 0’ for each section in turn. EquationsB a m m ^
(2.42) and (2.43), with m«l, give

Hi " 4  “m + Mi %  (2-48>
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Q1 * N1 *\l + °1 %  • (2.49)

For the case of a river without branch-points, two of the four

complex values

This allows the other two values to be calculated from equations (2.48)

and (2.49). When and have been determined, equations (2.42)

and (2.43) are used to calculate all the remaining unknown H andm
0 . New values of S and h for the center of each section arein in ra
computed from the values Qm+j and , Hm+j and Hm , and are then

compared with the values selected at the start of the iteration. A

fresh estimate is then made, and another iteration performed. The 

process is continued until the difference between consecutive values 

of and reaches an acceptable level.

Calculation of Heights and Flow Rates for the Case of Two or More River 
Branches /

The calculation of the tides for a river network such as that shown/

in Figure 2.3 presents no particular difficulties as long as the assumptions 

mentioned earlier are adhered to.

In general, two unknowns, H and Q , will occur at the left and 

the right of each branch j —  thus there are 24 unknown branch-point 

values in the above example. If JI and r (left and right) are used as 

subscripts, and superscripts 1, 2, ..., 6 are used to indicate branches 

1, 2, ..., 6, the unknowns are of the form H* , Q* , H* , ,

...., . The method of solution is to apply the

, H,t and must be given as boundary conditions.
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recursion formulae, equations (2.44) through (2.47), to each of the 

6 branches in turn so as to produce 6 pairs of equations of the type

H£ " l't Hr + M 'i <4 (2*50)

Qi “ N 'l Hr + 0*i <4 (2*51)
for j*l| 2, i| 6.

Then, to apply the boundary conditions, the tide heights are put 

equal at points C, D, and E, giving

m H£ * Ul “ HE» (2.52a,b)

Hr “ Hr “ H1 “ HD* (2.53a,b)

Hr " HA “ HA " Hc* (2.54a,b)

Next, conservation of mass is applied at branch-points C, D, and E.

The step requires first that equations (2,50) and (2.51) (for j=l, 2,
i i3, and 4) be rearranged so that Q' and are each expressed in terms

J
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For branches 5 and 6 (with flow rates of zero at the right-hand ends), 

it is convenient to calculate

Qj » -TJ hJ (2.57)
L I

for j*5, 6.

Then finally one forms the equations

<4 ■ Q? ♦ Q* » (2.58)

Or + Or " Pi » (2*59)

<4 ■ Q® ♦ Q* . (2.60)

At this point we have 12 ♦ 6 + 3 * 21 equations and 24 unknowns. The 

remaining 3 equations are obtained from the boundary conditions at 

points A, B, and F. For example, one might have

<4 a <4 " 0 (2.61a,b)

and

h J - h ♦ i.O , (2.62)Jl

i.e. the flow rate is zero at points A and B, and the tide height is 

specified at point F as having zero phase. The set of (complex) 

algebraic equations is then solved to give the 24 unknowns, and then the 

values at the right of each branch enable and to be

calculated for each j by the use of equations (2.42) and (2.43). The 

iteration process is then repeated as desired. The process is shown 

in Appendix II.



CHAPTER III

HYDRAULIC CALCULATIONS USING THE ONE-DIMENSIONAL 
IMPLICIT METHOD

Introduction

The method discussed here, the third implicit method of Dronkers 

(1969), is of particular interest in that it is unconditionally stable, 

and is well suited for use in complicated situations. It allows the 

use of sections of different lengths* and presents no difficulties at 

branch-points other than the fact that a set of simultaneous linear 

algebraic equations must be solved at each time step. The derivation 

of the equations of motion and continuity in forms suitable for use 

with the method will not be covered in detail here as it has been ade

quately described elsewhere (Dronkers, 1969). As the extension of this 

method into two dimensibns forms the basis of the proposed unequal 

spacing scheme, it is considered necessary to present the method in 

detail —  all the omitted steps in Dronkers' 1969 paper being shown. 

Furthermore the latter paper gave only the shortest of descriptions 

as to the application of his implicit method to river branch systems. 

This matter is also dealt with in full in the following pages.

In terms of the current u , the equations of continuity and motion
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where the variables are as defined earlier. In terms of the flow rate 

q , equation (3.1) is written

la. - b B3x “ at * 

while equation (3.2) can be approximated by

. _ -L  m  _ (V  b) a l a . _a islgA St gA ° 3x C2A2(aQ+ h)

(3.3)

(3.4)

where b„ is the stream width, that is, A * b (a + h). s s o
The river branch is divided into M-l sections of convenient 

length, each of length (Ax)m (see Figure 3.1). Height and flow rate 

are evaluated at the ends of each section. In the finite-difference 

form of equations (3.3) and (3.4) two time levels are used. Space 

derivatives are evaluated at the upper time level (indicated by primed 

superscripts) and time derivatives are evaluated from differences between 

the spatial averages at the two levels. For section m, the equations, 

in implicit finite-difference form, are

X + l  ‘ %
(Ax)r

/H* . ♦ H» H , +/Hm+1 m ra+1 m
- b

and
m

h;+i - h;

(3.5)

(Ax)m

^m+l + Qm ^m+1 + ^m 
1 1 2 7

'  gA*
.  i bm * 0  /  V 1 * - %

gA2 b m m V m

.1: _ -
(T A (a ♦ H) m m v o 'm

(3.6)



1 M * '2  ' '3  1 'm 1 'm + i 1 'M -2  1 'M -l * 'M
Qi Q2 Q3 Qm Qm+i Qm-2  Qm-i Qm
I 1-------------1------H------------ 1------ i--------- 1---------- 1

(AX), (Ax)z  <A x)m (Ax)M- 2  (A x )M-I

-------------->

Q

Figure 3.1. Location of quantities for the Implicit Method.
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m°l» 2, ♦.»> M-l,
H . ♦ H

where (aQ + H)m * aQm ♦ ---- ^--- , and t is the time step.

A stability analysis (performed in Appendix III) shows that the 

above finite-difference scheme is unconditionally stable.

Equations (3.5) and (3.6) are handled more conveniently in the

form

v» (Hi*i * Hi) * <3-7>

and

• <3-8> 

m«l, 2, ..., M-l.

vm * ^m * \  * 6m * aml vm may be ^ounc* comparison (see Appendix IV) 
to be

m
(Ax) b v 'm m (3.9a)

(Ax) bm (H ♦ H ) mm m+1 m
F t (3.9b)

m
<**>,» . ( bsm * * < 0  . <U

2 T gA „_.2 u T7T7Fm 2gA" b m m 4 C A am m m

6 « (bsm * * <0 . W*)n I V l  *
m 2 t gAm 2gA2 b ra m

2 2 4 C A" a m m m

( V i  * 'O
m 2 x gA,

(3.9c)

(3.9d)

(3.9e)
m
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Equations (3.7) and (3.8) cannot be immediately evaluated as they 

each contain more than one unknown. To solve the equations one uses the 

so-called double sweep method which is based on the fact that the matrix 

for equations (3.7) and (3.8) may be reduced to one that is tridiagonal. 

The first and last rows of the matrix each contain one nonzero value 

located respectively in the first and last columns, and for the remaining 

rows all but the three elements centered on the diagonal are zero.

Up-river Recursion Formulae

Putting m=l in equation (3.8)

QJ « - q; HJ - tj Q* + Sj + bx HJ , (3.10)

where

“•l '  ^  ; *1 -  5“  : S1 ’  57  ! bl ’  ' (3.11a,b.c.d)

Putting m=l into equation (3.7) and substituting from equation (3.10)

H J  - - P2 Q J  ♦ r2 ♦ a2 HJ , (3.12)

where

1 ♦ tj £. ♦ s. bj v
P2 • ; r2 * ^ ~ T q ^  i a2 * vJTqJ- ' (3.13a,b,c)

Putting m=2 into equation (3.8) and substituting from equation (3.12)

QJ - - q2 H» - t2 Q' ♦ s2 ♦ b2 HJ , (3.14)
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where

q2 " 62- + p2 ; *2 " e2 ♦ p2 ; (3.15a,b)

H2 + r 2 a2
S2 “ 02 ♦ p2 5 b2 e2 ♦'p2 * (3.15c,d)

Putting m=2 into equation (3.7) and substituting from equations (3.12) 

and (3.14)

H3 B - P3 ^ 3 + r 3 + a 3 H{ » (sae)

where

°2 ■ 1 * p2 = h  '  jgjf c y j ;  ! (3-17a-b>

5- ♦ o_s~ - v„r_ o,b- - v_a,

'3  = (3-l7c>d)

In general, the up-river recursion formulae are

Cl V- Vl H; - Si-1 % * Vl * Vl Hi f3-18’
' Pm ̂ * rm * am Hi • <3-l9>

for m«2, 3, ..., M, ^

and

Pl ® 0 ; r^ B 0 ; a^ » 1 , (3.20a,b,c)

qjn-1 “ p 7 + 1  “  ; Sn-l "  p p r e  T » (3.20d,e)ro-l m-l Mn-l m-l

V i - r r ^ T  ; V i  - p  1 (3-20f'*>‘m-l m-l mb-1 m-l
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Vi ■ 1 * V 1V 1 5 (3-20h)

rm
qm-l ^m-l'* *Vl Vl + Vm-1 ? (3.20i)

r . Sr1 * 0»-l *■•>. ; (3.20j)Vi Vi * Vi
a . .V-1 N - 1, ' . V 1, V l  , (3.20k)Vi Vi ♦ Vi

for m=2, 3, ..., M.

In particular, putting m=M into equation (3.19)

%  ° " PMQM + rM + aM H1 » (3*21)

so, in effect, we now have

= - I’M ^  * rM * *M Hi - (3-22>

where I = left and r * right.

If and are available as boundary conditions, then KP can at

once be found, and the remaining unknowns , ..., Q* can be

obtained using equations (3.18) and (3.19) and the values (stored during 

the computation) from equations (3.20a) to (3.20k). If, however, the 

estuary consists of a number of branch points, more equations are 

necessary to permit the solutions of the heights and flow rates at the 

branch points.



Down-River Recursion Formulae

The second equation is formed by a process similar to the previous 
upwards sweep. This time the flow rate at the right-hand end of the 
section is eliminated. Equation (3.8), for m=M-l gives

%  m m qM V l  "  *M V l  + SM + bM '  (3.23)

where
* -1 . * Vl * Vl * -1
M “ Vl ’ M “ Vl ' *M ' Vl ? M " Vl ‘

(3.24a,b,c,d)
Putting m41-l into equation (3.7) and substituting from equation (3.23) 
gives

V l  “ “ PM-1 V l  + Vl + Vl IJM * (3.25)

where

P*.! - ^  . i l i t i  ,
qM “ VM-1 qM ■ VM-1

_* _ VM-1 + bMa _̂j * * * (3.26c)
qM " VM-1

Putting m«M-2 into equation (3.8) and substituting from equation (3.25) 

gives

QM-1 “ * V l  V 2 ‘ V l  QM-2 + V l  + V l  “m * (3.27)

where
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_* _ WM-2 " rM-l .
M-l ** -------S—  •

*

* V i
M-l (3.28c,d)

V 2 ‘ PM-1 * V 2 ‘ PM-1

Putting m=M-2 into equation (3.7) and substituting from equations 
(3.25) and (3.27) gives

^-2 " “ PM-2 ^M-2 + rM-2 + ®M-2 liU • (3.29)

where
* *

_* 1 + V l  °M-1
PM-2 “   ‘-------

qM-l °M-1 ‘ VM-2
* * *

„* _ SM-1 °M-1 " *M-2 + VM-2 rM-l
M-2 “ ---- =----=----------- — ~

qM-l °M-1 ' VM-2

(3.30a)

(3.30b)

aM-2 "
VM-2 Vl * bM-l °M-1

and

°M-1 ’ 1

qM-l °M-1

PM-1 VM-2

M-2

In general, the down-river recursion formulae are
♦ *

X l "  - %  H; . l  -  l m V l  * 5m * bi» "m

H' , m-l “ pm-l Qm-l + rm-l + am-l '̂l

both for m=M, M-l, ..., 2,

where

(3.30c)

(3.30d)

(3.31)

(3.32)

PM “ 0 5 rM “ 0 ; ^  = 1 » (3.33a,b,c)
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and

%, - S ------  » t a "K— =■ — ■ ; (3.33d,e)
Pm ‘ V l  P f f l - V l

• *
* rm ~ Kn ^*m'-5--211 :   i C3.33f,g)P* - Vl Pm - Vl

\ - 1 - Vl Pm 1 <5-33h>
* *

* a t ♦ 1
V l * -*-?------ J (3*33i)

°m \  - V l

* * ** -S , ♦ a s + v , r
rB-1 -  « ! m----2zi— 5L ; (3.33j)

°m %  vm-l

*  *  *
* a b + v , aV i - . (3.33k)

°m V l  '

for m=M, M-l, ..., 2.
In particular, putting iti=2 in equation (3.32)

HI  “ * P1 Q1 * r l  + al  %  * (3,34)

i.e.

Hi B "  P1 Q1 + r l + al Hi  * (3*35)

Two equations, (3.21) and (3.34), are now available for each river 

branch. The application of the hydraulic form of Kirchoff’s laws to the 
branch points in conjunction with the boundary conditions (a value of
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H or Q for every branch termination) provides the extra equations 

necessary for the solution of H and Q at the ends of each branch. 

Equations (3.18) and (3.19), or (3.31) and (3.32) permit the remaining 

H and Q to be determined.

As an example, the solution of the network shown in Figure 2.3 

will be discussed. The application of mass continuity at the three 

branch points leads to (superscripts now referring to branch number)

Qj « Q* ♦ Qj (3.36)

♦ of * qJ (3.37)

*4 “ QA + Qjt C3‘38>
Putting the tide heights equal at the branch points, one has

Hl * "I ** H£ " HE ' (3.39a,b,c)

Hr “ Hr " Ht " "d * * (3,40a,b,c)

lr “ HJt e H£ * HC ‘ (3.41a,b,c)

To make use of equations (3.36), (3.37) and (3,38), it is convenient 

to rewrite equations (3.21) and (3.34) in the form

<4 “ °i H{ + 4  Hj ♦ y{ (3.42)

and

< 4-.* 4  + * (3 .4 3)
1 5  6Putting * Hp , B , and Hy « Hg , on applying equations (3.42)

and (3.43) to equations (3.36), (3.37) and (3.38), one obtains three
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linear equations of the form

C1 f,E + C2 HP + C3 HD + C4 = 0 (3.44)

C5 HD * °6 * C7 "e * C8 HC ’ 0 (3-45)

S  HC * C10 * C11 HD * C12 HA 4 C13 HB ’ 0 • <3-46’
Applying as boundary conditions at points A and B a flow rate of 

zero, the application of equation (3.43) to branches 5 and 6 gives

C1 4 HA + C 1 5 + C 1 6 HC = 0 <S-47>

C1 7 HB + C 1 8 + C 1 9 HC = 0  * <3*48>

The tide height Hc is specified as the third boundary condition.r
Thus we now have 5 equations with 5 unknowns, so that ,

..., Hg may be found. The flow rates at the right-hand ends of all 

the branches may then be found via equation (3.42) and thus the remain

ing Hm and can be calculated for each branch using equations (3.31) 

and (3.32). The application of the above is shown in full in Appendix V.

Using such an approach, the solution of the branch point heights 

and flow rates may be performed by hand once and for all, and the result 

placed within the computer program. It is necessary to point out that,

as demonstrated in Appendix III, although the method is unconditionally 

stable, the use of a time step considerably greater than
/ (Ax)

will result in stable but increasingly incorrect \J^ âo + ^m/min

results when the number of sections per physical wavelength is less than, 

say, 20. For this reason Figures 3.2 a,b,and c have been computed from 

At * Ax/Jga as a rough guide line to the selection of the time step 

when given section length and depth.
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A TWO-DIMENSIONAL MODEL WITH UNEQUAL GRID-SPACING 

Introduction

The development of two-dimensional numerical tidal models has 

become sufficiently advanced so that users ar^ now offered an extensive 

range of options. There are available a variety of explicit finite- 

difference initial-value models, amongst which is the widely used 

model of Hansen (1961). Other explicit models are available that 

offer numerous boundary configurations (Heaps, 1969) or ease of 

applications (Matthews $ Mungall, 1970). Models that can handle 

flooding boundaries have been devised; Reid and Bodine's model (1968) 

assumes vertical boundaries while Sielecki and Wurtele’s model (1970) 

permits the inclusion of sloping boundaries. Altemating-direction 

implicit models of considerable sophistication have been described 

by Leendertse (1967) and Dronkers (1969), and a more recent publi

cation of Leendertse's (1970) discusses a model that includes both 

flooding boundaries and diffusion. A fully implicit model (in which 

the simultaneous algebraic equations are solved by relaxation) was 

developed by Uusitalo (1960).

One of the next steps in the development of numerical tidal
N

models should be that of giving the user more control over the posi

tioning of the points at which heights and currents are calculated.

CHAPTER IV

38
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Although an ideal goal might be that of permitting the user to locate 

the computation points wherever he desires, a more realistic goal is 

that of being able to vary the spacing or orientation of the grid 

lines on which the computation points lie. Finite-difference models 

with "quasi-variable grid-spacing" have been devised in the past, 

however their variability is essentially the result of the coordinate 

system used. Amongst them are those based on polar coordinates 

(Hyacinthe and Kravtchenko, 1967), spherical polar coordinates

(Heaps, 1969), and orthogonal curvilinear coordinates (mentioned
/

by Parkinson (1970) ). These are shown in Table 4.1. The possibility 

of a model with unequal grid-spacing in a rectangular cartesian 

coordinate system seems to have received surprisingly little attention, 

and in fact the only model known to the author is that of Grace (1932), 

which is a boundary-value tidal model (i.e. one from which the time 

dependence has been removed). A grid system and computation method is 

discussed here that offers some interesting possibilities in the field 

of unequal grid-spacing.

Grid Configuration

Consider a rectangular grid of H x N lines numbered respectively 

m»l, 3, 5, ..., 2M-1 (parallel to the y-axis) and n=l, 3, 5, ...,

2N-1 (parallel to the x-axis) as shown in Figure 4.1. If (Ax)m and 

(Ay)^ represent the separation between lines m-l and m+1, and lines 

n-1 and n+1, in the limit one would like to have the option of 

specifying M+N-2 different separations. Several important benefits



Author and Year
Coordinate
System

Model
Type

du
uSx

T
surface

T
bottom fV

unequal
grid-
spacing

Ilyacinthe and 
Kravtchenko (1967) polar explicit no no yes yes no

Heaps (1969) spherical
polar

explicit no yes yes yes no

Parkinson (1970) curvilinear
orthogonal

explicit ? no? no yes yes
*

no

Grace (1932) rectangular
cartesian

harmonic no no no yes yes

Table 4.1. Comparison between models based on coordinate systems other than a rectangular 
cartesian system with constant grid-spacing.





result from such a scheme, the most significant of them being the 

possibility of concentrating computation points in areas of interest 

or in areas of rapidly varying topography, or conversely the possibility 

of conserving core storage and computer time by decreasing the density 

of computation points in areas of lesser interest. The usual situation 

of having to suffer the increase of computation time and storage 

requirements associated with a choice of grid spacing dictated by 

the area of interest (barrage location, estuary head, etc.) no longer 

holds. Furthermore, a better coastline fit can be obtained and one 

can arrange for most of the locations for which data exist to coincide 

with computation points. The main objection that existed in the past 

to this approach was that non-centered spatial differences were required. 

