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ABSTRACT

Inorganic nitrogen and carbon uptake by phvtop 1 ankton in the Bering 

Sea ice-edge zone in April - May 1982 and 1983 was measured using 

isotopic tracers (H14C D’ , J=NH«-N, 1=N0t-N). The contribution by 

ice-related phytoplankton to annual Bering shelf productivity seemed 

lower (approximately 0.5 gat N m ~ 2 y- 1 , 50 gC n r 2 y " 1) in 1983 with 

respect to 1982 (approximately 1.8 gat N n r 2- y _ 1 , 78 gC nr2 y_ 1 ), 

presumably due to a deepening of the mixed layer by storms during the 

1983 sampling period. Productivity preceding the 1982 and 1983 sampling 

periods was not estimated. Upwelling processes met the phytoplankton 

nitrogen demands for the duration of the ice-edge bloom (2-3 weeks), 

while in s i t u  regeneration was usually slow. Neither phosphorus nor 

silica seemed to limit the ice-edge bloom (late winter water-column 

N:P=5.3 to 9.9 per atoms, 10-30 wgat Si(0H)*-Si I- 1 ). Taxonomic 

information suggests that epontic algae seeded the April - May ice-edge 

water column bloom.
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LOWER TROPHIC LEVEL STUDIES IN 

THE MARGINAL SEA-ICE ZONE

INTRODUCTION

Ecological s e t t i n g :

The Bering Sea spring marginal sea ice zone is a continuous 

air-sea-ice interface extending from northern Bristol Bay to the 

southern part of Anadyr Gulf. At maximum extent (February to March, 

Webster, 1981; Overland and Pease, 1982), the ice limit roughly 

parallels the Bering Sea shelf break (figure 1). Spatial variability of 

events and navigational hazards render synoptic oceanographic coverage 

difficult. However, a good view of the ice edge can be obtained from 

synoptic satellite exposures.

Well-defined ice margins may be observed when winds blow from the 

south, while amorphous margins are characteristic of other wind 

directions and turbulent water conditions (Pease, 1980; Niebauer,

1983). Dense ice clustering and parallel banding are ice-edge patterns 

often observed on a scale of 1-100 Km (Martin e t  a l , 1983; Wadhams,

1983; Muench e t  a l , 1983a). Large embayments are common, as are 

opening and closing polynyas (Bauer and Martin, 1983). Ice thickness is 

variable, exceeding 5 meters only under ice pressure ridges or floes 

that may have drifted from the northern Bering and Chukchi Seas.

1



Figure 1:
Approximate ice edge positions 
relative to the Bering Sea 
shelf break and 'Alpha Helix' 
cruise areas Q  
(lower part of drawing shows 
North Pacific Ocean floor 
and Aleutian trench).

4 May. 1982 
26 April. 1983





January - February oceanographic observations of the Bering Sea 

shelf and its ice-edge habitat reveal an almost completely mixed, cold 

(<-1.70°C) water column (McRoy and Goering, 1974a). Weak frontal 

structures, caused by continuous melting at the ice edge, characterize 

this habitat in winter (Overland and Pease, 1982; Roed and O'Brien, 

1983; Muench, 1983; Niebauer and Alexander, in prep.). High levels of 

all nutrients have been recorded in the area in February - March (Muench 

e t  a l , 1983b; McRoy and Goering, 1974a; Alexander, pers. comm.;

Sc h e l 1, pers. comm. ) .

The Bering Sea seasonal ice cover begins to retreat in March - 

April, shortly after reaching maximum extent. As the snow cover on the 

ice melts, the entire ice pack decays rapidly. The Bering Sea is 

ice-free by late May or early June. The sequence of events is tied to 

weather changes (Niebauer, 1980, 1983; Niebauer et al., 1981;

Alexander and Niebauer, 1981; Webster, 1981; Overland and Pease,

1982).

The Bering-Chukchi Sea ice edge behaves as a biological 

concentration region for large numbers of organisms (Alexander, 1980, 

1981). The most obvious of these organisms are mammals on a year-round 

basis (Fay, 1974, 1981; Burns e t  s.1, 1981), and birds on a seasonal 

time scale (Divoky, 1981).

Phytoplankton blooms can develop at the ice edge as the sea-ice 

melting rate increases with spring warming (Marshall, 1957; McRoy and 

Goering, 1974a, 1974b; Alexander and Niebauer, 1981; Niebauer e t  al , 

1981). The ice-edge bloom develops under conditions different from the 

Bering Shelf phytoplankton bloom described by Goering and Iverson
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(1980), Sambrotto and Boering (1980), Sambrotto (1983) and Sambrotto et 

al (in prep.). Ice meltwater, rather than temperature increases, induce 

water column stability at the ice edge. Similar observations to the 

Bering Sea ice-edge system are reported for other ice-affected waters 

(Bunt, 1968; Buinitsky, 1977; Hoshiai, 1977, 1981; Hsiao, 1980;

Ainley and Jacobs, 1981; El-Sayed and Taguchi, 1981; Hoshiai and 

Fukuchi , 1981) .

Few studies on late-winter (February - May), ice-related primary 

production have been accomplished (McRoy, Goering and Shiels, 1972;

McRoy and Goering, 1974a; Alexander and Cooney, 1979; Alexander and 

Chapman, 1981; Alexander and Niebauer, 1981; C. Sancetta, pers. 

comm.). The underside of the seasonal ice cover provides a platform on 

which epontic (under-ice) algae can grow at rapid rates (Meguro and 

Fukushima, 1966; Horner and Alexander, 1972; Alexander, 1974; Horner, 

1977; Clasby e t ai, 1976; Taniguchi e t  a l , 1976; Pautzke, 1979;

Alexander and Chapman, 1981; Takahashi, 1981; Schell e t  a l , 1982),

from perhaps as early as mid-February in a warm year (McRoy, Goering and

Shiels, 1972). The ice-edge bloom occurs in the water column in late 

April or early May (Niebauer, Alexander and Cooney, 1981; Alexander and 

Niebauer, 1981; Schandelmeier and Alexander, 1981), but its exact 

timing and duration escape easy forecasting.

Marshall (1957) examines the ice-edge phytoplankton bloom in the 

western Barents Sea and proposes Sverdrup's (1953) critical depth 

hypothesis as an explanation for its development. Sverdrup's hypothesis 

states that water column net primary productivity will be positive when 

the ratio of the mixed layer depth (MLD) to the critical depth becomes
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less than 1, given unlimited light and nutrient conditions. Niebauer, 

Alexander and Cooney (1981) and Alexander and Niebauer (1981) support 

this view, suggesting that primary producers at the Bering Sea ice edge 

■flourish due to enhanced water column stability and increased light 

levels in a nutrient-rich environment.

Alexander and Niebauer (1981) and Niebauer and Alexander (in prep.) 

■find evidence o-f upwelling at the spring ice margin and of interaction 

between the moving ice edge and the relatively stationary Bering 

inner-shelf (50 m isobath) front (Kinder and Schumacher, 1981). They 

suggest that such events may extend the life of the bloom, but the 

mechanisms of upwelling at the ice edge are not clear yet (Foldvik and 

Kvinge, 1977; Clarke, 1978; Buckley et a l , 1979; Roed and O'Brien, 

1983; Niebauer and Freed, pers. comm.).

In the fall, the oceanography of the Bering Sea is different than 

in the spring. The ice edge begins to advance southward in October and 

November from the Chukchi Sea and the south-facing coasts of the 

northern Bering Sea (Fay, 1974; Shapiro and Burns 1975a, 1975b; Muench 

and Ahlnas, 1976; Burns e t  a l , 1981; Pease, 1981). At this time, 

environmental stresses limit the productivity of lower trophic level 

communities: available light diminishes, nutrient concentrations are

low, storms continuously mix the water column, ice formation contributes 

to instability by salt extrusion from the freezing surface waters and 

salinity increases throughout the water column, while surface 

temperatures quickly dip below 0°C. In these arctic-subarctic areas, a 

definite fall bloom, as found in most temperate seas (Parsons et a l ,  

1977), is not seen, except in restricted parts of the northern Bering
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Sea and Bering Strait (Dawson, 1965; Arsenyev and Voytov, 1968; 

Taniguchi, 1969; McRoy, Goering and Shiels, 1972s Alexander, pers. 

comm.), where high nutrient concentrations occur.

Statement of the pr ob l e m ; Research object i ves

The study of primary production in the ice-edge zone is important 

since this is the base of a food web which supports several animal 

populations. Transfer and distribution of the primary products through 

the ice-related trophic structure is not yet well understood (Alexander, 

1980; Niebauer, Alexander and Cooney, 1981). The relationship between 

oceanographic variables (nutrients, light, temperature, density 

structure) and primary production at the ice edge needs to be resolved.

Estimates of the contribution of each of the Bering Sea primary 

production phases (epontic, ice edge, spring open shelf, summer and 

fall) to Bering Sea annual carbon and nitrogen budgets are important for 

understanding the biological dynamics of the Bering Sea shelf (Hood,

1983). A comprehensive ecological picture has not yet emerged from 

research conducted in the area, and apparent interannual variations in 

production regimes remain to be resolved (Sambrotto and Goering, 1983; 

Alexander, pers. comm.).

This study was undertaken to provide information with which to 

characterize production regimes at the ice-edge habitat. The early 

spring Bering Sea ice-related phytoplankton primary production and its 

carbon and nitrogen budget are examined. In particular, this thesis 

attempts to determine the relative importance of various nutrient 

sources to the ice-edge bloom, differentiating between biological and



physical nitrogen supply mechanisms. The physiological responses of 

algae were of concern, and experiments were designed to address the 

response of phytoplankton from various depths to varying light 

intensities and/or nitrogen nutrient concentrations.

This research should contribute to a long-term understanding of 

ice-edge habitats, helping in the resolution of trophic pathways in 

ice-affected shallow shelves. In view of possible commercial 

exploitation of Bering Sea oil reserves, the present study may be of 

help in assessing anthropogenic effects in ice-covered areas.

7/
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MATERIALS AND METHODS

Ice Edge Crui ses

The data presented in this thesis were collected from the R/V A l p h a  

H e l i x  (Institute of Marine Science, University of Alaska, Fairbanks).

A l p h a  H e l i x  Cruise H X 0 2 2

Between 16 October and 1 November, 1981, Bering Sea, Bering Strait 

and Chukchi Sea chlorophyll â  was measured along the cruise track. 

Nitrate (N03 -N) and ammonia (NH4 -N) uptake by phytoplankton was 

estimated at 71°21'N, 166°11'W in ice-covered waters.

H X 0 2 5  AND H X 043 cruises

R/V A l p h a  H e l i x  cruises 025 and 043 visited the Bering Sea ice 

margin during spring 1982 and spring 1983, respectively (table 1, figure 

1). Sampling during WX025 was restricted to a small area in NW Bristol 

Bay. Sampling in 1983 started a week earlier than in 1982. 1983

stations were occupied east, north and west of St. Matthew Island.

Table 1. Alpha Helix 025 and 043 cruises: Coordinates of area sampled
and cruise dates.

HX025 HX043
Samp 1i ng 

to
30 April 1982 
11 May 1982

21 April 1983 
6 May 1983

Lat N 
LonqW

56°30 ' - 58°35 '
164° 0' - 166° 0'

5 9 ° 3 0 ' - 62° O'
170° 0' - 176° O'

8
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This work was carried out in conjunction with a broader 

investigation of the oceanographic regime at the retreating ice edge in 

spring. My results will be interpreted against the background of 

physical data provided by J. Niebauer and nutrient data provided by V. 

Alexander. The methods used in obtaining the above information are 

given in Niebauer and Alexander (in prep.).

Nitrogen stable isotope uptake expe ri me nt s:

The 15N tracer procedure used in all cruises was originally 

described by Neess e t  al (1962) and Dugdale and Goering (1967). Reviews 

of assumptions and limitations involved in the 1=N H a -N and l=N 0 3-N 

uptake method can be found in Alexander (1970), McCarthy e t  al (1977), 

Harrison (1978), Caperon e t  al (1979), Glibert e t  al (1982) and Collos 

(1983).

1 °N uptake measurement assumptions:

For purposes of the uptake experiments, the following assumptions 

were made:

Nitrogen uptake is assumed to be only externally controlled, by nutrient 
concentration and light intensity (Goldman, 1977; Collos and 
Slawyk, 1980), and internal cell nutrient pools may be neglected.

Under certain conditions N-uptake obeys Michaelis-Menten type kinetics 
(i.e. at nitrogen concentrations below saturation of the uptake 
mechanism and/or when growth is not limited by other nutrients, 
temperature or light: Dugdale, 1967, 1977; Lehninger, 1977;
Eppley e t  a l , 1977; Goldman and McCarthy, 1978; Dugdale e t  a l ,  
1981).
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In this work NH«-N and N 0 3-N are assumed to be the only nitrogen sources 
available to phytoplankton. Uptake of urea and other organic 
nitrogenous compounds (Schell, 1971, 1974a) are disregarded, even 
though <5 vM urea-N concentrations may occur in the Bering Sea 
(D, M. Schell, R. N. Sambrotto, pers. comm.!.

Extracellular release of organic nitrogen and organic carbon by
phytoplankton (Chrost and Faust, 1983; Moller Jensen, 1983) is 
neglec te d.

Maximum specific uptake rates (VM A x) are assumed to be time-invariant.

Transient uptake is considered negligible, compared to total uptake 
during the incubation (Brown and Harris, 1978; McCarthy, 1981; 
Glibert e t ai, 1982; Dortch e t ai, 1982; Collos, 1983).

Nutrient remineralization is assumed negligible during the incubation 
period and 1=N enrichment in the incubation media was assumed 
constant (see Glibert e t ai, 1982; Paasche and Kristiansen, 1982; 
LaRoche, 1983; Garside, 1984; Garside and Glibert, 1984).

It was assumed that alkalinty changes in the incubation media (Brewer 
and Goldman, 1976) do not affect primary productivity or nitrogen 
uptake measurements.

Isotope effects are considered negligible in 10N experiments.

The following assumptions apply to both carbon and nitrogen tracer
experiments:

Incubation bottles are assumed to simulate in s i t u  light conditions.

There is no "bottle effect" (Steemann Nielsen and Kohly, 1956; Pratt 
and Berkson, 1959; Verduin, 1960; Vollenweider and Nauwerck,
1961; Soeder and Tailing, 1969; Ryther e t ai, 1971; Qasim e t ai, 
1972; Sheldon e t  a l , 1973; McCarthy e t  a l , 1974; Venrick, e t  a l ,  
1977).

Daily absolute nitrate and carbon uptake was calculated assuming 13
hours/day to compensate for diel periodicity of carbon and nitrate 
productivity and reduced uptake at low irradiances (Doty and Oguri, 
1957; Goering e t  a l , 1964; Harding e t  a l , 1981). In late May at 
latitudes greater than 60°N, daylight exceeds 16 hours (Nautical 
Almanac), but I assumed low solar angles would result in decreased 
water column light penetration. Daily ammonium uptake rates were 
calculated based on 24 hour days since the NH*-N uptake mechanism 
is not strongly dependent on radiant energy (Goering e t  a l , 1964; 
Dugdale and Goering, 1967; Glibert e t  a l , 1982; Harrison, 1983; 
Nalewajko and Garside, 1983).



It was assumed that rates measured at one depth could be used to
calculate mixed-layer primary productivity or nitrogen uptake.
Rate estimates were obtained taking the vertical chlorophyll a 
distribution and primary productivity response to irradiance into 
consideration. For details see table 9 "Notes".

It is assumed that sampling using Niskin bottles reflects in s i t u  
conditions (Calvert and McCartney, 1979).

1SN i sotope experimental a p p r oa ch;

Samples were collected in the morning. Sampling depths were 

standard X surface irradiance depths (100, 50, 25, 10 and IX) as 

determined by Secchi disk or underwater PAR (photosynthetical1y active 

radiation, 400-700 nm) measurements (LI-C0R LI-185 meter/LI-192S quantum 

sensor, in pEinsteins m ~ 2 s- 1 ).

Clear Pyrex reagent bottles (1.05 1) were used as incubation 

vessels. In s i t u  percent surface light intensities were simulated using 

nickel neutral density screens (Perforated Products, Inc.). Samples 

were mixed before filling the bottles (Venrick e t ai, 1977).

Zooplankton was not removed. Autoclaved stock isotopic solutions (2-10 

i/gat ml- 1 , 99 atom ’/. K’1SN 0 3 or 1SNH,C1> were used for label additions. 

Incubation took place on deck in a seawater cooled incubator, at 

temperatures 0.5-l°C higher than sea surface temperatures. Integrated 

PAR (LI-C0R LI-500 integrat or/LI-192S quantum sensor) and bath 

temperature were recorded. Following incubation for 8-8.5 hours, 

samples were filtered through precombusted (4 hours at 500°C) 47 mm 

Gelman A/E glass fiber filters (0.3 pm manufacturer's suggested 

retention ability), frozen, and later freeze-dried in Fairbanks.

Samples were preserved in desiccators, under vacuum. Samples were not 

treated with BaSCU (Wada et ai, 1977). Therefore losses of labile

11
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nitrogenous compounds due to local increases of pH in the filters may 

have occurred.

At each experimental depth, 1 1 seawater was filtered for isotope 

ratio estimates of unlabeled particulate material. Many isotopic 

nitrogen uptake studies assume a global, constant, 1=N natural abundance 

= 0.366 atom ’/. - 1.5% relative (Fiedler and Proksch, 1975), even though 

great variability in natural 1=N abundance has been observed (Wada et 

a 1 , 1977).

Samples were combusted in a Coleman Nitrogen Analyzer using a 

modified dry Dumas method (Barsdate and Dugdale, 1965). The final 

1SN : 14N isotope ratio was measured on a modified Bendix time-o f- f1ight 

mass spectrometer (precision*. 3.07. error at 1=N < 11 atom %, 4.7% error 

at 15-25 atom '/.).

Reviews and comments on 1=N tracer mass spectrometry principles, 

techniques, assumptions and calculations can be found in Fiedler and

Proksch (1975), Wada e t  al (1977), Slawyk e t  al (1977, 1979) and Fisher

et al (1979).

The absolute nitrate uptake rates reported below (tables 8, 9) were 

calculated assuming no strong dependence of nitrate uptake on 

irradiance. Therefore mixed-layer integrated rates may have been 

overestimated. 1=N 0 3-N incubations were carried out under simulated 10

and 50% surface irradiance, and specific uptake rates were similar at

both irradiances or seemed to decrease at the higher irradiance. 

