A VARIABLE-BOUNDARY NUMERICAL TIDAL MODEL

APPROVED:

Corl S. Burson

John J. Maring

Chairman

Department Head

APPROVED: (, Cell

Date Dec. 5 1969

Dean of the College of Mathematics, Physical Sciences and Engineering.

Vice President for Research and Advanced Study

UNIVERSELECTION ALASKA

A VARIABLE-BOUNDARY NUMERICAL TIDAL MODEL

Α

THESIS

Presented to the Faculty of the
University of Alaska in Partial Fulfillment
of the Requirements
for the Degree of
MASTER OF SCIENCE

Ву

303 M8

John Christian Hartley Mungall, B.Sc., M.S.
College, Alaska

May, 1970

ABSTRACT

A numerical tidal model using equations developed by Hansen (1952) and Yuen (1967) is automated to the point where a potential user need not undertake extensive reprogramming. The user adds to the program only those cards needed to specify tides at input points as a function of time; the application of the relevant calculations at each grid point being controlled by an integer matrix that corresponds to the inlet boundary.

A sample problem is covered in detail and applications of the model to the M_2 tide of the Gulf of California, and to a hypothetical mean tide in Cook Inlet are shown.

ACKNOWLEDGEMENTS

I would like to express appreciation to my committee chairman, Dr. J. B. Matthews, for his encouragement during the course of this work. In addition, I wish to thank the University of Alaska for financial support.

This study was supported by the Office of Naval Research under contract NONR 3010(05) .

TABLE OF CONTENTS

			page	9
CHAPTER	I	INTRODUCTION	1	
CHAPTER	II	THE CALCULATION OF TIDES IN INLETS	5	
		 Introduction Harmonic methods Characteristic methods Finite difference methods 		5 7 10 16
CHAPTER	III	THE FINITE DIFFERENCE EQUATIONS	26	
	-	 The basic equations The grid retwork U-point calculation V-point calculation Z-point calculation Interpolation of values at U- and V-points Calculation for a special (narrow) case The finite difference equations expressed in FORTRAN IV Stability of the finite difference 		26 27 28 30 31 33 36 38 41
CHAPTER	TV	equations in two space dimensions AUTOMATION OF THE SEQUENCE OF CALCULATION	10 AA	
CHAFTER	TV	 The basic sequence of calculations Automation of the inlet-tide program Input of boundary conditions Description of boundary-monitoring process 		44 46 50 51
CHAPTER	v	PROGRAM ARRANGEMENT	54	
		1. Division of the program into subroutines		54
		2. Overlays		54

CHAPTER	VI	GRID SELECTION AND DATA ARRANGEMENT	65	
		 Grid selection Basic data cards Boundary data cards Depth data cards Initial tide-height and boundary-value cards 		65 67 69 70 71
CHAPTER	VII	COMPUTER OUTPUTS AND DATA ANALYSIS	74	
		 Printer output Tape outputs Data analysis 		74 75 76
CHAPTER	VIII	A SAMPLE PROBLEM	78	
CHAPTER	IX	TWO APPLICATIONS OF THE MODEL	81	
		 Application of the model to the M₂ tide of the Gulf of California Application of the model to the 		81 83
		tides of Cook Inlet		90
CHAPTER	x	CONCLUSIONS AND FUTURE WORK	97	
		 Conclusions Future work 		97 98
BIBLIOG	RAPHY		99	
APPENDIX	X I	LISTING OF PROGRAM FOR VARIABLE-BOUNDARY TIDAL MODEL	102	
APPENDI	X II	LISTING OF DATA COMPRESSION SUBROUTINE	125	
APPENDI		LISTING OF HEIGHT AND CURRENT	128	

CHAPTER	VI	GRID SELECTION AND DATA ARRANGEMENT	65	
		 Grid selection Basic data cards Boundary data cards Depth data cards Initial tide-height and boundary-value cards 		65 67 69 70 71
CHAPTER	VII	COMPUTER OUTPUTS AND DATA ANALYSIS	74	
		 Printer output Tape outputs Data analysis 		74 75 76
CHAPTER	VIII	A SAMPLE PROBLEM	78	
CHAPTER	IX	TWO APPLICATIONS OF THE MODEL	81	Ē
	•	 Application of the model to the M₂ tide of the Gulf of California Application of the model to the tides of Cook Inlet 		81 88
CHAPTER	X	CONCLUSIONS AND FUTURE WORK	97	
		1. Conclusions 2. Future work		97 98
BIBLIOG	RAPНY		99	
APPENDIX	ΚÏ	LISTING OF PROGRAM FOR VARIABLE-BOUNDARY TIDAL MODEL	102	
APPENDIX	K II	LISTING OF DATA COMPRESSION SUBROUTINE	125	
A PPENDI	X III	LISTING OF HEIGHT AND CURRENT	128	

APPENDIX IV	FORMAT OF OUTPUT TAPE	page 142
APPENDIX V	SELECTIONS FROM THE SAMPLE PROBLEM COMPUTER OUTPUT	144

LIST OF FIGURES

		page
2.1	Part of characteristic net	12
2.2	Characteristics at a boundary (x=a)	13
2.3	A set of intersecting forward characteristics	15
2.4	Grid points used in the leap frog method	17
2.5	Grid points used in the implicit method	22
2.6	Section of time-space grid	24
3.1	Section of staggered grid	27
3.2	Values required for interpolations at a U-point	33
3.3	Values required for interpolations at U-points on a boundary	34
3.4	Narrow channel case	3 ő
3.5	Grid points required for V-point calculation	41
3.6	Grid points required for Z-point calculation	42
4.1	Typical column and row through Z-point, with associated integer matrix input cards	48
4.2	Order in which grid boundaries are read	50
4.3	Flow chart for boundary-monitoring process	52
5.1	Program flow chart $[(1/6)$ to $(6/6)]$	55- 60
6.1	Example of simple grid	67
6.2	Order of specifying depths at V-points	70
6.3	Order of specifying depths at U-points	71
6.4	Order of specifying initial tide heights	72

9.1	Gulf of California, bathymetry	page 82
9.2	Gulf of California, co-range and co-tidal lines for the M2 tide	85
9.3	Cook Inlet, Alaska, bathymetry	90
9.4	Cook Inlet, Alaska, co-range and	93

LIST OF TABLES

3.1	Array names	page 39
3.2	Transposition of some major variables	40
5.1	Phase names	61
5.2	Overlay tree	63
6.1	Example of input data cards	68
6.2	Data arrangement for example	72
8.1	Initial tide heights	79
9.1	Cards added to INPUT subroutine	92

CHAPTER I

INTRODUCTION

To trace the origins of tidal modeling one has to follow the history of the tides through some two thousand years. In the Occident the earliest references to tides are those of Strabo, Pliny, and Pytheas, in the first century A.D.. Such references are understandably rare as the Mediterranean is a region of small tides. The connection between tidal variations and the movement of the sun and moon being obvious, it is not surprising that some rule-of-thumb methods for tidal prediction were found and passed from father to son as closely guarded family secrets. It was not until the seventeenth century, however, that mathematics was applied to the study of tides.

Kepler, with his studies on gravitational effects, provided

Newton with the basis for his equilibrium tide theory. This theory

explained mathematically such effects as spring and neap tides,

priming and lagging, and diurnal inequalities. Newton's theory

assumed a non-inertial fluid, the particles of which instantly

respond to the attractional forces of the sun and moon. Daniel

Bernoulli, with his studies on the mathematics of fluids, paved

the way for Laplace who formulated and applied the equations of

continuity and motion to the world ocean, and demonstrated the need

for harmonic tidal analysis.

The harmonic analysis of tidal records was established by

Thomson (later Lord Kelvin), and in 1876 he introduced the first

tide predicting machine. Further improvements in the practice of

harmonic analysis were made by G. Darwin and Doodson. A new

approach to tidal analysis and prediction appeared in 1965 when

Munk and Cartwright presented a paper on tidal spectroscopy and

prediction. This technique, the so-called "response method", allows

the inclusion of input functions other than gravitational forces.

With the harmonic method well established, analytical studies were made on the dynamics of water movement in canals and oceans. With these studies are associated such names as Airy, Kelvin, Lamb, Poincare, Rayleigh, Taylor, Jeffreys, Proudman, and others. first actual model (as opposed to analytical solutions) appears to be one on the Red Sea by Blondel (1912), based on the calculus of variations. Efforts were then directed by people such as Sterneck (1914), Defant (1920), Grace (1936), and Proudman (1953), to models involving the numerical solution of the equations of motion and continuity from which the time dependency has been removed. During this period all calculations had to be performed by hand. Considerable advances in the calculation of water movements in rivers and canals were made by the Dutch, who tended more towards solutions of a mathematical nature as opposed to numerical solutions. post-war advent of the digital computer made feasible the timedependent solution of the hydrodynamic equations. The result of the withdrawing of the time-dependency restriction was to allow

solutions of a non-linear nature to be obtained. This is particularly desirable when tides in shallow waters are being studied. Furthermore the computer made possible calculations in two dimensions, so that cross-currents and Coriolis force effects could be included.

The first application of a two-dimensional tidal model was to the North Sea (Hansen, 1952). A further application of Hansen's explicit technique was made by Yuen (1967) to the tides of the Bay of Fundy. Both these models were, however, specifically tailored to the area being studied and were not general, i.e. the model could not conveniently be applied to other areas. This situation showed an obvious need for a variable-geometry model that could be adapted to new outlines without extensive reprogramming.

A sophisticated model of variable-geometry nature was devised by Leendertse (1967). It is based on the implicit method, which is considerably more complicated than the explicit method on account of the need for the solution of sets of simultaneous equations at each time step. It is felt that the approach used in this model is too complex for the method to be easily understood (and hence modified if desired) by users not possessing a strong background in the techniques of numerical models. In the past the users of two-dimensional tidal models seem to have been physical oceanographers or possibly civil engineers. A need now exists for a model that is not only capable of handling variable geometries, but that is also conceptually simple, well documented,

and easy to use. On these points it is felt that Leendertse's model falls short of the ideal.

In the chapters that follow, a model is developed that uses
Yuen's equations in an automated form. The equations are applied
as necessary by a process that monitors an integer matrix based on
the positions of the inlet boundaries.

The prospective user is warned that certain stability criteria must be adhered to during the computations. These are covered in Chapters II and III.

CHAPTER II

THE CALCULATION OF TIDES IN INLETS

1. Introduction--.

The prediction of tides of an astronomical origin at points close to deep seas and oceans is now, within specified limits, a routine matter. However the problem becomes more complicated when attention is turned towards shallow semi-enclosed coastal areas (henceforth referred to as inlets).

Statistical methods are now in existence that seem to be adequate for the prediction of tides in inlets, provided that long-term records are available. If it is desired that the effects of storms and changes in local topography (land reclamation, shipping channels and canals, hydro-electric projects, etc.) are to be reliably forecasted then the approach must generally involve the solution of the basic hydrodynamic equations. The simplified equations of continuity and motion are, for one dimension, from

Proudman (1953):

$$\frac{\partial(Au)}{\partial x} + b \frac{\partial h}{\partial t} = 0 \tag{2.1}$$

and

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + 9 \frac{\partial h}{\partial x} + \sum F_i = 0, \qquad (2.2)$$

where:

x=distance
A=cross-sectional area
h=total water depth
g=gravitational acceleration

b=width u=velocity t=time F_i=ith force The equations to be solved are further simplified by assuming homogeneous flow of a long wave nature (shallow water wave), except for the case of the tidal bore. They are complicated by the inclusion of a frictional term that is essentially non-linear. The term $u \frac{\partial u}{\partial x}$ is normally neglected as being small in comparison with the other terms.

When shallow water waves are being considered, the wave motion is generally assumed to be such that the vertical accelerations and velocities are negligible, i.e. the orbital motions of particles in the vertical plane are no longer circular or elliptical as with deep water waves. Once it has been assumed that the velocity vector is restricted to lie only in the horizontal plane, the depth mean velocity can be used. If vertical current profiles for a given region are available then it may be that the mean current can be extrapolated to provide a prediction for the overall current profile.

The effect of friction is included in the equations of motion via the application of the formulae of De Chezy (in Europe) or Manning (in the United States) which were developed for the study of uniform flow in channels. When the inlet is wide compared to its depth (say, in a ratio of 10:1) it is customary to use for the frictional force per unit mass

$$F = \frac{g u |u|}{C^2 h}, \qquad (2.3)$$

where C=De Chezy's coefficient,

which makes the friction opposite in direction to the current. In the m.k.s. system C is approximately equal to 50 meters sec , so

that

$$F \simeq \frac{0.004 \text{ u/u}}{h} . \tag{2.4}$$

The above-mentioned equations, (2.1) and (2.2), may be dealt with in three main ways: harmonic methods, characteristic methods, and finite difference methods. For the purposes of background each method will be covered in some detail in the sections that follow.

2. Harmonic methods--.

warious constituents whose periods result from the relative motions of the earth, sun, and moon. The equations are linearised (Lorentz, 1926) by neglecting the convection term under and by replacing the friction term by

$$F = \frac{9}{C^2 h} \frac{8}{3\pi} u \bar{u}$$
, (2.5)

where u=maximum amplitude of current,

and the solutions for height and current are assumed sinusoidal. The time-dependence of the equations may then be removed, leaving a pair of simultaneous linear partial differential equations. It is however necessary to estimate the maximum amplitude of the current at the start of the calculations. The method becomes considerably more complicated when more than one constituent is considered at a time.

The simplest example of a harmonic type calculation is that of the solution of the tides in an inlet of constant cross section (Sverdrup, Johnson, and Fleming, 1942). If convective and frictional terms are neglected, the equations of motion and continuity become

$$\frac{\partial u}{\partial t} + 9 \frac{\partial z}{\partial x} = 0$$

and

$$\frac{\partial z}{\partial t} + d\frac{\partial u}{\partial x} = 0,$$
(2.7)

where Z=height above mean sea level d=depth of water below mean sea level.

If the solution is assumed to vary sinusoidally with time,

$$Z = \overline{Z} \sin\left(\frac{2\pi t}{T}\right)$$
 (2.8)

and

$$u = \overline{u} \cos\left(\frac{2\pi t}{T}\right),$$
(2.9)

where Z=maximum amplitude of tide T=period of tide,

and these quantities are substituted into (2.6) and (2.7), then

$$-\bar{u}\frac{2\pi}{T} + 9\frac{\partial\bar{z}}{\partial x} = 0$$
(2.10)

and

$$\overline{z} \frac{2\pi}{T} + d \frac{\partial \overline{u}}{\partial x} = 0$$
 (2.11)

This leads to

$$\bar{z} = \mathcal{B} \cos\left(\frac{2\pi x}{\mathcal{L}}\right),$$
(2.12)

where
$$\mathcal{L} = T \sqrt{gd}$$
B=constant (to be determined).

Thus

$$Z = B \cos\left(\frac{2\pi x}{\mathcal{L}}\right) \sin\left(\frac{2\pi t}{T}\right)$$
(2.13)

and

$$u = -\frac{Bg}{\sqrt{gd'}} \sin\left(\frac{2\pi x}{\mathcal{L}}\right) \cos\left(\frac{2\pi t}{T}\right). \tag{2.14}$$

If x=0 at the closed end of the inlet and the tide is specified at x=L (with the maximum amplitude of the tide being H) then

$$Z = \frac{H}{\cos\left(\frac{2\pi L}{L}\right)} \cos\left(\frac{2\pi x}{L}\right) \sin\left(\frac{2\pi t}{T}\right)$$
(2.15)

and

$$u = \frac{-Hg}{\sqrt{9d} \cos\left(\frac{2\pi L}{L}\right)} \sin\left(\frac{2\pi x}{L}\right) \cos\left(\frac{2\pi t}{T}\right). \quad (2.16)$$

Equation (2.15) shows clearly that nodes, or points of zero tidal amplitude, can exist whenever $x=\sqrt{(2n+1)/4}$, $n=0,1,2,\ldots$. Furthermore, infinite tidal amplitudes will result should $L=\sqrt{(2n+1)/4}$, $n=0,1,2,\ldots$, i.e. whenever a node coincides with the mouth of the inlet. Practically, of course, friction will limit the infinite amplitudes; nevertheless, considerable amplification of a tidal constituent can occur should the length of the inlet be near one of its resonant lengths for that particular period.

For a comprehensive presentation of the method, the reader is directed to the book by Dronkers (1964).

3. Characteristic methods--.

The material in this section was taken chiefly from the book by Stoker (1957).

The equations of continuity and motion, (2.1) and (2.2), (neglecting all forces other than hydrostatic) may be rewritten in terms of the variables u and c (where $c = \sqrt{gh}$). Two ordinary differential equations result:

$$c_i: \frac{dx}{dt}$$
 =u+c, with u+2c=k, for a given curve, (2.17)

C2:
$$\frac{dx}{dt}$$
 =u-c, with u-2c=k2 for a given curve. (2.18)

These equations represent two sets of curves on the x-t plane: the set C_1 being referred to as 'forward characteristics' and the set C_2 as 'backward characteristics'. The equations are written for a point moving relative to the bottom. If the axis is shifted to a point (x_1,t_1) moving with constant velocity $V(x_1,t_1)$, then C_1 and C_2 become:

$$\frac{dx}{dt} = \pm c$$
(2.19)

The importance of this is that the process may now be seen to be one of the propagation of disturbances away from the point in question with a velocity, or celerity, c.

The characteristic method is particularly useful when aperiodic conditions exist (storm surges, dam failures, lock closures, etc.), and for situations where the flow becomes critical or supercritical, i.e. u \sqrt{gh} . This situation is similar to supersonic flow in gases. In water the phenomenon is associated with hydraulic jumps and tidal bores. It should be mentioned that the characteristic method itself cannot deal with the discontinuity region. However, it is useful for indicating the time and place of occurence of the bore, and the conditions on either side of the discontinuity. The reason for this is that at the actual discontinuity the above equations break down owing to the existence of energy losses and vertical accelerations. As far as the practicality of calculations is concerned, the characteristic method is too complicated for most exploratory calculations, but is of greater interest when certain complicated situations are to be analysed. A further use of characteristic theory is to indicate the sufficiency of boundary conditions for a given problem.

The basic approach by which the method of characteristics is used to solve a simple initial value problem, in which the depth is constant, is as follows; If u and c ($c=\sqrt{g(d+z)}$) are known for points A and B, then the slopes of the characteristics through these points are known from

$$\frac{dx}{dt} = u \pm c \tag{2.20}$$

If the distance AB is small the curved characteristics may be approximated by straight lines. When the forward characteristic through A and the backward characteristic through B are drawn, they will

intersect at Q, as in Figure 2.1.

Figure 2.1. Part of characteristic net.

With the initial conditions known, it is also possible to evaluate the constants k_1 and k_2 . Therefore two equations may be solved to give the values of u and c at Q. Similarly, points R and S may be found, and so on for the network, provided that the boundaries are at infinity.

It is important to note that conditions at S are influenced by conditions between A and C. The area SAC is known as the zone of determinacy of S. In most cases of interest it is necessary to include the effects of boundaries. Suppose a left-hand boundary exists at x=a (see Figure 2.2). A backward characteristic from B is assumed to intersect the t-axis at (a,τ) and hence if both u and c were known at B, then k_2 is known. Thus at (a,τ) we have

Figure 2.2. Characteristics at a boundary (x=a).

To evaluate the slope of the forward characteristic through (a,au) it is necessary to evaluate

$$\frac{dx}{dt} = u(\alpha,\tau) + c(\alpha,\tau)$$
(2.22)

and

$$k_1 = u(\alpha, \tau) + 2. c(\alpha, \tau)$$
 (2.23)

Using (2.21), (2.22) and (2.23) may be written in two ways:

$$\frac{dx}{dt} = 3.c(a,\tau) + k_2; \quad k_1 = k_2 + 4.c(a,\tau)$$
(2.24)

and
$$\frac{dx}{dt} = \frac{3}{2} \cdot u(\alpha, \tau) - \frac{R_2}{2}; \quad k_1 = 2 \cdot u(\alpha, \tau) - k_2$$
 (2.25)

Thus if either u(a, 7) or c(a, 7) (where c is a function of z) are known, the forward characteristic through (a, 7) may be drawn. We therefore reach the important conclusion that it is only necessary to specify height or current, but not both, at a boundary. It has been tacitly assumed so far that the backward characteristic through B does indeed intersect the t-axis, i.e. that

$$[u(\alpha,\tau)-c(\alpha,\tau)]<0$$

or

$$u(a,\tau) \langle \sqrt{gh} \rangle$$
 (2.26)

If $u(a,\tau)$ is greater than \sqrt{gh} there will be no intersection, and hence to draw the forward characteristic through (a,τ) , both $u(a,\tau)$ and $c(a,\tau)$ must be specified. Such disturbances can not propagate to the left, and so conditions at x=a will not propagate downstream. This flow is said to be supercritical, or in the case of a gas, supersonic.

A major difficulty of the characteristic method is also evident from the above discription. If values of u and c are required at equi-spaced intervals in time and space, it is necessary to carry out a series of interpolations.

One further case of interest is one that can arise when a disturbance is propagated into lower-lying water. If the forward characteristics should intersect, as in Figure 2.3, with the first intersection at I, a situation is encountered wherein two different heights exist at the same point, i.e. a bore or a hydraulic jump

has formed.

Figure 2.3. A set of intersecting forward characteristics.

For this point I, and all others lying within the forward and backward characteristics from a point just before I, calculations are no longer possible using this theory alone. A theory involving shock fronts must be used.

4. Finite difference methods--.

The various quantities in the equations of motion and continuity are replaced by their forward, centered, off-centered, or backward finite difference equivalents (these in turn being derived from Taylor series expansions). A time-space grid is prepared and the components of the finite difference equations are evaluated at the grid intersections. The solution of the finite difference equations must be stable. Thus the solution must approach the true solution of the original equations (as evaluated at the grid points) as the mesh size approaches zero. Unfortunately this is not always guaranted, so it is necessary to concern oneself with establishing the stability criteria (generally involving the time step τ , the distance increment ℓ , and the velocity of propagation of the disturbance c) for each proposed finite difference scheme.

