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ABSTRACT

A numerical tidal model using equations developed by Hansen
(1952) and Yuen (1967) is automated to the point where a potential
user need not undertake extensive reprogrémming. The user adds to
the program only those cards needed to specify tides at input points
as a function of time; the application of the relevant calcul-
ations at each grid point being controlled by an integer matrix
that corresponds to the inlet boundary.

A sample problem is covered in detail and applicétibns of the
model to the My tide of the Gulf of Califcrnia, and to a hypo- -

thetical mean tide in Cook Inlet are shovm.
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CHAPTER [

INTRODUCTION

To trace the origins of tidal modeling one has to follow the
history of the tides through some two thousand years. In the
Occident the earliest references to tides are those of Strabo,
Pliny, and Pytheas, in the first century A.D.. Such references
are understandably rare as the Mediterranean is a region of small
tides. The connection between tidal variations and the movemeant of
the sun and moon being obvious, it is not surprising that some
rule-of-thumb methods for tidal prediction were found and passed
from father to son as closely guarded family secrets. It was not
until the seventeenth century, however, that mathematics was applied
to the study of tides.

Kepler, with his studies on gravitational effects, provided
Newton with the basis for his equilibrium tide thecvy. This theory -
explained mathematically such effects as spring and neap tides,
priming and lagging, and diurnal inequalities. Newton's theory
assumed a non-inertial fluid, the particles of which instantly
respond to the attractional forces of the sun and meoon. Daniel
Bernoulli, with his stpdies on the mathematics of fluids, paved
the way for Laplace who formulated and applied the equations of
continuity and motion to the world ccean, and demonstrated the nead

for harmonic tidal analysis.




The harmonic analysis of tidal records was established by
Thomson (later Lord Kelvin), and in 1876 he introduced the first
tide predicting machine. Further improvements in the practice of
harmonic analysis were made by G. Darwin and Doodson. A new
approach to tidal analysis and prediction appeared in 1965 when
Munk and Cartwright presented a paper on tidal spectroscopy and
prediction. This technique, the so-called "response method", allows
the inclusion of input functions other than gravitational forces.

With the harmonic method well established, analytical studies
were made on the dynamics of water movement in canals and oceans.
With these studies are aszociated such names as Airy, Kelvin, Lamb,
Poincare, Rayleigh, Taylor, Jeffreys, Proudman, and others. The
first actual model (as opposed to analytical solutions) appears to
be one on the Red Sea by Blondel (1912), based on the calculus of
variations. Efforts were then directed by people such as Sterneck
(1914), Defant (1920), Grace (1936), and Proudman (1953), to models
involving the numerical solution of the equations of motion and
continuity from which the time depeﬁdency has beenvremoved. During
this‘period all calculations had to be performed by hand. Consid-
erable advances in the calculation of water movements in rivérs and
canals were made by the Dutch, who tended more towards solutions |
of a mathematical nature as opposed to numerical solutions. The
post-war advent of the digital computer made feasible the time-
dependent solution of the hydrodynamic equations. The result of

the withdrawing of the time-dependency restriction was to allow




sclutions of a non-linear nature to be obtained. This is partic-
ularly desirable when tides in shallow waters are being studied.
Furthermore the computer made possible calculations in two dimens-
ions, so that cross-currents and Coriolis force effects could be
included.

The first application of a two-dimensional tidal model was to
the North Sea (Hansen, 1952). A further application of Hamsen's
explicit technique was made by Yuen (1967) to the tides of the Bay
Qf Fundy. Both these models were, however, specifically tailored
to the area being studied and were not general, i.e. the model
could not conveniently te applied to other areas. This situation
showed an obvious need for a variable-geometry model that could
be adapted to new outlines without extensive reprogramming.

A sophisticated model of variable-geometry nature was devised
by Leendertse (1967). It is based on the implicit method, which
is considerably more complicated than the explicit method on
account of the need for the solution of sets of simultaneous
equations at each time step. It is felt that the approach used in
thisrmodel is too complex for the method to be easily understood
(and hence modified if desired) by users not possessing a strong
background in the techniques of numerical models. 1In the past
the users of two-dimensional tidal models seem to have been
physical oceanographers or possibly civil engineers. A need now
exists for a model that is not only capable of handling variable

geometries, but that is also conceptually simple, well documented,




and easy to use. On these points it is felt that Leendertse's
model falls short of the ideal.

In the chapters that follow, a model is developed that uses
Yuen's equations in an automated form. The equations are applied
as necessary by a process that monitors an integer matrix based on
the positions of the inlet boundaries.

The prospective user is warned that ceftain stability criteria
must be adhered to during the computations. These are covered in

Chapters II and III.




CHAPTER 1II

THE CALCULATION OF TIDES IN INLETS

1. Introduction--,

The prediction of tides of an astronomical origin at points
close to deep seas and oceans is now, within specified limits, a
routine matter. However the problem becomes more complicated when
attention is turned towards shallow semi-enclosed coastal areas
(henceforth referred to as inlets).

Statistical methods are now in existence that seem to be
adequate for the prediction of tides in inlets, provided that long-

term reco}ds are available, If it is desired that the effects of

storms and changes in local topography (land reclamation, shipping
channels and canals, hydro-electric projects, etc.) are to be
reliably forecasted'then the approach must generally involve the
solution of the basic hydrodynamic equations. The §implified
equations of continuity and motion are, for one dimension,from

Proudman (1953):
EIGID +b Bn
dx

(2.1)

and 25 25
U u
8t+u8 +3 +ZF O (2.2)

where: x=distance b=width

A=cross~-sectional area u=velocity

h=total water depth t=time

g=gravitational acceleration Fi=ith force .
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The equations to be solved are further simplified by assuming homog-
eneous flow of a long wave nature (shallow water wave), except for
the case of the tidal bore. They are complicated by the inclusion of
a frictional term that is essentially non-linear. The term Qaéé is
normally neglected as being small in comparison with the other terms.

When shallow water waves are being considered, the wave motion
is generally assumed to be such that the vertical accelerations and
velocities are negligible, i.e. the orbital motions of particles in
the vertical plane are no longer circular or elliptical as with deep
water waves. Once it has been assumed that the velocity vector is
restricted to lie only in the horizontal plane, the depth mean
velocity ean be used. If vertical current profiles for a given
region are available then it may be that the mean current can be
extrapolated to provide a prediction for the overall current profile.

The effect of friction is included in the equations of mection
via the application of the formulae of De Chezy (in Europe) or
Manning (in the United States) which were developed for the study of
uniform flow in channels. When the inlet is wide compared to its
depth (say, in a ratio of 10:1) it is customary to use for the

frictional force per unit mass

_ 9wy
F C2h

where C=De Chezy's coefficient,

(2.3)

which makes the friction opposite in direction to the current. In

. !
the m.k.s. system C is approximately equal to 50 meters2 sec s SO




that

~ 0:004 uly
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The above-mentioned equations, (2.1) and (2.2), may be dealt with

. (2.4)
in three main ways: harmonic methods, characteristic methods, and
finite difference methods. For the purposes of background each

method will be covered in some detail in the sections that follow.

2. Harmonic methods--.

By the use of Fourier series, the tide is divided up into
various constituents whose periods result from the relative motions
of the e;rth, sun, and moon. The equations are linearised (Lorentz,
1926) by neglecting the convection term u%%i and by replacing the
friction term by

= .éi_ _ji_- wu
C?h 3n ) ‘ (2.5)

where U=maximum amplitude of current,

and the solutions for height and current are assumed sinusoidal.
The time-dependence of the equations may then be removed, leaving a
pair of simultaneous linear partial differential equations. It is
however necessary to estimate the maximum amplitude of the current
at the start of the calculations. The method becomes considerably
more complicated when more than one constituent is considered at

a time.




The simplest example of a harmonic type calculation is that of
the solution of the tides in an inlet of constant cross section
(Sverdrup, Johnson, and Fleming, 1942). If convective and frictional

terms are neglected, the equations of motion and continuity become

u dz _
St T35 T

(2.6)
and
2 W
9z . dov.0
ot ox ]
2.7
where Z=height above mean sea level
d=depth of water below mean sea level.
If the solution is assumed to vary sinusoidally with time,
= oo f2TRE
2 =2 éNrL( +
(2.8)
and
u:ucos(?ﬂ_‘._t.)
- T 9
(2.9)

where Z=maximum amplitude of tide
T=period of tide,

and these quantities are substituted into (2.6) and (2.7), then

Elft 55 -0

(2.10)
and
- 29C
22.;_ do% .0
ox . (2.11)
This leads to
2R X
= CoS
B cos(23%),
(2.12)




where 6£ = T /gd
B=constant (to be determined).

Thus
7=B COS(EE};_) s‘.n(zu t>
< T
(2.13)
and

T

EE & LA (2.14)

If x=0 at the closed end of the inlet and the tide is specified at

W=- BS s«m(g_'rg_a_g_.) cos(avtt)

x=L (with the maximum amplitude of the tide being H) then

F{

Z= cos[2Tx) sip(ant

27 L. =
cos( &L ) & T (2.15)

% ey (E) () L

Equation (2.15) shows clearly that nodes, or points of zero

and

tidal amplitude, can exist whenever x=d‘(2n+l)/4, n=0,1,2,....
Furthermore, infinite tidal amplitudes will result should
L=aﬂ(2n+l)/4, n=0,1,2,...., i.e. whenever a node coincides with the
mouth of the inlet. Practically, of course, friction will limit
the infinite amplitudes; nevertheless, considerable amplification
of a tidal constituent can occur shculd the length of the inlet be
near one of its resonaﬁt lengths for that particular period.

For a comprehensive presentation of the method, the reader is

directed to the book by Dronkers (1964).

el




3. . Characteristic methodsg--.

The material in this section was taken chiefly from the beok
by Stoker (1957).

The equations of continuity and motion, (2.1) and (2.2),
(neglecting all forces other than hydrostatic) may be rewritten in
terms of the variables u apd c (where c=/gh ). Two ordinary

differential equations result:

=utc, - with wut2c=ky; for a given curve , (2.17)

(S 3:

Ty

and

Ca: =u-c, with u-2c=kz for a given curve. (2.18)

o0
%

These equations represent two sets of curves on the x-t plane: the
set Cy being referred to as 'forward characteristics' and the set
C2 as 'backward characteristics'. The equations are written for a
point moving relative to the bottom. If the axis is shifted to a
point (xy,t;) moving with constant velocity V(x;,t;), then C,

and C2 become:

o
g

=tc
t * (2.19)

|

o

The importance of this is that the process may now be seen tc be
one of the propagation of disturbances away from the point in
question with a velocity, or celerity, c.

-The'characteristic methéd is particularly useful when aper-

iodic conditions exist (storm surges, dam failures, lock closures,




etc.), and for situations where the flow becomes critical or super-
critical, i.e. q;dﬂﬁ? . This situation is similar to supersonic
flow in gases. In water the phenomenon is associated with hydraulic
jumps and tidal bores. It should be mentioned that the character-
istic method itself cannot deal with the discontinuity region;
However, it is useful for indicating the time and place of occurence
of the bore, and the conditicns on =2ither side of the discontin-
uity. The reason for this is that at the actual discontinuity-the
above equations break down owing to the existence of energy losses
and vertical accelerations. As far as the practicality of calcul-
ations is concerned, the characteristic method is too complicated
for most- exploratory calculations, but is of greater interest when
certain complicated situations are to be analysed. A further

use of characterigtic theory is to indicate the sufficiency of
boundary conditions-for a given problem.

The basic approach by which the method of characttristics is used
to solve a simple initial value problem, in which the depth is
constant, is as follows; If u and c (e=fg(d+z) ) are known for
points A and B, then the slopes of the characteristics through

these points are known from

dx _, +¢

—_— ==

dt . (2.20)

If the distance AB is small the curved characteristics may be appr-
oximated by straight lines. When the forward characteristic through

A and the backward characteristic through B are drawn, they will



intersect at Q, as in Figure 2.1.

A B c

Figure 2.1. Part of characteristic net.

With the initial conditions known, it is also possible to evaluate
the constants k;, and kp . Therefore two equations may be solved to
give the values of u and ¢ at Q. Simiiarly, points R and S may be
found, and so on for the network, provided that the boundaries are
at infinity.

It is important to note that conditions at S ére influenced
by coﬁditions between A and C. The area SAC is known as the zone
of determinacy of S. In most cases of interest it is necessary to
include the effects of boundaries. Suppose a left-hand boundary
exists at x=a (see Figure 2.2). A bgckward characteristic from B
is assumed to intersect the t-axis at (a,”¥ ) and hence if both u

and ¢ were known at B, then kpy is known. Thus at (a,T ) we have




w(o,9-2.c{,Yy=R,;
(2.21)

E

a x

Figure 2.2. Chéracteristics at a boundary (x=a).
To evaluate the slope of the forward characteristic through
(a,T ) it is necessary to evaluate
dx _ y (o, T)+c(a,T)
C‘ t (2.22)
and
R, = w(&,Y)+2.c(,T)
. (2.23)
Using (2.21), (2.22) and (2.23) may be written in two ways:

?ﬁs = 3.c(@n)+R;y Ri=l, + 4.c(e,7)

(2.24)

~ and -

o.’o.
X
i
rojoo
A
P
K
!
Pl
N

(2.25)




Thus if either u(a,T ) or c(a,T) (where ¢ is a function of z)
are known, the forward characteristic thrcugh (a,T ) may be drawn.
We therefore reach the important conclusion that it is only
necessary to specify height or current,but not both, at a boundary.
It has been tacitly assumed so far that the backward characteristic

through B does indeed intersect the t-axis, i.e. that

[w(TD-c(@n)]}< 0

w(o,T) fQT'C

If u(a,T ) is greater than /gh there will be no intersection, and

or
(2.26)

|
hence to-draw the forward characteristic through (a,% ), both
u(a,t) and c(a,T ) must be specified. Such disturbances can not |
propagate to the left, and so conditions at x=a will not propagate
downstream. This flow is said to be supercritical, or in the case
of a gas, supersonic.

A major difficulty of the characteristic method is also
evident from the above discription. If values of u and c are requ-
ired at equi-spaced intervals in time and space, it is necessary
to carry out a series of interpolations.

One further case of interest is one that can arise when a
disturbance is propagated into lower-lying water. If the forward
characteristics should intersect, as in Figure 2.3, with the first
intersection at I, a situation is encountered wherein two different

heights exist at the same point, i.e. a bore or a hydraulic jump
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has formed.

x

Figure 2.3. A set of intersecting forward characteristics.

For this point I, and all others lying within the forward and back-
ward characteristics from a point just before I, calculations are
no longer possible using this theory alone. A theory involving

shock fronts must be used.




4. Finite difference methods--.

The various quantities in the equations of motion and continuity
are replaced by their forward, centered, off-centered, or backward
finite difference equivalents (these in turn being derived from
Taylor series expansions). A time-space grid is prepared and the
components of the finite difference equations are evaluated at the
grid intersections. The solution of the finite difference equations
must be stable. Thus the solution must approaéh the true solution
of the original equations (as evaluated at the grid points) as the
mesh size approaches zero. Unfortunately this is not always guar-—
anted, so it is necessary to concern oneself with establishing the
stability-criteria (generally involving the time step U, the
distance increment { » and the velocity of propagation of the dist-
urbance ¢ ) for each proposed finite difference scheme.

Following the procedure of Richtmyer and Morton (1967), diff-
erence quotients are introduced in the following manner.

*
_ai :(1'—6) (Zm"" -Z:‘) +6 (Z; —Z;-‘)
ox 4 1 (2.27)

'r
where EZ"‘=EZ[E1Q,7"ij » m and r integer counting indices that

correspond to grid lines (see Figure 2.4), and 0 8 <& 1.
The difference quotient is termed forward, centered, or backward
if 6 =0, 1/2, or 1 respectively. Using such methods the equations

of motion and continuity may be rewritten in finite difference form

in several wa&s. In the discussion of the two schemes that follow,
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considerable use was made of the report by Leendertse (1967).

The Leap Frog method

The first example of a finite difference scheme that will be
discussed is the so-called leap frog method. It is an example of
a staggered grid. Using the following simplified equations of

continuity and motion,

ot ox (2.28)

and
Ju +Saz -
ot ox ., (2.29)
the finite difference equations are written as
el =1 A T
Z—fm - m "L Umﬁ - Urn-l _O
2T 2T
(2.30)
and v+2 v
+ el ™l
Um'H Um-n 3 Zm-p-z, = m _O
27T 24 , (2.31)
On the time-space grid, the grid points concerned are shown in
Figure 2.4.
T+ Y+ &
t T"'l Z T"' Z Z
T 8] 8) * U
Tt Z -1
m-1 m  ms M+ m-1 m m+ m+2.7

—>X

- Figure 2.4. Grid points used in the leap frog method.




If m and r are taken as being odd, it will be seen that heights are
calculated at even-numbered time steps and odd-numbered space steps,
while currents are calculated at odd time steps and even space
steps. For an inlet whose open end is on column 1, and closed end
on column 10, the order in which the calculations are performed is
as follows. The normal routine will be to calculate all the Z's
along a particular grid row, to assign Z, edual to the value of the
tide height corresponding to that particular time step, and to
assign Ujg =0; Z; and Ujp are thus boundary conditions. To init-
iate the computations (the calculation of Z% , Zg ,.;..., Z% ) it is
necessary to supply initial conditions for Z along row 0, and for
U along row 1. For calculations concerned with inlets it is conv-
enient to start the calculations at a time corresponding to high
tide at the mouth of the inlet. 1In this situation the currents will
all be zero if a standing wave soluticn is assumed ( (2.15) and
(2.16) ) and the initial tide heights may be estimated or obtained
from a simple calculation of the harmonic type. So far no prepar-
atory check has been made as to whether the scheme will be stable.
One way of approaching the investigation of stability is to
assume a particular error wave at a given time step. The wave may

then be represented by a Fourier series composed of terms such as

U =U* ei.{Stel.éx

(2.32)

and




= =Z*6L{3teidx

(2.33)
where 3 =wave frequency
=wave number
U*,Z =Fourier series components.
If a linear system such as the above is being examined, cnly one
term of the Fourier series need be investigated. As the solution
is only valid at certain grid points, we assume that
LATT Lemé

*
U=U e e (2.34)

and

* ~LBTT ~Lomi
Z2=Z T "¢

. (2.35)
When equaiions (2.34) and (2.35) are substituted into the finite

difference equations (2.30) and (2.31), the following equation

results;
. 2 -2
[e"ﬁ'cJ -2 +4 :E.jak.s'me (8¢ +|eRT =0 .
Putting .
b=1-2 % gh.sin?(s¢) | .
we get | v,
(GL‘M)z z (bt JFE:T> =N2,34 | e

lhe requirement for stability is that,)Jsg 1. It therefore follows

that the stability condition for this scheme is



20

-1£b£1, or

Jak <1,

e/T | (2.39)

This stability condition must be adhered to whenever this particular
finite difference scheme is used. Note that fgh 1is the speed of

the long, surface gravity wave, and that tﬂt is the maximum velocity
that can be resolved by the grid. One might call the term (l-ﬁt )

the grid resolution velocity (E. Berg, personal communication).