Sambrotto (1983) discusses the response of open-water Bering Sea 

phytoplankton to varying irradiance in spring.
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Mi chaeli s-Henten equat ion p a ra me te rs:

Linear transformat 1 ons of the information presented in 'substrate 

(S) vs. su bstrate:specif 1 c uptake rate (S/V) ratio' plots are used to 

estimate half saturation constants (Ks ) and maximum specific uptake 

rates (V MAX ) , as follows:

From the Michaelis-Menten equation:

V = (V MAX * S )/ (Ks+S)

Dividing both sides by 'S' and rearranging the reciprocal equation, 

we obtain the linear relationship*.

S/V = (B/V max) + (K./V max) I 

from which the inverse of the slope is VMftx, and Ks can be calculated 

from the intercept term in the formula and the value obtained above for 

V m a x  by linear regression analysis.

Similar transformations are the Lineweaver-Burk equation and the 

Eadie-Hofstee plots (Lehninger, 1977, p . 195). Better estimates may be 

obtained using hyperbolic algorithms.

Ammonium regeneration by zooplankton:

Data from zooplankton grazing experiments conducted by R. T. Cooney 

and K. 0. Coyle (unp. data) were used to estimate zooplankton excretion 

rates. Two methods were used:

I.- Using published zooplankton excretion rates (pp. 81-82):

E = R N H * * W / ( Z* 1000) = (ygat NH, 1 " 1 d ~ M
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Where i
E = NH« excretion rate
RNH« = 0.107 vgat NH« I-1 mg d w t -1 d -1 (Smith and Whitledge, 1977).
W = zooplankton dry weight 100-1115 mg dwt m -3 (Cooney and Coyle,

u n p . d a t a , table 7).
Z = depth of net tow (40-60 m)
1000 = conversion of cubic meters to liters

II.- Zooplankton assimilation efficiency:

Assuming zooplankton assimilation efficiencies of 70-80’/. of the 

plant material consumed (Cooney, pers. comm.), and a phytoplankton C:N 

ratio = 9.0 - 11.0 (at,), the 20-307. nitrogen excreted is obtained:

E' = 6*A /(Z * 12*9) = (ygat NH* 1 ~ 1 d ' 1 )

In whi c h :
E' s NH« excretion rate
G = zooplankton grazing rate (mgC n r 2 d " 1 )
A = excreted fraction of material consumed (.2 for 807. and .3 for 70’/.

assimilation efficiencies). This value may be approximated by 
(1-f) .

Z = depth of net tow
12 = atomic weight, Carbon
9 = C:N ratio (per atoms) of phytoplankton, 1982 data

Carbon uptake (N aH ^ C O s )  experi ments:

Marine primary productivity measurements used a modified Steeraann 

Nielsen (1952) N a H I4C Q 3 uptake technique (Strickland and Parsons, 1972; 

V o l 1enweider , 1974). Alkalinity of the water was estimated according to 

Strickland and Parsons (1972).

Gieskes and Van Bennekom (1973), Peterson (1980) and Carpenter and 

Lively (1980) review the historical background, problems and assumptions 

involved in the application of the radiocarbon technique to aquatic 

productivity. Assumptions as stated above for the N-uptake experiments 

apply here as well.
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Experimental samples were incubated on deck in 160 ml clear Corning 

glass milk dilution bottles -for 4-5 hours, with radioactive isotope 

additions of 0.5-1 ml (5 uCi m l - 1 , Strickland and Parsons, 1972).

Labeled material was collected on 25 mm diameter Belman A/E glass fiber 

filters (manufacturer's suggested retention ability: 0.3 t>m) or

MilliporeR filters (0.45 yns suggested retention ability). Both seemed 

to clear adequately in scintillation cocktail. No dilute HC1 solution 

nor fumes were used to eliminate contaminating radioactive carbonate 

deposits from the filters, since at the low ambient seawater 

temperatures a filtered sea water rinse should suffice to eliminate the 

problem. Sample filters were placed in labelled 7 ml scintillation 

vials and 6-7 ml wet scintillation fluor added. The sample was not 

poisoned in any other way.

The fluor was prepared as follows (Donald M. Schell, pers. comm.)!

2 1 Toluene (reagent grade)
1 1 Triton-X (Kodak)

10 g PP0 (New England Nuclear)
1 g Bis-msb complex (New England Nuclear)

Sample radioactivity was measured in Fairbanks in a Beckman LS-100 

scintillation counter (tritium and tritium + l4C windows). Dpm 

(disintegrations per minute) were estimated by channels and external 

standard ratio methods.

Working N a H 14C03 solution (5 yCi ml-1 in 10 ml glass ampoules) 

was prepared as in Strickland and Parsons (1972). "Carrier free" (free 

of non-labelled carbonate) N a H 14C 0 3 stock solution was obtained from New 

England Nuclear (5 mCi in 5 ml ampoule).
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Stock N a H 14C 0 3 nominal radioactivity was measured by injecting 1-2 

vl of the 5 yCi m l -1 working solution into a mixture of 2 ml 

methanol and 0.2 ml ph en et hy1 a m i n e , to prevent the loss of carbon as 

C02 (Weimer et a l , 1975; Ilmavirta and Jones, 1977). 4-5 ml

scintillation fluor were added. Methanol aids miscibility of the 

aqueous label solution and phenet hy la mi ne.

Experiments with seawater containing natural phytoplankton 

assemblages from a particular depth were performed at various simulated 

light intensities. For each sample, two dark carbon uptake replicates 

and three replicate subsamples at each simulated light intensity were 

incubated. The replicates were averaged, and dark carbon uptake 

subtracted from the light averages. I assumed uptake of carbon in the 

dark represents heterotrophic activity not associated with 

ph otosynthesis.

The values presented below (carbon uptake in the light minus dark 

bottle measurements) are assumed to estimate net primary productivity 

(Pnet). The validity of applying a respiration correction to **C data 

to calculate gross photosynthesis has not yet been resolved (McAllister 

et a l , 1964; Bunt, 1965; Morris and Beardall, 1975; Laws, 1975; 

Peterson, 1980). Photorespiratory carbon losses in the phytoplankton 

seem to be of potential importance, but there still is no quantitative 

verification of actual photorespiration of phytoplankton in natural 

aquatic environments (Parsons e t  a l , 1977). Epontic (under-ice) algae 

may have evolved an efficient strategy for reducing respiratory losses, 

namely growing in the underside of the ice platform and avoiding 

stresses due to water column mixing deeper than the critical depth. The
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ecological significance of ohotorespiration and photoinhibition in 

estimates of carbon flow in planktonic systems is difficult to assess.

The question of over- or underestimation of productivity by the 

H 14C0 t method is still unsettled. Morris (1980) suggests that due to 

the production of storage products in eutrophic waters, the radiocarbon 

method may overestimate primary productivity. Peterson (1980) and 

Legendre et ai (1983) suggest that the method underestimates P if dark 

carbon uptake is subtracted from light uptake. In general, the problem 

of underestimating productivity by using the radiocarbon method seems to 

be most pronounced in oligotrophic marine (Sheldon et ai, 1973; Sheldon 

and Sutcliffe, 1978) or limnological waters (Verduin, 1975). The 

problem may not affect carbon uptake measurements of the ice edge 

production regime during the late winter and spring, when the region 

behaves as an eutrophic svstem.

Guidelines for treatment of irradiance v s . productivity data can be 

found in Platt et ai (1980), Gallegos and Platt (1981) and Cote and 

Platt (1983). Vollenweider (1966) also suggests a family of functional 

relationships to describe the resulting 'irradiance vs photosynthetic 

rate' curves. Here the approach of Steele (1962) is used, as in Kremer 

and Nixon (1978):

G = 6 m « x * (I/I OPT ) * e x p (1 - ( I/ 1 OPT > ) ,

where G = production rate (mg C m~s h " 1 )
0M A  X = maximum productivity
I = irradiance (uEinsteins nr2 s - 1 )
I O P  T  = optimum irradiance

The model curves (dotted or continuous lines) in figures 12-21 stop 

at on-deck irradiance (100% surface light intensity) for each
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experiment. This was the highest irradiance to which a particular 

sample was exposed.

All the above are empirical models. A mechanistic description of 

the natural process has not been accomplished vet.

As mentioned in the assumptions, daily production rates were 

estimated assuming 13 hour days.

Epont i c algae 1SN and 1*C i ncubat i o n s ;

Epontic (under-ice) algae were also subjected to 1=NH«-N, 1=N03-N 

and H 14C0-! uptake measurements. Ice samples were collected with buckets 

from slush surrounding the ship.

In one instance a floe (approximately lxl.5x1.5 m 3 ) was brought on 

board with a hydraulic crane. This was an opportunity to observe the 

"spongy" underside of spring ice, where a brown algal layer (bottom 3-25 

cm) develops. Part of this colored layer was shaved into a bucket and 

left to melt at ambient temperature and subdued light. The slush was 

stirred occasionally, and after 4-5 hours, bottles for nitrogen and 

carbon uptake experiments were filled. The temperature of the ice-water 

did not change over the thawing period. Samples for chlorophyll a, 

nutrient concentration, alkalinity (see Jones et ai, 1983), particulate 

C : N ratio, algal species composition and l=,N abundance in unlabeled 

particulate N were collected.

Measurements of N and C assimilation in the ice environment are 

riddled with problems, as witnessed by Clasby et ai (1976), and should 

be regarded as gross approximations, I consider the epontic carbon and 

nitrogen uptake rates presented in this thesis to underestimate in s i t u
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activity, mainly due to previous brown ice decay, washout of cells while 

the floe is hauled on board, the poor chances of uniform label 

distribution in the incubation bottles, and the potentially adverse 

conditions arising from salinity and temperature changes as the ice 

thaws during the incubation. Conversely, heterogeneous label 

distribution in the incubation vessels can lead to high label activity 

pockets in which the algae assimilate large amounts of an isotope (1=N, 

14C), resulting in an overestimate of productivity (D. Schell, pers, 

c o m m . ).

C;N ratios (piankton elemental composition):

Samples for particulate elemental composition were collected on 

precombusted 25 mm Gelman A/E glass fiber filters. Water volume 

filtered varied depending on particulate matter concentration in the 

w a t e r .

Particulate nitrogen was estimated by Micro Dumas combustion in a 

Coleman Nitrogen Analyzer, bv a modified Solftrzano and Sharp (1980) 

technique, or by combustion in a Perkin-Elmer 240C Elemental Analyzer 

(PN, PC). Banse (1974, 1977) discusses possible errors involved in C:N 

and C :c h 1o r o p h y 11 ^ d e t e r m i n a t i o n s .

Phytoplankton species identification and en um e r a t i o n :

Water for phytoplankton identification was preserved in 100 ml jars 

with modified Lugol's solution (Rodhe, Vollenweider and Nauwerck, 1956; 

V o l 1e n w e i d e r , 1974). Approximately 1 ml per 100 ml of sample was used 

to produce a moderate tea color.



Standing stock determinations were made by cell counts under a 

Zeiss inverted phase contrast microscope (Utermohl, 1931, 1958).

Each preserved sample was agitated, poured into a 5 ml Zeiss settling 

chamber and left to settle overnight. Bubbles were removed -from the 

chamber with a thin wire an hour before counting. The volume in the 

chamber was brought back, to 5 ml with deionized water, and the chamber 

covered again before counting. Phytoplankton were identified and 

counted at 40X and 100X magnification using the following keys: 

Rabenhorst (1930, 1933, 1959 and 1961-1966), Cupp (1943), Yamaji (1966) 

and Takahashi (1981).

Depending on the concentration of cells in the sample, 1/2, 1/4 or 

1/8 of the bottom plate was counted. Theoretically, a statistically 

correct count has been accomplished after counting between 100 - 300 

cells (K. 0. Coyle and L. S c ha nd el me ie r, pers. comm.). Counts are 

reported as cells 1~ 1 .



RESULTS AND DISCUSSION

I. FalI ice-edge pri mary product i vi t y ;

Solar heating of the Earth's surface is strongly dependent on 

latitude, decreasing toward the poles, with a minimum in December in the 

northern hemisphere. In late October in the Chukchi Sea, high storm 

frequency contributes to reduced insolation as cloud cover increases, 

and low temperatures induce southward sea-ice advance (Pease, 1981). 

Winter ice-edge primary productivity is likely to be limited by light, 

temperature and sometimes nutrient availability. Under similar 

conditions phytoplankters are known to lower their metabolic rate, 

become dormant (Slagstad, 1982) or produce spores (Doucette and Fryxell,

1984). During the ice-advance period some phytoplankton cells are 

probably incorporated in forming ice (Meguro e t  a l , 1966; Hoshiai,

1977; Palmisano and Sullivan, 1982). Thus, part of the phytoplankton 

community may overwinter (Buinitsky, 1977).

Specific nitrogen uptake rates (V(NH4 ), V(N03 )) measured in the

Chukchi Sea ice-edge water column on October 23, 1981 (table 2), are

comparable to rates measured during June and July 1981 in the open water 

over the Bering Sea shelf (Miil 1 er-Kar g e r , unpubl. data; Sambrotto,

1983), but are an order of magnitude less than rates measured at the

spring ice edge in 1982 and 1983.

A hyperbolic V(NH*-N) response to incremental ammonium additions
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was -found associated with undetectable NH«-N levels in the water along 

the ice edge (table 2, figure 2). The slower ammonium specific uptake 

rates of the community living at 2 m (in s i t u  rates estimated by label 

additions <1 pgat I- 1 , table 2) may be caused by stress imposed by ice 

formation and low temperatures at the surface (-0.75°C ys. 0°C at 8 m). 

Vn«*(NHa-N) estimates were 2. 33xl0~3 h ' 1 at 2 m and 1.29xl0~3 h " 1 at the 

50’/. light depth. Half saturation constants at 2 and 8 m were K s = 1.77 

and 0.06 pgat N H 4-N I- 1 , respectively.

Table 2. Inorganic nitrogen specific uptake rates (Vt ). Station 
occupied at 71°21'N, i6 6 ° 11'W on October 23, 1981, 0900 local time.

Depth: 2 m Depth: 8 m
Chi aj 1.03 mg 1 “ 1 Chiaj 1.16 mg 1_ 1
Ambient nutrient: Ambient nutrient:
NH4 : 0.00 vgat I-1 NH«: 0.00 pgat I-1

Inorgani c
N 0 3: 5.80 pgat l " 1 N 0 3 : 0.00 pgat I-1

1=N added Vt <NH*) Vt (NOs) V t ( N H 4 ) (NOs)
pgat I-1 x 10~3 h - 1 x 10 -3 h ' 1

0.5 0.7372 1.8922 0.8239 0.0809
1.0 0.7139 1.8084 1.1773 0.0647
2.0 1.1049 1.8034 1.5792 0.2060
4.0 1.6953 1.5362 1.2148 0.2198

Vnflx 2.33 1.29
Ks 1.77 0.06 pgat l-1

The difference between average nitrate specific uptake rates at 2 m 

(1.76xl0-3 h ~ M  and 8 m rates (0.14xl0-3 h - 1 ) was probably associated 

with different ambient nutrient and light levels at the two depths 

(table 2). Algae at 2 m may have been taking up N 0 3-N at V m « x (figure

3). Because of the non-limiting status of nitrate in the shallow sample

and the low uptake rates in the deeper sample, it was not possible to

estimate Ks for nitrate.



Label (NH4) fugot/ii

Figure 2. October 1981 serial concentration aaaoniu* uptake rates at 
the Chukchi Sea ice edge. Squaresi 2 • sa*pl«s incubated at 100X 
surface irradiance (aabient NH«-N * 0.0 i»H). Crossesi 8 ■ saaples 
incubated at SOX surface irradiance (aobient NH«-N * 0.0 vH).
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label (N03) [ugat/1]

Figure 3. October 1981 serial concentration nitrate uptake rates at the 
Chukchi Sea ice edge. Squaresi 2 a saaples incubated at 100X surface 
irradiance (aabient N 0 s-N * 3.8 »N). Crossesi 8 ■ saaples incubated 
at SOX surface irradiance (aabient N 0 3-N * 0.0 nH).

K>
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The f-ratio (ND3-N uptake rate divided by NH«-N + N03-N uptake 

rates, Dugdale and Goering, 1967) was 0.72 at the surface. Upon 

addition of 4 ygat 1 = NH«-N I ' 1 the f-ratio fell to 0.40. This is

unlikely to occur in s i t u  except as a transient event, or perhaps in

waters close to the benthos. Coyle (1981) analyzed fall 

(September-October, 1980) zooplankton samples from the Siberian Chukchi 

Sea and found small animals dominant. Grazing pressure may have been 

less than IX of primary productivity (Coyle, pers. comm.). Low ammonium 

levels in the water and low NH«-N uptake rates also suggest limited 

grazing in the central Chukchi Sea occurs in the fall.

Phytoplankton cells numbered approximately 5 . 7 9 x 1 0 *  m ' 2 (in a 40 m 

mixed layer). Ice 0.08 m in thickness contained 9 . 1 0 X 1 0 6 cells m ~ 3 .

The Shannon-Weaver diversity index (Peet, 1974) of the ice community was 

higher on a per volume basis than that of the water column community, 

while the equitability (Lloyd and Ghelardi, 1964) of both communities 

was similar (tables 3, 4). Twenty seven species (lumping all

Chaetoceros into one group and using it as one species in diversity

calculations, since classification to species level was not possible) 

comprised the ice assemblage as compared to 17 species in the water 

column. N i t z s c h i a  s e r i a t a , N, p u n g e n s ,  R h i z o s o l e n i a  d e i i c a t u l a  and 

C h a e t o c e r o s  sp. dominated the water column and few flagellates were 

present. Many cells trapped in ice appeared intact, but the fraction of 

apparently non-viable cells was not quantified. In the ice C h a e t o c e r o s  

spp. dominated but C y I  in d r o t h e c a  c l o s t e r i u w  was also common. The 

concentration of flagellates in ice was twice that found in the water 

c o lu mn.



Table 3. Station 006, 5m phytoplankton species counts and community
di versi t y ,

Tax a__________________________________________________________ Cel I 5/1
CENTRIC DIATOMS
C o s c i n o d i s c u s  p e r f o r a t u s  400
R h i z o s o l e n i a  d e i i c a t u l a  22,400

a l a t a  (auxospore -formation) 800
C h a e t o c e r o s  spp. 21,600
PENNATE DIATOMS
T h a l a s s  i o n e t a  n i t z s c h i o i d e s  2,800
T h a l a s s  i o t h r  i x d e 1 i c a t u l a  4,000

l o n g  i s s  i a a 1,200
A s t e r  i o n e 1 la ( g l a c  i a l i  s ) j a p o n  i c a  4,000
C y  1 i n d r  o t h e c a  c 1 o s  t e r i u t  8,400
H i t z s c h i a  s e r  i a t a  30,800

f r i g i d a  2,800
l o n g i s s i » a  10,800
p a c i f i c a  400
p u n g e n s  22,000

S u r i r e l l a n o r n e g i c a  400
DINOFLAGELLATES
C e r a t i u > sp. 400
Unidentified flagellates (< 9 ym) 7,600
Total cells 144,800
Shannon-Weaver Diversity index

(Shannon and Weaver, 1963) 3,25
Equi ta bi1 i ty

(Lloyd and Ghelardi, 1964) 0.78
Maximum diversity_____________________________________________ 4.17
NOTE: At least five different species of C h a e t o c e r o s  were

lumped under C h a e t o c e r o s  spp.