Following the procedure of Richtmyer and Morton (1967), difference quotients are introduced in the following manner.

$$\frac{\partial z}{\partial x} = (1 - \theta) \frac{\left(Z_{m+1}^{T} - Z_{m}^{T}\right)}{t} + \theta \frac{\left(Z_{m}^{T} - Z_{m-1}^{T}\right)}{t}$$
(2.27)

where $Z_m^r = Z[m\ell, r\tau]$, m and r integer counting indices that correspond to grid lines (see Figure 2.4), and $0 \le \theta \le 1$.

The difference quotient is termed forward, centered, or backward if θ =0, 1/2, or 1 respectively. Using such methods the equations of motion and continuity may be rewritten in finite difference form in several ways. In the discussion of the two schemes that follow,

considerable use was made of the report by Leendertse (1967).

The Leap Frog method

The first example of a finite difference scheme that will be discussed is the so-called leap frog method. It is an example of a staggered grid. Using the following simplified equations of continuity and motion,

$$\frac{\partial z}{\partial t} + h \frac{\partial u}{\partial x} = 0$$
(2.28)

and

$$\frac{\partial u}{\partial t} + 9 \frac{\partial z}{\partial x} = 0, \qquad (2.29)$$

the finite difference equations are written as

$$\frac{Z_{m}^{T+1} - Z_{m}^{T-1}}{2\tau} + h \frac{U_{m+1}^{T} - U_{m-1}^{T}}{2t} = 0$$
(2.30)

and

$$\frac{U_{m+1}^{r+2} - U_{m+1}^{r}}{2r} + 9 \frac{Z_{m+2}^{r+1} - Z_{m}^{r+1}}{2t} = 0$$
 (2.31)

On the time-space grid, the grid points concerned are shown in

Figure 2.4. Grid points used in the leap frog method.

If m and r are taken as being odd, it will be seen that heights are calculated at even-numbered time steps and odd-numbered space steps. while currents are calculated at odd time steps and even space steps. For an inlet whose open end is on column 1, and closed end on column 10, the order in which the calculations are performed is The normal routine will be to calculate all the Z's along a particular grid row, to assign Z, equal to the value of the tide height corresponding to that particular time step, and to assign U_{IO} =0; Z_I and U_{IO} are thus boundary conditions. To initiate the computations (the calculation of $\mathbf{Z_3^2}$, $\mathbf{Z_5^2}$,...., $\mathbf{Z_7^2}$) it is necessary to supply initial conditions for Z along row 0, and for U along row 1. For calculations concerned with inlets it is convenient to start the calculations at a time corresponding to high tide at the mouth of the inlet. In this situation the currents will all be zero if a standing wave solution is assumed ((2.15) and (2.16)) and the initial tide heights may be estimated or obtained from a simple calculation of the harmonic type. So far no preparatory check has been made as to whether the scheme will be stable.

One way of approaching the investigation of stability is to assume a particular error wave at a given time step. The wave may then be represented by a Fourier series composed of terms such as

(2.32)

and

(2.33)

where β =wave frequency

where β =wave number

U*,Z*=Fourier series components.

If a linear system such as the above is being examined, only one term of the Fourier series need be investigated. As the solution is only valid at certain grid points, we assume that

$$U=U^*e^{i\beta r\tau}e^{i\sigma m\ell}$$

and

$$Z=Z^*e^{i\beta r\tau}e^{i\sigma m\ell}$$
 (2.35)

When equations (2.34) and (2.35) are substituted into the finite difference equations (2.30) and (2.31), the following equation results;

$$\left[e^{i\beta\tau}\right]^{2}-2+4\frac{\tau^{2}}{\ell^{2}}gh.\sin^{2}(\sigma\ell)+\left[e^{i\beta\tau}\right]^{-2}=0$$
(2.36)

Putting

$$b = 1 - 2 \frac{\tau^2}{\ell^2} gh. sin^2(d\ell)$$
,

we get

$$(e^{i\beta\tau}) = \pm (b \pm \sqrt{b^2 - 1})^{1/2} = \lambda_{1,2,3,4}$$
 (2.38)

The requirement for stability is that $|\lambda| \le 1$. It therefore follows that the stability condition for this scheme is

$$-1 \le b \le 1$$
, or $\left(\frac{\sqrt{gh}}{\ell/\tau}\right) < 1$. (2.39)

This stability condition must be adhered to whenever this particular finite difference scheme is used. Note that \sqrt{gh} is the speed of the long, surface gravity wave, and that 2/7 is the maximum velocity that can be resolved by the grid. One might call the term (2/7) the grid resolution velocity (E. Berg, personal communication). Thus the stability criterion, equation (2.39), takes on a new aspect; the maximum expected velocity of propagation must be less than the grid resolution velocity for stability to be ensured.

If the above conditions for b are met, the four roots of λ will lie on the unit circle in the complex plane. This means that error waves will not tend to die out with increasing time. One way of ensuring that they do die out is to include a bottom friction term.

With the equation of motion modified to

$$\frac{\partial u}{\partial t} + 9 \frac{\partial z}{\partial x} + ku = 0,$$
(2.40)

and using equations (2.28), (2.34), and (2.35), we get

$$i\beta Z^* + ih\sigma U^* = 0,$$
 (2.41)

and

$$igeZ^*+(i\beta+k)U^*=0$$
 (2.42)

Thus

$$\beta = 6 \left\{ i \frac{R}{26} + \sqrt{9h - \left(\frac{R}{26}\right)^2} \right\}, \tag{2.43}$$

$$z=z^*e^{-\frac{k}{2}t}e^{\pm i\delta\sqrt{gh-(\frac{k}{2\delta})^2}t}e^{i\delta x}$$

so that the effect of bottom friction is to decrease the amplitude of the error wave. In general, the effect of friction will be to improve stability as friction represents an energy loss.

If the four roots of λ that lie on the unit circle are closely inspected it will be seen that two of them have positive real parts and two negative. The effect of the former is to provide a term $\cos(\beta r \tau)$, which is as one would expect. The two negative ones cause a term of the type $(-1)^r \cos(\beta r \tau)$. This oscillates to positive and negative values with each consecutive time step providing a spurious solution of period 2τ modulated by a wave of period τ , where τ is the period of the computed wave.

An Implicit scheme

The second scheme to be considered has its finite difference equations written in the following form;

$$Z_{m}^{\tau+1} - Z_{m}^{\tau} + \frac{h\tau}{2\ell} \left(U_{m+1}^{\tau+1} - U_{m-1}^{\tau+1} \right) = 0$$
(2.45)

and

$$U_{m+1}^{r+1} - U_{m+1}^{r} + \frac{9r}{2\ell} \left(Z_{m+2}^{r+1} - Z_{m}^{r+1} \right) = 0. \tag{2.46}$$

The grid points at which quantities must be evaluated are shown in Figure 2.5.

Taking again an inlet whose length has been divided up into nine equal intervals of length ℓ , with the entrance lying on column 1 and closed end on column 10, the values that have to be calculated

along each row are

ZUZUZUZUZU

Figure 2.5. Grid points used in the implicit method.

If the values of Z and U are known at time step r, one cannot immediately calculate U_2^{r+1} , even though Z_2^{r+1} is available as a boundary condition, for it depends on Z_3^{r+1} . It is however possible to write 8 equations involving the five U^{r+1} 's and the five Z^{r+1} 's. There are only 8 unknowns as 2 of the 10 values are boundary conditions. It is thus necessary to solve 8 simultaneous equations for 8 unknowns in order to obtain all the values for time (r+1). For this reason the above system of difference equations is known as <u>implicit</u>. The equations to be solved are

where $a=gT/2\ell$, $b=hT/2\ell$ $Z_1(t)=conditions$ at the inlet entrance $U_{10}(t)=0$.

The above equations may be solved by the use of an algorithm. The equation for U_2^{T+1} is written in terms of Z_3^{T+1} plus known quantities; Z_3^{T+1} is written in terms of U_4^{T+1} etc. until Z_9^{T+1} is written in terms of U_{10}^{T+1} , which is known. The values for Z_9^{T+1} , U_8^{T+1} ,.... U_2^{T+1} may then be found in reverse order.

If a stability analysis is performed for this implicit method as was previously done for the leap frog method, it is found that

$$e^{i\beta\tau} = \frac{1 \pm i \frac{\tau}{\ell} \sqrt{9h} \cdot \sin(\sigma\ell)}{1 + \frac{\tau^2}{\ell^2} 9h \cdot \sin^2(\delta\ell)},$$
(2.48)

so that

$$|\lambda| = e^{-\operatorname{Im}(\beta\tau)} = \left[1 + \frac{\tau^2}{\ell^2} \operatorname{gh.} \sin^2(\delta\ell)\right]^{-\frac{1}{2}}$$
(2.49)

Hence $|\lambda| < 1$ for all non-trivial values of τ and ℓ , and the important fact is established that this implicit scheme is unconditionally stable.

Stability criteria based on characteristic theory

It is interesting to consider the problem of stability utilising characteristic theory (Abbott, 1966). This will often allow one to estimate stability criteria from a visual inspection of the grid layout. Considering part of a time-space grid layout for the leap frog method (in which conditions at P are calculated from a

knowlege of those at A and B). the following approach may be used (see Figure 2.6.).

Figure 2.6. Section of time-space grid.

If AX and BY represent the forward and backward characteristics through A and B respectively, then the domain of determinacy of AB is the area bounded by AB and the lines AX and BY, i.e. any point within this region will be such that the forward and backward characteristics through it will both intersect row r between the limits A and B. For the leap frog scheme to be stable it is therefore necessary that point P lies within this zone of determinacy. As the term use has been neglected, the slope of the characteristics is such that

$$\frac{dx}{dt} = \pm c \tag{2.50}$$

Thus for stability

$$\frac{\tau}{\ell} < \frac{1}{c}$$
, (2.51)

i.e.

$$\Delta t < \frac{\Delta x}{\sqrt{gh}}$$
, (2.52)

which is the same condition as that derived earlier (equation (2.39)).

When considering the second (implicit) scheme from the point of view of the method of characteristics, the reason for the unconditional stability may be seen to be due to the fact that it is possible to construct all the characteristics that intersect row (r+1), for the calculation of conditions at time (r+1) depends on the simultaneous application of conditions at time r along with boundary conditions at time (r+1).

CHAPTER III

THE FINITE DIFFERENCE EQUATIONS

1. The basic equations--.

The equations used are the same as those used by Yuen (1967) and are as follows (with axes as in Figure 3.1):

$$\frac{\partial U}{\partial t} + *(U^2 + V^2)^{\frac{1}{2}} \frac{U}{U} - \int V + 9 \frac{\partial Z}{\partial x} = 0,$$
(3.1)

$$\frac{\partial V}{\partial t} + *(U^2 + V^2)^{1/2} \frac{V}{H} + \int U + 9 \frac{\partial Z}{\partial y} = 0, \tag{3.2}$$

and

$$\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial t} = 0,$$
(3.3)

where

U=x-component of depth-mean velocity

V=y-component of depth-mean velocity

Z=vertical tide measured (positive upwards)

from mean sea level

D=depth of water beneath mean sea level

H=total depth of water (H=D+Z)

≠=friction coefficient

f=Coriolis parameter (f=2 Ω sin(latitude))

g=acceleration due to gravity

 Ω =angular rotational speed of the earth .

The above equations will be solved by the method of finite differences. A choice exists between the two different approaches, the explicit method and the implicit method. On account of the availability of literature on the subject, it was decided that efforts would be directed to the development of a variable boundary model using the explicit method.

Although covered by Yuen, the derivation of the finite difference form of the equations will be covered in detail during the rest of the chapter. This is done so that a sound base will be available on which to base the program, and also because Yuens work contains some printing errors which are misleading.

2. The grid network--.

The grid system used is one first alluded to by Richardson (1922), and is staggered in time and space. It is thus an extension of the leap frog method. A projection of the grid onto the x-y plane can be seen in Figure 3.1.

Figure 3.1. Section of staggered grid.

U and V are calculated at odd time steps, Z at even numbered steps.

3. U-point calculation -- .

Equation (3.1) is first written in the form

$$\frac{\partial U}{\partial t} = -\left[\frac{U + (U^2 + V^2)^{1/2}}{H} - \int V + 9 \frac{\partial z}{\partial x}\right]. \tag{3.4}$$

It is replaced by a two-point centered finite difference relation as follows;

$$\frac{\partial L}{\partial L} = \frac{U^{(T+1)} - U^{(T-1)}}{2 \tau}$$

where the superscript r refers to time step r , and τ is the interval between time steps. In a similar fashion,

$$\frac{\partial Z(m,n)}{\partial x} = \frac{Z(m+1,n) - Z(m-1,n)}{2 \ell}$$

where the subscript (m,n) refers to 'east-west' grid line m , and 'north-south' grid line n . ℓ is the interval between grid lines on the x-y plane.

It will be seen that in equation (3.4) it is necessary to have available the values of V and H at the U-point. These are estimated by interpolation from surrounding V- and Z-points (see Chapter III, section 6). To calculate U at the point (m,n), equation (3.4)

is first represented in finite difference form by
$$\frac{U_{(m,n)}^{(\tau+1)} - U_{(m,n)}^{(\tau-1)}}{2 \tau} = -\left[\frac{U_{(m,n)}^{(\tau-1)} + \left(U_{(m,n)}^{2} + V_{(m,n)}^{2} + V_{(m,n)}^{2}\right)^{1/2}}{H_{(m,n)}^{(\tau)}} - \int V_{(m,n)}^{(\tau-1)} + g \frac{\left(Z_{(m+1,n)}^{(\tau)} - Z_{(m-1,n)}^{(\tau)}\right)}{2 \ell} \right] \tag{3.5}$$

It will be observed that in the representation of the right hand side of equation (3.4), terms U and V should have been evaluated at time step r. As U and V are calculated only at time steps (r-3), (r-1), (r+1), etc., they are approximated by taking the most recent values available, i.e. from time step (r-1). In terms of $\bigcup_{(r+1)}^{(r+1)}$, equation (4.5) can be written;

$$U_{(m,n)}^{(\tau+i)} = U_{(m,n)}^{(\tau-i)} + 2 = \left\{ \frac{-U_{(m,n)}^{(\tau-i)} + V_{(m,n)}^{2(\tau-i)} + V_{(m,n)}^{2(\tau-i)}}{H_{(m,n)}^{(\tau)}} + \int V_{(m,n)}^{(\tau-i)} - g \frac{\left(Z_{(m+i,n)}^{(\tau)} - Z_{(m-i,n)}^{(\tau)}\right)}{2 + \ell} \right\}$$
(3.6)

At this stage a stability factor is applied to the two leading (r-1) (m,n) terms (a weighted average of surrounding points);

$$\frac{1}{(m,n)} = \alpha \cup_{(m,n)}^{(r-1)} + \frac{(1-\alpha)}{4} \left\{ \bigcup_{(m+1,n+1)}^{(r-1)} + \bigcup_{(m-1,n+1)}^{(r-1)} + \bigcup_{(m-1,n-1)}^{(r-1)} + \bigcup_{(m+1,n-1)}^{(r-1)} \right\}$$
(3.7)

with $0 \leqslant \alpha \leqslant 1$.

Again, the U terms within the \{ \} are all interpolated values. This stabilisation differs from that used by Yuen, in that he used only values of U calculated at U-points and not interpolated U values as in equation (3.7). The alteration has been made so that more complex boundary shapes may be dealt with

without having to adjust the stabilisation process to suit the outline of the inlet, as did Yuen.

The final form of equation (3.4) before programming is thus:

$$U_{(m,n)}^{(\tau+i)} = \overline{U_{(m,n)}^{(\tau-i)}} + 2 \tau \left\{ \frac{-\overline{U_{(m,n)}^{(\tau-i)}} + \left(U_{(m,n)}^{2(\tau-i)} + V_{(m,n)}^{2(\tau-i)}\right)^{1/2}}{H_{(m,n)}^{(\tau)}} + \int V_{(m,n)}^{(\tau-i)} - g \frac{\left(Z_{(m+i,n)}^{(\tau)} - Z_{(m-i,n)}^{(\tau)}\right)}{2 \ell} \right\}$$
(3.8)

4. V-point calculation--.

Equation (3.2) is first written in the form

$$\frac{\partial f}{\partial \Lambda} = -\left[\frac{H}{\Lambda^* (\Pi_5 + \Lambda_5)_{15}} + \int \Pi + \partial \frac{\partial \hat{A}}{\partial \Sigma}\right]$$
(3.9)

In exactly the same fashion as with the finite difference evaluation of equation (3.4), replacing -fV by +fU and $g\frac{\partial z}{\partial x}$ by $g\frac{\partial z}{\partial y}$, the final form of equation (3.9) is

$$V_{(m,n)}^{(\tau+i)} = \overline{V_{(m,n)}^{(\tau-i)}} + 2 \quad \tau \quad \left\{ \frac{-\overline{V_{(m,n)}^{(\tau-i)}}}{\overline{V_{(m,n)}^{(\tau-i)}}} + \sqrt{\frac{2}{(m,n)}} + \sqrt{\frac{2}{(m,n)}} \right\}^{\frac{1}{2}} \\
- \int U_{(m,n)}^{(\tau-i)} - 9 \frac{\left(Z_{(m,n-i)}^{(\tau)} - Z_{(m,n+i)}^{(\tau)}\right)}{2} \right\}, \quad (3.10)$$

with
$$V_{(m,n)}^{(\tau-i)} = \propto V_{(m,n)}^{(\tau-i)} + \frac{(1-\alpha)}{4} \left\{ V_{(m+i,n+i)}^{(\tau-i)} + V_{(m-i,n+i)}^{(\tau-i)} + V_{(m-i,n-i)}^{(\tau-i)} + V_{(m+i,n-i)}^{(\tau-i)} \right\}$$

$$(3.11)$$

It will be seen that in equation (3.10) the expression for $\frac{\partial z}{\partial x}$ is evaluated with the x-axis going from right to left. As the grid columns are numbered from left to right (see Figure 3.1.) the form of $\frac{\partial z}{\partial x}$ in equation (3.10) does not agree precisely with that of $\frac{\partial z}{\partial y}$ in equation (3.8).

5. Z-point calculation--.

Equation (3.3) is first written in the form

$$\frac{\partial z}{\partial t} = -\frac{\partial(HU)}{\partial x} - \frac{\partial(HV)}{\partial y}$$
 (3.12)

Equation (3.12) is then rewritten in finite difference form;

$$\frac{Z_{(m,n)}^{(\Upsilon+2)} - Z_{(m,n)}^{(\Upsilon)}}{2 \tau} = -\frac{\left(H_{(m,n-1)}^{(\Upsilon)} \cup_{(m,n-1)}^{(\Upsilon+1)} - H_{(m,n+1)}^{(\Upsilon)} \cup_{(m,n+1)}^{(\Upsilon+1)}\right)}{2 \ell} - \frac{\left(H_{(m+1,n)}^{(\Upsilon)} \cup_{(m+1,n)}^{(\Upsilon+1)} - H_{(m-1,n)}^{(\Upsilon)} \cup_{(m-1,n)}^{(\Upsilon+1)}\right)}{2 \ell}$$
(3.13)

It is seen that H should have been evaluated at time step (r+1).

It is approximated by making use of the value for H calculated at time step (r). The error is considered negligible, of the order of 3 cms. in (say) 20 or more meters .

Equation (3.13), written in terms of $Z_{(m,n)}^{(r+2)}$, becomes

$$Z_{(m,n)}^{(r+2)} = \overline{Z_{(m,n)}^{(r)}} - 2 \tau \left\{ \frac{\left(H_{(m,n-1)}^{(r)} \bigcup_{(m,n-1)}^{(r+1)} - H_{(m,n+1)}^{(r)} \bigcup_{(m,n+1)}^{(r+1)} \right)}{2 \ell} \right\}$$

$$+\frac{\left(H_{(m+l,n)}^{(r)}U_{(m+l,n)}^{(r+l)}-H_{(m-l,n)}^{(r)}U_{(m-l,n)}^{(r+l)}\right)}{2\ell}$$

(3.14)

where

$$\overline{Z_{(m,n)}^{(r)}} = \alpha Z_{(m,n)}^{(r)} + \frac{(1-\alpha)}{4} \left\{ Z_{(m+1,n)}^{(r)} + Z_{(m-1,n)}^{(r)} + Z_{(m,n-1)}^{(r)} + Z_{(m,n-1)}^{(r)} + Z_{(m,n-1)}^{(r)} \right\}$$

(3.15)

Notice again that the terms in the $\left\{\begin{array}{c} \\ \\ \end{array}\right\}$ are interpolated. We are now left with the interpolations of V and Z at U-points, and of U and Z at V-points.

6. Interpolation of values at U- and V-points--.

In the previous sections it has been mentioned that interpolated values are necessary at U- and V-points. These are approximated by linear interpolations. A more sophisticated approximation could have been used at the expense of calculation time and of generality of the model.

a) At U-points away from boundaries (see Figure 3.2).

Figure 3.2. Values required for interpolations at a U-point.

$$V(m,n) = \frac{1}{4} \left\{ V_{(m+1,n+1)} + V_{(m-1,n+1)} + V_{(m-1,n-1)} + V_{(m+1,n-1)} \right\},$$
and
$$(3.16)$$

$$Z_{(m,n)} = \frac{1}{2} \left(Z_{(m+i,n)} + Z_{(m-i,n)} \right)$$
 (3.17)

Boundaries through U-points are always horizontal (i.e. pass through grid points of equal m). For the case of solid land lying

At U-points lying on boundaries (see Figure 3.3).

b)

to the 'north' of the water, V(m,n) is found by obtaining an interpolated value for V(m-1,n) and then performing a second interpolation using V(m-2,n) and V(m-1,n). Thus

$$V_{(m,n)} = \left(V_{(m-1,n-1)} + V_{(m-1,n+1)}\right) - V_{(m-2,n)}$$
(3.18)

It should be noted that V(m-2,n) must have been computed before equation (3.18) can be evaluated.

Figure 3.3. Values required for interpolations at U-points on a boundary.