Thus the stability criterion, equation (2.3%), takes on é new
aspect; the maximum expected velocity of pronagation must be less
than the grid resolution velocity for stability to be ensured.

If the above conditions for b are met, the four roots of )\
will lie on the unit circle in the complex plane. This means that
error waves will not tend to die out with increasing time. One
way of ensuring that they do die out is to include a bottom friction
term.

With the equation of motion modified to
§Et.*-£}gﬁi + kLLL =
ox ’ (2.40)

and using equations (2.28), (2.34), aand (2.35), we get

LPZ*+ thea U*:O,

(2.41)
and . . ' *._
L362*+(L,?>+R)U :0 2.4
Thus 1
. R R \2
P:d LEZ t/%k—(é‘g‘)
s (2.43)

orz:z*e.%teﬂéJ 3’1“(’2@2)2 € giex i

b} (2.44)



so that the effect of bottom friction is to decrease the amplitude
of the error wave. 1In general, the effect of friction will be to
improve stability as friction represents an énergy loss.

If the four roots of ). that lie on the unit circle are closely
inspected it will be seen that two of them have positive real parte
and two negative. The effect of the former is to provide a term
cos(/3 rT), which is as one would expect. The two negative ones
cause a term of the type (-1)T cos(BrT). This oscillates to
positive and negative values with each consecutive time step provid-
ing a spurious solution of period 2T modulated by a wave of period

T, where T is the period of the computed wave.

An Implicit scheme

The second scheme to be considered has its finite difference
equations written in the following form;
TH T h v+l T+l
- T - -
Zm Em + "—'( m+t m-l) = O
} (2.45)

and
v+ v
Umﬂ- Um+l+ %‘} (Z‘:n‘:-lz - ‘\:n“) =0 .
(2.46)
The grid points at which quantities must be evaluated are shown in
Figure 2.5.
Taking again an inlet whose length has been divided up into nine

equal intervals of length e , with the entrance lying on column 1

and closed end on column 10, the values that have to be calculated
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along each row are

ZUZUzUvZUzZU .

T vl v 2 Ju ] el | 2 lu Iz
m-l m M+t M+2 Ty~ ™m ™mel MM+
> 2C

Figure 2.5. Grid points used in the implicit method.

If the values of Z and U are known at time step r, one cannot immed-

+\

*
iately calculate Uz , even though ZE?' is available as a boundary

el

condition, for it depends on Zn It is however possible to write

T4

8 equations involving the five U AR

s and the five s. There
are only 8 unknowns as 2 of the 10 values are boundary conditions.
It is thus necessary to solve 8 simultaneous equations for 8 unknowns
in order to obtain all the values for time (r+l). For this reason

the above system of difference equaticns is known as implicit. The

equations to be solved are

(1000 . . . . . oy [ZM) (o) fZ,(l;)i

v+l v

-al a 0 0 0 Uz 2 0
0 b1 b 0 of | A" | & 0
= +
00 -al a o}%U}?'& UI&%O ?
00 0 0 b1 b 22'“ Z{ 0
L0 00000000 1) LU,':'J o ) We(®)

(2.47)
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where a=gT/2& , b=hT/2¢8
Zy(t)=conditions at the inlet entrance
Uo (£)=0 . :

The above equations may be solved by the use of an algorithm.

. el . .
The equation for Us  1is written in terms of Zg*‘ plus known quant-

el

P 520 LI . . . . .
ities; Z, is written in terms of Usg  etc. until Zg+l is written

. . . [
in terms of Uﬁ?', which is known. The values for ZE* ,Ug*l,.....

4+ .
Uz ' may then be found in reverse order.

If a stability analysis is performed for this implicit method

as was previously done for the leap frog method, it is found that

ip _ 1L /9R sin(30)
1+ %;- gh .sin®(¢9)

e

(2.48)

so that
-V
-:[wu( Qj 2 . 2
I A=@ BT 1+ %gh. sin?(d¢) o

Hence|>\|( 1 for all non-trivial values of T and{ , and the import-

ant fact is established that this implicit scheme is unconditionally

stable.

Stability criteria based on characteristic theory

It is interesting to consider the problem of stability util-
ising characteristic theory (Abbott, 1966). Thie will cften allow
one to estimate stability criteria from a wvisual inspection of the

grid layout. Considering part of a tima-space grid layout for the

leap frog method (in which conditions at P are calculated from a
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knowleze of those at A and B). the following approach may be used

(s22 Figure 2.6.). ////
T42 \\ A
N+l /><i//
- B P R
‘YU
R B

m-} m m+1 T2

Figure 2.6. Section of time-space grid.

If AX and BY represent the forward and backward characteristics
through A and B respectively, then the domain of determinacy of A3
is the area bounded by AB and the lines AX and BY, i.e. any point
within this region will be such that the forward and backward char-
acteristics through it will both intersect row r between the limits
A and B. For the leap frog scheme to be stable it is therefore nec-
essary that point P lies within this zone of determinacy. As the

A

term uéEE has been neglected, the slope of the characteristics is

such that

E&E& = *cC

d . (2.50)
Thus for stability

~ !

- < g

¥ ? (2.51)
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which is the same condition as that derived earlier (equation

) (2.52)

(2.39) ).

When considering the second (implicit) scheme from the point
of view of the method of characteristics, the reason for the uncon-
ditional stability may be seen to be due to the fact that it is
possible to construct all the characteristics that intersect row

(r+1), for the calculation of conditions at time (r+l) depends
on the simultaneous application of conditions at time r along with

boundary conditions at time (r+1).



CHAPTER 1III

THE FINITE DIFFERENCE EQUATIONS

1. The basic equations--.

The equations used are the same as those used by Yuen (1967)

and are as follows (with axes as in Figure 3.1):

+w(UrVA) 2 U _fy4qdZ
at ( ) H f 381 . 5.1
AV L (UVA)Z Y L fU+99Z 4
ot ! ( ) H f 3‘93 ’ (3.2)
and
o(HY) b(HV) OZ .0
T Tox 33 ot . 3.3

where  U=x-component of depth-mean velocity
=y-component. of depth-mean velocity
Z=vertical tide measured (positive upwards)
from mean sea level
D=depth of water beneath mean sea level
H=total depth of water (H=D+Z)
F=friction coefficient
f=Coriolis parameter (f=2flsin(latitude))
g=acceleration due to gravity
f =angular rotational speed of the earth

The above equations will be solved by the method of finite differ-
ences. A choice exists between the two different approaches, the
explicit method and the implicit method. On account of the avail-
ability of literature on the subject, it was decided that efforts
would be difected to the development of a variable boundary model

using the explicit method.
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Although covered by Yuen, the derivation of the finite diff-
erence form of the equations will be covered in detail during the
rest of the chapter. This is done so that a sound base will be
available on which to base the program, and also because Yuens work

contains some printing errors which are misleading.

2. The grid network--.

The grid system used is one first alluded to by Richardson
(1922), and is staggered ir time and space. It is thus an extens-
ion of the leap frog method. A projection of the grid onto the

x-y plane can be seen in Figure 3.1.

m

2 4 2 v Z v Z vV Z v

i U U L U
| 2 3 4 5 &6 7 8 9
~5— <G m

Figure 3.1. Section of staggered grid.

U and V are calculated at odd time steps, Z at even numbered steps.



3. U-point calculation--.

Equation (3.1) is first written in the form

-
.“-—

ot H

oU U?‘(U?'*V _f\/+
DC
' (3.4)

It is replaced by a two-point centered finite difference relation

as follows;

au(‘r) ) U(T‘H) _ U(T'.-D

ot 2T ,

wvhere the superscript r refers to time step r , and ¥ is the int-

erval between time steps. In a similar fashion,

az(m;n) - Z(m"‘)n) ‘"Z(m‘bn)
i ox 2 < .

where the subscript(m,r) refers to 'east-west' grid line m , and

'north-south' grid line n . {, is the interval between grid lines on
the x-y plane.

It will be seen that in equation (3.4) it is necessary to have
available the values of V and H at the U-point. These are estim-
ated by interpolation from surrounding V- and Z-points (see Chapter
IT11, section 6). To calculate U at the point (m,n), equation (3.4)'

is first represented in finite difference form ty

(v+D (v-) (v -1) 2 (v-9 2 (v}
Utmnm - U(m,n) Umn ’F(U (mm) * (m,n))
2T H(*)
(m,r)

- (@) (T
_ (Sn;) +g ( Z {m+1,0) "Z(m-i,n)
2 Ea.e - (3.5




It will be observed that in the representation of the right hand
side of equation (3.4), terms U and V should have been evaluated

at time step r. As U and V are calculated only at time steps
(r-3), (r-1), (r+l), etc., they are approximated by taking the most
recent values available, i.e. from time step (r-1). 1In terms of

()
LJU“‘% equation (4.5) can be written;

(v~ 2(v-0 5 ()
Qe /) IR G & 0 , , , \/ ,
U = (¢ o )2 Umn ¥ ¥ (Uimm *Vm n))

(m,n) ~ m, n)

- (v
+f V(T X -3 ( Z(m“m) = Z ()

2 {

. (3-6)
At this stage a stability factor is applied to the two leading

(r-)

LJ(nmn)terms (a weighted average of surrounding points);

(r- _ (=) _ (v-) (v-1)
U(m,n) =& U(man) + (—'—‘—;-L—)- U(m+|,n+|) t U(m-\,nu)

(r-n (-9
+ U(m- 1,N-1) + U(m-&-l,n-x)

? (3.7)
with 04 ¥ 1 .

Again, the U terms within the {‘ } are all interpolated

values. This stabilisation differs from that used by Yuen, in

that he used only values of U calculated at U-points and not inter-
polated U values as in equation (3.7). The alteration has been

made so that more complex boundary shapes may be dealt with



without having to adjust the stabilisation process to suit the

outline of the inlet, as did Yuen.

The final form of equation (3.4) before programming is thus:

(r+) - (D) (r-1) 2 (r-1) Yo
U(mjn) = U%Tn,:w) +2 7 U((m,n) ?‘"'( 2(t'ﬂan) MY (m,n))
}_1(*ﬁ
(nbfﬂ
-i) Q] (v -
+f V((m‘n) - 3 (Z(mu,n) Z(m~!,n))
2 ¢ (3.8)

4., V-point calculation--.

Equation (3.2) is first written in the form

3V v';»(u%vz
ot fU+3&3]

*

(3.9

In exactly the same fashion as with the finite difference eval-

uation of equation (3.4) , replacing -fV by +fU and %gz by éaz

the final form of equation (3 9) is

) » (- ') (r-0\/2
(‘r'-M) \/((Y‘ I\ 2 T V(m,n) '¥"( (m n) z(m,n))

(m)n) m)n\ (q.)
}4("Br»
- (r) (r)

".J(U((m, ‘; S(Z(m n-y ; (m,nﬂ))

’ (3.10)
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With | g
(v-0 _ e (1--\) (-
(mny — \/(m n) 0(‘) ( M4, N+1) \/( m- |,nﬂ)

(v-Y) (v-1)
+v(m-|,n~|) + v(m+c n-1)
. (3.11)

oz
ox

evaluated with the x-axis going from right to left. As the grid

It will be seen that in equation (3.10) the expre551on for is

columns are numbered from left to right (see Figure 3.1.) the
form of o in equation (3.10) does not agree precisely with that

oxX

of oz in equation (3.8).

oy

5. Z-point calculation-~.

Equation (3.3) is first written in the form

OZ _ _3(HU) _ 3(HV)
ot ox - oy

. (3.12)

Equation (3.12) is then rewritten in finite difference form;

(v+2) ™ () (v+) (" (v+1)
Z (m,n) Z (m)n) ( H(m,n-‘) U(m:n")— H(m)n"“)U<m)nﬂ))

2 7 2 €

(r) (Y+) ) (v+)
- ( H(mﬂ,n) U(M+t,n) - H((r;-t,n) U(m-|,n) )
2 ¢

: (3.13)

It is seen that H should have been evaluated at time step (r+l).
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It is approximated by making use of the value for H calculated at
time step (r). The error is considered negligibles of the order
of 3 cms. in (say) 20 or more meters .

(r+2)
Equation (3.13), written in terms of Eé(n)n) , becomes

(1*) (v+1) (v) (r+1) ‘
Z((::i; Zi:;: n) ( (m,n-~1) U(M,n~l) H(m n-H) (m,nm)
’ 2 ¢
(v (r+1) (v) (v+)
+ ( H(mﬂ)n)U(mu,n) - H(m-l,n)U(m-',n))
2 ¢
, ?
(3.14)
where -
(r) - () (v
AZE("BVQ OC;EQT” ot |¢10£).j:zzuh+hn)4izi(n*4anb
r) (r)
+ Z (m,n-1) + Z(m,nﬂ)
\
(3.15)
Notice again that the terms in the { } are interpélated. We

are now left with the interpolations of V and Z at U-points, and

of U and Z at V-points.




6. Interpolation of values at U- and V-points-—-.

In the previous sections it has been mentioned that interpolated
values are necessary at U- and V-points. These are approximated by
linear interpolations. A more sophisticated approximation could have
been used at the expense of calculation time and of generality of

the model.

a) At U-points away from boundaries (see Figure 3.2).

e v z v

m U
™-) Vv Z \'4
n-i mn N+l

Figure 3.2. Values required for interpolations

at a U-point.
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V(m,n\ =4 V(mu,m..) "'V(m-\,mx) +\/(m-‘,n-.) +\/(ma1,n-1)
and : ’ (3.16)

Z(rn,n) ="2L(Z(m+\,n) + Z(m-\,n))

(3.17)

b) At U-points lying on boundaries (see Figure 3.3).
Boundaries through U-points are always horizontal (i.e. pass
through grid points of equal m). For the case of solid land lying
to the 'north' of the water, V(m,n) is found by obtaining an
interpolated value for V(m-1l,n) and then ﬁerforming a second’

interpolation using V(m-2,n) and V(m-1l,n). Thus

V(m,n) = (V(m—\,n-t) + \/(m-\ Jrvrn)) - V(m-z,n)

(3.18)
It should be noted that V(m-2,n) must have been computed before

equation (3.18) can be evaluated.

™m

U
m_| \V Z V
/
™m-2 U
™m-3 Z

M-t n T+t
Figufe 3.3. Values required for interpolations at

U-points on a boundary.



Z(m,n) is found by using the values for Z(m-1l,n) and Z(m—3,n):

2 (mn) =L5-Z(m-\,n) - 05 Z(m-yn)

(3.19)
In a similar fashion, when land occurs to the 'south' of the

water:

V(m.n) = (V(mﬂan-\) + \/(m+t,n+u)) -V(m+z,n) (3.20)
. , |

and

Z(m,n) = L5 Z(mﬂ,n) ~ 0.5 Z(m+3,n) . (3.21)

c) At V-points away from boundaries. -

Um,n) =-4"—( Utmenei) + Ugm-,ne) + Ugm-yn-y + U(mﬂ»ﬂ-?) 22)

Z(m,n) —‘-“'é'(z(rﬁ,nﬂ)‘*Z(m,n-u)) . (3.23)

d) At V-points lying on boundaries.

For the case of solid land lying to the 'west':

U(m,n) = (U(m.ﬂ’nﬂ) + U(m-l,n-l-l)) - U(m,ma) (3.24)
Z(mn)=1.5 Z(mn+) ~0.5 Z(m,n+3) . (3.25)

For the case of solid land lying tec the 'east':

U(m,n) =(U(m+i,n~a) +U(m-|,n-|)) - U(m,n-2) ,

(3.26)
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and

Z(m,n) = 1.5 Z(m,n—l) ~0.5 Z(m,n-s)
(3.27)

7. Calculation for a special (narrow) case--.

Provision is made for making calculations in the case when
part or all of an inlet is represented by a width of 2 . 1In this
case there are two possibilities. The narrow axis lies 'north-

south' or 'east-west'.

m+| U M+l v
m \Y z \Y) m \YJ - \i
(a) (b)
m-i U m-i =
n- n N+l

n-{ n N+l

Figure 3.4. Narrow channel case.

a) 'North-south' narrow axis direction.
A situation exists here such that the problem is locally
reduced to a one;dimensional situation. No cross currents
exist, so that all the V's are zero and no surface slope due to

Coriolis force will occur (see Figure 3.4.a). The interpolations

are then
U(msi,n) + Uim-,n)
2 (3.28)

U(m,m) = U(m,nﬂ) =



and

Z(m,n~l) = Z{mn+) = 2 (m,n) (3.29)

b) 'East-west' narrow axis direction.
The same type of situation exists here (see Figure 3.4.b). The
interpolations become

- Vim,n-1y + Ve,
) (3.30)

V(mﬁm) = Vm-,n)

and

Z(mﬂ,n) =Z(m-\,n) = Z(m,n) . (3.31)

At this point all the types of calculaﬁions necessar& for the
estimation of tides in an inlet are in finite difference form, if
only to a certain degree of sophistication. Boundary conditions
have still to be added.

