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ABSTRACT

A bottom mounted surface wave gauge was operated in 70 m of water 

near Middleton Island in the Gulf of Alaska for 10 days in October and 

November 1973. Standard fast-Fourier transform techniques have been 

applied to the data, and a second-order lowpass Butterworth filter has 

been designed to examine low-frequency components in the record.

During the time the wave gauge was in operation, two earthquakes 

were reported with epicenters near the middle of the Aleutian Islands.

The first had a surface wave magnitude of 6.4 on the Richter scale; the 

second, which occurred about 9 hours later, had a surface wave magnitude 

of 6.3. Spectra for data taken after the occurrence of these earth­

quakes have shown that generation of ocean waves by these quakes is 

questionable.

Hourly spectra from the first part of the record reveal a peak 

around 0.065 Hz which moves toward higher frequencies for about 18 hours. 

The frequency of the peak then remains constant for about 24 hours, after 

which it again increases. The changes are well correlated with a large 

storm which remained stationary in the North Pacific, then moved rapidly 

into the Gulf of Alaska and subsided. Wave group velocities are used to 

estimate possible distances of the wave source from the gauge. The 

actual distances of the storm from the gauge show a close correlation 

with wave-derived distances. Comparison with changes in wave spectra 

for a storm in the North Atlantic in March 1968 indicates the same time 

rate of change in the spectral peak as was found in the North Pacific 

for time periods when the storms are subsiding.
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CHAPTER 1

INTRODUCTION

From 0241 UT 30 October through 0102 UT 9 November 1973, a wave 

gauge was operated about 10 km off the coast of Middleton Island in the 

northern Gulf of Alaska. The water height was sampled every 4 seconds, 

giving approximately 214,000 data points. The purpose of this work is 

to develop techniques to analyze these data for periodicities and to 

carry out a detailed analysis of the wave record.

The number of points is too great for all of the data to be ana­

lyzed at one time; some means of reducing this number is necessary. The 

first step is to obtain an overall view of the record. This is done by 

averaging over 384 seconds (96 points) and taking each average as one 

point (Sections 3.6, 4.3). This reduces the number of points to 2234. 

Preliminary Fourier analysis shows this averaged record to be dominated 

by the tides.

The next step is to look at manageable sections of the raw data.

To begin, sections of 1024 points (68 minutes 16 seconds) are taken from 

each day and Fourier analyzed. The resulting spectra show that for the 

first two days there are significant contributions to the average power 

by waves with periods from around 10 to 16 seconds. After two days, the 

spectra are nearly flat. For a finer look at the record for the first 

two days, 49 successive sections of 1024 points are Fourier analyzed. 

These spectra show details of a shift toward higher frequencies and 

simultaneous decay of a peak in the average power. These changes are 

correlated with a large storm in the area (Section 5.3).



Finally, we wish to analyze data sections which are more than a few 

hours long. This is because it is hoped that some evidence in the 

spectra can be seen of two earthquakes which occurred in the Aleutians 

while the wave gauge was operating. Earthquake-generated waves, or 

tsunamis, generally have periods from five minutes to an hour, so that 

longer sections of data need to be examined. The averaging and decimat­

ing procedure mentioned above is not deemed reliable enough for this 

purpose, nor is the method of using only every n1"̂  data point. However, 

it is found that when the data are first lowpass filtered, the method of 

using only every n1"*1 data point is quite satisfactory. Therefore, the 

entire record is lowpass filtered, then sampled, and various sections of 

these data are Fourier analyzed, the longest sections having 1536 data 

points (25.6 hours). Evidence in these spectra for tsunamis is shown 

to be inconclusive.

Chapter 2 contains a description of the area where the data were 

collected, with some notes on waves in the Gulf of Alaska. Chapter 3 

gives details of the methods and assumptions which are used in analyzing 

and filtering the data. In Chapter 4, the methods described in 

Chapter 3 are used to search for possible evidence of tsunamis.

Chapter 5 demonstrates the methods described in Chapter 3 by displaying 

the effects of a storm. A table of notation may be found in Appendix 1. 

All times in this work are given in Universal Time.



CHAPTER 2

BACKGROUND

2.1 The Gulf of Alaska

The Gulf of Alaska opens into the northern Pacific Ocean, being

bounded on the eastern side by the Alexander Archipelago and by the 

Alaska Peninsula on the western side. The continental shelf, fairly 

wide in the eastern basin, is narrower on the northern and western sides. 

Near Middleton Island, in the northern gulf, the water depth increases 

from 200 to 4000 m in 75 km (Figure 4-2). South of Adak in the Aleutian 

Islands, water depth goes from 200 to 4000 m in 50 km, and to 6000 m, at 

the edge of the Aleutian Trench, in another 75 km. In the Aleutian 

Trench itself, water depths exceed 7000 m.

In winter, winds over the Gulf of Alaska are under the influence of 

the Aleutian Low. This is reflected in the general water circulation 

pattern, which is dominated by a counter-clockwise gyre, with current 

speeds immediately off the continental shelf exceeding 0.5 m/second 

(Royer, 1972). Severe storms in winter can create large waves with

heights over 12 m. The storm of January, 1952, which caused the sinking

of the S.S. Pennsylvania with all hands, for instance, was accompanied by 

waves with heights exceeding 15 m (Danielsen, Burt, and Rattray, 1957).

Middleton Island, a low, sandy island about 8 km long and 1.5 km 

wide, is located in the northern gulf at 59.5°N, 146.5°W, just north of 

the 200 m water depth (Figure 4-2). Tides at Middleton Island are semi­

diurnal, with a marked inequality between successive low waters. The 

mean diurnal tidal range is 3.14 m (Rosenberg, 1972). The island is



often exposed to the full force of the storms that move in over the gulf. 

During the winter of 1973-74, for instance, storms caused the beach at 

Middleton Island to be eroded over 3 m.

2.2 The Data

In the summer of 1973 the Institute of Marine Science at the 

University of Alaska installed a wave gauge on the ocean floor about 

10 km west of Middleton Island in about 70 m of water. The gauge was a 

B. J. Electronics Vibrotron Pressure Transducer, Model No. 120. Seitz 

(1975) has given details of the installation and the gauge.

The pressure was sampled every 4 seconds. At a depth of 70 m, 

pressure response for waves with periods of 8 seconds is about 2% that 

for 5 minute waves, so that aliasing of the spectrum from waves with 

periods under 8 seconds appeared to be no problem.

During the last of October and into November, 1973, the gauge ran 

continuously for almost 10 days, from 0241 UT 30 October to 0102 UT 

9 November, giving a total of 214,496 data points. The data were re­

corded directly onto magnetic tape, the numbers representing a period 

output from the Vibrotron in nanoseconds. It was these numbers which 

were used in the analysis discussed in this work, since relative height, 

not actual height, of the waves was of interest. For an indication of 

actual height of the waves, Vibrotron period was converted to meters 

using the correspondence 1 nanosecond = 0.0477 m (Seitz, 1975).



CHAPTER 3

TECHNIQUES USED IN DATA ANALYSIS

3.1 Harmonic Analysis

All simple mechanical wave motions can be described by superposing 

trigonometric functions. Mathematically the importance of such func­

tions, even in the case of complicated periodic phenomena such as ocean 

waves, depends on Fourier's theorem. This theorem states that every 

function f(t) , which is defined in the interval t = 0 to t = 2tt , 

which has a continuous first derivative (except, at most, at a finite 

number of points in the interval), and which satisfies

/ :

can be expressed as an infinite series of trigonometric functions: 

a
f(t) = o 1- a1 cos t + bn sin t + a„ cos 2t + ...

with

2tt
a  = - ^ 1  f ( t )  d t

i f 21
>o -  2 0

i f
u  J  0

2ir
an = ^ I f(t) cos(nt) dt

bR = — j f(t) sin(nt) dt (n = 1, 2, 3,...).

The process of expanding a function in the form of a trigonometric 

series is called harmonic analysis; the harmonic coefficients a^ and 

are unique (Chapman and Bartels, 1940, p. 550).



In geophysics the conditions of Fourier’s theorem are nearly al­

ways fulfilled. However, the fact that a function can be represented 

exactly over a chosen interval by an infinite series is of less impor­

tance for our purposes than the problem of approximating f(t) by a 

finite series. In particular, we are presented with a discrete time 

series of pressure measurements representing the height of the ocean 

surface above its bottom at discrete time intervals for a time duration 

of and would like to approximate this signal by a finite trigono­

metric series. Such a representation will show which frequencies are 

predominant.