Z(m,n) is found by using the values for Z(m-1,n) and Z(m-3,n):

$$Z(m,n) = 1.5 Z(m-1,n) - 0.5 Z(m-3,n)$$
 (3.19)

In a similar fashion, when land occurs to the 'south' of the water:

$$V_{(m,n)} = \left(V_{(m+1,n-1)} + V_{(m+1,n+1)}\right) - V_{(m+2,n)},$$
(3.20)

and

$$Z(m,n) = 1.5 Z(m+1,n) - 0.5 Z(m+3,n)$$
 (3.21)

c) At V-points away from boundaries.

$$U(m,n) = \frac{1}{4} \left(U(m+1,n+1) + U(m-1,n+1) + U(m-1,n-1) + U(m+1,n-1) \right)_{(3.22)}$$

$$Z(m,n) = \frac{1}{2} (Z(m,n+i) + Z(m,n-i))$$
 (3.23)

d) At V-points lying on boundaries.

For the case of solid land lying to the 'west':

$$U(m,n) = \left(U(m+1,n+1) + U(m-1,n+1)\right) - U(m,n+2)$$
(3.24)

$$Z(m,n)=1.5 Z(m,n+1) - 0.5 Z(m,n+3)$$
 (3.25)

For the case of solid land lying to the 'east':

$$U(m,n) = \left(U(m+1,n-1) + U(m-1,n-1)\right) - U(m,n-2), \tag{3.26}$$

and

$$Z(m,n) = 1.5 Z(m,n-1) - 0.5 Z(m,n-3)$$
 (3.27)

7. Calculation for a special (narrow) case--.

Provision is made for making calculations in the case when part or all of an inlet is represented by a width of 2 . In this case there are two possibilities. The narrow axis lies 'north-south' or 'east-west'.

Figure 3.4. Narrow channel case.

a) 'North-south' narrow axis direction.

A situation exists here such that the problem is locally reduced to a one-dimensional situation. No cross currents exist, so that all the V's are zero and no surface slope due to Coriolis force will occur (see Figure 3.4.a). The interpolations are then

$$U(m,n-1) = U(m,n+1) = \frac{U(m+1,n) + U(m-1,n)}{2}, \qquad (3.28)$$

and

$$Z(m,n-1) = Z(m,n+1) = Z(m,n)$$
 (3.29)

b) 'East-west' narrow axis direction.

The same type of situation exists here (see Figure 3.4.b). The interpolations become

$$V_{(m+1,n)} = V_{(m-1,n)} = \frac{V_{(m,n-1)} + V_{(m,n+1)}}{2}$$
(3.30)

and

$$Z_{(m+l,n)} = Z_{(m-l,n)} = Z_{(m,n)}$$
 (3.31)

At this point all the types of calculations necessary for the estimation of tides in an inlet are in finite difference form, if only to a certain degree of sophistication. Boundary conditions have still to be added.

Velocities normal to the boundaries are put equal to zero whenever the transition water to land occurs. Thus U=0 along 'east-west' solid boundaries (m= constant), and V=0 along 'north-south' solid boundaries (n= constant). There remains the problem of open boundaries. These occur whenever the boundaries of the model coincide with open water. In Chapter II it was shown by the method of characteristics that either height or current needs to be given as a boundary condition provided that the flow velocity is less than critical. As little is usually known about currents, it

is normal to specify heights as a function of time for the various Z-points lying on open boundaries. However, in order to evaluate the bottom friction term near the open boundary, one has to know the currents along the input line. To do this, a minor assumption is made that $\frac{\partial U}{\partial x} = 0$ on 'east-west' open boundaries and $\frac{\partial V}{\partial y} = 0$ on 'north-south' open boundaries.

8. The finite difference equations expressed in FORTRAN IV--.

In this section mention is made only of the variable names used in the program. Details of the instructions themselves may be seen in the actual program (Appendix I).

As it was desirable to program for the greatest possible grid size compatible with a 16K single precision word memory (as then available at the University of Alaska Computer Center), an inspection was made of the matrices necessary for the performance of the calculations. The matrices first considered necessary were those for U, V, Z, H, D, and for use in a later phase of the program, an integer matrix. An inspection of the grid configuration suggested that U and V, and D and H might easily be interleaved. For this purpose, interleaving was performed in the following fashion:

V(m,n) is stored in U(m,n+1) and D(m,n) is stored in H(m,n+1).

Table 3.1	shows	the	original	variables	along	with	their
corresponding	arrav 1	names	5 .				

Original Name	Array Name		
U(m,n)	U1(M,N)		
V(m,n)	U1(M,N+1)		
Z(m,n)	Z1(M,N)		
H(m,n)	H(M,N)		
D(m,n)	H(M,N+1)		
Integer Matrix	IU(M,N)		

Table 3.1. Array names.

The integer array, IU, was limited to two bytes instead of the customary four as no number larger than a '3' needed storing (two bytes can contain a positive integer of up to 127).

In such a manner the array storage requirements were reduced in the approximate ratio 12:7. Taking into account the computer core limitations, the maximum grid size that could be handled was 65×29 .

Taking the three equations for the prediction of U, V, and Z (i.e. equations (3.8), (3.10), and (3.14)), the instructions were simplified by using the following:

Equation (3.8)
$$USTAB = \bigcup_{(m,n)}^{(T-1)} (see equation (3.7)). \qquad (3.33)$$

$$ZXATU = \frac{\partial Z}{\partial x} = \frac{Z_{(m+1,n)}^{(r)} - Z_{(m-1,n)}^{(r)}}{2 \ell}$$
 (3.34)

Equation (3.10)

$$VSTAB = \sqrt{\frac{(r-1)}{(m,n)}}$$
(see equation (3.11)) (3.35)

$$ZYATU = \frac{\partial Z}{\partial y} = \frac{Z_{(m,n-1)}^{(r)} - Z_{(m,n+1)}^{(r)}}{2 \ell}$$
 (3.36)

$$Z1(M,N) = Z(m,n)$$
 (see equation (3.15)), (3.37)

$$HUX = \frac{H(r)}{H(m,n-1)} \frac{U(r+1)}{U(m,n-1)} - \frac{U(r)}{U(m,n+1)} \frac{U(r+1)}{U(m,n+1)}$$
2 \(\ell \text{(3.38)}

$$HVY = \frac{H(r)}{H(m+1,n)} \frac{U(r+1)}{U(m+1,n)} - H(r) \frac{U(r+1)}{U(m-1,n)} \frac{U(r+1)}{U(m-1,n)}$$
(3.39)

The transposition of some of the more important variables may be seen in Table 3.2.

Original Symbol	Variable Name		
٠ ب	R		
f	F		
9	GEE		
· c c	Y •		

Table 3.2. Transposition of some major variables.

The stability factor & was put equal to 0.99 following the

practice of Yuen.

Stability of the finite difference equations in two space dimensions--.

It is tempting to use the same approach as was used for considering stability criteria for the one space dimension explicit scheme of Chapter II. A section of the grid network as used for the calculation of V is seen in Figure 3.5.

Figure 3.5. Grid points required for V-point calculation.

For stability V_2 must lie within the domain of determinacy of points $U_{\mathbf{Q}}$, $U_{\mathbf{b}}$, $U_{\mathbf{c}}$, $U_{\mathbf{d}}$, $Z_{\mathbf{l}}$, and $Z_{\mathbf{2}}$. The U-points therefore are more likely to cause instability (on account of the steepness of the slope $U_{\mathbf{l}}$, $V_{\mathbf{2}}$).

The value of this slope is easily seen to be $\frac{27}{\ell\sqrt{2}}$.

For stability this value must be less than the slope of the characteristic cone through U $_{\pmb{i}}$, viz 1/c .

i.e.
$$\frac{\tau \sqrt{2}}{\ell} < \frac{1}{c}$$
or $\tau < \frac{\ell}{\sqrt{2gh}}$ (3.40)

If a similar diagram is drawn for a Z-point calculation (see Figure 3.6) it is seen that the stability requirement comes to

Figure 3.6. Grid points required for Z-point calculation.

The same stability requirements result for the U-points as for the V-points on account of the similar grid configuration. The most stringent requirement, as far as time is concerned, is thus that in equation (3.40).

CHAPTER IV

AUTOMATION OF THE SEQUENCE OF CALCULATIONS

1. The basic sequence of calculations --- .

With the basic forms of calculation in FORTRAN form, the next and most crucial step ahead is their sequential control. Instructions must be developed that apply the basic types of calculation to each appropriate grid point as determined by the nature of the boundary.

First of all it is instructive to consider what might be called the conventional approach to the arrangement of the order in which the finite difference calculations are performed. Having chosen a suitable grid boundary, one might then arrange for the assignment of depths, initial tide heights, and zero velocities. The next step is the interpolation of tide heights and currents. Then follows the calculation of currents and heights, the input of new boundary values, and the repetition of the calculations. One way in which this might be done (for the case of a rectangular grid) is as follows:

Interpolation

a) Starting at the 'southwest' corner, one line from the bottom (m = 2), write an instruction for calculating U, Z, and H at V-points lying within the boundaries. Repeat this for all even-numbered rows.

- b) Starting with the second line from the bottom (m = 3), write a similar type of instruction for calculating V, Z, and H at Upoints. Repeat this for all odd numbered rows except for the top and bottom rows.
- c) Apply equations (3.20) and (3.21) to U-points on the bottom row, and (3.18) and (3.19) to U-points on the top row.
- d) Apply equations (3.24) and (3.25) to V-points on the left boundary, and (3.26) and (3.27) to V-points on the right boundary.

Current and height calculations

e) Apply U, V, and Z calculations at U-, V-, and Z-points respectively, row by row.

Boundary conditions and time increment

- f) At this point it is convenient to apply the boundary conditions; along water land boundaries U and V are put equal to zero as necessary. Along the line(s) where the inlet meets the open sea it is necessary to specify tide heights. These tide heights will replace those calculated in the Z-point calculations of step (e). The false values for Z that were calculated do not in any way effect the rest of the calculation. As mentioned in section 7, Chapter III, $\frac{\partial V}{\partial X} = 0$ and $\frac{\partial U}{\partial X} = 0$ are applied along open boundaries as necessary.
- g) The time step is now checked to see if the end of the tidal cycle has been reached. If not, the time is increased by 27, and the program returns to step (a).

h) The process is then repeated for the desired number of tidal cycles, values of U, V, and Z being printed whenever desirable.

It will be seen that the above method is straightforward as long as the grid boundary is strictly rectangular. If, however, the boundaries are irregular, the number of instructions will be greatly increased, and the amount of time to be spent in programming will be correspondingly large.

If a series of inlets are to be studied, perhaps with each involving two or more different grid spacings, it is obvious that any modifications to the program that result in reducing programming will be of considerable value. After programming several inlets in the manner above, as a result of the experience so gained, an approach was found that reduced the programming of any inlet to the few instructions necessary to specify the tide height at input points as a function of time.

2. Automation of the inlet-tide program--.

An inspection of the grid layout and of the various calculation types reveals a simple means by which the program may be automated. The new program is centered round the scanning of an integer-matrix which contains information as to the location of the solid and open boundaries.

Referring to Figure 4.1, an example of a grid network of irregular boundary configuration is shown with two perpendicular lines (crossing at a Z-point) emphasized. Starting with the row (m = 2), it will be seen that the following types of standard calculation may be inferred from the boundary limits:

- * V = 0 at (m = 2, n = 1) and at (2,9)
- * Conventional interpolation of U and Z at V-points (2,3) through (2,7)
- * Special boundary-case interpolation of U and Z at V-points (2,1) and (2,9)
- * V calculations at V-points (2,3) through (2,7)
- * Z calculations at Z-points (2,2) through (2,8)

Similarly, along the column (n = 6), the following calculationtypes may be inferred:

- * U(9.6) = 0
- * Conventional interpolation of V and Z at U-points (3,6)
 through (7,6)
- * Special boundary-case interpolation of V and Z at U-points
 (1,6) and (9,6)
- * U calculations at U-points (3,6) through (7,6)
- * U (1,6) = U (3,6) (application of $\frac{\partial U}{\partial X}$ = 0 on open boundary)

Figure 4.1. Typical column and row through Z-point, with associated integer matrix input cards (see text for explanation).

It will be noted that Z calculations are not needed along this column, as all Z-points can be covered when traversing the rows.

This approach will be seen to include all possible boundary cases as long as the interpolations used are those previously referred to. At this point, it is possible to inspect the rows and columns visually, and thus specify the various calculation types. The next step is to perform this function automatically.

Boundary limits are specified in the form of integer numbers (see figure 4.1). Starting (for example, along a row containing V-points) from the left, the integer 1 is punched in odd-numbered columns of the card whenever a solid boundary is encountered. It is assumed that land extends to the left of the first integer. The next 1 indicates that solid land has once again been reached. This process of alternating land and water may be continued until the maximum allowable grid network size has been reached. In this program the limits are 29 in the horizontal direction.

An even number of 1's must be specified in order for the calculations to be bounded. In the case that no solid boundary exists, the 1 must still be used, as it serves as a limit for the grid-point calculations in that particular row. A 3 is placed 2 spaces to the inlet side of the boundary. This indicates to the program that the velocity V at the point 1 (to which the 3 applies) will be changed from zero to that at the matrix point containing the 3, i.e. we have applied $\frac{\partial V}{\partial Y} = 0$.

In order for the '3' not to cause confusion in the program, it is necessary that, in the particular row to which the '3' applies, there be a 1 two spaces away on the punched card on one side only of the '3'.

When the last (even-numbered) boundary has been reached, a

2 is placed two places to the right of the last 1. This indicates to
the program that no further values of the integer matrix need be
scanned along this row. The integers are punched on cards, one card
corresponding to one row.

'East - west' boundaries are specified in precisely the same fashion as for 'north - south' boundaries. In this case, the grid is scanned from 'south' to 'north' along grid columns containing U-and Z-points, the limit being 65 grid points.

3. Input of boundary conditions -- .

The boundary values are read into the computer first along columns of constant n, starting from the 'west', then along rows of constant m, starting from the 'south' (see Figure 4.2).

Figure 4.2. Order in which grid boundaries are read.

The half-word integer matrix IU previously referred to is thus built up column by column, row by row. The dimensions of this matrix exceed 65 x 29 by 3 and 2, making a 68 x 31 matrix: The 2 in each direction is to include the integer '2' at the end of each column and row; the extra 1 is to cause the array storage area to begin and end on a full-word boundary in the computer core.

This integer matrix is monitored during all parts of the program. Input of depths and initial tide heights, current and height calculations, interpolations, printout, and later in the analysis of the raw U, V, and Z output data.

This pattern followed is in all cases similar, and will be outlined in some detail.

4. Description of boundary-monitoring process--.

The procedure will be illustrated for the case of one of the rows during U calculations at U-points (see Figure 4.3).

At the start of the calculation of each row, a flag, IFL, is put equal to zero. This signifies that solid land lies to the left, i.e. that the first boundary met will indicate a transition from land to water. The first odd numbered column (n = 1) is then inspected for a 0, 1, 2, or 3:

- If a 3 is found, the <u>column</u> number is increased by 2 and the process repeated
- If a 2 is found, this indicates that no more columns need be scanned, so the sequence jumps to the next row

Figure 4.3. Flow chart for boundary-monitoring process.

- If the integer is less than 2, the integer is checked for a 1 or a 0
- If a 0 is found, the column number is increased by 2 and the process repeated
- If a 1 is found, the flag is checked to see whether a left or right boundary has been arrived at
- If the flag is 0, the boundary is a left-hand one. In this case the left-hand limit INL is set equal to (column number + 2).

 The flag value is changed to 1, and the process repeated.
- If the flag is 1, the boundary is a right-hand one. In this case, the right hand limit IMR is set equal to (column number 2).

 At this point, as may be seen from Figure 4.3, the limits of the U at U-point calculations for this section of the row have been ascertained. The calculations are then performed. The flag is then changed back to 0, and the process repeated. When all of the rows have been checked, the next phase of the program is entered (not shown in the flow chart).

The above process is modified by the use of extra 'IF' statements to deal with the various situations of special-case interpolations, unusually narrow conditions, etc.

CHAPTER V

PROGRAM ARRANGEMENT

1. Division of the program into subroutines--.

To simplify programming, and to divide the program up so that it would fit into the available core space, the full program was split up into several subroutines. Two of them are used once only, the remainder are called whenever necessary. The main program is responsible for calling the various subroutines when required. A flow chart of the main program, and of the subroutines may be seen the the pages that follow.

The flow chart (Figure 5.1) shows just sufficient information to enable the reader to follow the program through the steps of initialisation and then through the instructions that monitor the time steps and the tide cycles. Within the latter, on the second page of the flow chart, are the statements that control the times at which tide heights and currents are printed out. To trace the various branches in the full printout of the program (see Appendix I), the number of each instruction lying at the end of a branch line is written to the left of the corresponding instruction.

Overlays--.

The total program length including the FORTRAN program, array storage, and supervisor exceeded the available core space.

Figure 5.1. Program flow chart (1/6).

Figure 5.1. Program flow chart (2/6).

Figure 5.1. Program flow chart (3/6).

Figure 5.1. Program flow chart (4/6).

Figure 5.1. Program flow chart (5/6).

Figure 5.1. Program flow chart (6/6).

In order to run the program, it was necessary to split the program into several 'phases'. The process involves the storage of all the phases, with the exception of the main calling program (the 'root' phase), on disc. The root phase calls the particular phase required off the disc into core, where it is placed starting at a particular location.

For convenience, each of the phases consists of one of the main subroutines:

, 	
SUBROUTINE	PHASE NAME
INIT	PHASMIE1
PRINTD	PHASM1E4
WRITE	PHASNME2
uvz	PHASNME3

Table 5.1. Phase Names.

The subroutines WRITER and INPUT were not split up thus, as they are continually being called by the root phase.

Once the phase corresponding to a particular subroutine has been placed in the core, it is called one as would a conventional subroutine. The additional instructions necessary are as follows:

* The main program is preceded by a card:

1234
PHASE PHASNIEØ, ROOT

* The next phase is preceded by:

1234

PHASE PHASMME1,*

where the asterisk signifies that the program is to be placed into the first available location following the root phase.

* Each successive phase is preceded by a card of the type

1234

PHASE PHASNME2, PHASNME1

The second name, after the ',' signifies that this phase is to be loaded into the core starting at the same location as PHASNME1.

* To call any particular phase, the necessary instruction is, for example;

1234567
CALL OPSYS ('LOAD', 'PHASNME3')

* At any later point, the subroutine associated with PHASNME3 may be called as usual.

It is obvious that a subroutine may only be called when it has been previously loaded into the core.

The layout of the phases is conveniently shown by a diagram (see Figure (5.2). The numbers to the left of the main tree are the corresponding core locations in hexadecimal arithmetic, for one given length of the INPUT subroutine.

Figure 5.2. Overlay tree.

With this overlay system, with the longest phase (INIT) in core, the program extends to F551. A few additional bytes are reserved for buffer storage when various input/output devices are encountered during the program. No information as to their extent is printed out. If insufficent core space is available, an error message will

be printed out, and the job terminated. In this particular computer, sufficient space was evidently available.

For more information on the overlay system, the reader is referred to the relevant IBM manual (IBM, 1963).

CHAPTER VI

GRID SELECTION AND DATA ARRANGEMENT

1. Grid selection ---.

When a particular inlet is selected for tidal studies using the numerical model described above, the first thing to do is to ascertain the stability requirements. The accepted criterion for the stability of the staggered-grid model is

$$\ell > \tau \sqrt{2g \text{ Dmax}}$$
 (6.1)

The variable boundary model requires that the quantity (number of intervals)/(tidal period) be a multiple of 12 (this is to satisfy a part of the program that is responsible for printing out heights and current information 12 times during the last tidal cycle). The number of intervals normally used has been 360 or 720 (i.e. respectively 180 and 360 different times at which Z's are calculated at Z-points). The former gives a resolution of (ideally) 2° for the phase of the tide.

Using this type of calculation, a compromise may be found between a grid spacing that appears to represent the inlet satisfactorily, time intervals, and resolution.

A convenient method for fitting the grid to the inlet shape is as follows:

Draw a 65×29 grid on a sheet of paper and photograph it so as to obtain a slide.

Project an image of the grid onto a wall, and adjust the projector to give approximately the correct interval between grid lines.

Tape the map to the wall so that a reasonable alignment exists between the major axis of the inlet and the grid.

Final adjustments may then be made so as to achieve the best fit possible, consistent with stability and cost limitations.

The above method, although it has inaccuracies in it arising from optical distortion, heating up of the projector etc., gives a good first approximation. For small maps, some more convenient methods may be found.

The left-most edge of the inlet must be on column n=1, the bottom of the inlet must be on row m=1.

Having decided on a suitable grid configuration, the grid should then be transferred to the map. The use of any form of tracing paper (other than transparent mylar) as an overlay makes the work to follow more awkward. All the grid lines should be drawn in, and U-, V-, and Z-points suitably labelled.

2. Basic data cards--.

The next step is to prepare the data cards. Considering for example the grid in Figure 6.1.

Figure 6.1 Example of simple grid.

The first data cards are those that specify the maximum dimensions of the grid, number of tidal cycles to be calculated, etc. These 8 cards are placed immediately behind the first // EXEC card. The order and format of the cards are as follows:

Card	Variable Name	Format	Example	Units		
1	IIDA	12	05			
2	MSUI4	12	12 09			
3	NSUM	I2	05			
4	DL	F12.4	50000.0	meters		
5	T	F12.4	12.42	hours		
6	R	F12.4	.003			
7	ALAT	F12.4	5.0	degrees*		
8	PER	F12.4	360.0			

^{*} North positive

Table 6.1. Example of input data cards.

The above cards specify the following:

- 5 complete tidal cycles are to be calculated,
 starting at 01, ending at 05
- 2. Number (m) of top row (from example)
- 3. Number (n) of right column (from example)
- 4. Grid spacing in meters = 50 Km.
- 5. Period of tide in hours (M2 tide)
- 6. Friction coefficient, generally 0.003
- 7. Latitude in degrees (5° N)
- 8. Intervals per tidal period.

3. Boundary data cards -- .

Then follows a series of cards specifying boundaries along columns, i.e. points where U=0 or $\frac{\partial U}{\partial x}$ = 0.