Table 4. Station 006, ice sample <n=3) species counts and community
di versi t y .

Taxa__________________________________________________________ Cel 1 s / 1
CENTRIC DIATOMS
C o s c i n o d i s c u s  p e r f o r a t u s  400
C o r e t h r o n  H y s t r i x  400
L e p t o c y 1 i n d r u s  d a n i c u s  1,600
R h i z o s o l e n i a  h e b e t a t a  1,600

a l a t a  3,600
s t y l i f o r a i s  800

C h a e t o c e r o s  s p p . 34,267
B i d d u l p h i a  a u r i t a  1,200
E u c a a p i a  z o o d i a c u s  1,200
PENNATE DIATOMS
C a a p y l o n e  is g r e v i l l e i  400
T h a i  a s s l o n e a a  n i t z s c h i o i d e s  4,400
T h a i  a s s i o t h r i x  f r a u e n f e l d i i  400

l o n g  i s s  i a a  2,800
d e  1 i c a t u l a  3,600

O r a a a a t o p h o r a  sp. 1,200
A s t e r  i o n e 1 la ( g l a c  i a l i s ) j a p o n  i c a  7,200
N a v i c u l a  sp. 400
C y l i n d r o t h e c a  c l o s t e r  i u a 10,667
H i t z s c h i a  section i r a g i l a r i o p s i s  1,600

s e r i a t a  3,067
b i l o b a t a  400
l o n g i s s i a a  5,467
p u n g e n s  5,467

Unidenti-fied diatoms 6,000
DINOFLAGELLATES
C e r a t i u a  sp. 400
D i s t e p h a n u s  s p e c u l u > (Chrysophyta) 400
Unidentified flagellates << 9 ym) 14,800
Total cells 113,735
Shannon-Weaver Diversity index

(Shannon and Weaver, 1963) 3.64
Equi ta bi1i ty

(Lloyd and Ghelardi, 1964) 0.77
Maximum diversity_____________________________________________ 4. 75
NOTE: At least five different species of C h a e t o c e r o s  were

lumped under C h a e t o c e r o s  spp.
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In October 1981, chlorophyll a concentration in the northern Bering 

and Chukchi Seas ranged -from .90 to 9.00 mg Chi.a m - 3 . Patchy maxima 

were seen in the Bering Strait. The information available is not 

sufficient to establish whether this is a local phenomenon. Higher 

phytoplankton biomass in the Strait is reported previously (Dawson,

1965; Arsenyev and Voytov, 1968; Taniguchi, 1969; McRoy, Goering and 

Shiels, 1972; McRoy and Goering, 1974a, 1974b), and may be related to 

local hydrology (Aagard and Coachman, 1975).

Along the ice edge, chlorophyll a ranged from 1.0 to 3.0 mg m~3 . 

Assuming a CsChla ratio of 3 5 s1 for relatively unhealthy phytoplankton 

(Parsons e t  a l , 1977) and a C:N ratio of 8:1 (atoms, Banse, 1974), 

absolute nitrogen uptake was 0.2 ygat NH*-N I-1 d -1 and 8xl0-2 pg-at 

N03-N I-1 d- 1 . At these rates, it would take about 71 days to deplete 

surface nitrate and over 20 days to double cellular nitrogen.

11. Spri nq oceanograph i c observat i ons i n the ice-edge habi t a t :

The distribution of physical-, biological- and 

chemical-oceanographic variables in the spring 1982 Bering Sea ice edge 

was generally similar to that observed previously (figures 4, 5, 6), 

even though climatic differences between 1982 and 1975-1977 were great 

(Alexander and Cooney, 1979; Alexander and Niebauer, 1981; Niebauer et 

a l , 1981). Niebauer and Alexander (in prep.) discuss the 1982 ice-edge 

zone. However, physical oceanographic and meteorological conditions at 

the Bering Sea ice edge differed drastically between spring 1982 and 

spring 1983. In late April 1983 the ice edge was over 380 Km further 

north than in early May 1982 at the longitude of Nunivak island (166°W,



figure 1), Large interannual (1976-1979) variations in maximum ice 

extent have been noted before (Niebauer and Alexander, in prep.).

Between March 30 and May 1, 1982, the ice edge was relatively 

stationary and near normal maximum (Navy-NOAA Joint Ice Center, Naval 

Polar Oceanography Center, Suitland facsimiles). Around 27 April 1982 

large polynyas formed in the southeastern Bering Sea-Bristol Bay area 

under 15-25 Kn winds from the NNW. On May 1 air temperature was between 

-5 and -2°C with a high wind chill factor, and grease ice (a thin layer 

of new ice slush) formed in the sampling area. By May 3, 1982, 

north-central Bering ice cover was less than 4/10 (areal coverage) and 

Bristol Bay coasts became partially ice-free (polynyas not shown in 

figure 1). Between May 7-11 wind direction changed to SSW (0-7 Kn, 

0.5°C). The 18 May 1982 ice-edge position was similar to that of late 

April, 1983 (figure 1).

Maximum ice extent in January - March, 1983, approximated the May 

4, 1982, ice-edge contour of figure 1 (normal maximum extent, Overland 

and Pease, 1982). An earlv retreat occurred between April 1 and April

26, 1983, to north of Nunivak island (figure 1). Soon after May 3,

1983, the Bering Sea coasts including Norton Sound became almost 

ice-free (less than 3/10 cover), and the ice edge became extremely 

i rr eg ul ar.

Late April 1983 cross sections frequently showed homogeneous 

vertical density profiles related to tidal upwelling close to the 60 m 

isobath (figures 7, 8c). Density decreased towards the north with water 

column depth (figure 11c). Low s h a l 1ow-water-column sigma-t (<80 m

depth; <25.0 sigma-t units E of St. Matthew Island: figure 8c; <25.6
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sigma-t units N and W of St. Matthew Island, figures 9c, 10c) compared 

to deep (bottom depth >80 m) Bering sigma-t values 0 2 6 . 0  sigma-t units, 

figures 9c, 10c, 11c) suggest that the early 1983 ice retreat was caused 

by a rapid, massive, ice thaw. Ice retreat and continuous high winds 

precluded stabilization as strong as seen in 1982 (average mixed-layer 

depth at all stations was 32 m in 1983, compared to 22 m in spring 1982, 

assuming that both sampling areas and periods are similar - see figure 

1). The uniform salinity/density gradient with depth in the 1983 

sections (figures 8c, 9c, 10c, 11c) suggests that late April - early 

May, 1983, stable meltwater structures (cf. figure 6c, 1982, but at a 

smaller scale) were transient, and that breakup of the ice-meltwater 

layer diluted the more saline deeper waters. Chlorophyll a_ 

concentration increases were associated with the gradual density changes 

with depth (figures 8d, 9d, lOd). The chlorophyll £  concentrations seen 

in late April 1983 (1-10 mg Chla m ~ 3 ) were, however, not of bloom 

proportion 0 2 0  mg Chla m - 3 , cf. figures 6d, lid). Fast plant growth 

may have occurred in the transient surface meltwater structures, and the 

cells mixed deeper by wind action. The phytoplankton would thus 

experience lower irradiances and net productivity would decrease. Low 

water-column chlorophyll a_ may have also been the result of 

light-limited phytoplankton growth independent of prior development of a 

stable upper-water-column structure.

Continuous surface chlorophyll admeasurements conducted in 1982 

(figure 4) show the ice-edge bloom in relation to ice position. The 

wind reversal of May 7-10, 1982, pushed the ice edge 100 Km shoreward 

without disturbing the bloom or the meltwater structure (figures 4, 6 d ,
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May 11 transect). In such a situation, shallow meltwater structures 

(figures 6b, 6c) may not last more than a week, unless a new ice 

advance/thaw occurs, or insolation is strong enough in May, in which 

case temperature stratification will ensue. Otherwise the mixed layer 

depth will increase.

Epontic algal communities were rare in 1982 but ubiquitous in 1983. 

The colored ice layer varied in thickness from 1 to about 35 cm in 1983. 

Pigment concentration in the ice ranged from 5-130 mgChla_ m - 3 . Slush 

ice and ice floes may contain over 4xl03 mgCh 1 a_ m -3 (Whitaker, 1977, 

Alexander and Chapman, 1981; Hoshiai, 1981, 1977). Brown ice is 

fragile (Buinitsky, 1977), and is probably the first ice to melt or be 

shaved off in ice floe collisions. The epontic algal community thus 

released to the water column, and the lower degree of vertical 

water-column stability in 1983 as compared to 1982, may explain the 

chlorophyll a_ patches found on the bottom, at depths ranging from 60 m 

to 110 m (figures 9d, lOd, lid).

Shelf nitrate levels were lower in 1983 than in 1982. However, it 

is not clear if this difference is due to geographical separation of the 

sampling areas (figure 1). In 1983, N03 -N concentration exceeded 17 

pgat l-1 seaward of the 80 m isobath, from 10-12 pgat l-1 between 

the 60 m and 80 m isobaths, but was less than 6 pgat l-1 shoreward of 

the 60 m isobath (figures 8 f , 9 f , lOf, Ilf). This may be normal at the 

end of winter over the shallow (40-60 m) central Bering Sea (Niebauer e t 

a l , 1981), and is probably the result of limited water exchange between 

the deeper Bering Sea and the shallow shelf, as well as slow 

nitrification rates due to low winter temperatures. The nitrate



gradient with depth across the shelf was probably accentuated by slow 

plant growth throughout the water column in spring 1983. N03 -N

isopleths reflected sigma-t structure and indicated a deep (>60 m) water 

invasion of the shallower shelf along the bottom (figures S f , 9 f , lOf, 

Ilf) .

Ammonium distribution did not seem to follow density patterns but 

could reflect weak physical mixing (figures 8e, 9e, lOe, lie). NH«-N 

isopleths intersect the sediments at two points in figure 9e (station 

39). figure lOe (station 57. 58) and figure lie (stations 70-74). This 

indicates that shallow shelf (<60 m) NH*-N may have resulted from 

remineralization of recently settled out plant cells in or close to the 

sediment. Niebauer et al (1981) noticed a tendency of ammonium to 

increase in the ice-edge zone after the onset of stratification and 

suggest that in s i t u  ammonification may be the mechanism.

Stations 2, 7 and 17 (figure 8d) were occupied successively in the 

same area during early development of the spring 1983 bloom.

Chlorophyll a rose from less than 1 mg m~3 to about 6 mg m-3 in 5 days, 

Station 72 (figure lid) was occupied at the same location on 5 May 1983. 

The slow chlorophyll a_ increase (compare with 1982 data! table 9) is 

probably associated with higher frequency of mixing events in April-May 

1983 as compared to the same period in 1982. Stations (18, 33, 71),

(19, 32, 70) and (20, 31, 69, see Appendix) represent other time series 

showing little plant growth between the last days of April and May 5, 

1983. These stations were continuously affected by both tidal and wind 

mixing since they were close to or shallower than the 60 m isobath (cf, 

figure lid).



Between April 30 (station 41, figure 9d) and May 1, 1983 (stations 

45-46, not shown), subsurface (15-20 m) chloropyll a_ levels rose from 6 

to 8-11 mg m * 3 over deep (>100 m) waters. A mixed-layer temperature 

increase (approximately 0.3°C) was in part responsible for stability, 

suggesting that the developing bloom was in a transitory stage between

ice-edge blooms and open Bering shelf blooms.

A transect parallel to the ice was occupied west of St. Matthew 

Island on 2 May 1983 (figure 10). Stations 54, 55 and 56 had less than 

1/10 ice cover, stations 57 and 5B had no ice and station 59 had

(4-6)/10 cover. Clorophyll a_ levels were less than 5 mg n r 3 except at

stations 54 and 55. Looking north (into figure lOd) a 2.0 mgChla o r 3 

isopleth was found between 20 and 60 m depth. The intrusion over the 

shelf of deep Bering Sea water, rich in N 0 3-N, is evident from the 

sigma-t and N 0 3-N + N02 -N profiles (figure lOf). Waters west of St.

Matthew Island were more saline below 60 m 0 3 2 . 2 0  ° / a a , figure 10b).

This indicates the relative proximity of these stations (figure 7) to 

the shelf break (170 m ) . Further west of St. Matthew Island the ice 

edge extends over still deeper waters (figure 1).

On May 5, 1983, the water column east of St. Matthew Island showed 

a weak, relatively uniform, cross-shelf horizontal density gradient 

(0.0026 sigma-t units K m - 1 ) with increasing depth (figure 11c). A mixed 

layer was present at 15-25 m in this section (differences of 0.05 

sigma-t units or 50 g m -3 across the MLD), but is masked in figure 11c 

by large scale horizontal gradients (vertical exaggeration: X4600).

The effect of insolation on upper water column temperature is apparent 

in the 5 May, 1983, transect, where vertical stability was due to both

33



vertical temperature gradients and salinity differences (figures 11a, b 

c). A bloom developed in the period between 22 April and 5 May, 1983, 

across the shelf east of St. Matthew Island (figure ild), reducing 

surface N 0 3-N (figure Ilf). Phytoplankton must have grown faster than 

vertical mixing rates to develop the 15-26 mgChla fir3 maximum present 

between 5-30 m, but high concentrations of pigments were seen all the 

way to the bottom at stations 74 and 75.

Average MLD (NH»-N + N03- N ) : (PCL-P) (atoms) for all April-May 1983 

stations was 5.3; for February 1983 it was 9.9 (Muench, unp. data.). 

These ratios suggest that phosphorus was in excess in the mixed layer 

relative to the average deep oceanic N:P ratio (15sl at, Redfield e t al 

1963), and was not a limiting nutrient at the onset of the ice-edge 

bloom. Dissolved silica levels were also high.
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Bering Sea spring ice-edge primary product!vi t y ;

High storm frequency and ice cover resulted in low subsurface light

intensity at the ice edge in April and part of May, 1983. Under

relatively calm conditions (winds < 20 Kn), surface irradiance averaged 

0.4 times on-deck irradiance in 1982 and 0.7 in 1983. Extinction 

coefficients increased with water-column productivity (k=.ll-.56 irr1, 

ave.=0.33 n r 1, 1982; k = 0 . 15-0.33, ave.=0.21 n r 1 , 1983). Euphotic zone

depth (0.17, surface light intensity) was reduced to less than 15 m on

May 5, 19B2, in a water column with 176 mgChla_m~2 (MLD integrated). 

Euphotic depths in 1983 were less than 35 m in several cases (stations 

7, 42, 50, 56 and 74) due to high cloud coverage or/and ice presence 

(station 42, 56). High plant concentration in the water column also 

decreased the euphotic depth in 1983 (station 42: 14 mgChla_ nr2 ; 

station 74: 243 mgChla m-2 in MLD). As mentioned above, it is not

clear if the information collected at the Bering Sea ice edge in 1982 is 

directly comparable to 1983 data, due to differences in geographical 

location and time of collection between the two years. Nevertheless, 

this information suggests that primary productivity in 1983 was less 

than in 1982.

Ice-edge phytoplankton are adapted to a low-light environment. 

Epontic algae adaptation to low light has been reported by Clasby et aJ 

(1973). Steemann Nielsen (1975) and Falkowsky (1980) observe that shade 

adaptation is important in a stratified water column. Beardall and 

Morris (1976) show that growth at low irradiances leads to enhanced 

ability to use low light levels. The higher photosynthetic capacity of 

deeper phytoplankton would increase water-column integrated



productivity.

In the ice-edge bloom, maximum photosynthetic rates occurred at a 

fraction (177. - 5 0 X ) of surface irradiance (figures 12-21, also see 

Methods). Photoinhibition took place at irradiances found in the upper

0-1.5 meters (>100 »E n r 2 s _1 in 1982, >200 yE nr2 s_1 in 1983) 

while the optimum light intensity for photosynthesis occurred at around 

the bottom of the mixed layer (<200 yE m~2 s _ 1 , both in 1982 and 

1983). Photoinhibition may be a consequence of chlorosis (i.e. the 

yellowing, bleaching or decay of chlorophyll; Falkowski, 1980;

Slagstad, 1982), and may depend on the light history of the plants and 

degree of mixing in the mixed layer (Denman and Gargett, 1983;

Falkowski, 1983). Gallegos e t ai (1983) discuss the susceptibility to 

photoinhibition and subsequent adaptation to high irradiances in 

phytoplankton of the Canadian Arctic.

Steele's (1962) equation (see Methods) projected optimum

irradiances (Io p t ) between 17-407. surface (on deck) light intensity in 

1982 and from 30 to 50% in 1983. Such response to light variation was 

evident in 1982 and 1983 phytoplankton (figures 12-21) and ice algae, 

suggesting that all these communities were similar.

Steele's equation cannot predict absolute carbon fixation rates 

unless P piox (maximum photosynthetic rate) and Io p t  are known. The

relationship held at all surface light intensities at which experiments

were conducted, except at station 74 in 1983. Samples collected at 

different depths at any station had similar responses to irradiance but 

different P m a x  (figures 12-15). This suggests that the mixed layer 

phytoplankton community is adapted to a particular relative irradiance

56
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(I/ 1 surf = 17-50X surface irradiance during mid-day). It also suggests 

that the period of photoadaptation to a new I o p t  is longer than the 4-5 

h incubation period. Lewis et al (1984) explore the theoretical 

background and review the literature on the time scale of 

photoadaptation. Lewis e t  al stress that the I v s . P relationship is 

time-dependent and Falkowsky (1980) suggests that adaptation occurs in 

less than 24 h. In general, in the ice-edge zone the same response was 

always observed on a relative (P/P M A X  ) I/I O P T  ) basis as in Goldman 

(1980) .

Platt e t  a l (1982) were able to differentiate between deep and 

mixed layer phytoplankton communities based on their light response 

characteristics, but at the Bering Sea ice edge the vertical separation 

of communities is not as strong due to relatively weaker water-coluntn 

stability. Sambrotto (1983) discusses the vertical separation of SE 

Bering Sea communities during late spring to summer stability as 

reflected in nitrogen uptake measurements. The high potential 

productivity of deeper ice-edge zone phytoplankton may be partially a 

consequence of depressed compensation light intensities of temperate and 

arctic phytoplankton at low temperatures and low insolation (Platt and 

Jassby, 1976; Platt e t  a l , 1982).