A discretely sampled signal can be regarded as having been derived 

from a continuous periodic signal x(t) of length by sampling the

signal at time increment A . This gives N = T^/A sample values 

x^ = x(t) , where t = kA . Assume N to be even and equal to 2n , 

and let k run through the integers -n,...,0,1,...,n-l. [The FORTRAN 

subscripts of the data used by the computer for harmonic analysis must 

run from 1 to N , but interpretation of the results requires them to 

be transformed so as to run from -N/2 to (N/2)-l (Kanasewich, 1973, 

p. 40).] Then the N pressure measurements may be written

fXk} = {x-n ’ '•* ’ x0 * *" ’ Xn-l] ’

each x, being 4 seconds apart in this experiment. An approximation to iC
x(kA) in the interval [—T^/2 , T.^2] may be given by the finite 

Fourier series
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<\jx(kA) =

n-1
= A + 2

° — im=lE / A cos 2iTmf1kA + B sin 27Tmf1kA } , 1 m 1 m 1 J

+ A cos 2Trnf,kA n 1

or, since the fundamental frequency is f^ = 1/T^ = 1/NA ,

a-* * ■ o ( * 2irmk , „ . 27Tmk ]x(kA) = A + 2 ) j A cos —  H B sin —-—  fo t-»,lm N m N Jm=l

, . 2TTnk
+ \  —  a)

(Jenkins and Watts, 1968, p. 19). The function x(kA) is thus composed

of a sum of sine and cosine functions whose frequencies are multiples,

or harmonics, of the fundamental frequency f^ .

If the coefficients A and B are chosen so thatm m

. 1 Ic-»1 2irmk ,0 sA = — ) x cos — —  (2a)m N k Nk=-n

r. 1 • 27Tmk /01 >.B = — ) x. sxn — —  , (2b)m N k Nk=-n
%then x(kA) as given by equation (1) is a least-squares approximation 

to the sampled function x^ ; that is,

P2 =  ̂ £  x(kA) - x(kA) 2
k=-n

is a minimum (Chapman and Bartels, 1940, p. 556). A^ is called the 

discrete Fourier cosine transform of » and -̂s -*-ts discrete

Fourier sine transform.
'bThe mean square value of x^ is
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1 n“ 1
N £  xw * O)

^2

k“ -n

Using equation (1),

n-1n-1 n-1
A V  x2 = i  YN U  \  N pk=-n k=-n

A + 2 7  (A cos o ' m Nm=l
2iTmk

. „ . 2TTmk. , . 27rnk+ B sin —-— ) + A cosm N n N

= A2 + 2 V  (A2 + B2) + A2 . (4)o t-> m m nm=l

Equation (4) comes about owing to the orthogonality of sin (2irmk/N) 

and cos (2iTmk/N) over the interval (Jenkins and Watts, 1968,

p. 19). This orthogonality arises because of the assumption that the

series has period T^ . Since the mean square value of is

proportional to the average power associated with the wave (Lahti, 1968,
r\j

p. 57), equation (4) shows how the average power of x, can be decom-

posed into contributions arising from each harmonic. The contribution

from the m*"*1 harmonic is 2(A2 -■ B2) , while for the zero-th and nĈm m
2 2harmonics it is simply Aq and A^ . A plot of the average power at 

each harmonic versus the frequency of the harmonic is called a Fourier 

line spectrum, or a periodogram.

When examining the record for periodicities, it is the relative 

sizes of the various contributions which are of interest. It is there­

fore assumed that the A and B are dimensionless quantities, som m
that their logarithm may be calculated. The periodogram then gives the

log of the relative power at each harmonic.

The coefficients A and B were determined by a fast-Fourierm m



transform program called FOURG (Brenner, 1967). With FOURG, the number

of data points to be transformed need not be a power of two, although a

series whose number of points is a power of two will be transformed more

rapidly. FOURG assumes that the normalization factor 1/N has been

applied to equation (1), instead of to equations (2), so that and
2B^ must be normalized before the periodogram is computed. Aq , the 

square of the mean of [xĵ | > contains no information on periodicities 

in the data and is not plotted on the periodogram.

The discrete Fourier transform equations, equations (1) and (4), 

can be represented more compactly using complex variables. Let

X = A - jB . (5)m m m

Then, since

cos 0 = (e^® + e ^)  (6a)

sin 0 = ^ (e^® - e ^®) , (6b)

'Xix(kA) as given by equation (1) can also be written as an exponential

series:
n-1

5(kA> = £  X e3 (2Ttmk/N) (7)
m=-n

so that

( 8)m N J-t kk=-n
%When equations (7) and (8) hold, the functions x(kA) and X^ are said

to be discrete Fourier transforms of each other. Proofs of equations

(7) and (8) are given in Appendix 2.

The equalities A = A and B = -B imply that n - m m  -m m
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X = x* , (9)- r a m ’

where the asterisk denotes complex conjugation. Thus we have that the
>\javerage power of the discrete function x, isK.

± nT HI = A2 + V 1 (A2 + B2) + ' f 1 (A2 + B2) + A2N ,*-» k o (—> m m Lj , m m nk=-n m=l m=-l

n-1

- E  ix I •*-> 1 m 1m=-n

This equation is at the heart of our analysis, and we rewrite it for 

emphasis:

n-1 n-1 „
s X  v  E  'XJ 2 •k=-n m=-n

Thus the contribution to the average power at the m ^  harmonic is 

divided into two parts, one at frequency mf^ and the other at frequen­

cy -mf^ .

3.2 Other Analysis Procedures

A basic assumption in order that equation (3.1.4) hold is that the 

data are always taken over a fundamental period; i.e., that the data are 

periodic with period NA = T^, so that x = point of fact,

actual data are seldom sampled exactly over one fundamental period, and 

there may be a large discrepancy between initial and final values of the 

experimentally determined • For instance, consider the data shown

in Figure 3-1. This figure shows the first 400 points (26 minutes 

40 seconds) of the 10-day wave record, each point connected by a straight 

line. The record begins during ebb tide, and the downward trend evident
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Figure 3-1. The first 400 points (1600 seconds) of raw data of pressure measurements taken near
Middleton Island, starting at 0241 UT 30 October 1973. The heavy, solid line connects 
points 4 seconds apart; the open circles represent points 1 minute apart. For graphing, 
pressure has been converted to surface displacement using the relation given in Section 
2 . 2 .



12

in the figure continues for several hours. Figure 3-2a shows the period­

ogram for a series consisting of the first 1024 points of the wave re­

cord (68 minutes 16 seconds). The relative power at very low frequencies 

appears to be greater than 1000. Following a suggestion by Frankignoul 

(1974), the first and last points in the series of 1024 points were con­

nected by a straight line, and this linear trend was subtracted from 

the data. Figure 3-2b shows the periodogram for the resulting series. 

Notice that the relative power at low frequencies is now less than 30, 

showing that a great deal of apparent relative power had been contributed 

to the periodogram by the downward trend. The relative power at higher 

frequencies is practically unchanged. Frankignoul's method was there­

fore adopted and routinely used before Fourier analyzing the experiment­

al data.

Because the wave gauge was located beneath the surface of the water, 

the amplitude of the pressure variation was modified by , a pressure

response factor:

^p cosh (2ird/L)

where L is the wavelength of a surface wave and d is the depth of 

the water (Kinsman, 1965, p. 143). From the dispersion relation for a 

linearized, small amplitude wave,

L = -1̂ — tanh . (2)2tt L

It is evident from this expression that, for a given wave period T and 

water depth d , L must be determined numerically.

An approximation to L , often called Lq , may be made as follows.
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Figure 3-2a. Periodogram for the first 1024 points (68 minutes 16 seconds) of raw data.
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Figure 3-2b. Periodogram for the first 1024 points (68 minutes 16 seconds) after removal of the 
linear trend.
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If we assume that the wavelength is much less than the depth of water, 

so that

y- > > 1 and tanh - 1 ,
L  Li.

then
gx2

L * Lo " l r  • <3>

For a given wave period T , Lq can be determined analytically.

In order to save computer time, expression (3) was used to deter­

mine the wavelength Lq , which in turn was used to compute the pressure

response factor given by equation (1). Figure 3-3 compares a plot of

Kp , the pressure response factor determined using L given by equation

(2), with a plot of K , the pressure response determined by using L
Po °

given in equation (3) .

To obtain a surface wave periodogram, the observed periodogram
2should be divided by (Munk, Miller, Snodgrass, and Barber, 1963).

Figure 3-4 shows the results of dividing the periodogram in Figure 3-2b 
2by K , using d = 69.5 m.
Po
The value of K is very close to unity for frequencies less than 

Po
0.017 Hz (periods greater than 60 seconds), as can be seen from Figure

3-3. Therefore, in this work only periodograms and spectra whose fre-
2quencies lie above 0.017 Hz have been divided by

3.3 Confidence Limits on the Spectrum

Oceanic wave data are seldom exactly normally distributed (Neumann 

and Pierson, 1966, p. 346), so that the confidence limits defined below 

will serve only as a pessimistic indication for the relative signifi-
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Figure 3-3. Comparison of pressure response factor computed using L = LQ = gT2/27T (solid line) 
with pressure response factor computed using L = (gT /2 tt) tanh (2TTd/L) with d = 69. 
(dashed line).
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Periodogram for the first 1024 points (68 minutes 16 seconds). The linear trend has 
been removed from the data, and the periodogram has been divided by [ l/cosh^ir'M/gT2) ]2, 
with d = 69.5 m.
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cance of various peaks.