This objection is overcome, except for convective acceleration terms, 

by using an extension of the one-dimensional third implicit method 

described in Chapter III.

f ' -

The Equations of Motion and Continuity

The equations of motion and continuity as used throughout the 

remainder of this work are given by equations (4.1), (4.2), and (4.3). 

They are considered to be in the most abbreviated form permissible 

(Dronkers, 1964).



The sense of rotation of the x and y axes is counterclockwise 

in the horizontal plane, and u and v are the vertically averaged 

velocity components in the x and y directions respectively. The 

total depth d equals (aQ+ h) where aQ is the water depth below 

some convenient horizontal datum and h is the instantaneous height 

of the surface above the datum. C is the Chezy friction coefficient 

and f is the Coriolis parameter (f=2u> sinij>, where w is the angular 

velocity af the earth's rotation and $ is the latitude).

Location of Computation Points

The location of the computation points on the proposed grid is 

shown in Figure 4.1. The current components u and v are evaluated 

at U- and V-points lying midway between the points of intersection 

of the lines: the U-poihts being located along vertical lines and 

the V-points along horizontal lines. The tide height h is evaluated 

both at U-points and at V-points, the discrete value being called H. 

Similarly aQ and C (both usually taken as being constant with time) 

are also evaluated at both U-points and at V-points, and are specified 

as input data. Initial values for U , V , and H must be provided at 

time t«*0. These are usually set equal to zero or to values taken from 

the end of the previous computer run.

Computation Scheme

The finite-difference scheme requires four computation steps for 

a complete cycle. During this interval one advances by two time steps,
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each of duration t/ 2. The finite-difference equations are written in 

implicit form and are solved by means of an altemating-direction 

double sweep- technique. Spatial derivatives are evaluated from the 

difference between values at the upper time level and apply to 

hypothetical values in the center of the rectangle. The scheme is 

thus implicity centered (using the word ’implicit’ in its conventional 

meaning). Time derivatives are constructed from the difference between 

mean values at the upper and lower time levels. Thus if the superscript 

notation of Dronkers (1969) is adhered to (i.e. a single prime referring 

to time level t + t/2, and a double prime to time level t + t), the 

evaluation of 3u/3t is written

0‘ - U3u _ n n
at t72 * C4.4)

where the notation

U . + U -
Un ■ (4.5)

has been used for brevity. Similar equations result for ,

etc. The evaluation of 3h/3t is more complicated and varies with the 

computation step.

First Computation Step (Along Rows): Time t to Time t ♦ t/2

During the first of the four computation steps only those values of

U , V , and H at times t and t ♦ t/2 are used. Equations (4.1) and (4.3)

are applied to each rectangle of center m,n along row n to result in

the simultaneous calculation of U' and H' (m = ML, ML+2, ....m,n m,n v ’ * *
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MR-2, MR, where ML and MR define the left and right-hand ends of the 

row). This is then repeated for each of the remaining rows or parts 

of rows. 3h/3t is evaluated by taking as the average height in the 

center of the rectangle at time t the quantity (Hm + Hn)/2, and at time 

t ♦ t /2 the quantity fp.

Thus

fi + H 
fi» _ m n3h n 2 (4.6)3t t/2

If we use the additional shorthand notations

G = (C . + C . + C , + C ,V4 (4.7)' m+l,n ra-l,n m,n+l ra,n-l'  ̂ 1

and

D * * d»,,n-lV4 • <4-8>

(where updated d-values are used as they become available), equations 

(4.1) and (4.3) may be written in finite-difference form as 

O' - U (H* - H* N
- V  -■ ^ ' - Rl • 7  (4' 9)m

and

fli - K+l.n V i , «  - V l . n )

(v ! - v , dV m,n+l m,n+l rn.n-1 m,n-l/
(4y)„

where

(4.10)

R ------ li----------------- i . (4.11)
(cr »
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The location of the U- , V- , and H-values used during the first set 

of computations is shown in Figure 4.2. Unknown quantities have been 

underlined.

Second Computation Set (up Columns): Time t to Time t ♦ t/2

Equations (4.2) and (4.3) are applied to each rectangle of 

center m,n up column m in order to obtain n and n (n«*NB, NB+2, ...,

NT, where NB and NT define the bottom and top of the column). 

8h/3t is evaluated by taking as the average height in the center

of the rectangle at time t the quantity (fî  + Hn)/2, and at time

t + t/2 the quantity (fP + Ĥ )/2. Thus

ou (fi' + H' - H - H )/2 3h _ ' m n m n'
3t - 772 * 14

The finite-difference equations are

2
T (4.13)

and

(4.14)

where

(4. 15)
(C)2 D

• _2
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I

Figure 4.2. Location of quantities used during the first set
of computations.



48

The location of the U- , V- , and H-values used during the second set

of computations is shown in Figure 4.3. Underlined quantities again

denote unknown terms. In equation (4.15), D must be altered to include

the updated depths d’ , and d'r r m+l,n m-l,n

Third Computation Set: Time t + t/2 to Time t + t

The third computation set is similar to the first in that 

one has available a full set of known values of U' , V* , and H* 

at the lower time level. To preserve the symmetry of the computation 

scheme, the third computation set is performed up columns, instead 

of along rows as was done in the first computation set.

The finite-difference forms of equations (4.2) and (4.3) are

(4.16)

and

(4.17)

where

( C ) ‘  D
(4.18)
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I I

Figure 4.3. Location of quantities used during the second
set of computations.
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The location of the U- » V- , and H-values used during the third set

of computations is shown in Figure 4.4, Underlined quantities again

denote unknown terms. In equation (4.18), D is further altered to

include d’ . and d’ ..m,n+l m,n-l

Fourth Computation Set: Time t + t/2 to Time t ♦ t

The last computation set is performed along rows. The finite- 

difference forms of equations (4.1) and (4.3) are

U" - U* (H" . - H" , ^
rtj . ^ -sa ^ y  - R4 tfc . I  (4.19)

ra

and

(fi» + H" - H' - H*)/2 ( U" . d' . - U" d» ^' m_ n m n' v m+l,n m+l,n m-l,n m-l,n/
r72 * " (Ax),m

(V" . d" . - V" . d". m,n+l m,n-l mtn-17
(Ay)

(4.20)

where

r4 =  i  . (4.21)1/2 T
(C)2 D

The location of the U- , V- , and H-values used during the fourth

set of computations is shown in Figure 4.5. Underlined quantities

again denote unknown terms. In equation (4.21), D is altered yet again

to include d" . and d"m,n+l m,n-l



Figure 4.4. Location of quantities used during the third set
of computations.
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I I
I I  I I

I I  I I
1 I V>« hH I I

Figure 4.5. Location of quantities used during the fourth
set of computations.



CHAPTER V

THE FINITE-DIFFERENCE EQUATIONS AND 
THEIR SOLUTION

Introduction

This chapter covers the reduction of the finite-difference 

equations to convenient forms and their solution. The chapter 

is included here for reasons of continuity and can be skipped by 

those readers not immediately interested in the rearrangement 

and solution of the finite-difference equations. The process 

is similar to that described in Chapter 3 in connection Kith 

the one-dimensional implicit method, and is again an application 

of the double sweep method of J. J. Dronkers (1969).

First Computation Set

Equations (4.9) and (4.10) may be rewritten in the form

am * involve input parameters and values of U, V, and

H calculated at time t. They may be shown by comparison (see 

Appendix VI) to be

(5.1)

(5.2)

form=ML+l, ML+3, ..., MR-1



(5.3e)

(5.3£)
4 C 2 Dm.n m.n

Knowing the boundary values or at the left-hand end of the 

row, and HjJJR or U^R at the right-hand end of the row, the double 

sweep method may again be used to solve equations (5.1) and (5.2).

As the method is applicable (with minor variations) to all four/
computation steps, its description will be kept until the end of 

the chapter.

Second Computation Set

Equations (4.13) and (4.14) are rewritten in the form

(5.4)

(5.5)

for n«NB+l, NB+3, ..., NT-1.
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°n * * **** en are aga*n found by comparison (see Appendix VI)
are

n (Ay)n(l + R2) '

„ _ (Vn.l * Vn,.„-l) .
n  1 <■ r/ --------------------   ! (5‘

v r  2T dra,n+l . . _ 2t  dm ,n-l .
Vn (4/1' ' -  ' ! (5-

n * (ta), t5‘

+ H a 1 + H  , + H  - + H .  - H' - H» ,ra,n+l m,n-l m+l,n m-l,n m+l,n m-l,n

*T [»,Ul.n * C l . n ^ 2 *(V..n»l » V - l )  *]’
2-i 1 / 2R_ L' IIITJ.,11 III-A, II/1 > 111,1 IT* 111,11-1/ J /(.■ . - r ,

4 C D m,n m,n

To solve equations (5.4) and (5.5) one needs values or

V^B , and H^t or V^. The result is that all the U' , V* , and H

are now known at time t + t/2.

Third Computation Set

Equations (4.16) and (4.17) are rewritten as

'a,n+l * Vm,n-1 * «n*5,„.l ' “n,Pm.n-l " 6» <5-

f M,n+1 * "m.n-l * Vl.n.l * W . n - l  " cn <5-
for n-NBtl, NB+3....... NT-1.

, and 

6a)

6b)

6c,d) 

6e)

6f)

7)

8)
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For the third computation set, <*n , are (see Appendix VI)

ttn ' W)^(l+R3) 5 * (5,9a)

6 ■ ̂w»n+l 4 Vm,n-l) (Um+l,n * Um-l,n)Tf .
1 + &3 2(1 + R3) ’ (5.9d)

T d* . t d* ,
v e ^»n ^ • A a „ —  m >n "l . fc gc J\n m n ' « m n ' (5,9c,d)

x(u‘ . „ d* n - U* . d» . 'N x m+itn m»l,n m-ltn m-itn/
en (Ax)

(H» ♦ H» .) (H» H' . \. v m,n+l m,n-l/ v m+l,n m-l,n/ „<T 11 ■   - 1 I 1 I •  Tin ■ I ■ 1 . (5.9e)

2 -i 1 / 2grf(U» . + U‘ ■) + (V1 , + V* - V lR . m+ltn m-l,n' v m.n+l m.n-l^ J  ̂ (5.9£)
3 4 C2 Dm,n m,n

To solve equations (5.7) and (5.8) one needs Hjjg or Vĵ g , and 

'NT *HJJt or vr„

Fourth Computation Set

Equations (4.19) and (4.20) are rewritten in the form (see 

Appendix VI)

U" + IF , ♦ a H" . - a H" , - 0  (5.10)m+l,n m-l,n m m*l,n m m-l,n m '

H" . ♦ H" . + Y U" . M U " ,  « e (5.11)m+l,n m-l,n m m+l,n m m-l,n ra v '

where

gT______
°m “ (Ax)“(1+R4) » (5.12a)
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ft * m,*»“___ 111 *9** + \ . fc p upm 1 ♦ R + 2 (1 + R4) * (5.12b)

2t d* 2t d1 ,
^ a ; 5m - - * (5-12c*d>

2t (V" , d" . - V" . due ■ v m,n+l m,n+l m,n-l m,n-ly
# ( & y ^

+ H' , + H* , + H* + H» . - H" n4>. - H» .m,n+i m,n-l m+l,n m-l,n m,n+l m,n-l *

(5.12e)

gx r (u* , + U' ')2 + /'V" , + V" ,'\211^2
r - — a i L s L y  — sbml.LJ—  . (5.i2f)

4 C „ D m,n m,n

Finally, to solve equations (5.10) and (5.11), one needs the boundary 

conditions, HflL or U"L , and HJ;r or U;jR .

Solution of the Finite-iDifference Equations by the Double Sweep Method 

The four sets of finite-difference equations to be solved, of 

which equations (5.1) and (5.2) are an example, may all be solved by 

the double sweep method. Although only equations (5.1) and (5.2) will 

be considered here, it should be realized that with minor changes the

method applies equally to equations (5.4) and (5.5), (5.7) and (5.8),

and (5.10) and (5.11). For convenience, equations (5.1) and (5.2) 

will be rewritten with a single subscript.

In general (noting that the subscripts of a , 8 , ..., e have 

been shifted)
U‘ + U • + oH* - a H» - 8 (5.13)m+2 m m m+2 m m m



Starting at the left-hand side of the row, putting m«*ML, we 

have

“m L+2 * **ML + YML UML+2 + 6ML UML * EML (5.15)

UML+2 + UML + ®ML !VlL+2 ~ °ML lIML * SML * (5*16)

The form taken by the recursion formulae depends on whether current or 

height is specified at the left-hand end of the row.

Case 1, HjJjL known

From equation (5.15)

“ m l  ■ *ML *  BML " m L+2 *  CML UH L .2  • ' 5 - 17>

where

*ML ' *%L ' . „ -1 . „ *^ML „  ,
*ml ' — r;—  : “ml * r r  : , chl ■ ~trr ■ ts.isa.b.cML ML ML

Substituting equation (5.17) into equation (5.16) and rearranging,

"ML+2 -  DM L.2 UML*2 *  EML+2 • <S- 19>

where

1 + CML $ML " *ML + “ML *VlL
°ML+2 “ " B... ♦ am  ; EML+2 = fc"' ♦ aM1 * (5*20a»b)ML ML ML ML

Putting m»ML+2 into equations (5.13) and (5.14).

HML+4 + HML+2 + YML+2 UML+4 + dML+2 UML+2 * EML+2 (5.21)

UML+4 + UML+2 + aML+2 ,ViL+4 ‘ aML+2 ^lL+2 * 6ML+2 * (5.22)
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Substituting equation (S.19) into equation (5.21) and rearranging,

UML+2 “ AML-*-2 + BML+2 ^L+4 + CML+2 UML+4 * (5.23)

where

_ eML+2 “ EML+2 „ -1 .......
W  JHL*2 *  W  ’ M U 2  ‘  5H U 2  *  DHL+2 '  ( > )

r "̂ ML+2 .
ML+2 6 + Dmi , * (5.24c)ML+2 ML+2

Substituting equations (5.19) and (5.23) into equation (5.22) and 

rearranging,

^ + 4  “ °ML+4 UML+4 + EML+4 » (5.25)

where

n « - 1 * CML*2 ^  ~ °ML+2 PML+2) . r- .
ML+4 BML+2 ( 1 " aML+2 ’

^ML+2 “ ^fL+2 ^  “ aML+2 DML+2 ) + °ML+2 EML+2 
ML+4  * (5*26b)

In general,

Ui • \  * Bm Hi»J * C» Ui*2 (S-27)

h; 2 ■ v 2 «;.2 * '5-2«

for m=ML, ML+2, ..., MR-2,

and

' 1 T T T  ’ Bm “ 6 +“5 ’ Cm * 1 +~S“ * (5.29a,b,c)
ib m m m  m m
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am “ 1 " amDm * CS.29d)

D * 1 * Cmam . ' p „ ~ AmPm * amEm f .
m+2 ” B a + a • Em+2 B a + a * (5.29e,f)m m m m m m

for m=ML, ML+2, ..., MR-2,

and where

DML 0,0 and EML “ * (5.29g,h)

The calculation sequence is to evaluate (c*m , ..., ,

Bm * Cm * °m * Dm+2 * Em+2 for m=ML’ ML+2* ’**» MR"2» and t0 store
the values A^ , ..., E _ . This part of the calculation is called m m+2
the upward sweep. If current is specified at the right-hand end 

of the row, equations (5.27) and (5.28) may be used to evaluate

IJMR * UMR-2 * ^^-2 * UML *n descending order. This is the
downward sweep part of the calculation. If height is specified 

at the right-hand end of the row, U^R must first be obtained via

UM R - ( Hf.R-E« > /DMR <5-30>

and the downward sweep applied as before.

Case 2, known

From equation (5.16)

»ML ■ PML *  «HL UML+2 *  "ML " i w  • ( 5 - 31)

where

PML ’  '■ '  R> I L“ 1 * ( 5 - 32a>b>C)
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Substituting equation (5.31) into equation (S.IS) and rearranging,

UML+2 " SML+2 ,!ML+2 + TML+2 * (5.33)

where

^ML . _ *ML " fiML °ML ' PML
ML*2 ’ ML*2 ‘ ( , )

Substituting equation (5.33) into equation (5.22) and rearranging 

*^+2 " PML+2 + ^ML+2 UML+4 + * W 2  fIML+4 * (5.35)

where

_ TML+2 “ ^ML+2 . _ 1 . ^P»it .>) c * Qiit,« B % (5*363.|b)
ML 2 ML+2 " ML+2 ML 2 ML+2 ~ SML+2

°ML+2
. W  " V i  ' W  ’ C • }
Substituting equations (5.33) and (5.35) into equation (5.21), and 

rearranging,

UML+4 “ SML+4 n̂ IL+4 + TML+4 * (5.37)

where

c = 1 * ^ML+2 C1 * *ML+2 SML+2 ) .
ML+4 YML+2 * ^ML+2 ( 1 + 6ML+2 SML+2)

_ eML+2 " 6ML+2 TML+2 ‘ PML+2 ^  + *ML+2 SML+2 )
ML+4 W  + W 2 ( 1 + 6ML+2SML+2) * }

In general,

u;»2 ♦ R„ k >2 (5-39>
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^m+2 * Sm+2 Hm+2 + Tm+2 (S.40)

and

for m=ML, ML+2, ..., MR-2,

m
T - $m m
o - Sm m

1 m
m m m a - Sm m m

(5.41a,b,c)

p ■ 1 + 5 S :m m m * (S.41d)

1 + R pm m
"+ 2 / V V i »  ’ m+2

e - 6 T - P pm m m  m m
Y_ ♦ m m

for m=ML, ML+2, , MR-2,

and where

Sn. ■ °*° and tml ■ UHL

(5.41e,f)

(5.41g,h)

Having calculated C°m  Em > pm * V  Rm - pn • sm.2 > T»*2 ’
for m=ML, ML+2, ..., MR-2, one completes the upward sweep. If height 

H»1r is specified at the right-hand end of the row, equations (5.39) 

and (5.40) are used to evaluate , HjJ1R_2 , U^R_2 , , ...,

in descending order. If current U^R is specified at the right- 

hand end of the row, H^R is found from

V̂lR " (UMR “ ^Ir V ^ I R  * (5.42)

and the downward sweep again applied as before.