In this case we have two cards:

Column

	1 2 3 4 5 6 7 8 9 10 11 12	80
Card		
1	10300001 0 20	0 0
2	10300001020	0.0

The second series of cards specifies boundaries along rows, i.e. points where V=0 or $\frac{\partial V}{\partial Y}$ = 0;

There are 4 cards:

Column

	1 2	2	3	4	5	6	7	8	9	10	11	12					80
Card																	
1	1 (0 (0	0	1	0	2	0	0	0	0	0	0	0		0	0
2	1 (0 (0	0	1	0	2	•		•	•					0	0
3	1 (0 (0	0	1	0	2			•	•					0	0
4	1 () (0	0	1	0	2				•					Ó	0

1 2 3 4 5 6 7 8 9 10 11 12

With the integer matrix in the core, the depths at V- and U-points may now be read in and automatically allocated.

4. Depth data cards--.

In this case, depths are read in at V points, starting in our example with the depth at (m = 2, n = 1). This depth is punched on a single card, in the format F12.4 (i.e. in decimal), the units being FATHOMS. (Meters were not used as most American and English charts are in fathom units). No depth should be less than the maximum expected tide amplitude -- one might say that no depth should be less than 4 fathoms. The next card contains the depth at (2,3), following with those at (2,5), (4,1), (4,3), (4.5),... (8,3), (8,5), one depth to each card. The order is thus as in Figure 6.2.

Figure 6.2. Order of specifying depths at V-points.

The next group of cards contain depths at U-points, the procedure being the same as for the V-points. The order of the cards is, for our example: (2,1), (2,3), (2,5), (2,7), (2,9), (4,1),...., (4,7), (4,9). See Figure 6.3.

Figure 6.3. Order of specifying depths at U-points.

5. Initial tide-height and boundary-value cards--.

With the depth cards all prepared, we then proceed to the initial tide heights at Z-points. These are prepared from the best available distribution of tide amplitudes and phases over the inlet. the tide is considered to be at its maximum height across the input. Heights along the other V and Z rows are estimated by taking (amplitude) x cos(phase lag), where the phase lag is the delay of arrival time of maximum tide height compared with the input.

Heights are estimated in METERS, and are punched in F12.4 format (decimal), one to a card. The order in which they are taken is from left to right: (2,2), (2,4), (4,2), (4,4),...., (8,2), (8,4). See Figure 6.4.

Figure 6.4. Order of specifying initial heights.

We now have the following blocks of data cards:

Туре	No. of cards
Grid dimensions, tide information, etc.	8
Boundary positions	. 6
Depths	22
Initial tide heights	8

Table 6.2. Data arrangement for example.

This fully completes the data cards. The only task remaining is to specify the input conditions. These cards are added to the program in the INPUT subroutine, directly after 'COMMON TIDE'.

As an example, one might use:

Z1(2,2) = 0.743*COS(6.28318*((FIT/PER)-0.0))

Z1(2,4) = -Same-

Here FIT/PER is the point of the tidal cycle that has been reached, expressed as a fraction of 1.0. The last term (in this case -0.0) is the phase delay of the maximum tide compared to that at the input. It will range between -0.0 and -1.0 (a delay of 90° would be -0.25). The number 0.743 indicates a tide amplitude of 74.3 cms (or a range of 148.6 cms).

It is suggested that, as far as sinusoidal tides are concerned, this instruction-type be adheared to, thus only the 0.743 and the -0.0 should be changed.

CHAPTER VII

COMPUTER OUTPUTS AND DATA ANALYSIS

1. Printer output--.

The first page of the computer output (after the // EXEC statement) contains information on the grid interval, tidal period, friction coefficient, latitude, coriolis parameter $(2\Omega\sin\phi)$, and the units used in the pages that follow.

The next 1-4 pages contain information as to the distribution of depth (in meters). If the maximum grid width (NSUM) is less than 18, 1 or 2 pages will be printed depending on the value of the grid length (MSUM). If NSUM is greater than 18, one or two additional pages will be printed covering columns 19 to 29. These may be detached and joined to the first one or two pages.

The next pages, in a similar arrangement, will be the (interpolated) values of the initial tide heights. The next two sets of pages will be the initial values for U and V. They will all be zero. As the H, Zl, and Ul matrices were all set to zero at the start of the program, it follows that all untouched elements of the arrays will be printed as zeros. This was done for two reasons (although it may prove confusing at first): to avoid writing complicated format statements, and to serve as a check on the functioning of the program, i.e. if non-zero values show up in unexpected places some error in the boundary-location specification may have occurred.

After this, values of tide height and currents are printed in a similar fashion at the end of each tidal cycle, with the exception of the last.

During the last cycle values are printed out at fractions (1/12) of the tidal period. Thus values will be printed at 1/12, 2/12, 3/12,, 11/12 of the period. This provides values of the intermediate tide and current distributions.

Tape outputs--.

Two tapes are used during the main program:

- * A short tape is placed on unit 8 (a tape I/O device), and has sufficient information read onto it at the end of every tidal cycle so that in the event of an unscheduled termination only a small amount of reprogramming is necessary to restart the program at the beginning of the next cycle. This is useful when, for some reason or other, the program is terminated before the CALL EXIT is reached (such as during a power failure). The tape is discarded in the event of a successful run.
- * A long tape is place on I/O unit 9. At the start of the program basic information, such as dimensions, tidal period, boundary positions, etc, are written onto the tape, for details please see Appendix IV. During the last cycle, values of current and height are written onto the tape every time that tide heights are calculated. For convenience, the entire U1 and Z1 matrices are written onto the tape. In order to achieve maximum compression of data, a special

program is used that writes the entire matrix as one continuous record (FORTRAN IV normally limits the maximum record length to 64 single-precision words, then leaves an inter-record gap of 6/10 inch.) The tape is then rewound at the end of the last cycle, and is thus ready for detailed analysis. The program was written by Mr. Don Walker of the University of Alaska Computer Center

3. Data analysis--.

This consists of the analysis of the current and height data on the second tape. Two programs have been joined together to form one standard package:

Program 1: Height and Phase analysis.

This program scans the tide heights at each Z-point. It stores the maximum and minimum tide heights that occur during the last cycle along with the associated phases. These values are then printed out. The output format differs from that used during the main program; asterisks are printed out in land areas, and the spacing between rows has been increased so as to partially offset the distortion of the inlet shape that occurs in the printing. The result is pleasing to the eye.

The program then calculates the mean range from (max tide heightminimum tide height), and mean phase from: mean phase = phase of max. height + phase of min. height -90°,

(7.1)

provided high tide arrives before low tide during the last cycle.

If not, the phase of minimum height first has 360 added to it before equation (7.1) is computed.

Program 2: Current Analysis.

For each current matrix, currents are interpolated at Z-points. These currents are combined to form a vector, and the length and angle (clockwise from the North) are calculated. The current values are checked for maximum and minimum values. The times (in hours) and angles are stored along with the associated maximum or minimum values. At the end of the cycle the values are printed out. From this output it is possible to estimate the dimensions and directions of the current ellipse axes and their sense of rotation. At present, during plotting, it is necessary to assume that the maximum currents are the same at ebb and flood, and that their directions are 180° apart. Similarly with minimum currents at slack water. It should be a simple matter to extend the program to calculate the 2 maximums, and the 2 minimums with their associated angles and times, however, it is arguable whether the present accuracy warrants such detail.

A printout of the two analyses programs will be found in Appendix 3.

CHAPTER VIII

A SAMPLE PROBLEM

To fulfil the need for a sample problem that will serve as a guide for data arrangement and as a test for the program, a simple example will next be presented and solved.

The problem is as follows; An inlet has the following dimensions:

Length 350 km

Width 200 km

Depth 250 fathoms

The inlet will be analysed for a tide of period 12.42 hours, having an amplitude of 0.743 meters at the mouth. In the absence of friction and Coriolis force the application of equation (2.15) shows that the expected amplitude of the tide at the closed end of the inlet should be 1.000 meters. The tide will be considered uniform across the mouth of the inlet for reasons of convenience, although in reality this would be unlikely. To go along with this, a latitude of 5° North will be assumed. If a grid interval of 50 kms. is selected, the application of equation (6.1) results in $\Upsilon \leq 527.9$ seconds. On choosing 360 intervals per tidal period, $\Upsilon = 124.2$ seconds. This might be considered unnecessarily generous, however it will provide good resolution for the phase of the tide. A value

for the friction coefficient of 0.003 will be assumed and the program will be allowed to run through five complete cycles.

For this problem the first 8 data cards will be as in Table 6.1. The boundary-value data cards follow as listed in Chapter 6, section 3. As depths throughout the inlet are constant there will follow 22 cards, each with 250.0 punched in the first 5 columns.

For the initial tide heights, values are needed for rows 2,4,6, and 8. From equation (2.15) we obtain

$$Z(x) = \cos\left(\frac{360 \cdot x}{2994}\right), \qquad (8.1)$$

where x is measured in kms. from the closed end of the inlet.

The approximate initial tide heights are then as in Table (8.1).

Row	Height
8	0.995
· 6	0.95
4	0.865
2	0.743

Table 8.1. Initial tide heights.

The data cards will therefore be, one number to a card (starting in column 1), 0.743,0.743,0.865,0.865,0.95,0.95,0.995,0.995. The two cards that have to be added to the INPUT subroutine are as in Chapter 6, section 5.

The program was run on an IBM 360/40 computer and required 7.5 minutes. The two analysis programs required a further 3.5 minutes each. Some of the printed results are shown in Appendix V. The outputs are largely self-explanatory and agree closely with those predicted.

CHAPTER IX

TWO APPLICATIONS OF THE MODEL

1. Application of the model to the M_2 tide of the Gulf of California--.

The Gulf of California has its entrance on the Pacific Ocean and is bounded by Lower California to the west and Mexico proper to the east. The gulf is oriented in a northwest-southeast direction with its northern limit being formed by the Colorado River (Latitude 32° N.). Its mouth lies between Cabo San Lucas and Cabo Corrientes (with a mid-latitude of about 22° N.). The tidal study was confined to that part of the gulf lying to the north of the city of Guaymas (Latitude 28° N.) for reasons of economy of computer time. The bathymetry of the gulf, along with the grid outline finally chosen is shown in Figure 9.1.

The greatest depth that occurs in this restricted region is some 2740 meters. To represent the coast around the locality of Isla Tiburon to an adequate degree, it was found necessary to select a grid interval of 15 km. Owing to the narrowness of the channel lying between Lower California and Isla Angel de la Guarda, it proved impractical to represent the outline of the island with this particular grid scheme. The effect of the island was partially taken into account by assigning an arbitrary depth of 5 fathoms to all grid points lying within the outline of the island.

ricura 0.1.

To ensure stability a time step of 62.1 seconds was chosen.

This conforms to the stability requirements of the two-dimensional explicit finite difference scheme (equation (6.1)), so that

$$\tau < \frac{15.000}{\sqrt{2 \times 9.81 \times 2740}}$$
 (9.1)

or ₹ < 65 seconds.

Input tidal data for this region is scarce. The only places for which adequate tidal data were available consisted of Puerto Penasco in the north, and Guaymas. The amplitudes of the M_2 tide constituents are 157 and 14 cms. respectively, while the difference in phase was taken as 107 degrees (U.N.A.M., 1967). As no reliable information was available for the variation of the M_2 constituents across the input boundary opposite Guaymas, a difference of 1 cm. was assumed for the amplitude (the range being smaller in the west), and zero degrees for the phase. This was based on the values of the mean range and the establishment for San Lucas Cove and Guaymas (Matthews, 1968).

Thus with these assumptions, the cards that had to be added to the INPUT subroutine were as follows:

(column) 1234567

The total duration of the main and analyses programs was about 65 minutes. The co-tidal and co-range lines, which may be said to be

the most useful results, are shown in Figure 9.2.

The co-tidal lines show that between the sea/sea boundary and Isla Tiburon the tidal wave is essentially of progressive wave type, with the phase of the tide changing by 90 degrees. To the north of Isla Tiburon the wave changes to one of standing wave characteristics. This is supported by the orientation of the co-range lines in this region, which lie across the width of the gulf, and the co-tidal lines, which lie along the axis of the northern part of the gulf (see Defant (1960)). The co-range lines in addition show that almost all of the amplification of the tide occurs between Penasco and Isla Tiburon, the range increasing from 90 to 314 cms.

The nature of the tides in the Gulf of California may be conveniently be indicated by the use of the Formzahl (Courtier, 1938).

The Formzahl, F, for any given place is the quantity

$$F = \frac{K_1 + O_1}{M_2 + S_2} . (9.2)$$

For Penasco F=0.28, falling in the region in which tides are classified "mixed, mainly semi-diurnal" $(0.25 \le F \le 1.5)$. F for Guaymas is 1.92, and falls under the classification "mixed, mainly diurnal" $(1.5 \le F \le 3.0)$. The tidal regime of the gulf thus appears to fall into two categories depending on the position north or south of the narrow section; mostly semi-diurnal to the north, mostly diurnal to the south.

Defant (1960) has stated that the overall tidal configuration of the gulf seems to be one of a standing wave with a nodal line

GULF OF CALIFORNIA Co-Range & Co-Tidal Lines for the M2 Tide

Figura 9.2.

occuring near the narrow section. However, as seen above, the variation of predominance of the semi-diurnal and diurnal constituents with latitude warns one not to expect too simple a standing wave pattern. It should therefore not be too surprising that the M₂ co-tidal lines should not agree more closely with the few pieces of tidal data available (Matthews, 1968), which show little difference in the establishment for locations between Guaymas and Isla Tiburon.

The most noticible defect in the output is that of the co-tidal lines in the vicinity of the input point near Puerto Penasco. Here an anomaly in the lines may be seen. However, the fact that the anomalous behavior dies out within a short distance leads one to the conclusion that had this input point been left out, the phase of the tide at this point would have been about 115 degrees. This value differs from the data in the U.N.A.M. tide tables by some 8 degrees. It is interesting to note that there is a difference in the establishment of the M2 constituent for Guaymas as computed by U.N.A.M. and the U.S.C.&G.S. (unpublished data). The difference can probably be attributed to the small tide amplitudes available for analysis. On account of this it is difficult to distribute the fault between the model and the tide tables without additional tidal records.

An inspection of the combined set of co-range and co-tidal lines leads one to the conclusion that the difference in amplitude across the input boundary should have been nearer to 2 or 3 cms.,

while the phase difference should have been about 10 degrees, with high tide reaching the east side before the opposite point on the west.

The conclusions suggested by the above application are as follows:

- 1. In the event that bad data are used at an isolated input point, the fact will be made clear by the distortions in the co-range and co-tidal lines.
- The effect on the rest of the area will probably become negligible at distances greater than
 4 or 5 grid intervals.

2. Application of the model to the tides of Cock Inlet--.

Cook Inlet is located with its entrance on the coast of South-central Alaska. The inlet is some 150 miles long and terminates in two arms, Turnagain Arm and Knik Arm. Cook Inlet is generally shallow, between Homer and Anchorage the greatest depth encountered is of the order of 75 fathoms. At Homer the inlet is 27 miles wide, but narrows locally to 9 miles between the East and West Forelands. North of the Forelands the region becomes increasingly complicated (in the hydrodynamic sense) by the presence of shoals and mud flats, with extensive areas of Turnagain Arm being exposed at low tide.

The tides of the upper part of Cook Inlet are amongst the highest in the world and can be classed with those of the Bay of Fundy, Ungava Bay, and the Straits of Magellan. The tides are predominately semi-diurnal, having a mean range of 25.1 feet at Anchorage (U.S.C.&G.S., 1968) and a value for F (equation (9.2)) of 0.24. In addition the presence of strong currents and seasonal pack ice cause much hinderance to shipping. Long-term measurements of tide heights are complicated by the ice, while velocity measurements are made most difficult by the high currents and rough seas.

It seems customary when using numerical models to investigate the tides in an inlet to use M_2 amplitudes and phases as input conditions. If non-linear equations are used, the resulting currents

are largely without significance as one cannot combine the solutions obtained for the various constituents as the model involves non-linear terms. This of course raises questions as to the correctness of restricting the input to one constituent only. The current conditions are of considerable practical interest in the case of Cook Inlet, so it was decided that efforts would be directed towards the ultimate goal of using real tide measurements as input conditions (subject to removal of high frequency components). Since it has been shown that some 120 constituents are needed to reliably predict the tide at Anchorage (Zetler and Cummings, 1967), it was clear that as a first step the model should be tested with a hypothetical tide obtained by assuming a sinusoidal wave of period 12.42 hours, amplitude based upon the mean range as tabulated in the tide tables (U.S.C.&G.S., 1968) for the region, and phase based on the high and low tide arrival times.

After some trial runs on an IBM 360/40 computer, a compromise was reached between computer time and the accuracy with which the outline of the inlet could be represented by straight sections of the grid. The model was restricted to that part of the inlet north of Homer. A grid interval of 3.052 kms. enabled the region of interest to be contained within a grid of dimension 65x29. The final grid outline, along with the bathymetry of the region, may be seen in Figure 9.3. To comply with the accepted stability condition, a time interval of 62.10 seconds was chosen. To arrive at the input conditions across the sea/sea boundary at Homer, an estimate was

Figure 9.3.

made of the range and phase of the tide on the opposite shore using values for Tuxedni Channel and Iliamna Bay. An interpolation was then performed to obtain the values at each input point. Because of the inability of such a model to handle mud flats (i.e. regions where the depth may occasionally become zero), all such regions were assigned an arbitrary depth of 4 fathoms. Furthermore, to avoid problems with the very shallow conditions that exist in Turnagain Arm and Knik Arm, the northern end of the model was terminated in two sea/sea boundaries. The required cards to be added to the INPUT subroutine are shown in Table 9.1.

Five full tidal cycles were computed, after which time conditions appeared steady. Each cycle required some 20 minutes of computer time. The analysis programs required 15 minutes, and a chart of the resulting co-tidal and co-range lines may be seen in Figure 9.4. It is at once apparent that the tidal regime of Cook Inlet divides the inlet into two distinct regions. For convenience they may be called North Cook Inlet and South Cook Inlet. They are separated from one another by the natural feature of the narrow section that lies between the West and East Forelands.

The tides in South Cook Inlet show the characteristic appearance of a progressive Kelvin wave. The co-range lines lie along the length of the inlet with higher amplitudes occurring to the east. The co-tidal lines lie essentially perpendicular to the co-range lines and slope upwards to the right, thus indicating that the wave is not entirely progressive but tends towards a mixed type of wave

```
P=0.051+0.0054
      A=2.06-0.06
      DD 69 N=6,20,2
      P = P - 0.0054
      A = A + 0.06
69
      Z1(2,N)=A*COS(6.28318*((FIT/PER)-P))
                                                                           INPUT
      Z1(6,4)=2.13*COS(6.28318*((FIT/PER)-0.059))
                                                                           TUXEDNI
      Z1(12, 18)=2.53*COS(6.28318*((FIT/PER)-0.06))
                                                                           NINILCHK
      Z1(36,8)=2.74*COS(6.28318*((FIT/PER)-0.221))
                                                                           EASTFORE
      Z1(48,4)=2.79*CDS(6.28318*((FIT/PER)-0.314))
                                                                           NORTHFOR
      Z1(64,18)=3.82*COS(6.28318*((FIT/PER)-0.376))
                                                                           ANCHORAG
      Z1(60,28)=4.25*COS(6.28318*((FIT/PER)-0.402))
                                                                           GULLRUCK
```

Table 9.1. Cards added to INPUT subroutine for Cook Inlet program.

Figure 9.4.

(Defant, 1960). The fact that the two sets of lines are approximately at right angles is an indication that friction probably does not play too important a part in South Cook Inlet.

A feature clearly observed in Figure 9.4 is the speeding up of the tidal wave on the west side of the inlet after Tuxedni Channel has been reached. The explanation for this is to be found in the bathymetry of the region. Depths of some 60 fathoms occur west of Kalgin Island while 20 fathoms is more typical for the part of the inlet lying between Kalgin Island and the Kenai Peninsula. Another point that is worth drawing attention to is that there will be scarcely any change of tidal range with increasing distance up the inlet (as far as the Forelands), not an increase with distance as one would have expected had standing wave behavior been assumed.

The tides of North Cook Inlet have the appearance of the more conventional standing wave. Considerable distortion from the frictionless case is present, as is evidenced by the co-tidal lines not being perpendicular to the co-range lines. If the amplitudes and phases are plotted in the appropriate fashion on Redfield's estuary tidal analysis diagram (Redfield, 1950), a value of about 3 results for

, the damping coefficient. The reason for the strong frictional effects is certainly to be found in the shallow depths prevalent throughout North Cook Inlet.

Another result of interest is that as one proceeds up North

Cook Inlet the difference in the amplitude of the tide across the

inlet decreases. This is because the difference in phase between the maximum tide height and the maximum current is approaching 90 degrees. If slack water occurs when the tide is at its highest, there will be no Coriolis force and hence no slope of the water surface across the inlet at this instant.

Because of the fact that no attempt could be made to take into account the varying shore line as the mud flats become exposed, to provide the north end of the model with closed boundaries, or to include the effects of the tidal bore that is said to occur at certain times beyond the model limits in Turnagain Arm (U.S.C.& G.S., 1964), it is almost certain that the reality of the results decreases as one proceeds northwards.

A look at the output of the current analysis shows that the maximum depth-mean currents occur just to the south of the West Foreland - East Foreland narrows. They attain a maximum value of over 200 cms./second (i.e. more than 4 knots) and are counter clockwise. It is to be hoped that in the future a knowlege of the real current profile will be used to estimate the current at any depth, given solely the depth-mean current.

On observing the nature of the co-tidal lines in the region of the input at the southern end of the model, one is led to the conclusion that too great a phase difference was assumed to exist across the open boundary. It is likely that the difference should have been nearer 8 degrees and not 18 degrees, as was used.

Furthermore it was probably a mistake to have assumed that the

phase of the tide at the input point near Anchorage should have had the same phase as Anchorage. Being half way between Anchorage and Fire Island, the phase should probably have been 7 degrees or so smaller. Finally, on the subject of modifying future input data, it seems that the inclusion of input data for a point near the town of Kenai would have removed the 'awkward' shape of the co-range lines in this region. The predicted range for Kenai is 5.06 meters, some 35 cms. smaller than the tabulated mean range. This input data was specifically left out of the model so that a check would be available as to the veracity of the solution. One concludes from this that all available input data should be used near regions of complex shape.