If the continuous time series, x(t) , from which the series 

|x(kA)J was derived can be regarded as one of many possible time 

series which might have been observed, that is, if it can be regarded 

as a realization of a stochastic process, then the variability in x(t) 

is characterized by the random variables ?£(t) for -T^/2 ^ t < T^/2. 

Suppose that the random variables #(kA) , -T^/2 <  (kA) <  T^/2 , have 

been derived from %(t) by sampling the latter at increment A .

Since f^ = 1/NA , the discrete Fourier sine and cosine transforms of 

3t(kA) may be written as

ĵ k.(mf 1) y  #(kA) cos(2iTmf1kA) = .A (la)1 N , 1 mk=-n

JB (mf ) = A V* sin(2TTmf kA) = IB (lb)1 N 1 mk=-n

If 2£(kA) is normally distributed, then so are A-m and , since

the Fourier transform is a linear operation (Jenkins and Watts, 1968, 

p. 416; Papoulis, 1965, p. 475). Thus

\ X  |2 -  A 2 + B 21 m ‘ m m

is the sum of two squared normal random variables and hence is distri­

buted as a chi-squared random variable with two degrees of freedom; that 

is, as X2 (Papoulis, 1965, p. 250).

If |Xm| 2 is distributed as , then the probability of |X^J2

2 2 2 2 lying in the interval between 2 1X | and 2 1X | /Xo.n-— is
® 2 ^ 2

1 - a , where 0 < a < 1 ; i.e. ,
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f :
x2;(f>

< l X mlm 1

2 X
< m 1

x2;(l-§)j
= 1 - a ( 2)

(Jenkins and Watts, 1968, p. 254; Otnes and Enochson, 1972, pp. 216-220).
2 2The values of the upper and lower limits 2/x~ ,1> and 2/x9 n a. may
’ 'a r

be obtained from tables (Otnes and Enochson, 1972, p. 221). These 

limits are very sensitive to the validity of the assumption that the 

Fourier coefficients are normal (Jenkins and Watts, 1968, p. 81).

For V degrees of freedom, equation (2) becomes

,2% | X  | 2 
1 m 1

X2; <§)

v x

X2 ;(l-|)j
= 1 - a (3)

Equation (3) can be used to determine an interval within which |

may be expected to lie for a given percentage of the time. For example,
i 2if IX |“ = 2 and a = .2 , the lower and upper limits for V = 2 are

found to be .405 and 9, so that 80% of the time can be expected

to lie between .810 and 18. The interval (.81,18) is called an 80%

confidence interval for 12 .
1 m'

Notice that equation (3) is valid for a particular value of m 

only, so that a separate confidence interval is required for each fre­

quency. This problem may be avoided if the log of the spectrum is 

plotted versus frequency. In that case, equation (3) becomes

( ? i loHo lxJ + log
10

V
2 I <  lo g 10 m'

<  l o s 1 0  l x J
+ log V

10 Xo.2; (1-y),
= 1 - a , (4)
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2
and the confidence interval for log^Q l^m l the same for all fre-

2 2 quencies. For instance, suppose that |X̂ | = 1  and |X̂ | =3.

Using v = 2 , and a = 0.2, we have

2
logio

logio

2
X2 ;0 .1

= -0.363

= 0.977 .
i  =  0X2;0.5i

When m = 1 , equation (4) becomes

&  ^0 - 0.363 < log1() \X1\2 <  0 + 0.977] = 0.80

and the 80% confidence interval goes from 0.363 below to 0.977 above 

log^Q |x-jJ > i.e., the 80% confidence interval is (-0.363, 0.977). On 

the other hand, when m = 3 , equation (4) becomes

(P [o.477 - 0.363 <  log1Q 1X 31 2 <  0.477 + 0.977} = 0.80 ,

and the 80% confidence interval is (0.114, 1.454), again from 0.363

below to 0.977 above l°g^Q |X3 |^.
2A plot of ^IXjJ for a signal such as ours which has highly irregu­

lar fluctuations will itself have irregular fluctuations (for instance, 

see Figure 3-2a). If 1* 12 is distributed as x^> even the 80% 

confidence interval will be so wide that very few peaks, if any, will 

lie outside it. If the record |x(kA)} contains power at a certain 

frequency— that is, if waves with a certain period are present in the 

record— the plot of ^l^m l will have a peak at that frequency, but the 

converse need not hold. Since the confidence interval can provide an 

indication of whether or not a peak is significant, it is desirable to 

be able to narrow it, if possible. One way this can be done is to
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average adjacent blocks of Fourier coefficients. For instance, let

| y .|2 (Ai + B  ■ + (A* + B  *)

, v , 2  ^ i  +  K + i > +  +  +

| a 2 | -------------------------------------------- j --------------------------------------

etc. Then each » being the sum of 2L squared normal random
2variables, is distributed as X2L » with a correspondingly narrower con­

fidence interval.
2

In this work a plot of ^lxm l versus frequency (v = 2) is

referred to as a periodogram; plots of averaged Fourier coefficients

versus frequency (v > 2) will be called spectra. It may be noted that
2this definition of a power spectrum as averages of 2 1X differs

1 m 1

from, but is proportional to, the more usual definition of the one-
2sided sample Fourier power spectrum as averages of 2NA|x I (form

instance, Jenkins and Watts, 1968, p. 211). Since we have plotted the 

log of the spectrum, this difference amounts to an additive constant.

3.4 The Sampling Theorem

One of the assumptions thus far is that the discrete series of pres

sure measurements [i.e., the series |"x(kA)J ] represents the actual con

tinuous fluctuations of the ocean surface [i.e., the function x(t) for 

-T^/2 <  t ^  T^/2] well enough so that peaks in the spectrum of fx(kA)J 

would correspond to peaks in the spectrum of x(t). That is, if the 

spectrum of |x(kA)j indicates considerable power at a certain frequen­

cy, we would expect waves of that frequency had actually occurred on the 

ocean surface. This assumption is true only if the sampling interval A
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is sufficiently small. More precisely, we have the following theorem:

A function f(t) which has no harmonic components with 
frequency greater than w , so that

F(w) = 0 if a> > OJ ,o
is uniquely determined by its samples taken at uniform 
intervals

A <  tt/oj . o
Here F(w) is the Fourier transform of f(t) , is angular frequency

2tt/To , Tq is a specified period. This theorem is known as the Sampling

Theorem (Lahti, 1968, p. 46).

One consequence of the Sampling Theorem is that the shortest period

which can be analyzed is equal to twice the sampling interval. To see

this, suppose that the spectrum F(w) only has frequencies w <

and suppose we choose a sampling interval A = n/a)Q . Then the

minimum period period T n of any component of f(t) which we can

detect is

T . = 2tt/(j0 = 2tt/oj = 2A .m m  max o

Another consequence is that if the function f(t) does have har­

monic components with frequency greater than , and if the samples

are taken at intervals A > 7t/tû  , the resulting spectrum will be erro­

neous, particularly if f(t) has considerable power at some frequency 

greater than coq (see Figure 3-5). The process by which components with 

frequencies greater than CJo erroneously contribute to the spectrum is 

called aliasing.

3.5 Introduction to Digital Filters

In the course of analyzing the data record there were certain fre-
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quencies we wished to suppress in order to examine others more carefully. 

Since the data were taken with no intentional filtering, aside from the 

unavoidable hydrodynamic filtering of higher frequencies, the best way to 

suppress undesired frequencies was by use of a digital filter. The orig­

inal data were digitally filtered to obtain a filtered record which was 

then analyzed. It was decided to use a recursive filter, that is, one 

which uses past values of the output, since the cutoff for this type of 

filter is sharper than for non-recursive ones (Kaiser, 1966). The 

filter was designed in terms of the Z-transform. Z-transform notation 

is convenient and is used in many modern references on digital filters 

(Cadzow, 1973; Kaiser, 1966). A very brief description of the 

Z-transform and of transfer functions and their relation to the actual 

filtering operation are presented, followed by a detailed description of 

the filter which was used on the data.

3.6 Z-transforms and the Transfer Function

The Z-transform of a discrete-time system

{ Xk }  = f v  x l»  X2 ’ ^ - 1 * **■}
is defined

z { xk l E xo + ~  + _i + + ~ M  + ■'*Z
OO -k= £  x, z = X(z) , (1)
k=0

where z is a complex variable. The Z-transform was known to Laplace 

(1779), but did not come into common use until the 1950's. We shall 

assume x^ = 0 for k > N-1, where N is the number of data points.
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Thus the sum on the right-hand side of equation (1) is finite and will 

converge, so long as 0 < | z | < °° .