CHAPTER VI

PROGRAMMING CONSIDERATIONS

Introduction

The form of the program is necessarily of great importance in 

the application of numerical tidal models.. Computer time and core 

storage limitations almost always exist, so that the early considera

tion of these problems will pay dividends when one actually comes to 

apply the program to complicated situations. The discussion of the 

means by which computer time may be saved will be directed more towards 

the efficient use of each computer run than towards a discussion of 

programming techniques (such as saving time by reducing the number 

of multiplications). The computer language is assumed to be FORTRAN, 

however, most of the comments will have their counterpart in other 

languages.
/

Reduction of Core Storage Requirements

There are two main approaches by which core storage requirements 

may be reduced: those which involve splitting up the original full- 

length program into smaller segments, and those involving the optimiza

tion of the storage arrays. The discussion that follows is based on 

the tripartite-nature of numerical tidal models: an initial phase

in which data on the inlet dimensions are read from cards and then 

assembled in arrays, a phase during which boundary values are supplied
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and calculations are made at every time step throughout several tidal 

cycles, and finally an output phase in which tide heights and currents 

are analyzed and the results printed.

An obvious approach to the problem of splitting up the original 

program is to make several separate programs. These may then be run 

successively, with each producing an output tape of relevant values 

as needed by the next program. This approach is not particularly 

more expensive in terms of computer time but it does mean that more 

time will elapse before the several jobs are run. In some ways this 

is not a,disadvantage for it gives the user time to reflect upon the 

progress of the calculations, something often lacking when people 

make use of sophisticated programs. A second approach to the problem 

is the use of overlays (IBM, 1970, p.43).

The overlay technique consists of splitting the original program 

into subroutines, collectively called 'phases', which are then stored 

on a peripheral device (such as a disk) until needed. When a phase

is copied from disk to core, it is placed starting at some fixed loca-
/ - 

tion and erases the phase previously there (thus 'overlaying' the

previous subroutine). Since the copying process from a disk usually 

involves mechanical movement, it is advisable to form the phases so 

as to avoid too many transfers. For example, it would not be good prac

tice to have to call a phase from the disk at every time step. A 

natural selection is to have as the first phase the input part of the 

program. The second phase could be the part of the program that assigns 

and performs the calculations throughout the program, and the third 

phase would then be output and analysis.
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When considering the optimization of the core storage taken up 

by matrices or arrays, one can, as a start, make use of the FORTRAN 

IV option of variable-length words. In particular, the use of the 

"INTEGER*2" specification permits the storage of integers up to the 

value of 32,767 (assuming that the normal word length is 32 bits).

Depths and friction values may be stored in this fashion, as can 

certain other quantities. A more important possibility is the inter

leaving of two (or more) quantities into one array, bearing in mind 

the slight inconvenience caused during programming by, say, the storage 

of the quantity H(M,N) in location U(M,N+1). By the use of "EQUIVALENCE" 

statements, one can write H(M,N+1) instead of U(M,N+1). The method of 

interleaving, if possible at all, will of course depend on the grid 

layout used.

When using the numerical scheme discussed in Chapter IV it will 

be found that three large arrays are required as shown in Table 6,1.

Array Equivalenced Values Purpose

1 U, V, H Heights and currents 
at lower time level

2 UU,VV,HH Heights and currents 
at upper time level

3 A,C Water depths and 
Chezy friction 
coefficients

Table 6.1. Major arrays used by the two-dimensional implicit program.
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Flexibility Requirements

It is usually to the advantage of the originator of the program, 

and to that of future users, that the program bo made as flexible as 

possible. The foremost and most time consuming task of importance 

is that of designing the program to be applicable to different boundary 

configurations with the minimum amount of reprogramming. The imple

mentation of this needs careful consideration, as the resulting 

approach will be used many times throughout the program. If it is 

permitted by the method being used to solve the hydrodynamic equations, 

it is convenient to divide up the computations into those performed 

along rows, and those performed up columns. (This is usually the case 

if two-dimensional relaxation methods are not involved.) The two most 

useful methods are a representation of the boundaries by integers 

located in a large array like a map, and the storage of the integer 

coordinates of the end points of computational rows or columns, along 

with an integer denoting the nature of ^he boundary.

The first of these two methods, described by Matthews and Mungall 

(1970), is somewhat wasteful of core storage and computer time but has 

the great advantage that the boundaries may easily be adjusted during 

the computation, of use when flooding boundaries are present. Briefly, 

the method consists of using a two-dimensional integer array which acts 

as a map for the boundaries. The integer 11 * is used to denote the 

transition from land to sea (or vice versa). The integer *2• is used 

whenever the model terminates at a boundary where the tide height must 

be specified as a function of time. During the course of the program
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the array is scanned row by row and column by column, calculations and 

boundary conditions then being applied accordingly.

The second method, developed by Leendertse (1967), is very econo

mical in computer time and storage (but is not so simple to use when 

flooding boundaries have to be considered), Two arrays are used to 

describe, respectively, the location and type of horizontal and 

vertical boundaries. Taking as an example the array LIMX(IX,J) that 

describes vertical boundaries, we have J ranging through the values 

1, 2, and 3, and IX between 1 and the number of vertical boundaries.

The M and ft integer coordinates of the boundary are contained in 

LIMX(IX,1) and LIMX(IX,2), while the type of boundary (a 'I1 for one 

at which current is specified, and a •3* for one at which height is 

specified) is contained in LIMX(IX,3). When this array is scanned in 

pairs (IX<=1,2; 3,4; etc.) it will provide the start and end locations 

of the computational row, and an indication of the numerical scheme 

necessary to deal with the boundary conditions.

Flexibility should also be aimed at in the control of input/output 

operations. The first of these is that of the use of a tape containing 

the values of height and current at the end of each cycle. This tape 

may be used to restart the job economically on a fresh computer run, or 

to limit the loss of data to part of a single tidal cycle should an 

unscheduled program termination occur. In either case the program must 

be modified so as to construct or read the tape. Other examples of 

output options needing to be programmed are the printing of sample 

values of tide height at every time step, current and height values



at the start and end of the computations, and (occasionally) the 

field of heights and currents at every time step during the last 

tidal cycle. Finally there is the requirement for boundary conditions 

to be specified at every time step.

The best way to meet these requirements is to have two short 

subroutines that are modified or rewritten by the user: a boundary 

value subroutine and a master subroutine that deals with all non

standard input/outputs (tape reading and writing, etc.). A diagram 

showing the way in which the writer's program was set up, taking the 

above into account, is shown in Figure 6.1. It will be noticed that 

the analysis-phase of the job is left for a later computer run. The 

reason for this is mentioned later.

Documentation

Both for reasons of documentation and of error detection, it is

most desirable to have as full a record as possible of all input
/

values. Thus every data card read should be printed, along with a 

description of the variable (e.g. latitude in degrees, time step in 

minutes, etc.). When quantities such as depths are read row by row 

from cards, each card should be printed as well as a full summary in 

the form of a two-dimensional array. Initial and final values of 

tide height and current should also be printed for future reference.

A final precaution that may be taken, as mentioned in the previous 

section, is to prepare and save a tape containing the values of tide 

height and current from the very last time step. With the above
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Figure 6.1. Arrangement of tidal computation program.
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information no trouble should be experienced in rerunning a particular 

test at some later date, or in preparing a report summarizing a series 

of tests.

Analysis and Presentation of Tide Heights and Currents

In order to extract the maximum possible information from a given 

run, it is desirable to produce and retain a tape containing every value 

of height and current calculated during the last tidal cycle. This tape 

may then be analyzed by standard programs or can be used for any other 

purpose at a later date. The cost of the tape and the time spent in 

producing it will almost invariably be less than the cost of rerunning 

the whole job.

1. Tide height analysis

The first standard analysis program will probably be that of a 

Fourier analysis of the tide heights. Once the amplitude and phase 

corresponding to the lowest harmonic are available for every grid 

rectangle, simple investigations as to the height distribution (for 

example) at any instant may be made without having to scan the original 

tape; the information has been •compressed'. This may similarly be 

done for the currents, since the raw data for these are also available 

on the original output tape.

The Fourier analysis process can be time consuming if one requires 

the maximum number of harmonics possible. As this equals the quantity 

(number of complete time steps per tidal cycle)/2, often an unrealis- 

tically large number, it is usual to limit the process to only a few
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harmonics. By suitable programming it is possible to restrict the

number of passes of the tape, to one per harmonic.

The data from the last cycle is in the form h^ , h^ , ...» h^ (N

being the number of time steps per tidal cycle), where h ■ (H^+j n

+ 1̂! . + H" . ♦ H" ,)/4.0. The record is assumed to be ofm-i,n m,n+i m,n-i
length 2it, so that the data are located at points 1.2?r/N , 2.2ir/N , 

..., N.2ir/N . (Note that the first data point is not at time t = 0.) 

In this case we have (adapted from Schureman (1958));

N

V“ f y ~ ~  hi (6a)
i=l

N

CP a f  / hi cos (ip ~ )  (6.2)

i=l

N !

Ao 4  hi . / (6.3)
i=l

Also

(Ap)2 - (Cp)2 + (Sp)2 (6.4)

Sin 5p - Sp/Ap (6.5)

Cos 5p « Cp/Ap (6.6)

and finally (remembering that t has period 2it)>

£ - 1  2 1

f(t) - Ao Ap cos(pt - Cp) (6.7)
p»l
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The procedure is thus to calculate sin(ip 2ir/N) and cos (ip 2ir/N) 

at the end of each time step, to calculate the mean values of tide 

height at the center of each rectangle, and to keep a running sum 

as indicated by equations (6.1), (6.2), and (6.3). Finally, at 

the end of the cycle, the sums are multiplied by 1/N or 2/N as 

necessary, and the amplitudes and phases are determined via equations

(6.4), (6.5), and (6.6). If the mean value and first harmonic only 

are required, as often is the case in tidal studies, one needs to 

store 3 values for each item being analyzed. As there are 4 positions 

available per rectangle (keeping to the original subscripts), three 

major arrays are required. Because (when currents are also analyzed) 

this takes about the same amount of storage as that required during 

the main part of the program, it is convenient to separate the analysis 

phase from the first two phases mentioned earlier.

2. Current analysis
/

Average current components are first calculated for the center of 

each rectangle; thus

U'\, ♦ U“ ,fj" s »*l,n m-l,n
n 2

V" + V"_ m,n+l m,n-l
m 2

These values are then analyzed for the desired Fourier components 

as were the heights (there will probably be sufficient core for heights 

and currents to be analyzed during the same pass of the tape). The
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automatic analysis provides a mean value, a phase, and an amplitude 

for each current component.

Of more practical interest than the above are the components of 

the current ellipse. The dimensions of the semi-major and semi-minor 

axes and their orientations provide information as to the magnitude 

and direction of the maximum and minimum currents. These are obtained 

as follows.

Neglecting mean values for the moment (as they only produce a 

shift of the center of the ellipse), one has 

u(t) * U cos(ut-e) 

v(t) - V cos(ut-$) 

where U, 6, V, and $ came from the Fourier analysis.

Denoting the magnitude of the current vector by S ,

S2 * U2 cos2(«t-8) + V2 cos2(wt-$)

d«iFor a maximum or minimum, ** 0 . ie

2wU2cos(ut-6) sin(ut-O) ♦ 2uV2cos(wt-$) sin(wt-<j>) * 0

or

U2sin2(«t-6) ♦ V2sin2(ut-$) » 0.

Thus

c 2 2V Vsxn2«t cos20 - cos2wt sin28 = - —a* sin2wt cos2<|> + —*■ cos2wt sin2$
IT IT

or

V2sin28 + -j sin24>
Tan 2ut * ------- -------

cos26 ♦ ■ cos2$
IT
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Thus two values, 90° apart, can be found for wt . The establish

ment of the value of ut corresponding to one of the maxima of S (for 

convenience, the one associated with the maximum northwards value), the 

values of the semi-major and semi-minor axes, and the determination of 

the sense of rotation of the current vector is merely a matter of pro

gramming.

It has been found convenient to terminate the analysis program at

the end of the current ellipse calculations. The following is given

as an example of how one might proceed from this point, although 

it is realized that each user will have his own requirements.

At the end of the analysis program the following quantities are

both summarized on the printer and written on tape:

HEIGHT 
U-CURRENT 
V-CURRENT J {

mean value
amplitude of 1st harmonic 
phase of 1st harmonic

(9 values in all).

{semi-major axis semi-minor axis 
tiitime of maximum northwards current.

These 12 values may conveniently be stored in three arrays.

Eight programs were written to make use of the above information. 

They all make use of an off-line plotter (which could be replaced by 

a display terminal). With the exception of the last program the plotter 

automatically draws the inlet boundary, and very little work has to be 

done by the user. A list of the programs follows.

1. Corange and cotidal lines.

2. Contours of equal maximum current.
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3. Phase of maximum current 
(user-participation needed in complex cases).

4. Ellipse axes.

5. Ellipses, sense of rotation, current vector at t«=0,

6. Current vectors at any instant.

7. Tide height at any instant.

8. 3-dimensional perspective view of sea surface at
any instant.



CHAPTER VII

APPLICATION OF fHE MODEL TO THE IRISH SEA 

Introduction

It was felt that the first comprehensive test should be an 

application of the model to a real situation, with the model being 

run under the most favorable conditions possible. The area chosen 

for the test was the Irish Sea on account of the attention that it 

has received in the literature. Amongst the basic references on the 

Irish Sea tides are the papers of Taylor (1919), Defant (1920),

Doodson and Corkan (1932), and Doodson, Rossiter and Corkan (1954). 

Taylor's classic paper deals with the propagation and absorption of 

energy and Defant's is one of the first applications of a one

dimensional model. Dpodson and Corkan made use of vertical and

horizontal tide amplitudes and phases along various sections crossing
/

the sea to obtain a corange and cotidal chart (published also as part 

of Admiralty Chart No. 301), while Doodson, Rossiter .and Corkan 

obtained similar results by a relaxation method-based on tidal values 

along solid boundaries.

Constant grid-spacing was chosen for the Irish Sea test so that 

the errors developed would not be attributable to the effects of 

variable grid-spacing. Using a grid-spacing of 7.5 nm, it was 

possible to make use of the grid (and thus the depths) used by Doodson, 

Rossiter and Corkan (1954), as in both schemes depths are specified

76
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midway between the sides of the squares. Besides greatly reducing the 

labor involved, this enables a more meaningful comparison of results.

The tests made included investigations of the effect of changing 

the time step, friction coefficient, and boundary values. The results 

compared so favorably with those of Doodson and Corkan (1932) that 

the original program was extended to produce information as to the 

nature of the current associated with the M2 tide in the Irish Sea.

Description of the Irish Sea

The Irish Sea is bounded by portions of the coastlines of Eire, 

Northern Ireland, Scotland, England, and Wales (see Admiralty Chart No. 

1824a, and Figure 7.1.). Its center can be taken as 53.S°N , 4.5®W , 

and the sea has a north-south length of about 180 nm and a greatest 

width of 100 nm. Connections with the Atlantic are via St. George's 

Channel in the south (40 nm wide) and North Channel in the north (20 nm
I

wide). The Isle of Man is located in the center of the northern part
/

of the Irish Sea, and appears to exert considerable influence on the 

currents of the region. The Irish Sea is generally shallow, with a 

maximum depth of 149 f (272 m) in the North Channel, and 87 f (159 m) 

in the main part of the sea (between Dublin and Holyhead). Shipping 

is extensive in the region, with Dublin and Liverpool as the major 

ports.

The tides of the region are fairly complex (see Bowden (1955) for 

an excellent description of the region). There is a degenerate 

amphidromic point on the coast of Eire near Arklow, and the greatest
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Figure 7.1. Bathymetry of the Irish Sea.
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tidal range occurs in the region of Liverpool (the Mj tidal amplitudes 

being about 40 cm and 300 cm respectively). The surface currents of 

the region are shown in the Irish Sea Pocket Tidal Stream Atlas 

(British Admiralty, 1962), and during spring tides they can attain 

over 200 cm/sec. The sea ‘fills' from both entrances essentially 

simultaneously, with the tidal streams flowing towards Liverpool on 

either side of the Isle of Man. The region bounded by lines running 

west and southwest from the Isle of Man and by the coast of Eire isI *

one of small currents at all stages of the tide (the maximum value 

being of the order of 50 cm/sec).

Grid selection and boundary values

The first step in selecting a suitable grid outline was to 

recreate the grid network of Doodson, Rossiter and Corkan (1954),

As Admiralty Chart No. 1824a is based on a Mercator projection it was

necessary to allow for the 'spreading' of lines of constant spacing
/

running in northerly directions. Having found that their grid network 

was based on the line of 4°40'W longitude (J. R. Rossiter, personal 

communication), this line was established on the chart. Then, starting 

with the line of 53°20' N latitude, using the part of the latitude 

scale level with that line, points were marked off at distances of 

7.5 nm to the left and right of the line of 4°40'W longitude. This was 

repeated every 30 nm north and south of the line of 53®20'N latitude, 

always using the correct scale for that latitude. The points were then 

joined up, forming a series of diverging lines. The remaining
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horizontal lines were then drawn at 7.5 nm intervals, and finally 

the grid outline shown in Figure 7.2 was selected as the best compromise 

between good coastline fit and similarity to the sloping outline of 

Doodson, Rossiter and Corkan (1954).

For all but one of the computer runs, the input values for St. 

George's Channel were determined from the cotidal and corange chart in 

Doodson and Corkan. The relevant points were located on the chart, and

the range and phase then found by interpolation. As there was not

sufficient information on the diagram for values to be obtained for 

North Channel, the necessary values were obtained from an unpublished 

cotidal and corange chart (Laska, 1965) based on all the available

harmonic constants, with the general shape of the lines coming from

Doodson and Corkan’s work. For the last computer run, a test was 

made as to the sensitivity of the results to the use of boundary 

values were obtained by using the M2 amplitudes and phases of the 

three most convenient tide stations. These consisted, in the north, 

of Larne, Port Patrick and Port Avogiej in the south, of Waterford, 

Wexford, and Fishguard.

The amplitudes and phases at the input points were obtained as 

follows: the triangle having the three tide stations at its apexes 

was drawn, and points were located along each side at convenient 

values. Corresponding points were joined, forming equidistant, parallel 

lines. A first-order surface of amplitude or phase for that part of 

the sea was thus constructed. The triangles are shown in Figures 7.3

fc '
P"
P-



8 1

Figure 7.2. Grid used for the Irish See tests.
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and 7.4. The values found from the corange and cotidal diagrams, and 

from the triangles, may be seen in Table 7.1, and in Figures 7.5 and 

7.6. The effect of the difference between the two sets of input values 

is discussed later.