CHAPTER X

CONCLUSIONS AND FUTURE WORK

1. Conclusions--.

A variable-geometry model has been described in this thesis that is oriented towards the general user. It is designed to stand alone but also to be made part of larger models such as general oceanographic prediction schemes. The method follows the earlier approaches of Hansen and Yuen, and uses Yuen's equations in an automated form. The method of solution is thus already well documented and examples of previous applications of the method may easily be referred to. A background to the solution of tides in inlets is given, and the means by which the finite difference equations are derived is covered step by step. The prospective user is shown clearly the means by which a particular inlet may be studied and how the input data is prepared. A simple example is covered in some detail with all the cards explained and sample computer outputs shown.

For the user's convenience a magnetic tape is prepared during the last tidal cycle computed, on which all heights and currents are stored; this is so that special types of analysis may be performed at later dates as desired. At the end of the last tidal cycle the tape is automatically analysed for tidal range and phase, and maximum and minimum currents: these being probably the most useful results of the computation. It is felt that this approach should make the model described particularly attractive to otherwise wary users.

Two applications to real inlets have been included in the thesis. They were to the Gulf of California and to Cook Inlet. It is the writer's opinion that these have provided a satisfactory test for the model.

2. Future work--.

The inability of the model to deal with mud flats points to the need for work in this area. Although it is tempting to suggest that modifications be made so as to adjust the inlet outline in units of (2 x grid interval) when necessary during the course of the solution, the nature of such a change might prove too gross to deal realistically with the situation. Before such an improvement can be made it seems that efforts should be directed to mathematical studies rather than towards the more tempting "experimental mathematics" approach. A deeper study of the part played by friction would be applicable to shallow regions such as Cook Inlet and the Bering Sea. Jeffreys (1920) has pointed out the importance of the Bering Sea when considering world-wide frictional dissipation for the M₂ tide.

BIBLIOGRAPHY

Abbott, M. B., 1966. The Method of Characteristics, American Elsevier, New York, 243 p.

Blondel, A., 1912. Sur la Theorie des Marees dans un Canal. Appl. a la Mer Rouge, Ann. Fac. Toulouse, 3.

Courtier, A., 1938. Marees, Serv. Hydr. Marine, Paris, 37 p.

Defant, A., 1920.

Die Gezeiten und Gezeiten Stromungen im Irischen Kanal,
Untersuchungen a.s.o., S. B. Weiner Akad. Wiss. (Math. Nature. Kl.),
129, 253.

Defant, A., 1960. Physical Oceanography, Vol. 2, Pergamon Press, New York, 598 p.

Dronkers, J. J., 1964. Tidal Computations in Rivers and Coastal Waters, North Holland Publishing Company, Amsterdam, 518 p.

Fisher, R. L., Rusnak, G. A., and F. P. Shepard, 1964. Submarine Topography of the Gulf of California (Chart I), American Association of Petroleum Geologists.

Grace, S. F., 1936.
Friction in the Tidal Currents of the Bristol Channel, Geophys. Supp. M.N.R. Astron. Soc., 3, 388-395.

Hansen, W., 1952. Gezeiten und Gezeitenstrome der Halbtagigen Hauptmondtide M₂ in der Nordsee, Deutsche Hydr. Zeitschr., Erganzungsheft 1.

I.B.M., 1968.

IBM System/360 Disk Operating System: FORTRAN IV Programmer's Guide, Form C 28 6397-0, Oct., 96 p.

Jeffreys, H., 1920. Tidal Friction in Shallow Seas, Phil. Trans. A. 221, 239. Leendertse, J. J., 1967.

Aspects of the Computational Model for Long-Period Water Wave propagation,

Rand Memorandum R.M.5294-P.R., Delft, 89 p.

Lorentz, H. A., 1926.

Verslag Staatscommissie Zuiderzee 1918-1926 (Report of the Government Zuiderzee Commission), Alg. Landsdrukkerij, The Hague.

Matthews, J. B., 1968.

Tides in the Gulf of California,

Thompson, D. A., Editor, Probable Environmental Impact of Heated Brine Effluents from a Nuclear Desalination Plant on the northern Gulf of California, University of Arizona report submitted to the Office of Saline Water, U.S. Department of the Interior, 41-50.

Proudman, J., 1953.

Dynamical Oceanography,

Methuen, London; J. Wiley, New York, 409 p.

Redfield, A., 1950.

The Analyses of Tidal Phenomena in Narrow Embayments, No. 529, Papers in Phys. Ocean. and Meteor., MIT and Woods Hole Ocean. Inst., 11, no. 4, 36 p.

Richardson, A., 1922.

Weather Prediction by Numerical Process, Cambridge University Press, 236 p.

Richtmyer, R. D., and K. W. Morton, 1967. Difference Methods for Initial-Value Problems, 2nd. ed., Interscience, New York, 403 p.

Sterneck, R. v., 1914.

Uber die Gezeiten des Aegaischen Meeres, Akad. Anz. Akad. Wiss. Wien, 10 Dec..

Stoker, J. J., 1957.

Water Waves,

Interscience, New York, 567 p.

Sverdrup, H. V., M. W. Johnson, and R. H. Fleming, 1942. The Oceans,

Prentice-Hall, New York, 1087 p.

U.S.C.&G.S., 1964.

U.S. Coast Pilot No.9, Pacific and Arctic Coasts, Alaska, Cape Spencer to Beaufort Sea, 7th. ed.,
U.S. Government Printing Office, Washington, D.C., 348 p.

U.S.C.&G.S., 1968.

Tide Tables, West Coast, North and South America, U.S. Government Printing Office, Washington, D.C., 224 p.

U.N.A.M., 1967.

Tablas de Prediccion de Mareas, Puertos del Oceano Pacifico, Ap. 1, Parte B, Anales del Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, $\underline{13}$, Mexico, $\underline{135}$ p.

Yuen, K. B., 1967.

The Effects of Tidal Barriers upon the $\rm M_2$ Tide in the Bay of Fundy, Manuscript Report Series, No. 5, Marine Sciences Branch, Department of Energy, Mines and Resources, Ottawa, 146 p.

Zetler, B. D., and R. A. Cummings, 1967.

A Harmonic Method for Predicting Shallow-Water Tides,
J. Mar. Res., 25, 1, 103-114.

APPENDIX I

LISTING OF PROGRAM FOR VARIABLE-BOUNDARY TIDAL MODEL

```
THIS BELONGS TO CHRIS MUNGALL
                              INSTITUTE OF MARINE SCIENCE
0001
                   INTEGER*2 IU
0002
                   DIMENSION U1 (65,30), Z1 (65,30), H(65,30), IU(68,31)
0003
                   DIMENSION PR(20)
0004
                   COMMON MSUM, NSUM, DL, T, GEE, R, F, Y, PER, IPER, ISS, IS, DT, IDAY, IFIT, INVC,
                  1FIT. FIME.U1.Z1.H.IU.PR
0005
                   COMMON TIDE
0006
                   READ(1.1)IIDA
0007
             1
                   FORMAT(12)
             C
                       IIDA=NUMBER OF TIDAL CYCLES
8000
                   CALL OPSYS ('LOAD', 'PHASNME1')
0009
                   CALL INIT
                   CALL OPSYS ("LOAD", "PHASNME4")
0010
0011
                   CALL PRINTS
0012
                   CALL OPSYS ('LOAD', 'PHASNME3')
0013
             67
                   IFIT=0
0014
                   ICYC=0
0015
                   FIT=IFIT
0016
                   CONTINUE
             61
             С
             C
                       UATY CALCULATION
0017
                   IFL=0
0018
                   L2 = MSUM - 1
0019
                   DO 2107 M=2,12,2
0020
                   I = -1
0021
             2100 I = I + 2
0022
                   IF(IU(M,I)-2)2104,2107,2100
            C
                       IF IU=3, TREAT IT AS O
            С
                       IF IU LESS THAN 2, CHECK FOR 0 OR 1
```

IF IU=2, GO TO NEXT ROW

```
IF(IU(M,I))2100,2100,2101
0023
             2104
             C.
                        IF IU=1. CHECK IF IT IS LEFT OR RIGHT BOUNDARY
0024
             2101
                   IF(IFL)2102,2102,2103
                       IFL=O INDICATES LEFT BOUNDARY, IFL=1 RIGHT
             2102
                   IML=I+2
0025
                       IF LEFT. SET LEFT (LOWER) LIMIT. CHANGE IFL VALUE
             C.
                       LEFT BOUNDARY -- VY=0
0026
                   IF(IU(M, I+2)-3)2125,2124,2124
             C124 V1(M.I)=V1(M.I+2)
0027
             2124 U1(M,I+1)=U1(M,I+3)
0028
             2125 CONTINUE
0029
                   IFI = 1
0030
                   GO TO 2100
0031
             2103
                   IMR=I-2
             €.
                       IF RIGHT. SET RIGHT (UPPER) LIMIT. CHANGE IFL VALUE
             C
                       RIGHT BOUNDARY -- VY=0
0032
                   IF(IU(M, I-2)-3)2127,2126,2126
             C126 V1(M.I) = V1(M.I-2)
0033
             2126 U1(M,I+1)=U1(M,I-1)
0034
             2127 CONTINUE
0035
                   IFL=0
             C
                       NOW WE HAVE LIMITS FOR NORMAL CALCULATION
0036
                   IF(IMR-IML)2108.2109.2109
                       CHECK FOR SPECIAL CASE (IE UNUSUALLY NARROW)
0037
             2109
                   DO 2106 N=IML, IMR, 2
0038
                   Z1(M,N) = (Z1(M,N+1)+Z1(M,N-1))/2.
             C
                   H(M,N) = D(M,N) + Z1(M,N)
0039
                   H(M,N) = H(M,N+1) + Z1(M,N)
0040
             2106
                   U1(M,N)=(U1(M+1,N+1)+U1(M-1,N+1)+U1(M-1,N-1)+U1(M+1,N-1))/4.
             C
                     THEN CALCULATE VALUES AT SIDES
0041
                   Z1(M,IML-2)=(Z1(M,IML-1)-(Z1(M,IML+1)/3.))*1.5
             C
                   H(M,IML-2)=D(M,IML-2)+Z1(M,IML-2)
0042
                   H(M, IML-2) = H(M, IML-1) + Z1(M, IML-2)
0043
                   Z1(M,IMR+2)=(Z1(M,IMR+1)-(Z1(M,IMR-1)/3.))*1.5
             C
                   H(M,IMR+2)=D(M,IMR+2)+Z1(M,IMR+2)
0044
                   H(M,IMR+2)=H(M,IMR+3)+ZI(M,IMR+2)
```

```
0045
                   U1(M,IMR+2)=U1(M+1,IMR+1)+U1(M-1,IMR+1)-U1(M,IMR)
0046
                   U1(M \cdot IML-2) = U1(M+1 \cdot IML-1) + U1(M-1 \cdot IML-1) + U1(M \cdot IML)
                   GO TO 2100
0047
                       REPEAT PROCESS
            C
                       NARROW CASE
            2108 U1(M,IML-2)=(U1(M+1,IML-1)+U1(M-1,IML-1))/2.
0048
                   Z1(M,IML-2)=Z1(M,IML-1)
0049
            C
                   H(M,IML-2)=D(M,IML-2)+Z1(M,IML-2)
0050
                   H(M,IML+2)=H(M,IML+1)+Z1(M,IML+2)
0051
                   Ul(M,IML)=Ul(M,IML-2)
0052
                   Z1(M,IML)=Z1(M,IML-1)
            С
                   H(M,IMR+2)=D(M,IMR+2)+Z1(M,IMR+2)
0053
                   H(M,IMR+2)=H(M,IMR+3)+Z1(M,IMR+2)
0054
                   GO TO 2100
0055
            2107 CONTINUE
            C
                       VATU CALCULATION
0056
                   IFL=0
0057
                   L1 = NSUM - I
0058
                   DO 2117 N=2.L1.2
0059
                   I = -1
0060
            2110 I = I + 2
0061
                   IF(IU(I,N)-2)2114,2117,2110
            C
                       IF IU=3. TREAT IT AS O
            C
                       IF IU LESS THAN 2, CHECK FOR O OR 1
                       IF IU=2. GO TO NEXT COLUMN
0062
                  IF(IU(I,N))2110,2110,2111
            2114
                       IF IU=1, CHECK IF IT IS BOTTOM OR TOP BOUNDARY
0063
            2111
                  IF(IFL)2112,2112,2113
                       IFL=0 INDICATES BOTTOM BOUNDARY, IFL=1 TOP
0064
            2112
                  IMB = I + 2
                       IF BOTTOM, SET BOTTOM (LOWER) LIMIT. CHANGE IFL VALUE
            C
                       BOTTOM BOUNDARY -- UX=0
0065
                   IF(IU(I+2,N)-3)2123,2122,2122
0066
            2122 UI(I,N)=UI(I+2,N)
            2123 CONTINUE
0067
```

```
0068
                   IFI = 1
0069
                  GO TO 2110
            2113
0070
                  IMT=I-2
            C.
                       IF TOP. SET TOP (UPPER) LIMIT. CHANGE IFL VALUE
            C
                       TOP BOUNDARY -- UX=0
0071
                   IF(IU(I-2.N)-3)2121.2120.2120
0072
            2120 U1(I,N)=U1(I-2,N)
0073
            2121 CONTINUE
0074
                   IFL=0
            C
                       NOW WE HAVE LIMITS FOR NORMAL CALCULATION
0075
                   IF(IMT-IMB)2118,2119,2119
                       CHECK FOR SPECIAL CASE (IE UNUSUALLY NARROW)
0076
            2119 DO 2116 M=IMB.IMT.2
                  Z1(M,N) = (Z1(M+1,N)+Z1(M-1,N))/2.
0077
            C
                  H(M,N) = D(M,N) + Z1(M,N)
0078
                  H(M \cdot N) = H(M \cdot N + 1) + Z1(M \cdot N)
            C116 V1(M+N) = (V1(M+1+N+1)+V1(M-1+N+1)+V1(M-1+N-1)+V1(M+1+N-1))/4
0079
            2116
                  U1(M,N+1)=(U1(M+1,N+2)+U1(M-1,N+2)+U1(M-1,N)+U1(M+1,N))/4
            C.
                       THEN CALCULATE VALUES AT SIDES
0080
                   Z1(IMB-2,N)=(Z1(IMB-1,N)-(Z1(IMB+1,N)/3.))*1.5
            C
                  H(IMB-2,N)=D(IMB-2,N)+ZI(JMB-2,N)
1800
                  H(IMB-2,N)=H(IMB-2,N+1)+Z1(IMB-2,N)
0082
                   Z1(IMT+2,N)=(Z1(IMT+1,N)-(Z1(IMT-1,N)/3.))*1.5
            C
                  H(IMT+2,N)=D(IMT+2,N)+Z1(IMT+2,N)
                  H(IMT+2,N)=H(IMT+2,N+1)+Z1(IMT+2,N)
0.083
                   V1(IMT+2.N)=V1(IMF+1.N+1)+V1(IMT+1.N-1)-V1(IMT.N)
            C
0084
                   U1(IMT+2,N+1)=U1(IMT+1,N+2)+U1(IMT+1,N)-U1(IMT,N+1)
            C
                   V1(IMB-2.N)=V1(IMB-1.N+1)+V1(IMB-1.N-1)-V1(IMB.N)
0085
                   U1(IMB-2.N+1)=U1(IMB-1.N+2)+U1(IMB-1.N)-U1(IMB.N+1)
0086
                   GO TO 2110
            C
                       REPEAT PROCESS
                       NARROW CASE
            C118 V1(IMB-2,N) = (V1(IMB-1,N+1)+V1(IMB-1,N-1))/2.
0087
            2118
                  U1(IMB-2,N+1)=(U1(IMB-1,N+2)+U1(IMB-1,N))/2.
0088
                   Z1(IMB-2.N)=Z1(IMB-1.N)
            C
                  H(IMB-2.N)=D(IMB-2.N)+Z1(IMB-2.N)
```

```
0089
                   H(IMB-2,N)=H(IMB-2,N+1)+Z1(IMB-2,N)
            C
                   V1(IMB \cdot N) = V1(IMB - 2 \cdot N)
                   U1(IMB.N+1)=U1(IMB-2.N+1)
0090
0091
                   Z1(IMB \cdot N) = Z1(IMB - 1 \cdot N)
                   H(IMT+2,N)=D(IMT+2,N)+Z1(IMT+2,N)
             C
0092
                   H(IMI+2,N)=H(IMI+2,N+1)+ZI(IMI+2,N)
0093
                   60 TO 2110
0094
             2117 CONTINUE
0095
                   IF(IIDA-IDAY)8999.8999.8998
             8999 CALL WRITER(9, U1, 7800)
0096
0097
                   CALL WRITER(9, Z1, 7800)
             8998 CONTINUE
0098
             C
            C PRINT-UUT ONLY 7 TIMES/TIDAL CYCLE
0099
                   IF(ISS-IS)81,81,82
0100
             81
                   IS=0
0101
                   IF(IIDA-IDAY)2001,2001,2002
0102
            2002 IF(ICYC)2001,2001,82
0103
            2001
                   TIME=FIT*T/(3600.*PER)
            C
            C
                   CALL OPSYS ('LOAD', 'PHASNME2')
0104
0105
                   CALL WRITE
0106
                   CALL OPSYS ('LOAD', 'PHASNME3')
0107
                   ICYC = ICYC + 1
0108
             82
                   IS=IS+2
0109
                   IFIT=IFIT+2
0110
                   FIT=IFIT
0111
                   CALL INPUT
            C
0112
                   CALL UVZ
0113
                   CALL INPUT
            C
                        THIS REPLACES DESTROYED INPUT-POINT DATA
0114
                   IF(IPER-IFIT)80,80,61
```