One of the most important properties of the Z-transform is its time- 

shifting property. If = 0 for k < 0 , then

z  K - . }  ■  z k i  < 2 >

because

K-m]
X , , X . „ X x,-m+1 , -m+2 , , o , lx + ------+ — x—  + • • • + —  + — -r- +-m L m m+1z z z z

[by definition of Z ]
x x,
—  H T-r- + • • • [x, = 0 for k < 0]m m+1 k 1z z

■ E -tk=0
-(k+m)x, z

OO

E •>,k=0

-m V  -k= Z > X, z

Consider a discrete, linear system whose initial conditions are 

all zero and whose input is the sequence [x^j • The k*"*1 element of the 

output sequence is given by

OO

*k - E q V k - i  (3)

(Jenkins and Watts, 1968, p. 34). This may be equivalently written

y. = b,x. + b„x. .. + •••+ b . .x. - any, - ••• - a.y. 0 (4)k l k  2 k-1 m+1 k-m l'k-1 Jc/k-Ji

(Cadzow, 1973, p. 92), where the coefficients a^ and b^ depend on 

the coefficients h^ in equation (3). Equation (3) is called a convo­

lution summation, and the sequence called the system weighting

sequence. However, we shall be less concerned with it than with its
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Z-transform, H(z).

Writing Y(z) , H(z) , and X(z) for the Z-transforms of the

sequences jy^j > |*\) * anc* {xkl ’ respectively, where [ŷ .] is given

by equation (3), we have the important relation

Y(z) = H(z) X(z) . (5)

Freeman (1965, p. 40) has given a proof of this statement. H(z) is 

called the transfer function of the system, and its importance will now 

be shown.

Taking z = gĵ frm/N̂  where m some integer 0 < m < N-1, it may 
2be shown that 2 |x(z)| is the contribution to the average power of the 

input signal |x^J at the m ^  harmonic. From equation (5),

|Y(z) | 2 = |H(z) | 2 |X(z) | 2 , 

showing that at the m ^  harmonic this contribution has been modified by 

a factor JH(z)J . [H(z)j is called the gain function. Writing radian

frequency w = 2frm/NA , where as before A is the sampling interval for 

the data, we have

|H(z)| = |K(eJ2™ /B)| - |H(ejuA)| .
We therefore wish to determine coefficients a^ and b^ in equation (4)

so that the gain function will suppress contributions to the average

power at the appropriate radian frequencies w . In general, it is

quite difficult to determine H(z) from | h ( z ) |  . However, once this

has been done we have, for a linear time-invariant system, a transfer

function which is a ratio of polynomials, and the coefficients of these

polynomials are the desired and b^ , as will now be shown.
-kMultiplying equation (4) by z , rearranging, and summing over k
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we have

OO

Ek=0
v ‘k + aiyk-iz‘k + ' • • + V k - £ z‘k

-Ek=0

“*lc “Icb,x. z + • • • + b . ,x, z 1 k m+1 k-m

As a consequence of equation (2), this becomes

£ ykz k + aiz_1 £  ykz~k + • • * + a£z 1 £-1 -k -I
y,,z

-k
k=0 k=0 k=0

-k= b^ £  x, z " + • • • +  b z-m
k=0

m+1 £  x, z 
k=0

-k
k~

or, by equation (1),

Y(z) [l + a ±z 1 + ... + = X(z) [bL + ••• + bm+1z mJ ,

whence, from equation (5),

H(z) =
bn + b0z + •.. + b ,z m 

1____£____________ m+1
i . "I L j1 + a^z + .•• + a^z

(6)

Thus the coefficients of the transfer function may be used directly to 

compute | y^J , the filtered output of the input sequence [x |̂. The 

system weighting sequence may be found by taking the inverse

Z-transform of H(z) . In our case, however, once the transfer function 

has been found, there is no need to find a specific expression for the 

weighting sequence.

3.7 A Lowpass Filter

In order to examine large portions of the record, it was desirable 

to reduce the number of data points so they could be accommodated by the
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discrete Fourier transform program. This could have been done in several

ways: (a) average the data over some interval and choose the mean as a
tilsingle point for that interval; (b) use only every n point of data;

(c) filter the record first to remove high-frequency waves, then use 

method (b).

Method (a) has the capability of smoothing the data and substantial­

ly reducing the number of data points. This method is demonstrated in 

Section 4.3. The averaged output can be considered as the output of a 

lowpass filter. However, the gain function for such a filter has a 

fairly complicated form (Blackman and Tukey, 1958, pp. 129-135), and it 

cannot be sufficiently assured that no aliasing from high-frequency 

waves will occur.

Method (b) was tested on the first 1024 data points of the record. 

The raw data were sampled every minute, then the linear trend was re­

moved. Figure 3-5 compares the periodogram of these data (A = 60 seconds 

dashed line) with the results in Figure 3-2b (A = 4 seconds, solid line) 

Note that when A = 60 seconds, only frequencies greater than 

1/(2 x 60 seconds) can be analyzed (Section 3.4), so the periodogram in 

this case is considerably shorter than when A = 4 seconds. Aliasing of 

the periodogram in Figure 3-5 is evident, probably from contributions 

with frequencies around 0.06 Hz. Method (b) was therefore abandoned.

It may be added that this method probably could have been used, had we 

been willing to take A smaller than 60 seconds, say A = 8 or even 

16 seconds, and analyzed only those parts of the data record where 

contributions from frequencies around 0.06 Hz were not so large.

It was therefore decided to try method (c). The filter used was a
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line) with A = 60 seconds (dashed line).
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second order lowpass Butterworth filter designed according to Cadzow 

(1973, p. 336 ff.) and called LPFILTER. Its gain function has the form

1/2

1 +
.  2 -ujA. tan (y-)

tan
2

(1)

where is the cutoff radian frequency;

|H(eja)cA) | 2 = 0.5 , 

as can be seen from equation (1).

For the tsunami problem in Chapter 4, only periodicities greater 

than about 5 minutes were of interest, so it was decided to take 

0)c = 2tt/4 minutes ,

or f =1/4 minutes = 4.17 x 10  ̂Hz. c

The transfer function of this filter has the form

.2
H(z) = b(z+1)‘

(z-p^ (z-p2) ( 2 )

where p^ and p  ̂are the poles of the filter and b is chosen so that

|h(i) | 2 = l .

Using formulae from Cadzow (1973, p. 338) the values for b, p^, and p2 

for LPFILTER were found to be 

b = 0.002550 

Px = 0.926073 + j 0.068825 

p2 = 0.926073 - j 0.068825

In order to determine if a filter is stable, that is, whether any 

bounded input will result in a bounded output, it is necessary and suf­

ficient to determine whether or not the magnitudes of all its poles are

r
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less than unity (Freeman, 1965, p. 171, 173). (While this is true in 

theory, the round-off error may make a theoretically stable filter un­

stable.) In the case of LPFILTER,

|Pl| = |p2| = 0.928627

so that the filter is theoretically stable.

Putting the transfer function for LPFILTER in the form of equation 

(3.6.6), we have

b- + b„z  ̂+ b„z 2
H(z) = ~ -----—̂2

1 + a^z +

= 0.002551 + 0.005101 z-1 + 0.002551 z~2

1.0 - 1.852146 z_1 + 0.862349 z“2

2
To find | h ( z ) | in terms of the calculated numbers b, p^, and p2 (such 

an expression, when compared to equation (1), serves as a check on the 

calculations), we take

|H(z) | 2 = H(z)H(z_1)

2 2 - 1 2  b (z+1) (z +1) __________
2 - 1 - 2  (l+a^z+a2Z )(1+a^z +a2z )

_ ^2 6 + 4(z + z )̂ + (z2 + z 2)_____________
(l+a2+a2) + (a^fa^^) (z+z )̂ + a2(z2+z 2)

,26 + 8 cos wA + 2 cos 2u)A- b 2 2
(l+a^+a2) + 2(a^+a^2) cos U)A + 2a2COS 2ojA

since

n , -n jncoA . -jnwA „ .z + z  = e + e = 2  cos nwA .

A graph of |H(z)| for LPFILTER is shown in Figure 3-6. The response of
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Figure 3-6. Gain function, | h ( z ) | , for LPFILTER, a second-order Butterworth lowpass filter with 
cutoff frequency at 4.17 x 10 3 Hz (T = 4 minutes).
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LPFILTER to an impulse is shown in Figure 3-7.

LPFILTER was tested on the first 1024 points of the data record.

