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Abstract

Growth, photosynthesis, respiration and photosynthetic pigments o f  the sporophytic 

stage for Alaskan Porphyra  species were investigated in response to various environmental

variables. Optimal conchocelis growth (7.6% volume increase d ' 1) o f  P. abbottae (Pa) occurred 

at 11°C, 80 //mol photons m"2 s ' 1 and 30ppt salinity. Porphyra torta  (Pt) grew best (6.5% d ' 1) 

at 15°C, 80 //mol photons m"2 s_I and 30ppt. Porphyrapseudolinearis (Pi) generally had higher 

growth rates with optimal growth (8.8% d ' 1) occurring at 7°C, 160 //mol photons m '2 s ' 1 and 

30ppt. Salinities between 20 and 40ppt and irradiances between 20 and 160 //mol photons m '2 

s ' 1 generally had little effect on growth rates, but there was virtually no growth at <10ppt.

Plant hormones were shown to promote the growth o f  conchosporangia, which increased 

by 6.9-31.7% (for Pa), 4.7-25.7% for (Pe, P. pseudolanceolata) and 8.9-35.1 %  for (Pi). 

Concentrations between 0.4-1.6ppm o f  kinetin and indole-3-acetic acid at higher temperatures 

generally had higher stimulatory effects, but Pe had higher volume increase at lower 

temperatures.

Irradiance, temperature and salinity influenced photosynthesis o f  the conchocelis. P-I 

curves, Pmax, Imax and Ic varied with temperature and species. Higher photosynthesis generally 

occurred at 25-35ppt salinities. Pa had maximal photosynthesis at 11°C and 60 //mol photons 

m"2 s ' 1, whereas Pi and Pt had maximal photosynthesis at higher temperatures and irradiances. 

The highest photosynthesis (240 //mol production g dw"1 h"1) o f  Pa occurred at 1 1°C, 60

//mol photons m '2 s ' 1 and 30ppt. Pi and Pt had optimal photosynthetic rates (200 and 210, 

respectively) at 15°C, 120 //mol photons n r  2 s"1 and 30ppt. Conchocelis had lower respiration



rates (30-35) at 7°C than at 11 and 15°C (45-58 //mol consumption g dw-1 I r 1). All three 

species exhibited lowest respiration at salinities between 25-35ppt.

Phycoerythrin (PE), phycocvanin (PC), carotenoid (Ca) and chlorophyll a  (Chi.a) 

contents were significantly affected by irradiance, nutrient concentration and culture duration.

For Pa, Pi and Pt, maximal PE (63.2-95.1 mg/g.dw) and PC content (28.8-64.8 mg/g.dw) 

generally occurred at 10 //mol photons n r 2 s"1, f/4-f/2 nutrient concentration after 10-20 days, 

while Pe had highest PE (73.3 mg/g.dw) and PC content (70.2 mg/g.dw) at 10 //mol photons m"2 

s"1, f  nutrient concentration after 60 days. For all four species, highest Ca (3.4 - 6.3) and Chi. a

content (3.6-8.1 mg/g.dw) generally occurred at 0-10 //mol photons m ’2 s ' 1, f/2-f nutrient 

concentration after 20-30 days. More photosynthetic pigments were generally produced at 0-10

//mol photons m"2 s"1, f/4-f nutrient concentration. High irradiances, low nutrients and longer 

culture duration generally caused a decline o f  pigment content.
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Chapter 1 

General Introduction

Porphyra (Rhodophyta: Bangials) occurs universally in the intertidal areas from 

subtropical to temperate zones around the world and is one of the economically important 

seaweeds (Baker 1977, Bergdahl 1990, Chiang 1978, Conway 1964, Conway et al. 1975, Joshi et 

al. 1992, Kommann & Sahling 1991, Lewmanomont et al. 1993, Lindstrom & Cole 1992, Miura 

1975,1988, Mumford era /.  1976, Mumford 1980, M undaef« / .  1978, Ogawa 1978, Piriz 1990, 

Waaland et al. 1986). With its high nutritional value, especially the large percentage of protein 

as well as its unique delicious flavor, Porphyra is very popular and it has long been used as food 

in many countries, especially in Japan, China and Korea (Chiang 1978, Iwasaki 1965, Li et al. 

1992, Korringa 1976, Moreland 1979, Mumford et al. 1985, Mumford et al. 1988, Mumford 

1990, Nisizawa et al. 1990, Noda et al. 1975, 1981, Tseng et al. 1947). Porphyra  mariculture 

has become the highest valued nearshore fishery in the world, with a growing market demand 

worldwide for its products. It is estimated that the annual retail value on the Japanese market 

alone is around 2 billion US dollars. The value of US imports exceeds 25 million US dollars 

each year (Merrill 1993). Besides its use as food, Porphyra has the potential to be used as a 

source for chemical extracts such as biopigments and some biomedical substances (Abe et al. 

1967, Abe et al. 1971, Amano & Noda 1978, Brooker & Cooper 1961, Chapman 1970, Hoppe, 

Levring & Tanaka 1979, Vadas 1979, Stekoll & Lindstrom personal comm.).

The life history cycle of Porphyra is essentially biphasic and involves an alteration 

between a macroscopic gametophyte phase (also called the foliose, leafy phase) and a 

microscopic sporophyte phase(also called the filamentous, conchocelis phase). Conchospores 

produced by the filamentous phase germinate to produce the haploid Porphyra  thallus. Later, 

mature thalli produce spermatangia and carpogonia. Division of the carpogomum following
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fertilization is mitotic, forming packets of diploid carpospores which germinate initially in a 

unipolar fashioned ultimately develop into the highly branched, prostrate filamentous system of 

the conchocelis phase. Terminal and intercalary cells of the conchocelis phase undergo meiosis 

and generate files of large, thick-walled cells, the conchosporangia, which release conchospores. 

Then, conchospores undergo meiosis, germinate and develop into the leafy phase.

Historically, Porphyra was harvested from wild stocks growing on natural rocky reefs or 

from artificial substrates (such as bundles of  branches or bamboo, ropes, nets and so on) that had 

been placed in water. These substrates provided attachment for wild conchospores released by 

mature conchosporangia in natural habitats (Bardach et al. 1972, Chiang 1978, Korringa, 1976). 

Porphyra blades can be harvested several times during a growing season and processed as 

commercial nori sheets. Early Porphyra cultivation depended solely on conchospores naturally 

present in the seawater. This situation often resulted in variable spore release leading to large 

fluctuations of production of Porphyra (Baker, 1977, Chiang 1978, Chiang & Wang 1980, 

Hanson et al. 1981, Li 1991, Li et al. 1992). Drew’s discovery of the shell-boring conchocelis 

stage of Porphyra  in 1949 and subsequent investigations of Porphyra life history led to major 

breakthroughs in improving Porphyra cultivation (Drew 1949). It was found that conchocelis 

cultures grown under artificially controlled conditions could be induced to produce mature 

conchosporangia and release conchospores used to seed nets. These nets with “nori seeds” 

could then be outplanted in natural seawater (Kurogi & Hirano 1956, Kurogi 1959, Tseng & 

Chang 1955). This method of net seeding greatly advanced Porphyra aquaculture, because this 

method could be used to control the time, place and scale of Porphyra cultivation.

Currently, artificial net seeding is done from conchocelis shell cultures. Carpospores are 

collected from natural, mature Porphyra blades. These released spores are then allowed to settle 

on oyster or scallop shells spread over the bottom of shallow tanks or pools containing seawater.
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The carpospores germinate and filaments borrow into the shells, developing into conchocelis 

stage. After the conchocelis produces mature conchosporangia, conchospores are released and 

attach to nets which can be used for outplanting (Bird et al. 1972, Bird 1973, Campell & Cole 

1984, Chen et al. 1970, Chiang 1978, Conway 1964, Conway et al. 1977, Dawes 1982, lima & 

Migita 1990, Korringa 1976, Liu et al. 1981, Matsuo et al. 1994, Melvin et al. 1986, Migita 

1972, Migita et al. 1987, Notoya et al. 1992, 1993, Teraoto et al. 1969). Although this style of 

net seeding from conchocelis shells is used extensively, there still exist a few shortcomings in 

this operation. For instance, a large amount of space and equipment are needed for maintaining 

conchocelis shells and many man hours are needed to brush or clean the shells of undesired 

algae. These factors increase the cost of Porphyra  production. In addition, because the 

conchocelis lives within the shells, it is not easy or convenient for growers to judge the 

instantaneous status of health and development of the conchocelis. It is not unusual for diseases 

to occur and result in failure of cultures of conchocelis shells during the conchocelis phase 

(Migita & Abe 1966, Fujita 1990).

There is another alternative approach that can be used in net seeding. Net seeding can be 

done from the cultures of free-living conchocelis. In this method, cultures of the entire 

filamentous stage, from carpospore through conchosporangia, are grown in enriched seawater 

without providing shell substrates for attachment (Chiang & Wang 1980. Dickson & Waaland 

1984, Imada & Abe 1980, Li 1988, 1991). This method of producing conchospores has several 

advantages compared to the shell method.

1). Under artificially-controlled conditions, high densities of conchocelis can be maintained in 

containers with only a small volume of culture medium. In addition, a minute amount of 

conchosporangia material will provide plenty of spores for net seeding. Therefore, less space 

and equipment and fewer facilities are needed.
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2). No labor-intensive routines such as brushing and cleaning shells are necessary.

3). During the growth of the filamentous stage, information about the development and health 

status of free cultures can be conveniently observed and monitored at any time. Remedial action 

can be taken in case of abnormal growth or disease (such as modification in culture conditions or 

addition of antibiotics).

4). The incidence of contamination can be reduced leading to high quality production.

Among the interesting and yet little-studied questions about Porphyra  are physiological 

and ecological aspects of the conchocelis stage. Relatively speaking, the microscopic 

sporophytes of Porphyra are more difficult to study, especially in the field, so most of the 

research has focused on the macroscopic gametophytes. The sporophytic stage {i.e. juvenile or 

conchocelis stage) is very important to successful Porphyra  aquaculture. A few studies have 

been conducted on the influence of environmental conditions on conchocelis growth with regaid 

to individual factors such as temperature, irradiance and daylength (Dring 1967. Kapraun & 

Luster 1980, Waaland et al. 1987). Sidirelli (1992) reported that the optimal culture conditions

are 15°C temperature, 40 |umol m '2s_l irradiance with 16L:8D photoperiod for the conchocelis 

growth of Porphyra leucosticta. Waaland et al. (1987) reported that high conchocelis growth

rates occur at 10-15°C, 25-100 pmol m '-V 1 , 16L:8D for Porphyra torta. The influence of 

different nitrogen sources and concentrations on conchocelis growth of Porphyra haitanensis has 

been studied (Meiqin et al. 1979). Optimal conditions have been obtained for culture of 

conchocelis of P. columbina at a water temperature of 15°C, 10-50 |amol m"2s_l of irradiance

and seawater nitrogen concentrations above 100 pmol L ' 1 (Frager & Brown 1995).

As for research on photosynthesis and pigments of Porphyra , many reports have 

appeared. However, almost all of these experiments dealt with only the gametophyte stage of
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Porphyra species. For instance, a wide variety of environmental factors have been examined to 

investigate their influence on leafy blades of Porphyra. Such environmental factors as 

temperature (Chang et al. 1983, Wu et al. 1984, Smith & Berry 1986, Gao & Aruga 1987), 

salinity (Oqata et al. 1971, Reed et al. 1980, Wiencke & Lauchi 1980, Satoh et al. 1983, Chang 

et al. 1983), irradiance (Herbert 1984), desiccation (Fork & Oequist 1981, Levitt & Bolton 1991, 

Lipkin et al. 1993), diurnal rhythm (Oohusa et al. 1978, 1980, Coutinho 1984), light wavelength 

(Luening & Dring 1985), nutrients and dissolved inorganic carbon (Zavodnik 1987, Kapraun et 

al. 1987), seawater pH (Gao & Zhao 1988) and seawater current speed (Gao et al. 1991) were 

shown to exert significant impact on photosynthetic or respiratory activities of Porphyra blades.

Similarly, many reports have been published on photosynthetic pigments of Porphyra 

blades. For example, Gao et al. (1991) studied the chemical properties and components of 

photosynthetic pigments and phycobiliproteins of P. haitanensis from China. Chlorophyll 

contents of P. umbilicalis have been studied in relation to temperature, irradiance and 

photoperiod (Fortes & Luening 1980). Subunits, chemical structure and compositions of 

phycocyanin from P. tenera have been analyzed (Fujiwara et al. 1985). A few comparative 

studies have been done on light-harvesting pigment contents of photosynthesis from different red 

algae or different strains of Porphyra species (Amano & Noda 1978, Czeczuga & Taylor 1983, 

Merrill et al. 1983, Fujita & Migita 1984). Lopez et al. (1991) investigated the effect of light 

pulses with different wavelength on chlorophyll, phycoerythrin and phycocyanin synthesis in 

Porphyra umbilicalis.