The depth at which Iopt occurred was usually also dominated by a 

subsurface chlorophyll a maximum. It would seem therefore that 

phytoplankton are able to adjust their physiology to occupy this 

particular light (and nutrient) level by actively adjusting their 

buoyancy, as suggested by Jamart e t  al (1977), Bienfang (1981) and 

Bienfang e t  al (1983). Maximum absolute photosynthetic rates varied
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directly with biomass or chlorophyll a_ (P = 0 .60*C h1a + 1.55 , n = 17 , r=0.65, 

■figure 22). An increasing trend in P with incubation temperature was 

also noticed.

Photosynthetic rate was low in samples collected at the ice edge 

proper or ice covered waters (stations 37, 48, 49, 50, in 1982) but 

higher in the ice meltwater layer where the bloom was underway (stations 

45, 56, 57, in 1982). In general, primary productivity measured in 1982 

was higher than in 1983. Assimilation numbers were similar in both 

years (<<3.0 mgC mgChla-1 h -1) but biomass was usually higher in 1982. 

Vedernikov (1975) and Platt e t  al (1982) also find low assimilation 

numbers for arctic phytoplankton. Platt e t  al suggest that arctic 

phytoplankton in general may not utilize light very efficiently, 

whatever the mechanism of adaptation. At station 74, in the transect 

with highest biomass in 1983 (figure lid), 10 m productivity was low 

(about 6 mgC n r 3 h -1 by 10.5 mgCh la _m '3 , figure 21) compared to 1982 

productivity (up to 18 mgC m~3 h-1 by 9.3 mg Ch la ^m- 3 , station 45, figure 

13 and possibly station 57 by 17.8 mg Chla m ~ 3 , figure 14). Plants at 

station 74 (1983) did not show photoinhibition even at irradiances over 

700 pE nr2 s _1 and showed sustained photosynthetic rates between 10% 

and 1007, surface light intensity. Alexander (pers. comm.), in a 

previous study, did not find photoinhibition in the Bering Sea spring 

ice-edge bloom.

The different shape of the irradiance ys. carbon uptake curve at 

station 74 (1983, figure 21) suggests the presence of a species 

assemblage different from ice-edge communities. Phytoplankton species 

counts show that at all other 1983 stations either T h a i  a s s i o s i r a  spp.
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(see below), N i t z s c h i a  section 1:r a g  i 1 ar i o p s  i s or unidentified 

■flagellates numerically dominated the phytoplankton. These were also 

the species that were most abundant in brown ice samples. At station 74 

these species were still present in the water column (very few 

T h a i  a s s i o s i r a  spp. were counted), but C h a e t o c e r o s  spp. comprised over 

30'/. of the phytoplankton. In particular C. d e b i l i s  was found in great 

numbers (>2.4xl0=’ cells l " 1 ).

No animals (crustaceans, polychaetes or fishes: Horner and

Alexander, 1972; Alexander, 1974, 1981) were seen in the brown layer of 

the underside of ice floes. Alexander and Chapman (1981) conclude that 

Bering Sea ice-edge blooms can be seeded by epontic species but point 

out conflicting reports (Horner and Alexander, 1972; Saito and 

Taniguchi, 1978; H a m e e d i , 1978; Schandelmeier and Alexander, 1981).

The taxonomic data collected during 1982 and 1983 is not enough to 

describe in detail the succession (Odum, 1969) of species following the 

ice-edge bloom, and the problem is further complicated by the presence 

of flagellates (Bonin e t  a l , 1981). Epontic species and ice-edge bloom 

species seem to be similar and N i t z s c h i a  section f r a g i l a r  i o p s i s , H. 

s e r i a t a , H. f r i g i d a , P J e u r o -  or G y r o s y g t a  and several T h a i  a s s i o s i r a  

species (7. d e c i p i e n s , T. g r a v i d a , T. r o t u l a ,  T. a e s t i v a l i s )  were common 

in both habitats.

Productivity of the epontic community ranged from 38-145 mgC nr3 

h ~ 1 with pronounced photosynthetic inhibition at high irradiances. 

Alexander and Chapman report no photoinhibition and rates ranging from 

less than 80 mgC m ~ 3 d_1 to 200-396 mg m " 3 d - 1 , at much higher 

chlorophyll levels than seen in 19B2 or 1983 (see above). These
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physiological differences indicate great variability in community 

composition from year to year.

After the ice-edge bloom, C h a e t o c e r o s  d e b  1 1 is , C . c o w p r e s s a s  and C . 

s o c i a l  is may be dominant transient species in the early open-shelf 

blooms leading to the P h a e o c y s t i s  bloom described by Goering and Iverson 

(1980) and Kokur and Iverson (1980). C h a e t o c e r o s  spp., including C, 

d e b i  1 1 s , were found in epontic algal samples, but in very low numbers. 

The apparent dominance of pennate diatoms in the ice-edge bloom suggests 

that these species are healthy and able to maintain buoyancy, since they 

do not sink out fast. D i no f1a g e l 1ates were present in the ice and the 

ice-edge zone as a minor fraction of the phytoplankton community.

Ice-edge phytoplankton nitroqen u p t a k e ;

At the Bering Sea ice edge, nitrogen is available to algae as 

nitrate, ammonia, and dissolved organic nitrogen. A phytoplankton bloom 

may become nitrogen limited if isolated from nitrogen supplies. Whether 

this occurs at the ice edge is discussed below in a nitrogen budget 

treating nitrogen supply mechanisms.

Results of 1=NH«-N and iaN 0 3 -N uptake measurements carried out in 

1982 and 1983 indicate that phytoplankton at the ice edge were not 

nitrogen limited (figures 23, 24, 25). Rates measured under a range of 

nutrient concentrations did not vary, suggesting saturation of the 

nitrogen uptake mechanisms. The ratio of carbon uptake to total 

absolute nitrogen uptake rate was greater than 1 in all samples treated 

with both isotopes suggesting N-unlimited growth (Slawyk, Collos and 

Auclair, 1977, 1979, Collos and Slawyk, 1980). Inhibition of pNO^-N
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by the presence of NH«-N, as observed by Syrett and Morris (1963), 

Maclsaac and Dugdale (1972), Thacker and Syrett (1972a), Morris (1974), 

Syrett and Leftley (1976), McCarthy e t  al (1977) and Olson (1980) in a 

carbon rich environment was not seen.

NH«-N levels were high (<1.0 to >4.0 pgat I- 1 ) and remained high 

during the 1982 and 1983 sampling periods. N0 3-N decreased rapidly with 

plant growth but was never undetectable (figures 6-11, 23-25). At 

station 68, in 1982, upper 15 m nitrate concentration was about 2 pgat

I-1 and serial 1=N03-N additions induced a hyperbolic uptake response by 

phytoplankton (figure 25). Station 68 was occupied in the stable ice 

meltwater layer where the ice-edge bloom was under development.

Potential specific uptake rates at this station were higher than those 

observed at station 30, even under decreased nitrate conditions (figures 

23-25).

Community nitrate specific uptake rates may change along the 

successional species gradient mentioned above. iaN 0 3-N uptake by early 

spring communities incubated at different light intensities shows 

depression of the rates at high irradiances in high nitrate levels. The 

ratio of the specific uptake rates at 50% surface light intensity (SLI) 

to V(IOXSLI) approached 0.5 at >9.0 pgat N 0 3-N I- 1 . As ambient N 0 3-N 

decreased to 2 pgat I-1 the ratio V {5 0 % S L I ):V (10% S L I ) approached 1.0 

(station 74, 1983), possibly due to a shift in species composition 

towards the end of the ice-edge bloom. The relationship between carbon 

fixation and nitrate uptake mechanisms is discussed by Hipkin e t  al 

(1983). Nitrate uptake inhibition by high irradiance may be related to 

photoinhibition of carbon uptake in early bloom and epontic species. To
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my knowledge this is the -first report of possible nitrate uptake 

photoinhibition.

The mechanisms controlling phytoplankton succession or community 

structure have not been elucidated. For example, Turpin e t  al (1981) 

suggest that small-scale nutrient patchiness can affect individual 

growth rates (y) or community structure, even though there is no 

change in the average nutrient concentration in the water. Succession 

is probably controlled by the light and mixing history of the water 

column as well.

In the ice-edge habitat, the distinction between new and 

regenerated nutrients (Dugdale and Goering, 1967) is unclear due to the 

availability of nutrients to the plants growing in the ice meltwater 

layer (see below). Dugdale and Goering's model only applies to the deep 

ocean with a stable mixed layer. At the ice edge, the proportion of 

nitrate uptake to combined NH.»-N + N03-N uptake (f-factor, Dugdale and 

Goering, 1967) is consistently above 0.65, reflecting the initial high 

concentration and high N 0 3-N supply rates to the upper 20 m. The 

relative preference indices (RPI, McCarthy e t  a l , 1977) suggest that 

ammonium tends to be the preferred nutrient form used by ice-edge

phytoplankton (RPI = 1.06-1.3 for ammonia as compared to 0.93-1.06 for

n i t r a t e ) .

Nitrogen uptake rates of the epontic ice-algal community suggest 

that nitrogen turnover is important in the ice. The nitrogen turnover 

index (Eppley, 1981; Harrison e t ai, 1983) in the brown algal layer was

1.3-1.4 (station 0 4 3 0 2 B ) . The f-factor was 0.41 and the relative

preference indices for ammonium and nitrate suggested preference for



ammonium. High concentration of NH«-N is reported for Arctic sea ice 

(1-22 ugat I- 1 , Alexander and Chapman, 1981). The high abundance of 

flagellates in the present study supports the idea of high nitrogen 

cycling rates in the ice (Azam e t ai, 1983). Individual nitrogen and 

carbon uptake rates and relevant observations for 1982 and 1983 are 

presented in the Appendix.



Ab
so

lu
te

 
Car

bo
n 

upt
ak

e 
[mg

C 
m

— < ^ - f \ j c \ j r \ i c \ i

Absolute Light intensity fuf m'2 s'1]

0 [ml: o Actual 25 [ml: a Actual
Model  Model

(Cmax= 5.5 ; lopt= 35 ZSLI) (Gmax= 8.9 ; lopt= 17 ZSLI)
Figure 12. Absolute carbon vs. irradiance curvet, spring 1982.
Stationi 023037. Syabols are **C03 incubation results. Curves 
represent Steele's (1962) Model (see Method*). Curvet stop at on-deck 
irradianctt teen during incubation. 6«aNBeaNieue photosynthetic rate.
Iopt«optiau* irradiance.



Ab
so
lu

te
 

Car
bon

 
upt

ake
 

[mg
C 

m'3 
h'
1]

Absolute Light intensity fuE m~2 s '1]

0 W: o Actual 20 fniJ: a Actual
Model — ~ ~  Model

(Gmax= 17.6 ; Iopt= 35 ZSLI) (Gmox= 16.4 ; Iopt= 25 ZSLI)
Figure 13. Absolute carbon ks. irradiance curve*, spring 1902.
Station! 02S049. Syabolt arc >4COs incubation results. Curves 
represent Steele's (1962) aodel (see Method*). Curve* itop at on-deck 
irradiance* seen during incubation. 6aaxBaaxiaua photosynthetic rate.
Iopt«optiaua irradiance.

O'
C.H



r

Absolute Light intensity [uE m 2 s 'J

0 [ml: o Actual 15 M :  D Actual
Model   Model

(Cmax= 18.5 ; Iopt= 40 ZSL1) (Cmax= 11.1 ; lopt= 35 ZSLI)
Figure 14. Absolute carbon vs. irradiance curvet, tpring 1982.
Stationi 023037. Syabola are **C03 incubation reeulta. Curve* 
represent Steele'i (1962) eodel <*ee Method*). Curves *top at on-deck 
irradiance* seen during incubation. BaaK^aaxieue photoaynthetic rate.
Iopt*opti*uR irradiance.

l>
O-



r

Absolute Light intensity fuf m~2 s '1]

0  fmJ: o Actual 60 fmJ: a Actual
Model   Model

(Gmax= 1 1 ; fopt= 35 ZSLI) (Cmax= .55 ; Iopt= 30 ZSLD

Figure IS. Absolute carbon rs. irradiance curves, spring 1983.
Stationi 043007. Syabols are **C03 incubation results. Curves 
represent Steele's (1962) aodel (see Methods). Curves stop at on-deck 
irradiances seen during incubation. 8aax-aaxiaua photosynthetic rate.
Iopt*optiaua irradiance.

o-



Ab
so

lu
te

 
Ca

rb
on

 
upt

ak
e 

fm
gC

8. 0

6. 0

4.0  -

2 . 0  -

©

0. 0 J  I I ■ ■ I ■ ‘ ■ » I__I__> 1 1 __I » > . .1 .1
oo ao

(M
oam

aa o
oin

a
o
CD

a
o

a
o
CD

Absolute Light intensity fuE m"2 s '1]

0 LmJ: o Actual
Model

(Gmax= .65 ; Iopt= 30 ZSLI)
Figure 16. Absolute carbon k j . irradiance curve*, spring 1983. 
Stationi 043029. Synbolt are '^COs incubation reeulta. Curvet 
represent Steele's (1962) eodel (see Methods). Curves stop at on-deck 
irradiances seen during incubation. 6«aK«HaKieue photosynthetic rate. 
Iopt*optinue irradiance.



Absolute Light intensity fuE m 2 s '1]

5 [ml: o Actual
  Model
(Cmax= 1.2 ; lopt= 45 E L I )
Figure 17. Absolute carbon vs. irradiance curves, ipring 1983. 
Stationi 043042. Symbols are ,4C 0 S incubation result*. Curve* 
represent Steele's (1962) oodel (see Methods). Curves stop at on-deck 
irradiances seen during incubation. 6eax««axi«UM photoaynthetic rate. 
lopt=opti*u« irradiance.



Ab
so
lu

te
 

Car
bon

 
upt

ake
 

[m
gC 

m'3 
h'

]J

8. 0

6.0 -

4. 0

2. 0 - o

0. 0

q

■ ■ ■ i i i ■ ■ ■ i ■ ■ i i I i i i— j I i i— i i l— i i i— i— l— i— i— i— i I— i— i— i_i— I—o o o o o o o o o  o o o o o o o o
o j m ^ t n t D t ^ o o

Absolute Light intensity fuE m'2 s'1]

15 [ml: o Actual
Model

(Gmax= 1 ; Iopt= 25 ZSLI)
Figure 18. Absolute carbon vs. irradiance curvci, spring 1983. 
Stationi 043050. Syiibols are 14C 0 3 incubation results. Curves 
represent Steele's (1962) eodel (see Methods). Curves stop at on-deck 
irradiances seen during incubation. 6eaxa*axieue photosynthetic rate. 
IoptBoptieun irradiance.



Ab
so

lu
te

 
Car

bon
 

upt
ake

 
[mg

C 
m

—  c a r o ^ t i n c o r ^ o G

Absolute Light intensity fuE m'2 s"'J

5 Lin]: o Actual
Model

(Cmax= 1.7;  Iopt= 30 E L I )
Figure 19. Absolute carbon p s .  irradiance curvet, spring 1983.
Stationi 043056. Bynbols are **C03 incubation results. Curves 
represent Steele's (1962) nodel (see Methods). Curves stop at on-deck 
irradiances seen during incubation. 6Maxs«axisuR photosynthetic rate. 
Ioptsoptinun irradiance.



Ab
so

lu
te

 
Car

bon
 

up
ta

ke
 

[m
gC 

m

8. 0

6.0 -

4.0  -

2 . 0

o

tf

0. 0 oo
-I I t I. -I I I- - i -o

o
OJ

O
m

o
o

■ * i i i— i— i— ■ *o o in
■ ■ i— i i— * i i *— l 

o  o  o
□  o  o
ID CD

Absolute Light intensity [uE m'2 s 'J

30 fmJ: o Actual
Model

(Gmax- 5.2 ; lopt= 30 XSLl)
Figure 20. Absolute carbon vs. irradiance curves, spring 1983. 
6tationi 043059. Syebols are ‘^COa incubation results. Curves 
represent Steele's (1962) Model (see Methods). Curves stop at on-deck 
irradiances seen during incubation. 6«axa,«axieue photosynthetic rate. 
Iopt=optiauN irradiance.



Ab
so

lu
te

 
Car

bon
 

up
ta

ke
 

fra
gC 

m

Absolute Light intensity fuf m 2 s'1]

10 M :  o Actual
Model

(Gmax= 6.5 ; lopt= 50 7.SLI)
Figure 21. Absolute carbon vs. irradiance curves, spring 1983. 
Stationi 043074. Syabols are **C03 incubation results. Curves 
represent Steele's (1962) aodel (see Methods). Curves stop at on-deck 
irradiances seen during incubation. 6aax*aaMiaua photosynthetic rate. 
Iopt*opti*ua irradiance.



Chlorophyl 1 o  t m g C h l  m ~ 3]

Figure 22. Chlorophyll absolute carbon uptake rate. Spring 1982
samples incubated at simulated in situ irradiance. Regreifion linei P 
» 0.60 * Chla + 1.55, r*0.65.



. 025

. 020

O J
t >
CJ

t)

. 015

o
O J

CO

. 010
-+

. 005 □ [I []

□

0. 000 o
a

f j 
in

o
CO

i— i--- 1— i J___ I--- L
o
LO

o
o
(\1

1
t j
1/ I
C\)

Nitrogen concentration (ambient + label) (uMI

Figure 23. 1982 nitrogen concentration vs. nitrogen specific uptake
rates. Stationi 02S030. Surface saeple incubated at 100X surface 
irradiance. Squares ■ NhU-N incubations. Crosses ■ N 0 3-N incubations.



V 
(s

pe
ci

fic
 

ra
te

) 
fh

'!]

. 025

. 020

015

. 010

005

0. 000 I I »______I----------1______1----------1---------- L- 1 i i i 1 L 1--- 1-
a
o

a
in

co
d

o
in

______ i______ i______ i_

o
a
ru

o
in
ru

Nitrogen concentration (ambient + label) fuMJ

Figure 24. 1982 nitrogen concentration k j . nitrogen specific uptake
rates. Stationi 025030. Surface saeple incubated at 10X surface 
irradiance. Squares * NH«-N incubations. Crosses ■ N 0 3-N incubations.

O

30
. 

0



1/ 
(s

pe
ci

fic
 

ra
te

) 
th

'1]

—• — 00 C\J

Nitrogen concentration (ambient + label) fuM]

Figure 25. 1982 nitrogen concentration vs. nitrogen specific uptake
rates. Stationi 025068. Surface saaple incubated at 50X surface 
irradiance. Squares * NH«-N incubations. Crosses = N O s-N incubations.