The first 400 points of filtered output are shown in Figure 3-8. This

may be compared to the unfiltered data in Figure 3-1. Figure 3-9 shows

the periodogram for these 1024 points of filtered data (linear trend and

pressure response removed). Then, as in method (b) above, the filtered

data were sampled every minute and the linear trend removed. Figure 3-10

compares the periodogram of these data (A = 60 seconds, dashed line) with

the results in Figure 3-9 (A = 4 seconds, solid line). For comparison,

the periodogram for unfiltered data sampled every 4 seconds is shown with

a dotted line in Figure 3-10. It appears that the periodogram will not
_3be unacceptably distorted below 5.6 x 10 Hz (T = 3 minutes) by sampling 

the filtered record every minute. Method (c) was thus adopted for the 

analysis of the records discussed in Section 4.4.
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Figure 3-7. The response of LPFILTER to a unit impulse applied at 100 seconds.



T I M E  (seconds)
Figure 3-8. The first 400 points (1600 seconds) of the data record after filtering with LPFILTER.

Compare with Figure 3-1. For graphing, pressure has been converted to surface dis­
placement using the relation given in Section 2.2. w
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CHAPTER 4

SECONDARY TSUNAMIS

4.1 Introduction

The idea that small earthquakes can generate small tsunamis, sug­

gested by Iida (1963), was explored by Royer and Reid (1971) . They found 

evidence that aftershocks of the 9 March 1957 earthquake in the Aleutians 

(which generated a very large tsunami) themselves generated long-period 

surface waves of considerable amplitude. The importance of such waves, 

which Royer and Reid termed "secondary tsunamis", is evident: one need

not wait for the rare occurrence of a cataclysmic earthquake in order to 

study the various properties of tsunamis; milder, more frequent quakes 

would suffice. The likelihood of detecting secondary tsunamis, however, 

is not particularly promising. Not all earthquakes, even very large 

ones, generate tsunamis of any sort (Adams and Furumoto, 1970); and 

evidence indicates that when a tsunami is generated by an earthquake 

with magnitude less than 6.5 on the Richter scale, it will usually be 

quite small (Figure 4-1).

Theoretically, a tsunami can be considered to be caused by a sudden­

ly occurring discontinuity on a small square of the earth’s crust 

(Podyapolsky, 1970). In the water above it, the disturbance generates 

waves whose frequencies lie in a continuous band. These waves then 

propagate radially out of the region, dissipating and dispersing. An 

energy spectrum of a large tsunami indicates that there is a great deal 

of power encompassing many frequencies. The shape of the spectrum for 

a particular tsunami varies from location to location. The peaks usually

37
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Figure 4-1. Earthquake magnitude on the Richter scale versus tsunami
magnitude, defined as log2h, where h is the maximum height 
of the tsunami, in meters, measured at a coast 10 to 300 km 
from the tsunami origin. (After Iida, 1963).
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correspond to periods from around 5 minutes to about an hour (Miller, 

Munk, and Snodgrass, 1962). However, as Royer and Reid state, the 

periods of secondary tsunamis are unknown; the largest of the waves 

which they identified as secondary tsunamis had periods from around 

55 to 100 minutes.

4.2 Earthquakes on 6 wovember 1973

During the time the wave gauge was operating, two significant earth­

quakes in the Pacific Ocean were reported (U.S. Department of the Inte­

rior, 1973) with epicenters near Adak in the middle of the Aleutians.

The first, with body wave magnitude of 5.8 on the Richter scale, sur­

face wave magnitude of 6.4, and depth of 34 km, occurred at 51.6°N,

175.4°W at 0936 UT 6 November 1973. The second, with body wave 

magnitude of 5.9, surface wave magnitude of 6.3, and depth of 41 km, 

occurred at 51.6°N, 175.2°W at 1826 UT the same day.

In order to estimate the approximate arrival time at Middleton Is­

land of any waves generated by these earthquakes, we used the long wave 

phase speed

where d is the depth of the water and g is the acceleration due to 

gravity. According to Braddock (1970), a tsunami propagating along the 

Alaskan coastline will tend to follow the Aleutian Trench, rather than 

a great circle, giving it a faster travel time. Taking this into ac­

count, the expected tsunami path was broken into four sections, one 

section following the trench. The water depth d was assumed constant 

in each section.



180° 160° 140°

Figure 4-2. The assumed path to Middleton Island of a tsunami generated at 51.6°N, 175.3°W. 
Numbers refer to sections where water depth was assumed to be constant.
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The assumed path is shown in Figure 4-2. The travel times for each 

section are as follows:

Section Distance (km) d (m) Travel time (minutes)

1 250 2000 29.46

2 1250 7500 76.07

3 750 5000 55.90

4 200 500 47.14

Totals 2450 208.57

Thus, the minimum travel time was estimated to be 208.57 minutes, or 

3.48 hours.

4.3 Evidence of Tsunamis in the Time Series

In order to determine if the earthquakes on 6 November had gener­

ated tsunamis which were large enough to be seen in the record, the data

were averaged over 384 seconds, each average considered to be one point,

and the points were plotted versus time. Averaged pressures for 6 No­

vember are shown in Figure 4-3. No well-defined disturbances can be 

discerned around the expected arrival times for tsunamis. The roughness 

around 1100 UT is probably due to the wind, which increased slightly 

during this time (other sections of the averaged data show similar rough­

ness with increased wind).

To show that if tsunamis were large enough to be seen in the orig­

inal record then one might reasonably expect to see some evidence of 

them in an averaged record, data from Wake Island following the earth-
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Figure 4-3. Pressure data from Middleton Island averaged over 384 seconds (96 points). For 
graphing purposes, pressure has been converted to surface displacement using the 
relation given in Section 2.2.
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quake on 7 March 1957 were averaged over 600 seconds and each average 

considered to be one point. The results are shown in Figure 4-4. The 

numbers on the vertical axis are scale divisions, 1.81 divisions per 

centimeter. The record begins around 8 hours before the arrival of the 

first trough of the tsunami and continues for about 4.5 days. Despite 

the fact that the data were averaged over a larger interval, tsunami- 

genic waves are quite evident, dominating even the tide.

4.4 Evidence of Tsunamis in the Spectrum

As mentioned in Section 4.1, typical or characteristic periods for 

secondary tsunamis are not known. However, it seemed reasonable to 

suppose that the range would be approximately the same as that for 

larger tsunamis, namely, from about 5 minutes to about an hour (Miller, 

Munk, and Snodgrass, 1962). The earthquakes on 6 November occurred 

about 9 hours apart; thus, the longest time series which could be used 

to compare spectra following each quake would be on the order of 9 hours 

duration.

Figure 4-5 shows the spectrum for 25.6 hours (1536 filtered data 

points, A = 60 seconds) beginning at 0000 UT 6 November 1973. It is 

fairly flat, with no large peaks. Figure 4-6 shows spectra for 8.5 

hours of data (512 data points) beginning (a) 3 hours after the first 

quake (solid line); (b) 3 hours after the second quake (dashed line);

(c) about 13 hours before the first quake (dotted line), as a baseline 

comparison. The data were first lowpass filtered with LPFILTER, then 

sampled every minute (Section 3.7). The Fourier coefficients were 

averaged in groups of 10, to give 20 degrees of freedom. In Figure 4-6,
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Figure 4-4. Surface displacement data from Wake Island beginning 9 March 1957, and averaging over
600 seconds (20 points). The vertical axis is given in scale divisions, 1.81 divisions 
per centimeter. .o-■o
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Figure 4-5. Spectrum for 25.6 hours (1536 points, A = 60 seconds) beginning at C000 UT 6 November 
1973. The data have been filtered with LPFILTER and sampled every minute; the 
Fourier coefficients were averaged in groups of 10. •>
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Figure 4-6. Spectra for 8.5 hours of data (512 points) beginning at 1235 UT 6 November 1973,
3 hours after the first quake (solid line); 2117 UT 6 November, 3 hours after the 
second quake (dashed line); 2059 UT 5 November, as a comparison (dotted line). The 
data were filtered with LPFILTER and sampled every minute; Fourier coefficients were 
averaged in groups of 10.
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detectable peaks could occur between the second and the next-to-last
-4 -3points, that is, between 8.138 x 10 Hz and 7.6 x 10 Hz. Averaging

the Fourier coefficients compresses the frequency scale. Therefore, in

order to look for peaks at lower frequencies, the first 24 unaveraged

Fourier coefficients for the same data were plotted in Figure 4-7. In

this figure, the log of the relative power has been averaged with a

three-point moving average to smooth the curves. Now detectable peaks
-4 -4could occur between 1.3 x 10 Hz and 8.138 x 10 Hz.