North Channel

Amplitude, eras. Phase, degrees

Charts Constitutents Charts Constituents

West 147 138 325 318.2
156 152 328 319.4

Hast 170 166 330 320.6

St. George’s Channel

Amplitude, cms. Phase,/ degrees

Charts Constituents Charts Constituents

West 112 143 180 175
108 137 190 181
108 131 196.5 187
109 125 198 193
112 119 202 199

East 120 113 204 205

Table 7.1. Amplitudes and Phases for Input Points.
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Figure 7.3. Construction used to obtain tidal data for 
St. Georges Channel.
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Description and Results of the Tests

The tests to which the ijodel was subjected were of three types: 

time step variation, friction variation, and boundary condition 

variation. A list of the tests is shown in Table 7.2. The standard 

to which the various corange and cotidal diagrams may be compared 

is shown in Figure 7.7. In this figure are shown the corange and 

cotidal lines for the Irish Sea as obtained by Doodson and Corkan 

(1932) along with the grid outline of the present model.

Test
Number

Time Step 
min.

C
m^/2 sec“*

k(=g/C2)
dimensionless

Source of 
Boundary Condition

1 S.175 70.0 0.0020 charts
2 10.350 70.0 0.0020 charts
3 20.700 70.0 0.0020 charts
4 41.400 70.0 0.0020 charts
5 62.100 70.0 0.0020 charts
6 10.350 55.0 0.0032 charts
7 10.350 1000.0 >0.0000 charts
8 10.350 70.0 0.0020 Tidal

Constants

Table 7.2. List of tests performed on the Irish Sea Model.

Based on the one-dimensional implicit method error wave propagation 

analysis of Appendix II, a rough guide line for the model is that 

(t ^/gh/Ax) should be less than 1.0 . As the greatest schematized 

depth in the central region of the modelled region is of the order of 

120 m, one arrives at a suggested value for t of the order of 400 sec.

It was decided that a longer time step than this could probably be 

tolerated since the above is only a guide and not, as in the case of
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Figure 7.7. N2 corange lines (in feet) and cophase lines from 
Doodson and Corkan (1932) superimposed on the Irish 
Sea grid.
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explicit models, a fixed requirement. Thus the shortest time step 

used in the tests was that associated with 144 time intervals per 

tidal period (12.42 hours): a value for t of 310.5 sec.

Test No. 1 was continued for a total of seven cycles before the 

computations reached a 'quasi steady-state*. During this particular 

test each cycle required some 10 minutes of computer time on an IBM 

360/65, so that the test was rather costly. It was observed that 

there were no signs whatsoever of instability either in the form of 

diverging calculations or in the form of high frequency error waves.

The output of the last cycle was then analyzed for the first harmonic, 

and the resulting corange and cophase lines were computed and plotted. 

Similar tests were run using the time steps listed in Table 7.2. It 

was noted that as the time step was increased the model achieved a 

'quasi steady-state1 in fewer cycles: test No. 5 required only 3 cycles. 

The result of test Nos. 1 through 4 can be seen in Figure 7.8. A 

comparison between Figure 7.7 (the standard) and Figure 7.8 reveals 

an excellent agreement for the case of t=10.35 min. For this particular 

time step the main points of disagreement are in the shape of the 

corange lines opposite Wales, and in the northeastern part of the Irish 

Sea. The former situation is traceable to one of the computation lines 

used by Doodson and Corkan (1932). It is possible that the sudden 

perturbation in their corange lines is not entirely realistic, 

and until deep sea tide gauges become available, the resolution of 

this difference of opinion will be difficult.

Some general features that can be seen in Figure 7.8 are as 

follows. As the time step increases the araphidromic region appears
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Figure 7,8. Comparison of results for different time step intervals. 
The corange lines are in feet.
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off the coast of Eire, and associated with this is an increase of 

tidal range in the northeastern part of the sea. The increase in 

tidal range is the opposite of what would be expected from the graph 

of amplitude distortion in Figure III.l, and so may be associated 

with some resonance phenomena. A clockwise rotation of the cophase 

lines occurs with increasing time step, so that the phase near 

Liverpool goes from ^315° to M.0°. The actual changes are somewhat 

academic as a time step of 20.7 min or greater is clearly too large 

if one’s goal is accurate results. However, it is important to note 

that a great saving in computer time can result if a long time step 

is used for the first run on a new area. After three or four cycles 

at, say, a time step of about 1 hour, one can then change to a 

suitably small time step. Kvidence for this can be seen from satis

factory results of the run with time step of 41.40 min (see Figure 

7.8). ,

*. During the first set of tests a feature of importance concerning

the mode of breakdown of the model (due to large time steps) was 

noticed. One of the disadvantages of implicit models is that, in

r the absence of comparisons made during the computations, the user does
f not usually receive any warning (such as instability) as to the fact

s that the long time step he has chosen is producing poor results. The

► feature that was noticed was that there tonds to be a loss of coherency

► between the heights calculated along rows and the heights calculated

j? along columns. This manifests itself in at least two forms: the field
<k-

h
f
*
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of heights tends to assume a ‘bumpy* appearance, and heights on 

the vertical sides of rectangles are not consistent with those on 

the horizontal sides, eg.

71

66

78

72 80 instead of, say, 72 80

74

A breakdown of this nature is readily observable if the height field 

is occasionally printed, and an internal check can readily be 

programmed. An example of a height field containing such values 

(from test 5 at t=0) is shown in Figure 7.9.

The second set of tests, involving test Nos. 2, 6, and 7, was 

run partly to see if the model would tend to become unstable as the 

friction was reduced and partly to see what is the part played by 

friction in the ’tuning’ of the Irish Sea model, which is the usual 

way in which a model is adjusted to coincide with reality. The 

comparison between the results of the three runs is shown in Figure 

7.10. The first observation is, of course, that instability did not 

result from the removal of friction. The second observation is 

that the calculated ranges increase with decrease of friction, as 

one would expect. The power of the method of tuning the model by 

altering the friction values is readily observed.

The third set of tests, involving test Nos. 2 and 8 was run 

as a matter of interest to see what would happen if one only had 

available the tidal constituents for locations along the coastline, 

ie. if there wee no access to corange and cotidal maps. Because
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Figure 7.9. Example of height field showing loss of coherency 

between rows and columns.



Figure 7.10. Comparison of results for different friction values. 
The corange lines are in feet.



the former is the more usual case the results are of practical 

interest. As can be seen in Figure 7.11 the difference between 

the corange lines in either case is small; significant changes 

only occuring between the two sets of cotidal lines. The latter 

difference is mostly the result of the phase of the tide used in 

the northern entrance.

As a conclusion to the series of tests which were based on 

the application of the model to the Irish Sea, it is felt that 

the following points have been established:

1) The model is unconditionally stable with or 

without friction

2) A rough criterion for reasonably accurate results

3) A running check as to the deterioration of the

computations /may be accomplished via an inspection 

of the height field



Figure 7,11. Comparison of results for different boundary conditions.
On the left using values obtained from corange and cophase 
charts; on the right using values from linear interpolation 
between coastal stations. The corange lines are in feet.



CHAPTER VIII

APPLICATION OF THE MODEL TO A RECTANGULAR NORTH SEA

Test Description

The second test of consequence was one chosen to show the 

differences that result in the solution when identical regions 

are schematized using grids of equal or unequal spacing. It was 

decided that the region should be simple in shape, yet should 

possess suitably complicated tidal characteristics. Preferably 

the situation should also correspond to one for which a numerical 

solution had already been achieved (since there appear to be no 

two-dimensional analytical solutions that include realistic 

square-law friction).

The most suitable example found was that of a ’rectangular*

North Sea of constant depth 50 m, with one open boundary along its/
northern side. Brettschneider (1967b) applied the numerical method 

of Hansen (1961) to this schematization taking the dimensions of 

the idealized sea to be 555 x 758,5 km. The results of his 

calculations (see Figure 8.1) show two distinct amphidromic regions, 

in good accordance with reality.

In this test identical friction and coriolis parameters were 

used, and M2 tide data for 6 points along the open boundary were 

adapted from Table II.2 of Brettschneider (1967a). The distributions 

of amplitude and phase with distance are shown in Figure 8.2. It

97



93

Figure 8.1. M2 coamplitude lines (in cm) and cophase lines from 
Brettschneider (1967a) for a 'rectangular' North Sea.
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will be seen that there is some disagreement between Figures 8.1 and 

8.2 as to the amplitudes along the northern boundary of the model, 

and unfortunately it did not prove possible to resolve this problem 

from the limited descriptions available in Brettschneider1s two 

articles.

On account of the numerical scheme of Hansen, it was not 

possible to match the dimensions of Brettschneider's North Sea 

using a grid of constant spacing. This is because Hansen's method 

is bounded in this application by height points in the north and 

current points in the south, but by current points in the east and 

west of the model. The first of the two grids used was composed 

of squares of side (Ax) * (Ay) = 95 kn. The best fit resulted thus 

in 6 x 8 squares and a region of dimension 570 x 760 km. It is felt 

that the differences in width and length between the original and 

test grid (2.7% and 0.2% respectively) will cause only minor 

differences between the results. /
The second grid, with the same overall dimensions, was limited 

to 10 x 10 rectangles, the grid lines being positioned so as to obtain 

a greater density of computation points in the two amphidromic regions. 

The grid-spacings varied between 40 and 125 km. The two grid schemes 

used are shown side-by-side in Figure 8.3. Input data for the 10 

input points along the northern side of the sea were interpolated from 

the curves shown in Figure 8.2.

In order to conserve computer time a time step of 20.7 minutes 

(36 intervals per 12.42 - hour tidal period) was used in both tests.



Figure 8.3* The two grids used in the tests on the North Sea.
Ho
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This was sufficiently small so that the quantity i:/~gh was always 

less than the minimum grid interval. It was found that the model 

required some 6 cycles before it converged to a periodic solution, 

although small changes were still observable after 8 cycles. An 

example of the process of convergence (starting from a field of zero 

current and zero tide height) is shown in Figure 8.4 for the unequal 

grid-spacing test, the heights being taken from the V-point lying on 

the southern (solid) boundary of the bottom-left rectangle.

The results of the constant and unequal grid spacing tests 

(amplitude and phase of the first harmonic) are shown in Figure 8.5.

It is apparent that the results are both in reasonable agreement with 

those of Brettschneider (Figure 8.1.). The main difference is in the 

position of the corange lines along the open northern boundary. This 

has been commented on earlier. The slight differences between the 

boundary conditions do not seem to have influenced values within the 

model to any great extent. Of greater consequence are the differences 

between the two tests themselves. It is seen that the chief difference 

lies in the position of the 40 cm amplitude curves, however, the 

greatest amplitude on a line between the amphidromes in each case is 

about 46 cm, so the difference is felt to be of no serious consequence.

Thus it appears that, in this test of the model, the effect of 

changing the grid-spacing makes very little difference between the 

solutions. It is realized that this one test can scarcely be considered 

as a conclusive test, however it is definitely encouraging. The best 

test for the model would be to repeat the above type of test using 

hydrographic data for a well-surveyed estuary for which concurrent
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tide-gauge and current-meter data are available. Although an inves

tigation of this magnitude could probably be undertaken with the 

cooperation of a suitable governmental agency, it is felt that such 

an undertaking should be deferred until such a time as the model is 

tested and improved to the point that less sophisticated tests can no 

longer be tolerated. It was felt that the most practical test of the 

model at this stage of the development should be the application of 

the model to a situation which made it obligatory to use the unequal 

grid-spacing feature. The model would then be 'tuned' via the 

fricjioli coefficient until some tidal constituent in the region of the 

model most distant from the open boundary agreed fairly well with 

reality, and then the remaining calculated values would be compared 

with those predicted from measurements.



CHAPTER IX

APPLICATION OF THE'MODEL TO COOK INLET, ALASKA 

Introduction

The results of the first two series of tests demonstrated that 

the model is capable of producing accurate results which are not 

affected by the unequal grid-spacing. It was felt that the third 

and last of the series of tests should be one in which the model was 

applied to- a complex area. During the tests the Ch£zy friction 

factor (considered constant over the whole inlet) would be adjusted 

until the amplitude at a point well within the inlet agreed fairly 

closely with the known value; then amplitudes and phases would be 

compared with the remaining known values obtained from Coast and 

Geodetic Survey measurements, and the behavior of the new model thus

demonstrated. The area chosen, on account of the author’s previous
/

interest in the area and on account of the need for a predictive 

capability, is Cook Inlet, Alaska.

Description of the problem

Cook Inlet is located with its entrance on the coast of south- 

central Alaska, and is centered approximately on latitude 60°N and 

longitude 152°W. The inlet (see Figure 9.1) is some 190 nm in length 

and has a maximum width (at its entrance) of 48 nm. The tides of the 

region are complicated. The range of the tide at Anchorage, some 25
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Figure 9.1. Bathymetry of Cook Inlet, Alaska.
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feet, is amongst the world's highest, and currents of over 6 knots can 

occur between the East and West Forelands, The tides are predominantly 

semi-diurnal, and between the entrance and Anchorage the tide compo

nent increases its amplitude by a factor of two and undergoes a change 

in phase of 140° (ie the time of the M2 tide maximum differs by nearly 

5 hours).

The greatest depth within the inlet, approximately 75 fathoms, 

occurs between the East and West Forelands, where the maximum currents 

appear to exist. Unfortunately this is also the location of a constric

tion where"'the inlet locally narrows to 9 nm. In order to schematize 

the inlet adequately in this region, it is felt that a grid-spacing of 

about 1,5 nm should be used. A brief inspection of Figure 9,1 indicates 

that a rectangular region of some 60 x 200 nm is necessary to contain 

Cook Inlet for the purpose of modelling. This in turn requires (at a 

constant grid-spacing of 1.5 nm) some 40 x 130 grid-intervals, or, in

terms of core storage, some (8 x 40 x 130) - 40,000 words for the storage
/

of arrays alone (the quantity 8 provides for arrays of heights and 

current components at two time levels, and arrays for depths and Chezy 

friction factors). The value 40,000 exceeds by about 20% the total 

available memory of a 128K - 8 bit computer memory (which must contain, 

in addition to the arrays, the supervisor and the program). On account 

of this, the first investigation of Cook Inlet (Matthews and Mungall, 

1972) had to be restricted to that part of the inlet north of Homer.

The first investigation was aimed at obtaining the approximate 

distribution of the range and phase of the tide representing mean-range 

conditions. The results agreed well with values obtained from the Coast
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and Geodetic Survey, however it appeared that the model predicted 

maximum currents (4.2 knots) that were somewhat less than those 

reported. This was probably due mainly to the inadequate grid 

resolution between the Forelands, and partly to the lack of convec

tive acceleration terms (the absence of which tend to smooth out 

spacial variations in the currents).

The application of the model to Cook Inlet

It is in the problem of Cook Inlet that the model first displays 

its unique advantage of making the best possible use of the available 

core storage. The grid scheme was selected so as to achieve adequate . 

resolution in the region of the Forelands and in Upper Cook Inlet.

The orientation of the grid (see Figure 9.2) was selected as a compro

mise between the following: the grid lines should be essentially 

parallel to the main axis of the inlet, and the grid should be such

that the part of the inlet lying to the south of Homer could be
/

•partitioned off* into a region schematized by large grid rectangles.

The grid scheme ultimately consisted of 26 x 44 grid intervals, which 

requires an approximate core storage allocation of (8 x 26 x 44) » 9000 

words. This is only 22% of the former requirement, and meant that there 

was sufficient room in the computer core for the supervisor, program, 

and arrays. Furthermore, a comparable savings in computer time would 

also result. With the smallest grid interval being 3 km (along with 

a depth of 140 m) the guide for selecting the time step came to 80 

seconds.
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Figure 9.2. Schematization of Cook Inlet, Alaska.
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It was decided that the test should be run with the objective of 

calculating the tide distribution as this is the most important 

of the tidal constituents in the inlet. A summary of the available 

M2 constants (obtained through the courtesy of the Coast and Geodetic 

Survey) is shown in Table 9.1 and in Figure 9.3. The epochs have been 

adjusted to 150°N for purposes of comparison. (The formula, * 

Kjocai + 2 (west longitude - 150), where K is the phase lag, adapted 

from Schureman (1958, p. 77), was used.) Some difficulty was 

experienced in estimating the boundary conditions across the entrance 

owing to-the awkward locations of the tide stations, however finally 

the phase was considered to be a constant 22°, while the amplitude 

increased linearly from 1.58 to 2.02 meters in the direction Shaw 

Island to Port Graham. The period of the input was that of the 

tide, 12.42 hours.

An initial test was run on the University of Alaska's IBM 360/40 

using a time step of 12.42 minutes, som^ 9 times larger than the value 

suggested. As was suspected the model behaved poorly, as evidenced 

by loss of coherency between heights along rows and columns. The pre

dicted amplitudes in the Anchorage area were too low by about 1.25 m.

As each computational cycle required some 40 minutes of computer time, 

it was decided that future tests with a more suitable time step would 

have to be carried out elsewhere.

On being fortunate enough to receive permission to make use of 

the computing facilities of the National Center for Atmospheric 

Research, the tests were recommenced using a time step of approximately 

112 seconds (400 intervals per period of 12.42 hours), this value being



Place North Lat,• i West Long.
® t K... 0 pAL©

k150»
,  . . p..-. Amplitude

ft.
Amplitude

m

Anchorage 61 14 149 54 165.3 -0.20 165.1 11.07 3.37
Fire Island 61 10.4 150 12.2 157.9 +0.40 158.3 10.79 3.29
Shell Platform A 60 47.8 151 29.8 105.6 +3.00 108.6 7.51 2.29

Drift River 60 33.5 152 08.4 70.9 +4.26 75.2 7.38 2.25
Snug Harbor 60 06.2 152 34.0 50.6 +5.14 55.7 6.15 1.87

Nikiski 60 41.2 151 23.8 88.4 +2.80 91.2 7.82 2.38
Chinulne Point 60 30.7 151 17.5 76.9 +2.58 79.5 8.23 2.51
Homer 59 36 151 25 23.8 +2.84 26.6 7.50 2.29
Seldovia 59 26.4 n 151 43 20.8 +3.44 24.2 7.24 2.21
Port Graham 59 21 151 50 18.2 +3.66 21.9 6.76 2.06
Port Chatham 59 12.6 151 43.7 9.4 +3.46 12.9 5.61 1.71

Iliamna Bay 59 37 153 34 23.1 +7.12 30.2 5.70 1.74
Nordyke Island 59 10.7 154 05.2 19.1 +8.18 27.3 5.91 1.80
Shaw Island 59 00.1 153 22.8 19.0 +6.76 25.8 5.43 1.66

Table 9.1. M2 components for Cook Inlet, Alaska.
See text for explanation and 

acknowledgements.
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Figure 9.3. M2 constituents for Cook Inlet, Alaska.
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sufficiently close to the guide value of 80 seconds. The computer 

time required per tidal cycle (on a CDC 7600) was about 40 seconds, 

which is to be compared with 140 minutes on the IBM 360/40, a 

decrease in computer time of a factor of 230.