Velocities normal to the boundaries are put equal to zero
whenever the transition water to land occurs. Thus-U=0 along
'east-west' solid boundaries (m= constant), and V=0 along 'north-
south’ solid boundaries (n= constant). There remains the problem
of opén boundaries. These occur whenever the boundaries of the
model coincide with oben water. In Chapter II it was shown by the
method of characteristics that either height or current needs to be
given as a boundary condition provided that the flow velocity is

less than critical. As little is usually knovm about currents, it



noat
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is normal to specify heights as a function of time for the various
Z-points lying on open boundaries. However, in order to evaluate
the bottom friction term near the open boundary, one has to know

the currents along the input line. To do this, a minor assumption

is made thatgﬂg =0 on 'east-west' open boundaries andzﬁ! =0 on
dx oy

'north-south' open boundaries.

8. The finite difference equations expressed in FORTRAN IV--.

In this secfion mention is made only of the variable names
used in the program. Details of the instructions themselves may
be seen in the actual program (Appendix I).

As it was desirable to program for the greatest possible grid
size compatible with a 16K single precision word memory (as then
available at the University of Alaska Computer Center), an inspection
was made of the matrices necessary for the performance of the
calculations. The matrices first considered necessary were those
for U, V, Z, H, D, and for use in a later phase of the program, an
integer matrix. An inspection of the grid coafiguration suggested
that U and V, and D and H might easily be interleaved. TFor this

purpose, interleaving was performed in the following fashion:

V(m,n) is stored in U(m,n+l)

and D(m,n) is stored in H(m,n+l) .
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Table 3.1 shows the original variables along with their

corresponding array names.

Original Name Array Name
U(m,n) U1(M,N)
V(m,n) Ul(M,N+1)
Z(m,n) Z1(M,N)
H(m,n) H(M,N)
D(m,n) H(QM,N+1)

Integer Matrix IU(M,N)

Table 3.1. Array names.

The integer array, IU, waé limited to two bytes instead of the
customary four as no number larger than a '3' needed storing (two
bytes can contain a positive integer of up to 127).

In such a manner the array storage requirements were reduced in
the approximate ratio 12:7. Taking into account the computer core
limitations, the maximum grid size that could be handled was 65 x 29.

Taking the three equations for the prediction of U, V, and 2
(i.e. equations (3.8), (3.10), and (3.14) ), the instructions were

simplified by using the following:

Equation (3.8)

(see equation (3.7) )., (3.33)



(v) ()
gé - Z(m-n,n) _Z(m-\,n)

ox 2 ¢

ZXATU =

Equatlon (3.10)

(r-1)
vsTaB = \/|
(m,n) (see equation (3.11) ) ,

(™) ()
ZYATU = ?..Z_. = Z(m,n-') - Z(:‘n,nﬂl
2y 2 ¢

Equation (3 14)

Zl(M,N) = Z .
(m n) (see equation (3.15) )

(v (v+) ) (r+1)
wx = H(m, n-)U(mn) — 2; n+) U(mjmn)
2 ¢ ]
- {7 ) Y)
avr = Himeym Ul = Him-t,0 U((r;t\?rl
2 ¢

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

The transposition of some of the more important variables may

be seen in Table 3.2.

Original Symbbl Variable Name
R
f ‘
53 GEE
o Y .

Table 3.2. Transposition of some major variables.

- The stability factor 04 was put equal to 0.99 following the
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practice of Yuen.

9. Stability of the finite difference equations

in two space dimensions--.

It is tempting to use the same approach as was used for consid-
ering stability criteria for the one space dimension explicit scheme
of Chapter II. A section of the grid network as used for the

calculation of V is seen in Figure 3.5.

Ve

Z,
=¢1

27T

Ua. Ub

Y

Ud Ue

[
)

Sl
2¢d .

Figure 3.5. Grid points required for V-point calculation.

For stability Vz must lie within the domain of determinacy of points
Uas Up, Ue s Ud s 2y , and Zy . The U-points therefore are more
likely to cause instability (on account of the steepness of the slope

U.L Vz).
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The value of this slope is easily seen to be 27T .
&/z

For stability this value must be less than the slope of the charact-

eristic cone through Uy , viz 1l/c .

i.e. T V/Z?‘ J
e T |
v | .
/é—g'R . (3.40)

If a similar diagram is drawn for a Z-point calculation (see

or T <

Figure 3.6) it is seen that the stability requirement comes to

Zd Z 2&

Zc

Figure 3.6. Grid points required for Z-point calculation.

. |



The same stability requirements result for the U-points as for the
V-points on account of the similar grid configuration. The most.
stringent requirement, as far as time is concerned, is thus that

in equation (3.40).
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CHAPTER IV

AUTOMATION OF THE SEQUELCE OF CALCULATIONS

1. The basic sequence of calculations-—-.

With the basic forms of calculation in FORTRAN form, the next
and most crucial step ahéad is their sequential contfol. Instructions
must be developed that apply the basic types of calculation to eaéh
appropriate grid point as determined by the nature of the boundary.

First of all it is instructive to consider what might be called
the conventional approach to the arrangement of the order in which the
finite difference calculations are performed. Having chosen a suit-
able grid boundary, one might then arrange for the assignment of
depths, initial tide heights, and zero velocities. The next step is
the interpblaﬁion of éide iteights and currents. Then follows the
calculation of currents and heights, the input of new boundary values,

and the repetition of the calculations. One way in which this might

be done (for the case of a rectangular grid) is as follows:

Interpolation

a) Starting at the 'southwest' corner, one line from the bottonm
(m = 2), write an instruction for calculating U, Z, and 4 at V-
points lying within the boundaries. Repeat this for all even-

numbered rows.
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b)

c)

d)

45

Starting with the second line from the bottom (m = 2), write a
similar type of instruction for calculating V, Z, and H at U-
points. Repeat this for all odd numbered rows except for the
top and bottom rows.

Apply equations (3.20) and (3.21) to U-points on the botto@ rov,
and (3.18) and (3.19) to U-points on the top row.

Apply equations (3.24) and (3.25) to V-points on the left

boundary, and (3.26) and (3.27) to V-points on the right boundary.

Current and heisht calculatioas

e)

Apply U, V, and Z calculations at (-, V-, and Z-points respec-

tively, row by row.

Boundary conditions and time increment

£)

g)

At this point it_is convenient to apply the boundary conditions;
along water - land boundaries U and V are put equal to zero as
necessary. Along the line(s) where the inlet meets the open sea
it is necessary to specify tide heights. These tide heights will
replace those calculated in the Z-point calculations of step (e).
The false values for Z that were calculated do not in any way
effect the rest of the calculation. As mentiored in section 7,
Chapter III ,g—% =0 andg*;UE = 0 are applied along open boundaries
as necessary.

The time step is now checked to see if the end of the tidal cycle

has been reached. If not, the time is increased by 2%’, and the

program returas to step (a).
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i) Tue process 1s then repeated for the desired number of tidal

cycles, values of U, V, and Z being printed whenever desirable.

It will be seen that the above method is straightforward as long
as the grid boundary is strictly rectangular. If, however, the
boundaries are irregular, the number of instructions will be greatly
increased, and the amount of time to be spent in programming will be
correspondingly large.

If a series of inlets are to be studied, perhaps with each
involvinz two or more different grid spacings, it is obvious that any
modifications to the program that result in reducing programming will
be of considerable value. After programming several inlets in the
manner above, as a result of the experience so gained, an approach
was found Eﬁat reduced the programming of any inlet to the few in-

structions necessary to specify the tide height at input points as a

function of time. -

2. Automation of the inlet-tide programn—-.

An inspection of the grid layout and of the various calculation
types reveals a simple means by which the program may be automated.
The new program is centered round the scanning of an integer-matrix
which contains information as to the location of the solid and open

boundaries.



47

Teferring to rigure 4.1, an example of a grid notwori of irregular
boundary configuration is shovm with two perpendiculér lines (crossing
at a Z-point) emphasized. Starting with the row (a = 2), it will be
seen that the following types of standard calculation may be inferred
from the boundary limits:
* V=0at (m=2, n=1) and at (2,9)
* Conventional interpolation of U and Z at V-points (2,3)
through (2,7)
* Special boundary-case interpolation .of U and Z at V-points
(2,1) and (2,9)
* V calculations at V-points (2,3) throuch (2,7)

* Z calculations at Z-points (2,2) through(2,8)

Similarly, along the column (n =6), the following calculation-
types may be inferred:

* U (9,6) =0

* Conventional interpolation of V and Z at U-points (3,6)

through (7,6) v . B

* Special boundary-case interpolation of V and Z at U-points
(1,6) and (9,6)

* U calculations at U-points (3,6) through (7,6)

* U (1,6) = U (3,6) (appliication ofé}% = 0 on open boundary)
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1 O 3 0O 0O O 0 0 1 o0 2
Card 7m=6

10 OO0 OO O0O102¢e2

Card

m=2

Figure 4.1.. Typical column and row through Z-point, with

associated integer matrix input cards (see

text for explanation).
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It will bte noted that 7 calculations are not needed along this
column, as all Z-points can be covered vhen traversing the rows.

This approach will be seen to includ2 all possible boundary cases as

long as the interpolations used are those previously referred to. At
this point, it is possible to inspect the rows and columns visually,

and thus specify the various calculation types. The next step is to

perform this function automatically.

Boundary limits are specified in the forﬁ of integer numbers
(see figure 4.1). Starting (for example, along a row containing V-
points) from the left, the integer 1 is punched in odd-numbered columns
of the card whenever a solid boundary is encountered. It is assumed
that land extends to the left of the first integer. The next 1
indicates .that solid land has once again been reached. This process
of alternating land and water may be continued until the maximum
allowable grid network size has been reached. In this program the
limits are 29 in the horizontal direction.

An even number of 1's must be specified in order for the cal-
culations to be bounded. 1In the case that no solid boundary exists,
the 1 must still be used, as it serves as a limit for the grid-point .
calculations in that particular row. A 3 is placed 2 spaces to the
inlet side of the boundary. This indicates to the program that the
velocity V at the point 1 (to which the 3 applies) will be changed from
zero to that at the matrix point containing the 3, i.e. we have

appliedg% = 0.




In order for the 3" not to cause confusion in the program, it
necessary that, in the particular row to which the '3’ applies, there

be a 1 two spaces away on the punched card on one side only of the '3'.

When the last (even-numbered) boundary has been reached, a
2 is placed two placeg to the right of the last 1. This indicates to
the program that no further values of the integer matrix need be
scanned along this row. The integers are punched on cards, one card
corresponding to one row.

'"East - west' boundaries are specified in precisely the same
fashion as for 'morth - south' boundaries. In this case, the grid
is scanned from 'south' to 'north' along grid columns containing U~

and Z- points, the limit being 65 grid points.

3. Input‘of boundary conditions--.

The boundary values are read into the computer first along
columns of constant n, starting from the 'west', then along rows of

constant m, starting from the 'south' (see Figure 4.2).

Figure 4.2. Order in which grid boundaries are read.
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Tiue half-word integer matrix IU previously referred to is ti.us
built up column by column, row by row. The dimensions of this matrix
exceed 65 x 29 by 3 and 2, making a 68 x 31 matrix: The 2 in each
direction is to include the integer '2' at the end of each column and
rov; the extra 1 is to cause the array storage area to bagin and end
on a full-word boundary in the computer core.

This integer matrix is monitored during all parts of the program.
Input of depths and initial tide heights, current and height cal-
culations, interpolations, printout, and later in the anaiysis of the
rav U, V, and Z output data.

This pattern followed is in all cases similar, and will be out-

lined in some detail.

4, Description of boundary-monitoring process-—-.

The procedure will be illustrated for the case of one of the
rows during U calculations at U-points (see Figure 4.3).

At the start of the calculation of each row, a flag, IFL, is put
equal to zero. This signifies that solid land lies to the left, i.e.
that the first boundary met will indicate a transition from land to
water. The first odd numbered column (n = 1) is then inspected for a
0, 1, 2, or 3:

If a 3 is found, the column number is increased by 2 and the

process repeated

If a 2 is found, this indicates that no more columns need be

scanned, so the sequence jumps to the next row



ut
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Figure 4.3. TFlow chart for boundary-monitoring process.




If the iateger is less than 2, tihe integer is checked for a
lorad

If a O is found, the column number is incrzased by 2 and the
process repeated

If a 1 is found, the flag is checked to see whether a left or
right boundary has been arrived at

If the flag is 0, the boundary is a left-hand one. In this case
the left-hand limit DML is set equal to (column number + 2).
The flag value is changed to 1, and the process repeated.

If the flag is 1, the boundary is a right-haud one. In this casc,
the right hand limit TR is set equal to (column number - 2).
At this point, a$ may be seen from Figure 4.3, the limits of
‘thhe U at U-point calculations for this section of the row
nave been ascertained. The calculations are then performed.
The flag is then changed back to 0, and the process repeated.
When all of the rows have been checked, the next phase of the

program is entered (not shown in the flow chart).

The above process is modified by the use of extra 'IF' statements
to deal with the various situations of special-case interpolations,

unusually narrow conditions, etc.




CHAPTER V

PROGRAZT ARRANGENTIT

1. Division of the program into subroutines--.

To'simplify programming, and to divide the program up so that it
would fit into the available core space, the full program was split
up into several subroutines. Two of them are used once only, the
remainder are called whenever necessary. The main program is respon-
sible for calling the various subroutines vhen required. A flow chart
of the main program, and of the subroutines may be seen the the pages
that follow.

The élow chart (IFigure 5.1) shows just sufficient information to
enable the rcader to follow the program through the steps of initial-
isation and then through the instructions that monitor the time steps
and the tide cycles. Within the latter, on the second page of the flow

chart, are the statements that control the times at which

tide heights and currents are printed out. To trace the various

branches in the full printout of the program (see Appendix I), the
number of each instruction lying at the end of a branch line is written

to the left of the corresponding instruction.

2. Qverlays--.

The total program length including the FORTRAW program, array

storage, and supervisor exceeded the available core space.
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LT TRAMTA e
MAT FROGRAXM

\ READ IIDA /

CALL INIT
CALL PRINTD

L
L

67 IFIT=C @

ICYC=C

|
L

61 CONTINUE

N

=

8999 | CALL WRITHER

CALL WRITZR

I
i

8698 CONTINUE

)

Figure 5.1. Program flow chart (1/6).
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CALL WRITE
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Figure 5.1. Program flow chart (2/6).
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Cill UVZ

CALL INPUT

eo

IDAY=IDATH!

URITE(E,1).. .

€3

Figure 5.1.

Program flow chart (3/6).




SUBRCUTINE INPUT

>
z21{ , )=
£(FIT P
TO BE
SPEZIFID z1(, )=
BY USiR
£{FIT,FER)

-~

RETURN

|
I
I
Ls.

Figure 5.1. Program flow chart (4/6).
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RETURN

Figure 5.1. Program flow chart (5/6).




SUBRCUTINE WRITE

\FRIIT Z's /
\PRIIT U's /

FRINT V's

SUBICUTING LvZ

CALCULATE

.
Uts

CAICULATE
Vts

REIURN

Figure 5.1. Program flow chart (6/6).
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In order to run the program, it was necessary to split the pro-
gram into several 'pinases'. The process involves the storage of all
tine phases, with the exception of the main calling program (the 'root'
phase), on disc. The root phase calls the particular phase required
off the disc iato core, where it is placed starting at a particular
location.

For convenience, each of the phases consists of one of the main

subroutines:

SUBRCUTI.E PHASE NAIE
INIT PHASITIE
PRINTD PHASI: (ES
. WRITE PHASNME2
uvz PHASNME3

Table 5.1. Phase Names.

The subroutines WRITER and INPUT were not split up thus, as they are
continually being called by the root phase.

Once the phase corresponding to a particular subroutine has beer
placed in the core, it is called one as would a conventional subroutine.

The additional instructions necessary are as follows:

* The main program is preceded by a card:

1234
PHASE PHASHN!E®,ROOT
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* The next phase 1s preceded by:

1234
PHASE PHASINMEL,*

where the asterisk signifies that the program is to be placed

into the first available location following the root phase.

* Each successive phase is preceded by a card of the type

1234
PHASE PHASNME2,PHASNMEL

The second name, after the ',' signifies that this phase is to

be loaded -into the core starting at the same location as PHASWIEL.

* To call any particular phase, the necessary instruction is,
for example;

1234567 .
CALL OPSYS ('LOAD','PHASNME3')

* At any later point, the subroutine associated with
PHASNME3 may be called as usual.
It is obvious that a subroutine may only be called when it has

been previouély loaded into the core.
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The layout of the phases is conveniently shown by a diagram (see
Figure (5.2). The numbers to the left of the main tree are the corres-
ponding core locations in hexadecimal arithmetic, for onz given length

of the INPUT subroutine.

— FORTRAN SUPERVISOR
3050 |- COrnIoN

9CDO |~ ROOT

AF08 -WRITER
AF80 |- INPUT

BOF8 [~ ILFIBCOM

3 .

E7BO - *

FFFF - End of core

INIT ‘PRINTD

WRITE lUVZ

Figure 5.2. Overlay tree.

With this overlay system, with the longest phase (INIT) in core,
the program extends to F551. A few additional bytes are reserved for
buffer storage when various input/output devices are encountered
during the program. No information as to their extent is printed

out. If insuffient core space is available, an error message will



be printed out, and the job terminated. In this particular computer,
sufficient space was evidently available.
For more information on the overlay system, the reader is

referred to the relevant IBM manual (IBM, 1963).



CHAPTER VI

GRID SELECTION AND DATA ARRANGEMENT

1. Grid selection--.

When a particular inlet is selected for tidal studies using the
numerical model described above, the first thing to do is to ascertain
the stability requirements. The accepted criterion for the stability

of the staggered-grid model is

(>~ /Zg Dmax. (6.1)

The variable boundary model requires that the quantity (number
of intervals)/(tidal period) be a multiple of 12 (this is to satisfy
a part of the program that is responsible for printing out heights and
current information 12 times during the last tidal cycle). The number
of intervals normally used has been 360 or 720 (i.e. respectively 180.
and 360 different times at which Z's are calcdlated At Z—poinﬁé). The
former gives a resolution of (ideally) 2° for the phase of the tide.
Using this type of calculation, a compromise may be found
between a grid spacing that appears to represent the inlet satis-

factorily, time intervals, and resolution.
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A convenient method for fitting the grid to the inlet shape is
as follows:
Draw a 65 x 29 grid on a sheet of paper and photograph

it so as to obtain a slide.