0115	80 C C C C	IDAY=IDAY+1 THE NEXT 6 INSTRUCTIONS ARE INCLUDED TO LIMIT THE LOSS OF DATA TO DNE CYCLE ONLY , IN THE EVENT THAT THE PROGRAM IS CANCELLED DUE TO EXTERNAL CAUSES. TO RESTART AT THE END OF THE LAST CYCLE COMPLETED, THE INIT PROGRAM WILL HAVE TO BE ALTERED SLIGHTLY.
0116		WRITE(8,1)IDAY
0117		CALL WRITER(8,1U,4216)
8110		CALL WRITER(8, Z1, 7800)
0119		CALL WRITER(8,U1,7800)
0120		CALL WRITER(8,H,7800)
0121		REWIND 8
0122		IF(IIDA+1-IDAY)83,83,67
0123	83	REWIND 9
0124		CALL EXIT
0125		END

```
0001
                   SUBROUTINE INPUT
0002
                   INTEGER*2 IU
0003
                   DIMENSION U1 (65,30), Z1 (65,30), H(65,30), IU(68,31)
0004
                   DIMENSION PR(20)
0005
                   COMMON MSUM, NSUM, DL, T, GEE, R, F, Y, PER, IPER, ISS, IS, DT, IDAY, IFIT, ICYC,
                  1FIT, TIME, U1, Z1, H, IU, PR
0006 -
                   COMMON TIDE
0007
                   Z1(2,4)=0.130*COS(6.28318*((FIT/PER)-0.000))
8000
                   Z1(2,6)=0.133*COS(6.28318*((FIT/PER)-0.000))
0009
                   Z1(2,8)=0.136*CUS(6.28318*((FIT/PER)-0.000))
0010
                   Z1(2,10)=0.140*COS(6.28318*((FIT/PER)-0.000))
                   Z1(32,12)=1.570*CCS(6.28318*((FIT/PER)-0.297))
0011
0012
                   RETURN
0013
                   END
```

```
0001
                   SUBROUTINE INIT
2000
                   INTEGER*2 IU
0003
                   DIMENSION U1(65,30),Z1(65,30),H(65,30),IU(68,31)
                   DIMENSION PR(20)
0004
0005
                   COMMON MSUM, NSUM, DL, T, GEE, R, F, Y, PER, IPER, ISS, IS, DT, IDAY, IFIT, ICYC,
                  1FIT, TIME, U1, Z1, H, IU, PR
0006
                   COMMON TIDE
             C
             C
             C
                       SET VELOCITIES TO ZERO
0007
                   DO 2009 M=1.65
                   00 2009 N=1,30
8000
0009
                   Z1(M_*N)=0.
0010
                   H(M,N)=0.
             C009 V1(M,N)=0.
0011
             2009 U1(M,N)=0.
             C
0012
                   READ (1,105) MSUM
0013
             105
                   FORMAT(12)
0014
                   READ(1,105)NSUM
                   READ(1.1)DL
0015
0016
                   DLL=DL/1000.
0017
                   WRITE(3,7000)DLL
0018
             7000 FURMAT('1',50X,'GRID INTERVAL=',F6.2,'KILOMETERS')
0019
                   READ(1,1)T
             C T=PERIOD IN HOURS
0020
                   WRITE(3,7001)T
0021
             7001 FORMAT('0',50X,'TIDAL PERIOD=',F6.2,'HOURS')
0022
                   T=T*3600.0
0023
                   GEE=9.81
             C GEE IN M/SEC**
             C R=FRICTION COEFFICIENT
0024
                   READ(1,1)R
0025
                   WRITE(3,7002)R
0026
             7002 FORMAT('0',50X,'FRICTION COEFFICIENT=',F6.4)
0027
                   READ(1,1)ALAT
```

```
0028
                   WRITE(3,7003)ALAT
0029
            7003 EDRMAT('0',50X,'LATITUDF=',F4.1,'DEGREES')
0030
                   PHI=ALAT*3.1416/180.0
                  F = (4.0 \times 3.1416 \times SIN(PHI))/(24.0 \times 3600.0)
0031
            C F=CORIULIS PARAMETER, IN RAD/SEC
0032
                   WRITE(3.7004)F
0033
            7004 FORMAT('0',50X,'CORIOLIS PARAMETER=',F10.8,'RADIANS/SECOND')
0034
                  WRITE(3.7005)
0035
            7005 FORMAT('0',50X,'FOLLOWING PRINTOUTS ARE IN METER-SECOND UNITS')
            C STABILIZATION FACTOR
0036
                   Y = 0.99
0037
                   READ(1.1)PER
            C PER=NUMBER OF TIME INTERVALS/TIDAL PERIOD
0038
                   IPER=PER
0039
                   IZINT=IPER
0040
                   ISS=PER/12.
            C
                       TE PRINT OUT 12 TIMES PER TIDAL CYCLE DURING LAST CYCLE
0041
                   IS=ISS
0042
                   DT=T/PER
            C DT=TIME INCREMENT IN SEDONDS
0043
                   WRITE(9,77)MSUM
0044
                   WRITE(9,77)NSUM
0045
            77
                  FORMAT(12)
0046
                   WRITE(9,78)DL
0047
            78
                   FORMAT(F12.4)
0048
                   WRITE(9,999)1ZINT
0049
            999
                  FORMAT(14)
0050
                   WRITE(9.78)T
            C
            C.
                       READ POINTS AT WHICH U=0
0051
                   L1=NSUM-1
0052
                   DO 2020 N=2.L1.2
0053
                  READ(1,104)(IU(M,N),M=1,68)
            2020
0054
            104
                   FORMAT(6811)
            C
            C
                       READ POINTS AT WHICH V=0
```

```
0055
                  L2=MSUM-1
0056
                  DO 2010 M=2,L2,2
0057
            2010
                  READ(1,100)(IU(M,N),N=1,31)
0058
            100
                  FORMAT(3111)
0059
                  WRITE(9)((IU(M,N),M=1,67),N=1,31)
            C
            C
             ALL HEIGHTS IN METERS
                      READ DATV
0060
                   IFL=0
0061
                  L2=MSUM-1
0062
                  00 2407 M=2,L2,2
0063
                  I = -1
0064
            2400 I=I+2
0065
                  IF(IU(M.I)-2)2404.2407.2400
            2404 IF(IU(M,I))2400,2400,2401
0066
0067
                  IF(IFL)2402,2402,2403
            2401
0068
            2402 IML=1+2
0069
                  IFL=1
0070
                  GO TO 2400
0071
            2403 IMR=I-2
0072
                  IFL=0
0073
                  IF(IMR-IML)2408,2409,2409
            0409
                  READ(1,1)D(M,IML-2)
0074
            2409
                  READ(1,1)H(M,IML-1)
0075
            1
                  FORMAT(F12.4)
0076
                  H(M,IML-1)=H(M,IML-1)*1.8288
0077
                  DO 2406 N=IML, IMR, 2
0078
                  READ(1,1)H(M,N+1)
0079
                  H(M,N+1)=H(M,N+1)*1.8288
            2406
            С
                  READ(1,1)D(M,IMR+2)
0080
                  READ(1,1)H(M, IMR+3)
1800
                  H(M,IMR+3)=H(M,IMR+3)*1.8288
0082
                  GO TO 2400
            C408
                  READ(1,1)D(M,IML-2)
0083
            2408
                  READ(1,1)H(M,IML-1)
```

```
0084
                   H(M,IML-1)=H(M,IML-1)*1.8288
            C
                   READ(1,1)D(M,IMR+2)
                   READ(1,1)H(M,IMR+3)
0085
0086
                   H(M,IMR+3)=H(M,IMR+3)*1.8288
0087
                   GO TO 2400
0088
             2407
                  CONTINUE
            C
            C
                       READ DATU
0089
                   IFL=0
                   L1=NSUM-1
0090
0091
                  DO 2517 N=2.L1.2
0092
                   I = -1
0093
            2510 I=I+2
0094
                   IF(IU(I,N)-2)2514,2517,2510
0095
            2514 IF(IU(I,N))2510,2510,2511
0096
            2511 IF(IFL)2512,2512,2513
            2512 IMB=I+2
0097
0098
                   IFL=1
0099
                  'GO TO 2510
0100
            2513 IMT=I-2
0101
                   IFL=0
0102
                   IF(IMT-IMB)2518,2519,2519
            C519
                  READ(1,1)D(IMB-2,N)
            2519 READ(1,1)H(IMB-2,N+1)
0103
0104
                  H(IMB-2,N+1)=H(IMB-2,N+1)*1.8288
                  DO 2516 M=IMB, IMT, 2
0105
0106
                   READ(1,1)H(M,N+1)
                  H(M,N+1)=H(M,N+1)*1.8288
0107
             2516
                   READ(1,1)D(1MT+2,N)
0108
                  READ(1,1)H(IMI+2,N+1)
                  H(IMT+2,N+1)=H(IMT+2,N+1)*1.8288
0109
0110
                   GO TO 2510
            C518
                  READ(1,1)D(IMB-2,N)
0111
            2518 READ(1,1)H(IMB-2,N+1)
0112
                  H(IMB-2.N+1)=H(IMB-2.N+1)*1.8288
```

```
C
                   READ(1,1)D(IMT+2,N)
0113
                   READ(1,1)H(1MT+2,N+1)
0114
                   H(IMT+2,N+1)=H(IMT+2,N+1)*1.8288
0115
                   60 TO 2510
0116
             2517
                  CONTINUE
             С
            C
            C
                       READ Z INITIAL
0117
                   IFL=0
0118
                   L2=MSUM-1
0119
                   DO 2607 M=2,L2,2
0120
                   I = -1
0121
            2600 = 1 = 1 + 2
0122
                   IF(IU(M, I)-2)2604,2607,2600
0123
                  IF(IU(M,I))2600,2600,2601
            2604
0124
            2601
                  [F(IFL)2602,2602,2603
0125
            2602
                  IML = I + I
0126
                   IFL=1
0127
                   GO TO 2600
0128
            2603 IMR = I - 1
0129
                   IFL=0
0130
                   DO 2606 N=IML, IMR, 2
0131
            2606 READ(1,1)Z1(M,N)
0132
                   GO TO 2600
0133
            2607
                  CUNTINUE
0134
                   RETURN
0135
                   END
```

```
0001
                  SUBROUTINE WRITE
0002
                  INTEGER*2 IU
0003
                  DIMENSION U1 (65,30),Z1 (65,30),H(65,30),IU(68,31)
0004
                  DIMENSION PR(20)
0005
                  COMMON MSUM, NSUM, DL, T, GEE, R, F, Y, PER, IPER, ISS, IS, DT, IDAY, IFIT, ICYC,
                 1FIT, TIME, U1, Z1, H, IU, PR
0006
                  COMMON TIDE
            C
                       WRITE Z'S
0007
                  WRITE(3,110)
8000
                  FORMAT('1',63X,'Z-VALUES')
            110
0009
                  WRITE(3,4)TIME
0010
                  FORMATI' ', 'CONDITIONS AFTER', 2X, F5.2, 'HOURS')
            4
0011
                  WRITE(3,5)1DAY
0012
                  FORMAT(' ', 'NUMBER OF TIDAL CYCLES COMPLETED', 2X, [2]
0013
                  WRITE(3.102)
0014
            102
                  FORMAT('0','
                                      N = 1
                                             N=2 N=3 N=4
                                                                   N=5
                                                                          N = 6
                 1 N= 8 N= 9
                                   N=10 N=11 N=12
                                                         N = 1.3
                                                                N=14 N=15 N=16
                 2=17 N=18!
0015
                  DO 5002 J=1.MSUM
0016
                  M=MSUM+1-J
0017
            5002 WRITE(3.101)M.(Z1(M.N).N=1.18)
0018
            101
                  FURMAT( * ', "M= ', [2, 1X, [8(1X, 66, 2))
0019
                  IF(NSUM-18)5004,5004,5003
0020
            5003 WRITE(3.110)
0021
                  WRITE(3,4) TIME
0022
                  WRITE(3,5)IDAY
0023
                  WRITE(3,103)
0024
            103
                  FORMAT('0',' N=19
                                        N = 20
                                                       N = 22
                                                              N = 23
                                               N = 2.1
                                                                     N = 24
                                                                            N = 25
                                                                                    11=2
                 16
                      N=27 N=28
                                   N=29 N=30!
0025
                  DO 5005 J=1.MSUM
0026
                  M=MSUM+1-J
            5005 WRITE(3,106)(Z1(M,N),N=19,29)
0027
0028
            106
                  FORMAT(* *,11(1X,F6.2))
0029
            5004 CONTINUE
```

<u>|---</u>

```
C
                        WRITE U'S
 0030
                    WRITE(3,113)
 0031
              113
                    FORMAT('1',63X,'U-VALUES')
 0032
                    WRITE(3,4)TIME
 0033
                    WRITE(3.5)IDAY
 0034
                    WRITE(3,102)
 0035 -
                    M=MSUM
 0036
                    00 7012 1=1,18
              7008
 0037
              7012
                    PR(I)=0.
 0038
                    DO 7010 N=2,18,2
 0039
                    PR(N)=U1(M,N)
              7010
 0040
                    WRITE(3,101) M, (PR(N), N=1,18)
 0041
                    M=M-1
 0042
                    IF(M)7016,7016,7009
              C
                        7009 INDICATES THAT M IS EVEN
 0043
              7009
                    DO 7013 I=1,18
 0044
              7013
                   PR(I)=0.
 0045
                    DO 7014 N=1,17,2
 0046
              7014
                   PR(N)=UI(M_N)
 0047
                    WRITE(3.101)M.(PR(N).N=1.18)
 0048
                    M = M - 1
 0049
                    GO TO 7008
 0050
              7016 CONTINUE
 0051
                    IF(NSUM-18)7104,7104,7103
 0052
              7103
                    WRITE(3,113)
 0053
                    WRITE(3,4)TIME
 0054
                    WRITE(3,5)IDAY
 0055
                    WRITE(3,103)
 0056
                    M=MSUM
 0057
              7108
                    DD 7112 1=1.12
 0058
              7112
                    PR(I)=0.
 0059
                    DO 7110 N=2.10.2
 0060
              7110
                    PR(N) = U1(M, N+18)
 0061
                    WRITE(3,106)(PR(J),J=1,11)
 0062
                    M = M - 1
_0063
                    IF(M)7116,7116,7109
```

```
0093
          0092
                    0091
                                                                                                                          0083
                              0090
                                         0089
                                                             0088
                                                                       0087
                                                                                0086
                                                                                                       0085
                                                                                                                0084
                                                                                                                                                                    0080
                                                                                                                                                                               0079
                                                                                                                                                                                        0078
                                                                                                                                                                                                            0076
                                                                                                                                                                                                                                                                                    0071
                                                                                                                                     0082
                                                                                                                                                          1800
                                                                                                                                                                                                  0077
                                                                                                                                                                                                                       0075
                                                                                                                                                                                                                                                                                                         0070
                                                                                                                                                                                                                                                                                                                  0069
                                                                                                                                                                                                                                                                                                                                                 0066
                                                                                                                                                                                                                                 0074
                                                                                                                                                                                                                                                                                                                             8900
                                                                                                                                                                                                                                                                                                                                      0067
                                                                                                                                                                                                                                                                                                                                                           0065
                                         6014
                                                   C014
                                                                       6013
                                                                                 6009
                                                                                                                                               0100
                                                                                                                                                                              6008
6016
                                                                                                                                     6010
                                                                                                                                                                    6012
                                                                                                                                                                                                                                 112
                                                                                                                                                                                                                                                                                    7104
                                                                                                                                                                                                                                                                                             7116
                                                                                                                                                                                                                                                                                                                                        7114
                                                                                                                                                                                                                                                                                                                                                           7113
                                                                                                                                                                                                                                                                                                                                                                     7109
CONTINUE
                    V = M - 1
                                       PR(N)=U1(M,N+1)
                                                                      PR(I)=0.
                                                                                                                                              PR (N) = V1 (M, N)
          GO TO 6008
                             WRITE(3,101) M, (PR(N),N=1,18)
                                                 PR(N)=V1(M,N)
                                                            DO 6014 N=1,17,2
                                                                                DO 6013 [=1,18
                                                                                                                 3 1 1 1
                                                                                                                         WRITE(3,101)P, (PR(N),N=1,18)
                                                                                                                                    PR(N)=U1(M,N+1)
                                                                                                                                                         DO 6010 N=2,18,2
                                                                                                                                                                   PR(I)=0.
                                                                                                                                                                             00 6012 1=1,18
                                                                                                                                                                                        M-MSUM
                                                                                                                                                                                                 WRITE(3,102)
                                                                                                                                                                                                           WRITE (3,5) IDAY
                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                             CONTINUE
                                                                                                                                                                                                                                                                                                        GO TO 7108
                                                                                                                                                                                                                                                                                                                  X | X | ]
                                                                                                                                                                                                                                                                                                                                      PR(N) = U1 (M, N+18)
                                                                                                                                                                                                                                                                                                                                               DO 7114 N=1,11,2
                                                                                                                                                                                                                                                                                                                                                           PR(I)=0.
                                                                                                                                                                                                                                                                                                                                                                     DO 7113 I=1,12
                                                                                                                                                                                                                      WRITE (3,4) TIME
                                                                                                                                                                                                                                FORMAT('11',63X,'V-VALUES')
                                                                                                                                                                                                                                           KRITE (3, 112)
                                                                                                                                                                                                                                                                                                                            WRITE(3,106)(PR(J),J=1,11)
                                                                                                     IF(M)6016,6016,6009
                                                                                           6009 INDICATES THAT M IS EVEN
                                                                                                                                                                                                                                                     WRITE V'S
```

```
0094
                    IF(NSUM-18)6104,6104,6103
                    WRITE(3,112)
0095
             6103
                    WRITE(3,4)TIME
0096
0097
                    WRITE(3,5)IDAY
                    WRITE(3,103)
0098
                    M=MSUM
0099
0100
                    DO 6112 I=1,12
             6108
0101
             6112
                    PR(I)=0.
0102
                    DO 6110 N=2.10.2
             C110
                    PR(N) = V1(M,N+18)
             6110
                    PR(N) = U1(M,N+19)
0103
0104
                    WRITE(3,106)(PR(J),J=1,11)
0105
                    M = M - 1
0106
                    IF(M)6116,6116,6109
0107
                    DO 6113 I=1.12.
             6109
0108
             6113
                    PR(I)=0.
0109
                    DO 6114 N=1,11,2
             C114
                    PR(N) = V1(M,N+18)
             6114
                    PR(N) = UI(M, N+19)
0110
                    WRITE(3,106)(PR(J),J=1,11)
0111
0112
                    M = M - 1
0113
                    60 TO 6108
0114
             6116
                    CONTINUE
```

CONTINUE

RETURN

END

FORMAT(',13)

FORMAT('1')

6104

2

3

0115

0116

0117

0118

0119

```
0001
                   SUBROUTINE UVZ
0002
                   INTEGER*2 IU
0003
                   DIMENSION U1(65,30),Z1(65,30),H(65,30),IU(68,31)
0004
                   DIMENSION PR(20)
0005
                   COMMON MSUM, NSUM, DL, T, GEE, R, F, Y, PER, IPER, ISS, IS, DT, IDAY, IFIT, ICYC,
                  1FIT, TIME, U1, Z1, H, IU, PR
0006
                   COMMON TIDE
            C
                       U-POINT CALCULATION
0007
                   IFL=0
8000
                   L1=NSUM-1
                  DO 3117 N=2,L1,2
0009
0010
                   I = -1
0011
            3110 I=I+2
0012
                  IF(IU(I,N)-2)3114,3117,3110
                       IF IU=3, TREAT IT AS O
                       IF IU LESS THAN 2. CHECK FOR 0 OR 1
                       IF IU=2 GO TO NEXT COLUMN
0013
            3114 IF(IU(I,N))3110,3110,3111
                       IF IU=1, CHECK IF IT IS BOTTOM OR TOP BOUNDARY
0014
            3111 IF(IFL)3112,3112,3113
                       IFL=O INDICATES BOTTOM BOUNDARY, IFL=1 TOP
            3112 IMB = I + 2
0015
                       IF BOTTOM, SET BOTTOM (LOWER) LIMIT. CHANGE IFL VALUE
0016
                   IFL=1
0017
                   GO TO 3110
0018
            3113 IMI = I - 2
            C
                       IF TOP, SET TOP (UPPER) LIMIT. CHANGE IFL VALUE
0019
                   IFL=0
                       NOW WE HAVE LIMITS FOR CALCULATION
0020
                   IF(IMT-IMB)3118,3119,3119
                       CHECK FOR SPECIAL CASE (IF UNUSUALLY NARROW)
0021
            3119 DO 3116 M=IMB.IMT.2
            C CALCULATION OF U AT (M.N)
0022
                   ZXATU = (Z1(M+L,N)-Z1(M-1,N))/(2.*DL)
            C VI, UI SHOULD BE FOR TIME (T) -- HERE THEY ARE TAKEN FOR TIME (T-1)
            C STABILIZATION OF LEADING U-TERM
```

```
0023
                   USTAB = (Y * U1 (M, N)) + ((1.-Y) * (U1 (M+1, N+1) + U1 (M-1, N+1))
                      +U1(M-1,N-1)+U1(M+1,N-1))/4.
0024
             3116 U1(M,N)=USTAB+(2.*DT*((-USTAB*R*SQRT((U1(M,N)*U1(M,N))
                         +(V1(M,N)*V1(M,N)))/H(M,N))+(F*V1(M,N))-(GEE*ZXATU)))
                        +(U1(M,N+1)*U1(M,N+1)))/H(N,N))+(F*U1(M,N+1))~(GEE*ZXATU)))
             C END OF U AT (M.N.) CALCULATION
0025
                   GO TO 3110
             C.
                       NARROW CASE
0026
             3118
                   GO TO 3110
                        IN NARROW CASE, NO U-POINT CALCULATION IS POSSIBLE
0027
             3117
                   CONTINUE
             C
             C
                        V-POINT CALCULATION
0028
                   IFL=0
0029
                   L2=MSUM-1
0030
                   DO 3107 M=2.L2.2
0031
                   I = -1
0032
             3100 I = I + 2
0033
                   IF(IU(M,I)-2)3104,3107,3100
                       IF IU=3, TREAT IT AS O
                       IF IU LESS THAN 2, CHECK FOR 0 OR 1
                       IF IU=2, GO TO NEXT ROW
0034
             3104
                   IF(IU(M,I))3100,3100,3101
                       IF IU=1, CHECK IF IT IS LEFT OR RIGHT BOUNDARY
             C
                   IF(IFL)3102,3102,3103
0035
                       IFL=O INDICATES LEFT BOUNDARY, IFL=1 RIGHT
0036
             3102
                   IML = I + 2
             C
                       IF LEFT, SET LEFT (LOWER) LIMIT. CHANGE IFL VALUE
0037
                   [FL=1]
0038
                   GO TO 3100
0039
             3103
                   IMR = I - 2
                       IF RIGHT, SET RIGHT (UPPER) LIMIT. CHANGE IFL VALUE
             C
0040
                   IFL=0
             C
                       NOW WE HAVE LIMITS FOR CALCULATION
0041
                   IF(IMR-IML)3108,3109,3109
```

```
C
                       CHECK FOR SPECIAL CASE (IE UNUSUALLY NARROW)
0042
                   DO 3106 N=IML, IMR, 2
            3109
            C CALCULATION OF V AT (M.N.)
0043
                   ZYATV = (Z1(M, N-1) - Z1(M, N+1))/(2.*DL)
            C VI. UI SHOULD BE FOR TIME (T) -- HERE THEY ARE TAKEN FOR TIME (T-1)
            C STABILIZATION OF LEADING V-TERM
            C
                   VSTAB = (Y \times V1(M, N)) + ((1.-Y) \times (V1(M+1, N+1) + V1(M-1, N+1))
                   VSTAB = (Y*U1(M,N+1)) + ((1.-Y)*(U1(M+1,N+2)+U1(M-1,N+2))
0044
                      +V1(M-1,N-1)+V1(M+1,N-1))/4.
                      +U1(M-1,N)+U1(M+1,N))/4.
            C106 V1(M,N) = VSTAB + (2.*DT*((-VSTAB*R*S)RT((U1(M,N)*U1(M,N)))
0045
            3106 U1(M,N+1)=VSTAB+(2.*DT*((-VSTAB*R*SQRT((U1(M,N)*U1(M,N)))
                1
                        -+(V1(M,N)*V1(M,N))))/H(M,N))--(F*U1(M,N))--(GEE*ZYATV)))
                        +(U1(M.N+1)*U1(M.N+1)))/H(M.N))-(F*U1(M.N))-(GEE*ZYATV)))
            C END OF V AT (M.N.) CALCULATION
0046
                   GO TO 3100
0047
            3108 GO TO 3100
                       NARROW CASE
                     IN NARROW CASE, NO V-POINT CALCULATION IS POSSIBLE
0048
            3107 CONTINUE
            C
                       Z-POINT CALCULATION
                       NOTEO VALUES ARE CALCULATED AT INPUT POINTS--THESE ARE FALSE
0049
                   IFL=0
0050
                   L2=MSUM-1
0051
                   DO 4107 M=2,L2,2
0052
                   I = -1
0053
            4100 I = I + 2
0054
                   IF(IU(M.I)-2)4104.4107.4100
            С
                       IF IU=3. TREAT IT AS O
                       IF IU LESS THAN 2, CHECK FOR O OR 1
                       IF IU=2, GO TO NEXT ROW
            4104 IF(IU(M,I))4100,4100,4101
0055
                       IF IU=1, CHECK IF IT IS LEFT OR RIGHT BOUNDARY
0056
            4101 IF(IFL)4102,4102,4103
```

```
IFL=O INDICATES LEFT BOUNDARY. IFL=1 RIGHT
0057
             4102
                   IML = I + 1
                      IF LEFT, SET LEFT (LOWER) LIMIT. CHANGE IFL VALUE
0058
                   IFL=1
0059
                   60 TO 4100
0060
                   IMR = I - 1
             4103
                        IF RIGHT, SET RIGHT (UPPER) LIMIT. CHANGE IFL VALUE
             C
0061
                   IEL=0
            С
                        NOW WE HAVE LIMITS FOR CALCULATION
0062
                   DO 4106 N=IML.IMR.2
             C CALCULATION OF Z AT (M.N.)
0063
                   HUX = ((H(M+1,N) \times U1(M+1,N)) - (H(M-1,N) \times U1(M-1,N)))/(DL \times 2.)
                   HVY = ((H(M,N-1)*V1(M,N-1)) - (H(M,N+1)*V1(M,N+1)))/(DL*2.)
             C
                   HVY = ((H(M,N-1) *U1(M,N)) - (H(M,N+1) *U1(M,N+2)))/(DL *2.)
0064
             C
                        STABILIZATION OF Z1
0065
                   Z1(M,N)=(Y*Z1(M,N))+((1.-Y)*(Z1(M+1,N)+Z1(M-1,N))
                  1 + 21(M,N-1) + 21(M,N+1))/4.
             4106 Z1(M,N) = Z1(M,N) - (2.*DT*(HUX+HVY))
0066
            C HUX AND HVY SHUULD INVOLVE Z2 VALUES. BUT HERE THEY ARE
            C APPROXIMATED BY Z1.
            C END OF Z-CALCULATION
0067
                   GO TO 4100
0068
             4107 CONTINUE
                   RETURN
0069
0070
                   END
```

```
0001
                  SUBROUTINE PRINTD
0002
                  INTEGER*2 IU
0003
                  DIMENSION U1(65,30),Z1(65,30),H(65,30),IU(68,31)
0004
                  DIMENSION PR(20)
0005
                  COMMON MSUM.NSUM.DL.T.GEE.R.F.Y.PER.IPER.ISS.IS.DT.IDAY.IFIT.ICYC.
                 1FIT, TIME, U1, Z1, H, IU, PR
                  COMMON TIDE
0006
            С
                      WRITE D'S
                  WRITE(3.111)
0007
8000
            111
                  FORMAT('1','
                                                                      DEPTH-VALUES')
0009
                  WRITE(3,102)
0010
                  FORMAT('0'.'
            102
                                      N=1
                                             N=2
                                                    N=3
                                                           N = 4
                                                                  N = 5
                                                                         N = 6
                 1 N = 8 N = 9
                                  N=10 N=11 N=12
                                                        N=13 N=14 N=15 N=16
                 2=17 N=18')
0011
                  M=MSUM
0012
            5008 DO 5012 I=1.18
0013
            5012 PR(I)=0.
                  DO 5010 N=2,18,2
0014
            CO10 PR(N)=D(M\cdot N)
0015
            5010
                  PR(N)=H(M,N+1)
0016
                  WRITE(3.108)M.(PR(N).N=1.18)
0017
                  FORMAT(* *, 'M=*, 12, 1X, 18(1X, F6, 1))
            108
0018
                  M=M-1
0019
                  IF(M)5016.5016.5009
                      5009 INDICATES THAT M IS EVEN
0020
            5009
                  00.5013 I=1.18
0021
            5013
                  PR(I)=0.
0022
                  DO 5014 N=1,17,2
            CO14 PR(N)=D(M,N)
0023
            5014
                  PR(N)=H(M,N+1)
0024
                  WRITE(3.108)M.(PR(N).N=1.18)
0025
                  M = M - 1
0026
                  GO TO 5008
0027
            5016 CONTINUE
0028
                  IF(NSUM-18)5104,5104,5103
0029
            5103 WRITE(3,111)
```

```
0030
                    WRITE(3,103)
0031
             103
                    FORMAT('0',' N=19
                                            N=20
                         N=27 N=28
                                         N = 29
                    M=MSUM
0032
0033
                    DO 5112 I=1,12
             5108
0034
             5112
                    PR(I)=0.
0035
                    DO 5110 N=2.10.2
             C110
                    PR(N) = D(M, N+18)
0036
             5110
                    PR(N) = H(M_N + 19)
0037
                    WRITE(3,109)(PR(J),J=1,11)
0038
             109
                    FORMAT(' ',11(1X,F6.1))
0039
                    M = M - 1
0040
                    IF(M)5116,5116,5109
0041
             5109
                    DO 5113 I=1.12
0042
             5113
                    PR(I)=0.
                    DO 5114 N=1,11,2
0043
             C114
                    PR(N) = D(M, N+18)
0044
             5114
                    PR(N) = H(M, N+19)
0045
                    WRITE(3,109)(PR(J),J=1,11)
0046
                    M = M - 1
0047
                    GO TO 5108
                    CONTINUE
0048
             5116
0049
             5104
                    CONTINUE
0050
                    IDAY=0
0051
                    RETURN
0052
                    END
```