The MASTER subprogram was slightly modified during these tests so 

as to put only 40 of the 400 fields of H , U , and V onto tape during 

the last tidal cycle. This was nuite sufficient for the harmonic

analysis program that followed. Three computer runs were made, using
* 1/2 *1 Chezy values of 80, 70, and 75 m sec , with the object of

adjusting the amplitude of the tide predicted for Anchorage to that

given by the Coast and Geodetic Survey (337 cm). The values obtained

were, respectively, 350 cm, and 314 cm and 341 cm. Because the third

value agreed within 4 cm it was not considered nccessary to continue

the tests. It is of interest to note that the phases at Anchorage

in the three tests weire, respectively, 171°, 170°, and 173°, so that

changes in the Chezy value caused, in this inlet, little change in

phase. The value given by the Coast and Geodetic Survey is 165°.

The distribution of the M^ amplitudes and phases that are asso-
I/"7 -1ciated with the Chezy value of 75 m sec is shown in Figure 9.4, 

and a comparison between these values and Coast and Geodetic Survey 

values may be seen in Table 9.2. It will be seen that the orientation 

of the lines is essentially similar to that obtained by Matthews and 

Mungall (1972) and again shows the Kelvin-wave nature of the tide in 

Lower Cook Inlet. From Table 9.2 one sees that the differences.between 

predicted and observed values are in most areas small; all but one of
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Figure 9.4. Computed M2 coamplitude lines (in cm) and cophase 
lines for Cook Inlet, Alaska.



M2 Amplitude M2 Phase
tide

Constant Predicted
^redictecl-
Observed

Tide 
\ Constant Predicted

Predicted-
Observed

Anchorage 337 341 +4 165 173 +8
Fire Island 329 317 -12 158 168 +10
Shell Platform A 229 214 -15 109 116 +7

Drift River 225 196 -29 75 77 +2
Snug Harbor 187 194 ♦7 56 54 -2

Nikiski 238 229 -9 91 89 -2
Chinulne Point 251 242 -9 79 77 -2
Homer 229 v 238 +9 27 27 0
Seldovia 221 232 +11 24 27 +3
Port Graham 206 214 +8 22 24 +2
Port Chatham - -

Iliamna Bay 174 178 +4 30 30 0
Nordyke Island 180 180 0 27 31 +4
Shaw Island 166 165 -1 26 27 +1

Table 9.2 Comparison between test results and observed values supplied by the 
United States Coast and Geodctic Survey.



the amplitude differences are less than 16 cm (5% of the greatest
r

amplitude in the inlet). The one predicted amplitude that appears to 

be seriously in error is that of 196 cm (at Drift River) versus an 

observed value of 225 cm. This difference, 29 cm, is about 8% of the 

maximum M2 amplitude occurring within the inlet. The region in which 

Drift River is located is somewhat complex, and the error may be due 

to inadequacy of the schematization. The greatest difference between 

computed and predicted phases is 10 degrees. Equivalent values for 

the earlier Cook Inlet model (Matthews and Mungall, 1972) are a 

maximum height difference of 8% and a maximum phase difference of 13°.

It is felt that the agreement with the observed Coast and Geodetic 

Survey values is excellent considering the fact that no attempt was 

made to vary the Chezy values locally, the normal recourse of the 

modeller when adjustments have to be made. On this account the 

third series of tests indicate that the unequal grid-spacing method 

is capable of yielding good results under adverse conditions —  when 

no other available method could have conveniently done the job.



CHAPTER X 

ADDITIONAL RESULTS OF INTEREST

Introduction

The main purpose of this investigation has been the development 

and testing of a two-dimensional tidal model with unequal grid-spacing, 

the successful or unsuccessful nature of the tests being determined via 

consideration of the corange and cophase diagrams that resulted from a 

harmonic analysis of the tide heights. As mentioned in Chapter VI the 

programs were set up so that both height and currents would be analyzed, 

so that in effect a considerable amount of information on the tidal 

behavior of the areas investigated remains as yet undisclosed. As a 

result of the visit made to the National Center for Atmospheric Research, 

35 mm films were produced of perspective views of the sea surface, and

of the current vector and tide height contours, both for every half/
(lunar) minute throughout a tidal cycle of 12.42 hours. This was done 

both for the Irish Sea and for Cook Inlet, as these areas had been 

realistically schematized. Representative frames are shown for both 

areas, the time interval between them being one lunar hour. The frames 

have been rephotographed side-by-side in order to indicate the tidal 

situation in the clearest fashion possible.

Brief description of the film-making process

Before commencing to describe the film-making process it is 

necessary to point out that it is essential to have the use of a

118
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well maintained optical ountut device and 35-mm camera system; otherwise 

registration and jitter problems may produce very noor films. Centers 

that have the necessary output equipment are thus often not capable of 

producting high-quality films. A further consideration is that large 

amounts of computer time are necessary; the film of Cook Inlet (with a 

final running time of some 5 minutes) required on a CDC 7600 some 50 

minutes (on an IBfl 360/40 the equivalent time would be of the order 

of 190 hours). As mentioned later a reduction in time of a factor of 

5 could have been achieved at the cost of increased photographic work 

and with a poorer image.

It was decided that the final film should consist of two cycles 

of perspective views (in monochrome) and three cycles of current vectors 

and height contours (in two colors). A reasonable duration of each 

cycle was considered to be 60 seconds (ie. 1440 frames at a speed of 24 

frames/sec). The 2-color section of the film was such that the current 

vectors were blue, while the remainder (height contours, title, clock, 

etc.) were in yellow. Each complete frame of the final color film re

quired 2 consecutive BftW 35-mm frames: the first frame contained the 

future blue lines, the second the future yellow lines. Thus the sequence 

on the computer is to select a starting time, to compute the height and 

currents for each grid point using the Fourier components, to compute 

the locations of the current vectors, and finally to photograph the 

cathode-ray tube and advance the film. In the next frame the outline 

of the inlet is drawn, descriptions are written, scales added, a



clock face is drawn to indicate the time, contours of height are drawn, 

contours are numbered, and the whole is photographed. The frame is 

then advanced, a new time selected, and the process is repeated through

out the tidal cycle (of 12 lunar hours). As 1440 intervals were 

required per cycle, the time interval in real time is 0.5 lunar minutes, 

and 2x1440 (ie. 2880) frames are required per cycle.

One has the option of making one cycle of film on the computer, 

and duplicating it twice to provide the 3 cycles, or to repeat the 

process twice over on the computer. On a very fast machine such as 

the CDG^600, the recommendation of NCAR was to use the latter option 

(thus a total of 8640 frames were generated). It is considered good 

practice to provide a leading and trailing strip of film, and so an 

extra 50 blank frames were run off at each end.

The production of the 16-mm color film requires, among other things, 

the presence of a specialist and professional equipment. The first stage 

is to produce a 35-mm color film from the Bf,W original. The machine 

(in the case of a 2-color film) is set to advance the Bf,W film 2 frames 

at a time, while at the same time the color film advances by one frame. 

Thus the above film was produced by first using a blue filter and 

setting the first frame of the Bf,W film opposite the first frame of 

the color film. The machine was then set in motion with the mechanism 

advancing the frames as above. When this was completed, both films 

were rewound, a yellow filter was inserted, the second frame of the Bf,W 

film was set opposite the first frame of the previously exposed color 

film, and the process was again repeated. The net result was a



superimposed set of blue and yellow pictures. Finally the 35-mm color 

film was reduced to 16-mm size.

A simpler process was used to produce 2 cycles of monochromatic 

perspective views, each cycle consisting of 1440 frames of both B§W 

35-mm film and final 16-mm film (yellow being used for clarity).

Titles, acknowledgements, etc. were run off in Bf,W on the computer, 

this requiring about 15 seconds worth of film per sequence. Once the 

perspective program had been suitably modified (the 'Hidden Line' pro

gram was written by Tom Wright of NCAR), and the vector and contour 

programs "written, the most time consuming task was the devising of a 

scheme to allocate contour numbers and to ensure that they moved in 

a smooth fashion. Unfortunately this was not too successfully carried 

out in the Cook Inlet film (owing to the awkward shape of the inlet 

and the variable grid-spacing) but was no problem in the Irish Sea film.

Features of the M2 tide of the Irish Sea
n - -  ■ -  - - . - . . .......... .......... _  -  . .  — . - - -  .  -  /

The most important features are assembled together in the corange 

and cophase diagram that was calculated in test 2 of Chapter VII (with 

k = 0.0020). This is shown again in larger size in Figure 10.1.

Another diagram of interest is Figure 10.2, which shows the distribu

tion of current amplitude. Perhaps a better way in which to gain 

familiarity with the M, tide is to look at some of the frames from 

the film described earlier in this chapter. Frames have been selected 

at intervals of one lunar hour, and the perspective views are 

presented side-by-side with the current vector/tide height views (see
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Figure 10.2. Computed M2 coamplitude lines (in cm/sec) for the 
currents of the Irish Sea.
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Figure 10.3b. M2 tide of the Irish Sea
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Figure 10.3c. M2 tide of the Irish Sea.
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Figure 10.3e.
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Figure 10.3f. M2 tide of the Irish Sea.
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Figure 10.3h. tide of the Irish Sea
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Figure 10.3J. M2 tide of the Irish Sea.
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Figure 10.3k. M2 tide of the Irish Sea.
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Figures 10.3 a,b, ..., 1). The hands of the clock'indicate the time 

in lunar hours after the occurence of the maximum tide at Liverpool. 

It is necessary to point out that during the computation of the per

spective views, for reasons of clarity, the borders of the sea were 

•straightened’, the Isle of Man has been 'removed1, and the northern 

entrance has been ’closed*. The observer is situated to the south

west of the southern entrance to the Irish Sea.

Among other things, the following features are evident (certain 

numerical values being used from the computer printout, and all times 

being ii* lunar hours):

There is a degenerate amphidromic point some 80 km north of the 

southern entrance in the region of Arklow. The amplitudes on the 

Irish and Welsh shore are respectively 30 cm and 160 cm.

High water at Liverpool (318 cm) occurs 4 hours after high water in 

the center of the southern entrance (10p cm), and 15 minutes before 

high water in the center of the northern entrance (166 cm).

For the most part, the maximum inward currents occur some 3 hours 

(+_ 30 minutes) before high water at Liverpool. In the center of the 

southern entrance the maximum inward (northward) current occurs about 

1 hour after local high water, and in the center of the northern 

entrance the maximum inward (southward) current occurs about 3 hours 

40 minutes before local high water.



According to the numerical computations, at the southern entrance 

maximum inward currents on the eastern side occur some 1 hour 40 

minutes before those on the western side. In a similar fashion, at 

the northern entrance maximum inward currents on the western side 

occur about 1 hour before those on the eastern side.

Maximum currents are generally of the order of 100 cm/sec, with the 

highest currents occurring off the coast of northwest Wales (139 cm/sec) 

and north of the Isle of Man (131 cm/sec). An extensive region of 

currents .of small amplitude exists to the west of the Isle of Man.

On an east-west line passing approximately through the amphidromic 

region, high water occurs essentially simultaneously (2 hours 30 minutes 

before high water at Liverpool). Along this line maximum currents occur 

30 minutes before high water.

The sea surface along a line running up the center of the sea, from the 

southern entrance to Liverpool, is essentially horizontal 30 minutes 

after the times of maximum inward and outward currents (at about 2 hours 

30 minutes before, and 3 hours 30 minutes after, high water at Liver

pool). In the former case the surface along the central line is 

approximately 75 cm above mean sea level, and in the latter case it 

is 75 cm below mean sea level.

Explanation of the M2 tide of the Irish Sea

Some of the features of the M2 tide of the Irish Sea are so 

striking that it was thought it would be of interest to attempt an



explanation that would extend slightly beyond that of Proudman 

(1953). Proudman explained the position of the amphidromic region 

as being the consequence of two features: 1) the tendency of the 

tide to behave as if there were two channels from the entrances, 

each following the direction of the maximum inward current vectors 

(ie. passing on either side of the Isle of Man), and 2) the wavelength 

of a standing wave of period 12.42 solar hours in association with a 

mean depth of 60 m. Furthermore Proudman ascertained that friction 

is responsible both for the degeneration of the amphidromic point 

(shifting it from the center of the channel to beyond the coast of 

Eire), and for the difference between the time of high water at 

Arklow and Liverpool of some 3 hours and 30 minutes.

The description that follows is based, as was Proudman's, on 

the solution of the differential equations for the tides in an inlet 

of constant width and /depth, closed at one end. The solution presented

here however contains expressions that depend on the linearized
/

friction term. Inevitably the process loses the incisive clarity of 

Proudman's compact explanation —  however it permits one to see in 

mathematical form the variation of height and current with time and 

distance along the center of the inlet. Furthermore a slight addition 

enables one to estimate the variation of the vertical tide amplitude 

and phase along both shores, thus describing more fully the M2 tide 

of the region.

The approach is to return to the harmonic method described in 

Chapter II, and to consider the case of a single section having at



its right-hand end (at x«*0) a zero flow rate and a specified tide. 

The effect of time-variation of cross-sectional area and hydraulic 

radius is neglected. The final results obtained are the same as 

those of Hunt (1964), although they are expressed in a different 

fashion and different conclusions are drawn.

Putting Q(o)«0 in equations (2.29) and (2.30), we have

where, with the above simplifications ( a now referring to mean 

depth),

H(x) « L H(o) (10. 1)

Q(X) - N H(o), (10. 2)

L “ cosh(kx) (10.3)

N * - sinh(kx) (10.4)

k2 “ - w2bM ♦ i«bR (10.5)

(10*6)

(10.7)

2Using current (u ** Q/ba) instead of Q, and putting K * g/C , we obtain, 

instead of equations (10.6) and (10.7), the following:

(10. 8)

(10.9)

where



Putting k *» 3 ♦ ia in equation (10.5), where o and 0 are new variables 

corresponding to those used by Hunt (and thus should not be confused 

with their earlier use as phases), and using equations (10.5), (10.8) 

and (10.9), we obtain

/ 2 ̂  .2 2yto ♦ f - to
2ga (10. 11)

2 _ to/w2 + f2 + u2 
1 “ 2ga (1 0 . 1 2 )

Remembering that to = 2ir/ (Period), one usually finds that f is of the 

order of to?5 for the »2 tide. This permits a convenient approximation 

to be found for o and 8: 

f
2

a * to
/I*

(10.13)

(10.14)

A considerable amount of manipulation is required before the
/

solution results:

( c
I I

1 1/2 /) > COS "j fah * h \ cos2 (ox) + sinh2(gx) [ cos •( tot + tan“1(tanox tanhBx)

(10.15)

u U j^ s isin2(ax) + sinh2(8x)i
1/2

cos i  fait ♦ — ♦ e

- tan” (tanh&x/tanax) (10.16)

where



and hQ is the amplitude of the tide at the closed end of the inlet.

In equation (10.16) the current u is now the inward (flood) current, 
ie. it is positive in the direction of decreasing x ; this faciiitates 

the discussion that follows.

Having arrived at expressions similar to equations (10,15) and

(10.16), Hunt goes on to make a simplification that is somewhat 

misleading for the purposes of this discussion; this is because Hunt

was aiming his results at a discussion of the tides in the Thames,

where throughout most of its length the current is tt/2 radians out of 

phase with the height. This is not the case with the Irish Sea.

For the Irish Sea, using the following, 

depth a ® 60 m

max average current |u| = 1.0 m sec”*

friction K = 0.0035

period T ■ 12.42 hours

boundary height hQ = 3.0 m

we obtain

0 = 1.005 x 10“4 m’1

a » 5.879 x 10~4 m"1

0 ** 9.7 degrees

A preparatory inspection of equations (10.15) and (10.16), using the 

value (ax) * tr/2 (which takes us near to but not exactly to, the



u m

amphidromic region) results in the following observations: 1) the 

amplitude of the tide near the amphidromic region is non-zero and 

of the order of 85 cm, and 2) although a phase difference of over 

ir/2 exists between the tide height constituent at the closed end and 

the amphidromic region, the corresponding difference in the phase of 

the current constituents is only 10 degrees.

Additional generalizations follow from the formula used by 

Taylor (1919) and Proudman (1953) in the investigation of the transport 

of energy in one tidal cycle through the southern entrance of the 

Irish Sea. The result, for any section, is

E = ~ gpT h u cos (6)dA (10.19)

where <5 is the lag of the maximum inward current (u, normal to the 

section) over maximum' tide height. One can at once see that, in order 

to make up for the energy lost to friction within the inlet, 1) the 

mean amplitude across any section other than the closed end cannot be 

zero, and 2) the angle 6 on any section other than the closed end 

cannot be it/2, 3 it/2, etc.
Before the above solutions for the center of the channel are 

evaluated as a function of distance, the effect of coriolis force on 

the phase and amplitude of the tide height along the shores must be 

considered.

Assume the height and flood current along the inlet to be 

h » h cos («t - ♦) (10.20)
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u * u cos (wt - 110 , (10.21)

where fi, u, $, and $ can be.obtained at once from equations (10.15) 

and (10.16). Considering the change in sea level across the inlet 

that results from coriolis force to be

ih ■ b u , (10.22)
fi

or

Ah-- 2 A u ; (10.23)

where

-1Q *  2ir/24.0 hours

and

k . ajdn(Utltud.) b > (10 24)
s

we have for the tide on the sides of the inlet,

h B ^ cos (cot - 4>) “ A u cos(wt - i|») . (10.25a,b)

The time of maximum or minimum height is found by evaluating dh/dt » 0. 

The result may be expressed as

r left 'i -1 f sin* I A “ sin'*' \In^TTi^r <10-26a,b)

Making comments on the behavior of ut for different situations 

is complicated by the number of variables in equations (10.26a,b), 

and it seems that each case will have to be separately investigated.

The only obvious result is that, given the situation of the possibility 

of an amphidromic region, it will be degenerate (no point of zero



tide amplitude across the inlet) if £ > Au . Finally one can 

substitute the value of (wt) associated with the maximum back into 

equations (10.25a,b) to obtain the distribution of the tide height 

constituents with length.

Assuming a width of 100 km and a latitude of 53.5°N one obtains 

the constituent distribution with distance (0 km at Liverpool, ^300 ka 

near the southern entrance) for the left-hand side (Eire), the center, 

and the right hand side of the Irish Sea (see Table 10,1). In addition 

to previously described features one should note how well this simple 

approach provides the main features of the two-dimensional results.

This applies particularly to the low amplitudes on the left, and the 

considerable differences between the phases across the channel: those 

on the left are within 30° until the amphidromic region is approached, 

and those on the right change in a more linear fashion. The 

cosinusoidal rate of change along the center is roughly a mean between 

the values along the shore.

A final simple evaluation that can be made is to compute the 

energy E transported through the entrances. Using equation (10,19) 

and being careful to use the inward normal currents, and taking the 

section width as 13.89 km and the density p as 1.026, one arrives at 

the values shown in Tables 10.2 and 10.3. Thus over a complete tidal
3cycle, considering the tide, 346.3x10 Megawatt-hours are trans-

3mitted into the Irish Sea from the south, and 79.2x10 Megawatt-hours 

are transmitted out of the Irish Sea through the northern entrance.