Project an image of the grid onto a wall, and adjust the
projector to give approximately the correct interval between

grid lines.

Tape the map to the wall so that a reasonable alignment

exists between the major axis of the inlet and the grid.

Final adjustments may then be made so as to achieve the
§gst fit possible, consistent with stability and cost
limitations.
The above method, although it has inaccuracies in it arising
from optical distortion, heating up of the projector etc., gives a
good first approximation. Far small maps, some more conveniant methods
may be found.

The left-most edge of the inlet must be on column n=1l, the bottom

of the inlet must be on row m=l.

Having decided on a suitable grid configuration, the’grid should
then be transferred to ;he map. The use of any form of tracing paper
(other than transparent mylar) as an overlay makes the work to follow
more awkward; All the grid lines should be dravm in, and U-, V-, and

Z-points suitably labelled.



2. Basic data cards--.

The next step is to prepare the data cards.

example the grid in Figure 6.1.

Considering for

Q v V)
m 8 VN |Z |V |Z ‘N
4 Y U

6 M _1Z vV Z N
5 Y Y
4 |V 12 IV 1z |V
3 U U
. o |V 1Z VvV Z |V
LN I
1 2 3 4 § T
Figure 6.1

Example of simple grid.

The first data cards are those that specify the maximum

dimensions of the grid, number of tidal cycles to be calculated,

67

etc. These 8 cards are placed immediately behind the first // EXEC

card. The order apd format of the cards are as follows:
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Card } Variable Name Format % Example Units }
~1 * IIDA I2 Y 05 E
2 MSUH I2 09
3 NSUM 12 05
4 DL F12.4 50000.0 meters
5 T F12.4 12.42 hours
6 R F12.4 .003
7 ALAT F12.4 5.0 degrees*

8 PER F12.4 360.0

* North positive

Table 6.1.

The above cards specify the following:

1.

Example of input data cards.

5 complete tidal cycles are to be calculated,

starting at 01, ending at 05

Number (m) of top row (from example)

Number (n) of right column (from example)

Grid spacing in meters = 50 Km.

Period of tide in hours (Mz tide)

Friction coefficient, generally 0.003

Latitude in degrees (5°

N)

Intervals per tidal period.
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3. Boundary data cards--.

Then follows a series of cards specifying boundaries along

3

(el

columns, i.e. points where U=0 3% T 9.
In this case we have two cards:
Column
1234567869 10 11 12 - 80
Card
1 103000001 0 20. ... 00
2 103000001 0 20. ... 00

The second series of cards specifies boundaries along rows, i.e. points

where V=0 °r5%¥ = 0;

There are 4 cards:

Column
123456789 1011 12 80
Card
l1 100010200 0 0 00O 00
2 1000102.. . . 00
3 1000102.. . . 00
4 1000102.. . . 00
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With the integer matrix in the core, the depths at V-~ and U-points

may now be read in and automatically allocated.

4. Depth data cards~-.

In this case, depths are read in at V peints, starting in our
example with the depth at (m = 2, n = 1). This depth is punched on
a single card, in the format F12.4 (i.e. in decimal), the units being
FATHOMS. (Meters were not used as most American and English charts

are in fathom units). No depth should be less than the maximum

expected tide amplitude -- one might say that no depth should be less

than 4 fathoms. The next card contains the depth at (2,3), following

with those at (2,5), (4,1), (4,3), (4.5),.... (8,3), (8,5), one depth

to each card. The order is thus as in Figure 6.2.

% A Z__t‘L\_/_T_\

I N

Figure 6.2. Order of specifying depths at V-points.
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The next group of cards contain depths at U-points, the procedure
being the same as for the V-points. The order of the cards is, for our
example: (2,1), (2,3), (2,5), (2,7), (2,9), (4,1),ccuev., (4,7), (4,9).

See Figure 6.3.

Figure 6.3. Order of specifying depths at U-points.

5. Initial tide-height and bbundagy—value cards—-.

With the depth cards all prepared, we then procéed to th;/initial
tide heights at Z-points. These are prepared from the best available
distribution of tide amplitudes and phases over the inlet. the tide
is considered to be at its maximum height across the input. Heights
along the other V and Z rows are estimated by taking (amplitude) x
cos (phase lag), where the phase lag is the delay of arrival time of

maximum tide height compared with the input.
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Heights are estimated in METERS, and are punched in F12.4 format
(decimal), one to a card. The order in which they are taken is from
left to right: (2,2), (2,4), (4,2), (4,8),¢c0u.. , (8,2). (8,4).

See Figure 6.4.

\g_'—*’”-'——?_

(8)
V. 2z v iz v
T S
<::\\**$L\ 5

Cc

Figure 6.4. Order of specifying initial heights.

We now have the following blocks of data cards:

Type No. of cards
Grid dimensions, tide information, etc. 8
Boundary positions 6
Depths 22
Initial tide heights 8

Table 6.2. Data arrangement for example.
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This fully completes the data cards. The only task remaining is
to specify the input conditions. These cards are adaed to the program
in the INPUT subroutine, directly after 'COXZION TIDE'.

As an example, one might use:

Z1(2,2) = 0.743%C0S(6.28318*((FIT/PER)~0.0))

21(2,4) -Same-

Here FIT/PER is the point of the tidal cycle that has been reached,
expressed as a fraction of 1.0. The last term (in this case -0.0)
is the phase delay of the maximum tide compared to that at the input.
It will range between -0.0 and -1.0 (a delay of 90° would be -0.25).
The number 0.743 indicates a tide amplitude of 74.3 cms (or a range of
148.6 cms).

It is suggested that, as far as sinusoidal tides are concerned,
this instruction-type be adheared to, thus only the 0.743 and the

-0.0 should be changed.



CHAPTER VII

COMPUTER OUTPUTS AND DATA ANALYSIS

1. Printer output--.

The first page of the computer output (after the // EXEC
statement) contains information on the grid interval, tidal period,
friction coefficient, latitude, coriolis parameter (2113ﬁ1¢), and
the units used in the pages that follow.

The next 1-4 pages contain information as to the distribution
of depth (in wmeters). If the maximum grid width (NSUM) is less than
18, 1 or 2 pages will be printed depending on the vaiue of the grid
length (MéUH). If NSUM is greater than 18, one or two additional
pages will be printed covering columns 19 to 29. These may be de-
tached and joined to the first one or two pages.

The next pages, in a similar arrangement, will be the (inter-
polated) values of the initial tide heights. The next two sets of
pages will be the initial values for U and V. They will all be zero.
As the H, Z1, and Ul matrices were all set to zero at the start of
the program, it follows that all untouched elements of the arrays will
be printed as zeros. This was done for two reasons (although it may
prove confusing at first): to avoid writing complicated format
statements, and to serve as a check on the functioning of the program,
i.e. if non-zero values show up in unexpected places some error in

the boundary-location specification may have occurred.
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After this, values of tide height and currents are printed in a
similar fashion at the end of each tidal cycle, with the exception of
the last.

During the last cycle values are printed out at fractions (1/12)
of the tidal period. Thus values will be printed at 1/12, 2/12, 3/12,
eesesy 11/12 of the period. This provides values of the intermadiate

tide and current distributions.

2. Tape outputs-—-—.

Iwo tapes are used during the main program:
* A short tape is placed on unit 8 (a tape I/0 device), and has
sufficient information read onto it at the end of every tidal cycle
so that in the event of an unscheduled termination only a small
amount of reprogramming is necessary to restart the program at the
beginning of the next cycle. This is useful when, for some reason
or other, the program is terminated before the CALL EXIT is reached
(such as during a power failure). The tape is discarded in the event
of a successful run.
* A long tape is place on I/0 unit 9. At the start of the program
basic information, such as dimensions, tidal period, boundary
positions, etc, are written onto the tape, for details please see
Appendix IV.. During the last cycle, values of current and height are
written onto the tape every time that tide heights are calculated.

For convenience, tlie entire Ul and Z1 matrices are written onto the

tape. In order to achieve maximum compression of data, a special
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program is used that writes the entire matrix as one continuous record
(FORTRAN IV normally limits the maximum record length to 64 single-
precision words, then leaves an inter-record gap of 6/10 inch.) The
tape is then rewound at the end of the last cycle, and is thus ready
for detailed analysis. The program was written by Mr. Don Walker of

the University of Alaska Computer Center

3. Data analysis-—.

This consists of the analysis of the current and height data
on the second tape. Two programs have been joined together to form
one standard package:

Progfam 1: Height and Phase analysis.
This program scans ;he tide heights at each Z-point. It stores
the maximum and minimum tide heights that occur during the last cycle
along with the associated phases. These values are then printed out.
The output format differs from that used during the main program;
asterisks are printed out in land areas, and the spacing between rows
has Been increased so as to partially offset the distortion of the
inlet shape that occurs in the printing. The result is pleasing to -
the eye.

The program then calculates the mean range from (max tide height-

minimum tide height), and mean phase from:
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mean phase = phase of max. height + phase of min. height _90°’
2 bd

(7.1)
provided high tide arrives before low tide during the last cycle.
If not, the phase of minimum height first has 360 added to it before
equation (7.1) is computed.

Program 2: Current Analysis.

For each current matrix, currents are interﬁolated at Z-points.
These currents are combined to form a vector, and the length and angle
(clockwise from the North) are calculated. The current values are
checked for maximum and minimum values. The times (in hours) and
angles are stored along with the associated maximum or minimum values.
At the end of the cycle the values are printed out. From this out-
put it is possible to estimate the dimensions and directions of the
current ellipse axes and their sense of rotation. At present,
during plotting, it is necessary to assume that the maximum currents
are the same at ebb and flood, and that their directions are 180°
apart. Similarly with minimum currents at slack water. It should
be a simple matter to extend the program to calculate the 2 maximums,
and the 2 minimums with their associated angles and times, however,

it is arguable whether the present accuracy warrants such detail.

A printout of the two analyses programs will be found in Appendix 3.




CHAPTER VIII

A SAMPLE PROBLEM

To fulfil the need for a sample problem that will serve as a
guide for data arrangement and as a test for the program, a simple
example will next be presented and solved._ |

The problem is as follows; An inlet has the following

dimensions:

Length 350 km
-‘Width 200 km

Depth 250 fathoms

The inlet will be analysed for a tide of period 12.42 hours, having
an amplitude of 0.743 meters at the mouth. In the absence of
friction and Coriolis force the application of equatiqn (2.15)

shows that the expected amplitude of the tide at the closed end of
the inlet should be 1.000 meters. The tide will be.consideréd uni-
form across the mouth of the inlet for reasons of convenience, al-
though in reality this would be unlikely. To go along with this, a
latitude of 5° North will be assumed. If a grid interval of 50 kms.
is selected, the application of equation (6.1) results in ¥ € 527.9
seconds. On choosing 360 intervals per tidal period, % =124.2

seconds. This might be considered unnecessarily generous, however

it will provide good resolution for the phase of the tide. A value
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for the friction coefficient of 0.003 will be assumed and the pro-
gram will be allowed to run through five complete cycles.

For this problem the first 8 data cards will be as in Table
6.1. The boundary-value data cards follow as listed in Chapter 6,
section 3. As depths throughout the inlet are constant there will
follow 22 cards, each with 250.0 punched in the first 5 columns.
For the initial tide heights, values are needed for rows 2,4,6, and -

8. From equation (2.15) we obtain

360. X
= COS | m—
‘ZE(Qf) ( 2994 > ,

(8.1)
where x is measured in kms. from the closed end of the inlet.

The approximate initial tide heights are then as in Table (8.1).

Row Height
8 0.995

6 0.95
4 0.865 i
2 0.743

Table 8.1. Initial tide heights.

The data cards willbtherefore be, one number to a card (starting in
column 1), 0.743,0.743,0.865,0.865,0.95,0.95,0.995,0.995 . The
two cards that have to be added to the INPUT subroutine are as in

Chapter 6, section 5.
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The program was run on an IBM 360/40 computer and required
7.5 minutes. The two analysis programs required a further 3.5
minutes each. Some of the printed results are shown in Appendix V.
The outputs are largely self-explanatory and agree closely with

those predicted.




CHAPTER IX

TWO APPLICATIONS OF THE MODEL

1. Application of the model to the Moy tide of

the Gulf of California--—.

The Gulf of California has its entrance on the Pacific Ocean
and is bounded by Lower California to the west and Mexico proper
to the east. The gulf is oriented in a northwest-southeast dir-
ection with its northern limit being formed by the Colorado River
(Latitude 32° N.). Its mouth lies between Cabo San Lucas and Cabo
Corrientes (with a mid-lafitude of about 22° N.). The tidal
study was confined to that part of the gulf lying to the north of
the city of Guaymas (Latitude 28° N.) for reasons of economy of
computer time. The bathymetry of the gulf, along with the grid
outline finally chosen is shown in Figure 9.1.

The greatest depth that occurs in this restricted region is
some 2740 meters. To represent the coast around tﬁe locality of
Isla Tiburon to an adequate degree, it was found necessary to
select a grid interval of 15 km . Owing to the narrowness of the
channel lying between Lower California and Isla Angel de la Guarda,
it proved impractical to represent the outline of the island with
this particular grid scheme. The effect of the island was partially
taken into account by assigning an arbitrary depth of 5 fathoms to

all grid points lying within the outline of the island.
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To ensure stability a time step of 62.1 seconds was chosen.
This conforms to the stability requirements of the two-dimensional

explicit finite difference scheme (equation (6.1) ), so that

15,000
J2x98|x2740 (9.1)

or U £ 65 seconds.

Input tidal data for this region is scarce:. The only places for
which adequate tidal data were available consisted of Puerto
Penasco in the north, and Guaymas. The ampliﬁudes of the My tide
constituents are 157 and 14 cms. respectively, while the difference
in phase was taken as 107 degrees (U.N.A.,M., 1967). As no reliable

information was available for the variation of the M2 constituents

across the input boundary opposite Guaymas, a difference of 1 cm.

was assumed for the amplitude (the range being smaller in the west),

and zero degrees for the phase. This was based on the values of

the mean range and the establishment for San Lucas Cove and

Guaymas (Matthews, 1968).

Thus with these assumptions, the cards that had to be added to
the INPUT subroutine were as follows:
(column) 1234567

Z21(2,4)=0.130*C0S(6.28318*((FIT/PER)-0.000))
Z1(2,6)=0.133*%C0S.cvteuncssncnccasns ssereeae
Z1(2,8)=0.136%C0S. et ccvrceconccncsnns cear e .
Z1(2,10)=0.140%COS .. cirsnenrenononssoncsnns
21(32,12)=1.570%C0S(6.28318*%((FIT/PER)-0.297))

The total duration of the main and analyses programs was about 65

minutes. The co-tidal and co-range lines, which may be said to be




the most useful results, are shown in Figure 9.2 .

The co-tidal lines show that between the sea/sea boundary and
Isla Tiburon the tidal wave is essentially of progressive wave type,
with the phase of the tide changing by 90 degrees. To the north of
Isla Tiburon the wave changes to one of standing wave characterist-
iecs. This is supported by the orientation of the co-range lines in
this region, which lie across the width of Ehe gulf, and the
co-tidal lines, which lie along the axis of the northern part of
the gulf (see Defant (1960)). The co-range 1inés in addition show
that almost all of the amplification of the tide occurs between
Penasco and Isla Tiburon, .the range increasing from 90 to 314 cms.

The nature of the tides in the Gulf of California may be conv-
eniently be indicated by the use of the Formzahl (Courtier, 1938).
The Formzahl, F, for any given place is the quantity

Ky + 0
529
M, ¥ 5, . (9.2)

For Penasco F=0.28,‘falling in the region in which tides are class-
ified "mixed, mainly semi-diurnal" (0.25<F<£L1.5). 'F for Gu:;ymas is
1.92, and falls under the classification "mixed, mainly diurnal”
(1.5€F<£3.0). The tidal regime of the gulf thus appears to fall
into two categories depending on the position north or south of the
narrow section; mostly semi-diurnal to the north, mostly diurnal

to the south.

Defant (1960) has stated that the overall tidal configuration

of the gulf seems to be one of a standing wave with a nodal line
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occuring near the narrow section. However, as seen above, the var-
iation of predominance of the semi-diurnal and diurnal constituents
with latitude warns one not to expect too simple a standing wave
pattern. It should therefore not be too surprising that the M,
co-tidal lines should not agree more closely with the few pieces

of tidal data available (Matthews, 1968), which show little diff-
erence in the establishment for locations between Guaymas and

Isla Tiburon.

The most noticible defect in the output is that of the
co-tidal lines in the vicinity of the input point near Puerto
Penasco. Here an anomaly in the lines may be seen. However, the
fact that the anomalous behavior dies out within a short distance
leads oné to the conclusion that had this input point been left
out, the phase of the tide at this point would have been about
115 degrees. This value differs from the data in the U,N.A.M,
tide tables by some 8 degrees. It is interesting to note that there
is a difference in the establishment of the M, constituent for
Guaymas as computed by U.N.A.M. and the U.S.C.&G.S. (unpublished
data). The difference can probably be attributed to the small tide
amplitudes available for analysis. On account of this it is diff-
icult to distribute the fault between the model and the tide tables
without additional tidal records.

An inspection of the combined set of co-range and co-tidal
lines leads one to the conclusion that the difference in amplitude

across the input boundary should have been nearer to 2 or 3 cms.,
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while the phase difference should have been about 10 degrees, with

high tide reaching the east side before the opposite point on the

west.

The conclusions suggested by the above application are as

follous:

In the event that bad data are used at an isolated
input point, the fact will be made clear by the

distortions in the co-range and co-tidal lines.

The effect on the rest of the area will probably

become negligible at distances greater than

4 or 5 grid intervals.
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2. Application of the model to the tides of Cock Inlet--,

Cook Inlet is located with its entrance on the coast §f South-~
central Alaska. The inlet is some 150 miles long and terminates
in two arms, Turnagain Arm and Knik Arm. Cook Inlet is generally
shallow, between Homer and Anchorage the greatest depth encouniered
is of the order of 75 fathoms. At Homer the inlet is 27 miles
wide, but narrows locally to 9 miles between the EFast and West
Forelands. Yorth of the Forezlands the region becomes increasingly
complicated (in the hydrodynamic sense) by the presecnce of shoals
and mud flats, with extensive areas of Turnagain Arm being exposed
at low tide.