N=21 N=22 N=23 N=24 N=25 N=2 =301)

APPENDIX II

LISTING OF DATA COMPRESSION SUBROUTINE

Note: This subroutine is required by the tidal model program and the two analysis programs.

THIS ASSEMBLER SUBROUTINE CAN BE USED TO READ OR WRITE LARGE TAPE * BLOCKS BY A FORTRAN PROGRAM. BEFORE CALLING THE SUBROUTINE FOR * WRITING, THE USER MUST 'WRITE' AT LEAST ONCE ON TO THE TAPE TO *INSURE THAT THE TAPE IS PROPERLY OPENED. NATURALLY THE TAPE WHEN READ BACK. ALSO MUST 'READ' THE TAPE FOR THE SAME REASON. WHEN FINISHED WRITING A TAPE WITH THIS SUBROUTINE. THE USER MUST 'END-FILE OR 'REWIND' THE TAPE TO CLOSE IT PROPERLY. THE FORMAT FOR THE FORTRAN CALL TO WRITE A RECORD (ASSUMED TO BE A LARGE ARRAY OF DIMENSION (100,10)) ON DATA SET REFERENCE =5 * WOULD BE CALL WRITER (5, ARRAY, 4000) TO READ THE ARRAY. ONE COULD CODE CALL READER (6, BARRAY, 4000) * * * NOTES. THE FIRST ARGUMENT SPECIFIES THE DATA SET REFERENCE =. IT MAY BE A CONSTANT OR A FIXED POINT VARIABLE CONTAINING THE DATA SET REFERENCE =. * ANY NUMBER OF VARIABLES OR ARRAYS MAY BE WRITTEN. SPECIFY MERELY IN THE SECOND AND THIRD ARGUMENTS THE NAME OF THE FIRST VARIABLE TO BE WRITTEN AND THE ENTIRE LENGTH OF THE VARIABLES TO BE WRITTEN. IT MAY BE NECESSARY TO REFER TO THE STORAGE MAP TO DETERMINE - WHICH VARIABLE IS ACTUALLY FIRST IN CORE AND WHAT THE ACTUAL * LENGTH IS. THE THIRD ARGUMENT REPRESENTS THE NUMBER OF BYTES TO BE WRITTEN. FORTRAN WORDS OF SINGLE PRECISION CONTAIN 4 BYTES EACH, WHILE

```
DOUBLE PRECISION VARIABLES
TAPEIO
          START
WRITER
          EOU *
          ENTRY WRITER
          USING *,15
          SAVE (14,12)
          L.A
                5,1
GÜ
          LM
                2,4,0(1)
                2,0(2)
          L
                4,0(4)
          L
                4,CCWPTR+6
          STH
          ST
                3,CCWPTR
          STC
                5.CCWPTR
                2,=H131
          SH
          STC
                2,CCB+7
         EXCP
                CCB
          MAIT
               CCB
         RETURN (14,12)
READER
         EQU
                *
         ENTRY READER
         SAVE (14,12)
         LA
                5,2
         LA
                9, READER-WRITER
     SR
                15,9
                GO
         В
         0.5
                0F
CCB
         CCB
                SYSOOO, CCWPTR
```

CCW

END 1

0,0,X'20',0

CCWPTR

CONTAIN 8 BYTES.

ESTABLISH ADDRESSABILITY
SAVE ALL FURTRAN REGISTERS
LOAD WRITE OP CODE
LCAD PARM POINTERS
R2= DS REF NO.
R3= A(IO AREA)
R4= LENGTH
STORE LENGTH
STORE ADDRESS
STORE OP CODE
GET SYS NO. FROM DS REF NO.
STORE IN CCB
DO I/O OPERATION
WALL FOR CUMPLETION
RETURN

SAVE REGISTERS LOAD READER OP CODE GET DIFFERENCE 'TWEEK' BASE REGISTER

APPENDIX III

LISTING OF HEIGHT AND CURRENT ANALYSIS PROGRAMS

```
0020
0021
0022
                                                                                                                                                                           6100
                                            0031
                                                       0030
                                                                                      0027
                                                                                                 0026
                                                                                                                                  0023
                                                                                                                                                                                        0018
                                                                                                                                                                                                             0016
                       0033
                                 0032
                                                                0029
                                                                            0028
                                                                                                            0025
                                                                                                                       0024
                                                                                                                                                                                                  0017
                                                                                                                                                                                                                        0015
                                                                                                                                                                                                                                  0014
                                                                                                                                                                                                                                             0013
                                                                                                                                                                                                                                                        0012
                                                                                                                                                                                                                                                                  0011
                                                                                                                                                                                                                                                                             0010
                                                                                                                                                                                                                                                                                        0009
                                                                                                                                                                                                                                                                                                   0008
                                                                                                                                                                                                                                                                                                             0007
                                                                                                                                                                                                                                                                                                                                   0006
                                                                                                                                                                                                                                                                                                                                              0005
                                                                                                                                                                                                                                                                                                                                                        0004
                                                                                                                                                                                                                                                                                                                                                                  0002
                                            8103
 8884
                                                                            8102
                                                                                      8101
                                                                                                 8104
                                                                                                                       3100
                                                                                                                                                                                                                                                                                         999
                                                                                                                                                                                                                                                                                                                        C
                                                                                                                                                                                                                                                        78
                                                      CO TO 8100
ZMIN(M,N)=0.0
                     DO 8884 N=IML, IMR, 2
                                           1 季元 = 1 ー 1
                                                                                                                                            DO 8107 M=2,L2,2
                                                                                                                                                                                                                      00 9 M=1,65
                                                                                                                                                                                                                                                       FORMAT(F12.4)
                                                                                                                                                                                                                                                                                                                                                                 READ (9,77) MSUM
           ZMAX(M,N)=0.0
                                                                [FL=1
                                                                            [ML=I+1
                                                                                                                                                       L2=MSUM-1
                                                                                                                                                                           READ(9)((IU(N,N), M=1,67), N=1,31)
                                                                                                                                                                                      ZMIN(M,N)=10000000.0
                                                                                                                                                                                                            DO 9 N=1,30
                                                                                                                                                                                                                                                                            READ (9, 78) II
                                                                                                                                                                                                                                                                                       FORMAT(14)
                                                                                                                                                                                                                                                                                                                                                        READ (9, 77) NSUM
                                                                                                                                                                                                                                                                                                                                                                           DIMENSION IU(68,31), Z1(65,30), ZMAX(65,30), ZMIN(65,30)
                                 [FL=0
                                                                                               IF(IU(M,I))8100,8100,8101
                                                                                                          IF(IU(M,I)-2)8104,8107,8100
                                                                                                                       I=I+2
                                                                                                                                 [=-]
                                                                                                                                                                  1FL=0
                                                                                                                                                                                                ZMAX(M,N) = 10000000.0
                                                                                                                                                                                                                                 PH=360./21NI
                                                                                                                                                                                                                                             ZINT=IZINT
                                                                                                                                                                                                                                                                 TT=TT/3600.0
                                                                                                                                                                                                                                                                                                  REAU(9,999)IZINT
                                                                                                                                                                                                                                                                                                            DL=DL/1000.
                                                                                                                                                                                                                                                                                                                                  RFAD (9,78)DL
                                                                                                                                                                                                                                                                                                                                            FURMAT(12)
                                                                                     IF(IFL)8102,8102,8103
                                                                                                                                                                                                                                                                                                                                                                                        INTEGER#2 10
                                                                                                                                                                                                                                                                                                                       DL=GRID INTERVAL IN METERS
```

```
0036
                    GO TO 8100
0037
             8107 CONTINUE
0038
                    T=0.
0039
                    IT=0
0040
             15
                    CALL READER (9, Z1, 7800)
             C
                        READ UI
0041
                    CALL READER (9, Z1, 7800)
             C
                        READ Z1
0042
                    IFL=0
0043
                    L2 = MSUM - 1
                    DO 4107 M=2, L2, 2
0044
0045
                    1 = -1
             4100 I = I + 2
0046
0047
                    IF(IU(M,I)-2)4104,4107,4100
0048
             4104
                    IF(IU(M,I))4100,4100,4101
0049
             4101
                   IF(IFL)4102,4102,4103
0050
             4102 IML = I + 1
0051
                    IFL=1
0052
                    GO TO 4100
0053
             4103 - IMR = I - 1
0054
                    IFL=0
0055
                    DO 13 N=IML, IMR, 2
0056
                    IF(Z1(M,N)-ZMAX(M,N))10,10,11
0057
             11
                    ZMAX(M,N)=ZL(M,N)
0058
                    ZMAX(M-1.N) = T*PH
             C
                        PUT ASSOCIATED PHASE BELOW Z
0059
                    ZMAX(M,N+1)=0.0
0060
                    ZMAX(M-1.N+1)=0.0
0061
             10
                    IF(Z1(M,N)-ZMIN(M,N))12,13,13
0062
             12
                    ZMIN(M,N) = ZI(M,N)
0063
                    ZMIN(M-1,N) = T *PH
0064
                    ZMIN(M,N+1)=0.0
0065
                    ZMIN(M-1,N+1)=0.0
0066
             13
                    CONTINUE
0067
                    GO TO 4100
0068
             4107 CONTINUE
```

```
0069
                   IT=IT+2
0070
                   T=T+2.
                   IF(IZINT-IT)16,16,15
0071
            C
            C
0072
            16
                   WRITE(3,200) TT
0073
            200
                   FORMAT('1',50X,'TIDAL PERIOD=',F6.2,'HOURS')
0074
                   WRITE(3,201)0L
0075
                   FURMAT( * ',50X, 'GRID INTERVAL= ', F6.2, 'KILOMETERS')
            201
0076
                   WRITE(3,202)
            202
                   FORMAT( 1,20x, OUTPUT DESCRIPTION...)
0077
0078
                   WRITE(3,203)
0079
            203
                   FORMAT( 1,35X, UNITS. METERS, DEGREES!)
0800
                   WRITE(3,204)
0081
                   FORMAT(' ',53X,'N=2,4,6,ETC.')
            204
0082
                   WRITE(3,205)
                   WRITE(3,205)
0083
                   WRITE(3,205)
0084
0085
            205
                  FORMAT( 1,57X, 1*1)
0086
                   WRITE(3,206)
0087
            206
                   FORMAT( 1 ,40X, M=2,4,ETC****HEIGHT******)
                   WRITE(3,205)
8800
0089
                   WRITE(3,205)
0090
                   WRITE(3,205)
0091
                   WRITE(3,205)
0092
                   WRITE(3,207)
                   FORMAT( 1,55X, 'ANGLE')
0093
            207
            С
                       WRITE ZMAX AND PHASE
0094
                   WRITE(3,110)
0095
            110
                   FORMAT('1',47X, 'MAXIMUM HEIGHTS AND ASSOCIATED PHASE')
0096
                   WRITE(3,102)
0097
            102
                  FORMAT('0','
                                              N=2
                                                             N=4
                                                                            N = 6
                  1 N = 8
                                    N = 10
                                                  N=12
                                                                 N = 14
                                                                                N=16
                  2
                         N=18^{\circ}
8900
                   L2=MSUM-2
0099
                   DO 5002 J=1.L2.2
```

```
0100
                   M=MSUM+1-J
0101
                   WRITE(3,106)(ZMAX(M,N),N=1,18)
0102
                   WRITE(3,3)
0103
                   FORMAT(' '.5X,18(1X,F6.1))
             106
0104
                   M = M - 1
0105
                   WRITE (3,101) M, (ZMAX(M,N), N=1,18)
                   FORMAT(' ', 'M=', I2, 1X, 18(1X, F6.2))
0106
             101
0107
             3
                   FORMAT(' ')
0108
             5002
                  CONTINUE
0109
                   M=1
0110
                   WRITE(3,106)(ZMAX(M,N),N=1,18)
0111
                   IF(NSUM-18)6004,6004,6003
0112
             6003 WRITE(3,110)
0113
                   WRITE(3,103)
0114
                   FORMAT('0','
             103
                                                          N = 22
                                          N = 20
                                                                         N = 24
                                                                                        N=2
                  16
                               N = 2.8
                                               N=301
0115
                   00 6005 J=1,L2,2
0116
                   M = MSUM + 1 - J
0117
                   WRITE (3,166) (ZMAX(M,N),N=19,29)
0118
                   WRITE(3,3)
0119
                   M = M - 1
0120
                   WRITE(3,161)(ZMAX(M,N),N=19,29)
0121
                   CONTINUE
             6005
0122
                   M = 1
0123
                   WRITE(3,166)(ZMAX(M,N),N=19,29)
0124
             6004
                   CONTINUE
             C
             С
                        WRITE ZMIN AND PHASE
0125
                   WRITE(3,170)
0126
                   WRITE(3,102)
                   DO 7002 J=1,L2,2
0127
0128
                   M = MSUM + 1 - J
0129
                   WRITE(3,106)(ZMIN(M,N),N=1,18)
0130
                   WRITE(3,3)
0131
```

M = M - 1

```
0132
                   WRITE(3,101)M,(ZMIN(M,N),N=1,18)
0133
                   CONTINUE
             7002
0134
                   M = 1
                   WRITE (3,106) (ZMIN (M,N), N=1,18)
0135
                   IF (NSUM-18)5004,5004,5003
0136
0137
             5003 WRITE(3,170)
                   FORMAT('1',47X, 'MINIMUM HEIGHTS AND ASSOCIATED PHASE')
0138
             170
0139
                   WRITE (3,103)
                   DO 5005 J=1,L2,2
0140
                   M = MSUM + 1 - J
0141
                   WRITE (3, 166) (ZMIN(M, N), N=19,29)
0142
0143
                   WRITE (3.3)
                   M = M - 1
0144
0145
                   WRITE (3, 161) (ZMIN (M, N), N=19,29)
             5005 CONTINUE
0146
0147
                   M = 1
0148
                   WRITE(3,166)(ZMIN(M,N),N=19,29)
                   FORMAT( ',11(1X,F6.1))
0149
             166
                   FORMAT(' ',11(1X,F6.2))
0150
             161
0151
             5004
                   CONTINUE
             С
             C
0152
                   DO 9000 M=1.65
                   DO 9000 N=1,30
0153
0154
             9000 Z1(M,N)=10000000.0
0155
                   IFL=0
0156
                   L2=MSUM-1
                   DO 5107 M=2,L2,2
0157
0158
                   I = -1
0159
             5100 I = I + 2
0160
                   IF(IU(M,I)-2)5104,5107,5100
0161
             5104 IF(IU(M,I))5100,5100,5101
0162
             5101
                  IF(IFL)5102.5102.5103
0163
             5102 IML = I + 1
                   IFL=1
0164
0165
                   GU TU 5100
```

```
5103 IMR = I - 1
0166
0167
                   IFL=0
0168
                   DO 23 N=IML.IMR.2
            С
                      - CONSTRUCT TIDAL RANGE
                   Z1(M.N) = ZMAX(M.N) - ZMIN(M.N)
0169
0170
                   21(M.N+1)=0.0
0171
                   Z1(M-1,N+1)=0.0
0172
                   IF(ZMIN(M-1,N)-ZMAX(M-1,N))300,301,301
            С
                       IF TZMIN LESS THAN TZMAX, LOW TIDE COMES BEFORE HIGH TIDE
0173
             300
                   ZMIN(M-1.N) = ZMIN(M-1.N) + 360.
0174
             301
                   Z1(M-1,N) = ((ZMAX(M-1,N) + ZMIN(M-1,N))/2.)-90.
            C.
                       CONSTRUCT MEAN PHASE
0175
             23
                   CONTINUE
                   GO TO 5100
0176
0177
             5107
                   CONTINUE
            C.
                       WRITE TIDE RANGE AND MEAN PHASE
0178
                   WRITE(3,210)
0179
            210
                   FORMAT('1',52X,'TIDE PANGE AND MEAN PHASE')
0180
                   WRITE(3,102)
0181
                   L2=MSUM-2
                   DO 5202 J=1,L2,2
0182
0183
                   M=MSUM+1-J
                   WRITE(3,106)(Z1(M,N),N=1,18)
0184
0185
                   WRITE(3,3)
0186
                   M = M - 1
0187
                   WRITE(3.101)M.(Z1(M.N).N=1.18)
0188
             5202 CONTINUE
0189
                   M=1
0190
                   WRITE(3,106)(ZI(M,N),N=1,18)
0121
                   IF(NSUM-18)5204,5204,5203
            5203 WRITE(3,210)
0192
0193
                   WRITE(3,103)
                   00 5205 J=1,L2,2
0194
0195
                   M = MSUM + 1 - J
                   WRITE(3,166)(Z1(M,N),N=19,29)
0196
0197
                   WRITE(3.3)
```