•̂1

f*. sjmm

30
. 

0



78

II II■ Nitrogen dynami cs at_ the Ber i ng Sea i ce edge i n s p r i n g : a

budgetary a p p r o a c h .

Mel twater-dr i ven stratification of the water column develops in the 

first days of May in the Bering Sea ice-edge zone, inducing an ice-edge 

bloom as described by Marshall (1957) and Niebauer e t  al (1981). The 

development with time of physical (te mp e r a t u r e , salinity, sigma-t), 

biological (chlorophyll a_) and nitrate structures in the April - May 

1982 Bering Sea ice-edge zone is discussed in Niebauer and Alexander (in 

prep.), Except for an initial lag, mixed-layer integrated chlorophyll a 

appeared to increase linearly over time (table 9). Losses to deeper 

water were observed on May 9 (station 58, figures lOd, 27-28), after 

which the rate of chlorophyll a increase may have been slightly curbed 

(table 9).

At the onset of the bloom, mixed layer (15-20 nt) nitrate 

concentration decreased from pre-bloom levels of over 2 0  pgat I " 1 to 

1.0-1.7 ygat I - 1  in less than 7 days (figure 27). lsN-nitrate uptake 

rate measurements conducted during April-May 1982 suggest that as the 

bloom develops in the surface mixed layer behind the retreating ice 

edge, N 0 3-N depletion could occur in 1.5-10 days (see rates in tables 8 . 

9) .

The 1982 time series (Niebauer and Alexander, in prep.; figures 

26-28) shows that N03-N concentrations in the surface meltwater layer 

stabilized at 1.0-1.7 ygat l- 1 . These nitrate levels are similar to 

published N03-N half-saturation constants for marine phytoplankton 

(Eppley et ai, 1969; Maclsaac and Dugdale, 1969; Carpenter and
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Guillard, 1971; Collos and Slawyk, 1980), and, therefore, suggest that 

inorganic nitrogen may become limiting to the ice-edge habitat bloom.

In contrast with the initial rapid decrease in nitrate 

concentration, NH4 -N seemed to decrease only slightly over a 5-8 day 

period in the surface layer and then increase again (figure 28). 

Mixed-layer integrated ammonium levels at the onset of stratification 

were similar to values observed toward the end of the cruise. Ammonium 

depletion was not detected in the ice-edge habitat.

iaNH«-N specific uptake rate estimates averaged 0.0071 h _ 1  in 1982 

(table 5), at stations featuring a wide range of characteristics. 

Stations were chosen from 1982 transects in which there was a completely 

mixed water column (station 30), stability with no evidence of upwelling 

(station 50), and from sections in which upwelling may have taken place 

(stations 39, 44). I consider these estimates to be between saturated 

Vmax (about 0.018-0. 024 h_ 1 , 1982 ice-edge cruise cruise; 0.020 h _ 1 , 

Sambrotto, 1983) and N-limited rates (<0.001 h _ 1 , HX022 fall 1981 

ice-edge cruise; Sambrotto, 1983). Isotopic additions in the 

experiments (table 5) amounted to 17. (station 30), 327. (stations 39 and 

44) or 717. (station 50) of the in s i t u  ammonium concentration. If these 

rates were sustained over 24 hours (Blibert et ai, 1982s Harrison, 

1983), the daily ammonium requirement of an early bloom phytoplankton 

community would be about 0.744 ygat l- 1 . Advanced bloom ammonium 

uptake rates (table 6 ) were calculated assuming constant specific uptake 

rate (V) and PNs chiorophyl1 a_ ratios. The mixed layer depth was defined 

where a difference greater than 0 . 0 2  sigma-t units from surface density 

was detected.



Table 5. Cruise: HX025 (26 April - 16 May, 1982). Phytoplankton 
ammonium uptake rates: specific (V) , absolute (p) and mixed-layer
integrated (Q).

Station Ammonium uptake rate Ambient MLD
V____________£_________Q (M L D ) spike

025030 0.0052 0.0118 1.441 5.6 5
025039 0.0075 0.0235 B. 460 4.1 15
025044 0.0113 0.0760 45.600 4.0 25
025050 0.0044 0.0128 1.536 2.4 5
A v er ag es: 0.0071 0.0310 14.259
Units: V=(h~ 1); p= (pgat I " 1 h- 1); Q(MLD) =(mgat m~ 2 d " 1)
days; Concentration =(ygat 1 ~ 1); mixed layer depth= (m)

Table 6 . Ammonium uptake r a t e s : time series stations.

Station 3 23 42 52 58 78
time (d) 0 1.7 4.7 6.7 8.3 11.7
MLD (m) 20 2 0 15 15 2 0 2 0
c NH* 115 84 32 32 56 119
» Chi a_ 87 74 184 272 359 397
p 11.65 9.91 24.63 36. 42 48.06 53. 15
Ti me-
integr. p 0 . 0 0 18.32 70. 14 131.19 198.77 370.84
dNH«/dz 0.00 0 . 0 0 0 . 0 2 0 . 0 2 0 . 1 0 0.06
Uni t s : s NH4 = MLD integrated (mgat m ~ 2 ); EChla_=(mg m~2 ); /5=(mgat
m ~ 2 d _ 1 ), based on constant V=0.0071 h- 1 , PN:Chla=11.0 and 24 h; 
Time-integrated p=(mgat gained in elapsed time or2); dN/dz at 
MLD=(mgat m - 4 ) .

Water-column ammonium levels, in view of the rates presented in 

tables 5 and 6 , should have decreased rapidly (e.g. depleted after 20 

days at station 30, 7 days at station 39, 2 days at station 44 and 7 

days at station 50), had there been no inputs.

Below I will use the following mass balance equation to estimate 

nitrogen input to the meltwater "dish" at the ice edge: (Nitrogen 

concentration change in the water) = (Supply) - (Uptake). I have two 

knowns in this equation, namely the change in the concentration of the



nutrient (nitrate or ammonia) in the water, and the absolute (p) 

nitrogen uptake rate by phytoplankton. Ammonium requirement of the 

phytoplankton is taken as the average uptake at stations 52, 58 and 78 

(table 6 ), where stability had developed (average MLD =18 m,

P (N H 4 - N ) =45. 9 mgat nr 2 d ~ M  .

There are at least seven mechanisms which may provide nitrogen to 

the physical structure described above and nourish the phytoplankton 

bloom. These can be regarded as the unknown variables in a budgetary 

a p p r o a c h :

1) Atmospheric precipitations Arctic air is unlikely to be a major 

source of nitrogen (Dugdale and Toetz, 1961, Barsdate and Alexander, 

1975; S. Whalen, pers. comm.).

2) Fishes and marine mammals: There is no information available on the 

impact of these animals on nutrient cycling. However, their nitrogen 

excretion may be neglected for purposes of productivity estimates on a 

scale of tens of kilometers and over a period of days.

3) Temporal or spatial aggregations of net zooplankton: Estimates of

zooplankton ammonium excretion have been obtained by Smith and 

Whitledge (1972: small neritic animals = 0,107 pg-at I - 1  mg dry w t - 1

day- 1 ), Gardner and Scavia (1981: the freshwater crustacean D a p h n i a

a a g n a  = 11-44 nmol mg dry w t - 1  h _ 1 ), Biggs (1982: Antarctic mixed

zooplankton of specific gravity 1 . 1  = 1 . 6  pgat g wet w t " 1 h- 1 ; 

T h y s a n o e s s a  spp at 10°C = 2.4-2.7 pgat g wet w t - 1  h _ I ). Jawed (1969,
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1973), Takahashi and Ikeda (1975), Ikeda and Motoda (1978) and Dagg et 

al (1982) provide estimates of roughly similar magnitude.

Cooney and Coyle (unp. data, table 7) conducted grazing experiments 

and zooplankton biomass measurements in the spring ice-edge habitat 

during 1982 and 1983. Grazing by neritic copepod ( C a l a n u s  M a r s h a l  l a e , 

P s e u d o c a l a n u s  spp,, A c a r t i a  l o n g i r e t i s ) and mixed copepod and euphausiid 

( T h y s a n o e s s a  r a s c h i i ) communities amounted to less than 17, o-f the daily 

photosynthetic carbon -fixation (table 7). 1983 data suggest that over

deeper water (>100 m) W o-f St. Matthew Island the larger oceanic copepod 

H e t r i d i a  l u c e n s  was present, but no estimates of the potentially higher 

grazing rates for this species were obtained. These observations are 

consistent with previous studies (Cooney and Coyle, 19B2). Copepod 

biomass in the spring Bering Sea ice-edge habitat (table 7) was too 

small to contribute significantly to the 1982 mixed layer ammonium pool 

(excretion was estimated as described in Methods). Zooplankton biomass 

was highest at stations where T h y s a n o e s s a  r a s c h i i  was present (stations 

6, 50, table 7). Ammonium released by the euphausiid community in a 55 

m water column (4xl0”= to 5xlO"B pgat I-1 h- 1 ) amounts to less than 

0.05% of mixed layer phytoplankton NH*-N requirements (table 6).
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Table 7. HX025 zooplankton biomass, community type and grazing pressure
data (Cooney and Coyle , unp, data).

Stat i on Depth of 
tow in

Type of 
c ommun i t y

Bi o- 
mass

Grazlno 
rate ('/.)

P

025006 60 Mixed 601. 7 1. 09 2981
025010 60 Copep 247.3 0.35 4286
025025 50 Copep 157, 0 0. 50 2116
025027 50 Copep 100. 8 0. 27 2601
025031 50 Copep 132. 5 0.38 2382
025035 50 Copep 117.3 0. 39 2046
025044 60 Copep 96.8 0. 23 2880
025045 60 Copep 146. 6 0. 29 347 1
025050 50 Mixed 1115.1 0. 67 2019
025072 40 Copep 427. 1 0. 75 3932
025074 45 Copep 210.5 0. 23 4321

Note: Community is Mixed if it contains copepod and euphausiid species
and Copep i f  only copepods. Zooplankton biomass is in mg dry wt i t t 2 . 
Grazing rate given as '/. of H 14COs primary production. P = approximated 
primary productivity in mgC itr2 d _1 fixed by algae over 30m in 13 h.

The vertical structure of T h y s a n o e s s a  communities has not been 

resolved (Coyle, pers. comm.). Apparently, in the spring, young animals 

tend to congregate in layers exhibiting horizontal patchiness. The 

population may migrate vertically, seeking an optimum light and food 

level. Older organisms seem to be well adapted for benthic suspension 

feeding (Mauchline, 1966s Coonev and Covle. pers. comm,). Green guts 

in young T h y s a r t o e s s a  specimens collected in 1982 and 1983 (guts were not 

examined microscopically) suggest that these organisms may occasionally 

congregate in the vicinitv of the mixed laver depth (cf. figure 6c) 

during daylight hours, where chlorophyll a maxima are found. The 

T h y s a n o e s i a  may be confined to a 5-10 m layer at the MLD during the day 

and move vertically in unison at night. If mixed community biomass is 

undersampled by 50-90% by using 333 «m mesh, 1 in diameter nets 

(Cooney, pers. comm), the above zooplankton nitrogen output (4xl0~B to 

5x 10”= ogat 1 ~ 1 h r 1) is an underestimate. Correcting for animals that
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were not collected, a mixed zooplankton community may provide up to 1.04 

mgat nr2 d_ 1 , or about 37. of the ammonium needs of the algae. This is 

higher than what is estimated for Ross Sea mixed zooplankton communities 

(about 27. of the NH«-N requirements of the phytoplankton, Biggs, 1982), 

but horizontal patchiness of euphausiid communities in the ice-edge zone 

is high.

4) Ice melting: Inorganic nitrogen input from melting ice will vary

depending on ice cover, ice nutrient concentration and ice thickness. 

Ammonium levels in the ice are variable. During the winter when 

biological activity in the ice is at a minimum, bulk ice (ice plus 

brine) nutrients amount to about 10-20X of the concentration present in 

underlying waters (Schell, pers. comm,). In the spring, thawed ice 

samples showed nitrate concentrations <0.6 pgat I-1 and ammonium 

values ranging from 2.7 to 5.1 pgat NH«-N I- 1 . Ice in the Bering Sea 

ice edge is 0.5-2 m thick, thus thawing ice would not contribute more 

than 37. to the daily phytoo 1 ankton ammonium requirements. Grainger 

(1977) further discusses nutrient dynamics in the ice environment.



85

5) Eddy diffusion, mixing and ice-edge upwelling: Nitrate and ammonium

productivity integrated through the mixed layer and over the 1982 time 

series period exceed the upper 25 m integrated N03-N and N H 4-N levels 

initially present in the marginal ice zone (tables 6, 9). Specific 

N03-N uptake rates obtained during 1982 (table 8) are comparable to pre- 

and peak-bloom rates measured over the southeastern Bering shelf (<0,001 

h - 1 to V m « x (NQj:-N)=0.043410.0025 h " 1 , Sambrotto, 1983). Nutrient 

supply mechanisms must be present to sustain the plant growth observed.

The rapid depletion of nitrate in the upper water column (table 9) 

suggests that nitrogen mass transport across the horizontal gradient at 

the bottom of the mixed layer may be slow in supplying nutrients to the 

bloom. Advective processes over the Bering Sea shelf are also slow 

(Kinder and Schumacher, 1981; Coachman and Walsh, 1981) in relation to 

the ice-edge bloom development. A more effective nutrient-supply 

mechanism may be ice-edge tidal or wind-driven upwelling (Alexander and 

Niebauer, 1981; Niebauer and Alexander, in prep.). An estimate of the 

magnitude of upwelled nitrogen can be obtained by examining nitrate 

sources and sinks in the ice-edge zone.

Nitrification is a potential source of nitrate. Ammonium oxidation 

(nitrification) rates measured in the central Pacific, Bering Sea and 

surface waters of Skan Bay (Unalaska Island, Alaska) have been low 

(Hattori and Wada, 1972; Hattori et ai, 1978; 0.0-0.07 ygat I-1 d-1:

Hattori and Goering, 1981). Schell (1974b) estimated nitrification 

rates of 0.13 »gat I-1 d _1 when samples from northern Alaskan rivers 

and coastal lagoons were stimulated by NH*-N additions. At the ice 

edge, bacterial nitrification is probably negligible since water
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temperatures are low, but Haines et al (1981) suggest that nitrification 

may be important in Bering Sea sediments. Denitrification (Goering, 

unp.) may also be neglected in these oxygenated waters.

Evidence of upwelling along the Bering Sea ice edge was found in 

1982 and 1983. The spatial continuity of the stable meltwater layer 

appears to have been disrupted by upwelling on May 4, 1982 (figure 5a, 

b, c, f). The isopycnals intersected the surface in the vicinity of the 

50 m isobath. This feature was evident through May 11 (figure 6a, b, c, 

d, f). Stations 42, 58 and 78 (time series in Niebauer and Alexander, 

in prep.; table 9) were located in the central part of the isolated 

"dish", each about 20-40 Km south of the upwelling area. Upwelling 

close to the 50 m isobath may be a continuous process and not an "event" 

(Niebauer, pers. comm.), which can seal off the meltwater "dish" on both 

its open ocean and its ice flanks, creating a structure with two 

physical vertical fronts (figure 6c). Upwelled water may then 

presumably invade the dish structure by mixing across the upwarped 

front. Phytoplankton in the vicinity of these frontal structures could 

be exposed to higher N 0 3 levels. As long as there is continuous ice 

melting or/and high insolation at the surface under relatively calm 

weather conditions, the buoyancy of the stratified layer may survive the 

upwelling process.

The ice-edge system is treated below as a two-dimensional system. 

The "dish" of figure 6c is thought of as an infinite water "band" of 

reduced salinity, with no nutrient sources or sinks in the third 

dimension. Austausch coefficients (=eddy coefficients or K z , table 8) 

were calculated as suggested by King and Devol (1979) and Eppley et al



(1979), namely as MLD integrated absolute nitrate uptake rates divided 

by the nitrate gradient across the MLD. This assumes that all the 

nitrate taken up by phytoplankton was supplied by diffusion (at the 

stations in table 8). Therefore, Kz values may be overestimates.

The eddy diffusion coefficients decrease with decreasing mixed 

layer depth (tables 5, 8), suggesting an inverse relationship with 

increasing stability. Similar calculations with data collected along 

the Bering Sea ice edge in 1983 suggest that even in a mixed water 

column K z does not exceed 20 c m 2 s _l. This may be an artifact since 

absolute nitrogen uptake rates measured in spring 1983 were lower than 

the 1982 rates by about 30Z, presumably due to deeper ice-edge MLD 

(figures 8-11) and lower particulate nitrogen (PN) concentrations. 

Nevertheless, a deepening of the mixed layer and an increase in mixing 

across the pycnocline as observed in 1983 may have been caused by 

increased storm frequency during April - May 1983. These conditions 

allow for increased input of nutrients to the mixed layer from below.
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Table 8 . Cruise: HX025 (26 April - 16 May, 1982). Specific and
absolute nitrate uptake rates at selected stations. Eddy diffusion 
coefficients (K z) calculated according to King and Devol (1979, see 
text).

Station Nitrate uptake rate d N 0 3 / d z Kz
V P Q(MLD)

025030 0.0108 0.0243 0. 124 0 . 0 2 17.2
025039 0.0239 0.0752 1 . 128 0 . 60 5.2
025044 0.0358 0.2403 6.007 2 . 6 8 6 . 2
025050 0.0127 0.0366 0. 183 1 . 2 0 0. 4
A v er ag es: 0.0208 0.0941 1 . 861
Units: V = (h“ 1 ); p=(ugat I-1 h ~ 1 )1 | Q=(mgat nr2 h~ 1 ) ! 1
at MLD=(mgat m~4 ); K z = (cm2 s - 1 ).

N03 gradient

The flux of a nutrient form across a gradient can be calculated by 

multiplying K z*(dN/dz). The ammonium gradient across the pycnocline was 

small at all times (figure 28, table 6 ), indicating that NhU-N flux 

across the pycnocline may be neglected.

The NOs-N MLD diffusive flux (Diff.FIux 1 ’2 , table 9: see Notes for

definition of terms and superscripts) can be bracketed using K z values

of 0.1 and 3.0 c m 2 s ~ ‘. Diff.Flux 2 probably represents an overestimate

because of the high K z used. Even such high diffusive fluxes cannot

account for the time-integrated a (/>(N0s -N)) at stations 52, 58 and 

78 (table 9) .

Upwelling rates were calculated using a balance between diffusive 

N03-N flux and growth in the mixed layer, but PN losses (May 9, figure 

27) were not accounted for. Thus, upwelling rates may have been 

underestimated (see negative values, table 9) by the amount of N 0 3 -N 

lost or the diffusion overestimate.