As mentioned above, although many reports can be found in the literature on various 

aspects of Porphyra research, including growth and photosynthesis in leafy thalli stage of 

Porphxra species, very few studies have examined and investigated the growth and 

photosynthetic features regarding free-living filamentous stage of P orpinra  species.
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Specifically, no studies have been reported on the combined effects of multiple factors on 

conchocelis growth and photosynthetic physiology. Only one paper has studied photosynthesis 

and pigment analysis of Porphyra  conchocelis ( P. leucosticta ) and only light was taken into 

consideration as a variable in this experiment (Sheath et al 1977). Many different environmental 

factors may affect Porphyra conchocelis growth. Specific Porphyra species may demonstrate 

different responses to environmental variables. More research and experiments are needed to 

deepen and broaden our knowledge of Porphyra conchocelis physiology and ecology.

In natural habitats, the microscopic sporophytes (conchocelis stage) of Porphyra 

probably occur in intertidal areas or probably extend to subtidal areas, yet little is known about 

their ecological significance as a kind of particular plant style. Although conchocelis are hardly 

ever observed and noticed in the conventional survey of coastal vegetation, they may play a role 

in improving the habitat quality of some micro-environments for other benthic organisms 

because conchocelis have the ability to perform photosynthesis even if the environmental 

irradiance available is so low that other plants might not possess net photosynthesis. In addition, 

despite their rarely being seen and noticed the conchocelis are one of the members of the algal 

community where they take place and may be an important member that should be taken into 

consideration with respect to ecological significance. Because the gametophyte (leafy) stage of 

Porphyra comes from the conchocelis, the growth and survival of microscopic conchocelis stage 

will determine and affect the leafy stage of Porphyra in many aspects such as occurrence and 

existence, abundance and biomass of leafy Porphyra populations, which maybe extend their 

distribution in intertidal or subtidal areas and form densely-populated vegetation in some proper 

habitats.

However, in natural habitats, because Porphyra conchocelis penetrate into and live in 

calcareous shells, some practical and potential obstacles could be encountered for the

6



investigation of physiology and ecology of Porphyra conchocelis in a field study. For example, it 

may not be easy to obtain the necessary samples for analysis. Moreover, it may be difficult to 

observe and measure the growth of conchocelis or other physiological indicators. It may be also 

difficult to determine how environmental variables affect conchocelis or to what extent 

environmental variables affect conchocelis.

Because of these difficulties in a field study, it is necessary to conduct the experimental 

research under controlled laboratory conditions. Free-living conchocelis can be used to 

investigate and understand critical physiological and ecological aspects of conchocelis stage for 

different Porphyra species.

The sporophyte stage ( i.e. conchocelis stage) is very important to successful Porphyra 

aquaculture. Environmental factors should be examined to investigate their influences on 

important physiological processes and biochemical composition of the Porphyra conchocelis 

stage. Such research is critically needed prior to the establishment of a nori mariculture industry, 

it is especially important to determine what are the optimal conditions for healthy conchocelis 

and conchosporangia culture of Porphyra species. Basic information and research are needed on 

growth, photosynthetic physiology and photosynthetic pigments for Porphyra sporophyte stage. 

Unfortunately, up to now, we have little understanding of this basic biological information on 

Alaskan Porphyra species. The research reported here involves both applied and basic sciences. 

This research relates closely to preserving, enhancing and effectively utilizing Alaskan natural 

resources. Information and data critical to the establishment of a Porphyra mariculture industry 

in Alaska can be obtained through these experimental research.

There is good potential for commercial scale Porphyra aquaculture in Alaska. All the 

operations and activities of Porphyra aquaculture industry are permitted and encouraged in 

Alaska through the Aquatic Permit Program. A number of local organizations and individuals
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have expressed interest in Porphyra farming. Relatively pristine, unpolluted coastal waters 

provide ideal conditions for Porphyra cultivation in Alaska. There exist about 25 species of 

Porphyra in Alaska. Among them, some have sociological importance and potential commercial 

value. For example, Porphyra ahhottae has been utilized as a traditional food by the indigenous 

people of British Columbia and southeast Alaska and is currently harvested, processed and sold 

as “black seaweed” by southeast Alaskan Natives. Porphyra pseudolinearis and P. torta , which 

occur naturally near Juneau and in other coastal areas of Alaska, are also potential species for 

successful mariculture. Not only would Porphyra aquaculture industry increase employment 

opportunities for coastal communities and strengthen the state’ economy, but also be an effective 

way to conserve and utilize Alaskan natural resources.

Light is without doubt the most important factor affecting Porphyra conchocelis stage. 

The continuous ebb and flood of tides have a profound effect on the quantity and quality of the 

sun's energy reaching Porphyra and add greatly to the variation already present in irradiance at 

the seawater surface. The primary importance of light to Porphyra  is in providing the initial 

energy for photosynthesis, and ultimately for all biological processes. Temperature is another 

fundamental factor for plants because of its effects on molecular enzyme activities and properties 

in plant cells, and hence on virtually all aspects of plant metabolism. The aspects of salinity that 

are of biological significance are ion concentration, density of seawater, and especially, osmotic 

pressure. Photosynthesis, respiration and growth of the plant all tend to have optimum salinities, 

just as they have optimum temperatures. In addition, nutrient supply is very important for the 

growth and development of Porphyra conchocelis. Because Porphyra  conchocelis inhabit 

intertidal zones, they have to tolerate a constantly varying environment, including the variations 

in temperature, salinity, light and nutrient availability. Undoubtedly, there exist some 

interactions between conchocelis and their physicochemical environment. There are numerous



freshwater inputs from streams and rivers along the coastal waters of southeast Alaska. High 

annual rainfall, glacier and snow melting may further cause a significant decrease in surface 

water salinities in the summer and fall seasons (Stekoll, 1998). All of these freshwater inputs not 

only result in a wide salinity fluctuation in the coastal waters, but also in variations of 

temperature and/or light conditions of the environment for Porphyra  conchocelis occurring in 

these habitats. Consequently, these environmental variables will have an important impact on the 

growth and survival of conchocelis stage of Porphyra because of potential physiological stress 

on conchocelis. Therefore, among the major environmental factors affecting conchocelis stage 

of Porphyra are light, temperature, salinity, and nutrient availability, naturally these factors 

should be considered in investigating the physiology and ecology of Porphyra  conchocelis. 

Further study of interactions between these factors will throw more light on physiological and 

ecological characteristics of Porphyra conchocelis stage in response to the varying environment.

Biogeography, physiological and ecological characteristics of  Porphyra conchocelis 

occurring in a given region actually represent and reflect the entire outcome of historical 

evolution and their interactions with environmental variables, because different geographical 

distributions (for different plant species or same species) will result in unique physiological and 

ecological characteristics in adaptation to a given region as a result o f  the historical evolution 

and the long-term influencing impact of environmental variables of that given habitat. This case 

is also true for Porphyra, a universally-distributed plant group. Since there is very little 

information available on the physiological ecology of Porphyra  conchocelis, especially for the 

species occurring in high-latitude (subarctic) areas, it is necessary and important for us to 

conduct such research. With research results on the relationships between conchocelis stage and 

the environment, a more comprehensive picture can be demonstrated regarding physiological and 

ecological aspects of Porphyra conchocelis. Furthermore, such research will also provide
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information on those species having the best potential for mariculture, based on their ability to 

tolerate environmental variations and on their physiological and ecological characteristics from 

the experimental investigations.

Objectives of Research

Growth rate, photosynthetic activity and photosynthetic pigment contents are appropriate 

indicators that reflect the physiological state of the Porphyra conchocelis stage in response to 

varying environmental conditions. Therefore, the overall objective of this research is to 

investigate the effects of environmental factors on the sporophytic stage of some Alaskan 

Porphyra species through analysis of morphological (the growth rate of  conchocelis cell), 

physiological (photosynthesis and respiration) and biochemical (photosynthetic pigment content) 

characteristics of these Porphyra species and to determine what are the optimal conditions for 

the sporophyte stage culture of these Porphyra species.

The research had several specific objectives:

1) to investigate the effect of environmental factors (temperature, salinity, irradiance) on the 

growth of Porphyra conchocelis and to determine the optimal environmental conditions for the 

growth of Porphyra conchocelis.

2) to investigate the effect of environmental factors (temperature, plant hormone concentration 

and type, photoperiod) on the volume increase of Porphyra conchosporangia and to determine 

the growth-stimulating effects of different plant hormones.

3) to determine the effect of environmental factors (temperature, salinity, irradiance) on 

photosynthetic and respiratory activities of Porphyra conchocelis and to determine favorable 

culture conditions in term of photosynthetic activity.
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4) to study the effect of environmental factors (irradiance, nutrient concentration and culture 

duration) on photosynthetic pigment contents of Porphyra conchosporangia and to determine 

favorable culture conditions for maximum production of phycobiliprotein.
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Chapter 2 

Conchocelis Growth of Three Indigenous Alaskan Porphyra Species: 

Response to Environmental Variables 

Abstract

Experiments were performed to determine the range and optima of environmental 

parameters under which indigenous species of Alaskan Porphyra  can grow. Growth in enriched

media under varying conditions of irradiance (20, 40, 80 and 160 //mol photons m‘2 s ' 1), 

temperature (7, 11, 15 and 19°C) and salinity (5, 10, 20, 30 and 40ppt) were measured for the 

conchocelis phase of Porphyra abbottae , P. torta and P. pseudolinearis under long day 

conditions (16L: 8D). Optimal growth (7.6% increase in volume per day) of P. abbottae 

occurred at 11°C, 80 //mol photons m '2 s ' 1 and 30ppt salinity. Porphyra torta grew best (6.5% 

d ' 1) at 15 °C, 80 //mol photons m-2 s~' and 30ppt salinity. Porphyra pseudolinearis generally 

had higher growth rates than the other two species with optimal growth (8.8% d"1) occurring at 

7°C, 160 //mol photons m '2 s ' 1 and 30ppt For all three species salinity had little effect on 

growth between 20 and 40ppt, but there was virtually no growth at salinities of lOppt and below. 

Irradiances between 20 and 160 //mol photons m '2 s ' 1 generally had little effect on growth rates. 

However, growth of P. abbottae increased with irradiance at 7°C but was inhibited at irradiances 

over 40 //mol photons m '2 s ' 1 at 15°C and higher temperatures. Porphyra torta also showed 

growth inhibition at temperatures of 15°C at higher irradiances. Porphyra pseudolinearis 

appeared to be the most robust species with respect to tolerance to extremes of salinity and 

irradiance.
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Introduction

Porphyra mariculture, the world's highest valued nearshore fishery, is also one of the 

world’s major aquacultural crops. The annual retail value for nori, the major product of 

Porphyra , is about US$2 billion on the Japanese market alone, and US imports of nori, valued at 

over US$25 million, have increased tenfold in the last ten years (Mumford & Miura, 1988; 

Merrill, 1993; Steve Crawford, personal communication). There is a growing worldwide market 

for this and other Porphyra products.

Interest in Porphyra farming in western North America has involved both Japanese 

cultivars and indigenous species (Bergdahl, 1990; Mumford, 1990). Woessner and colleagues 

(1974, 1977), who conducted biological and economic studies on Porphyra nereocystis at 

University of California at Santa Barbara, estimated that the natural crop within a 55-inile (90 

km) distance along the California coastline could be worth over half a million dollars. Waaland 

et al. (1986) identified five native North American species with commercial potential, and they 

established optimal conditions for maturation and release of conchospores of these species 

(Waaland et al., 1987, 1990). They have also grown these species to harvestable size in 

experimental farms set up in the waters of Puget Sound. Their studies provided the basis for our 

own investigations into optimal conditions for growth of species occurring in southeast Alaska. 

One of the species farmed by the Japanese (P. pseudolinearis) occurs naturally near Juneau and 

in other parts of coastal Alaska to the west. Four of the species studied by Waaland and 

colleagues grow in Alaska, and an additional ten species are known to occur in Southeast Alaska 

(Lindstrom & Cole, 1992; Scagel et al., 1989). Although the essential technology for Porphyra 

aquaculture in northwest America was established in Washington State, with modifications made 

in British Columbia and Maine, further modifications are required for Alaska because of the 

requirement to use native rather than an imported, previously domesticated species.
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Mariculture of all species of Porphyra  utilizes artificial control of the life cycle to 

regulate the production of spores for seeding nets. Thus, it is imperative that we understand the 

factors that affect growth of the conchocelis and induce conchospore production (as well as other 

aspects of Porphyra development) at both a practical level as well as at a basic biological level. 

Such understanding will help to avoid the “boom or bust” cycles associated with natural 

production. This investigation comprises the first phase of a project to domesticate Alaskan 

Porphyra species. We report here on the growth of the conchocelis phase of three species of 

Alaskan Porphyra.

Materials and Methods

Unialgal cultures of each Porphyra  species (Porphyra abbottae Krishnamurthy - strain 

PaJB03, P. pseudolinearis Ueda - strain PiSC06 and P. torta Krishnamurthy - strain PtCH03) 

were obtained from carpospore release. Mature blades of the gametophyte stage of each species 

were collected from the field. Blades were washed and scrubbed with sterile seawater to remove 

surface contamination. The cleaned blades were placed in sterile seawater in petri dishes for 

carpospore release. After 24-36 hours the blades were removed and the dishes incubated in 

Provasoli's enriched seawater (PES; McLachlan, 1973) under 16L:8D photoperiod at 15°C. 

Conchocelis segments (around 110-250 p m )  of each species were placed in cell well plates (one 

piece per well) and incubated at 33ppt salinity and 11°C (100-120 /jmol photons i r f2 s ' 1 

irradiance) or 15°C ( 140-160 //mol photons m~2 s ' 1) for the culture of  pure genotype 

conchocelis. PES enriched seawater culture medium was used.