The tides of the upper part of Cook Inlet are amongst the
highest in the world and can be classed with those of the Bay of
Fundy, Ungava Bay, and the Straits of Magellan. The tides are
predominately semi—d;urnal, having a mean range of 25.1 feet at
Anchorage {(U.S.C.&G.S., 1968) and a value for F (equation (9.2))
of 0.24. 1In addition the presence of streng currents and seasonal
pack ice cause much hinderance to shipping. Long-term measurements
of tide heights are complicated by the ice, while velocity meas-
urements are made most difficult by the high currents and rough
seas.

It seems customary when using numerical models to investigate
the tides in an inlet to use MZ amplitudes and phases as input

conditions. If non-linear equations are used, the resulting currents
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are largely without significance as one cannot combine the

solutions obtained for the various constituents as the model involves
non-linear terms. This of course raises questions as to the correct-
ness of restricting the input to one constituent only. The current
conditions are of considerable practical interest in the case of
Cook Iﬁlet, so it was decided that efforts would be directed to-
wards the ultimate goal of using real tide measurements as input
conditions (subject to removal of high frequency components). Since
it has been shown that some 120 constituents are needed to reliably
predict the tide at Anchorage (Zetler and Cummings, 1967), it was
clear that as a first step the model should be tested with a hypo-
thetical tide obtained by assuming a sinusoidal wave of period 12.42
hours, amblitude based upon the mean range as tabulated in the tide
tables (U.S.C.&G.S., 1968) for the region, and phase based on the
high and low tide arrival times.

After some trial runs on an IBM 360/40 computer, a compromise

was reached between computer time and the accuracy with which the

outline of the inlet could be represented by straight sections of
the grid. The model was ;estricted to that part of the inlet north -
of Homer. A grid interval of 3.052 kms. enabled the region of
interest to be contained within a grid of dimension 65x29. The

final grid outline, along with the bathymetry of the region, may be
seen in Figure 9.3. To comply with the accepted stability condition,
a time interval of 62.10 seconds was chosen. To arrive at the input

conditions across the sea/sea boundary at Homer, an estimate was
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made of the range and phase of the tide on the opposita shore using
values for Tuxedni Channel and Iliamna Bav. An interpolation was
then performed to obtain the values at each input point. Because
of the inability of such a model to handle mud flats (i.e. regions
where the depth may occasionally become zero), all such regions
were assigned an arbitrary depth of 4 fathoms. Furthermore, to
avoid problems with the very shallow conditions that exist in
Turnagain Arm and Knik Arm, the northern end of the model was
terminated in two sea/sea boundaries. The reqﬁired cards to be
added to the IWPUT subroutine are shown in Table 9.1.

Five full tidal cycles were computed, after which tipe
conditions appeared steady. Each cycle required some 20 minutes
of compugér time. The analysis programs required 15 minutes, and
a chart of the resulting co-tidal and co-range lines may be seen
in Figure 9.4. It is at once apparent that the tidal regime of
Cook Inlet divides the inlet into two distinct regions. For
convenience they may be called North Cook Inlet and South Cook
Inlet. They are separated from one another by the natural feature
of the narrow section that lies between the West and East Forelands.

The tides in South Cook Inlet show the characteristic appear-
ance of a progressive Kelvin wave. The co-range lines lie along
the length of the inlef with higher amplitudes occuring to the east.
The co-tidal lines lie essentially perpendicular to the co-range
lines and slope upwards to the right, thus indicating that the wave

is not entirely progressive but tends towards a mixed type of wave
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P=0.05140.0054%

A=2.06-0.06

DD 69 N=64,20,2

P=p-0.005%4%

A=A+0.C6 :
Z1(2,N)=A%COS(6.28318%((FIT/PER)=-P)) .
Z1(6+44)=2.13%C0OS(6.28318%((FIT/PERI-0.059))
Z1(12418)=2.53%C0S(6.28318%({FIT/PER)-0.06))
Z113698)=2,74%COS{6.28318%((FIT/PERYI~-0.221))
L1{4854)=2.79%C0S(6.28318%{(FIT/PER)I=-0.314))
L1166, 18)=3.82*%COS(6.28318%((FIT/PFR)=-0.376))
21{60,28)=4.25%C0S5(6.28318%((FIT/PER)=-D.402))

Table 9.1. Cards added to INPUT subroutine for Cook Inlet program.

INPUT
TUXEDNI
NINILCHK
EASTFORE
NORTHFOR
ANCHORAG
GULLRUCK

26
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(Defant, 1960). The fact that the two sets of lines are approx-
imately at right angles is an indication that ériction probably
does not play too important a part in South Cock inlet.

A feature clearly cbserved in Figure 9.4 is the speeding up
of the tidal wave on the west side of the inlet after Tuxedni
Channel has been reached. The explanation for this is to be found
in the bathymetry of the region. Depths of some 60 fathoms occur
west of Kalgin Island while 20 fathoms is more typical for the part
of the inlet lying between Kalgin Island and the Kenai Peninsula.
Another point that is worth drawing attention to is that there
will be scarcely any change of tidal range with increasing distance
up the inlet (as far as the Forelands), not an increase with dist-
ance as ;ne would have expected had standing wave behavior been
assumed.

The tides of North Cook Inlet have the appearance of the more
conventional standing wave. Considerable distortion from the
frictionless case is present, as is evidenced by the co-tidal lines
not being perpendicular to the co-range lines. If the amplitudes
and phases are plotted in the appropriate fashion on Redfield's
estuary tidal analysis diagram (Redfield, 1950), a value of about
3 results for/* » the damping coefficient. The reason for the
strong frictional effects is certainly to be found in the shallow
depths prevalent throughout North Cook Inlet.

Another result of interest is. that as one proceeds up North

Cook Inlet the difference in the amplitude of the tide across the



inlet decreases. This is because the difference in phase between
the maximum tide height and the maximum current is approaching 90
degrees. If slack water occurs when the tide is at its highest,
there will be no Coriolis force and hence no slope of the water
surface across the inlet at this instant.

Because of the fact that no attempt could be made to take
into account the varying shore line as the .mud flats become exposed,
to provide the north end of the model with closed boundaries, or
to include the effects of the tidal bore that is said to occur
at certain times beyond the model limits in Turnagain Arm (U.S.C.&
G.S., 1964), it is almost certain that the reality of the results
decreases as one proceeds northwards.

A iook at the output of the current analysis shows that the
maximum depth-mean currents occur just to the scuth of the West
Foreland - East Foreland narrows. They attain a maxirum value of
over 200 cms./second (i.e. more than 4 knots) and are counter
clockwise. It is to be hoped that in the future a knowlege of the
real current profile will be used to estimate the current at any
depth, given solely the depth-mean current.

On observing the nature of the co~tidal lines in the region
of the input at the southern end of the model, one is led to the
conclusion that too great a phase difference was assumed to exist
across the open boundary. It is likely that the difference should
have been nearer 8 degrees and not 18 degrees, as was used.

Furthermore it was probably a mistake to have assumed that the
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phase of the tide at the input point near Anchorage should have had
the same phase as Anchorage. Being half way between Anchorage and
Fire Island, the phase should probably have been 7 degrees or so
smaller. Finally, on the subject of modifying future input data,
it seems that the inclusion of input data for a point near the town
of Kenai would have»rémoved the 'awkward' shape of the co-range
lines in this region. The predicted range for Kenai is 5.06 meters, =
some 35 cms. smaller than the tabulated mean range. This input
data was specifically left out of the model sé that a check would
be available as to the veracity of the solution. One concludes
from this that all available input data should be used near regions

of complex shape.



CHAPTER X

CONCLUSIONS AND FUTURE WORK
1. Conclusions--.

A variable-geometry model has been described in this thesis
that is oriented towards the general user. It is designed to stand
alone but also to be made part of larger models such as genera1>
oceanographic prediction schemes. The method follows the earlier
approaches of Hansen and Yuen, and uses Yuen$s equations in an
automated form. The method of solution is thus already well docu-
mented and examples of previous applications of the method may
easily be referred to. A background to the solution of tides in
inlets is given, and the me2ans by which the finite difference
equations are derivéd is covered step by step. The prospective
user is shown clearly the means by which a particular inlet may be
studied and how the input data is prepared. A simple example is
covered in some detail with all the cards explained and sample
computer outputs shown.

For the user's convenience a magnetic tape is prepared during
the last tidal cycle computed, on which all heights and currents
are stored; this is so that special types of analysis may be
performed at later dates as desired. At the end of the last tidal

cycle the tape is automatically analysed for tidal range and phase,

97
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and maximum and minimum currents: these being probably the most
useful results of the computation. It is felt that this approach
should make the model described particularly attractive to othefwise
wary users.

Two applications to real inlets have been included in the thesis.
They were to the Gulf of California and to Cook Inlet. It is fhe
writer's opinion that these have provided a satisfactory test for

the model.

2. Future work--.

The inability of the model to deal with mud flats points to the
need for work in this area. Although it is tempting to suggest that
modificaéions be made so as to adjust the inlet outline in units of
(2 x grid interval) when necessary during the course of the solution,
the nature of such & change might prove too gross to deal realist-
ically with the situation. Before such an improvement can be made
it seems that efforts should be directed to mathematical studies
rather than towards the more tempting "experimental mathematics"
approach. A deeper study of the part played by friction would be
applicable to shallow regions such as Cook Inlet and the Bering Sea.
Jeffreys (1920) has pointed out the importance of the Bering Sea when

considering world-wide frictional dissipation for the M, tide.
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C [}
0001 - INTEGFR%2 U
0002 DIMENSION UL(65,30),21(65,30),H(65,30),IU(68,31)
0003 DIMENSION PR(20)
0004 COMMON MSUMyNSUM, DL 3 Ty GEE 3Ry FyY ,PERy IPER W ISSy IS, DTy IDAY, [FIY, 1. V0,
1FIT, TIMELULyZL yH, 1L, PR
0005 COMMON TIDE
0006 READ(1,1)1IDA
0007 1 FORMAT(IZ)
C TTDA=NUMBER OF TIDAL CYCLES
0008 CALL OPSYS (*LOAD', 'PHASNMALY)
0009 CALL INIY '
0010 CALL OPSYS ('LOAD','PHASNME4?)
0011 CALL PRINYD
0012 CALL OPSYS ('LOAD', ' PHASNMERY)
0013 67 [FIT=0
00l4 1CYC=0
0015 FIT=IFIT
0016 61 CONTINUE
C
C
C UATV CALCULATION
0017 [FL=0
0018 L2=MSUM=1
0019 DO 2107 M=2,412,2
0020 =-1
0021 2100 I=[+2
0022 IF(IU(M,I)=2)210442107,2100
C IF Ty=3, TREAT IT AS ©
o I[F LU LESS THAN 2, CHECK FOR O OR 1

C IF TU=2, GO TUO NEXT ROW

€01



0023

0024

0025

0027
0028
0029
0030
0031

0032
0033
0034
0035
0036

0037
0038

0039
0040

0041

0042
0043

0044

2104

2101

2102

Cl24
2124
2125

2103

Cl26
2126
2127

2109

2106

IF(IU{M,1))2100,2100,2101
IF JTu=1, CHECK TF IT IS LEFI OR RIGHT BOUNDARY
IF(IFL)2102,2102,2103
IFL=0 INDICATES LEFT BOUNDARY, IFL=1 RIGHT
IML=T+2
IF LEFT, SET LEFYT {LOWER) LIMIT. CHANGE IFL VALUFE
LEFT BOUNDARY —-- VY=0
IFLIU(M,T142)-3)2125,2124,2124
VI{M,I)=V1(M,1+2)
UL{M,I+1)=U1(M,]43)
CONTINUE
IFL=1
G0 1D 2100
IMR=]-2
IF RIGHT, SET RIGHT (UPPER) LIMIT. CHANGE IFL VALUE
RIGHT BOUNDARY —~— VvY=0
IFTTUM,I-2)-3)2127,21264,2126
VIIM, T)=VY1iM,I=2)
UL(M,I+1)1=Ul{M,[-1)
CONTINUE
IFL=0
NOW WE HAVE LIMITS FCR NORMAL CALCULATION
IF{IMR-IML)Z2108,2109,2109 ‘
CHECK FOR SPECIAL CASE (IF UNUSUALLY NARRNW)
DO 2106 N=IML,IMR,2
Z1IMyN)={2Z1 M N+1L)+21{M,N=-1))/2.
HIMyN)=DIM,N)+Z1 (M, N)
HIMyNY=HIM,N+1)+Z1 (M, N)
ULIMyN)=(UL(M+ L N+1)+UL(M=14N+1)+UL{M-1, N 114Ul {M+1,N=~1)) /4,
THEN CALCULATE VALUES AT SINEY
ZL My IML=2)=(Z1(MyIML=1)={21 (M, IML+Y)}/3.})%1.5
HIMy IML=2)=D (M [ML=-2 )+ 21 (Mg IML- 2)
H{My IML=2)=H{M, IML=1)+/L1 (M, IML=2)
Zl(M,IMP+z)~(Zl(M,I~R+1)—(zl(M,INQ 1)/3.))’1 5
H{My ITFHR+2)=D(My [MR+2)+71 (M, IMNR+2)
HIMy IMR4+2 )= (M, IMR+3)+/71 (M, [MR+?)}

01



0045
0046
0047

0048
0049

0059
0051
0052

0053
0054
0055

00%6
0057
0058
0059
0060
0061

0062
0063
0064
0065

0066
0067

2108

2107

2110

fos
[
»

[
[
[

2122
2123

UL{My IMR+2)=UL(M+1, IMR+1)+U1 (M=1, IMR+1)-UL (M, [MR)
UL(M,y IML=2)=UL(M+1, IML=1)+UL(M=1, INL=1)=UL (M, INL)
50 TO 2100

REPEAT PROCESS

NARROW CASE
UL(MyIML=2)=(UL{M+1, IML-1Y 40U (M=1,IML-1))/2.
ZY(M,IML=-2)=21 (M, IML~1)
H{My IML=2)1=D(My IML=2)4 21 (M, IML=2)
FAMy IML=2)=H (M, IML=1)+21 (M, IML=2)
CLEM, ITMLY=UL (M, THL~-2)
ZL{MyEMLY=Z21 (M, IML~1)
H{My IMR+2)=D (M, IMR+2) 421 (M, IMR+2)
HIM, IMR+2) =i (M, IMR+3)+Z21 (M, IMR+2)
GO TO 2100 :
CONT1IMNUF

VATU CALCULATION
IFL=0
L1=NSUM~-1
DO 2117 N=2,L1,2
I=-1
I=142
IF(TUCT WN)=-2)2114,2117,2110
IF Tu=3, TREAT IT AS O :
IF TU LESS THAN 2, CHECK FOR O OR 1
IF Tu=2, GO TO NEXT COLUMN
TECTULT,N))2110,2110,2111
IF Tu=1, CHECK [F IT IS BOTTCM OR TOP BOUNDARY
IF(IFL)2112,2112,2113
IFL=0 INDICATES BOTTOUM BUOUNDARY, IFL=1 TOP

IMB=1+2
IF BOTTOM, SET 8O0TTOM (LOWER) LIMIT. CHANGE IFL VALUE
BOTTCM BOUNDARY —-- UX=0

TFCIU(T+2,4,N)=-3)2123,2122,2122
ULET,N)I=UL(TI+2,4N)
CONTINUE : ’

0T



0068 {FL=1

0069 GO TO 2110
o070 2113 IMT=]-2
c IF TOP, SET TOP (UPPER) LIMIT. CHANGE IFL VALUFE
‘ C TOP BOUNDARY -- UX=0
0071 IF(TIULTI-2,N)=-3)2121,2120,2120
0072 2120 UL(I4N)=UL(1-2,N)
0073 2121 CONTINUE '
0074 IFL=0
C NOW WE HAVE LIMITS FOR NORMAL CALCULATION
0075 IF(IMT-TMUE)2118,2119,2119 :
c CHECK FOR SPECIAL CASE (IF UNUSUALLY NARROW)
0076 2119 DO 2116 M=IMA,IMT,2
00717 ZLIMGNY=(Z1(M+T1 4 N)+Z)Y(M=-1,N))/2.
C HIMyN)=D(MyNI+Z1L(MN)
0078 H{MyN)=H{M,N+1)+2Z1(M,N)
Cl16 VI{MyNI=IVIIM+]1 ¢ N&LI+VLI(M=]1 ,N+1)+VI{( M=, N=1)+VI(M+]1,N=-1)) /4.
0079 2116 LUL{MyN+1)=(UL(H+1 yN+2)+UL(M=1 ,N+2)4UL{M-1,N)+UL{(M+]1,N)) /4.
C THEN CALCULATE VALUES AY SILES
0080 Z1LUIMB=2 ,N)=(Z1(IMB=1 ,N)~(Z1(IM:+Y4N)/3.))%1.5
C H{IMB—2 yNI=D({IMBE-2,N)+Z21{ITMB-2,N)
0081 H{IMB=2 yN)=H(IMB-2N+1 )+ {[1B=2,N)
0082 ZY(IMT#2 N)=(Z1(IMT+L N)~(Z1OIMT=-1,N)/3.)1)1%L.5
C HIIMT+2 ,N)=D{IMT+2 ,N)+Z1L{TMT+2,i)
0083 ' HUITMTH+2¢N)=H{IMT+2 N+1)+2Z1 (IMT+2,N)
C VI{IMT+2,N)=VL(IMT+1 ,N+1L)}+VI{(IMT+1l,N-1}=-VI(IMT,N)
0084 UL(IMT+2  N+1L)=UL (IMT+]1 ,N+2)+UL(THT+I ,N)=UL{IMT,N+1)
‘ C VI(IMB=2,N)=VI{IMB=1,N+1)+VI{(IMB=1,N-1)=-VI(IMB,N)
0085 UL({IMB=2 yN+1)=UL{IMB-T yN+2)+UL( IMB=1,N)=UL(IMBy,N+1)
0086 GO T0 2110
C REPEAT PROCESS
C NARRDOW CASE
Cl18 VI{IMB=2,N)=(VI(IMB=1,N+1)Y+VI(INMB-1yN-1))/2.
0087 2118 UL(IMB=2,N+1)=(UL{IMB-1,N+2)+UL(IMB-1L,N})/2.
0088 ZY(IMB=24N)=21 (I MB~1,N)

c HIIMB=2,N)=D(IMB-2,N}+Z1 {IMB=-2,])