The -following relationship was used to calculate the upwelling 

-fluxes:

Up we ll in g1 -2 = a (N0 3 ) - (Kz )*(dN03 / d z )*at + a (p ), 

where Up we l l i n g 1 ’2 is the N 0 3-N flux (mgat m - 2 ) over a particular time 

period (it) estimated using either low (1) or high (2) eddy diffusion 

coefficients. Dependent and independent variables are defined in table 

9 (Notes).

Upwelling velocities calculated in table 9 compare well with 

vertical velocities of 10-3 cm s -1 reported by Coachman (19B2) at the 

mid-shelf front. Hood and Kelley (1976) also computed vertical 

velocities of 3. 1 x 10_3 cm s ” 1 in Samalga Pass, in the Aleutian Islands 

(between Umnak Island and Islands of Four Mountains). Upwelling rates 

of this magnitude meet the nitrate demand of the ice-edge bloom. NH*-N 

must be brought into the MLD via upwelling as well. At depth, the 

ammonium concentration is 2-5 yg-at l-1 (figure 28) which, using the 

vertical velocity estimates of table 9, would result in a transport of 

up to 26 mgat m ~ 2 d-1 or from 0 to 577, of the ammonium requirements of 

the phytoplankton (table 6). Thus, time/depth-integrated p(NH*-N) may 

exceed initial MLD ammonium by a factor of 1.5 or more. This agrees 

with values presented in table 6.

6) Bird excretion: B#dard e t  a l (1980) measured ammonium content in

excreta from several species of seabirds. The average ammonium 

excretion rate was 15-30 ygat g ' 1 bird d - 1 . Divoky (pers. comm.) 

estimated sea-bird densities along the Bering Sea ice edge to be on the 

order of 200 to 600 Kg K m - 2 . A bird-derived input of ammonium to the



90

MLD would be 0.3-1.8 mgat m-2 d -1 or approximately 0.7-3.9% o-f 

phytoplankton requirements (table 6). In shallow mixed layers (<10 m) 

this mechanism could supply 100% o-f phytoplankton ammonium requirements 

(table 5). Abundance of birds was striking at some of the stations 

along the ice edge in 1982 and 1983 but there was a high degree of 

patchiness and they were not present at all stations. This patchiness 

may be associated with the highly irregular distribution of the 

euphausiid T h y s a n o e s s a  r a s c h i i .

Birds may be viewed as an efficient pumping mechanism by which 

nutrients from below the pycnocline may be brought to the bloom above, 

allowing potential export of food from the mixed layer without net 

nutrient losses (Dugdale and Goering, 1967; Eppley and Peterson, 1979). 

Again, it is emphasized that the mixed layer in the ice-edge zone cannot 

be regarded as a closed system, as it may in the deep ocean.



ERRATA TO:

‘LOWER TROPHIC LEVEL STUDIES IN THE MARGINAL SEA ICE ZONE' 
MS thesis by Frank Miiller-Karger, UAF May 1984

The following table replaces Table 9, p. 91, of the MS thesis. An order of magnitude error 
was copied into the unit conversion from Kz=[cm2 s - 1 ] to Kz=[m2 s - 1 ] in the formula for 
variables 'Diff.Flux' 1 and 2 in the original table. This formula also incorrectly used 12 h 
instead of 24 h days. The table below reflects appropriate unit conversion factors. These new 
values propagate down the table, which gives new results to be taken into account when 
reading the discussion of the Nitrogen budget at the ice edge ( pp. 89-93). The correct 
results are discussed in Miiller-Karger and Alexander, 1987 (Continental Shelf Research. 
Vol. 7, No. 7, pp. 805-823).

Table 9. Nitrate uptake at time series stations and ice-edge upwelling estimates (corrected). 

Independent variables
V (N 03 M h-l] 0.0208 PN.chla(wt) !1
Daylength[h] 13 PoolN03[uM] 15.2
Kz( 1)=[cm-2 s - 1 ] 0.1
Kz(2)=[cm-2 s-1] 3

Station 3 24 42 52 58 78
Date: May [days] 1.00 2.70 5.70 7.70 9.30 12.70
MLD [m] -20.00 -20.00 -15.00 -15.00 -20.00 -20.00
MLDJN03 427.00 304.00 33.00 22.00 53.00 47.00
MLDjChla 87.00 74.00 184.00 272.00 359.00 397.00
dN03/dz 0.00 0.00 0.94 1.19 0.66 1.39
d(N03) 0.00 123.00 271.00 11.00 -31.00 6.00
P 18.48 15.72 39.09 57.79 76.27 84.35
Accum. N-uptake 0.00 29.07 111.30 208.18 315.42 588.47
dp betw dates 0.00 29.07 82.22 96.88 107.25 273.05
Diff.Flux 1 0 0 0.81 1.03 0.57 1.20
dFluxI 0.00 0 1.22 1.84 1.28 3.01
SFlux1 0.00 0.00 1.22 3.06 4.34 7.35
D1ff.Flux2 0.00 0 24.36 30.84 17.11 36.03
dFlux2 0.00 0 36.55 55.21 38.36 90.33
SFlux2 0.00 0.00 36.55 91.76 130.12 220.45
zAdvectl 0.00 152.07 352.00 106.04 74.97 276.04
zAdvect2 0.00 152.07 316.67 52.67 37.89 188.72
wl [md-1] 0.00 3.33 11.58 4.36 1.45 -1.43
w2[md-lj 0.00 3.33 10.42 2.17 0.73 -0.98
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Table 9. 1982 time integrated nitrate uptake and ice-edge upwelling
rate estimates.
Independent variables:

V(N03 ) (h - 1) .0208 PN:Chi a (w t ) = 11
Day 1ength (h) = 13 Pool NO 3 yM 15.2
K z (1): c m 2 s - 1 . 1 K z (2):cm2 5 _ 1 3

Stati on 3 24 42 52 58 78
Time (days) 0 1.7 4.7 6.7 8.3 11.7
MLD (m) 2 0 20 15 15 20 20
e  N03 427 304 33 22 53 47
e  Chi a 87 74 184 272 359 397
dN03/dz (MLD) 0. 00 0. 00 0. 94 1. 19 0.66 1.39
i( N Q 3 ) 0.00 123.00 271.00 11.00 -31.00 6. 00
P 18.48 15.72 39.09 57.79 76.27 84.35
E  ( p) 0.00 29.07 111.30 208.18 315.42 588.47
i( p) 0. 00 29.07 82.22 96.88 107.25 273.05
D i ff .F lu x1 0. 00 0.00 4.06 5.14 2.85 6.00
iFlux 1 0.00 0. 00 6. 09 9.20 6.39 15.06
E  F l u x 1 0.00 0. 00 6. 09 15.29 21.69 36.74
Diff.Flux2 0.00 0.00 73.09 92.53 51.32 108.09
iFlux 2 0.00 0. 00 109.64 165.63 115.08 270.99
e F I u x 2 0.00 0. 00 109.64 275.27 390.36 661.35
U p we l1i n g 1 0.00 152.07 347.13

CO<1GO 69.85 263.99
U p w e l 1i ng 0.00 152.07 243.58 -57.75 -38.84 8. 06
w 1 (m/d) 0 . 0 0 5.89 7.61 3.25 2.87 5.11
w2 (m/d) 0 . 0 0 5.89 5.34 -1.90 -1.60 0. 16
Notes:
e N03 = (mgat n r 2 )
e  Chla_ = (mg ra- 2 ) ,
dN03/dz=(mgat m -*) at mixed layer depth.
p = (mgat n r 2 d " 1). p(N03-N) were obtained ■from chlorophyll a_

concentrations assuming invariant V( N03-N) = 0.0208 h_1 (table 8) and 
PN/Chla,= l 1.0 (per wt.). Daily N 0 3-N uptake based on 13 h/day 
calculations. PN/Chla=9.0 (wt.) in 1983.

e  (p) = cumulative mgat m -2 gained by plankton.
i(p) = (mgat m ~ 2 ) gain in plant N over At.
Di f f . FI ux 1 *2 = N03-N flux across pycnocline (Kz*dN/dz) assuming 1)

Kz = 0 .1 cm2 s_ l , 2) Kz = 3 cm2 s_1 respec ti ve1y , in (mgat n r 2 d_ 1 ), acting 
over 24 h.

a FI u x 1 ’2 = K z*(dN03 / d z )*it (mgat m - 2 ) , mean diffusive flux estimated 
over it.

e FI u x 1 ’2 = cumulative diffusive flux (mgat N 0 3-N m ~ 2 ).
a (N 0 3 ) = MLD integrated N03 -N difference over it (mgat m~2 ).
Up we l l i n g 1 ’2 = flux in (mgat N 0 3-N m - 2 ).
w 1 ’2 = vertical velocity = Upwel 1 i n g1 •2 /(Pool N03 -N*it) = (m d ~ M ,

Pool N03-N (mgat m ~ 3 ) is assumed constant in the water column outside 
the "dish".
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7) Flagellate (nanop1a n k t o n : 2-20 pm, Dussart, 1965) and bacterial

cycling: Phytoplankton samples collected -from the Bering Sea ice-edge

habitat for algal species identification suggest that at times 

nanoplankton and bacteria may greatly exceed the phytoplankton in 

numbers. No attempt was made to classify the <<20 pm organisms in the 

ice-edge zone. Nanoplankton and bacteria seem to be even more abundant, 

relative to diatoms, in ice samples than in water samples.

Phytoplankton, nanoplankton and bacterial communities seem to develop 

simultaneously, as samples collected in waters covered by ice show few 

of either.

To obtain an estimate of the combined nanoplankton and bacterial 

cycling of nitrogen in the mixed layer, I will assume steady state, 

since ammonium levels in the water changed little over the course of a 

week (figure 28):

(dN/dt) = 0 = Supply - Uptake - Nitrification 
Supply = A + F + Z + I + D + U + B + R  

A, F, I = 0
Z + D + U + B + R =  Supplv = Uptake + Nitrification 

N = 0
R = Uptake - Z - D - U - B

Where A = atmospheric N input; F = fish + mammal N; N = 

nitrification; Z = zooplankton N; I = ice N; D = eddy difusive flux;

U = upwelling N; B = bird excretion; R = nanoplankton N, so that:

Microbial regeneration = (Uptake) - ( ( T h y s a n o e s s a  spp. excretion) + 
(Diffusion) + (Upwelling) + (Bird excretion))

Regeneration rates by microorganisms are estimated as ranging from 

0 to 25 mgat N H 4-N m -2 d-1 (0-55'/. of phytoplankton requi r e m e n t s ) . The



estimated microbial regeneration rate is low compared to rates measured 

in tropical systems (i.e. 0.162 ygat l ' 1 h" 1 -for organisms <0.035 mm 

in Hawaiian waters, Caperon et al, 1979). Sorokin (1981) and Azam et 

al (1983) review the role of microheterotrophs in marine trophic 

structures.

According to the above estimates, most NH«-N taken up by 

phytoplankton can be supplied by physical processes (eddy diffusion and 

upwelling). Bacterial and flagellate regeneration may contribute up to 

807. of the ammonia taken up by the phytoplankton in an ice-edge bloom, 

if stability is strong <K z<<0. 1 cm2 s " 1), the mixed layer depth is 

greater than 10 m and upwelling is slow (w<<5.0 m d “ 1). At shallower 

MLD other mechanisms may suffice (i.e. bird excreta or larger 

zooplankton concentrations), in addition to microf 1a g e l 1 ate nitrogen 

remi nerali zat i o n .

Preli mi nary 1ook at 1983 ni troqen dy na mi cs:

The bloom observed on 5 May 1983 developed because stratification 

occurred in nutrient rich waters (stations 71-76, figure 11c, d). As 

mentioned previously, these stations were occupied as part of an 

oceanographlc time series. Stations 2. 7. 17 and 72 correspond to the 

same geographical location (figure 7). Changes in oceanographic 

parameters at stations 6 and 73 can also be compared over time. 1BN 

uptake measurements were conducted at station 74.

Water-column-integrated inorganic nitrogen (table 10) decreased 

between 22 April 1983 (stations 2 and 7) and 27-28 April (station 17) by 

about 600 mgat n r 2 . This would be equivalent to about 1000 mgChla m - 2 ,



given no losses (assuming P N :C h 1 a = 9.0 w t . ) . The actual increase 

measured was onlv of about 200 mgChla m -2, This suggests that advection 

may have carried an excess chlorophyll away in the period of a week, or 

that a different water mass with lower nutrient levels invaded the area 

by April 27, 1983. Such a bloom may have also sunk before our 

observations were made. An underestimation of the PNsChia_ ratio may 

also partially account for the discrepancy.

Table 10. 1983 time series water column integrated nitrogen (mgat m -2)
and chlorophyll a (mg m ~ 2 ).
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Date Stat i on Bottom depth s N03 s NH4 e  Chi a

21 Apr i 1 •03 2 62 65' 362 56
22 April '83 7 60 634 274 20
27 April

roC
O 17 63 231 79 267

5 May '83 72 63 261 155 400

21 Apr i 1 '83 6 63 596 218 120
5 May C

D
0

4 73 64 316 164 238

The decrease in water column nitrogen between stations 6 (April 22, 

1983) and 73 (May 5) suggests an increase in chlorophyll of about 520 mg 

fir 2 (PN:Chla=9.0 wt.). The observed increase is 11B m g C h l ^ m -2 (table

10). Not even by using a higher P N :Chla (<20 wt.) can I account for the 

apparent nutrient level changes in terms of observed chlorophyll a. The 

differences in NH„-N between April 27 (station 17) and May 5 (station 

72), suggest fast nitrogen regeneration. These calculations indicate 

that the mixed water column conditions during the 1983 sampling season 

precluded straightforward inferences on bloom dynamics.



Dep
th 

[m]

j

Stations

Tine elapsed [days]

Figu r e  26. 1-12 Nay 1982 ice edg»i S i g aa-t tiaa firitt.

O
u i



Dep
th 

[m]
025003 025024 025042 025052 025058 025078

Stations

Tu g  elapsed [days]

F i g u r e  27. 1-12 Hay 1982 ice edgei N i t r i t e  + n i t r a t e  tiae series.

■4D



Dep
th 

[ml
0 

10 

20 

30 

40 

50 

60 

70

-O

Figure 28. 1-12 Hay 1982 ice edgei A e e o n i u e  tiee series.

Stations

1 2 3 4 5 6 7 8 9 10 11 12
Timg elapsed [days!



98

IV. Annual carbon and ni troqen budget for the Ber i ng Sea ice-edge 

ha bi t a t .

Arctic explorers noted the presence of algae and other 

microorganisms in sea ice (Horner, 1977 and references therein) and 

phytoplankton blooms associated with melting sea ice in early spring 

(Marshall, 1957; McRoy and Goering, 1974a, b; Niebauer and Alexander, 

in prep.). Observations made on these phytoplankton communities in the 

Bering Sea since 1970 (McRoy e t  a l , 1972; Alexander, 1980) indicate 

that there is interannual variability in total organic matter produced. 

Biological oceanographers are just beginning to understand the magnitude 

and the nature of this variability, by developing annual nutrient and 

carbon budgets which address the nutritional requirements of primary 

producing communities.

A budget calculated for the southeastern Bering Sea (Sambrotto, 

1983) allocates to phytoplankton an annual carbon production of 

approximately 166 - 80 gC m~2 , an estimate that does not include 

ice-related production since it was obtained during years of reduced ice 

extent (1978-1981).

McRoy and Goering (1974b) estimate that the late winter (February - 

April: 61 days) ice-related primary production is about 197. of the

total Bering Sea shelf annual production (McRoy and Goering, 1974bs 

table 5). This represents a contribution of about 27 gC m-2 y - 1 . This 

estimate was based on a measurement conducted before the ice-edge bloom 

reached its maximum potential productivity.



Based on three years of primary production data (1975-1977) 

collected in waters over the St. George Basin (outer continental shelf 

between the Pribilof Islands and Unimak Island, figure 1), Alexander 

(1980) estimates that about 136 gC m~2 are produced between January and 

mid May (calculated from Alexander, 1980s figure 3). This represents 

about 40'/. of her annual shelf production estimate (339 gC m ~ 2 ).

Several problems arise in the construction of a nutrient budget for 

the Bering Sea. The Bering Sea is notable for interannual variability 

in oceanographic parameters. The spatial or temporal distribution of 

epontic algae over the Bering Sea shelf in spring (late February - May) 

is not known (Alexander and Chapman, 1981), and productivity patterns at 

any one time along the ice are probably patchy. The presence of other 

microorganisms in addition to the photosynthesizing algae in sea ice and 

the marginal ice zone further complicates the problem, and to date no 

quantification of nanoplanktonic and bacterial productivity has been 

attempted. These problems make it difficult to estimate the total 

contribution of the early spring primarv productivity to the annual 

Bering Sea carbon and nutrient balance. Below I construct a nitrogen 

and carbon budget from data collected in the marginal sea-ice zone 

during the spring of 1982 and 1983. The budget is assumed valid for the 

early part of 1982 and 1983 and only for the ice-affected central Bering 

shelf regions deeper than 40 m, since shallower waters were completely 

mixed.

99
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For purposes of discussion, three environments in the marginal sea 

ice zone have been identified (tables 1 1  and 1 2 ):

1.- Epontic algal community,
2.- Water column under the ice.
3.- Ice-edge bloom.

Table 11. 1982 nitrogen and carbon productivity budget. 1) Epontic
(1983), 2) Water column under the ice, 3) Ice-edge bloom productivity. 
(Units: Thickness=m, Period=days, p=mgat N m - 2  y- 1 , P=gC m ~ 2 y - 1 ,
P: p <NH«+N0.'s) =atoms) .

Stations Thickness Per i od pN03 pNH4 P P: p (N+l

1) H X 043028 0 . 2 40 36.8 95.8 11.3 7. 1
2) 37, 50 25 15 178.4 115.2 25.3 7.2
3) 19, 6 8 2 0 15 673. 7 700. 9 41. 1 2.5
1)+2)+3) 70 888.9 911.9 77. 7

Table 12. 1983 nitrogen and carbon productivity budget. 1) Epontic, 2)
Water column under the ice, 3) Ice-edge bloom productivity. (Units:
Thickness=m, Period = days, p=mgat N nr 2 y- 1 , P = gC n r 2 y 1,
P: p(NH 4 +NO 3 )=atoms).