There are several noticeable maxima in the spectra for the time

series following the earthquakes, particularly after the first quake.
-4For instance, there is a 3 db peak at 4.56 x 10 Hz in Figure 4-7 (solid

_3line), and a 6.5 db peak at 3.09 x 10 Hz in Figure 4-6 (solid line).
-3The second peak at 3.09 x 10 Hz appears off and on throughout the re­

cord, and does not seem to be uniquely associated with any given section 

of data. The fact that the first earthquake was somewhat shallower than 

the second one favors the interpretation of the first peak as a possible 

secondary tsunami since, given two quakes of equal magnitude, the shal­

lower one is slightly more likely to be tsunamigenic (Iida, 1970).

On the other hand, the method used in Figure 4-7 was applied to test 

data consisting of a 2 m sinusoidal tide, T = 12 hours; plus a 0.1 m ex­

ponentially decaying tsunami, T = 30 minutes, with a decay time of 12 

hours (Miller, Munk, and Snodgrass, 1962). The spectrum showed a 22 db 

peak for the tsunami. Moreover, considering that there is no immediately 

recognizable evidence of a tsunami in either the filtered or unfiltered 

wave record, it must be stated that the possibility for generation of 

tsunamis by the first earthquake of 6 November is somewhat questionable.
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Figure 4-7. The first 24 unaveraged Fourier coefficients for the same data shown in Figure 4-5.
The log of the coefficients has been averaged with a three-point moving average for 
smoothing. 00



CHAPTER 5

WAVES WITH PERIODS UNDER FIVE MINUTES

5.1 Some Typical Spectra from the Record

Spectra of 25.6 hour sections (1536 filtered points, A = 60 seconds)

of the record are typically quite flat. The spectrum from 6 November

(Figure 4-5), for instance, exhibits a smooth, almost linear decrease
-4in log relative power from around -1.5 at 2.5 x 10 Hz to around -2.75 

at 0.008 Hz. The spectrum for the first day, 30 October (Figure 5-1), 

has a nearly identical shape and slope, although it contains more total 

energy than does the spectrum from 6 November. This is due to a storm 

in the area, discussed below in Section 5.3. The decrease in energy in 

both spectra above 0.003 Hz may be attributed to the lowpass filter,
-3which has a cutoff frequency of 4.16 x 10 Hz.

The spectrum from a 68 minute section of unfiltered data (1024 

points, A = 4 seconds) from 6 November (Figure 5-2) is fairly flat, with 

a slight peak around 0.065 Hz. It is typical of 68 minute spectra for 

the entire record, with the exception of those from the first two days.

5.2 A Series of 68 Minute Spectra

Beginning at the first of the record, spectra of the unfiltered 

data (A = 4 seconds) were taken over successive sections of 1024 points 

(68 minutes 16 seconds). Forty-nine spectra were taken in all, covering 

about 56 hours of data from the beginning of the record at 0241 UT 

30 October to 1021 UT 1 November 1973. The Fourier coefficients for 

each spectrum were averaged in groups of 5 to give 10 degrees of freedom.
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Figure 5-]. Spectrum of the initial 25.6 hours of the record, beginning at 0241 UT 30 October 1973.
The data have been filtered with LPFILTER and sampled every minute. The Fourier
coefficients have been averaged in groups of 10. LnO



LO
G 

RE
LA

TI
VE

 
PO

W
ER

PERIOD (seconds)

F R E Q U E N C Y  ( H z )

Figure 5-2. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 2100 UT 
6 November 1973. The Fourier coefficients have been averaged in groups of 5, and the 
resulting spectra divided by [l/cosh(4u2d/gT2)]2 , with d = 69.5 m.
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Figures 5-3 through 5-15 show every fourth spectrum of this series.

The most striking feature of these spectra is the peak which starts 

out about 20 db above the baseline around 0.0625 Hz, and slowly shifts 

toward higher frequencies, decreasing in amplitude as it shifts, until 

by 1032 UT 31 October (Figure 5-10), the peak has fallen to 10 db above 

the baseline and is centered around 0.087 Hz. Between 0600 and 1000 UT

31 October there is a marked decrease in power around 0.085 Hz (Figures

5-9 and 5-10), and another decrease around the same frequency between 

0444 and 0900 UT 1 November (Figures 5-14 and 5-15). Around 0200 UT 31 

October there is a marked decrease in total power, and another peak 

around 0.06 Hz becomes evident (Figure 5-8). This peak shifts back and 

forth slightly in successive spectra, but it is present even in the last 

one, Figure 5-15.

Figure 5-16 shows the spectra in Figures 5-1, 5-9, and 5-15 as 

solid, dashed, and dotted lines, respectively. The shift and decay of 

the spectral peaks is evident. In the next section we examine some 

possible causes for these observed changes in the spectra.

5.3 Influence of a Storm in the Gulf of Alaska

On 27 October 1973, a storm in the northwest Pacific around 3600 km 

from Middleton Island, centered at 45°N, 164°E and having winds up to 

30 m/second (60 knots), began moving eastward. Figure 5-17 shows the 

path of the storm. By 1200 UT 28 October it was at 48°N, 162°W, and the 

winds had decreased to about 20 m/second (40 knots). By 0000 UT 29 

October it had moved into the Gulf of Alaska (Figure 5-18); 20 m/second 

winds were still being reported. At about 0600 UT 30 October the storm
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Figure 5-3. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 0241 UT 
30 October 1973. The Fourier coefficients have been averaged in groups of 5, and the 
resulting spectra divided by [ 1/cosh(Air^d/gT2)]2 , with d = 69.5 m.
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Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 0714
30 October 1973.
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Figure 5-5. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 1147 UT
30 October 1973.



Figure 5-
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Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 1620 UT
30 October 1973.
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Figure 5-7. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 2053 UT
30 October 1973. Ln
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Figure 5-
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. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 0126 UT
31 October 1973.
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Figure 5-9. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 0559 UT
31 October 1973.
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Figure 5-10. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 1032
31 October 1973.
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Figure 5-11. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 1505 UT
31 October 1973.
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Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 1938 UT
31 October 1973.
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Figure 5-13. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 0011 UT
1 November 1973.
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Figure 5-14. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 0445 UT
1 November 1973. O'
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Figure 5-15. Spectrum of 1024 unfiltered data points (68 minutes 16 seconds) beginning at 0918 UT
1 November 1973.
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Figure 5-16. Comparison of the spectra in Figure 5-3 (solid line), in 5-9 (dashed line), and in 
5-15 (dotted line). O'<JN
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began to diminish, although 20 m/second winds were still being reported 

near the Canadian Coast. At 0300 UT 31 October the winds had fallen 

below 5 m/second, and on 1 November a high pressure system moved in over 

the gulf.

The changes in the spectra reported in Section 5.2 are closely cor­

related with this storm. These changes are summarized by plotting fre­

quency of the peak and log power of the peak versus time (Figure 5-19). 

The points in Figure 5-19 represent the successive spectra shown in 

Figures 5-3 to 5-15; thus, each point is 4 hours, 33 minutes, 4 seconds 

apart.

Figure 5-20 shows distances from Middleton Island of the low- 

pressure disturbance versus time. Direction is not indicated, since 

the data were taken with only one sensor. The lines in Figure 5-20 show 

possible time and distance from Middleton Island for the source of waves 

associated with peaks in the spectra. These lines are computed using 

the relation for the group velocity of deep water waves

c g  "  \  [ a f t )  ( 1 )

(Kinsman, 1965, p. 153) and the relation

D = c T (2)g
where D is distance and t is elapsed time. For instance, waves with a 

frequency of 0.0726 Hz (the frequency of the spectral peak at 1147 UT 

30 October) travel with a group velocity of 10.7 m/second. Thus, when 

T = 2 hours, D = 77 km; when T = 4 hours, D = 154 km, etc. It may be 

seen from Figure 5-20 that there is rough agreement between the path of 

the storm and the generating lines for the observed peaks in the spectra.
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Figure 5-17. Twelve-hour positions of the center and front of a storm in the North Pacific, from
0000 UT 27 to 0000 UT 29 October 1973. The numbers above the center refer to the hour 
and day of the month when the data were reported. The number inside the centers refer 
to barometric pressure (Japan Meteorological Agency, 1973; U.S. Department of Commerce, 
1973).



Figure 5-18. Weather over the Gulf of Alaska at 0000 UT 29 October 1973. ONVC
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Figure 5-19. Frequency and log relative power of the spectral peak shown in Figures 5-3 to 5-15.
From each of these spectra, frequency and log relative power of the peak were 
determined. Each point was then plotted at the time its respective time series 
started, and the points were connected by straight lines.
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Figure 5-20. Circled L's show the distance from Middleton island of the center of the storm shown 
in Figure 5-17. Lines show possible time and distance from Middleton Island for the 
source of waves associated with peaks in the spectra. Details of the construction of 
the lines are given in the text. Each line corresponds to the spectral peak whose 
frequencies are given in Figure 5-19.
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In Figure 5-19 we see that the graph of frequency of the peak 

versus time may be broken into three main sections. In the first sec­

tion, from the beginning of the record until 2053 UT 30 October, the 

frequency increases. In the middle section, 2053 UT 30 October to 

1938 UT 31 October, the frequency of the peak remains nearly constant. 

After 1938 UT 31 October the frequency again increases. Specific corre­

lations between each of these sections and features of the storm will 

now be made.