Thus the difference, divided by 12.42, represents the mean rate at 

which energy is absorbed by friction over a tidal cycle. This quantity



X A

H1
A

hc
A

hr *1 *c rT
A

U *

km cm cm cm degrees degrees \ degrees cm/sec degrees

0 318 318 318 318.0 318.0 318.0 0 228.0
25 315 315 315 319.8 317.8 315.8 19 227,9

50 305 305 306 ,321.2 317.1 313.0 37 227.7

75 290 289 291 322.4 316.0 309.6 54 227.4

100 268 267 272 323.2 314.2 305.3 70 226.8

125 241 239 249 323.7 311.5 299.8 85 226.2

150 208 208 223 323.9 307.7 292.6 98 225.3

175 172 173 198 323.6 301.9 283.1 109 224.3

200 131 138 176 322.6 292.5 270.5 118 223.3

225 89 107 161 320.1 276.7 254.5 124 221.5

250 44 87 158 311.8 250.4 236.1 128 219.7

275 13 90 167 222.8 218.3 218.0 130 217.6

300 51 115 188 162.3 194.3 202.6 128 215.0

Table 10.1 Variation of constituents with distance from Liverpool.



Section 1 2 3 4 5 6 units
A
h 98 99 - 99 102 109 117 cm
Au 104 88 88 105 107 120 cm/sec

<i> 181 190 198 202 206 210 degrees

*n 241 242 238 216 201 182 degrees

6«sUi -d>n T 60 52 40 14 -5 -28 degrees

a 49 83 95 95 80 60 m

E/12.42 1.74 3.11 4.43 6.90 6.50 5.20 1000 Megawatts

Table 1Qv2. Distribution of various quantities along line of grid 
- ' rectangles at southern entrance.

Section 1 2 3 units
A

h 157 , 166 178 cm
A
U 96 65 49 cm/sec

<J> 323 326 329 degrees

*n 18 34 51 degrees

*s 198 214 231 degrees

5=l(; mi 
3 Y

-125 -112 -98 degrees

a 33 121 114 m

E/12.42 -1.99 -3.42 -0.97 1000 Megawatts

Table 10.3. Distribution of various quantities along line of rectangles 
at northern entrance.



conies to 21.5x10 Megawatts and is only one third of that predicted 

by Taylor (1919), although Taylor's value was for a spring tide.

To summarize the previous pieces of information, it is clear 

that most of the features of the Irish Sea can be explained by 

applying the effects of friction and coriolis force to the one

dimensional case of an inlet of constant width and depth. This can 

only be done after it has been ascertained that the tide behaves as a 

pair of channels divided by the Isle of Man. The tide in the 

southern channcl behaves mostly as a wave, which, near the entrance 

has some' features of a progressive wave travelling up the inlet, and 

near Liverpool behaves as a standing wave. It is not theoretically 

correct to regard the northern channel as one that terminates in a 

closed end, since it transmits energy out of the sea. If this trans

mission of energy is arbitrarily set to zero, then conditions in the 

northern channel are those of a pure standing wave.

Features of the M2 tide of Cook Inlet, Alaska

The essential features of the M2 tide of Cook Inlet were shown in 

the amplitude and cophase diagrams (Figure 9.4). Figures 10.4a and 

10.4b contain additional information of interest, the former showing 

the distribution of the M2 current amplitudes and the latter showing 

the lead of the maximum inward currents in lunar hours over the time 

of high tide at Anchorage. Hourly views of the sea surface and 

associated tide height contours and current vectors are shown in 

Figure 10.5a-l. Owing to the complexity of the region it is difficult

3
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Figure 10.4a. Computed M2 coamplitude lines (in cm/sec) for the 
currents of Cook Inlet, Alaska.
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Figure 10.4b. Computed lead in lunar hours of the maximum inward 
M2 current over the time of high water at Anchorage 
for Cook Inlet, Alaska.



Figure 10.5a. M^ tide of Cook Inlet , Alas lea



Figure 10.5b. tide of Cook Inlet, Alaska



Figure 10.5c. M2 tide of Cook Inlet, Alaska.



Figure 10.5d. tide of Cook Inlet, Alaska.





Figure 10.5f. tide of Cook Inlet, Alaska



Figure 10.5g. M2 tide of Cook Inlet, Alaska.
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Figure 10.5h. M2 tide of Cook Inlet, Alaska.



Figure 10.51. M2 tide of Cook Inlet, Alaska.
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Figure 10.51. M2 tide of Cook Inlet, Alaska



Figure 10.5j. M2 tide of Cook Inlet, Alaska



Figure 10.5k. M2 tide of Cook Islet, Alaska



Figure 10.51. tide of Cook Inlet, Alaska
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to make generalizations, however the following observations (all 

times in lunar hours) may be of interest.

The behavior of the tide in the lower part of Cook Inlet resembles 

that of a progressive Kelvin wave. There is no sign of amphidromicity 

on account of the large amplitudes along the center of the inlet. The 

approximate amplitudes across the entrance rise from 160 cm on the 

left to 200 cm on the right, while the corresponding values at Drift 

River and Chinulne Point are 200 cm and 240 cm respectively. Most of 

the amplification in the tidal range up the inlet takes place to the 

north of the Forelands.

High water at Anchorage (341 cm) occurs 5 hours after high water at 

the entrance (178 cm). High water between the Forelands (200 cm) 

occurs 2 hours 40 minutes after high water at the entrance, and thus 

2 hours 20 minutes before high water at Anchorage.

The amplitude of the M2 current varies widely throughout the region, 

making generalizations difficult. In the wide part of Cook Inlet near 

the entrance currents are' of the order of 50 cm/sec. As the inlet 

narrows, currents fall essentially between 1 0 0 cm/sec and 2 0 0 cm/sec, 

with the region near the Forelands having currents between 200 cm/sec 

and 335 cm/sec. A second area of high currents is at the entrance 

to TUrnagain Arm, where the predicted currents reach a maximum of 

365 cm/sec. This value cannot be regarded as being particularly 

accurate on account of the coarse grid-spacing in this region.



In lower Cook Inlet, for the most part, maximum inward currents occur 

about 1 1/2 hours before local high water. In upper Cook Inlet they 

occur between 1 1/2 hours and 3 hours before local high water.

Relative to high water at Anchorage, the lead of the maximum inward 

currents are: 6 1/2 hours at the entrance, 3 hours 40 minutes between 

the Forelands, and 3 hours at Anchorage. There is much variability 

in the times of maximum current as can be seen in Figure 10.4b.



CHAPTER XI

CONCLUSIONS

The results of the three series of tests described in Chapters 

VII, VIII, and IX indicate that the proposed implicit tidal model 

with unequal grid-spacing is capable of producing good results 

providing that the grid-spacing and time step are suitably selected. 

The results of Chapters VIII and IX show that the technique behaves 

well when used in the unequal grid-spacing mode.

It is felt that as far as the proposed method is concerned, 

there are three items that need attention: a mathematical analysis 

to investigate the error wave behavior of the model, the inclusion 

of convective acceleration terms, and an extension of the model to 

enable it to handle flooding boundaries. On the question of 

extending the investigation of the tid^s in the Irish Sea and in 

Cook Inlet, the most suitable course would seem to be that of running 

the models for neap and spring tide conditions. This would provide 

limiting values for such quantities as tide heights and currents, the 

latter enabling one to construct tidal stream charts of practical use.
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APPENDIX I

THE HARMONIC METHOD: CALCULATION OF L, M, N, AND 0

In the interest of clarity, the method by which L, M, N, and 0 

are calculated will be described, and an example given for section 9 

(see Figure II.1 for location). It will be seen that the method may 

easily be set up for hand or computer calculation (Mazure, 1937).

For hand computation, scale factors are necessary if the numbers 

are to be kept to reasonable values. Experience has shown that the 

following are suitable.

QUANTITY UNITS

depth 1 m

hydraulic, radius 1 m

section length 1 0 0 0 0 ra

width 1 0 0 0 m

Chezy coefficient 1 0 0 m1 / 2  sec” 1

g 1 m sec

time 1 0 0 0 0 sec

flow rate amplitude 1 0 0 0 sec” 1

tide amplitude 1 m

Table 1,1. Scale factors for the Harmonic Method
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In general, the calculations should be made to 5 or more decimal places. 

If the calculations are performed by hand-calculator, the only difficulty 

encountered is the calculation of the quantity kit . The procedure for 

this is as follows. First one computes R£ , M£ , and bfc , where R , M

and b are as before, and I is the section length (replacing x).

Then from equation (2.26)

k212 » (-u2bM + iwbR)Jt2 (1.1)

or

k V  « - w2(M£) (bit) ♦ iw(Rt) (bt) . (1.2)

Putting kJ, * P ♦ iQ, (1.3)

we have

k2*,2 - P2 - Q2 + i2PQ (1.4)

so that

p2 - q2 = . to2 (MJt) (bi) (1.5)

and '

2PQ « u (Rfc) (b*) . (1.6)

From equation (1.6),

p - . (i.7)

Substituting equation (1.7) into equation (1.5) and rearranging,

Q4 - w2(MH) (bfc) Q2 - . o . (1 .8)
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Solving equation (I.8) for Q ,2

2Q2 - w2(Mi) (bi) ♦ J w4(Mi)2 (b£)2 ♦ u2(R£)2(bi)2 , (1.9)

where the positive square root is to be taken. From equation (1.9)

Q *  + J  a2CMfc)(bft) ♦ y<u4(M&)2(b&)2 ♦ M2(Rfc)2(b&)2  ̂ (I#10)

and to repeat

P «  -(bA) . (1.11)

kt can be positive or negative, however, L , M , N , and 0 remain 

the same in either case. Thus, for convenience, the positive sign should 

be adopted in equation (I.10).

When L , M , N , and 0 have been calculated, the following 

should be verified:

(LO - MN) ■ 1 + iO . (1.12)

In the example that follows, the M2 tide is considered (w, before
-4scaling, equals 1.405x10 ). Note that all values are scaled.

SECTION 9

(1) Depth below mwl am 35.4

(2) Mean flow width bs 27.4

(3) (1) (2) A0
969.96

(4) Mean hydraulic radius arm 35.4

(5) Mean surface width b 27.4

(6) Section length t 1.5



m

(7) Chezy coefficient c„ 0.69

/’“"N 00 Mean flow rate amplitude A 1327.0

(9) Mean tide amplitude fim 2.41

(10) 1 ♦ 3(9)2/(l)2 No 1.013904

(11) 1 + (9)2/2(1)2 *o 1.002317

(12) (7) 2 C3) 2 (4) (C2A2a ) r m 15856540.0

(13) .85(6)(8)(10)/(12) RA .0001082

(14) (6)(11)/9.81 (3) Mi. .0001580

(15) (5) (6) bJI 41.10

(16) i 1.405 (15) iubJl i 57.745489

(17) 1/(16) 1/iubJl -i .017317

(18) 1.405(13)(15) U .006247

(19) 1.4052(14)(15) V .012819

(20) /(18)2 + (19)2 X .014261

(21) ((19) ♦ (20))/2 Y .013540

(22) 7(21) Q , .116361

(23) (18)/2 (22) P .026844

(24) P + iQ kit .026844 + i

(25) (17) (24) -ik/wb .002015 - i

(26) 1/(25) itub/k 471.183 + i

(27) cosh P 1.000360

(28) sinh P 0.026847

(29) cos Q 0.993238

(30) sin Q 0.116099

(31) (27)(29) + i(28)(30) cosh(kfc) .993595 + i

(32) (28)(29) «■ i(27)(30) sinh(kfc) .026666 + i

.116361

.000465

108.700

.003117

.116141



(31) L .993595 ♦ i .003117

-(25)(32) M -.000108 - i .000222

-(26)(32) N .060048 - i 57.622172

(31) 0 .993595 + i .003117

Check LO-MN=l 1.00002 - i .00002



APPENDIX II

EXAMPLE OF BRANCH-POINT SOLUTION FOR 
THE HARMONIC METHOD

In order to provide an illustration of the procedure necessary 

for dealing with branch-point calculations, an example of the steps 

required for a single iteration is shown in the following pages.

Reference should be made to the latter part of Chapter II. The scheme 

used to refer to each section and its end points is shown in Figure 

II.1. Detailed calculations are shown only for the branch consisting 

of sections 8, 9, 10, and 11. The calculations were performed in double 

precision (16-digit numbers) in order to reveal similarities between 

certain numbers, these often being useful when checking hand calculations. 

Note that, as in Appendix I, all values have been scaled except for the 

final heights and flow rates. The distribution of the tide height 

constituent is shown in Figure V.l along with values obtained from the 

one-dimensional implicit method.
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Figure II.1. Location of sections for Cook Inlat, Alaska.
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SECTION 1

AM
40.8

AM
42.7

AM
36*0

AM
36.4

BM ARM B L
50.0 40.8 50.0 1.66

l=<0.993201+J0.002638)
N = (0.102646-J116.3 505 73)'

SECTION 2

BM ARM B " L
52.0 42.7 54.0 1.30

l=(0.995861+JO.001298)
N=(0.042687-J98.494868)

SECTION 4

BM ARM B L
25.4 36.0 26.0 1.68

L*<0.991917+JO.002553)
N = < 0.052293-J61.2049 54)

SECTION 5

BM ARM B I
15.8 36.4 16.2 1.60

L={0.992734+JO.003237) 
N=(0.039334-J 36.329359)



C QM HM
0 . 6 7  2 4 2 7 . 0  2 . 2 8

M = ( r 0 . 0 0 0 0 4 5 —J O . 0 0 0 1 1 6 1 
0 = ( 0 . 9 9 3 2 0 1 + J O . 0 0 2 6 3 8 )

C QM HM
0 . 6 8  2 3 0 0 . 0  2 . 3 7

M = ( - 0 . 0 0 0 0 2 6 - J O . 0 0 0 0 8 4 )  
G = { 0 . 9 9 5 8 6 1 + J O . 0 0 1 2 9 8 )

C QM HM
0 . 6 9  8 2 6 . 0  2 . 4 4

M = ( - 0 . 0 0 0 0 8 3 - J O . 0 0 0 2 6 3 )  
C N ( 0 . 9 9 1 9 L 7 + J 0 . 0 0 2 5 5  3 )

C QM HM
0 . 7 0  7 6 2 . 0  2 . 5 3

M * ( - 0 . 0 0 0 1 7 7 - J O . 0 0 0 3 9 9 )  
0 = 1 0 . 9 9 2 7 3 4 + J O . 0 0 3 2 3 7 )



SECTION 6

AM
31.5

AM
1 9 . 8

AM 
3  5 . 4

AM
29.6

BM A R M  3  L
1 5 . 5  3 1 . 5  1 7 . 0  2 . 1 0

L = ( 0 . 9 8 4 5 2 3 + J  0 . 0 0 9  2 5 1 )
N = ( 0 . 1 5 4 9 9 9 - J 4 9 . 8 9 9 5 5 6 )

S E C T I O N  7

BM A R M  8  ' L
1 6 . 7  1 9 . 8  1 8 . 2  2 . 0 0

L = ( 0 . 9 7 7 5 7  5 + J  0 . 0 3 1 6 1 2  I  
N = ( 0 . 5 4 0 5 0 9 - J 5 0 . 7 6 0 2 8 7 )

S E C T I O N  9

BM A R M  B L
2 7 . 4  3 5 . 4  2 7 . 4  1 . 5 0

L =  { 0 . 9 9 3 5  9 5 + J  0 . 0 0 3 1 1 7 )
N » < 0 . 0 6 0 0 4 8 - J 5 7 . 6 2 2 1 7 2 )

S E C T I O N  1 0

BM A R M  8  L
3 2 . 4  2 9 . 6  3 2 . 5  1 . 4 5

L = < 0 . 9 9 2 8 1 3 + J O . 0 0 4 1 8 1 )  
N * ( 0 . 0 9 2 3 6 2 - J 6 6 . 0 5 1 9 3 3 )



C QM HM
0 . 6 7  6 8 6 . 0  2 . 6 2

M = C r O . 0 0 0 3 6 7 - J O . 0 0 0 6 1 6 )  
G = ( 0 . 9 8 4 5 2 3 + J O . 0 0 9 2 5 1 )

C QM HM
0 . 6 3  5 9 9 , 0  2 . 5 8

M =  ( - 0 . 0 0 1 2 2  7 - J O . 0 0 0 8 8 0 )  
0 = ( 0 , 9 7 7 5 7 5 + J O . 0 3 1 6 1 2 )

C QM HM
. 6 9  1 3 2 7 .  2 . 4 1

M = { - 0 . 0 0 0 1 0 8 - J O . 0 0 0 2 2 2 )
0 =  ( 0 .  9 9 3 5 9 5 + J 0 „  0 0 3  U 7 )

C QM HM
. 6 7  1 2 3 0 .  2 . 4 5

M = ( - 0 . 0 0 0 1 2 6 —J O . 0 0 0 2 1 7 1 
0  =  ( 0 . 9 9 2 8 1 3  + J O . 0 0 4 1 8 1 )



SECTION II

AM
26.1

AM
25.0

AM
33.0

AM
29.5

BM ARM B L
32.0 26.1 32.5 1.7

L={0.988645+JO.008090)
N={0.209645-J77.332304)

SECTION 12

BM ARM 8 "* L
25.8 25.0 26.1 2.3

L = (0.978374+J0.018802)
N=(0.530127-J83.733918)

SECTION 14

BM ARM "B L
17.8 33.0 18.1 2.00

L=!0.987562+J0.011903)
N=(0.20213l-J50.650115)

SECTION 15

BM ARM B L
25.0 29.5 27.1 1.70

L={0.989275+J0.008508)
N=<0.183842-J64.496873)



\
C QM HM
.66 1118. 2.48

M = { -*0.000208- JO. 000292) 
0=(0.988645+JO.008090)

C QM HM
.65 980.0 2.5

M=(-0.000443-JO.000512) 
Q=(0.978374+JO.018802)

C QM HM
0.68 1429.0 2.60

M={-0.000466-J0.000489) 
0=(0.987562+JO.011903)

C QM HM
0.67 1281.0 2.78

M=I—0.000262-JO.00033I) 
0=(0.989275+JO.008508)

M
I



SECTION 16

A M
24.6

AM
21.7

AM
21.9

AM
13.8

BM AKM B L
27.1 24.6 27.9 1.60

L=(0.989139+J0.010596)
N=(0.221841-J62.492109)

SECTION 1 7

3M ARM B L
26.1 2 1 . 7  27.4 1 . 8 0

L = ( 0 . 9 8 4 0 4 O + J O . 0 1 8 0 6 8 )
N= ( 0 . 4 1 8 2 3 3 - J  6  8 . 9 2 6 0 5 5 )