Conchocelis growth experiments were conducted in several incubators that had been set 

at different temperatures and illuminated with cool-white fluorescent lamps. Irradiance gradients
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were obtained by wrapping the culture containers with varying layers of white paper.

Autoclaved natural seawater-based PES medium, with a GeO^ concentration of 1.25 mg L_l, 

added to inhibit diatom growth, was used in the growth experiments. At the beginning of 

experiments, the pH of the culture medium was adjusted to 7.6-7.8 (the ambient pH of the 

seawater in the inside waters of SE Alaska) using 6 M HC1 or 6 M NaOH. Experimental 

seawater with different salinities was obtained either by boiling natural seawater (for 40ppt 

salinity) or by diluting natural seawater with distilled water. Nutrients were added after salinities 

were adjusted. For the growth experiments different levels of three environmental factors were 

employed as follows:

Temperature: 7, 11, 15, 19°C

Salinity: 5, 10, 20, 30, 40ppt

(P. torta was tested at 15, 20, 30, 40, 50ppt)

Irradiance: 20, 40, 80, 160 //mol photons n r 2 s ' 1 

All of the conchocelis fragments died quickly at 5ppt and therefore no data analysis was done for 

growth at this salinity.

Corning cell wells (24 wells with lids) were used as culture containers. About 4 ml of 

culture medium (PES) were placed in each cell well. A fully factored experiment was employed 

using all combinations of the three environmental factors. The growth of free conchocelis was 

observed and recorded under the experimental conditions. For each experimental combination, 

four replicate wells were used each with 4-7 small, spherical conchocelis tufts per well. Culture 

media were changed every 15 days. Long day (16L: 8D) photoperiods were used. Conchocelis 

tufts were measured for their diameters with a microscope and their volumes were estimated

using the formula for the volume of a sphere V = (1/6) ti ■ (V and D respectively repre>ent
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the volume and the diameter of conchocelis tuft). Growth was determined from the volume 

increase of the filamentous tufts as calculated from the mean diameters at the beginning and the 

end of experiments. Conchocelis specific growth rates (p) were calculated as the mean per cent 

volume increase per day (± SE) using the formula:

100[ln (W / Vo)]
u  = -----------------------

t

in which Vt and Vg represent respectively the mean tuft volume in every well at the end and the

beginning of the experiment, and t is the number of days. The equation assumes that growth was 

exponential (DeBoer et al., 1978). The experiment lasted 31 d for P. abbottae , 26 d for P. 

pseudolinearis, and 31 d for P. torta.

Statistical analyses of the experimental data

Growth rate differences were initially analyzed by a three-way model I ANOVA (growth 

as a function of light, temperature and salinity) using S-Plus 3.1 for windows (Statistical 

Sciences, Inc. 1993). Post hoc tests were performed using the Newman-Keuls multiple 

comparison test (Zar, 1996) to identify which tested factors were important in controlling growth 

of the conchocelis. Statistical power analysis for main effect factors was conducted according to 

Cohen’s methods (Cohen. 1988).

Results

Growth of Porphyra abbottae

The growth of the conchocelis of Porphyra abbottae was influenced by all three factors 

(Figure 2.1. Table 2 .1). At low salinity (1 Oppt) growth was virtually nil, and cells became 

bleached after 8-10 days. Higher salinities promoted growth rates of nearly 8 (7r d"1. with best
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growth rates at 20-30ppt salinity. The optimal temperature was 11°C in this salinity range. 

Growth was significantly greater at this temperature (P<0.01, Figure 2.4). However, growth was 

affected by the interaction of temperature and irradiance. Higher temperatures (15-19°C) 

combined with the higher irradiances (80-160 //mol photons m~2 s ' 1) inhibited growth 

profoundly. This result is in contrast with light effects at lower temperatures, where growth was 

often greater at the higher irradiances {e.g. 30 and 40ppt, Figure 2.1). Growth was still 

reasonable at the higher temperatures if lower irradiances were employed. For example at 30ppt 

and 19°C, growth at 80-160 //mol photons m '2 s ' 1 was nearly zero, but was 5.0-5.4% d ' 1 at 20-40 

//mol photons m"2 s ' 1. The maximum growth (7.6% d ' 1) was achieved at 30ppt salinity, 11°C

and 80 //mol photons m"2 s"1 irradiance. P. abbottae became conchosporangial under all of the 

conditions used in this experiment.

Growth of Porphyra pseudolinearis

Growth of the conchocelis of Porphyra pseudolinearis was also near zero at lOppt 

salinity, similar to that of P. abbottae (Figure 2.2). The ANOVA model showed significant 

effects only with respect to salinity (Table 2.1). Peak growth occurred at 30ppt. Unlike P. 

abbottae , P. pseudolinearis was not strongly inhibited by combinations of high temperatures and 

high irradiance (Figure 2.2). The range of tolerance was greater for P. pseudolinearis than for P. 

abbottae. Growth was relatively high at all temperatures and irradiances tested. Growth was 

independent of irradiance from 20 to 160 //mol photons m"2 s ' 1 (P>0.05, Figures 2.2 and Figure 

2.4). There was a slight trend for growth to be inversely proportional to temperature at the

highest irradiance tested. Optimal growth (8.8% d '^) occurred at 30ppt salinity, 7°C, and 160 

//mol photons m '2 s ' 1 irradiance. Morphologically. P. pseudolinearis remained in the vegetative 

state throughout the experiment.
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Growth of Porphyra torta

Porphyra torta growth rates were generally lower than that of the other two species 

(Figure 2.3). ANOVA results showed that growth was significantly affected by salinity (Table 

2.1) and temperature but not by irradiance under the conditions tested. We did not test P. torta at 

lOppt since the other species did not grow at that salinity. But the growth of P. torta at 15ppt 

was fairly low except at 7°C, the lowest temperature tested (Figure 2.3). Growth at 30ppt was 

significantly greater than at the other salinities tested (PcO.Ol, Figure 4). P. torta had 

significantly greater growth rate at 7°C and 15°C than at 11°C or 19°C (P<0.01, Figure 2.4).

There was some indication from the data that P. torta growth was inhibited by high light at 19°C, 

but the effect was not as drastic as that in P. abbottae. The optimal culture condition for the

growth of P. torta was 30ppt salinity, 15°C and 80 jumol photons n r 2 s ' 1 irradiance (6.5 % d"1)- 

P. torta was conchosporangial throughout the experiment.

Growth Difference Between Species

Comparison of pooled conchocelis growth rates of three species of Porphyra  for each 

parameter tested (for comparison of differences between species) is shown on the right column of 

Figure 2.4. Overall, P. pseudolinearis had the best average growth rate, with P. abbottae having 

the second highest growth rate for all of factorial levels with the exception of 19°C (Figure 2.4). 

Salinities of 30ppt were optimal for all three species, although they were tolerant of 20ppt 

(Figure 2.4). The conchocelis in all treatments were killed by 5ppt salinity. Irradiance was 

generally not a factor, but the growth rate of each species differed from the others at each

irradiance tested with the exception of 80 and 160 ^mol photons rrf2 s ' 1 for P.abbottae and P. 

torta. Comparison of the pooled conchocelis growth rates (grand average value) for three 

species of Porphyra indicated there was a significant difference in growth between different 

species. P. pseudolinearis had significantly higher growth rate (7.2% increase in volume per

2 8



day) than the other two species, with P. abbottae  having the second highest growth rate (4.6% 

increase in volume per day) and P. torta the lowest growth rate (3.7% increase in volume per 

day. Figure 2.5).

Statistical power (l-(3) analysis

The results of statistical power (l-(3) analysis indicated that main effect factors (salinity, 

temperature, irradiance) have high power values for all species tested (>0.99, Table 2.2).

Discussion

Growth of Porphyra in various salinities was of interest due to the fact that the inside 

waters of the Alexander Archipelago in Southeast Alaska have numerous freshwater inputs from 

streams and rivers along the coast. The high annual rainfall and snow melt cause a significant 

decrease in surface water salinities in the summer and fall seasons (Stekoll. 1998). Most of the 

more accessible sites for the aquaculture of Porphyra in southeast Alaska are located in the 

inside waters. For economic and practical reasons it is necessary to understand the salinity 

tolerances of the various potential commercial species. Results from this study indicate that 

salinities of 20 to 35ppt would be optimal for the culture of Porphyra  conchocelis. but that 

conchocelis growth begins to decline at salinities of 15ppt and less.

In these experiments, Porphyra abbottae conchocelis exhibited photoinhibition of

growth at moderate and higher irradiances (above 40 //mol photons m '2 s ' 1 ) when grown at 

relatively high temperatures ( 15°C and above). It is interesting to note that the growth of the 

blade phase of this species is also reduced at higher irradiances (140 /jmol photons ir f2 s"1) and 

higher temperatures (12°C. Hannach & Waaland, 1989).
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The higher growth rate of Porphyra pseudolinearis compared to the other two species 

may result from the conchocelis remaining mostly vegetative in this species compared to the 

100% conchosporangial condition of the P. abbottae and P. torta  conchocelis. More energy in 

P. pseudolinearis goes into growth in filament length, which is what we measured, rather than 

filament width, which is significantly greater in the conchosporangial thalli.

The tolerance of the conchocelis of Porphyra pseudolinearis to a wider range of 

salinities, irradiances and temperatures than the other two species fits with the local distribution 

of this species in southeast Alaska. Whereas P. abbottae and P. torta are widely and abundantly 

distributed on the outer coast of southeast Alaska, extending to the inside waters only up major 

straits with direct connection to the outer coast, P. pseudolinearis has to date been recorded only 

from a limited stretch of coastline near Juneau, Alaska, several straits removed from the outer 

coast (Lindstrom et al.. 1986). As mentioned above, this area experiences wider temperature, 

salinity, and irradiance (due to reduced visibility during intense spring plankton blooms and 

glacial run-off in summer) fluctuations than the outer coast (Stekoll, 1998). The persistence of 

this species in this area requires a highly tolerant cryptic phase (the conchocelis) to allow it to 

survive in this area year after year.

Measured growth rates for P. torta were similar to those of Waaland et al. (1987) who 

used strains from Puget Sound. The growth of P. torta from Puget Sound was significantly 

affected by irradiances over the range of 5-300 jumol photons m~2 s ' 1 , whereas I saw no 

significant effect of irradiance on the Alaska strain of P. torta. However, my tested range of 

irradiances w'as narrower. Both the Alaska and Puget Sound strains had optimal growth around 

15°C at intermediate irradiances.

Porphyra mariculture offers an opportunity to develop a new industry in Alaska for 

seafood and seafood-based products for which markets already exist both locally and globally
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The sale and barter of locally harvested species of Porphyra still occur among Natives in 

southeast Alaska, First Nations peoples in British Columbia, and Japanese-Canadians in southern 

British Columbia. These existing networks could provide the first market entry for a product 

from indigenous species (Roberts, 1993). At the national level, the primary markets for 

Porphyra are Japanese restaurants, Oriental food stores, health food outlets, and chemical 

companies. The research reported here is fundamental to the successful culture of Porphyra in 

Alaska. It will be necessary to produce spores reliably and in quantity in order to seed nets for 

the production phase. Nets must be seeded with the species and spore density that growers 

demand when they need them. Nets need to be provided in the quantity needed for a commercial 

level of activity. Since environmental cues for reproduction are species- and possibly even 

population-specific, stocks selected from the wild must be manipulated in the laboratory to 

obtain this information.

Conclusions

Culture studies with indigenous strains of Alaskan Porphyra  species showed the range ot 

environmental conditions under which growth was successful. Porphyra abbottae  because of its 

existing market value in Alaska is of special interest. However, this species is more difficult to 

culture, in part because of its sensitivity to certain combinations of irradiances and temperatures. 

Its sister species Porphyra torta may be more amenable to domestication. However, P. torta 

quickly becomes conchosporangial in free culture, making it difficult to inoculate shells for net 

seeding. The tolerance of P. pseudolinearis to a wider range of environmental conditions and its 

ability to grow in or tolerate relatively low salinities are useful traits for a commercial species in 

Southeast Alaska. Further work on domestication of this genus is necessary before selection of a 

candidate species for commercialization in Alaska.
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Table 2.1. ANOVA table for growth of conchocelis of three different Porphyra species at 

combinations of salinity, irradiance and temperature. a 10, 20, 30, 40ppt; ^7, 11, 15, 19°C; c20. 

40, 80, 160 //mol photons nT2 s' 1 ; d 15, 2C, 30, 40, 50ppt (* P<0.05, **P<0.01).