It is hypothesized that the peak at 0241 UT 30 October was caused 

by waves generated by the high winds (over 40 knots) which had a duration 

of at least 30 hours around 3500 km from Middleton Island. Figure 5-21 

shows that such winds would be sufficient to generate waves with a fre­

quency of 0.0653 Hz (T = 15.3 seconds). At around 0000 UT 28 October the 

storm paused around 2100 km from Middleton Island and grew in intensity. 

Around 0600 UT the same day it resumed its motion, moving faster than 

most of the waves it generated, thus effectively "turning off" the gen­

erating mechanism 2100 km away. Figure 5-22a shows a plot of frequency 

of a spectral peak versus time for a hypothetical, stationary storm 

which instantaneously generates waves with frequencies of 0.065, 0.07, 

0.075, and 0.08 Hz, assuming the storm to be located 2100 km away from 

the site where the data are taken. The values for this plot are given 

in Appendix 3. Figure 5-22b shows a graph of the generation lines for 

the waves whose frequencies are shown in Figure 5-22a. Appendix 4 gives 

an analytic expression for finding the distance of the source from the 

wave gauge, given only the information in Figure 5-22a. Figure 5-22 

agrees with those portions of Figures 5-19 and 5-20 between 0714 UT and
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Figure 5-21. Empirical relationships between wind speed (1 knot = 
0.5144 m/second), duration of the wind, and the 
periods of the waves. (After Reid, personal communica­
tion: 1967).
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Figure 5-22a. Frequency of the peaks in spectra obtained by analyzing waves generated by a storm, 
2100 km from the wave gauge, which instantaneously generated waves with frequencies 
of 0.065, 0.07, 0.075, and 0.08 Hz.
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Figure 5-22b* Generation lines for the waves whose frequencies are shown in Figure 5-22a. •vjLn
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2053 UT 30 October.

From 0600 UT 28 October to 0000 UT 29 October the storm traveled 

about 23 m/second, faster than most of the waves it generated. This is 

evident in Figure 5-19, since the slope of the storm path is steeper 

than the slopes of the generation lines. The frequency of the peak 

from 2053 UT 30 October through 1938 UT 31 October remains nearly con­

stant, consistent with a picture of higher frequency waves generated in 

an area around 2100 km from Middleton Island, after the departure of the 

main storm. According to Munk, Miller, Snodgrass, and Barber (1963), a 

moving storm will amplify waves whose group velocity equals the velocity 

of the storm. From equation (1), waves whose group velocity is 23 m/ 

second will have a frequency of 0.039 Hz (T = 29.5 seconds). Thus, we 

would hope to see a spectral peak at 0.039 Hz from around 2053 UT 30 

October to 2000 31 October. Consulting Figures 5-7 through 5-12, we see 

that there is indeed a peak, but it lies somewhat lower, around 0.03 Hz. 

This would put the speed of the storm at 26 m/second, not an unreasonable 

discrepancy for geophysical data.

The power of the spectral peak drops throughout this period, except 

around 0600 UT 31 October. This increase may be due to the high winds 

at 51°N, 142°W, 9900 km from Middleton Island, at 0000 UT 30 October

which could have contributed additional power to waves of this frequency.

The increase in frequency from 1938 UT 31 October to 0011 UT 1 No­

vember occurred when the storm stopped moving, around 0000 UT 29 October,

and the waves which it had been generating caught up with the storm.

From 0011 UT to 0917 UT 1 November, the peak moved slowly toward higher 

frequencies as the stationary storm, now in the gulf, slowly decayed.
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This is illustrated by an example. Suppose a storm, fixed 800 km away, 

instantaneously generates waves whose frequency is 0.095 Hz, 6 hours 

later generates waves with a frequency of 0.10 Hz, and 6 hours later 

generates 0.105 Hz waves. Figure 5-23a gives a plot of frequency of a 

spectral peak versus time for waves from such a storm (the values for 

this plot are given in Appendix 3), and Figure 5-23b shows the generation 

lines. Both are consistent with the last three points in Figures 5-19 

and 5-20. Figure 5-23b shows that the generation lines for a stationary, 

decaying storm which is close to the wave gauge are the same as those 

for a stationary, instantaneous storm a great distance away.

The peak at 0.06 Hz which appears around 0126 UT 31 October (Figure 

5-8) and continues into November is probably due to continuing storms 

and high winds in the northwest Pacific. For instance, at 0000 UT 

27 October, 27.5 m/second (55 knot) winds were reported around 36°N,

161°E, 4550 km from Middleton Island. Travel time for 0.06 Hz waves 

from this location is

T = 4.55 x 10^m / (13m/second)

= 97.22 hours

giving an arrival time for these waves of around 0100 UT 31 October.

In order to see if the methods described above could be applied to 

other storms, we considered the work of Snider and Chakrabarti (1973). 

They used surface wave data obtained from the Ocean Weather Ship 

Weather Advisor which was in a storm in the North Atlantic from 15 to 

19 March 1968. Records of from 17.4 to 33.7 minutes in duration were 

obtained every three hours, with A = 1.5 seconds. Spectral analysis of

w sn rv n  OF MARINE SCIENCE 
UNIVERSITY OF ALASKA



Figure 5-23a. Frequency of the peaks in spectra obtained by analyzing waves generated by a storm,
800 km from the wave gauge, which instantaneously generated waves with a frequency of 
0.095 Hz, 6 hours later generated 0.10 Hz waves, and 6 hours later generated 0.105 Hz 
waves.



Figure 5~23b. Generation lines for the waves whose frequencies are shown in Figure 5-23a. V0
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these records showed a well-defined peak, first small around 0.10 Hz 

before the storm, then quite large around 0.06 Hz at the height of the 

storm, then smaller -.fid shifted to around 0.09 Hz as the storm subsided 

(Snider and Chakrabarti, 1973, Figure 3). Snider and Chakrabarti have 

tabulated the results of their spectral analysis for each record, so 

that it is a straightorward matter to plot frequency of the peak versus
-,%r

time. Such a /agdiits' the - same slope during the time the storm
<; ■was subsiding (from"0000 UT to 2100 UT 18 March 1968) as Figure 5-19 

from 1400 UT 31 October to 0917 UT 1 November 1973 (Figure 5-24).
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Figure 5-24. Comparison of frequency versus time of the spectral peak for the October 1973 storm 
in the North Pacific (dotted line) with a March 1968 storm in the North Atlantic 
(solid line). oot-1



CHAPTER 6

SUMMARY

Efficient and reliable methods based on the fast-Fourier transform 

have been developed to determine periodicities in time series. It has 

been shown that when the unfiltered record is sampled at large intervals, 

serious aliasing of the spectrum will occur, as indicated by Blackman and 

Tukey (1958). A second-order lowpass Butterworth filter with a cutoff
_3frequency of 4.16 x 10 Hz (T = 4 minutes) effectively removes high-

frequency components in the wave record, so that the record can be sampled

at larger intervals without undue aliasing of the spectrum below 
_35.6 x 10 Hz (T = 3 minutes). Above this frequency, spectral aliasing 

has been shown still to occur.

Spectra for data taken after the occurrence of earthquakes of magni­

tude 5.9 in the Aleutians have shown that generation of ocean waves by 

these quakes is questionable, and that wave data following other similar 

quakes needs to be examined before any definite conclusions can be drawn.

When spectra from the first portion of the record were examined,

it was found that a peak, which started out around 0.0625 Hz

(T = 16 seconds), gradually shifted toward higher frequencies, simulta­

neously decreasing in amplitude. A plot of frequency of this peak 

versus time showed an increase for the first 18 hours of the record, 

then remained approximately constant for 24 hours, after which it again 

increased. These changes have been closely correlated with a large 

storm which remained stationary in the North Pacific, then moved rapidly 

into the Gulf of Alaska, after which it subsided. The correlation has
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been clarified by showing, on the same graph, distance from Middleton 

Island of the center of the storm and of possible sources of waves whose 

frequency is the frequency of the peak.

A recent study by Snider and Chakrabarti (1973) of wave energy 

spectra obtained during a storm in the North Atlantic in 1968 also shows 

a shift and decay in the spectral peak. A comparison of plots of frequen­

cy of the peak versus time for the North Pacific and North Atlantic 

storms exhibit the same slope during the time the storms were subsiding.



APPENDIX 1

NOTATION

Numbers in parentheses after description refer to the section in 

which the symbol was first used.