901



0089

0090
0091

0092

0093 -

0094
0095
0096
0097
0098

0099
010¢C
0101
0102
0103

01C4
0105
0106
o107
01048
0109
0110
otl1l

0112
0113

o114

{7

2117
8999

8998

c
-

o

81

2002
2001
C
C

B2

HUIMB=2 4 N)=H(IMB=2,N+1)+Z1 (IMB=2,N)
VI(IMByN)=VLIMB=2,N) '
ULLIMR,N+L1)I=UL({IMB=2 ,N+1)
ZLLIMBGN)=Z1 (IMB=1,N)
H{IMT+2,N) =D UIMT4+2 NI+ Z1L (TMT+2,N)
H{IMT42 W) =H (IMT+2 N+ 1) +2 (IMT+2,N)
GO TO 2110

CONTINUE
IF(IIDA-IDAY)B999,8999,5998

CALL WRITER(9Y9,Ul1,7800)

CALL WRITER(9,21,7800)

CONTINUE

)
C PRINT-UUT UNLY{} TIMES/TIDAL CYCLE

IF(ISS-1S)el,81,82

15=C
IF{IIDA-IDAY)2001,2001,2002
IF(ICYC)Y20G1,2001,82
TIME=FIT*T/{4600.%PER)

CALL OPSYS (*LCGAD', "PHASNME2"')
CALL WRITE

CALL OPSYS {'LUAD',"PHASNME3 ")
1ICYC=ICYC+1

[S=]1S+2

IFIT=1FIT+2

FIT=IFIT

CALL INPUT

CALL uvz
CALL INPUT

THIS REPLACES DESTROYED INPUT-POINT DATA
IF{IPER-IFITIB0,80,61

20T



0115

0116

0117
oL1e
0119
0120
0121
0122
0123
0124
0125

OO O

83

IDAY=IDAY+]

THE NEXT 6 INSTRUCTIONS ARE INCLUDREND TO LIMIT THE LOSS OF
DATA TO ONE CYCLE ONLY , IN THE EVENT THAT THS PROGRAM 15
CANCELLED DUE TOU EXTERNAL CAUSES. T RESTART AT THE M OF
THE LAST CYCLE COMPLETED, THE INIT PROGRAM WILL HAVE Tu niF
ALTERED SLIGHTLY. '

WRITE(2,1)IDAY

CALL WRITER(RB,[IUy42106)
CALL WRITHER{(G,71,7800)
CALL WRITER(8H,Ul,7800)
CALL WRITEFR(B4h,7800)
PEWIND 8
IF(TIIDA+1-TIDAY)83,83,67
REWIND 9

CALL EXIT

END

82071



0001
0002
0003
0004
0005

00Qs6 -

0007
ooo8
0009
0010
cotl
0012
0013

SUBROUTINE INPUT

INTEGER%2 1)

DIMENSION UL(65,30),21(65430),H(6%,30),IU(68,431)

DIMENSION PR(20)

COMMON MSUMeH{SUMMDL T4 GEE yRyF 3 Y3 PER, IPER,ISS, IS,yDT,IDAY, IFIT,I0VYC,
1FIT, TIMEZULsZLyH,1U,PR ' '
COMMON TI1CE

Z1(244)=0.130%xCOS(6.283L8%((FIT/PER)-0.000))
21(2,6)=041332C0S(6.28318%((FIT/PLR)=-0.000))
Z1(2,48)=0.1306%C0S(6.283 ek ((FIT/PER)-0.000))
21(2,10)=0.140%C0S(6.268318%({FIT/PLER)=-0.000))
[1032,12)=1.057T0%CCS{6.28313%((FIT/PERI-0.297))

RETURN

EMND
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0001 SUBROUTINE INIT

0002 INTEGER*2 [U
0003 DIMENSION UL165,30),21165,30),H165,30),1U(68,31)
0004 DIMENSION PR(20)
0005 COMMON MSUMSNSUM DLy TyGCEELyRyFa Y PERy IPER,ISS, IS, DT,IDAY,IFIT,10YC,
1FIT,TIMELUY,Z14H,y I, PR ' ‘
0006 - COMMON TIDE
o
c
C SET VELOCITIES TU ZERO
0007 DO 2008 M=1,65
0008 U0 2009 N=1,30
0009 Z1(M,N)=0.
0010 H(M,N)=0.
C009 V1(M,N)=0.
0011 2009 UM (M,N)=0
c
0012 READ(1,105)MSUM
0013 105 FORMAT(12)
0014 READ(1410%)NSUM
0015 READ(1,1)DL
0016 DLL=DL/1000.
0017 WRITE(3,7000)0LL ‘
0018 7000 FORMAT('1,50X4'GRID INTERVAL=? 4F6.2,"KILOMETERS?)
0019 READ(L,1)T
C T=PERIAD IN HOURS
0020 WRITE(3,7001)T
0021 7001  FORMAT('0' 450X, 'TIDAL PERIOD='",F6.2, *HUOURS?)
0022 T=T%3600.0
0023 CEE=9.81

C GFE IN M/SFCH*=
C R=FRICTICN COEFFICIENT

0024 READ(1,1)R
0025 WRITE(3,7CC21IR "
0026 1002 FORMAT('0" ¢HUX,"FRICTION COEFFICIENT=',F6.4) %

0027 READ(L,L)ALAT



0028
0029
0030
0031

0032

0033 -

0034
0035

0036
0037

0038
0039
0040

0041
0042

0043
0044
Q045
0046
0047
0048
0049
0050

0051
0052
0053
0054

WRITE(3,7003)ALAT
7003 FORMAT{YO0' 50X, 'LATITUDF="',F4,1,'DEGREES")
PHI=ALAT%*3.1416/180.0
F=l4s0%3,1416%SIN(PHI) )/ (2440%3600.0)
C F=CORIULTIS PARAMETER, IN RAD/SEC
WRITE(3,7004)F '
7004 FORMAT(*O' 50X, *CORTOLIS PARAMETER=*,F10.8, 'RADIANS/SECOND")
WRITE(3,7005)
7005 FORMATI'0O",50Xy "FOLLOWING PRINTCUTS ARE IN METER-SEZOND UNITS'.
C STABILIZATIGN FACTOR
Y=0.99
READ(L1,1)PER
C PER=NUMBER OF TIME INTERVALS/TIDAL PERIDD
IPER=PER
TZINT=1PER
ISS=PER/12.
c TE PRINT QUT 12 TIMES PER TIOAL CYCLE DURING LAST CYCLE
IS=1SS
DT=T/PER
C DT=TIME INCREMENT IN SEDONDS
WRITE(9,77)MSUM
WRITE(9,77INSUM

77 FORMAT(12)
WRITE(9.78)0DL
78 FORMAT(F12.4)

WRITE{(9,999) 1ZINT
999 FORMAT(I4)
WRITE(9,78)7T

C READ PDINTS AT WHICH U=0
L1=NSuUM-1
DO 2020 N=2,L1,2
2020 READ(1,104) (TU{MyN),M=1,6H)
104 FORMAT (6BT1)

C READ POINTS AT WHICH V=0
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0055

0056
0057
0058
0059

0060
0061
0062
0063
0064
0065
00566
0067
0068
0069
0070
0071
0C72
0073

0074
0075
0076
co77
0078
0079
0080
0081
oos2

0083

2010
100

aEesNeakel

2400

2404
2401
2402

2403

C409

2409

2406

c408
2408

L2=MSUM-1

DO 2010 M=2;L2,2
READ(1,100)(TU(M4N),N=1,31)
FORMAT(3111)

WRITE(D) ({TU(MyN)  M=1,067),N=1,31)

HEIGHTS I METERS
READ DATYV

I[FL=C

L2=MS5UM=1]
DO 2407 M=24,0L2,2

=-1

[=1+2
IF(IU(M,1)-2)2404,2407,2400
IF(IU(M,1))2400,2400,2401
IF(IFL)2402,2402,2403
IML=1+2

1rL=1
GO TG 2400

IMR=]-2

IFL=0
IF(IMR=-IML)2408,2409,2409
READUL,1)D(M,INML-2)
READ(1,1)H(M,IML~-1)
FORMAT({F12.4)
H{My IML=-1)=H (M, IML-1)*]1,8288
DO 2406 N=IML,IMR,2
READ(1,1)H(M,N+1)
H{MyN+1)=H{M,N+1)%1.8288
READ(1,1)B{(M,IMR+2)
READ{L,1)IH(M,IMR+3)

H(My, IMR+3})=H(M,IMR+3)*%]1,8288
GO TO 2400
READ(L,1)D(M,IML-2)
READ{(L,1I)H({MyIML-1)
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0084 H{M, IML-1)=H(M,IML-1)%*1,8288

C READ(1,1)D(M,IMR+2)
0085 READ (L, 3H{M,IMR+3)
0086 H(M, IMR+3)=H (M, IMR+3)%]1.8288
0087 GO TO 2400
0088 2407 CONTINUE '
c
C
c READ DATU
0089 IFL=0
0090 Ll1=NSUM=-1
0091 DO 2517 N=2,L1,2
0092 I=-1
0093 2510 1I=1I+2
0094 IF{IU(IyN)=2)2514,2517,2510
0095 2514  IF(IU({I4N}}I2510,2510,2511
0096 2511 IFE(IFL)2512,2512,2513
0097 2512 IMB=1+2
0098 IFL=1
0099 GN 10 2510
0100 2513 IMT=1-2
010t [FL=0
0102 [IF{IMT-TMR)2H18,2519,2519
€519 READ(1,1)D{IMB-2,N)
0103 © 2519 READI(L,1)H({IMB-2,N+1)
0104 HUIMB=2 4 N+1)=H({IMB-2 ,N+]1)*1.828%
0105 DO 2516 M=IMB,IMT,2
0106 READ(Ly1)H{M¢N+1)
olo07 2516 H(MyN+1)=H(M,N+]1)*1.8288
c READ{1,1)D(IMT+2,N)
o108 READ (1L, 1)H(IMI+2,N+1)
0109 H{ITMT+2,N+1)=H{IMT+2,N+1)%1.8284
0110 GO TO 2510
CS18 READ(L,1)ID(IMR=2,1)
cl1i1 2518 READ{L,1MH{IMB-2,N+1)

0112 H{IMB=-2 yN+1)=H{IMB-2,N+1)%¥1.328%

€11



0113
0114
0115
0116

0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133

0134
0135

517

OoOOCOO0ON

2600
2604

2601
2602

2603

2606

2607

READ{11)D{(IMT+2,N)
READUL ¢ L)YH{IMT+2,N+1)
HUIMT+2,N+1)=H{IMT+2,N+]1)%]).828~
GO TO 2510

CONTINUE

READ I INITIAL
LFL=0
L2=MSUM~1
DO 2607 M=2'L2'2
[=~1 ‘
I=1+2
[F(IU(M,1)=2)2604,2607,2600
IF{IU(M,1))2600,2600,2601
[F{IFL)2602,2602,2603
IML=1+1
IFL=1
GO TQ 2600
IMR=1-1
IFL=0
DD 2606 N=IML,IMR,2
READ(1,1) 21 (MyN)
GO TN 2600
CUNTINUE

RETURN
END

-



0001
0002
0003
0004
0005

0006

0007
0008
0009
0010
0011
0012
Q0113
0014

0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

0025
0026
0027
0028
0029

SUBROUTINE WRITE

INTEGER*2 TU

DIMENSION Ul {654930),21165,30),H(65,30),10U(AK8,31)

DIMENSION PR(20)

COMMON MSUMGNSUM DLy T4GEE Ry FaY,PER,IPERZISSy IS DT, IDAY,IFIT,ICYL,

1FIT,TIME, Ul ,721,H,s1U,PR ‘

COMMON TIDE
C WRITE 2°'S

WRITE(3,110)
110 FORMAT(']1'463Xy Y Z-VALUES")

WRITE{3,4)TIME _

4 FORMATIY 'L 'CONDITIONS AFTER ,2X,F5.2,'HOURS ')

WRITE(3,5)1DAY

FORMAT(Y ', "NUMBER OF TIDAL CYCLES COMPLETED',2X,12)

WRITE(3,102)

102 FORMAT('Q?,! N= 1 N= 2 N= 3 N= 4 N= % N= 6 N= 7
1 N= 8 ti= 9 N=10 N=11 N=12 N=13 N=14 N=15 N=16 N
2=117 N=18"7)

DO 5002 J=1,MSUM
: M=MSUM+1-)

5002 WRITE(3,101)M,(ZL{M,N),N=1,18)

101 FORMAT (' "y M=t 241Xy 1B(1XyT6.2))
IFINSUM=18)5004,5004,5003

5003 WRITE(3,110)
WRITE(3,4)TIMG
WRITE(3,9)IDAY
WRITE(3,103)

103 FORMAT('O'y' N=19 N=20 N=21 N
16 N=27 N=28 N=29 N=300)

DO SCO0 J=1,MSUM
M=MSUM+1-J

5009 WRITE(3,106){Z1(M,N),N=19,29)

106 FORMAT(Y *,11(1X,F6.2)) :

5004 CONTINUE -

ot

Wl

1
1]
]

22 N=23 N=24 N=25 M=2

C | o




C WRITE U*'S

0030 WRITE(3,113)
0031 113 FORMAT('1',63X,'U-VALUFS")
0032 WRITE(3,4)TIVE
0033 WRITE(3,5) DAY
0034 WRITE(3,102) :
0035 M=MSUM
0036 7068 DO 7012 I=1,18
0037 7012 PR(1)=0.
0038 DB 7010 N=2,18,2
0039 7010  PRIN)I=UL (M,N)
0040 WRITE(3,1001) M, (PR(N),N=1,18)
0041 M=M=1
0042 [F(M)7016,7016,7009
c 7009 INDICATES THAT M IS EVUN
0043 7009 DO 7013 I=1,18
0044 7013 PR(I)=0.
0045 DO 7014 N=1,17,2
0046 7014 PRIN)=UL (MyN)
0047 WRITE(3,101) M, (PR(N),N=1,18)
0048 M=M-1
0049 60 TO 7008
0050 7016 CONTINUE
0051 TF(NSUM=18)T7104,7104,7103
0052 7103 WRITF(3,113)
0053 WRITE(3,4) TIME
0054 WRITE (3,5) DAY
0055 WRITE(3,103)
0056 M=MSUM
0057 7108 DO 7112 [=1,12
0058 7112 PR(I)=0.
0059 NN 7110 N=2,10,2
0060 7110 PR(N)=UL(M,N+18)-
0061 WUITE(3,106) (PRIJ),3=1,11)
0062 M=M-1

0063 IF(M)T11647116,7109
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0064
0065
0066
0067
0068
0069

0070

gor1
00712

0073
0074
0075

0076

0077
0078
0073
0080
0081

0082
.0083
0084
0085

0086
0087
0088

0089
0090
0091
0092
0093

7109
7113

7114

7116
7104

112

6008
6012

Co1lo0
6010

60609
6013

COl4
6014

6016

DO 7113 I=1,12

PRII)=0.

DO 7114 N=1,11,2
PRAN)=UI (MyN4+18)
WRITF{3,106) (PR{J)J=1,11)
MzM—1 .
GO TQ 7108

CONTINUE

CONTINUF

WRITE V'S
WRITE(3,112)
FORMAT('1',63X, ' V=-VALUES")
WRITE(3,4) TIME
WRITE{(3,5)10AY
WRITE(3,102)
M=MSUM
N0 6012 1=1,18
PRI )=C.
DO 6010 N=2,18,2
PRIN)=VI(M,N)
PRIMY=UL{MyN+1)
WRITE(3,100)M, (PR(N) 4N=1,18)
M=M-1
IF(M)6016460164,6009

6009 INDICATES THAT M IS EVEN

DO 6013 I=1,1Y

PRIT1)Y=0.

0N 6014 ZNw.HN-N

PRUIN)I=VI (MN)
PRIONI=UL(MyN+L)
WRITE(3,10L3 M, (PRIN)4N=1,18)
p=M—]

GO TO 6008

CONTINUFE

LTT



0094

0095
0096
0097
0cos
0099
0100
0101
o102

0103
0104
0105
Cl06
0107
0108
0109

0110

0111
0112
0113
0114
0115
0116
0117
0118

0119

6103

6108
6112

Cl110
6110

6109
6113

Cll4
6114

6116
6104

TF{NSUM-1816104,6104,6103
WRITE(3,112)
WRITE(3,4)TIME
WRITE(3,5)IDAY
WRITE(3,10G3)

M=MSUM '
DO 6112 I=1,12

PRI ) =0,

00 6110 N=2,410,2
PR{N)=V]1{M,N+18)
PRIN)=UL({My,N+19)
WRITE(3,106) (PR{J)yJI=1,11)
M=M-1

IF(M)6l16561164,6109

DO 6113 I=1,12.

PR(I)=0.