Source of variation df Sum of squares Mean square F

P. abbottae

Salinity3 3 12.211 4.070 387.38**

Temperature*3 3 2.221 0.740 70.45**

Light0 3 0.916 0.305 29.06**

Sal. x Temp. 9 0.469 0.052 4.96**
Sal. x Light 9 0.099 0.011 1.05
Temp, x Light 9 2.609 0.290 27.59**
Sal. x Temp, x Light 27 0.483 0.018 1.70*
Residuals 192 2.017 0.011

P. pseudolinearis

Salinity3 3 71216 23.739 238.74**

Temperature*3 3 0.376 0.125 1.26

Lightc 3 0.687 0.229 2.30

Sal. x Temp. 9 1.552 0.172 1.73
Sal. x Light 9 2.052 0.228 2.29
Temp, x Light 9 1.745 0.194 1.95*
Sal. x Temp, x Light 27 4.996 0.185 1.86*'-
Residuals 192 19.091 0.099

P. torta

Salinity^ 4 2.751 0.688 38.53**

Temperature*3 3 0.532 0.177 9 93**

Light0 3 0.124 0.041 2.32

Sal. x Temp. 12 0.683 0.057 3.20**
Sal. x Light 12 0.293 0.024 1.37
Temp, x Light 9 0.565 0.063 ^  ̂ * *

Sal. x Temp, x Light 336 1.521 0.042 2.37**
Residuals 240 4.288 0.018
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Table 2. 2. Statistical power (1- S) based on the results of variance analysis for experiments 
w'ith the growth rate of Porphyra conchocelis. Power values are determined by specific values of 
the degree of freedom (u). effect size index (f) and sample size (n) for each main effect. Desired 
minimum detectable difference in means is set at 10%. Significant criterion a is equal to 0.05.
(** P<0.01 for F test).

F test Power

Effect df F u n f

Porphyra abbottae

Salinity 3 387.38** 3 49 1.8143 >0.99
Temperature 3 70.45** 3 49 1.2422 >0.99
Light 3 29.06** 3 49 1.2012 >0.99

Porphyra pseudoline ,aris

Salinity 3 238.74** 3 49 1.5205 >0.99
Temperature 3 1.26 3 49 0.8341 >0.99
Light 3 2.30 3 49 0.8354 >0.99

Porphyra torta

Salinity 4 38.53** 4 39 1.8663 >0.99
Temperature 3 9 93** 3 49 1.6540 >0.99
Light 3 2.32 3 49 1.6220 >0.99
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Figure 2.1. Porphyra abbottae (Pa). Conchocelis growth as a function of salinity (ppt),

irradiance ( ♦ ,  20: ■  , 40; A, 80; 0 ,1 6 0  /jmo\ photons m~2 s"1) and temperature (°C). Error bars 
are ± S.E. Growth rate is expressed as percent increase in volume per day. Note the y-axis scale 
for lOppt is different from the others. Negative growth rates are a consequence of the sampling 
design.
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Figure 2.2. Porphyra pseudolinearis (Pi). Conchocelis growth as a function of salinity (ppt),

irradiance (♦ ,  20; ■  , 40; A, 80; 0 ,160/um ol photons m"2 s"1) and temperature (°C). Error bars 
are ± S.E. Growth rate is expressed as percent increase in volume per day. Note the y-axis scale 
for lOppt is different from the others. Negative growth rates are a consequence of the sampling 
design.
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Figure 2.3. Porphyra torta (Pt). Conchocelis growth as a function of salinity (ppt), irradiance

(♦ ,  20; ■  , 40; A, 80; 0 ,1 6 0  pm o\ photons n r 2 s ' 1) and temperature (°C). Error bars are ± S.E. 
Growth rate is expressed as percent increase in volume per day.



40

Temperature Species

7 11 15

Tem perature

□  Pa 

H Pi

□  Pt

19

Irradiance

o
O

Species

0 -
20 40 80

Irradiance

□  Pa 

■  Pi
□  Pt

160

O

Salinity

20 30

Salinity

Figure 2.4. Comparison of pooled conchocelis growth rates of three species of Porphyra for 
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difference (P<0.01) based on multiple comparisons using the Newman-Keuls test. Letter 
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Chapter 3 

Effects of Plant Hormones on Conchosporangia Growth of Three Indigenous 

Alaskan Porphyra Species in Conjunction with Environmental Variables 

Abstract

Experiments were conducted to investigate the effects o f  plant hormones on the 

conchsporangia growth o f  three indigenous species o f  Alaskan Porphyra (P. abbottae, P. 

pseudolanceolata, P. pseudolinearis). Volume increases were measured under different 

combinations o f  culture conditions o f  hormone concentrations (0, 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 

ppm), hormone type (gibberellic acid, kinetin and indole-3-acetic acid), temperature (7, 11 and 

15°C) and photoperiod (16L:8D and 8L:16D). Experiments revealed these three plant hormones 

could effectively promote the growth o f  Porphyra  conchosporangia. Mean volume increases 

amounted respectively to 6.9-31.7% (for P. abbottae), 4 .7-25.7% (for P. pseudolanceolata ) and 

8.9-35.1% (for P. pseudolinearis), depending upon the type and concentration o f  hormones, 

temperature and photoperiod. Maximal mean volume increase (31.7%) o f  P. abbottae occurred 

at 0.8 ppm kinetin, 15°C and short day culture (8L:16D). P. pseudolanceolata  reached the best 

volume increase (25.7%) under the conditions o f  0.4 ppm indole-3-acetic acid, 7°C and long day 

culture (16L:8D). Indole-3-acetic acid stimulated most significantly the volume increase 

(35.1%) o f  P. pseudolinearis at 0.4 ppm concentration, 15°C and long day culture (16L:8D). For 

both P. abbottae and P. pseudolinearis, intermediate hormone concentrations (0.4-1.6 ppm) 

generally had optimal stimulating-growth effect than the lower or the higher, whereas higher 

volume increases principally occurred at concentrations between 0.1 and 0.8 ppm for P. 

pseudolanceolata. In most cases, stimulatory effect o f  hormones was reflected most 

conspicuously in the volume increase o f  P. pseudolinearis, with P. abbottae being the second
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rank and then P. pseudolanceolata. Kinetin and indole-3-acetic acid generally had more 

influence on the volume increase than gibberellic acid. Although hormone concentrations over 

1.6 ppm continued to have a stimulatory effect on conchosporangia, volume increase 

demonstrated a declining trend, especially in P. pseudolanceolata. For both P. abbottae and P. 

pseudolinearis, higher temperature resulted in higher volume increase, in contrast to P. 

pseudolanceolata  having higher volume increases at the lower temperatures. There appeared not 

to be significant differences in volume increase between long day and short day culture in terms 

o f  comparison o f  their grand mean values.
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Introduction

There are many endogenous and exogenous factors that control and regulate the growth 

and development of plants. Various life stages of plants can be viewed as the comprehensive 

interactions with these factors. In the study of higher plants, it was found that plant hormones 

can trigger or initiate many complex biochemical processes, which in turn ultimately lead to the 

progress of growth and development of plants. They can exert different effects on plants through 

influencing the process of cell division, cell enlargement, cell differentiation and even exert the 

effect at subcellular and molecular levels ( Jacobs 1979, Davies 1987). Therefore, plant 

hormones have often been used to study physiological effects on the growth and development of 

higher plants.

Although co n c ep t , function and physiological effect of the plant hormones are basically 

derived from research with higher plants, it has been demonstrated that some of the plant 

hormones that operate in higher plants could have a similar role in other plant categories. Some 

research has been extended to seaweeds. For example, auxins have been found in Ulva ,

Undaria, Hizikia and Porphyra (Abe et al, 1972, Zhang et al, 1993), cytokinin in species of 

Laminaria, Fucus and Phaseolus (Brain et al, 1973, Reitz et al, 1996), gibberellin in 

Enteromorpha  and Ecklonia  (Jennings, 1968), and abscisic acid in Laminaria species 

(Schaffelke, 1995). In addition to identification and analysis of hormone composition from 

seaweed extracts, some studies have been carried out on how exogenous hormones affect algal 

growth or development. For instance, Rao et al (1972) examined four plant hormones ( IAA, 

IBA, IA and AA) for their effects on the growth of vegetative fragments of Gelidiella acerosa. 

Kathiresan et al (1994) studied the effects of plant hormones (IAA and GA3) on seeding 

performance of Aricennia marina. Kaczyna et al ( 1993) studied the growth and callous 

induction of two plant hormones (IPA and IAA) on Gracilaria verrucosa. Borowczak et al
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(1977) studied the effect of gibberellin and kinetin on the regeneration ability of Fucus 

vesiculosus.

There are about 440 species of algae in Alaska. Quite a few, especially Porphyra, have 

ecological importance and potential commercial value (Stekoll, 1990). There exist more than 20 

species of Porphyra in British Columbia and adjacent areas (Lindstrom, 1991). Some of these 

species have the potential to be used successfully in mariculture. In the life cycle of Porphxra, 

two distinct phases are involved: one is the leafy thalli phase known as Porphxra and the other is 

the filamentous phase called the conchocelis, which generally lives inside of molluscan shells. 

Although the conchocelis culture of different Porphyra species have been reported (Bird, 1972, 

Campbell et a l , 1984, Conwey et al, 1977, Dring, 1967,Waaland et al., 1990), to date very few 

studies have examined the physiological response of free-living conchocelis to plant hormones 

and very little is known about physiological effects of plant hormones on the sporophyte stage of 

Porphyra. It is interesting to investigate the effects of plant hormones on conchospore growth of 

Porphyra species. The objective of this study is to investigate the effects of three plant 

hormones on the conchosporangia growth of Porphyra species.

Materials and Methods

Free-living conchocelis of three species of Porphyra were used in these experiments: 

Porphyra abbottae (Pa), Porphyra pseudolanceolata  (Pe) and Porphyra pseudolinearis (Pi).

For plant hormone effect experiments different levels of three environmental factors 

were employed as follows (with salinity and irradiance fixed at 30ppt and 10 /ymol photons n r 2 

s' 1 respectively for the photoperiods 16L:8D and 8L: 16D):

Temperature: 7, 11, 15°C.
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Hormone type: kinetin (K), gibberellic acid (G), indole-3-acetic acid (IAA). 

Hormone concentration: 0 (control), 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 ppm.

Conversion from ppm to |J.M concentration for three different hormones is given in the 

following table:
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K (jliM) 

G (|aM)

0.1 ppm 0.2 ppm 0.4 ppm 0.8 ppm 1.6 ppm 3.2 ppm

4.65 x 10'4 9.29 x 10‘4 1.86 x \0 ':" 3.72 x 10-' 7.44 x 10' 1.49 x 10 :

2.89 x 10'4 5.77 x 10'4 1.16 x 10’' 2.31 x 10'3 4.62 x 10"' 9.24 x 10 '

5.29 x 10'4 1.06 x 10‘3 2.11 x 10"' 4.23 x 1 0 ;’ 8.46 x 10 ' 1.69 x 10'2

Corning cell wells (24 wells with lids) were used as culture containers. About 5 ml of 

incubation medium was provided in each cell well. Four replicates were run for each treatment. 

Experiments were conducted in several incubators which had been set at different temperatures 

using cool-white fluorescent lamps. Seawater was autoclaved and full strength of PES was 

added along with different concentrations of plant hormones. Incubation medium was changed 

every 10 days.

Irradiance levels were obtained by wrapping the culture containers with layers of white 

paper and was measured with a Li-Cor Radiation Sensor (Li-190SR Quantum Sensor). At the 

beginning of experiments, small conchocelis tufts (about 0.1-0.2mm in diameter) were 

transferred to the cell wells. After being incubated for 45 days under the experimental 

conditions, all tufts were measured for their diameters with a microscope and their tuft volumes

were estimated using the formula for the volume of a sphere V = (1/6) • 7t • D3 (V and D 

respectively represent the volume and the diameter of conchosporangia tuft).

The effects of plant hormones on the growth of Porphyra  conchosporangia were 

determined by estimating percentage increase of conchosporangia volume for those cultures



treated with plant hormones in comparison with control cultures, i.e. the effects of plant 

hormones on the growth were expressed as the mean percentage of volume increase (VI, ±SE) 

which was estimated by using the following formula:

l O O ( V - V c )
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VI (%) =

where V and Vc represent the mean conchosporangia volume in every well respectively for 

cultures treated with hormones and control cultures.

Statistical analyses of the experimental data

For each species and each photoperiod, three factors were included: temperature (7, 11, 

15°C) and hormone concentration (0 .1 ,  0.2, 0.4, 0.8, 1.6, 3.2 ppm) and hormone type (IAA, K, 

G). There were fifty-four complete combinations of different levels of these factors with four 

replicates per treatment and a total of N = 3 x 3 x 6 x 4 = 216 samples for each species. Two 

separate photoperiod experiments (16L:8D and 8L:16D) were conducted. Therefore, volume 

increase differences (i.e. the effects of these factors) were analyzed by using a three-way model I 

ANOVA and S-Plus 3.1 for windows (Statistical Sciences, Inc. 1993). The Newman-Keuls 

multiple comparison test (Zar, 1996) was performed to identify which tested factors were 

important in controlling volume increase of the conchosporangia of Porphyra. Statistical power 

analysis for main effect factors was conducted according to Cohen’s methods (Cohen, 1988).

Results

Porphyra abbottae

Experimental results of combined effects of three environmental factors (hormone 

concentration, hormone type and temperature) indicated that the volume increase of P. abbottae



was significantly affected by all three factors ( Table 3.1 and Table 3.2, Figure 3.1) for both short 

and long day photoperiod culture ( 16L:8D and 8L: 16D). Volume increase in response to the 

three variables for two photoperiod cultures followed similar patterns (Figure 3.1).

In most cases, kinetin and indole-3-acetic acid promoted higher growth than gibberellic 

acid (mean: 17.5% vs. 13.5% volume increase, Figure 3.1, Figure 3.4 and Figure 3.5). Hormone 

concentrations between 0.1 and 0.8 ppm usually caused an increase in growth (volume increase 

ranged between 6.5-31.7%), with the peak occurring at concentrations between 0.4 and 0.8 ppm 

(Figure 3.1, Figure 3.4 and Figure 3.5).