Stations Thickness Per i od pN03 pNH4 P P : p (N + N )

1 ) 28 0 . 2 40 36. 8 95. 8 11.3 7.1
2) 42, 56 25 15 89. 9 27.6 6 . 8 4.8
3) 50, 59, 74 30 15 146. 9 93.8 31.9 11.0
1 )+ 2 )+3) 70 273.5 217.2 50.0

An analysis of the contribution to the annual Bering Sea shelf 

productivity by each of these components follows,

1.- Epontic algal community: The algal community forming brown

colored ice can be found from mid-February (McRoy e t ai, 1972) to 

mid-May in Bering Sea ice, in a layer in the submerged parts of ice 

floes. The layer was not seen to grow larger than 35 cm and could be
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absent altogether. Epontic productivity in February and March is low 

(McRoy and Goering, 1974a) compared to rates found in April and May 

(table 12). The algae are released to the water, where some seed the 

ice-edge bloom and some presumably sink out of the water column 

immediately. The brown ice layer was not observed during the 1982 

sampling season, presumably due to prior decay of the ice. The 1983 

sampling season started a week earlier than the previous year, and brown 

ice was found at all ice stations. It was not possible to estimate the 

patchiness of the epontic community due to limited areal coverage by the 

ship.

Absolute nitrogen uptake rates in the epontic algal layer as 

measured in 1983 appear high on a volume basis as a result of the very 

high concentration of algae (70 to 130 mgChla m ~ 3 ) . On an areal basis, 

epontic algae (14-26 mgChla ur2 ) assimilated about 37 mgat N03 -N n r 2 

y " 1, 96 mgat NH,-N nr2 y - 1 and fixed 11 gC n r 2 y ~ l in 1983 (table 3).

The greater dependence on ammonium of this community (f=.28) is to be 

expected from the numerical dominance of flagellates and bacteria (unp. 

data), the high N H 4-N concentrations, and the very low nitrate levels in 

bulk ice (ice + brine).

The estimated Bering Sea ice-edge epontic productivity 

(approximately 11 gC m ~ 2 y_ 1 ) is higher than that estimated for coastal 

Arctic ice algal communities (2.4 gC n r 2 y 1 in ice near Barrow's shore, 

calculated from Matheke, 1973 and Matheke and Horner, 1974; 5.0 gC m ~ 2

y- 1 : Clasby e t  a l , 1976; 0.7 gC m 2 y_1s Horner and Schrader, 1981, 

1982; 1-6 gC nr2 y_ l s Schell e t  a l , 1982, being highest offshore in 

the Beaufort Sea away from sediment laden ice).



2.- Water column under the ice: Primary productivity ■from late

January to March in the water column immediately under the ice has been 

found to be limited (about 1.3 g C n r 2 y " 1 : McRoy e t a i , 1972). This

study shows higher rates under the ice during late April - early May 

(6-25 gC n r 2 y ~ l, tables 11, 12). Productivity here is probably light 

limited in a completely mixed, cold water column.

Algae in the water under the ice in the vicinity of the ice edge 

appear to have contributed during 15 days in 1982 about as much to the 

production of the system as the ice-edge bloom did in 1983 (tables 11, 

12). These algae, as mentioned above, are probably derived from the 

ice, but in contrast with epontic algae their contribution is based 

mainly on N03-N. It is expected that their productivity will rise with 

irradiance until photoinhibition occurs (figures 12, 16, 17).

3.- Ice edge: Variation in oceanographic and meteorological

parameters allows for continuously changing ice-edge patterns. The one 

of interest here is common under mild and warm weather conditions: a

stable melt water layer (15-25 m deep! along a uniform and relatively 

straight ice margin.

Algal growth in the water column along the ice edge begins in late 

winter (March - April: McRoy and Goering, 1974). At this time

production is low due to poor water-column stability and low surface 

irradiance. The major ice-edge bloom lasts about two weeks in late 

April - May (Niebauer e t ai, 1981), though given adverse weather 

conditions the stable surface layer could be broken up and the organic 

material mixed throughout the water column. Conversely, mixing or 

turbulent events can extend the period of the bloom by the supply of



nutrients -from below if thermal or salinity restabilization ensues. The 

main problem primary producers would encounter under stable conditions 

is nitrogen limitation (see previous section).

During the sampling effort in 1983, the ice-edge bloom did not 

develop fully and high chlorophyll a occurred only toward the end of the 

cruise (4-6 May, figure lid). Even then the bloom was patchy and uptake 

rates low (figures lid, 21). Low pressure systems seemed to extend the 

winter season in this apparently abnormal year, constantly mixing the 

water column and limiting surface irradiance levels. Ledbetter (1979) 

suggests that phytoplankton patchiness may develop as a response to 

turbulence generated under these conditions,

The strong water-column stability effect on ice-edge phytoplankton 

was evident in 1982 when high rates of nitrogen and carbon uptake were 

measured (table 11). Ammonium became more important as a nutrient 

source as nitrate levels diminished. Zooplankton were absent in 

quantities necessary to support the observed ammonium uptake rates and 

grazing accounted for less than 17. a * primary production (R. Cooney and 

K. Coyle, pers. comm,). This suggests that other sources of nitrogenous 

nutrients were available (see above).

The annual productivity estimate for 1982 (table 11) does not 

include a direct estimate of epontic algal production. Adding the 1983 

productivity estimate (component 1) to the 2+3 (1982) components, I 

obtain an estimated combined nitrogen (NH«-N + N Q 3-N) requirement of 1.8 

gat N nr2 y~* and a total carbon fixation of 77.7 gC n r z y-1 for 1982.

In turn for 1983, when the ice-edge blooms never developed to their full 

potential, nitrogen taken up was about 0.5 gat N nr 2 y ~ l, less than a
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third the 1982 estimate. During this production period, also estimated 

at 70 days, algae fixed an estimated 50 gC m ~ 2 y _1.

The carbon productivity values presented in tables 11 and 12 may be 

underestimates of Bering Sea ice-related primary productivity, since it 

was assumed that under-the-ice primary productivity and the ice-edge 

bloom lasted only 15 days each. The estimates obtained previously by 

McRoy and Goering (1974) for late winter primary productivity could be 

added to the ones presented here. This would yield an approximated 

annual input of 105 gC itt2 in 1982 and 78 gC nr2 in 1983 at the spring 

Bering Sea ice edge.

I cannot explain the low C:N uptake ratios observed in the water 

column in 1982 (4.9 per atoms, compared to 7.9 in 1983, for components 2 

and 3 in tables 11, 12). It is possible that my depth-integrated 

nitrate uptake rates were overestimated since no correction was applied 

to account for decreased NOs-N uptake at very low irradiances (below 107. 

surface light intensity). Maclsaac and Dugdale (1972) attribute 

discrepancies between the Redfield C;N ratio for deep-sea particulate 

matter and C :N uptake ratios at least partially to the loose coupling 

between photosynthesis and nitrogen uptake. Slawyk e t  al (1977, 1979) 

point out that carbon and nitrogen uptake measurements may not be 

directly comparable since the experimental techniques involved are 

different. Donaghay e t  al (1978) noticed that there is great 

variability in the C :N ratio of natural phytoplankton assemblages.

Their results also suggest that morning samples have a depressed C:N 

ratio compared to evening samples. Goldman and McCarthy (1978) also 

found it hard to draw conclusions from observations of this kind.



Sambrotto (pers. comm.) observed similar depressions in C :N uptake 

ratios in Bering Sea open shelf blooms in years of strong water-column 

stability and vigorous diatom growth. It may be that under these 

conditions the H 14C03 technique underestimates primary productivity. If 

the Redfield C:N ratio for deep-sea particulate matter (Redfield et al , 

1963) is applied to the 1982 total N productivity (table 11), I obtain 

an ice related carbon input of approximately 143 gC n r 2 y ' 1, comparable 

to Alexander's (1980) estimate.

Another cause for the low overall 1982 C:N uptake ratio may have 

been high protein production rates (pure protein C:N=3.7 per atoms: 

Russel 1- H u n t e r , 1970; Morris, 1981). High incorporation of nitrogen 

into proteins seems to occur when nitrogen limitation is approached 

(DiTullio and Laws. 1983). During 1983 the total C:N uptake ratio was 

high compared to the Redfield ratio probably due to the unfavorable 

light history leading to inefficient nitrogen uptake. The 1983 C:N 

uptake ratios of epontic algae suggest that conditions were favorable 

for balanced growth (Eppley. 1981b), or that algae were growing at 

maximum specific growth rates (Shuter, 1979).

Nutrient data collected during February 1983 (Muench e t  a l ,  1983b) 

suggest that the average mixed layer depth (25 m) integrated nutrient 

concentrations were 332 mgat N 0 3-N m~2 and 18 mgat NH«-N nr2 . This 

amount of inorganic nitrogen is inadequate to support the phytoplankton 

nitrogen requirements in 1982 (table 11). Nitrogen inputs were 

necessary, as discussed above. February 1983 water-column-integrated 

(depths from 60-115 m) nitrogen levels were 1.4 gat N 0 3-N n r 2 and 0.05 

gat NHa-N m " 2 , still less than the estimated 1982 combined (ammonium +



106

nitrate) N uptake (table 11). Higher ammonium concentrations and the 

annual ammonium absolute uptake values obtained for 1982 suggest that a 

certain amount of recycling occurs in the ice-edge zone. In 1983, 

primary producers may have grown for a considerable period without 

nitrogen limitation, given the slower uptake rates and lower biomass. 

Nitrogen limitation may have ensued as thermal stratification developed 

(figure 11a, b, c, f).

The values presented (tables 11, 12) are within the range suggested 

by previous estimates of ice-affected algal activity in the Bering Sea 

in spring. Variability in annual estimates of primary productivity in 

the ice-edge habitat may be related to ice extent and thus be closely 

tied to climatic variability (Niebauer, 1980). Possibly, ice-related 

production is not only linked to ice extent, but also to the rate and 

timing of ice retreat, and global events, in particular those leading to 

climatic oscillations such as El Nino, may cause productivity minima 

as observed in the Bering Sea in 1983.

My results support the conclusion of McRoy and Goering (1974b) and 

of Alexander and Chapman (1981) that even though the marginal sea-ice 

zone in the Bering Sea does not support extremely high sustained 

production rates such as those found in temperate upwelling regions, the 

system gains by extending the production season by 50 to 70 days.

Phytoplankton blooms occur in the spring in open shelf waters (away

from the influence of the ice) as well (Sambrotto e t ai, in prep.). If

nutrient depletion occurs in the surface mixed layer during the ice-edge

bloom, open shelf productivity may become limited prematurely (Niebauer 

and Alexander, in prep.). Wind mixing, mixed-1ayer-depth turbulence or

L
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( upwelling events followed by melt water or heat-derived stratification
!

stretch the shelf production season. Walsh et al (1978) studied the New 

York Bight primary productivity applying this concept. The effects of 

wind mixing on southeastern Bering shelf blooms are discussed by 

Sambrotto (1983), but the evolution of the ice-edge bloom to an open 

shelf bloont has not been investigated in this respect.

The budget discussed here shows that the ice system represents a 

significant but variable addition to the nutrient and carbon budget of 

the Bering Sea (50-136 gC m~2 y - 1 , in addition to the 166 - 80 gC m -2

i
y " 1 suggested by Sambrotto. 1983). Previous conceptual models

| recognized the importance of this organic material to a water column and

bent hic-detritivore food web (Niebauer e t  a l , 1981; Cooney and Coyle,

1982). The loss of particulates to the bottom in relatively shallow 

shelves has been noted elsewhere (Falkowski e t ai, 1983). The mechanism 

of nutrient supply to surface waters is the key question to address to 

understand annual central Bering shelf primary production.

Variations of the magnitude implied above in production regimes 

probably have great effects on Bering Sea fisheries, but the information 

available is insufficient to establish, for example, whether there is a 

relationship between a decline in the 1983 bottom crab fisheries in the 

central Bering Sea and lower overall production due to reduced ice 

co v e r .
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CONCLUSIONS

1) Inorganic nitrogen specific uptake rates (V) along the advancing ice 

edge in the Chukchi Sea ranged: V(NH«-N)=0.71xl0~3 to 1.70x 10“3 h ~ 1; 

V(N03-N)=O.O6xlO~3 to 1. 8 9 x 10 ~ 3 h ~ 1) in October 1981. These rates were 

an order o-f magnitude less than rates measured at the spring ice edge in

1982 (tables 5, 6, 8 and 9) and 1983 (Appendix).

2) Part of the October Chukchi Sea phytoplankton community trapped in 

forming ice possibly overwinters. The similarity between the fall 

phytoplankton species (tables 3, 4), and spring epontic and ice-edge 

bloom species (pp. 35-36), suggests that epontic algae seed the 

April-May water column bloom. Many of the algal species seen are found 

in Pacific and northern North Pacific Ocean waters.

3) Epontic algal communities were common during the sampling period in

1983 (up to 35 cm thick layer on the under side of ice floes, 5-130 mg 

Chla itt3 ) , but were absent in 1982, presumably due to previous loss by 

ice decay.

4) High ammonium concentrations in the ice-edge zone water column 0 2  

ygat NH«-N l ~ l ) suggest rapid ammonification occurs in this habitat, 

as suggested by Niebauer et al (1981). High nitrogen recycling rates 

seem to occur in brown ice prior to, or concurrent with, the ice-edge
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water column bloom. Nitrate uptake inhibition by the presence of 

ammonium in the water was not seen, while phytoplankton preferred 

ammonium over nitrate.

5) Nitrogen could limit ice-related productivity in the spring under 

strong stability conditions, but upwelling processes meet the 

phytoplankton nitrogen demands for the duration of the bloom (2-3 

weeks). Tidally driven upwelling along the 40-60 m isobath seems to be 

the dominant type of upwelling affecting the ice-egde zone in the 

central Bering shelf. Biological N-supplies, are usually small compared 

to supplies by physical mechanisms. Both mechanisms may act

si mu lt an eo us ly.

6) Neither phosphorus nor silica seem to limit the ice-edge bloom (late 

winter water-column N:P=5.3 to 9.9 per atoms, 10-30 ugat S i (O H )4 -Si

I ' 1) .

7) The frequency of wind-mixing events in the ice-edge zone was higher 

in 1983 compared to 1982. Also, due to an early retreat of the ice edge 

in April 1983, the ice-edge zone remained close to the 40-60 m isobaths 

for a longer period, in the vicinity of a vertical front. Vertical 

velocities are higher within this frontal structure (0 to ca. 10~2 cm 

s ' 1). The deeper mixed layer resulted in lower ice-edge zone primary 

productivity in 1983 (approximately 50 gC n r 2 y 1 , 0.5 gat N n r 2 y " 1, 

epontic plus ice-edge water column), with respect to 1982 (approximately 

78 qC nr* y 1, 1.8 gat N nr2 v ' 1, epontic plus ice-edge water column).



The mechanism of nutrient supply to surface waters is key to 

understanding annual primary productivity in the central Bering Sea in 

spring.

8) Phytoplankton communities in the ice-edge zone are shade-adapted. 

Photosynthetic rates of 8-18 mgC m -5 h _1 were observed at irradiances

<75 uE m ~ 2 s 1 .

9) Ice-related primary productivity was photoinhibited at irradiances 

found in the upper 0-1.5 m in the mixed layer at mid-day, while optimum 

irradiances ( I o p t ) coincide with subsurface chlorophyll a_ maxima.

Carbon uptake response to varying irradiance was modeled using Steele s 

(1962) equation.

10) Maximum absolute photosynthetic rates varied directly with 

chlorophyll a concentration (P=0.60*Chla+l.55, r=0.65). Assimilation 

numbers were <<3.0 mgC mgChla-1 h _1 in 1982 and 1983. This supports the 

idea that arctic phytoplankton may not utilize light very efficiently 

(Platt e t ai, 1982).

11) Community succession (in time or space) between the ice-edge zone 

and the open water shelf bloom may result in changes of nitrogen and 

carbon uptake characteristics of the algal community. Early spring 

phytoplankters may be susceptible to nitrate uptake ph ot oi nh i b l t i o n .



12) Oceanographic concepts developed for the deep ocean and associated 

surface mixed layer nitrogen dynamics (e.g. King and D e v o l , 1979; 

Dugdale and Goering, 1967) cannot be applied to a shallow shelf 

ecosystem and its nitrogen budget.



RECOMMENDATIONS FOR FUTURE RESEARCH 

IN THE ICE-EDGE ZONE

It is evident that a great deal is not known or understood about 

the influence of ice on the biota of subarctic and arctic marine 

environments. Discussions with Drs. V. Alexander, J . Kelley, J, 

Niebauer, H, Feder and J. Goering indicate that future studies of 

ice-edge zone productivity should address the following:

The importance of nutrients other than inorganic nitrogen has to be 
resolved. No measurements of organic nitrogen concentration or 
uptake rates exist in the ice-edge habitat. The importance of 
phosphorus as a potentially limiting nutrient cannot be neglected.

Light influence on nitrate uptake in early spring ice-related blooms is 
not clear.

Variations in nutrient uptake rate with ice-edge zone community
structure changes may be important. Do the ammonium and nitrate 
uptake rates change with succession of species? Close examination 
of species assemblages and their nitrogen uptake rates may clarify 
such community characteristics, as attempted previously by 
Sambrotto (1983),

The relationship between epontic, ice-edge and Bering Sea spring algal 
species has to be resolved.

The timing of the onset, and the temporal and spatial patchiness of 
epontic and ice-edge blooms needs to be resolved.

The role of bacteria and flagellates associated with ice is unclear.
Biomass and rates of nutrient mineralization by these organisms in 
the ice and ice-edge zone need to be measured.

Time series of fine resolution (once or twice a day) have to be
conducted at the ice margin to resolve daily and weekly variations 
in primary productivity and nitrogen uptake rates. The interaction 
of the ice edge with shelf fronts should be followed in such time 
series as w e l 1.



Shear at the bottom of the water column is periodically caused by
barotropic tidal flows. The interaction of the bottom mixed layer 
so created, and the surface wind-mixed layer, needs to be examined 
in shallow (<70 m) Bering shelf waters. This physical interaction 
may allow for n u t r 1 e n t- un1 1 mited bloom development.

A three-dimensional understanding of the ice-edge zone has to emerge. 
Along-ice continuity of the 'dish-shaped' structure found in 
transects perpendicular to the ice (figure ?) must be examined. Is 
the structure continuous along the isobaths and 'band-shaped or is 
it dish-shaped ' ?

The development of ice-edge blooms in the well-mixed waters shoreward of 
the 50 m isobath (coastal domain, Kinder and Schumacher, 1981) is 
not clear. Does an ice-edge bloom occur there, and are there 
adequate nutrient supplies to support it?

Sedimentation rates and elemental composition of suspended particulate 
matter need examination. Sediment traps may be useful tools to 
address this problem.