DO 6114 N=1,11,2
PRIN)=V1(M,N+18)
PRINI=UL(M,N+19)
WRITE(3,106) (PR(J),J=1,11)
M=p—1

6O TC 6108

CONTINUE

CONTINUE

FORMAT(* *,13)

FORMAT(*1 ")

RETURN

END
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0001 SUBROUTINE uvz

0002 INTEGER*2 1y
0003 NIMENSION UL (65430),21(65,30),H(65,30),1U{(68,31)
0004 DIMENSION PRI{20)
0005 COMMON MSUMaNSUM DL s ToGEEyReF oY s PER, IPER,ISS,IS,DT,IDAY, IFIT,ICYC,
, 1FIT,TIME,UL,y2Z1,H,1U,PR '
0006 : COMMON TIDE

o U=POINT CALCULATION
0007 [FL=0C
0008 L1=NSUM-1
0009 DO 3117 N=2,L1,2
0010 [=-1
0011 3110 I[=1+2
0012 TF(IUCT,N)=-2)3114,3117,3110

o IF [Uu=3, TREAT IT AS O

C IF U LFSS THAN 2, CHECK FOR 0 OR 1

C IF Tu=2 GO TO NEXT CULUMN
0013 3114 IF(IULILN)}3110,3110,3111

C IF 1U=1, CHECK IF 17 IS ROTTOM DR TOP BOUNDARY
0014 3111 IF(IFL)3112,3112,3113

C IFL=0 INDICATES BOTTOM POUNDARY, IFL=1 TOP
0015 3112 IMB=1+2

C IF ROTTOM, SET BCTIOM (LOWER) LIMIT. CHANGE IFL VALUEC
0016 IFL=1
0017 GO TO 3110
0oo1l8 3113 IMT=]-2

C IF TOP, SET TOP (UPPFRY LIMIT. CHANGE IFL VALUE
0019 IFL=0

C NOW WE HAVE LIMITS FOR CALCIU:LATION
0020 IF(IMT=IMGE)3118,3119,3119

C CHECK FOR SPECIAL CASE (IF UNUSUALLY NARROW)
0021 3119 DO 3116 M2IMB,IMT,?

C CALCULATION OF U AT (M,N)
0022 IXATUS(Z1(M+ Ly N)=ZL(M=1,R) )/ (2.%0L)

C V1, Ul SHOULD BE FOR TIME (T) —— HERE THEY ARE TAKFN FOR TIME (T-1)
C STABILIZATIOM OF LEADING U-TERM .

61T



0023

0024

0025
0026

0027

0028
0029
0030
0031
0Q32
0033

0034
0035
0036

0037

0038

0039
0040

0041

USTAB=(YZUL(MyN) )+ ((1la=Y)X(UL{M+1,N+1)4UY(M=1,N+1)
1 +UL{M=1yN=1)+UL(M+1,N=-1))/4.)
3116 ULIMyN)=USTAB+ (2. %DT*{ (~USTABERASQRT (UL {MyN)FULIM,N))

C ! +(VLIIMaN)EVL(MyN))I/H(MyN) I+ (FEVLI(MN) )= (GELXIXATU) ) )
1 FLULIMaN+L)RUL(MyN+LY )V /HENM NI+ (F2UL (M, N+L) )~ (GEEXZXATU) )
C END OF U AT (MyN) CALCULATION
GO TO 3110
c NARR(QW CASE
3118 GO 1O 3110
c IN NARROW CASE, NO U=-POINT CALCULATION IS POSSIBLE
3117 CONTINUE
C
C
C V-POINT CALCULATION
IFL=0
L2=MSUM-1
DO 3107 M=2,1L2,2
==1

3100 I=I+2
IF(IU(M,1)-2)3104,3107,3100
C IF Tu=3, TREAT IT AS O
C IF [U LESS THAN 2, CHECK FOR O DR 1
C IF Tu=2, GO TO NEXT ROW
3104 IF(IU(M,1))3100,3100,3101
C I+ Tu=1l, CHECK IF IT IS LEFT OR RIGKHT BOUNDARY
3101 IF(IFL)3102,3102,3103

C IFL=0 INDICATES LFFT BOUNDARY, IFL=1 RIGHT

3102 IML=1+2

C IF LEFT, SET LEFT (LCWER) LIMIT. CHANGE [FL VALUE
[FL=1
GO TO 3100

3103 IMR=I-2 }

C IF RIGHT, SET RIGHT (UPPER) LIMIT. CHANGE IFL VALUE
IFL=0

o . NOW wFE HAVE LIMITS FOR CALCULATION

IF(IMR-IML)3108,3109,3109

0zt



0042

0043

0044

0045

0046
0047

0048

0049
0050
0051
0052
0053
0054

0055

0056

C
3109
C CALC

Vi,

OO0

C 1
1

Cl06

3106

C 1
1

C END

3108
C
c
3107

OO0

CHECK FOR SPECTIAL CASE (IE UNUSUALLY NARROW)
DO 3106 N=IML,IMR,2
ULATION GF Vv AT {M,N)
IYATV=(Z1(MyN=-1}=21(MyN+1))/(2.%DL)
Ul SHOULD #E FOR TIME (T) -— HERE THEY ARF TAKEN FOR TIME (T-1)

STABILIZATION QF LEADING V-TERM

VSTAB=(YSEVI(MyN) )+ ({La=Y)H(VII{M+]1 ,N+1)+VI(M=14N+1)
VSTAB=(Y UL (M N+L ) I+ ({1l =Y)E(UL(M+LyN+2)+UL1(M-1,+2)
+VI(M=1 ) N=1)1+VL(M+1,N=-1})/4,.)
+UL(M=1,N)+UY (M+1,N))/4.)
VIIMyN)=VSTACH(2.3DTH((-VSTABXRESORTL (UL (MyN)*UL{M,N))
UL(MN+]1 ) =VSTABH (2. 2DTH({~VSTABFRESQRT((ULI{M,N)IXUL(M,N))
FIVIIM, NI RVL (M N) ) /HIM g N) )= {FXUL (M N) I -(GEERZYATV) Y
F (UM N+ RUL UMy NF L) )Y /HINM NI = (FRUL (M N )=(GEERZYATV)) )
OF V AT (MyN) CALCULATION
GO TO 3100
GO TO 3100
NARROW CASE
IN NARROW CASE, NO V-PGINT CALCULATION IS POSSIBLE
CONTINUE

Z-POINT CALCULATION :

NOTEO VALUES ARE CALCULATED AT INPUT POINTS--THESE ARE FALSY
[FL=C
L2=MSUM-1
DO 4107 M=2,412,2
I=-1
I=1+2
TF{IUIM,T1)-2)4104,4107,4100

IF tu=3, TREAT IT AS O

IF TU LESS THAN 2, CHFCK FOR O OR 1

IF Tu=2, GO TO NEXT ROW
IF(TUIM,1))4100,4100,4101

IF Tu=1, CHECK I¥F IT IS LEFT OR RIGHT BUOUNDARY
IF{IFL)4102,4102,41073

T



0057

0058
0059
0060

0061

0062

0063

0064

0065

0066

0067
0068
0069
0070

C [FL=0 INDICATES LEFT RBOUNDARY, IFL=1 RIGHT

4102 IML=1+1 :

o IF LEFT, SET LEFT (LOWER) LIMIT. CHANGE IFL VALUF
IFL=1 '
GO 1O 4100

4103 [MR=1-1 '

C IF RIGHT, SCET RIGHT (UPPER) LIMIT. CHANGE IFL VALUL
[FL=0
C NOW WE HAVE LIMITS FGR CALCULATION

DO 4106 N=IML,IMR,2
C CALCULATION OFF Z AT (M,N)
HUX= ((H{M+L g N)EUL(M+ Ly M) )= (H(M=1,N)XUL{M=1,N)))/(DL*2.)

C HYY={(H{MyN=1) VLI (MyN-1) )= (HI{My, v+ )H=VL{M,N+L) )} )/ (DL%2.)
HVY= ({H{MyN=1) *UL (M, N) )= (H(M,N+1)*=UL{M,N+2) ) )/ (DL*2.)
c STABILIZATION OF 71

ZY (M N)=(YHZL (M NI )+ ({L1e~-YIF(ZL(MEFL G NI+ZL{M=1,N)
1 +21(MyN=-1)+21 M, N+1 ) /4a)
4106 Z1(MyN)=Z1{(M,N)=(2.%0Tx(HUX+HVY) )
C HUX AND HVY SHUULD INVOLVE 722 VALUES, BUT HERE THEY ARE
C APPROXIMATED RY Zl.
C END OF Z-CALCULATIUN
GO TG 4100
4107 CONTINUE
RETURN
END
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0001
0002
0003
0004
C005

0006

0007
o008
0009
0010

0011
0012
0013
00la

0015
0016
o017
0018
0019

0020
0021
0022

0023
0024
0025
0026
0027
0028
10029

C
111

102

5008
5012

Co10
5010

108

5009
5013

COl4
5014

5016

5103-

SUBROUTINE PRINTD

INTEGER®%2 [U

DIMENSION Ul {65,30),Z1(65,30),H(65,30),1U(68,31)

DIMENSION PR{20)

COMMON MSUMaNSUMDL sy TyGFE Ry FyeY ,PERy IPERL,ISS, ISy DT, DAY, IFIT,10¥0,
1FIT,TIME,UL,21,H,1U,PR '

COMMCM TIDE

WRITE DS

WRITE(3,111)

EORMAT ("1,

WRITE(3,102)

FORMAT('OY,! N= 1 N= 2 N= 3 N= 4 N= 5 N= 6 Nz 7
1 N= 8 N= 9 N=10 N=11 N=12 N=13 N=14 N=19% N=16 N
2=17 N=18"') -

M=MSUM .

DO 5012 [=1,18

PR(I)=0.

0O 5010 N=2,18,2

PRINY=D(M,N)

PRAIN)=H(MyN+1)

WRITE(3,108)M, (PR{N) N=1,18)

FORMAT(" *, M= ,12,1X,18{1XsFb.1))

M=M-1

[F{M)5016,5016,5009

50009 [INDICATES THAT M IS EVEN

DO 5013 I=1,18

PR(1)=0.

DO 5014 N=1,17,2

PRIN)I=D(M,N)

PRAN)=H(MyN+1)

WRITE(3,108) M, (PR(N),N=1,18)

M=M-1 ‘

GO TC %008

CONTINUE .

IF(NSUM=-18)5104,5104,5103

WRITE(3,111) °

DEPTH=-VALUES")

(XA



0030 WRITE(3,103)

0031 103 FORMAT('C',* N=19 N=20
16 N=27 1=28 N=29 N:
0032 M=MSUM
0033 5108 DO 5112 I=1,12
0034 5112 PR{I)=0. :
0035 DO 5110 N=2,10,2?
Cl1lo0 PRIN})=D{M,N+18)
0036 5110 PR(N)=H(M,N+19)
0037 WRITE(3,109) (PR(J)yJ=1,11)
0038 109 FORMAT(® *,11(1XyF6.1))
0039 M=t ] ‘
0040 IF(M)5116,5116,5109
0041 5109 050 5113 1=1,12
0042 5113 PR(1)=0.
0043 DO 5114 N=1,11,2
Cll4 PR{N)=D(M,N+18)
0044 5114 PR(N)=H({M,N+19)
0045% WRITE(3,109)(PR(J),Jd=1,11)
0046 M=pM=1
0047 GO TO 5108
00438 5116 CONTINUE
0049 5104 CONTINUE
0050 IDAY=0
0051 ‘ RETURN

0052 END




N=21 N=22 N=23 N=24 N=25
=301")

72T



APPENDIX 1II

LISTING OF DATA COMPRESSION SUBROUTINE

Note: This subroutine is required by the tidal model program and

the two analysis programs.
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THIS ASSEMBLER SUBROUTINE CAN BE USED TO READ OR WRITE LARGF TAPE
BLOCKS BY A FORTRAN PROGRAM. BEFORE CALLING THC SUBROUTINE FOR
WRITING, THE USER MUST *WRITE®* AT LEAST ONCE ON TO THE TAPE TD

INSURE THAT THE TAPE IS PROPERLY OPENED. NATURALLY THE TAPE WHFN

READ BACK, ALSO MUST *READ' THE TAPE FUR THE SAME REASUN. WHEN
FINISHED WRITING A TAPE WITH THIS SUBROUTINE, THE USER MUST *END-
FILE* OR 'REWINDY THE TAPE TO CLOSE IT PROPERLY.

THE FJRMAT FOR THE FURTRAN CALL TO wRITE A RECORD (ASSUMED TO BE
A LARGE ARRAY OF OIMENSION (106,10)) ON DATA SET REFERENCF =b
WOULD BE

CALL WRITER (5,ARRAY,4000)

TO READ THE ARRAY, MNE COULD CCDE
CALL READER{6,BARRAY,4000)

NOTES.

THE FIRST ARGUMENT SPECIFIES THE DATA SET REFERENCE =. IT MAY BF
A CONSTANT OR A FIXED POINT VARTABLE CONTAINING THE DATA SET
REFERENCE =.

ANY NUMBER 0OF VARIABLES OR ARRAYS MAY BE WRITTEN. SPECIFY MERELY
IN THE SECOND AND THIRD ARGUMENTS THE NAME OF THE FIRST VARIABLE TO
BE WRITTEN AND THE FNTIRE LENGTH OF THE VARIABLES TO BE WRITTEN.

IT MAY BE NECESSARY TO REFER TO THE STORAGE MAP TO DETERMINE

WHICH VARTABLE IS ACTUALLY FIRST IN CORE AND WHAT THE ACTUAL

LENGTH 15.

THE THIRD ARGUMENT REPRESENTS THE NUMBER (OF BYTES T0O BE WRITTEN.
FORTRAN WORDS OF SINGLE PRECISION CONTAIN 4 BYTES EACH, WHILE

9¢1



* DOUBLE PRECISION VARIABLES
TAPEIQ START O

WRITER EOQU *

' ENTRY WRITER

USING %,15
SAVE  (14,12)
LA 5,1

GO LM 22v4,0(1)
L 2,01(2)

%
L 44,014)
STH 44,CCUPTR+6
ST 3,CCWPTR
STC 5,LCWPTR
SH 2y=HY3
STC 2y CCL+T
CXCP CCw
WAIT CCt

RETURN (14,12)
READER EQu %

ENTRY READER

SAVE (14,12)

LA 542
LA Iy READER-WRITER
SR 15,9
B8 GO
DS OF
ccs ccs SYSOQO00,CCWPTR

CCWPTR CCW 0,0+X'20',Q
END ~




CONTAIN 8 BYTES.

ESTABLISH ADDRESSASILITY
SAVE ALL FOURTRAN REGISTERS
LOAD WRITE OP CODEC

LCAD PARM POINTERS

R2= DS REF ND.

R3=  A(TO AREA)

Ra=  LENGTH

STURE LENGTH

STORE ADDRESS

STORE QP CIDE

GET SYS NO. FROM DS REF ND.
STOREE IN CCB

DU /0 OPERATION

WALT FCR CUMPLETION

RETURN

SAVE REGISTERS

LOAD READER 0P CUDE
GET DIFFERENCE
YTwWbEK?Y BASE REGISTER



APPENDIX TIII

- LISTING OF HEIGHT AND CURRENT ANALYSTS PROGRAMS
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0001 INTEGER*2 U

10035

0002 DIMENSION TU(68431),21(65430)4Z¥AX(65,30),2ZMIN(6YH,430)
0003 READ(9,TT)IMSUM
0004 READ (S, TTINSUM
0005 17 FORMAT(IZ)
0006 READ(9,78)DL ‘
: C DL=GRID INTERVAL IN METERS
0007 DL=DL/1000.
0008 READ(94999)T7INT
0009 999 FORMAT(14)
0010 READ(9,78)TT
0011 Tr=17/36060.0
0012 78 FOGRMAT(F12.4)
0013 ZINT=TZINT
GOls PH=3604/2INT
0015 o9 M=1,65
0016 DD 9 N=1,30
0017 IMAX (M, N)=10C00000G.0
0018 9 IMIN(MyNY=100C00C00.0C
0019 . REAG(O)Y LITUCN,NY yM=1,6T7)4N=1,31)
0020 IFL=0
0021 . LZ2=MSUM-]
0023 [=-1
0024 8100 I=[+2
0025 TF{TUIM,1)-2)6104,8107,8100
0026 3104 1F{IU(M,1))5100,8100,8101
0627 - 8101 TF{TFL)8102,810248103
0028 8102 IML=1+1
0029 IFL=1
0030 , GO TO 8100
0031 3103 lIMr=1-1
0032 IFL=0
0033 DD 8884 N=IML,INMR,2
0034 ZMAX (MyN) =040

IMIN(My,N)=0.0

[



0036 GO TGO 8100

0037 8107 CONTINUE
0038 T=0.
0039 [T=0
0040 15 CALL READER(9,21,7800)
C READ Ul '
0041 . CALL READFR(9,21,7800)
C READ 21
0042 IFL=0
0043 L2=MSUM-1
0044 A DO 4107 M=2,12,2
0045 =1
0046 4100 I=1+2
0047 IF(IUIM,[)=2)4104,4107,4100
0048 4104 IF(IU(M,I))4100,410G,4101
0049 4101 IFLIFL)4102,41C2,4103
0050 4102 IML=1+1
0051 1FL=1
0052 GO TO 4100
0053 4103 . IMR=[-]
0054 IFL=0
0055 DD 13 N=IML,IMR,?2
0056 IF(Z1{MyN)=ZMAXIM,N))I10,10,11
0057 11 IMAX(MyN)=Z1(M,N)
0058 LMAXIM=1 N)=T*pH
C PUT ASSUOCIATED PHASFE BELOW /
0059 IMAX{MyN+1)=0C.C
0060 IMAX(M=1,041)=0.0
0061 10 IF(Z1(MyN)=ZMIN(MyN)I12,13,13
0062 12 IMIN(MyN)=Z1 (M,N)
0063 IMIN(M=1,N)=T%PH
0064 IMIN(MyN+1)=0.0
0065 IMIN(M=1,M+1)=0.0
0066 13 CONT INUE
0067 GO TC 4100

0068 4107 CONTINWL
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0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
00719
0080
0081
0082
0083
0084
0085
0c8e6
0087
o088
0089
0090
0091
0092
0093

0094
0095
0096
0097

0098
0099

16
200

201
202
203

204

205

206

207

110

102

1
2

1T=17+2
T=T+2.
IF(IZINT=-1IT)16,4,16,15

WRITE(3,200)TT '
FORMATU L' 350X, *TIDAL PERICD=',F6.2, * HOURS? )
KRITE(3,2C1)0L
FORMAT(' *,50X,"GRID INTERVAL=' ,F6.2,'KILOMETERS ")
WRITE(3,202)
FORMAT (' *,20X,"0UTPUT DESCRIPTICN..')
WRITE(3,203)
FORMAT(* ', 35X, "UNITS. METERS y UEGREES?)
WRITE(3,204) :
FORMAT (' " 353Xy " N=2,4464ETC. ")
WRITE(3,205)
WRITE(3,205)
WRITE(3,205)
FORMAT (% *,57X,*%")
WRITE(3,206)
FORMAT (' ' 40X, "M=2 44, ETCHR0 &k HE JOHT #tokkk 1 )
WRITE(3,205)
WRITE(3,205)
WRITE(3,205)
WRITE(3,205)
WRITE(3,207)
FORMAT(! *,55X, 'ANGLE")
WRITE ZMAX ANU PHASE

WRITE(3,110)
FORMAT (11,4 7X, "MAXIMUM HFIGHTS AND ASSOCIATED PHASFE')
WRITE(3,102)
FORMAT(1C?,*

N= 8 N=10

N=16")

L2=MSUN=-2
DO 5002 J=1,1L2,2 ‘ .