The highest temperature (15°C) promoted higher growth than the other two temperatures 

(mean volume increase 18% vs. 15%), but there was no significant difference in volume increase 

between 7°C and 11°C (Figure 3.1, Figure 3.4 and Figure 3.5).

The highest volume increase (31.7%) was achieved at 0.8 ppm kinetin, 15°C and short

days (8L:16D). with salinity and irradiance at 30ppt and 10 ,umol photons n r 2 s' 1 respectively. 

There were no significant differences in volume increase between long day and short day 

cultures (Figure 3.7).

P. pseudolanceolata

The volume increase of the conchosporangia of P. pseudolanceolata  was influenced by 

only hormone concentration and temperature for long day culture (Table 3.1, Figure 3.2) but by 

all three factors for short day culture (Table 3.2, Figure 3.2). Interactions existed between only 

hormone concentration and temperature (Table 3.1, Table 3.2). This result suggests that for long 

day culture P. pseudolanceolata  exhibited a uniform response to plant hormones (mean volume 

increase 12.5-14%) no matter which type of hormone was employed (Figure 3.4). But for short 

day cultures, kinetin had significantly higher stimulatory effect on growth than the other two 

hormones (mean volume increase 14% vs. 10.5%. Figure 3.5).
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The pattern of volume increase in P. pseudolanceolata  was similar to that in P. abbottae 

at 7°C temperature under long or short day cultures. However, P. pseudolanceolata  exhibited a 

different pattern in response to hormones at higher temperature levels ( 1 1°C and 15°C), where 

volume increase generally peaked at the lowest hormone concentration tested (0.1-0.4ppm,

Figure 3.2).

In contrast to P. abbottae, highest volume increase was demonstrated at the lowest 

temperature (17% volume increase at 7°C vs. 10% at 11°C and 12.5% at 15°C for long day 

cultures). However, there was no significant difference in mean volume increases at 

temperatures between 7°C and 11°C for short day cultures (Figure 3.5). The highest volume 

increase (25.7%) was achieved at 0.8 ppm kinetin, 7°C and short day culture (8L: 16D), with

salinity and irradiance fixed at 30ppt and 10 /imol photons m' 2 s"1, respectively. Although there 

is an appearance of a difference in volume increase between long day and short day culture, the 

difference was not statistically significant (Figure 3.7, P>0.05).

P. pseudolinearis

All three environmental factors significantly affected the volume increase of the 

conchosporangia of P. pseudolinearis for long or short day culture (Table 3.1, Table 3.2, Figure 

3.3). For all the conditions tested, P. pseudolinearis always reached maximal volume increase at 

0.4 ppm hormone concentration ( mean volume increase 21% vs. 12-17%, Figure 3.3, Figure 3.4 

and Figure 3.5).

Kinetin and indole-3-acetic acid caused higher volume increases than gibbereilic acid 

(mean volume increase 16% vs. 19% for long day culture and 14% vs. 17.5% for short day 

culture. Figure 3.3, Figure 3.4 and Figure 3.5). Higher temperatures (11 °C and 15°C) resulted in 

greater volume increase (Figure 3.3, Figure 3.4 and Figure 3.5). Indole-3-acetic acid stimulated 

the greatest volume increase (35.1%) of P. pseudolinearis at 0.4 ppm concentration. 15°C and
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long day culture ( 16L:8D), with salinity and irradiance fixed at 30ppt and 10 /vmol photons m ' 2 

s ' 1, respectively.

Although there was a difference in volume increase between long day and short day 

culture, this difference was not statistically significant (Figure 3.7, P>0.05).

Effect difference between species

The pooled hormone effects (for comparison between species) on the conchosporangia 

growth of three species of Porphyra for each parameter tested are shown on the right column of 

Figure 3.4 and Figure 3.5. All three species exhibited similar volume increases at hormone 

concentrations between 0.1-0.2 ppm. However, there was a significant difference in volume 

increase between different species at higher hormone concentrations, i.e., both P. abbottae and P. 

pseudolinearis had conspicuously higher volume increase (P<0.05) at 0.4-3.2 ppm hormone 

concentrations (Figure 3.4 and Figure 3.5).

There was also a significant difference in volume increase among species in relation to 

hormone type employed. Kinetin and indole-3-acetic acid had more effect on P. abbottae and P. 

pseudolinearis than on P. pseudolanceolata. Gibberellic acid had a significantly higher 

stimulatory effect on P. pseudolinearis than on the other two species (Figure 3.4 and Figure 3.5).

As far as temperature was concerned, volume increase was similar at the low 

temperature(7°C) for all three species (about 16.5% volume increase), nevertheless, P. 

pseudolinearis and P. abbottae had significantly greater volume increase than P. 

pseudolanceolata  at higher temperatures (11-13% vs. 16-22.5% volume increase for long day 

culture and 9-10.5% vs. 15-19% volume increase for short day culture, Figure 3.4 and Figure 

3.5).

The pooled hormone effect (for comparison of the grand mean value) also uniformly 

indicated that P. pseudolinearis and P. abbottae were stimulated to produce higher volume
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increase by exposure to plant hormones (Figure 3.6). Hormone concentrations between 0.4-0.8 

ppm caused the most conspicuous volume increase. Both kinetin and indole-3-acetic acid 

stimulated the conchosporangia growth of Porphyra more significantly than gibberellic acid for 

long or short day culture (Figure 3.6). Higher temperature resulted in greater volume increases 

for long day cultures but not for short day cultures (Figure 3.6).

There was also a significant difference in volume increase between species for different 

photoperiods. Both P. abbottae and P. pseudolinearis had higher volume increase than P. 

pseudolanceolata  for long or short day culture (Figure 3.7). Total pooled hormone effect for 

comparison of grand mean values indicated that there was no significant difference in volume 

increase between long day and short day culture (grand mean 15% vs. 16.2% volume increase, 

Figure 3.7).

Statistical power (1-P) analysis

The results of statistical power (1 -(3) analysis indicated that main effect factors 

(hormone concentration, hormone type and temperature) have high power values (>0.90 when 

detectable difference in means is set at 15%, Table 3.3 and Table 3.4).

Discussion

Using GC-MS (gas chromatography with mass spectrometry or NM R (nuclear magnetic 

resonance), auxin, abscissic acid(ABA), and cytokinins have been identified in seaweeds. For 

instance, Jacobs et al. (1985) identified auxin in Caulerpa paspaloides, where it apparently 

mediates the growth of new rhizoids when rhizomes are reoriented.

Since the evidence has indicated that growth substances exist in seaweeds, the growth of 

seaweeds could be regulated and controlled by such growth substances. Therefore, research on
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the growth response of Porphyra conchocelis to plant hormones possesses importance in a 

theoretical context (demonstrating the physiologically growth- regulatory function of plant 

hormones). More importantly, such research results can be effectively applied to artificial 

cultivation of Porphyra , i.e., we can promote the growth and development of Porphxra 

conchocelis and further obtain an increase in the production of Porphyra  conchocelis or 

conchosporangia by exposing them to some exogenous hormones. The analysis of the results 

indicates that hormone concentration, hormone type and temperature significantly affect the 

volume increase of the conchosporangia of these three Porphyra species.

Among these three plant hormones studied, indole-3-acetic acid and kinetin possess a 

stronger stimulating-growth effect than gibberellic acid. For example, maximum volume 

increase induced by indole-3-acetic acid, kinetin and gibberellic acid are ranked as 35.1%, 31.7% 

and 24.2% compared with control group. It is possible that different hormones would cause a 

different magnitude of physiological effect because of their specific chemical structures, which 

may affect the ease by which hormones enter the plant cell and action sites for hormones to play 

a role on. Furthermore, cellular location of binding sites and transport of plant hormones may 

also result in different magnitudes of physiological regulations on the growth of plants.

Rao et al. (1992) found that three hormones (indole-3-acetic acid, IB A and AA) used in 

their experiments caused different growth effects on the seaweed, Gelidiella acerosa.

Kathisesan et al. (1994) reported that gibberellic acid (at 50 ppm of concentration) enhanced 

shoot growth of a seaweed (Aricennia m arina) by 26% and root growth by 40%. Indole-3-acetic 

acid (at 10 ppm) increased shoot dry weight by 139% and root length by 30%.

In my experiments, the stimulatory effect of indole-3-acetic acid on three species of 

Porphyra caused volume increase by 6.0-35.1 %. Kinetin and gibberellic acid promoted volume 

increase respectively by 5.4-31.7% and 4. 9-24.2%, depending upon different culture conditions

52



and species. For both P. pseudolinearis and P. abbottae , minimum volume increase usually 

occurred at the lowest hormone concentration (0.1 ppm). In most cases, hormone concentrations 

between 0.4-1.6 ppm resulted in the highest volume increase at lower temperatures (7°C and 11 

°C). Hormone concentrations between 0.2-0.8 ppm exhibited a larger stimulatory effect at higher 

temperature (15°C). Similarly, for P. pseudolanceolata, the lowest concentration of hormones 

(0.1 ppm ) induced minimum volume increase at the lower temperature (7°C). In most cases,

0.2-0.8 ppm of hormone concentrations promoted higher growth.

However, under higher temperatures ( 1 1°C and 15°C), in most cases, lower hormone 

concentrations led to higher volume increase. This phenomenon was particularly obvious in the 

experiments at 15°C. This result may demonstrate that P. pseudolanceolata  is sensitive to the 

low concentrations of plant hormones at higher temperatures, which enhanced metabolism of 

plant cells. Although the maximum hormone concentration tested (3.2 ppm) still led to a 

reasonable volume increase, there was a declining tendency. This could be observed especially 

in the experiments with P. pseudolanceolata. Further investigations are needed to determine 

whether or not there exists an inhibitory effect on Porphyra  conchocelis growth at higher 

hormone concentrations.

For these three species of Porphyra, plant hormones exhibited more significant influence 

on P. pseudolinearis and P. abbottae than on P. pseudolanceolata. Maximum volume increase 

was respectively 35.1%- (for P. pseudolinearis, 16L:8D, 0.4 ppm of indole-3-acetic acid, 15°C), 

31.7% (for P. abbottae, 8L: 16D, 0.8 ppm of kinetin, 15°C) and 25.7% ( for P. 

pseudolanceolata, 16L:8D, 0.4 ppm of indole-3-acetic acid, 7°C).

Although there was no obvious difference between long day and short day cultures for 

plant hormone effect, data suggest that plant hormones could exert higher growth-stimulating
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effect on P. abbottae under short day culture and exerted higher growth-stimulating effect on P. 

pseudolanceolata  and P. pseudolinearis under long day culture.

From the study of hormone effect on a Japanese species, Porphyra tenera, Iwasaki 

(1965) reported that gibberellic acid affected conchocelis growth most effectively. Dry weight of 

conchocelis increased by 200-380% at 0.02-0.1 ppm of gibberellic acid concentrations for 135 

days culture. Indole-3-acetic acid at 0.02-0.1 ppm and 0.1-0.2 ppm of kinetin concentrations led 

to 2-200% and 46-62% of increase in conchocelis dry weight. Compared with my experimental 

results, it is possible that different species have different susceptibility to specific plant 

hormones.

Conclusions

The following conclusions could be drawn from my experimental results:

1. Three plant hormones (indole-3-acetic acid, kinetin and gibberellic acid), can influence 

conchosporangia growth of three species of indigenous Alaskan Porphyra (P. abbottae, P. 

pseudolanceolata and P. pseudolinearis).

2. Physiological effects of these plant hormones on Porphyra conchosporangia can be observed 

and measured by estimating the percentage volume increase of the conchosporangia exposed to 

plant hormones.

3. Growth-stimulating effect of plant hormones is related to different conditions such as hormone 

type and concentration, culture temperature and species.
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Table 3.1. ANOVA table for the effects of plant hormones on the conchosporangia growth of 
three different Porphyra species with different combinations of hormone concentration (He),

hormone type (Ht)) and temperature (Temp.) for long day culture(16 hour light:8 hour dark). a

0.1, 0.2, 0.4, 0.8, 1.6, 3.2 ppm; ^gibberellic acid (G), kinetin (K), and indole-3-acetic acid

(IAA); c 7, 1 1 , 15°C (*P<0.05; **P<0.01).

Source of variation df Sum of squares Mean square F

P. abbottae
He" 5 1500.01 300.00 23.98**
Ht'’ 2 480.88 240.44 19.22**
Temperature17 2 350.65 175.33 14.02**
He x Ht 10 430.88 43.09 3.44**
He x Temp. 10 467.96 46.80 3.74**
Ht x Temp. 4 93.76 23.44 1.87
He x Ht x Temp. 20 574.57 28.73 2.30*
Residuals 162 2026.47 12.51

P. pseudolanceolata
He" 5 1230.83 246.17 9.80**
Ht'’ 2 142.71 71.35 2.84
Temperature1" O 1210.20 605.10 24.09**
He x H t 10 169.79 16.98 0.68
He x Temp. 10 1467.26 146.73 5.84**
Ht x Temp. 4 159.65 39.91 1.59
He x Ht x Temp. 20 285.13 14.26 0.56
Residuals 162 4069.61 25.12

P. pseudolinearis
He" 5 2778.10 555.62 37.01**
Ht'' 2 389.36 194.68 12.97**
Temperaturec 2 1204.85 602.42 40.12**
He x Ht 10 299.87 29.99 2.00
He x Temp. 10 1366.27 136.63 9.10**
Ht x Temp. 4 327.10 81.77 5.45**
He x Ht x Temp. 20 664.11 33.21 2.21 **
Residuals 162 2432.31 15.01
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Table 3.2. ANOVA table for the effects o f  plant hormones on the conchosporangia growth o f  
three different Porphyra  species with different combinations o f  hormone concentration (He),

hormone type (Ht)) and temperature (Temp.) for short day culture(8 hour light: 16 hour dark). a

0.1, 0.2, 0.4, 0.8, 1.6, 3.2 ppm; ^gibberellic acid (G), kinetin (K), and indole-5-acetic acid

(IAA); c 7, 11, 15°C (*P<0.05; **P<0.01).