The ecological importance of the ice-edge bloom is still obscure. The 
relationship between the benthic communities and the ice-related 
production needs to be addressed. Are interannual productivity 
differences driving or contributing to fluctuations of Bering Sea 
bottom fisheries (e.g, crabs)?

Simplification, speed and accuracy of chlorophyll a measurements is
important in the type of work proposed here. Slovacek and Hannan 
(1977) suggest the use of DCMU
(3-(3,4dichlorophenyl)-l,l-dimethylurea) for in v i v o  fluorometry 
chlorophyll determinations to eliminate variability and obtain 
maximum fluorescence. The method may be useful in oarameterizing 
photoadaptation (Lewis e t  a J , 1984) or mixing history of 
phytoplankton (Harris, 1980; Vincent, 1980)

Sampling strategies need to be developed to enable examination of
biological oceanographical processes at the ice edge from January 
on. This is important for characterizing interannual variability 
and mechanisms driving such variations.

Comparison of ice-affected, nutrient-unlimited areas (NW Bering Sea: 
Anadyr Gulf, waters around St. Lawrence Island and the Bering 
Strait) with ice-affected, potentially nutrient limited areas 
(central and SE Bering shelf) is necessary to weigh total Bering 
Sea primary productivity. In studying the NW Bering Sea, the 
effect of ice on early (February-March) ice-related primary 
productivity may be regarded from a light limitation perspective, 
and compared to winter algal growth in the open waters south of St. 
Lawrence Island.



Ice-edge oceanographic conditions close to the Soviet coast should be 
studied, and the effects of the proximity to the sharp shelf break 
examined.

Differences and similarities between the Bering Sea ice edge and other 
marginal ice zones around the world need comprehensive review.
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APPENDIX A

Inorganic nitrogen uptake data collected during Alpha Helix cruise 
HX025, in April - May, 1982. Data for a station and depth continues 
along rows on successive pages (first two columns are cruise-stat 1 on 
number and depth). SUR.L.I.=Surface light intensity (y E w  2 s~ 1 ) .
SIMLI%=Simulated X surface irradiance. K-EXT = e x 1 1 netion coefficient 
(m ~ 1 ) . Chlorophyll â  (mg n r 5;. Particulate nitrogen (mgat-N n r 3 ).

Station DEPTH SUR.L. I SI ML 17. K-EXT C h 1 o r .a PN

025-019 0 172.8 100 .21 5.45 6.3
0 172.8 100 .21 5. 45 6.3
0 172.8 100 .21 5. 45 6.3
15 172.8 10 .21 14.08 5.54
15 172.8 10 .21 14.08 5.54
15 172.8 10 .21 14.08 5.54
15 172.8 10 .21 14.08 5.54
15 172.8 10 .21 14.08 5.54

025-030 0 57.6 100 .38 2.98 2.26
0 57.6 0 .38 2.98 2.26
0 57.6 100 .38 2.98 2.26
0 57.6 100 .38 2.98 2.26
0 57.6 100 .38 2.98 2.26
4 57.6 25 .38 3.39 2.28
4 57.6 25 . 38 3.39 2.28
4 57.6 25 .38 3. 39 2.28
6 57.6 10 . 38 3.39 2.28

025-039 5 112.09 50 NA 4.63 3. 15
025-044 0 360.2 50 .56 6.65 6.71

0 360.2 50 . 56 6. 65 6.71
0 360.2 50 .56 6.65 6.71

025-050 0 187.28 1 00 NA 2. 48 2.87
025-068 10 71.51 50 NA 10. 19 4. 76

10 71.51 50 NA 10. 19 4.76
10 71.51 50 NA 10, 19 4. 76
10 71.51 50 NA 10. 19 4.76
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Appendix A (cont.). Ambient inorganic nitrogen concentration and 
isotopic label addition or spike (ygat-N I- 1 ). NAT%ABN=estimated iaN 
atom X natural abundance.

St at 1 on DEPTH n o 3 NH* SPIKE-NOs SPIKE-NH * n a t x a b n

025-019 0 7.92 4.6 .04762 .04762 . 3989
0 7. 92 4.6 .09524 .09524 .3989
0 7. 92 4.6 . 704 .704 .3989
15 5.71 4. 1 .04762 .05 .403366
15 5.71 4. 1 .09524 .09524 .403366
15 5.71 4. 1 .2 .2 .403366
15 5. 71 4. 1 .505 .505 .403366
15 5.71 4.1 .704 .704 .403366

025-030 0 19. 74 4.7 . 4762 .4762 .3964222
0 19. 74 4.7 .4762 .4762 .3964222
0 19.74 4.7 .9524 .9524 .3964222
0 19. 74 4.7 2.502 2.502 .3964222
0 19. 74 4.7 5.05 5.05 .3964222
4 19. 74 3.9 .4762 . 4762 .475726
4 19.74 3.9 .9524 . 9524 .475726
4 19.74 3.9 2.502 2.502 .475726
6 19. 74 3.9 5.05 5.05 .475726

025-039 5 13.35 3.1 1 1 .388485
025-044 0 9 3 1 1 .4603708

0 9 3 5 5 .4603708
0 9 3 14 14 .4603708

025-050 0 8.12 1.4 1 1 .8755989
025-068 10 2.2 3.4 .4762 .4762 .6458023

10 2.2 3.4 . 9524 .9524 .6458023
10 2.2 3.4 5.05 5.05 .6458023
10 2.2 3.4 7. 04 7. 04 .6458023
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Appendix A (cont.). Specific inorganic nitrogen uptake rates (h~‘) and 
absolute uptake rates U g a t - N  l " 1 h- 1 . Incubation temperature (°C),

S t a t 1 on DEPTH VNO* VNH* pNO, PNH„ Inc.

025-019 0 .0312011 .0239543 .1965671 .15091 18 _ j

0 .0145723 .0137146 .0918057 .0864022 - 1
0 .01 15045 .0117521 .0724786 .0740382 - 1

15 .0327463 .0091517 .1814145 .0507007 - 1

15 .0108846 .0211622 .0603007 .1172386 - 1
15 .012175 .0145544 .0674495 .0806314 - 1
15 .0134365 .0104114 .0744383 .0576792 - 1
15 .0117097 .0099962 .0648717 .0553792 - 1

025-030 0 .012204 .0032991 .0275810 .0074559 -.75
0 .010751 .0052338 .0242973 .0118285 -.75
0 .0056967 .0051225 .0128745 .0115768 -.75
0 .0064545 .0051808 .0145873 .0117085 -.75
4 .0190753 .0059238 .0434917 .0135064 -.75
4 .012568 .0079479 .0286550 .0181211 -.75
4 .0114887 .0063446 .0261941 .0144657 -.75
6 .0088587 .0076776 .0201979 .0175049 -.75

025-039 5 . 023885 .0074508 .0752378 .0234699 -.5
025- 0 4 4 0 .035816 .0113336 .2403254 .0760483 -.4

0 .0756774 .048233 .5077954 .3236434 -.4
0 .0316144 .0400895 .2121326 .2690005 -.4

025- 0 5 0 0 .012743 .0044484 .0365724 .0127669 -.3
025- 0 6 8 10 .0115837 .0158353 .0551385 .0753760 -.75

10 .0141304 .0158545 .0672608 .0754672 -.75
10 .0222775 .0198591 .1060409 .0945293 -.75
10 .0 2 3 69B6 .018321 .1128053 .0872080 -.75
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APPENDIX B

Part 1. Inorganic carbon (1 4C ) uptake corollary data collected during 
Alpha Helix cruise HX025, in April - May, 1982. Data -for a station and 
depth continues along rows on successive pages (first two columns are 
cruise-station number and depth). SU R. L. I.=Surface light intensity 
(uE irr2 s " 1). SIMLI‘/. = Si mul ated '/. surface irradiance.
K-EXT=extinction coefficient (m'1). Chlorophyll â  (mg m 3 ).

Station DEPTH

025-019

025-029

025-030

025-037

025-045

H SUR.L. I SI ML IX K-EXT C h 1 o r .

0 172.8 100 .21 5.45
0 172.8 0 .21 5. 45
5 172.8 50 .21 10.00
5 172.8 0 .21 10.00

10 172.B 25 .21 19.83
10 172.8 0 .21 19.83
15 172.8 10 .21 14.08
15 172.8 0 .21 14. 08
20 172.8 1 .21 24.62
20 172.8 0 .21 24.62
0 57.6 100 . 39 5.65
0 57.6 0 .39 5.65
0 57.6 100 .38 2.98
0 57.6 0 .38 2.98
2 57.6 50 .38 3.39
2 57.6 0 .38 3.39
4 57.6 25 .38 3.39
4 57.6 0 .38 3.39
6 57.6 10 .38 3.39
6 57.6 0 ,38 3.39

12 57.6 1 .38 2. 38
12 57, 6 0 . 38 2. 38
0 720 100 .39 3.39
0 720 0 .39 3.39
0 720 50 .39 3.39
0 720 25 . 39 3.39
0 720 10 .39 3.39
0 720 1 . 39 3. 39

25 720 100 .39 3. 96
25 720 0 . 39 3.96
25 720 50 . 39 3.96
25 720 25 . 39 3.96
25 720 10 .39 3.96
25 720 1 .39 3.96
0 720 100 .28 9.28
0 720 0 .28 9.28

138



139

Appendix B (cont. part 1). See previous page -for definition of 
afabrevi ati ons.

Stat i on DEPTH SUR.L. I SI ML 17. K-EXT Ch 1 or ..

025-045 0 720 50 .28 9. 28
0 720 25 .28 9.28
0 720 10 .28 9.28
0 720 1 .28 9.28

20 720 100 . 28 5. 45
20 720 0 .28 5. 45
20 720 50 .28 5.45
20 720 25 .28 5.45
20 720 10 .28 5.45
20 720 1 .28 5. 45

025-048 0 285.71 100 NA 1.42
0 285.71 0 NA 1.42

025-049 0 29 1.B2 100 NA 2.53
0 291.82 0 NA 2.53

025-050 0 187.28 100 NA 2. 48
0 187.28 0 NA 2.48

025-051 0 92.76 100 NA 4.25
0 92.76 0 NA 4.25

025-052 0 23. 19 100 NA 13.84
0 23. 19 0 NA 13.84

025-055 0 107.32 100 NA 10.05
0 107.32 0 NA 10.05

025-056 0 115.52 100 NA 17. 43
0 115.52 0 NA 17.43

025-057 0 120.93 100 NA 17.81
0 120.93 o NA 17.81
0 120.93 10 NA 17.81

15 120.93 100 NA 11.68
15 120.93 0 NA 11.68
15 120.93 10 NA 11.68
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Appendix B (cont.). Part 2. April - May, 19B2, carbon uptake rates 
(mgC nr3 h ~ l) and incubation temperature (°C). See corollary data in 
Appendix B, part 1 (first two columns are cruise-station number and 
de p t h ),

Station DEPTH C.uptk Inc. T

025-019 0
0 
5
5 

10 
10 
15 
15 
20  
20

025-029 0
0

025-030 0
0 
2 
2 
4 
4
6 
6

12

12

025-037 0
0 
0 
0 
0 
0 

25 
25 
25 
25 
25 
25

025-045 0
0

5.1857 -1
. 4665 -1
4.529 -1
.291 -1

5. 529 -1
.8194 -1

4. 1 -1
1.383 -1
.235 -1
.602 -1

1. 393 -1.1
. 159 -1.1

2. 825 -.75
.462 -.75

3. 176 -.75
.409 -.75

-1.15 -.75
6. 157 -.75
-.225 -.75
4.891 -.75
-.431 -.75

3. 1486 -.75
.476 -.9

.9244 -.9
5. 463 -.9
4. 721 -.9

3.7227 -.9
.38 -.9

.8013 -.9

.2585 -.9
4.83 -.9

8.219 -.9
7.684 -.9
1.07 -.9
8.58 -.4
1.07 -.4
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Appendix B (cont. part 2). Carbon uptake rate <mqC n r 3 
incubation temperature (DC).

Station DEPTH C . upt k Inc. T

025-045 0 17.58 -.4
0 13. 76 -.4
0 14.425 -.4
0 1.942 -.4

20 1. 991 -.4
20 .3407 -.4
20 16.433 -.4
20 12. 192 -.4
20 12.212 -.4
20 4. 081 -.4

025-048 0 . 837 -1
0 . 164 -1

025-049 0 1.115 -.75
0 .355 -.75

025-050 0 1.659 -.3
0 . 368 -.3

025-051 0 3. 952 -. 1
0 . 442 -.1

025-052 0 5.854 0
0 .526 0

025-055 0 4. 184 R 6
0 .55 .6

025-056 0 12.816 0
0 . 372 0

025-057 0 11.421 0
0 .334 0
0 12. 142 0

15 4.861 0
15 .35 0
15 7.27 0

h 1 ) and



APPENDIX C

Inorganic nitrogen and carbon uptake data collected during Alpha 
Helix cruise HX043, in April - May, 1983. Data -for a station and depth 
continues along rows on successive pages (first two columns are 
cruise-station number and depth). S U R .L .I.=Surface light intensity 
( pE n r 2 s- 1 ). SIMLr/. = Simulated '/. surface irradiance.
«'-EXT = exti net 1 on coefficient Chlorophyll a (mg m~3 ), PC
meas = ineasured particulate carbon (mg m - 3 ) .

Station DEPTH SUR.L. I SI ML IX K-EXT C h 1 o r .a PC meas

43028 0 262.5 50 NA 124.08 5475.98
0 262.5 10 NA 124.08 5475.98

43042 5 540 50 . 155 1.495 133.5
5 540 50 . 155 1. 495 133. 5
5 540 10 .155 1.495 133.5
5 540 10 . 155 1. 495 133.5

43050 15 850 50 . 186 8. 023 370.36
15 850 50 . 186 8.023 370.36
15 850 10 .186 8. 023 370.36
15 850 10 .186 8.023 370.36

43056 5 570 50 .134 3 195.23
5 570 50 .134 3 195.23
5 570 10 . 134 3 195.23
5 570 10 .134 3 195.23

43059 30 500 50 NA 7.604 175.32
30 500 50 NA 7. 604 175.32
30 500 10 NA 7.604 175.32
30 500 10 NA 7. 604 175.32

43074 10 750 50 .275 10. 33 326.42
10 750 50 .275 10. 33 326.42
10 750 10 .275 10. 33 326.42
10 750 10 .275 10.33 326.42
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Appendix C (cont.). F'N meas=measured particulate nitrogen (mgat-N irr1 ). 
Ambient inorganic nitrogen concentration and label addition or spike 
(mgat-N irr 3 )

Station DEPTH PN meas N0^ NH a N 0 t S p l k. e NHaSpike

43028 0 57. 49 .56 3.2 5. 05 5.05
0 57.49 . 56 3. 2 5.05 5. 05

43042 5 1.35 6. 1 1.86 . 4762 .4762
5 1. 35 6. 1 1.86 5. 05 5.05
5 1.35 6. 1 1.86 .4762 . 4762
5 1. 35 6. 1 1. 86 5. 05 5.05

43050 15 3.69 9.53 . 01 ,4762 . 4762
15 3.69 9.53 .01 5. 05 5.05
15 3. 69 9. 53 . 01 .4762 .4762
15 3.69 9.53 .01 5. 05 5.05

43056 5 1. 86 12.31 .24 .4762 .4762
5 1.86 12.31 . 24 5.05 5.05
5 1. 86 12.31 .24 .4762 .4762
5 1.86 12.31 .24 5.05 5.05

43059 30 1.33 10.99 1.43 . 4762 .4762
30 1.33 10.99 1.43 5.05 5.05
30 1.33 10.99 1. 43 .4762 .4762
30 1. 33 10. 99 1.43 5.05 5.05

43074 10 3.87 1.7 .89 .4762 .4762
10 3.87 1. 7 .89 5.05 5.05
10 3.87 1.7 .89 . 4762 . 4762
10 3.87 1. 7 . 89 5.05 5.05
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ipendix C (c o n t .). Approximate 1=N natural abundance (atom '/.)
[organic n i trogen uptake rates: specific rates (V: h ~ 1) , absi
ites (p: ugat-N 1- 1 h " 1) .

Station DEPTH N A T A  T N VNCU VNHa p NCLt pNHa

43028 0 . 3984 .0065255 .0090533 .3751510 .5204742
0 . 3984 .005777 .0082972 .3321197 .4770060

43042 5 .55039 .008957 .0027369 .0120920 .0036948
5 .55039 .0025472 .0016222 .0034387 .0021899
5 .55039 .01 12006 .0037433 .0151208 .0050535
5 .55039 .0015707 .0014539 .0021204 .0019627

43050 15 .64704 .005252 .0014195 .0193799 .0052380
15 .64704 .01102 .0039309 .0406638 .0145050
15 .64704 .010363 .0011036 .0382395 .0040723
15 .64704 .0098867 .005069 .0364818 .0187046

43056 5 .58407 .010642 .0016075 .0197941 .0029900
5 .58407 .0070324 .0022144 .0130803 .0041188
5 .58407 .016401 .0011534 .0305059 .0021453
5 .58407 .0060968 .003036 .0113400 .0056470

43059 30 .48513 .01296 .004609 .0172368 .0061300
30 .48513 .008236 .0051138 .0109539 .0068014
30 .48513 .02188 .0044077 .0291004 .0058622
30 .48513 .0066602 .0060772 .0088581 .0080827

43074 10 .48761 .007563 .0043708 .0292688 .0169150
10 .48761 .007653 .0046997 .0296171 .0181878
10 .48761 .00787 .0045529 .0304569 .0176197
10 .48761 .0075996 .0043093 .0294105 .0166770
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Appendix C (cont.). Carbon uptake rate (P=mgC nr 3 h _ 1 , averaged in 4 h 
incubations). Inorganic nitrogen uptake experiments incubation time (h ) 
and incubation temperature (°C).

Station DEPTH p IncTi me Inc.Temp.

43028 0 113.23 6. 75 -1.5
0 145.86 6. 75 -1.5

43042 5 1. 124 7.5 -1
5 1. 124 7.5 -1
5 . 5864 7.5 -1
5 . 5864 7.5 -1

43050 15 6. 0468 7. 33 -. 5
15 6.0468 7.33 -.5
15 6.7 7. 33 -.5
15 6.7 7.33 -.5

43056 5 1.6696 8.58 -.75
5 1.6696 8. 58 -. 75
5 1.1004 8.58 -.75
5 1.1004 8.58 -.75

43059 30 5.1846 6. 75 -.5
30 5.1846 6. 75 -.5
30 3.867 6. 75 -. 5
30 3.867 6. 75 -.5

43074 10 6. 499 7.8 0
10 6. 499 7.8 0
10 5.9066 7.8 0
10 5.9066 7.8 0

Frank Miiller-Karger