N= 2 N= 4
N=12 N=14

1T



0100
o101
0102
0103
0104
0105
0106
107
o108
0109
0110
011l
0112
o113
0114

0115
0116
0117
0118
0119
0120
0121
0122
0123
0124

0125

0126

0127
o128
0129
0130
0131

106
101

5002

6003

103

6005

6004

[eNeNy’

M=MSUM+1-J

WRITE(3,106) (ZMAX(MyN)Y N=1,18)
WRITE(3,3)

FORMAT(Y *,5X,18(LX,F6.1))

M=M-1
WRITE(3,101) My {ZMAXIM,N) yN=1,18)
FORMAT (Y 't M=1,12,1X,18(1X,F6.2))
FORMAT(' )

CONTINUE

M=1

WRITE(3,106) [ZMAXK{M,N),N=1,18)
IF(NSUM-18)6004,6004,6003
WRITE(3,110)

WRITE(3,103)

FORMAT('U,! N=2D N=22 N=24

16 N=28 N=30")

DO 6005 J=1,12,72

M=MSUM+1-J

WRITE(34166) {ZMAX(M¢N) yN=19429})
WRITE(3,3)

M=M-1

WRITE(34161) (ZMAX(NMyN) yN=19,29)
CONTIMUE

M=1

WRITE(3,166) (ZMAX(MyN) ,N=19,29)
CONTINUE

WRITE ZMIN AND PHASE
WRITE(3,170)
WRITE(3,1062)
DO 7002 J=1,12,2
M=MSUM+1-J
WRITE(3,106) (/MINIMaN)yN=1,10)
WRITE(3,3)
M=M-1

N =

CET




0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0l44
0145
0l46
0147
0148
0149
0150
0151

0152
0153
0154
0155
0156
0157
0158
0159
0160
Cle6l
0162
0163
0lé4
0165

7002

5003
170

5005

16¢
161
5004

3000

5100

51C4
5101
5102

WRITE(3,101) M, (ZMINIM,N) N=1,18)
CONTINUE

M=1

WRITE(3,106) (ZMIN(M,N) N=1,18)
IF(NSUM=18)5004,5004,5003
WRITE(3,170) '
FORMAT( ' 1" 447X, " MINIMUM HEIGHTS AND ASSOCIATED PHASE?!)
WRITE(3,103)

DO 5005 J=1,L2,2

M=MSUM+1-J .

WRITE(3,166) (ZMIN(M,N),N=19,29)
WRITE(3,3) ‘

Mz=M-1

WRITE(3,161) (ZMIN(M,N),N=19,29)
COMNTINUE

M=1

WRITE(3,166) (ZMIN(M,N),N=19,29)
FORMAT(?' *,11(1X,F6.1))

FORMAT{' *,11(1X,6.2))

CONTINUE

DO 9000 M=1,6%

DO 9000 N=1,30
Z1(M,N)=1G000000.0

IFL=0

L2=MSUM~-1

DO 5107 M=2,1L2,2

[=-1

I=1+2
IF(LU(M,1)=-2)5104,5107,5100
IF{IU(M,1))5100,5100,5101
IF(IFL)IS102,5102,5103
IML=I+1

IFL=1

GU TO 5100

€ET



0166
0l67
0168

0169
0170
o171
0172

0173
0174

0175
0176
0177

o178
0179
0180
o018l
0182
0183
0184
0185
0146
0187
o188
0189
0190
Ccl1721
0192
0193
0194
019
0196
0197

5103

300
301

23

5107

210

5202

5203

IMR=1-1
1FL=0
NO 23 N=IML,IMR,2
" CONSTRUCT TIDAL RANGE
Z1{MyN)=ZMAX (M, N)=ZMIN{M,N
Z1(MyN+1)=0.0 :
Z1 (M=1,N+1)=0.0
IF(ZMIN(M=14N)=ZMAX(M=1,N))3C0,301,301
IF TZMIN LESS THAN TZMAX, LLW TIDE COMFS BEFORE HIGH TIDE
ZMIN{M=1,")=ZMIN(M=1,N)4+360,
ZU(M=1 N = ((ZMAXIM=1 N4+ ZMINIM=1,N))/2.)=90.
CONSTRUCT MEAN PHASE
CONTINUE
GO TO 5100
CONT INUE
WRITE TIDE RANGE AND MEAN PHASE
WRITE(3,210)
FORMAT(*1',52X,*TIDE PANGE AND VEAN PHASE')
WRITE(3,102)
L2=MSUM-2
DO 5202 J=1,12,2
M=MSUM+ 1~
WRITE(3,106) (Z1(M,N),N=1,18)
WRITE(3,3)
M=M—1
WRITE(3,10L) My (Z1{M,N) yN=1,18)
CONTINUE
M=1
WRITE(3,106) (Z1IM,N),N=1,18)
IF(NSUM=18)5204,5204,5207%
WRITE(3,21G)
WRITE(3,103)
0O 5206 J=1,02,2
M=MSUM+]~J
WRITE(3,166) (Z1{MyN) 4N=19,29)
WRITE(3,3)
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0198 M=M-1

0199 WRITE(3,161)(Z21(My,N)4N=19,29)
0200 5205 CONTINUE

0201 M=1

0202 WRITE(3,166) (ZY(MyN),,N=19,29)
0203 5204 CONTINUFE '
0204 - REWIND 9

020% CALL EXIY

0206 END
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0001 INTEGER#*2 U

0002 DIMENSION IU(6B,31),UL(65430),R¥AX(65,30),RMIN(65,30)
0003 READ(9,77)MSUM
0004 READ(9,77)NSUM
0005 77 FORMAT(12)
c006 READ(9,78) DL '
o DL=GRID INTERVAL I[N METERS
0007 DL=DL/1CCO.
0008 READ(9,999) I ZINT
c [ZINT=NUMBER UF INTERVALS —-- IE NUMBER OF CURPENT ANC
c HEIGHT CALCULATICNS
0009 999  FORMAT(14)
0010 READ(9,78)TT
‘ C TT=PERIOD IN SECGNDS
0011 TT=TT/3600.
0012 78 FORMAT(F12.4)
0013 ZINT=IZINT
0014 READ(9) { {IUINMyN) yM=1,6T7) 4N=1,31)
0015 DO 1C M=1,65
0016 DO 1C N=1,30
0017 RMAX (M,N)=10C00000.0
0018 10 RMIN(M,N)=1000C000.0
0019 [FL=C
0020 L2=MSUM-1
0021 L0 8107 NM=2,L2,2
0022 [=-1
0023 8100 [=1+2
0024 IF{IL(M,1)-2)8104,8107,8100
0025 8104 IF(IL(M,1))8100,8100,8101
0026 8101 IF(IFL)B102,8102,8103
0027 8102 IML=I+1
0028 1FL=1
0029 GO TC 8100
0030 81C3 [MR=I-1
0031 A IFL=C

0032 DO 8884 N=IML,IMR,2
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0033
0034
0035
0036
0037
co3s
0039

0040
0041
0042
0043
0044
0045
0046
0047
0048
0049

0050
0051
0052
0053
0054

0055
0056

0057
0058
0059
0060
0061
0062
0063
0064

RMAX{M,N}=0,0
8884 RMIN{M,N)=0.C
GO TQ 81Q0C
8107 CONTINUE
T=0.
1T7T=0
CALL READER(9,U1,7800)
READ Ul
1IFL=0
L2=MSUM-]
DO 4107 M=2,12,42
=-1
4100 I=[+2
IF(IL(M,T11-214104,4107,4100
4104 IF(IU(M,1))4100,4100,4101
4101 IF{IFL)4102,4102,4103
4102 IML=1+]
IFL=1
GO TC 4100
4103 IMR=]~1
{EL=C
BO 14 N=IML,IMR,2
UATZ={Ul (M+]1 ,N)+L1(M-1,N)) /2.

1%

) -

C VATZ==(VI(M,N+1)+V2{(NM,N-1))/2.
VATZ=-(UL{NMyN+2)+tUL(M,N)}/2.

C THIS CHANGES CIRECTICN OF +V
RC=SGRT((UATZ*UATZ)+ (VATZXVATZ))

C CCMPUTE VECTORIAL CURRENT ATl Z(M,N)
IF(RC-RMAX(M,N)I)L1Zy11,11

11 RMAX (M,N)=RC

RMAX(M=1,N)=TRIG(UATZ,VATZ)
RMAX (M, N+1)=(TT/ZINT)*T
RMAX (M=1,N+1)=0.0

12 IF(IT)141,2

1 RMIN(M,N)=RC
RMIN{M=1,N)=TRIGIUATZ,VATZ)

LET



0065
0066
0067
0068
0069
cQ70
co71
ocr2

0073

0074
00175
0076
0077
0078

0079
0080
oosl
0082
0083
0084
0085
0086
ooB7v
o0aa
coss
0090
0091
0C92
0053
0094
0095
0096

0097

+ 0098

0069

13

14

4107

16

200

201

202

203

204

205

206

RMIN(M N¢1)=(TT/ZINT)*T
RMIN(M=1,N+1)=0.0
GO TC 14
IF(RC-RMIN(M,N))13,13,14
RMIN{M,N)=RC
RMIN(M=1,N)=TRIG(UATZ,VATZ)
RMIN(M N+1)=(TT/ZINT)*T
RMIN(M=1,N+1)=0.0
CONTINUE
GO TO 4100
CONTINUE
1T=1T+2
T=T+2.
CALL READER(9,Ul,7800)
READ 71
IF(IZINT=1T)16,16,15
CONTINUE
WRITE{3,200) T
FORMAT(*1*,50X, ' TIDAL PERICD=',76.2,*HOURS?)
WRITE(3,201)0L
FORMAT(® *,50X,"GRID INTERVAL=",F6.2,'KILOMETERS" )
WRITE(3,202)
FORMAT(? *,20X,*CUTPUT DESCRIPTICN..")
WRITE(3,203)
FORMAT(® % ,35X, "UNITS..METERS/SHC. ,DEGREES, HOURS )
WRITE(3,204)
FORMAT (' ' 83X, 'N=2,4,6,ETC.")
WRITE(3,205)
WRITE (3,205)
WRITE(3,205)
FORMAT(? ¢,57X,%%")
WRITE(3,206) }
FORNMAT (' * 40Xy "M=2 44y ETCREXREECURRENT kT [MER k%)
WRITE(3,205)
WRITE(3,205)
WRITE(3,205)
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01¢o
01C1
0102

0103
0104
0105
0106

0107
0108
o1cC9
0110
o111t
0112
0113
0114
0115

~ 0116

0117
o118

- 0119

0120
0121
0122
0123

0124
0125
0126
0127
0128
0129
0130

207

110

102

106

101
5002

6003

103

166

WRITE(3,205)
"WRITE(3,207)
FORMAT(' *,55X,"ANGLE")

WRITE RMAX,ANGLE,AND TIME

WRITE(3,110) '

FORMAT('1%,48X,"MAXIMUM CURRENTS, ANGLES, AND TIMES')

WRITE(3,102)

FORMAT('0%,* N= 2 N= 4
1 N= 8 N=10 N=12 N=14
2 N=18")

L2=MSUN=2

DO 5C02 J=1,12,2

M=MSLM+ 1~

WRITE(3,106) (RMAXIM,N),N=1,18)

WRITE(3,3)

FORMAT(® *,5X,18(1X,F6.1))

M=M-1

WRITE(3,101)M, (RMAX{M,N) ,N=1,18)

FORMAT(' )

FORMAT(! 1,9V=1,12,1X,18(1X,F6.2))

CONTINUE

M=1

WRITE(3,106) (RMAX(NM,N) ,N=1,18)

[F(NSUM=-18)6004,60G04,60073

WRITF(3,110)

WRITE(3,103) _

FORMAT ('O, N=20 N=22 N=24
16 N=28 N=30")

DO 6005 J=1,12,2

M=MSUM+1-J

WRITE(3,166) (RVAX{M,N),N=19,29)

WRITE(3,3)

FORMAT(' ', L1{1X,F6.1))

M=M-1

WRITE(3,161) (RVAX(M,N),N=19,29)
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0131
0132
0133
0134
0135

0136
0137
0138
0139
0140
0141
0142
0143
0144

0145

0146
0l47
0148
0149
0150
- 0151
0152
0153
0154
0155
0156
0157
0154
0159
0160
Gl61
0le2
0163

_0l64

161
6005

6004

170

70C2

5003

5005

5004

FORMAT(* *,11(1X,F6.2))

.CONTINUE

M=1
WRITE(3,166) (RMAX(M,N)yN=19,29)
CONTINUE

)

WRITE RMIN, ANGLE, AND TIME
WRITE(3,170)
FORMAT(*1*,48X,"MINIVUM CURRENTS, ANGLES, AND TIMES')
WRITE(3,102)

L2=MSUN-2

DO 7C02 J=1,12,2

M=MSUN+1-J

WRITE(3,106) (RMIN(M,N)4N=1,18)
WRITE(3,3)

M=M-1

WRITE(3,101)M, (RMIN(M,N),N=1,18)
CONTINUE

v=1

WRITE(3,106) (RMIN(M4N) ,N=1,18)
IF(NSUM-18)5C04,5004,5003
WRITE(3,17C)

WRITE(3,103)

DO 5C0% J=1,L2,2

M=MSUM+]~)

WRITE(3,4166) (RVMIN(MyN)4N=19,29)
WRITE(3,3)

M=M-]

WRITE(3416L)(RVMIN{MyN) N=19,29)
CONTINUE

M=1

WRITE(3,166) (RVIN(M,N),N=19,29)
CONTINLE

REWIND 9

CALL EXIT

END

DA



6001l

0002
0003
00C4

0005

0006
0007
0002

0003
0010

0011}
0012
0013

0014
0015
0016
0017
0018

C
5001
2002
C
9000

9003
c

9064
C
9007
C

9009

FUNCTION TRIGIUATZ,VATZ)
' DECTDE UPON QUADRANT
IF{UATZ)9000,9001,9001
IFLVATZ)IGO0T7 49002 ,9002
DEG=((ATANZIVATZLUATZ))*18B0.)/3.14159
AMGLE IS BETWEEN O AND 90
GO TU 9009
UATZ=-UAY?
TE{VATZ)Y9004,9003,90C3
DEG=90.+ ({ATANZ2 (UATZ ,VATZ))#180.,)/7/3.14159
ANGLE IS BETWEEN 90 AND 180
GO TQ 9009
VAT7=-VATZ
ApGlE IS BETWEEN 1RO AND 270
DEG=180+({ATANZ(VATZ,UATZ2) ) %*18B0.)/3.14159
GO TC 9009
VATZ=~VATZ
ANGLE IS BEIWEEN 270 AND 360
DEG=2T0«+{ (ATANZ2 (UATZVATZ) %1801 /3414157
CONT INUE
TRIG=NEG
RETURRN
END

%1



MSUM

NSuil

DL

IZINT

IT

Iy

Ul

Z1

Ul

Z1

Ul

Z1

end o

APPENDIX IV

FORMAT OF OUTPUT TAPE

12 max grid length
12 max grid width
Fl12.4 grid spacing, meters
I4 nuﬁber of intervals
F12.4 | Tidal period in seconds
unformatted boundary information

IU may be obtained by the statement
READ(9) ((IU(M,N) ,M=1,67),N=1,31)

NOTE: 1IU is a half-word integer matrix

unformatted record 1

" IZINT-1

" IZINT

f file label
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It will be advisable to use the same program for reading Ul.
and Z1 as was used for writing them. This program may be seen in
Appendix II.

The program is designed to start at a certain address in the core
(in this case at the beginning of the first word of the Ul array) and
to continue writing until a certain number of bytes (1/4 single-
precision words) have passed. In this case,'the number of bytes equals
65 x 30 x 4, or 7300. When reading such data, the reverse process
takes place.

If it is considered desirable to write other analysis programs
it will be found helpful if either of the two analysis programs are

used as examples.



APPENDIX V

SELECTIONS FROM THE SAMPLE PROBLEM COMPUTER OUTPUT
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GRIC INTERVAL= 50.00KILONMETERS

TICAL PERIQC= 12.42HCURS

FRICTICN COEFFICIENT=C.CC30

LATITUCE= 5.0CEGREES

CCRICLIS PARAMETFR=0.CO0C1268RACIANS/SECOND

FCLLCWINC PRINTCUTS ARFE IN METER-SECOND UNITS
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CONDITIONS AFTER 0.0 HOURS
NUMBER OF TICAL CYCLES CCMPLETED 5

N= 1 N= 2 N= 3 N= 4 N
M= 9 c.0 1.01 0.0 1.01
M= 8 0.99 C.99 0.96 0.99
M= 7 C.0 C.97 0.0 C.97
M= 6 0.95 C.95 0.95 0.95
M= 5 0.0 .90 0.0 0.90
M= 4 0.86 C.86 0.86 C.86
M= 3 o0.C 0.80 0.0 0.80
M= 2 C.74 C.74 CeT4 Ce74
M= 1 0.0 C.68 c.0 C.68
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CuTPUT DESCRIPTY

TICAL PERIDC= 12.42H{URS
GRIC INTERVAL= 5C.00KILOMETERS
ICNa. '
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CUTPUT CESCRIPT

TIOAL PERINC= 12.42HCURS
CRUL INTIRVAL= SCL.CCKILOMETERS
ICN.. .
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N= 2 K= 4
NokdokAok Kook fmdokokd RokAk gk

M= 8 RkkEk% c.CC 6al4 C.CO
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MINIFUM CURRENTS, ANGLES, AND TIMgS

N= 6 N= 8 N=10
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