Am Discrete Fourier cosine transform of > t̂ ie Fourier coeffi­
cients for the cosine series (3.1)

a_̂ Filter coefficients (3.6); Fourier coefficients (3.1 only)

B Discrete Fourier sine transform of the Fourier coeffi­
cients for the sine series (3.1)

b Filter coefficient (3.7)

b^ Filter coefficients (3.6); Fourier coefficients (3.1 only)

C Arbitrary constant (Appendix 4)

c Wave group velocity (5.3)g
0  ̂ Wave phase velocity (4.2)

D Distance (5.3)

d Water depth (3.2)

f Frequency (5.3)

f Cutoff frequency (3.7)

f(t) Arbitrary function of time (3.1)

g Gravitational constant (3.2)

H(z) Z-transform of 5 transfer function of a filter (3.6)

h Tsunami height (4.1)

h^ Weighting sequence coefficients in convolution summation (3.6)

j V -T (3.1)

Kp Pressure response factor (3.2)

84



Approximated pressure response factor (3.2)

Integer index (3.1)

Wavelength (3.2); Integer index (3.3 only)

Approximation to L (3.2)

Logarithm to the base 10; also written log^g (3.1)

Integer index (3.1)

Total number of points in a time series, assumed to be even;
N = TjM  (3.1)

N/2 (3.1)

A number representing the probability of the quantity inside the 
curly braces (3.3)

Poles of a filter (3.7)

Wave period (3.2)

Duration of a time series; T^ = NA (3.1)

Time (3.1)

The m ^  Fourier coefficient in the exponential series for fx, } 
(3.1) 1 U

The mt 1̂ Fourier coefficient in the exponential series for the 
stochastic process {*' J  (3.3)

Z-transform of , also written Z (3.6)

The measured value of a discrete-time series; k ^  data point 
also written x(kA) (3.1)

The measured discrete-time series; also written
{x_n»** *,xo»* *.xn_i} » or (x(kA)} (3.1)
Least-squares approximation to xĵ  in the interval 
[-T^/2, T^/2]; also written x(kA) (3.1)

Stochastic process of which x^ is a member (3.3)

Z-transform of (3.6)



Discrete-time series, the output of a filter whose input is
K !  (3 - 6)
Z-transform of ^x^j ; also written X(z) (3.6)

At first an arbitrary finite complex number; later specified 
as exp(j2fT/N) (3.6)

2Parameter for a x statistic (3.3)

Time interval between data values (3.1)

Degrees of freedom for a chi-squared variable (3.3)

Ratio of the circumference of a circle to its diameter (3.1) 

Elapsed time (5.3)

Denotes the chi-squared distribution with v degrees of 
freedom (3.3)

Radian frequency; to = 2ir/T (3.4)

Denotes complex conjugation (3.1)



APPENDIX 2

FOURIER TRANSFORM RELATIONSHIPS

From equation (3.1.2) we have

1 ^  2 tt (-m)kA = —  ) X. COS ------- = A-m N J—i k N mk=-n

1 ’V'1 . 2it (-m) k _ „B = — ) x. s m  — ■■ ■ - - - = -B-m N k N mk=-n

n  ̂ . 2TTnkxk sxn
k=-n

1 . 2rrnk n
= - n L x- sin = 0N ~k 2nk=-n

B = 0  o

Also,

ej (2imk/N) , , cos ^  , e-jrt

Thus, equation (3.1.1) becomes

x(kA) - Ao + jj1 ( A _ V (2mnk/,,) + g-j (2imk/N)
m:

Li-X f
^ { v * 3n=l v

. t, r j(2fTmk/N) -j (2iTmk/N), 1 , .~ j B [e - e ] f + A cosJ nr J n

» (A - jB ) + ^  (A - jB )ej(27Tmk/N) o o m m
m=l

n-1
+ y  (A + jB +

i - j  m mm=l

2imk
N

A ej(2TTnk/N)
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n-1
= (A - jB ) + V  (A - jB )e o o £-» m J m m=l

j (2-iTmk/N)

-n+1
+ y (a -jBt-» m mm=-l

+ (A -jB -n -i

n-1 j (2Trmk/N)
m=-n

n-1
= T , xt—i m

j (2iTmk/N)
m=-n

which is equation (3.1.7).

We now prove equation (3.1.8). From equation (3.1.7)

1 o 1 £ gj (2TTmk/N) = 1 r-1 P n~1 
Lt k NN J-> kk=-n

n-1

k=-n E Xr eL r=-n
j (2TTrk/N)

s Ek=-n
X e -n

-j(2TTnk/N) + ... + x ej[2ir(n-l)k/N]
n-1

n-1
Er=-n

x n̂-»1 [2ir(r-m)k/N]
, r k=-n

Consider the sum inside the brackets for the case r  ̂

r - m = H. Since N = 2n , we have

j [2TT&(-n)/N] _ e-jTrJt _ _ gj (2ir£n/N)

j[2ir£(-n+l)/N] = -̂jTrJl̂ j (2tt£/N) = j [2Tr£(n+l) /N]

j(-2ir£/N) = j2'iTJl̂ -j (2tt5,/N) = j [2tt£(N-1)/N]

Thus,

£ X ej(2irJtk/N) = ej(2TT£k/N) 
k=-n k=0

^j (2Trnk/N)

we have 

■j (2irmk/N) ^

-j (2TTmk/N) 

( 2 )

m, say
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j (2ir£/N) . Mth „ _ r j (2tt£/N)N , ,But e is an N root of unity [e = 1J , and hence

the sum inside the brackets of equation (2) is zero when r 4 m. When

r = m, we have

n-1
Zk=-n

Therefore

r̂ " [2ir(r-m)k/N] _
k=-n

and equation (1) becomes

1 p 1 £ e-j(2iTmk/N)

0, r ^ m

N, r = m

N X  “k k=-n
= Xm

which is equation (3.1.8),



APPENDIX 3

VALUES USED IN CONSTRUCTING FIGURES 5-22a AND 5-23a

The formula for wave arrival time is from equations (5.3.1) and 

(5.3.2) and is given by 

T = 4irDf / g .

Figure 5-22a, D = 2100 km

f T (seconds x 10 )̂ T (hours)

0.065 1.7503 48.62
0.070 1.8850 52.36
0.075 2.0196 56.10
0.080 2.1542 59.84

Figure 5-23a, D = 800 km

f T (seconds x 10 “*) T (hours) At (hours) Final T (hours)

0.095 0.9745 27.07 0 27.07
0.100 1.0258 28.50 6 34.50
0.105 1.0771 29.92 12 41.92
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APPENDIX 4

ANALYTIC EXPRESSION FOR WAVE SOURCE DISTANCE

Consider a plot of frequency of a spectral peak versus time of 

arrival of that peak, and suppose all the points lie on a straight line. 

For simplicity, consider only two points on the line, (f^,f^) and •

Then the slope of Lae iliie is

This slope will be non-negative, so long as the waves come from a single 

source, since waves with higher frequencies travel slower than those with 

lower frequencies.

Now consider a plot of the generation lines for waves of frequency

f^ and fg • The equation for these lines is given by

D = -c x + C g

= -(g/4lTf)T + C ,

where C is the D-intersect, and the slope is negative because we are 

considering the prior positions of the waves. The line for f^ is 

T>1 = -(g/4irf1)T + Cr

Since D^ = 0 at t = T^, we have

Cx = (g/4-rr) (T1/f]L) ,

so that
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Similarly,
T0 - T

D = ■£— — ----2 4tt f„ ( 2 )

These lines intersect at the point D1 = D_ =

That is,

or

flT2 ” f2Xl 

and from equation (1),

D when x = T , say. o o

T. - T T„ - T£_  ° = £_ _?____o
4tt f^ 4tt f2 ’

D _i_ T1 flT2 ~ V l
o 4tt ^  f (f 1 - f2)

T — T 1 2
4tt f^ - f2 at T = T (3)

Thus, the distance at which the generation lines cross (that is, the com­

mon source of the waves) is proportional to the inverse slope of the line 

of peak frequency versus arrival time.

For example, consider the frequency of a spectral peak versus wave

arrival time shown in Figure 5-22a. Exact values for f and T are
5given in Appendix 3. Let f^ = 0.065 Hz, T = 1.7503 x 10 seconds, 

f2 = 0.080 Hz, ^2 = 2.1542 x 10^ seconds. Then the slope of the line f 

versus T shown in Figure 5-22a is

0.015f2 ~ fl = ___________
T2 “ T1 0.4039 x 105

second-2

= 3.7138 x l O 7 second 2
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From equation (3) ,

10 2 D = fr T ’vr^o' second o 4tt 3.7138

= 2.0999 x 106 m 

= 2100 km

in agreement with the original assumption for .
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