Source o f  variation d f Sum o f  squares Mean square F

P. abbottae
Hc« 5 2886.73 577.35 27.40**
Ht^ 2 367.42 183.71 8.72**
Temperature*- 2 684.38 342.19 16.24**
He x Ht 10 894.76 89.48 4.25**
He x Temp. 10 278.13 27.81 1.32
Ht x Temp. 4 104.50 26.12 1.24
He x Ht x Temp. 20 832.96 41.65 1.98*
Residuals 162 3413.92 21.07

P. pseudolanceolata
Hca 5 848.53 169.71 10.18**
Ht^ 2 383.43 191.72 11.50**
Tem perature^ 2 1651.09 825.55 49.53**
He x Ht 10 174.94 17.49 1.05
He x Temp. 10 515.06 51.51 3.09**
Ht x Temp. 4 114.43 28.61 1.72
He x Ht x Temp. 20 342.52 17.13 1.03
Residuals 162 2700.14 16.67

P. pseudolinearis
Hc« 5 2025.63 405.13 22.56**
Ht^ 2 441.46 220.73 12.29**
Temperature^ 2 292.74 146.37 8.15**
He x Ht 10 189.99 19.00 1.06
He x Temp. 10 689.05 68.91 3.84**
Ht x Temp. 4 16.16 4.04 0.22
He x Ht x Temp. 20 387.53 19.38 1.09
Residuals 162 2909.40 17.96
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Table 3.3. Statistical power (1 -6 )  based on the results o f  variance analysis for experiments 
with plant hormone effects on volume increase of Porphyra conchosporangia (long day culture, 
16L:8D). Power values are determined by specific values of the degree of freedom (u), effect 
size index (0  and sample size (n) for each main effect. Desired minimum detectable difference 
in means is set at 15%. Significant criterion a  is equal to 0.05. Three main effect factors 
(hormone concentration, hormone type and temperature) are abbreviated as he, ht and t in the 
table.
(** P<0.01 for F test).

F test Power

Effect df F u n f

Porphxra abbottae

he 5 23.98** 5 28 0.5291 >0.99
ht 9 19 22** 2 55 0.4804 >0.99
t 2 14.02** 2 55 0.4748 >0.99

Porphyra pseudolanceolata

he 5 9.80** 5 28 0.3339 0.92
ht 2 2.84 2 55 0.3143 0.95
t 2 24.09** 2 55 0.3359 0.97

Porphxra pseudolinearis

he 5 4.45** 5 28 0.4849 >0.99
ht 9 ] 9 9 7 * * 9 55 0.4192 >0.99
t 2 40.12** 2 55 0.4394 >0.99
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Table 3.4. Statistical power ( 1 - S) based on the results of variance analysis for experiments 
with plant hormone effects on volume increase of Porphyra conchosporangia (short day culture, 
8L:16D). Power values are determined by specific values of the degree of freedom (u), effect 
size index (f) and sample size (n) for each main effect. Desired minimum detectable difference 
in means is set at 15%. Significant criterion a  is equal to 0.05. Three main effect factors 
(hormone concentration, hormone type and temperature) are abbreviated as he, ht and t in the 
table.
(** P<0.01 for F test).

F test Power

Effect df F u n f

Porphxra abbottae

he 5 27.40** s 28 0.4450 >0.99
ht 2 8.72** 2 55 0.381 1 >0.99
t 2 16.24** 2 55 0.3879 >0.99

Porphxra pseudolanceolata

he 5 10.18** 5 28 0.3373 0.93
ht 2 1 1.50** 2 55 0.3271 0.96
t 2 49.53** 2 55 0.3656 0.99

Porphyra pseiidolinear is

he 5 22.56** 5 28 0.5178 >0.99
ht 2 12.29** 55 0.4537 >0.99
t 2 8.15** 2 55 0.4486 >0.99
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Figure 3 .1. Porphyra abbottae  (Pa). The effects of plant hormone (O , G; ■  , K; A, IAA) on 
conchosporangia growth under conditions of different temperatures (7, 11, 15 °C) and 
photoperiods (long day: L and short day: S). Error bars are ± S.E. Volume increase is expressed 
as percent increase in volume compared with control.
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Figure 3.2. Porphyra pseudolanceolata (Pe). The effects of plant hormone (O , G; I  , K; A, 
IAA) on conchosporangia growth under conditions of different temperatures (7, l l .  15 °C) and 
photoperiods (long day: L and short day: S). Error bars are ± S.E. Volume increase is expressed 
as percent increase in volume compared with control.
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Figure 3.3. Porphyra pseudolinearis (Pi). The effects of plant hormone (O , G; ■  , K; A, IAA) 
on conchosporangia growth under conditions of different temperatures (7, l l ,  15 °C) and 
photoperiods (long day: L and short day: S). Error bars are ± S.E. Volume increase is expressed 
as percent increase in volume compared with control.
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Figure 3.4. C om parison  o f  pooled  horm one effect on conchosporangia  growth o f  three species o f  P orpliyra  
for each param eter tested (photoperiod  16L:8D). Error bars are ± S.E. Different letters above the bars 
indicate significant difference (P<0.05) based on multiple com par isons using the N ew m an-K eu ls  test.
Letter com par isons arc relevant only within a specie (for the figures on the left) and letter com par isons  arc 
relevant only between specie (for the figures on the right).
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Figure 3.6. Comparison of pooled hormone effect on conchosporangia growth of three species of 
Porphyra for each parameter test (for comparison of the grand average value). Error bars are ± 
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Chapter 4 

Photosynthesis and Respiration of Three Indigenous Alaskan Porphyra Species: 

Response to Environmental Variables 

Abstract

Experiments were carried out to investigate the physiological responses o f  conchocelis 

to environmental variables in terms o f  their photosynthesis and respiration for indigenous species 

o f  Alaskan Porphyra (P. abbottae , P. pseudolinearis and P. torta), and determine the range and 

optima o f  environmental parameters under which conchocelis can photosynthesize and respire.

P -I  (photosynthesis vs. irradiance) curves revealed that photosynthesis varied with 

irradiance, however, patterns o f  a P -I  curve, Pmax, Imax and Ic depended on temperature and 

species. P. abbottae had typical features o f  P -I  curve that showed that Pmax (about 83-146 //mol 

C>2 production g dw ' 1 h"1 ) occurred at 20-140 //mol photons m ' 2 s' 1 (Imax) depending on 

temperature. Higher irradiances resulted in a decline in photosynthesis. Both P.pseudolinearis 

and P. torta  exhibited higher Pmax and Imax values, compared with P. abbottae. The Pmax o f  P. 

pseudolinearis was about 200-240 //mol C>2 g dw"1 h' 1 and 90-240 //mol g dw-1 h-1 for P.

torta  , with the Imax being 135-250 and 200-250 //mol photons m ' 2 s"1 respectively.

Compensation irradiances (Ic ) were estimated from the photosynthetic values intercepted on the 

x-axis by the points o f  0 and the lowest irradiances for the P-I curves. Results showed that these 

species generally had very low lc (about 3-5 //mol photons m ' 2 s ' 1).

Photosynthetic activity of  conchocelis was significantly influenced by irradiance, 

temperature and salinity. For all three species salinities between 25 and 35ppt caused higher 

photosynthesis, with the highest occurring at 30ppt in most cases. Photosynthesis markedly

71



declined at salinities lower than 25ppt or higher than 35ppt. P. abbottae  had higher 

photosynthesis at 11°C and 60 //mol photons m "2 s"1, whereas P. pseudolinearis and P. torta  had 

higher photosynthesis at higher temperature and irradiance. The highest photosynthesis o f  P. 

abbottae occurred at 11°C, 60 //mol photons n r  2 s' 1 and 30ppt. P. pseudolinearis and P. torta  

had the highest photosynthesis at 15°C, 120 //mol photons m~2 s"! and 30ppt.

Conchocelis had the lower respiratory rates at 7°C than at 11 and 15°C. All three 

species significantly exhibited minimal respiratory activity at salinities between 25-35ppt.
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Introduction

Among the interesting and yet little-studied questions about Porphyra are physiological 

and ecological aspects of  the conchocelis stage. Many research reports on photosynthesis of 

Porphyra dealt with only the gametophyte stage of Porphyra. For instance, a variety of 

environmental factors have been examined to investigate their influences on leafy blades of 

Porphyra such as temperature (Chang et al. 1983, Wu et al. 1984, Smith & Berry 1986, Gao & 

Aruga 1987), salinity (Oqata et al. 1971, Reed et al. 1980, Wiencke & Lauchi 1980, Satoh et al. 

1983, Chang et al. 1983), irradiance (Herbert 1984), desiccation (Fork & Oequist 1981. Levitt & 

Bolton 1991, Lipkin e ta l.  1993), diurnal rhythm (Oohusa et al. 1978, 1980, Coutinho 1984), 

light wavelength (Luening & Dring 1985), nutrients and dissolved inorganic carbon (Zavodnik 

1987, Kapraun et al. 1987), seawater pH (Gao & Zhao 1988) and seawater current speed (Gao et 

al. 1991). Very few studies have investigated photosynthetic and respiratory responses to 

environmental variables by the conchocelis stage of Porphyra  species. Specifically, no studies 

have been reported on the combined effects of multiple factors on photosynthetic physiology of 

the conchocelis. Only one paper has briefly studied photosynthesis of Porphyra conchocelis [P. 

leucosticta  ) and light was the only variable (Sheath et al. 1977). Several environmental factors 

may affect the photosynthesis and respiration processes of Porphyra conchocelis.

In natural habitats, the microscopic sporophytes (conchocelis stage) of Porphyra 

generally occur in intertidal areas or probably extend to subtidal areas, yet little is known about 

their ecological significance. Although conchocelis are hardly ever observed and noticed in the 

conventional survey of coastal vegetation, they may play a role in improving the habitat quality 

of some micro-environments for other benthic organisms because conchocelis have the ability to 

perform photosynthesis even if the environmental irradiance available is so low that other plants 

might not possess net photosynthesis. The microscopic sporophytes of Porphyra are difficult to
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study, especially in the field, because they live in calcareous shells. Because of these difficulties 

in a field study, it is necessary to conduct the study under controlled laboratory conditions. Free- 

living conchocelis can be used to investigate and understand physiological and ecological aspects 

of conchocelis stage for different Porphyra species.

The sporophytic stage(/.e. conchocelis stage) is very important to successful Porphyra 

aquaculture. Environmental factors should be examined to investigate their influences on 

important physiological processes of the Porphyra conchocelis stage. Such research is needed 

prior to the establishment of a nori mariculture industry in Alaska. It is especially important to 

determine the optimal conditions for healthy conchocelis of Porphyra species. Basic information 

and research are needed on photosynthetic and respiratory reactions of Porphyra sporophyte 

stage.

Photosynthesis and respiration are basic and important processes in the conchocelis 

stage. Photosynthetic and respiratory rates can reflect the metabolic conditions of the 

conchocelis responding to the environmental change. Therefore, such indicators can be used to 

mirror the physiological reactions to the environment. This research aimed to investigate the 

effect of environmental factors (temperature, salinity, irradiance) on photosynthetic and 

respiratory activities of Porphyra  conchocelis and to determine favorable culture conditions in 

term of photosynthetic and respiratory activities. These experiments addressed the following 

questions:

(1). How does the photosynthetic rate of conchocelis vary with species, light, temperature and 

salinity?

(2). For these species of Porphyra  conchocelis, what are the shapes of the P-I curves under the 

conditions above? What are the compensation points at which no net oxygen production occurs?
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Do species show photoinhibition at high light? How do these parameters vary with different 

incubation temperatures or salinities?

(3). How do dark respiration rates of Porphyra conchocelis vary with species temperature and 

salinity?

Materials and Methods

Unialgal cultures of each Porphyra species (Porphyra abbottae Krishnamurthy - strain 

PaSGSOl, P. pseudolinearis Ueda - strain PiSC14 and P. torta Krishnamurthy - strain PtCHOl) 

were obtained from carpospore release. Mature blades of the gametophyte stage of each species 

were collected from the field. Blades were washed and scrubbed with sterile seawater to remove 

surface contamination. The cleaned blades were placed in sterile seawater in petri dishes for 

carpospore release. After 24-36 hours the blades were removed and the dishes incubated in 

Provasoli's enriched seawater (PES: McLachlan. 1973) under 16L:8D photoperiod at 11°C. 