SECTION 18

BM ARM B L
22.7 21.9 26.9 2.15

L=(0.974506+JO.023934)
N=(0.650491-J90.567492)

SECTION 20

3M ARM B L
11.8 13.8 14.8 1.9

l={0.9655 72+JO.036579) 
N=(0.483959-J 39.055349)



C QM HM
0 . 6 5  1 1 0 1 . 0  3 . 0 5

M = ( - 0 . 0 0 0 3 3 7 - J O . 0 0 0 3 4 6 )  
Q = { Q . 9 8 9 1 3 9 + J O . 0 1 0 5 9 6 )

C QM HM
0 . 6 3  8 8 7 . 0  3 . 2 5

M = ( - 0 . 0 0 0 5 1 9 - J O . 0 0 0 4 6 1 )
0  =  < 0 . 9 8 4 0 4 0  + J O . 0 1 8 0 6 8 )

C QM HM
0 . 6 3  6 4 6 . 0  3 . 6 0

M = ( - 0 . 0 0 0 5 8 4 - J O . 0 0 0 6 2 7 )  
0 = { 0 . 9 7 4 5 0 6 + J O . 0 2 3 9 3 4 )

C QM HM
0 . 5 9  1 1 8 . 0  4 . 0

M = ( - 0 . 0 0 1 8 3 0 - J O . 0 0 1 7 4 4 )  
0 = 1 0 . 6 9 5 5 7 2 + J O . 0 3 6 5 7 9 ) 179



AM
11.0

AM
1 4 . 8

AM
1 5 . 2

BM A R M  B L
6 . 7  1 1 . 0  1 1 . 6  1 . 9

*

L = {  0 . 9 3 8 7 7 1 + J 0 . 0 6 4 3 6 5 )
N = ( 0 . 6 6 9 8 7 7 - J 3 0 . 3 3 4 5 4 6 )

S E C T I O N  2 1

S E C T I O N  2 3

BM A R M  B L
7 . 3  1 4 . 8  9 . 4  2 . 6

L = ( 0 . 9 3 5 2 3 3 * J 0 . 1 5 3 7 1 1 )
N = ( 1 . 7 7 4 2 2 9 - J 3 3 . 6 I 2 4 7 4 )

S E C T I O N  2 4

BM A R M  . B L
2 . 9 7  1 5 . 2  3 . 5  2 . 0

L = ( 0 . 9 6 7 1 6 0 * J O . 0 6 3 2 3 8 )  
N = { 0 . 2 0 8 2 2 0 - J 9 . 7 2 7 9 9 5 )



c
0 . 5 7

QM
3 6 . 0

HM
4 . 1

M = < - 0 . 0 0 4 0 7 1 - J O . 0 0 3 9 6 0 )  
0  =  ( " 0 .  9 3 8 7 7 1  + J O . 0 6 4 3 6 5 )

C QM HM
0 . 6 0  2 1 1 . 0  4 . 0

M = ( - 0 . 0 0 8 7 6 3 - J O . 0 0 3 9 6 9 )  
□ = ( 0 . 9 3 5 2 3 3 + J O . 1 5 3 7 1 1 )

C QM HM
0 . 6 0  7 0 . 0  4 . 1

M = ( - 0 . 0 1 2 7 1 9 - J O . 0 0 6 7 8 0 )  
0 = ( 0 . 9 6 7 1 6 0 + J O . 0 6 3 2 3 8 )



H ( 12) = ( 0.978374+J 0.018802)H (13J + (-0.900443-J0.0 0 0 5 1 2 )Q(13)
Q ( 12) =< 0.53012 7-J 83.733918)H(13) + { 0.978374+JO.018802)Q (13)

H ( 11) =1 0 . 94252 7 +J 6.043735)H C 13) + (- 0 . 0 0 0 6 31-J O . 0 0 0 8 0 0 )Q (13)
Q{ i 1) = { 2. 860595-J158.434748)H<13) + ( 0.927395+J 0.060624)0( 13)

H { 10 ) — ( 0 . 9 0 0 8 3 9  + J 0 . Q 6 6 7 0 1  )H (1 3 ) + (- 0 . 0 0 0 7 2 7 - J 0 . 0 0 1 0 0 6 )Q t 1 3 )
0< 10 ) = < 6.478240-J219. 53-5734 )H ( 13) + ( 0. 8675 75 + J 0. 105677 ) Q ( 13)

H { 9)«( 0.845507 + J 0.091295)H ( 13) + 1-0.000789-JO.001205)QI 13)
Q I  9  ) =  ( 1 1 . 0 1 8 5  8 4 —J 2 7 0 . 0 1 3 0 1 9 ) H ( 1 3 )  +  < 0 . 8 0 3 6 9  3 + J O . 1 4 9 5 3 0 ) Q ( 1 3 )  .

C O N N E C T I O N S  ARE T H E N  P E R F O R M E D  FOR EA CH  B R A N C H .
AS AN E X A M P L E ,  T H A T  FOR S E C T I O N S  9 ,  I 0 t 1 1 ,  AND 1 2  I S  SH OW N.

EXPRESSING FLOW-RATES IN TERMS OF HEIGHTS AT ENDS OF THE BRANCH,

Q { 1 3 ) ~ ( 3 7 4 . 5 2 3 9 8 6 —J 4 5 6 . 3 0 3 5 5 7 ) H ( 1 3 )  +  ( -  3 8 0 . 2 5 1 7 6 3 + J  5 8 0 . 7 3 9 0 5 9 ) H ( 9 )  
Q (  9  ) =  ( 3 8 0 . 2 5 1 7 6 3 - J  5  8 0 . ' 7 3 9 0 5 9  ) H ( 1 3  ) +  ( -  3 9 2 . 4 4 3 3 8 1  +  J  4 0 9 . 8 7 6 6 5 3 ) H ( 9  )

LIKEWISE, FOR THE OTHER THREE BRANCHES WITH UNKNOWN END FLOW-RATES,

Q< 3)=< i 580.424653-J 4 3 4 1.370194)H {3) + (-1578.541066 + J4454.296038)H (1)
0( l)=(1578.541066-J4454.296038)H(3) + (-1576.927487+J4351.206277)H (1)

Q (  8  I  =  ( 221.138395— J 226.479673 ) H ( 8 ) +  ( -  231.871398 + J 2 9 3 . 598699 ) H ( 4)
0( 4) = ( 231 .871398-J 293.598699)H ( 8) + (- 246.994644+J 1 55.282498)Ht4)

Q C 1 9 )  =  ( 2 2 6 . 5 2 5 9 5 0 —J 1 1 7 . 2 0 1 2 2 9 ) H ( 1 9 )  +  < -  2 1 5 . 8 3 7 2 1 6 + J  2 9 1 . 8 0 8 2 9 7 ) H ( 1 4 )  
Q ( 1 4 )  =  ( 2 1 5 . 8 3 7 2 1 6 - J  2 9 1 . 8 0 8 2 9 3 ) H < 1 9  I +  ( -  2 3 1 . 2 4 5 4 3 2 + J  1 1 4 . 3 5 8 9 7 0 ) H ( 1 4 *



C O N N S C T I O N S  ARE T H E N  P E R F O R M E D  FOR EA CH  B R A N C H .
AS AN E X A M P L E  » T H A T  FOR S E C T I O N S  9 ,  1 0 t  l i t  AND 1 2  I S  SH OW N .

H(12>=M 0. 978374+J 0-018802 )H( 13) 4- (-0. 000443-JO.000512 )Q ( 13)
Q(12) ={ 0.530127-J 83.733918)H(13) + { 0.978374+JO.018802)Q<13)

H ( 11)=( 0•94252 7 +J 0.043735)H (13) + (-0.000631-J0.000800)Q<13)
Q {11) = ( 2.860595-J 158.434748)H(13) + ( 0.927395+J0.060624)Q (13)

H (10)=( 0.900839+J 0.Q66701)H (13) + (-0.000727-J0.001006)Q(13)
0( 10) = ( 6.478240-J219.535734)HI 13) + ( 0.867575+J0.105677)Q (13>

H ( 9)«( 0.845507+J 0.091295)H (13) + i~0.000789-J0.001205)Q (13)
Oi 9)=(11.018584-J270.013819)H(13) + ( 0.80369 3+JO.149530)0(13) .

E X P R E S S I N G  F L O W - R A T E S  I N  T E R M S  O F  H E I G H T S  A T  E N O S  O F  T H E  B R A N C H ,

Q(13l=i 374
Q ( 9) = ( 380

L  I K E W I S E ,

0 ( 3) =( 1580
Q( l) =  < 1578

Q( 8) = ( 2 2 1
Q ( 4) = ( 231

Q ( 19 ) = ( 226
Q ( 14) = ( 215

4 5 6 . 3 0 3 5 5 7 ) H ( 1 3 )  +  ( -  3 8 0 . 2 5 1 7 6 3 + J  5 8 0 . 7 3 9 0 5 9 ) H ( 9 ) 
' 5 8 0 , 7 3 9 0 5 9 ) H ( 1 3 )  +  ( -  3 9 2 . 4 4 3 3 8 1 + J  4 0 9 . 8 7 6 6 5 3 ) H ( 9 )

F O R  T H E  O T H E R  T H R E E  B R A N C H E S  W I T H  U N K N O W N  E N D  F L O W - R A T E S ,

5 4 1 0 6 6 ~ J 4 4  5 4 . 2 9 6 0 3 8 ) H ( 3 )  +  ( - 1 5 7 6 . 9 2 7 4 8  7 + J 4 3 5 1 . 2 0 6 2 7 7 ) H ( 1 )

2 3 1 . 8 7 1 3 9 8 + J  2 9 3 . 5 9 8 6 9 9 ) H ( 4 )  
2 4 6 . 9 9 4 6 4 4 +  J  1 5 5 . 2 8 2 4 9 8 ) H ( 4 )

2 1 5 . 8 3 7 2 1 6 + J  2 9 1 . 3 0 8 2 9 7 ) H { 1 4 )  
2 3 1 . 2 4 5 4 3 2  + J  1 1 4 . 3 5 8 9 7 0 ) H ( 1 4 )

3 7 0 1 9 4 ) HC 3 ) ♦ < -
2 9 6 0 3  8 ) H ( 3 ) + ( -

4 7 9 6 7 3 ) H ( 8 ) ( -
5 9 8 6 9 9 ) H { 8 ) ( -

2 0 1 2 2 9 ) H ( 1 9 ) ( -
8 0 8 2 9 3 ) H { 1 9 ) + ( -
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S O L U T I O N  OF H E I G H T S  AT 8 R A N C H - P 0 I N T S

AT JUNCTION C, Q(20) + 0(23) = Q(19) , SO THAT

(-243.540869-J 4.3490 88)H (CI = -(215.837216-J291.808297)HiDl ,

OR H I C ) » (0.864574-J1.213630)H(D) .

AT JUNCTION D f Q(14) = Q (81 + Q(13> t SO THAT 

(215.837216-J291.808297)H(C)=(826.907813-J797.14 2201)H(0)

- ( 6 1 2 . 123161-J874.337757)H(EJ

OR (994.447813-J ?82.905986)H ( D) = (612.123161-J374.337757)H (El

SO THAT H (0) = (0.8 00850-J0.6 5 1389)H I E ) .

AT JUNCTION E , Q(4) + Q{9) = Q C 3 1 , SO THAT

(612.123161-J874.337757)H(0) - (2219.862679-J4906.529345)H ( E )

= -{1578.541066-J4454.296038)H(F)

OR (2299.176745-J3807.584590)H(E) » (1578.541066— J4454.296038)H ( F )

SO THAT FINALLY , H(E) = (1.040717-JO.213850JH(F I .



GIVEN H ( F ) = ( 2 . 2 5 + J 0 . 0 ) T H E N

H( E ) = ( 1 .040717— J0.213850)( 2.25 + J0.0 )
H(0)=< 0.80085l-JO.651389){ 2.341613-J 0.431162) 
H ( C )=(0.8 64574— J 1*213630)( 1.561861-J 1.910640) 
H ( B ) M 1.047872-J0.358417)t-0.968465-J3.547409) 
H ( A )=(1.140603-JO.202 42 2){-0.968465-J3.547409)

C A L C U L A T I O N  O F B R A N C H - P O I N T  H E I G H T S .

IN TERMS OF AMPLITUDES AND PHAStS, THE BRANCH-

H ( F 1 = 2 . 2 5  M ,  0 0 0  DEGREES 
H< E ) *=2 . 39 M t 0 1 2  DEGREES 
H ( 0 ) = 2 . 4 7  M» 0 5 1  DEGREES 
H (C )*3.6 B M f 1 0 5  DEGREES 
H ( B ) * 4 . 0 7  Mt 1 2 4  DEGREES 
H ( A ) = 4 . 2 6  M, 1 1 5  DEGREES.



( 2,341613-JO.481162) 
( l.£61861-Jl.910640) 
(-0.968465-J3.547409) 
(-2.286277-J3.370115) 
{-1.822709-J3.850146)

POINT HEIGHTS ARE



CALCULATION OP FLOW-RATES AT UPSTREAM ENDS OF BRANCHES. 

Q(22)=0.0 

0(25)=0.0

Q (19)= ( 226.525950-J 117.201229)(-0.968465-J3.547409)
+ (- 2 1 5 .837216+J 291.808297)( 1.561861-J1.910640)

OR Q ( 19) = {- 414.710338+J 178.076117) .

Q(13)» { 37 4.523986-J 456.303557){ 1.561861-J I .910640)
+ <- 380.251763+J 5 8 0 . 7 3 9 0 5 9 H  2.341613-J0.4 8 1162)

OR Q (13)~ t — 897 .850312+J 114.565921) .

Q( 8)= ( 221.138395-J 226.479673)( 1.561861-J1.910640)
+ (- 231.871398+J 293.598699){ 2.341613-JO.481162)

OR Q( 8)=(— 4 89.018240+J 22.816782) .

Q( 31= ( 1580.424653-J4341.370194){ 2.341613-J0.481162)
+(-1578.541066+J4454.296038)( 2.25 +J0.0 )

O R  Q {  3 ) = ( — 1 9 3 9 . 8 7 6 5 9 2 —J  9 0 4 . 0 8 3 1 6 9 )



STARTING AT THE UPSTREAM END OF EACH BRANCH, HEIGHTS AND FLOW-RATES
a r e  T h e n  c a l c u l a t e d .

!
AGAIN, USING AS AN EXAMPLE THE BRANCH CONSISTING OF SECTIONS 9, 10, 11# AND

H ( 12 ) * ( 0.978374+J 0.018802)1 1.561861-J 1.910640)
+ (- 0.000443-J 0.000512)(-897.850312+J114.565921)

H ( I ? )  =  ( 2 . 0 2 0 1 1 1 - J  1 . 4 3 0 6 1 6 )

Qt 12> = ( 0.530127-J 83.733918) 1 1. 561861-J 1.910640)
+ ( 0.978374+J 0.018802)(-897.850312+J114.565921)

Q! 12)=(-1039.744381-J 36.586503) .

Hill)* ( 0.942 5 27♦J 0.043735)( 1.561861-J 1.910640)
+(-0.000631-J 0.000 800)(-897.850312+J 114.565921)

H ( 1 I ) = (  2.213943— J 1.086525)

Q(ll)= ( 2 . 860595-J158.434748)( 1.561861-j 1.910640)
+ ( 0.9273 95 +J 0.060624)(-897.850312+J114.565921)

Q ( 11)=(-1137.8 51176-J201.102162) .

H( 1 0  )= ( 0 . 9 0 0 8 3 9  + J  0 . 0 6 6 7 0 1  M  1 . 5 6 1 8 6 1 - J  1 . 9 1 0 6 4 0 )
+ ( - 0 . 0 0 0 7  2  7 - J  0 . 0 0 1 0 0 6 M - 8 9 7 . 8  5 0 3 1 2 + J 1 1 4 . 5  6 5 9 2 1 )

H (10)=( 2.302301-J 0.797280)

Q ( 10)= ( 6.478240-J219.535734)( 1.561861-J 1.910640)
+( 0.867575+J 0.105677)(-897.850312+J114.565921)

Q ( 10)=(-1200.394678-J 3 50.749537)



H( 9)= ( 0.845507+J 0 . 0 9 1 2 9 5 H  1.561861-J 1.910640)
+(— 0.000789— J 0.001205)(-897.850312+J114.565921)

H( 9) = C 2.341613-J t).481162)

0( 9)* (11.018584-J270.013819)( 1.561861-J 1.910*40)
+( 0.803693+J 0.149530)(-897.850312+J114.565921)

Q ( 9 )={-1237.416257— J484.956199) .

IN TERMS UF AMPLITUDES AND PHASES, THE (UNSCALED) VALUES ARE 
H ( 133=2.47 M, 051 DEGREES 
H(12)=2.48 M f 035 DEGREES 
H ( 11)*2.47 M, 026 DEGREES 
H ( 10} =2.44 M, 019 DEGREES 
HC 9) = 2.39 M, 012 DEGREES.

0(13)= 90 5130 CU M / S E C . , 187 DEGREES
0( 12)=1040390 cu M/SEC . t 178 DEGREES
Q( 11 ) =1155490 CU M/SEC. f 170 DEGREES
0( 10) = l?50l590 CU M/SEC., 164 DEGREES
Q l  9)=I329050 cu M/ SE C., 159 DEGREES

j
" t



APPENDIX III

ANALYSIS OF STABILITY AND WAVE-DEFORMATION 
FOR THE ONE-DIMENSIONAL IMPLICIT METHOD

It is important to ascertain the conditions under which the 

one-dimensional implicit method will remain stable and relatively 

error-free. The approach used here follows closely that of Stroband 

(lS70b) who used a method originally due to von Neumann (Richtmyer and 

Morton, 1967, p. 70). A useful addition to the method of von Neumann, 

as shown by Leendertse (1967), is that the deformation of a given wave 

may be calculated.

Von Neumann's approach is to assume that an error wave at any 

particular instant may be represented by a Fourier series. If the 

system being analysed is linear only one term each for height and flow 

irate need be considered. Thus, if L is the wave-length and T the 

period, /

If equations (III.l) and (III.2) are substituted into the linearized 

versions of equations (3.3) and (3.4), the following important relation 

results;

h » h exp(iox) exp(igt) (III.l)
*

q * q exp(iox) exp(iSt) (III.2)

where

(III.3)
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X

1*9

or

L " 1  T/I* • (III.4)
When h and q exist only at discrete points in time and space,

i.e.

x ■ mAx m*0, 1, 2, 3, (III.5)

t = rx r=0, 1, 2, 3, (III.6)

then equations (III.l) and (III.2) may be rewritten as

H « H exp(icnnAx) • Xr (III.7)

Q ■ Q exp(iomAx) • Xr , (III.8)

and X = exp(i$'T), where 8' is the computed wave frequency.