REWIND 9

CALL EXIT

0204 · 0205

0206

```
0001
                   INTEGER*2 IU
0002
                   DIMENSION IU(68,31),U1(65,30),RMAX(65,30),RMIN(65,30)
0003
                   READ(9,77)MSUM
0004
                   READ(9,77)NSUM
            77
0005
                   FORMAT(12)
0006
                   READ(9,78)DL
            C
                       DL=GRID INTERVAL IN METERS
0007
                   DL=DL/1000.
8000
                   READ(9,999)IZINT
            С
                       IZINT=NUMBER OF INTERVALS -- IE NUMBER OF CURRENT AND
             C
                       HEIGHT CALCULATIONS
0009
             999
                   FORMAT(14)
0010
                   READ(9.78) TT
            C
                       TT=PERIOD IN SECONDS
0011
                   TT=TT/3600.
0012
             78
                   FORMAT(F12.4)
0013
                   ZINT=IZINT
                   READ(9)((IU(N,N),M=1,67),N=1,31)
0014
                   DO 10 M=1.65
0015
0016
                   DO 10 N=1.30
                   RMAX(M,N) = 10000000.0
0017
0018
             10
                   RMIN(M,N) = 100000000.0
0019
                   IFL=C
0020
                   L2=MSUM-1
0021
                   DO 8107 M=2.L2.2
                   I = -1
0022
0023
            8100 I = I + 2
0024
                   IF(IU(M.I)-2)8104.8107.8100
0025
                  1F(IU(M,1))8100,8100,8101
             8104
0026
                   IF(IFL)8102,8102,8103
             8101
0027
                  IML = I + I
             8102
                   IFL=1
0028
0029
                   GO TO 8100
0030
             8103 IMR = I - 1
                   IFL=C
0031
                   DO 8884 N=IML.IMR.2
0032
```

```
0033
                    RMAX(M,N)=0.0
0034
             8884 \quad RMIN(M.N) = 0.0
0035
                    GO TO 8100
0036
             8107 CONTINUE
0037
                    T=0.
0038
                    TT = 0
             15
                   CALL READER (9, U1, 7800)
0039
             C
                        READ UI
0040
                    IFL=0
0041
                    L2 = MSUM - 1
0042
                   DO 4107 M=2.L2.2
0043
                    I = -1
0044
             4100 I = I + 2
0045
                   IF(IU(M,I)-2)4104,4107,4100
             4104 IF([U(M,I))4100,4100,4101
0046
0047
             4101 IF(IFL)4102,4102,4103
0048
             4102 IML = I + 1
0049
                    IFL=1
0050
                   GO TC 4100
0051
             4103 IMR = I - 1
0052
                   IEL=0
0053
                   DO 14 N=IML, IMR, 2
0054
                   UATZ = (U1(M+1,N)+U1(M-1,N))/2.
             C
                   VATZ = -(V1(M, N+1) + V1(M, N-1))/2.
0055
                   VATZ = -(U1(M, N+2) + U1(M, N))/2.
             C
                        THIS CHANGES DIRECTION OF +V
0056
                   RC=SQRT((UATZ*UATZ)+(VATZ*VATZ))
             C
                        COMPUTE VECTORIAL CURRENT AT Z(M,N)
                   IF(RC-RMAX(M.N))12,11,11
0057
0058
             11
                   RMAX(M,N) = RC
0059
                   RMAX(M-1,N) = TRIG(UATZ,VATZ)
0060
                    RMAX(M,N+1) = (TT/ZINT) *T
0061
                   RMAX(M-1,N+1)=0.0
                   IF(IT)1,1,2
0062
             12
0063
             1
                   RMIN(M,N)=RC
0064
```

RMIN(M-1,N) = TRIG(UATZ, VATZ)

```
0065
                   RMIN(M,N+1) = (TT/ZINT) *T
0066
                   RMIN(M-1,N+1)=0.0
0067
                   GO TO 14
             2
8800
                   IF(RC-RMIN(M,N))13,13,14
0069
             13
                   RMIN(M,N)=RC
0070
                   RMIN(M-1,N) = TRIG(UATZ, VATZ)
0071
                   RMIN(M.N+1) = (TT/ZINT) *T
0072
                   RMIN(M-1,N+1)=0.0
             14
0073
                   CONTINUE
0074
                   GO TO 4100
00.75
             4107 CONTINUE
0076
                   1T=1T+2
0077
                   T=T+2.
                   CALL READER(9, U1, 7800)
0078
             C
                       READ 21
0079
                   IF(IZINT-IT)16,16,15
0800
             16
                   CONTINUE
0081
                   WRITE(3.200) fT
0082
                   FORMAT('1',50X,'TIDAL PERIOD=',F6.2,'HOURS')
             200
0083
                   WRITE(3,201)DL
                   FORMAT(' '.50X, 'GRID INTERVAL=', F6.2, 'KILOMETERS')
0084
             201
0085
                   WRITE(3,202)
0086
             202
                   FORMAT( ',20X, CUTPUT DESCRIPTION ... ')
0087
                   WRITE(3,203)
0088
                   FORMAT(' ',35X,'UNITS..METERS/SEC., DEGREES, HOURS')
             203
0089
                   WRITE(3,204)
0090
             204
                   FORMAT( 1,53X, 1 \ = 2,4,6, ETC. 1)
0091
                   WRITE(3,205)
0092
                   WRITE(3,205)
0093
                   WRITE(3,205)
0094
             205
                   FORMAT( * 1.57X.***)
0095
                   WRITE(3,206)
                   FORMAT( 1,40X, M=2,4,ETC*****CURRENT****TIME*****)
0096
             206
                   WRITE(3,205)
0097
0098
                   WRITE(3,205)
0099
                   WRITE(3,205)
```

```
0100
                    WRITE(3,205)
0101
                    WRITE(3,207)
                    FORMAT( 1,55X, 'ANGLE')
0102
             207
              C
             C
                        WRITE RMAX.ANGLE.AND TIME
                    WRITE(3,110)
0103
                    FORMAT('1',48X, 'MAXIMUM CURRENTS, ANGLES, AND TIMES')
0104
              110
0105
                    WRITE(3,102)
0106
              102
                    FORMAT('0','
                                                 N= 2
                                                                N= 4
                                                                               N = 6
                                                     N=12
                                                                    N = 14
                                                                                   N=1.6
                      N = 8
                                      N=10
                   2
                           N = 18^{\circ}
                    L2=MSUM-2
0107
0108
                    DO 5CO2 J=1.L2.2
0109
                    M=MSUM+1-J
0110
                    WRITE(3,106)(RMAX(M,N),N=1,18)
0111
                    WRITE(3,3)
                    FORMAT( 1,5x,18(1x,F6.1))
0112
              106
0113
                    M = M - 1
                    WRITE(3,101)M, (RMAX(M,N),N=1,18)
0114
0115
              3
                    FORMAT(' ')
0116
              101
                    FORMAT( ', 'N=', 12, 1X, 18(1X, F6.2))
0117
              5002
                    CONTINUE
                    M = 1
 0118
                    WRITE (3,106) (RMAX (M,N), N=1,18)
0119
                    IF(NSUM-18)6004,6004,6003
0120
 0121
              6003
                    WRITE(3,110)
                    WRITE(3,103)
0122
                                                                                         N=2
                                                                          N = 24
0123
              103
                    FORMAT('0','
                                           N = 20
                                                          N = 22
                                               N=30!
                   16
                                N = 28
                    DO 6005 J=1,L2,2
0124
0125
                    M=MSUM+1-J
                    WRITE(3,166) (RMAX(M,N),N=19,29)
0126
                    WRITE(3,3)
0127
0128
                    FORMAT( ',11(1X,F6.1))
              166
                    M = M - 1
0129
                    WRITE(3,161)(RMAX(M,N),N=19,29)
 0130
```

```
FORMAT(' ',11(1X,F6.2))
 0131
              161
              6005 CONTINUE
 0132
 0133
                     M = 1
 0134
                     WRITE(3,166)(RMAX(M,N),N=19,29)
 0135
                     CONTINUE
              6004
              C
              C
              C
                         WRITE RMIN, ANGLE, AND TIME
 0136
                     WRITE(3.170)
 0137
                     FORMAT('1',48X,'MINIMUM CURRENTS, ANGLES, AND TIMES')
              170
 0138
                     WRITE(3,102)
 0139
                     L2=MSUM-2
 0140
                     DO 7002 J=1.L2.2
 0141
                     M=MSUM+1-J
 0142
                     WRITE(3,106)(RMIN(M,N),N=1,18)
 0143
                     WRITE(3.3)
 0144
                     M = M - 1
 0145
                     WRITE (3,101) M, (RMIN(M,N),N=1,18)
 0146
              7002
                    CONTINUE
 0.147
                     M = 1
 0148
                     WRITE (3,106) (RMIN (M,N), N=1,18)
 0149
                     IF(NSUM-18)5004,5004,5003
 0150
              5003 WRITE(3,170)
 0151
                     WRITE(3,103)
 0152
                    DO 5005 J=1.L2.2
 0153
                     M=MSUM+1-J
 0154
                     WRITE (3,166) (RMIN(M,N),N=19,29)
 0155
                     WRITE(3,3)
 0156
                     M = M - 1
 0157
                     WRITE(3,161)(RMIN(M,N),N=19,29)
 0158
                    CONTINUE
              5005
 0159
                     M = 1
 0160
                     WRITE(3,166) (RMIN(M,N),N=19,29)
 0161
              5004 CONTINUE
 0162
                    REWIND 9
0163
                    CALL EXIT
0164
                     END
```

```
0001
                  FUNCTION TRIG(UATZ, VATZ)
            C
                      DECIDE UPON QUADRANT
0002
                  IF(UAIZ)9000,9001,9661
0003
                  IF(VATZ)9007,9002,9002
            9001
0004
            9002
                 DEG=((ATAN2(VATZ,UATZ))*180.)/3.14159
                      ANGLE IS BETWEEN 0 AND 90
            C
0005
                  GO TU 9009
0006
            9000 UATZ=-UATZ
0007
                  IF(VATZ)9004,9003,9003
8000
            9003 DEG=90.+((ATAN2(UATZ, VATZ))*180.)/3.14159
            C
                      ANGLE IS BETWEEN 90 AND 180
0009
                  GO TO 9009
0010
                  VATZ = - VATZ
            9004
            C
                      ANGLE IS BETWEEN 180 AND 270
0011
                  DEG=180.+((ATAN2(VATZ,UATZ))*180.)/3.14159
0012
                  GO TO 9009
0013
            9007
                  VATZ=-VATZ
                      ANGLE IS BETWEEN 270 AND 360
            C
0014
                  DEG=270.+((ATAN2(UATZ, VATZ))*180.)/3.14159
0015
            9009 CONTINUE
                  TRIG=DEG
0016
0017
                  RETURN
0018
                  END
```

APPENDIX IV

FORMAT OF OUTPUT TAPE

MSUM	12	max grid length
NSUM	12	max grid width
DL	F12.4	grid spacing, meters
IZINT	14	number of intervals
IT	F12.4	Tidal period in seconds
IU	unformatted	boundary information

IU may be obtained by the statement

READ(9)((IU(M,N),M=1,67),N=1,31)

NOTE: IU is a half-word integer matrix

U1	unformatted	record 1
21		2
U1	"	3
Z1	11	4

V1	•		IZINT-1
Z1		11	IZINT

end of file label

It will be advisable to use the same program for reading U1 and Z1 as was used for writing them. This program may be seen in Appendix II.

The program is designed to start at a certain address in the core (in this case at the beginning of the first word of the U1 array) and to continue writing until a certain number of bytes (1/4 single-precision words) have passed. In this case, the number of bytes equals $65 \times 30 \times 4$, or 7800. When reading such data, the reverse process takes place.

If it is considered desirable to write other analysis programs it will be found helpful if either of the two analysis programs are used as examples.

APPENDIX V

SELECTIONS FROM THE SAMPLE PROBLEM COMPUTER OUTPUT

GRIC INTERVAL= 50.00KILOMETERS

TICAL PERIOC= 12.42HCURS

FRICTION COEFFICIENT=C.0C30

LATITUDE= 5.0CEGREES

CCRICLIS PARAMETER=0.COOC1268RADIANS/SECOND

FOLLOWING PRINTOUTS ARE IN METER-SECOND UNITS

N = 5 0.0 457.2 0.0 457.2	4 N= 5 N= 6 N= 7 2 0.0 0.0 0.0 0 457.2 0.0 0.0 2 0.0 0.0 0.0 2 0.0 0.0 0.0 2 0.0 0.0 0.0	N= 5 N= 6 N= 7 0.0 0.0 0.0 457.2 0.0 0.0 457.2 0.0 0.0	3 0.0 457.2 0.0	457.2 0.0 457.2 0.0 457.2 0.0	8 457.2 C.C 457.2 7 0.0 457.2 0.C	N=1 $N=2$ $N=3$ 0.0 457.2 0.0
N= 3 N= 4 N= 5 0.C 457.2 0.0 457.2 0.0 457.2 0.C 457.2 0.0 457.2 0.0 457.2 0.C 457.2 0.0		N= 3 N= 4 N= 5 N= 6 N= 7 O.C 457.2 O.O O.O O.O 457.2 O.O 457.2 O.O O.O 457.2 O.O 457.2 O.O O.O 457.2 O.O 457.2 O.O O.O				
N= 4 N= 5 457.2 0.0 0.0 457.2 457.2 0.0 0.0 457.2 457.2 0.0	N= 4 N= 5 N= 6 457.2 0.0 0.0 0.0 457.2 0.0 457.2 0.0 0.0 457.2 0.0 0.0 457.2 0.0 0.0	N= 4 N= 5 N= 6 N= 7 457.2 0.0 0.0 0.0 0.0 457.2 0.0 0.0 457.2 0.0 0.0 0.0 0.0 457.2 0.0 0.0				
N = 5 0.0 457.2 457.2	N= 5 N= 6 0.0 0.0 457.2 0.0 457.2 0.0	N= 5 N= 6 N= 7 0.0 0.0 0.0 457.2 0.0 0.0 457.2 0.0 0.0		457.2	457.2 0.0	V= 3 0 • C
	`Z= 0.00 0.00 0.00	N= 6 N= 7 0.0 0.0 0.0 0.0 0.0 0.0				
S		N= 7	1 1	457.2	457.2	0.0 N= 5
	N 0 7		•		0.0	`N≡ 6
N	00000		0.0	0.0	00	N=10 0.0
N= 8 N= 9 N=10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		N=10 0.0 0.0			ဂပ	

CONDITIONS AFTER 0.0 HOURS NUMBER OF TICAL CYCLES COMPLETED 5

	,	N= 1	N= 2	N = 3	N= 4	N= 5
M=	9	0.0	1.01	0.0	1.01	0.0
M =	8	0.99	0.99	0.95	0.99	0.99
M=	7	0 4 0	C.97	0.0	0.97	0.0
M=	6	0.95	C.95	0.95	0.95	0.95
M =	5	0.0	0.90	0.0	0.90	0.0
M =	4	0.86	0.86	0.86	0.86	0.86
M=	3	0 • C	0.80	0.0	0.80	0.0
M=	2	0.74	0.74	0.74	C.74	0.74
M =	1	0.0	C.68	0.0	0.68	0.0

Z-VALUES

M = I I	N = 10	M = A	<i>1</i> /2	M = 1	M = Q
0 . ()	C.O	0.0	0.0	0.0	0.0
0.0	C.O	0.0	0.0	0 • C	0.0
0.0	0.0	0.0	0.0	0.0	0.0
2.0	C.O	0.0	0.0	0 . U	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.40	C.O	0.0	0.0	0 • C	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0

NUMBER	NUMBER OF TIDAL	CYC	LES COMPL	LETED	জ	-					
	2 	N= 2	2 3	N	2 # 5	2 0	Z = 7	N 8	9	N=10	N= 1 1
₹ 11 9	0.0	0.04	0.0	0.04	0.0	0.0	0.C	_	0.0	C.0	0.0
3 11 00	0.04	0.04	0.04	0.04	0.04	0.0	o • ਹ	0.0	0.0	C • O	၀.၀
M = 7	0.0	0.03	0.0	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.03	0.03	0.04	0.04	0.04	0.0	0.0	0.0	0.0	0.0	0.0
X II	0.0	0.03	0.0	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.02	0.03	0.03	0.03	0.04	0.0	0.0	0.0	0.0	0.0	0.0
N N	0.0	0.01	0.0	0.02	0.0	0.0	0. ○	0.0	0.0	0.0	0.0
	-0.00	-0.00	-0.00	00.00	-0.00	0.0	0. ○	0.0	0.0	0.0	0.0
N II	0.0	-0.01	0.0	-0.02	0.0	0.0	0.0	0.0	0.0	C.O.	C.0

CONDITIONS AFTER 9.31HOURS
NUMBER OF TICAL CYCLES COMPLETED

:X	M= 2		7 II X		X = 6	M= 7	K K	34 .0	
						0.0			N# 1
						0.03			
						0.0			
0.09	0.0	0.09	0.0	0.06	0.0	0.03	0.0	0.0	N= 4
0.0	0.09	0.0	0.07	0.0	0.05	0.0	0.02	0.0	N
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Z 6
0.0	0.0	0.0	0.0	0.0	o.o	0.0	0.0	0.C	Z = 7
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2 11 8
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N= 9
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N=10
c •	c.	0.	0.	0.	0.	0.	с .	0.	<i>N</i> = 1

CONDITIONS AFTER 9.31HOURS NUMBER OF TIDAL CYCLES COMPLETED

Ⴠ

X 	M# 2	X 11 33	X 4		₹	M = 7	X 8	¥ = 9	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N= 1
-0.00	0.0	-0.00	0.0	-0.00	0.0	0.00	0.0	0.00	N= 2
0.0	-0.00	0.0	-0.0C	0.0	0.00	0.0	0.00	0.0	2 11 3
-0.00	0.0	-0.00	0.0	-0.00	0.0	0.00	0.0	0.00	N= 4
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Z ⊪ 5
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N= 6
0.0	0.0	0.0	0.0	0.0	0 •0	0.0	0.0	0.0	N= 7
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	№ 8
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N≡ 9
0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0	C.O	N=10
0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	N = 1

TICAL PERIOC= 12.42HOURS GRIC INTERVAL= 50.00KILOMETERS

OUTPUT DESCRIPTION..

UNITS..METERS.DEGREES

N=2,4,6,ETC.

× ×

M=2.4.ETC*****HEIGHT****

Ϋ́

*

*

*

ANGLE

C.74

0.0

0.0

0 • C

0.0

0.0

0.86

0.74

0.0

358.0

M=	4	****	0.86
		****	358.0

M = 2

MAXIMUM HEIGHTS AND ASSOCIATED PHASE

	N= 6		N= 8		N=10	
* * * * *	****	****	****	****	*****	****
C.0	****	****	****	* * * * * * *	****	***
$C \bullet O$	****	****	****	* * * * * * *	*****	***
0.0	****	****	****	****	****	*****
0.0	*****	*****	*****	****	****	*******
0.0	****	*****	****	* * * * * *	****	*****
C.O	****	****	*****	*****	*****	*****
0.0	****	****	****	****	****	****
$C \cdot O$	****	****	* * * * * * *	****	****	***

***** -1.01 0.0 **** -1.01178.0 0.0 178.0 **** 0.0 -0.96 -C.96 ***** 178.0 0.0 178.0 **** -0.87 0.0 -C.87 **** 178.0 179.0 0 • C **** -C.74 $C \cdot C$ -C. /4 M = 2**** 180.0 0.0 180.0 ****

MINIMUM HEIGHTS AND ASSOCIATED PHASE

	N= 6	N= 8	N = 10	
****	*****	冷水水水水水 水水	大大女女女 大女女女女女	****
0.0	松春春春春春 春春春春春春春	*****	多数存储器 不为于不安力	****
C • O	泰泰泰泰泰泰 泰泰泰泰泰泰	****	京本市市市 安本安本市市	推荐中有容易
0.0	大本本本本本 本本本本本本	古名作为本称 次名	· ************************************	*******
0.0	安水水水水水 冰水水水火水	本本本本本本 本文	泰格格尔尔 布格格尔格尔	春春春春春春
C • 0	水水水水水 水水水水水水	*****	京春春春春 春春春春春春	******
0.0	· 本本本本本本 - 本本本本日本	****	多春草杂草 本苏安尔春春	李爷老爷爷
0.0	衣衣衣衣衣衣 衣衣衣衣衣	****	多本学校等 李本本本本本	*******
0.0	水水水水水 本本水水之之	****	艾尔布雷尔 南非布路水布	****

IICE RANGE AND MEAN PLASE

	 ∑	11 E	11	II ≥
	∞ .	9	4	2
**	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	****
N = 2 * * * * * * *	1.59	1.91 -1.0	1.73 358.0	1.49
* * * * * * * * * * * * * * * * * * * *	0.0	0.0)•))•)	0.0
* * * * * * * * * * * * * * * * * * *	1.99 C.0 -1.0 C.0	0.0 1.91 0.0 358.0	C.C 1.73 C.C 355.0	0.0 1.49
* * * * *	0.0	0.0	0•0 0•0	0.0
- N H か 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * *	按 按 按 按 按 按 按 按	* * * * * * * * * * * * * * * * * * *	***** O • O
**************************************	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · ·	X
* * * * * * * * * * * * * * * * * * *	***	****	分 分 分 分 分 分 分 分 分	· · · · · · · · · · · · · · · · · · ·
· ************************************	*************************************		注	会 会 会 会 会 会 会 会 会 会 会 会 会 会 会
* U + + + + + + + + + + + + + + + + + +	* * * * * * * * * * * * * * * * * * * *	***	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	於 於 於 於 於 於 於 於
李	企 香 香 香 香	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
**	***	林 林	35° €3°	4.

TICAL PERIOC= 12.42HOURS
GRIC INTERVAL= 50.00KILOMETERS

CUTPUT DESCRIPTION..

UNITS..METERS/SEC., DEGREES, HOURS

N=2,4,6,ETC.

*

•

M=2,4,ETC*****CURRENT****TIME****

*,

*

J.

*

ANGLE

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	N = 2 ** * * * * * * * * * * * * * * * * * *	N = 2 ** * * * * * * * * * * * * * * * * * *	N= 2	N= 2	N= 2	N= 2	N= 2	N= 2 N= 4 ****** ****** ****** ****** ****** *****
	N= 2 ** * * 0 • 0 2 3 5 9 • 7 0 0 0 5 180 • 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	V= 2 ***** **** *** 0.02 9.18 0 359.7 C.C 35 0.C5 9.18 0 180.2 0.C 35	N= 2 6**** ***** ***** ***** 0.02 9.18 0.02 9.25 359.7 C.C 359.6 C.C 0.C5 9.18 C.C5 9.25 359.9 C.O 0.C7 3.17 C.C7 9.18 180.2 0.C 0.0 0.0	N= 2 6***** ***** ***** ****** 0.02 9.18 0.02 9.25 359.7 C.C 359.6 C.O 0.C5 9.18 C.C5 9.25 359.9 O.C 359.9 C.O 180.2 O.C 359.9 C.O	V= 2	V= 2	V= 2	V= 2

107.6 0.0 118.7 C.CO 12.35 0.00 **** 21.8 $C \cdot C$ 52.3 0.00 0.0 0.00 **** 59.9 C.C **** 234.8 0.00 0.0 0.00

85.5

本本本本本本

0.00

0.00

87.7

6.14

 $C \cdot C$

MINIPUM CURRENTS, ANGLES, AND TIMES

	N= 6		iv = 8		N = 10	
*****	****	****	****	****	****	****
6.21	****	****	*****	*****	****	******
C • O	****	****	****	*****	****	春春春春春春
0.0	****	****	****	****	****	****
0.0	****	****	***	****	****	****
6.14	****	*****	*****	*****	****	****
0.0	****	****	****	****	*****	****
12.35	*************************************	****	****	****	*****	****
0.0	****	***	*****	****	*****	***