Conchocelis segments (around 110-250 pm ) of each species were placed in cell well plates (one

piece per well) and incubated at 30ppt salinity and 11°C (100-120 //mol photons m ' 2 s' 1 

irradiance) for the culture of pure genotype conchocelis, which were used for expanding bulk 

free-living conchocelis for experiments. PES enriched seawater culture medium was used.

Photosynthetic experiments of the conchocelis were conducted in several incubators 

which had been set at different temperatures and illuminated with cool-white fluorescent lamps. 

Irradiance gradients were obtained by wrapping the culture containers with varying layers of 

white paper and determined using a Li-Cor Radiation Sensor (Li-190SB Quantum Sensor). 

Autoclaved natural seawater-based PES medium was used in the experiments. At the beginning 

of experiments, the pH of the culture medium was adjusted to 7.8 - 8.0 (the ambient pH of the 

seawater in the inside waters of SE Alaska) using 6M HC1 or 6M NaOH. Experimental seawater
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with different salinities was obtained either by boiling natural seawater (for 40ppt salinity) or by 

diluting natural seawater with distilled water. Nutrients were added after salinities were 

adjusted. Conchocelis were allowed to adapt to the specific experimental conditions for at least 

5 hours before each assay. Vials of 25 ml of volume were used as experimental containers. For 

all the photosynthetic experiments, in order to ensure sufficient inorganic carbon source 

available to the conchocelis, culture media were supplemented with 5 mM NaHCO;,.

For the P-I curve determination different levels of two environmental factors were 

employed as follows (with salinity being fixed at 30ppt):

Temperature: 7, 11, 15°C.

Irradiance: 0-280 yumol photons nrf2 s"1 for the experiments at 7°C and 11°C

temperatures; 0-200 yumol photons ir f2 s_l for the experiments at 

15°C temperature.

For multi-factorial photosynthetic experiments different levels of three environmental 

factors were employed as follows:

Temperature: 7, 11, 15°C.

Irradiance: 30, 60. 120 //mol photons m ' 2 s ' 1.

Salinity: 10, 15, 20, 25, 30, 35, 40ppt.

For respiratory rate determination different levels of two environmental factors were 

employed as follows:

Temperature: 7, 11, 15°C.

Salinity: 10, 15, 20, 25, 30, 35, 40ppt.

Photosynthetic rates were determined by measuring differences in dissolved oxygen 

between vials with conchocelis and blank vials (with four replicates for per treatment condition 

of the experiments). Free-living conchocelis were rinsed with sterile seawater 5-6 times through
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a standard sieve ( lOOpm) and about 2-4 mg f.w. of conchocelis (there is a linear relationship 

between oxygen production and conchocelis amount below 7 mg.f.w., see Figure 4.1) was put in 

vials and gently filled with seawater. At the end of incubation period, oxygen concentrations of 

culture media in each vial were determined with a Check-Mate 90 meter (with a dissolved 

oxygen sensor). Duration period for photosynthesis was about 6hr (there is a linear relationship 

within 8hr, see Figure 4.1). For dark respiration experiments, about 5-8 mg f.w. of conchocelis 

(there is a linear relationship between oxygen consumption and conchocelis amount below 12 mg 

f.w., see Figure 4.1) were used in each vial. Complete darkness was formed by wrapping vials 

with three layers of thick black plastic sheet. The duration time of dark respiration experiment 

was 10-12hr (there is a linear relationship within 15hr, see Figure 4.1). Dry weights of 

conchocelis samples were obtained by drying in an oven at 70 °C to constant weight.

Photosynthesis and dark respiration rates were expressed as pmoles 0 , g  dw ' 1 h ' 1.

Statistical analyses of the experimental data

In photosynthetic experiments, three species were used (P. abbottae, P. pseudolinearis,

P. torta). For each species, the experiment included temperature (7, 11, 15°C), irradiance (30,

60, 120 //mol photons m '2 s ' 1) and salinity (10, 15, 20, 25, 30, 35, 40ppt). There were sixty- 

three complete combinations of different levels of these factors with four replicates per treatment 

and a total o fN  = 3 x 3 x 7 x 4  = 252 data in the photosynthetic experiments for each species. A 

three-way model I ANOVA was performed to analyze the influences of these factors on oxygen 

production rate of conchocelis for each species of Porphyra by using S-Plus 3.1 for windows 

(Statistical Sciences, Inc. 1993).

Respiratory experiment included three species (P. abbottae, P. pseudolinearis, P. torta), 

temperatures (7. 11, 15°C), salinities (10, 15, 20, 25, 30, 35, 40ppt). There were sixty-three 

complete combinations of different levels of these factors with four replicates for e-'ch treatment
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and a total of N = 3 x 3 x 7 x 4 = 252 data for statistical analysis of this experiment. The analysis 

of the effects of these three factors on respiratory rate of conchocelis were done by using a three- 

way model I ANOVA and S-Plus 3.1 for windows (Statistical Sciences, Inc. 1993).

The Newman-Keuls multiple comparison test (Zar, 1996) was performed to identify 

which tested factors were important in controlling photosynthesis and respiration of the 

conchocelis of Porphyra. Furthermore, statistical power analysis for main effect factors was 

conducted according to Cohen’s methods (Cohen, 1988).

Results

Responses of Porphyra conchocelis to irradiance (P-I curve) 

Characteristics of P-I curves

All of the P-I curves revealed that net photosynthesis varied with different levels of 

irradiance. However, the patterns of P-I curves depended considerably on different temperatures 

and species (Figure 4.2, Figure 4.3 and Figure 4.4).

For instance, the photosynthetic activity of P. abbottae  conchocelis exhibited a unique 

P-I curve pattern under all three temperatures (Figure 4.2). That is, the photosynthetic rate 

increased steadily with increasing irradiance up to the maximum value for photosynthesis. 

Beyond this point, photosynthesis declined (photoinhibition).

Both P. pseudolinearis (at 11°C and 15°C) and P. torta{at 7°C and 11°C) showed a 

similar photoinhibition but under higher light levels (Figure 4.3 and Figure 4.4). It should be 

noted that photosynthesis of P. abbottae reached a peak and displayed photoinhibition at much 

lower light intensities, compared to those of P. pseudolinearis or P. torta. There were no 

photoinhibition effects occurring at 7°C for P. pseudolinearis and at 15°C for P. torta.

Virtually. P. pseudolinearis displayed a nearly linear increase in photosynthetic rate with an
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increase in light intensity up to 250 //mol photons m"2 s'* . But further increase in light intensity 

did not result in the rise of the photosynthetic rate (Figure 4.3). P. torta exhibited increasing

photosynthetic activity with an increase in light intensity up to 135 //mol photons m"2 s' 1 at 15°C. 

Higher light intensities did not result in higher photosynthetic rates (Figure 4.4). These results

implied that saturation irradiances would be about 250 //mol photons m“2 s' 1 at 7°C for P.

pseudolinearis and 135 //mol photons m ' 2 s' 1 at 15°C for P. torta, respectively.

The effect of temperature

In general, with lower irradiances (at intensities less than Pm:„). the rate of photosynthesis 

was positively correlated with temperature for all three species of Porphyra.

For example, the differences in photosynthesis at 7°C and 11°C for P. pseudolinearis 

and P. torta conchocelis were small under the same irradiances (Figure 4.3 and Figure 4.4), but 

as temperature was raised to 15°C, there was a conspicuous increase in photosynthesis (Figure 

4.3 and Figure 4.4). For P. abbottae conchocelis, the photosynthetic rate increased in a 

proportion with an increase in temperature (Figure 4.2), except for those photosynthetic rates 

above the Iniax at 7°C and 11 °C.

P-I curve parameters and the trend lines:

Compensation irradiance (Ic, the irradiance at which no net photosynthesis occurred), 

maximum saturation photosynthesis (Pmax) and maximum saturation irradiance (Imax, the 

irradiance at which maximum photosynthesis was reached) are summarized in Table 4.1 for three 

species of Porphyra and different temperatures. In all conditions tested, the values of 

compensation points were very low (about 3-5 //mol photons m"2 s ' 1, a level of light barely 

detectable with the sensor) for these three species (Table 4.1). The results also showed that light 

saturation was a function of different temperatures and species. For instance, for P. abbottae
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conchocelis, the photosynthetic maxima (Pmax) obviously increased with an increasing 

temperature. Photosynthesis of P. torta remained approximately the same at 7°C and 1 1 C . 

However, there was a great increase (about two times) with temperature increasing to 15°C.

But, for P. pseudolinearis conchocelis, Pmax remained more or less the same regardless of 

temperature variation (Table 4.1).

The Imax values also varied with species and temperatures. For example, the Imax of P. 

abbottae decreased with an increase in the temperature, although the Pmax increased with the 

temperature. Both P. pseudolinearis and P. torta maintained more or less steady Pmax and Imax 

values Imax at 7°C and 11°C, but there was an obvious increase in the Pmax and an accompanying 

decrease in the Imax at 15°C.

The effects of environmental variables on photosynthesis:

The results of multi-factorial experiments 

P. abbottae

The photosynthesis of the conchocelis of Porphyra abbottae was influenced by all three 

factors (temperature, salinity and irradiance) and the majorities of interactions between these 

factors (Figure 4.5, Table 4.2). Salinity had a significant effect on the photosynthesis of P. 

abbottae conchocelis. Maximum photosynthetic rates always occurred at 30ppt salinity under all 

temperature and light combinations (Figure 4.5 and Figure 4.8). Salinities above or below 30ppt 

resulted in a marked decline in photosynthesis (Figure 4.5 and Figure 4.8).

When the temperature was lower, photosynthesis was greater at the higher irradiances 

than at the lower irradiance for all species. However, at 15°C, increasing irradiance did not 

cause an increase in photosynthetic activity of P. abbottae, but rather, P. abbottae conchocelis 

showed an inverse relationship between irradiance and photosynthesis. P. abbottae conchocelis
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had significantly higher photosynthesis at 60 //mol photons m ' 2 s' 1 than at 30 or 120 //mol 

photons m ' 2 s' 1 irradiance (Figure 4.8).

An overall conclusion was that less photosynthesis occurred at the lowest temperature 

and irradiance than at the higher temperature and irradiance (Figure 4.8). Maximum 

photosynthetic performance occurred at 30ppt, 11°C and 60 //mol photons m '2 s' 1 irradiance 

(225 ^moles 0 2 g dw_l I r 1).

P. pseudolinearis and P. torta

The photosynthetic rates of the conchocelis of P. pseudolinearis  and P. torta were also 

influenced by all three factors (temperature, salinity and irradiance) and the interactions between 

these factors (Figure 4.6, Figure 4.7, Table 4.2). The responses of both P. pseudolinearis and P, 

torta to the variation in salinity were similar to that of P. abbottae. Compared to P. abbottae, 

they seemed to have an extended range of the suitable salinity (25-35ppt) for photosynthetic 

activity. For instance, mean photosynthetic rates for P. pseudolinearis and P. torta were much 

higher at 25-35ppt than at 15ppt or at 40ppt (Figure 4.8).

Although in most cases, these two species still had the highest photosynthesis at 30ppt, 

the differences in photosynthesis between 25 and 35ppt salinities were not statistically 

significant (Figure 4.6. Figure 4.7 and Figure 4.8). Both species had low rates of photosynthesis 

at salinities above 35ppt and less than 20ppt. The more deviation there was from the suitable 

salinity range (25-35ppt), the more photosynthesis declined. For instance, lOppt resulted in the 

lowest photosynthetic rate, especially at 7°C where the photosynthesis of P. torta fell to nearly 

zero at lOppt and low light.

Photosynthesis generally exhibited a positive correlation with temperature or irradiance. 

The mean photosynthetic rate increased with increasing temperature and irradiance. The mean
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photosynthetic rate of P. pseudolinearis increased with increasing temperature and irradiance, 

and followed a positive correlation relationship (Figure 4.8).

The mean photosynthetic rate of P. pseudolinearis at 120 /jmo\ photons nrf2 s' 1 was 

significantly higher than the other two irradiances, with the lowest occurring at 30 //mol photons 

m ' 2 s' 1 (Figure 4.8). For P. torta conchocelis, similar responses to temperature and irradiance 

were observed. The mean photosynthetic rates at three temperatures were significantly different 

from one another (Figure 4.8). However, although the mean photosynthetic rate at 30 //mol

photons m~2 s' 1 was significantly low'er than at 60 //mol i r f2 s' 1 or at 120 //mol photons rrf2 s ' 1,

no significant difference occurred at irradiances between 60 and 120 //mol photons n r 2 s' 1 

(Figure 4.8).

For both P. pseudolinearis and P. torta conchocelis. the combined condition for 

maximum photosynthesis (respectively 195 and 205 (amoles g dw_1 h ' 1) occurred a: 30ppt

salinity, 15°C temperature and 120//mol photons m ' 2 s' 1 irradiance.

Differences between species

Comparison of pooled photosynthetic rates of the conchocelis of three species of 

Porphyra for each parameter tested (for comparison of the effect difference between species) are 

shown in Figure 4.9. There were differences in photosynthesis between different species at all 

three temperature levels.

For instance, P. pseudolinearis had significantly lower photosynthesis than P. abbottae 

or P. torta at 7°C temperature, with no difference in photosynthesis between P. abbottae and P. 

torta, whereas P. abbottae conchocelis exhibited higher photosynthesis than P. pseudolinearis 

and P. torta at 1 1°C, with no difference in photosynthesis between P. pseudolinearis and P.
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torta. However, at 15°C P. abbottae had significantly lower photosynthesis than the other two 

species, with no difference in photosynthesis between P. pseudolinearis P. torta.