Considering the equation of continuity (3.5) and the linear form 

of the equation of motion (3.6) of the implicit method, we have

. , Hr*| * H” 1 Hr , . , / , \I 1_ lqr«l . < H . 0 ( m .9)

1 (Cl * C1 „r.l)
7 \.------- 2------------------- 2----r ST kHm.l ■ m / 0 , (III.10)

where A is the cross-sectional area, b the width (and hence A/b equals 

the depth, a). Substituting from equations (III.7) and (II1.8), we 

obtain
*

bAx ,, VN cAx 0 . . oAx _ ,TT_- (X-l)cos + •— - 2X l sin * 0 (III.11)
■ H ■

%  ( » - I ) c o .  ♦ t& jL 2 X  i  S i n  S f .  •  0  . (III.12)



On eliminating Q /H

)2 - 4 i i'ta”2£r -  <i n -13’Ax

or

1 + 2o i tan jj-
(III.14)

where

a - i j / i T  (111.15)

and

• tin. 1 6).

so that M is the number of sections per physical wavelength.

Furthermore there are M/a time intervals per period, so that the 
2quantity M /a is proportional to the number of computations required

for a given schematization and time step choice.

From equation (III.14),
/

1.1 1 a, tan «/H ( m _17)
* 1 * 4a tan ir/M .

The von Neumann necessary condition for stability is that

,|Xli2| 1 1  . (III.18)

From equation (III.17),

|X. | * — — , (III.19)
L  . 2 2 trV l  ♦ 4a tan ^

which is always less than 1, thus the system is unconditionally stable.

To investigate the amplitude distortion occurring over one cycle, 

one raises |x| to the power M/a (this quantity being the number



of time intervals per period). We then have

-M
2a

i , 2 „ 2 ii1 + 4a tan —M (III.20)

or
T_
2tr

2 it Ax 
L

To investigate the phase distortion that takes place over a 

physical wavelength one obtains the value B* (in the expression 

X * 6xp(iB'i) ) from equation (III.17), so that B* is 2ir times the 

actual wave frequency. To do this one needs the real part of 6' , 

since the imaginary part contributes only to the amplitude distortion.

The phase lag or lead over a wavelength is found from the quantity

Thus

3» = i  Re(B'T) (III.21)

(111.22)

(III.23)

2ir(B’/B -1):

(III.24)



s i n c e

a _ T J ~ W  . Ax _ ty ga _ t _ 1 8 
M Ax L L * T " 2rt *

Before the curves of amplitude and phase error can be drawn, it is

necessary to inspect the behavior of each. The behavior of the

amplitude error for certain combinations of a and M may easily be

investigated. Considering equation (111.20):

M
‘ 2a

1*1
M/a 1 a 2 . 2  it1 + 4a tan rr M (III.20)

» 1 +
(•5=)

2 2 ..4a tan rr + M (4a2 tan2 jj) + ...

« 1 - 2Ma tan2 it ,\H2 + 2Ma) w  4 _ 4M 16a tan M
2.4a

1 - 2Ma tan2 ~  M + 2 (m 2 + 2Ma) a2 tan4 ir M

Case 1. a * 0 , M > 2 .

W M/“ - 1  .

(111.26)

Case 2. t < T/2 tT  and M »  2 .

|x|M/a -1 - 2:r2a
M , and is always > 0

Case 3. M«2, a > 0 .

|X|H/a ♦ 4a^ tan^ yj - 0 .

The behavior of the amplitude error is shown in Figure III.l,
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m m

• ' r  u i Vu fill f t f i f j li0 l r t ( i f l n -  'C f  w -

fi *It is also of interest to investigate the behavior of ~  forP
certain combinations of a and M. Considering equation (III.25), we 

have

6* tan" (2ct tan it/M)
2a tr/M (III.27)

Case 1. a

JLL0

0 , M > 2

*
H

£
M

8 1(ie. > 1)

Case 2. a * 0.5 , M > 2 .

e* it/m
r  * 7 m (ie. ~ * 1 )

airCase 3. ~  < 0.5 , M »  1

tai,-1{. ,2g[  (ft) 4 ( g ) 3 * - ] ?

20 H
tin.2 8)

( f t ) 3? xH 3 f t 4 ( f t ) 5 } 3 .
_  TT
J“ M 2“ ij

*» 1 ♦
H n ) 2 (* - 4“2) * - (III.29)

ie* > 1  for o < 0.5 and M >> 1 ,

V ■ 1 for a * 0.5 and M »  1 ,

4- < t for a > 0.5 and M »  1 .
p ■
rrssrrr



Case 4. M®2.

As M decreases from « to 4, from equation (III.27)

L  ranges from to XZ*. . M  .
p  or^ a ir

M 2

As the value M*»2 is approached, we have

g, tan"1 2a tan^y-
a—  ----- -----------  , where e is small.p  a ir

Thus, for continuity of the arc tangent, at M=2 we get

£L■ » ill . 1_
B a ir  *  2 a  *

g t
The graph of j- vs H for various values of a is shown in Figure III.2.
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APPENDIX IV

COMPACT FORM OF THE FINITE-DIFFERENCE EQUATIONS FOR 
THE ONE-DIMENSIONAL IMPLICIT METHOD

Equation (3.5) is rewritten in the form 

(Ax) b (Ax) b (H + H ̂
(«;.i *»;) * Ctt.i - <4) ■ —

(IV . 1)

so that equations (3.9a) and (3.9b) follow at once when equation 

(IV.1) is compared with equation (3.7).

Equation (3.6) is rewritten as

Hi . l  -  Hi  ■ -  2 7 - ^  0 ^ 1  * % -  V l  -  < 06  m

(bsn* * WVl * St) /-, _ 0, ■>
/

- — — ( ^ * 1 * % ) '  (IV*2>4 C2 A2 (a ♦ h) ^ n41 ^  'm m v o 'm

Equation (IV.2) is further condensed by writing it in the form

- h: - ac„ ( C i ♦ « ; -  V i

where



BRN « in
** ^sm * ^

~  2 « ^ b„
(IV.4b)

(IV.4c)

On rearranging equation (IV.3), we have

Hi.l - Hi ‘ ( -AC„ - BRN„ - FRm'> ♦ "“V  - FRm) %

• -AC„ ( < U  * < 0 -  <1V-S>

so that a comparison of equation (IV.5) with equation (3.8) yields 

equations (3.9c), (3.9d), and (3.9e).

The purpose of writing the equation of motion in the form of 

equation (IV.3) is that, once all the values at the upper time level 

have been calculated, the contributions from the acceleration, 

bernoulli, and friction terms to the difference in tide height 

(H^+j - H^) may easily be obtained. This method for determining 

the relative importance of the various terms in the equations of 

motion has been used by Dronkers (1964, p. 197), An example is shown 

in Appendix V.
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APPENDIX V

EXAMPLE OF BRANCH-POINT SOLUTION FOR THE 
ONE-DIMENSIONAL IMPLICIT METHOD

A branch-point solution will be shown for the river branch scheme
i

discussed in Chapter III. (See Figure II.1.) The application of 

equations (3.21) and (3.34) to the six river branches yields the 

following 12 equations (where primed superscripts have been dropped 

for convenience).

(V.la)

(V.lb)

(V.2a)

(V.2b)

(V.3a)

H13 * P13 Q13 + r13 + a13 H9 (V.3b)

(V.4a)

H19 " " P19 Q19 + rl9 + a19 H14 (V.4b)

(V.5a)

H22 * * P22 Q22 * *22 + a22 H20 (V.Sb)



H23 • p23 Q23 + r23 * *23 H2S

H25 P25 Q2S * r25 + *25 H23 *

At this stage we have 24 unknowns.

Next, one puts the branch-point heights equal (equations 

(3,39a,b,c)f (3.40 a,b,c) and (3.41a,b,c) ), and expresses the flow 

rates at both ends of the branches in terms.of the heights at both 

ends. This yields the following 12 equations.

C - h f  ♦  r i  ♦  h e ) / P i (V.7a)

' ’■.rs-Xv

q3 - (-he ♦ r3 ♦ «3 HF)/p3 (V .7 b )

Q4 ’ ('HE * r4 * *4 HD)/p4

%  " (-HD * r8 **8 "e)/i’8

(V .8 » )

(V .8 b )

*  *

%  * <-He * r9 * *9 V /p9 

^13 * t-«D * r13 * *13 V ^ I S

(V.9»)

(V .9 b )

^ 4  *  ( - HD *  r 14 *  * 1 4  " c ^ U

% 9 - (-Hr * rtQ ♦ a10 llj/pC ‘19 19

(V.lOa)

(V.lOb)

m  *  4 r20 + *20

Qm  ■ (-Ha  ♦ r22 ♦ a22 Hc)/p22

(V.lla)

(V.llb)



201

C"Hr + *1% + C  HJ/p!23 v C 23 ' “23 ' W * 2 S

^25 “ C-I!B + r25 + a2S V / P 2S

The number of unknowns have now been reduced to 18.

Next, one makes use of the mass continuity relations (3.36),

(3.37), and (3.38) to give the following three equations:

C1 "E 

C

(V.12a)

(V.12b)

J5

'9 “C

where

Cl “

, + C2 Hp + C3 hd + C4
a 0

> + C6 + C7 HE + C8 HC * 0 I

: + cio + cn  hd + 1C12 ha * C13 »B " 0

- J L  + J _  + 1 r « *3 •
p3 p4

*
P9

i 2 P3 ’
* * * *

. ! i . a ± . C4 * r3 f4* ----- 5T -
p4 p9 P3 P4 p9

*

h  P13

1

* u

*9 C6 - l u l l *
P8 P13

- Ill *
Pl4

8 13

JL
*10

*19

1

p20
+ —  ♦

!ii . * *
P14

rl9 r'

23

  _20
'10 *

P19 P20

'23

23

'12
®20 . ”  »
P20

* » ’ •
23

S '

(V.13) 

(V.14) 

(V.15)
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(to placing Q22 «* Q25 ■ 0 in equations (V.llb) and (V.12b) we obtain

The original 24 unknowns have now been reduced to the six unknowns 

that are contained in the five equations (V.13) through (V.17). When 

Hp is supplied as boundary condition, the five simultaneous equations may 

be solved to yield the five remaining unknown heights. The process, 

although straight forward, will be summarized for the sake of complete

ness. Equations (V.16),. (V.17) and (V.13) at once give

next step is to produce a pair of simultaneous equations. The first 

is easily obtained after the substitution of equation (V.20) into

(V.16)

(V.17)

where

(V.18)

(V.19)

and

HB " - < cl HE ‘ C2 HF * C4 > /C5 * (V.20)
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where

Vcs
B1 ■ c7 - - E71  *

Cs(C4 * V Hf)
2

D3 “ C8 *

On substituting equations (V.18) and (V.19) into equation (V.15), 

we get

(r - 5-2 Cj6 _ C13 Ci9) h , 'gl2 C15 C13 C_18 )
\ 9 / C \ 10 J

+ Cn  Hp * 0 . (V.22)

The substitution of equation (V.20) into equation (V.22) yields 

the second of the simultaneous equations:

D4 Hc + DS + °6 HE “ 0 * (V*23)
" - , f.

where

D * C - Cl2 Cl6 - Cl3 Cl9 •
C14 C17 '

„ _ „ C12 C15 C13 C18 Cll(C4 + C2 Hf) .
s  i o -------P — ---------------r --- — r   »5 io cH  cn  c3

^1 ^11

The salutlaBlof equations (V.20) and (V.23) yields 

»2 »4 - »3 DS
»E « 2""b b ; (V.24)• V 6  V 4



Thus the procedure for the branch-point solution is to evaluate 

the constants Cj , C2 , ..., Cjg , Dj , D2 , ...* , and then to

evaluate Hg , Ĥ , , Hp , Hg , and HA. The remaining unknown heights

and flow rates can then be determined.

Some results of interest are shown in Figures V.l, V.2 and V.3.

The modulus of the maximum tidal excursions along with the delay of 

high tide are shown in Figure V.l. Also shown on the same figure are 

the results ot the harmonic method. Some idea of the distortion and 

change of mean sea level that occur as one proceeds up the inlet can 

be seen in Figure V.2. An example of an investigation into the con

tribution of acceleration, convective acceleration and friction terms

to the difference in height between the ends of a section (as mentioned 

in Appendix IV) is shown in Figure V.3.
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COMPACT FORM OF THE PlNITE-DIFFERENCE EQUATIONS 
FOR THE TWO-DIMENSIONAL IMPLICIT METHOD

First Computation Step.

Equation (4.9) is rewritten as

APPENDIX VI

°A ■ °n ■ ^  - Iizfr (Hn*l,n - "i-l.n) - R1 • .("•»>
xf

vm ** i7Ax',n

Thus

S}n» tg (Hm+l,n " Hm-l,n) _ ®n /tf 
■ n  (T + Rx) (1 ♦ \ T  2 (1 ♦ Rx) *

U‘ ♦ U» .

so that, on replacing 0^ by .J .V jIL # etc.,

Um+l,n + Um-l,n * (Ax) (1 ♦ k.J ̂ Hm+l,n “ Hm-l,n)m *

(Um+l,n * Um-l,n) t tf A, + v  x
(1 + Rt) 20. ♦ Rj:) ' m,n+l m,n-l)*

(VI. 2)

This, when compared with

Ui . l , »  * Ui - l ,n  * % O tt.1 ., * t l . . >  * * (S-1)
results in equations (5.3a) and (5.3b).

Equation (4.10) is rewritten as

2 - (fl ♦ H ) ♦ -rr\  /ti* d , - U‘ d , > -n v b n' (Ax) ' m+l,n m+l,n m-l,n m-l,n'IB

‘ (Ay)_ (Vn^*I **»,n*l ’ Vm#n-1 dm,n-l) * (VI*3)



This, when compared with

H' + H‘ ♦ v U» , ♦ 6 U» - e .m+l,n m-l,n 'm m+l,n m m-l,n m *

results in Equations (5.3c), (5.3d), and (5.3e).

Second Computation Step.

Equation (4.16) is rewritten as

- *.  '  - f  °i  -

Thus

«» A _Tg (Hm,n+1 “ Hm,n-1^ ^n/ tf ®n
m 2(Ay)n (1 ♦ R25 Xi ♦ R2) “ 2 ( l  ~* \ )

so that

Y»,n+1 + Vm,n-1 * (Ay)n(f + R2) ^Hm,n+1 “ Hm,n-l) "

^Vrc»n+1 * Vm,n-l) xf .
( 1 + R2) 2(1 + R2)  ̂m+l,n m-l,n) *

This, when compared with

\,n+l * 'm.n-l + an Hm,n+1 ~ Hm,n-1 * ^n * 

results in equations (5.6a) and (5.6b).
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Equation (4.14) is rewritten as

fi» + fi» - fi - fi «• -y-V -  fV* , d , - V* , d m n m n (Ay)n  ̂m,n+l ro,n+l m,n-l m,

- 7 .-3s- Al* d* - U» . d' \ ,(Ax) v m+l,n m+l,n m-l,n m-l,n/*'m

so that

2 t  d . 2 t  d .
v;,n.i - - rzTSf1  v*.n-

■ ( ix )B ( UA .l,n  **n+l,n " Ull- l,n  dm -l,n) * Hm

♦ H + H . - H* - H» -m+l,n m-l,n m+l,n m-l,n

This, when compared with

H* . + H’ - ♦ y V* . ♦ 6 V» , « e ,m,n+l m,n-l ‘n m,n+l n m,n-l n *

results in equations ($.6c), (5.6d), and (5.6e).

/
Third Computation Step. /

Equation (4.16) is rewritten as

«S - • - ? #A - ’ R3

Thus

(H" . - H" . 0‘<h« Tg V m,n+l m,n-l/ m xf n
*  2(Ay)n (1 + R3) (I V r3) “ 2 T r r

n-l) *

(VI.7)

ml

, ♦ H ,n*l m,n-l

(VI.8) 

(5.5)

. (VI.9)
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so that

V" + V" ♦  , •*6  , Ai*' - H'* =m,n+l m,n-l (Ay) (1 ♦ R,) ' m,n+l m,n-l'il w

m,n+l m,n-l tf v
(l ♦ Rj) ” 2(1 V kj) ' m+l,n m-l,n' *

(VI.10)

This, when compared with

Vi.n.l * ^Ho,n+l - - V '  <S-7>

results in equations (5.9a) and (5.9b).

Equation (4.17) is rewritten as

2 *  - (fl; * *  w j ;  *i.„i ■ v:,n.i di(„-i) ■

'm

so that

i d' . /t d‘ .H»« ♦ H” ♦ m,n+,l „„  ̂ m,n-I «H
m,n+l m,n-l (Ay)n m,n+l (Ay)n m,n-l

(Ax)m ̂ Um+l,n **m+l,n “ \-l,n dm-l,n)

(H» . ♦ H» .) ♦ H», N^  m,n+l m,n-l/__v m+l,n m-l,n/ ,,,T+  — *------------   .. .. +  - m ,fn    .* " ■ ■ .  ( V I .  1 2 )

This, when compared with

H1* . ♦ HM . ♦ y VM , ♦ fi V" , « e , (5.8)*tn+l m,n-l 'n m,n+l n m,n-l n * v 1

results in equations (5.9c), (5.9d), and (5.9e).
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Fourth Computation Step,

Equation (4.19) is rewritten as

i * -  ®A .  V  -  i t , . . )  -  «4 «* • < " .« >

Thus

n „ .  T« "A **■■«:
n — a  * k4) 'a  v  ̂  " r  h " T  r4) »

so that

u»* .  ♦ t p  ,  ♦ —... —- - 1 8  . . . .  ( h ** .  -  h "  'k »m+l,n m-l,n ^x)m (l ♦  ̂ra-*-l,n m-l.n'

- (U* , ♦ U» , V ^m-l,n / tf , *
(i ♦ R4) 5(1 + R4) Vm.n+1 m,n-l' *

(VI.14)

This, when compared with

m L i - *  ♦ U "  ,  ♦ «  ( H ” ,  -  H»* ■> -  6 .  f s . i mm+l,n m-l,n » v m+l,n m-l,n' m * vs.*u>

results in equations (S.12a) and (5.12b).
' , . - ■ .. -t .... ..■■■■■' ' -

Equation (4.20) is rewritten as

^  + * fii *  nV "  ( 8” ", '/d-» . ' -  tf*' d» N ■ra n ra n (Ax) v nr+l,n m+l,n m-l,n m*l,nJ

_ ( v* d*' - V" dM \(Ay)n m,n+l m,n+l ra,n-l m,n-l' '

so tfrnt
...  •• -JL.... ' (VI.15).

. .2* d* 2t 4*
* Hm-l,n * *m*l,n * W*),’ U!i-l,n "

+ H*,n*l + Hm,n-1 4 H«+l,n + Hi*I,n " Hm,n+1 " H*,n-1 *
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This, when compared with

Hm*l,n + ^-l,n + ** ̂ i , n + V*5-l,n " '• » C5*11)

results in equations (5.12c}, (5.12d), And (S.12«).