Overall, P. abbottae had significantly higher photosynthetic activity at lower 

temperatures (7 and 11°C), whereas P. pseudolinearis and P. torta had a higher photosynthesis 

at higher temperatures (15°C, Figure 4.9).

As far as irradiance was concerned, there were also differences in photosynthesis

between different species (Figure 4.9). Under low irradiance (30 //mol photons m ' 2 s ' 1), P. 

abbottae had significantly higher photosynthesis than the other two species (Figure 4.9). At 60 

//mol photons m '2 s' 1 P. pseudolinearis exhibited lower photosynthesis than P. abbottae and P. 

torta (Figure 4.9). At 120 //mol photons n r 2 s ' 1, there were no differences in photosynthesis 

between three species (Figure 4.9).

On the whole, P. abbottae had higher photosynthesis at a moderate irradiances (60 //mol

photons in '- s ' 1), in contrast to the other two species having higher photosynthesis at higher

irradiance (120 //mol photons m ' 2 s ' 1). Differences between species for salinity were also 

observed as shown in Figure 4.9. At the lowest salinity (lOppt), P. torta  had much higher 

photosynthesis than P. abbottae and P. pseudolinearis. This implied that P. torta conchocelis 

possessed a higher tolerance to an environment with a low salinity.

Both P. abbottae and P. torta exhibited significantly higher photosynthesis than P. 

pseudolinearis at 15ppt salinity. Whereas at 30ppt salinity, P. abbottae had the highest 

photosynthesis which was significantly different from that of the other two species. Under the 

other salinities, although three species exhibited different photosynthesis, none of these 

differences was statistically significant (Figure 4.9). Higher photosynthetic rates at salinities 

between 25 and 35ppt have been demonstrated generally in P. abbottae , P. pseudolinearis and P.
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torta. Therefore, it seemed that salinity range between 25 and 35ppt was uniformly suitable for 

photosynthesis of all three species of Porphyra (Figure 4.8. Figure 4.9).

Furthermore, comparison of pooled photosynthetic rates (grand mean value) also 

indicated that there was a significant difference between different species, with P. pseudolinearis 

having the lowest photosynthetic rate. But there was no significant difference in photosynthetic 

rate between P. ahhottae and P. torta for comparison of grand mean value (Figure 4.10). 

Respiration

Respiratory rates of the conchocelis of three species of Porphyra (P. abbottae P. 

pseudolinearis and P. torta ) were influenced only by temperature and salinity factors and the 

interactions only occurred between temperature and species (Figure 4.13 and Figure 4.14, Table 

4.3).

The variation of respiration for all three species of conchocelis had a rather uniform 

pattern, namely, Porphyra conchocelis demonstrated the lowest respiration within the range of 

salinity of 25-35ppt and an obvious increase in respiratory activity under the other higher or 

lower salinities, particularly at the lowest salinity (lOppt) where there was generally a maximum 

respiratory rate (Figure 4.13 and Figure 4.14).

Basically, respiration rate increased with increasing temperature for all chree species, 

with the lowest respiration occurring at the lowest temperature (7°C, 31-37 |amoles O^g dw"1 h"1)

and the highest respiration occurring at the highest temperature (15°C, 52-57 pmoles 0 ,  g dw ' 1

h '1, Figure 4.13 and Figure 4.14). The effect of temperature on respiration was revealed more 

typically in P. pseudolinearis and P. torta  than in P. abbottae (Figure 4.14).
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Differences between species

Comparison of pooled respiratory rates of the conchocelis of three species of Porphxra 

for each parameter tested (for comparison of the effect difference between species) were shown 

in Figure 4.15. Although the different species exhibited different respiration activities at all 

three temperature levels, they were not statistically significant.

There were also no significant differences in respiration between species for all salinity 

levels (Figure 4.15).

Statistical power (l-(3) analysis for photosynthetic and respiratory experiments

The results of statistical power ( l-[3) analysis indicated that main effect factors(salinity, 

temperature, light) have high power values (>0.80) when the minimum detectable difference in 

means for photosynthesis of conchocelis is set at 20% (Table 4.4). Similarly, main effect factors 

(salinity, temperature, species) for respiratory experiments of conchocelis have high power 

values (>0.90) when the minimum detectable difference in means for respiration of conchocelis 

is set at 10% (Table 4.5).

Discussion

The evidence that there is a positive correlation between available light and oxygen 

evolution for a variety of marine algae has been provided by many studies including laboratory 

and field investigations (Wassman 1973, Anderson & North 1969, Arnold & Murray 1980, Fork 

1963, Gao & Aruga 1987). Nevertheless, the positive correlation relationship between available 

light and oxygen evolution of marine algae could possibly take place under some conditions 

within a specific range of the light intensity. In most cases, due to complicated interactions 

between various environmental variables, this simple positive correlation relationship would not
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exist (e.g. the occurrences of photosaturation and photoinhibition, Fain & Murray 1982, Geider 

& Osborne 1992, Wheeler 1980).

In my experiments, different species of Porphyra conchocelis clearly exhibited different 

P-I curves, including photosynthetic increases with the light intensity under some incubation 

conditions, photosynthetic saturation and photoinhibition under some other conditions. P. 

abbottae exhibited photoinhibition at all three temperatures tested within a relatively narrow 

range of light levels. P. abbottae did not respond with increased photosynthesis with increasing 

temperature. Maximum photosynthesis occurred at 11°C rather than 15°C at a light intensity of

60 //mol photons m~2 s ' 1. Increasing light intensity did not cause an increase in P. abbottae 

photosynthetic activity especially at higher temperatures. In fact P. abbottae  showed an inverse

relationship between light intensity and photosynthesis. At 15°C, 30 //mol photons m"2 s ' 1 light 

gave maximal photosynthesis. These results suggest that P. abbottae responds uniquely to 

environmental change. These results are similar to those for P. abbottae from earlier reported 

experiments which were based on growth of the conchocelis.

From a comparative study on the effects of irradiance on photosynthesis of Porphyra 

yezoensis, Zhang et al. (1997) reported that Porphyra could utilize white light for photosynthesis 

effectively. However, their results only represented instant effects, because plant materials were 

exposed to light sources for a very limited short time (less than 30 minutes at each irradiance). 

They found the conchocelis of Porphyra are very sensitive to light environments and oxygen 

evolution of conchocelis precisely varied with an instant increase or decrease in the light 

intensity, with oxygen evolution rate being between 0-2 //mol g dw"1 min ' 1 responding to the 

variation range of light pulse of 0-250 //mol photons m ' 2 s_l . They also found Porphyra 

yez.oensix had low Ic values (compensation point, about 6.5-10 //mol photons m"2 s_l ). Their

86



results was similar to those in my P-I curve experiments. It appeared that different species of 

Porphyra conchocelis share uniformly low Ic values, despite their dissimilarity in geographical 

distributions.

Guo et al. (1992) reported that physiological responses in photosynthesis and tolerance 

to varying environments by several Ulvoid green algae from coastal and estuarine habitats were 

closely related to their patterns of local distributions and seasonal occurrences. For instance, the 

photosynthetic light responses varied with the species inhabiting different coastal environments,

with Ic ranging between 3 to 40 //mol photons m~2 s' 1 and Imax ranging between 40 to 564 //mol

photons i r f2 s' 1 depending on ecological distribution. That Ulvaria obscura living in the subtidal

zone had low Ic (3-8 //mol photons m"2 s ' 1) and Monostroma grevillei occurring typically in 

upper-mid intertidal zone exhibited relatively high irradiances for achieving saturation points 

(Imax from 270 to > 564 //mol photons m~2 s ' 1) reflected the fact that photosynthetic responses 

were associated with the ecological features of marine algae. Several other investigators have 

found Ic values between 6.1-11.4 //mol photons m"2 s"1 and Imax between 60-200 //mol photons 

m '2 s' 1 for some other species of coastal algae (Arnold & Murray 1980, Ohno & Nozawa 1972). 

In a detailed review of light responses in seaweeds, Luning et al., (1975, 1978, 1981) reached a 

conclusion that saturation irradiances for intertidal species are typically 400-600 //mol photons

m '2 s' 1 versus approximately 200 //mol photons m ' 2 s' 1 for shallow subtidal species. He also 

noted that compensation points for most intertidal and shallow subtidal seaweeds are generally

less than 20 //mol photons i r f2 s ' 1. The results from my experimental studies were comparable to 

those reported by other researchers. However, variation differences in physiological responses 

could be different for different species, or for different generation stages and different 

developmental stages of the same species.



Many physical factors can influence species composition, phenology and distributional 

patterns of seaweeds (Lobban et al., 1985). Temperature, salinity and irradiance are often 

considered the primary factors determining the growth, reproduction and distribution of 

seaweeds, particularly in the coastal intertidal zones or estuaries, where extreme variations in 

these environmental factors could lead to the failure in the growth and survival of some species 

or in the existence of alternative life generations (Druehl 1981, Emery & Stevenson 1957,

Hoek 1982, Mathieson 1971, 1975a, 1975b, Wilkinson 1980). Therefore, variations in 

physiological responses of seaweeds generally mirror the ecological characteristics of different 

species. It should be pointed out that the conchocelis filaments of Porphyra had relatively lower 

Ic and Imax and photoinhibition occurred at the lower irradiances compared with other coastal 

marine algae or the gametophytic (leafy) stage of Porphyra( Luning 1979, Arnold & Murray 

1980, Ohno & Nozawa 1972, Markager, 1993). These lower levels may be due to their residing 

in benthic environments, especially boring into shells.

Guo(1992) found that in terms of photosynthetic activity, the temperature optima and 

tolerances of the four Ulvoid algae were closely related to their seasonal occurrence. The winter 

and spring annuals M onostroma grevillei and M. pulchrum  had lower temperature optima 

between 5 to 10°C, with limited tolerances to higher temperatures. They could resist higher 

lethal temperatures and exhibited much higher photosynthetic activity when a favorable salinity 

(30ppt) was provided. The summer annual Ulvaria oxysperma had a much higher temperature 

optimum of approximately 20°C, with the tolerance to 30 to 35°C. By contrast, the seasonal 

annual U. obscura exhibited broad and variable temperature optima ( 10-25°C) throughout the 

year, with a consistent lethal temperature of 30°C. The rates of net photosynthesis for U. 

obscura also varied seasonally; i.e., they w'ere higher at 5-20°C during the winter than in the 

summer. Seasonal changes of temperature optima and tolerances also have been observed in
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some other species of algae (Mathieson & Norall 1975a, b). As an alternative generation of 

Porphyra . conchocelis generally occurs during summer time in natural habitats. The conchocelis 

of both P. pseudolinearis and P. torta have maximal photosynthetic activity at 15°C, which is a 

seawater temperature generally occurring in the SE Alaska in summer season. This may reflect 

their ecological adaptation abilities to a higher temperature.

My experimental findings showed that controlled lab experiments could be used as an 

effective way to evaluate physiological and ecological aspects of sporophytic stage (microscopic 

life stage) of Porphyra species. Variations in photosynthetic and respiratory activities reflected 

physiological characteristics of the conchocelis of these indigenous Porphyra species in response 

to various environmental conditions.

For photosynthetic responses, all three species (P. abbottae, P. pseudolinearis and P. 

torta) were significantly affected by the tested environmental variables: salinity, temperature and 

irradiance. including interactions between these factors. As the result of a long historical 

adaptation to unique high-latitude environments and the benthic life, the conchocelis of these 

indigenous Porphyra species could utilize the limited light to perform photosynthesis and sustain 

life process. It seems that these indigenous Porphyra species have relatively low Ic and Imax 

values, compared with the corresponding values assessed from other sun plants or the 

gametophytes of Porphyra. Rapid light-attenuation is characteristic of coastal waters, in which 

suspended material absorbs and scatters sunlight. On some coastal sites with freshwater runoffs 

of Alaska, glacier-melting process may cause high turbidity in these waters, thus low water 

transparency could in turn result in less light penetration and little light available to the benthic 

plants. Therefore, low Ic value probably has biological importance in determining compensation 

depths, hence vertical distributions.
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On the other hand, as the results of tidal cycle, snow/glacier melting and frequent 

rainfalls, the sporophytic stage of these indigenous Porphyra may encounter extreme variations 

in temperature and salinity during the period of their occurrence in the natural habitats. My 

experimental results indicate the conchocelis of these indigenous Porphyra  species could adapt 

to a range of the temperature and salinity and the net photosynthetic activity can persist at the 

varying levels of the factors tested. In intertidal or subtidal zones, there are numerous 

environmental variables influencing sporophytic stage of Porphyra. These factors and their 

interactions could exert effects on the growth, physiological state and various life processes of 

the sporophytic stage. Existence of mam effect and interactions in photosynthetic activity for 

these Porphyra species reflects the fact that microscopic life stage of Porphyra  is quite 

responsive to variations of environmental parameters in terms of photosynthetic physiology. In 

other words, Porphyra conchocelis could adjust their physiological responses (change in 

photosynthetic activity) to different environmental conditions.

For respiratory responses, all three species were influenced by salinity and temperature 

factors, but there were no interactions between these factors and there were also no differences in 

respiratory response among these species. Optimal salinities of 25-35ppt , where significantly 

higher net photosynthesis was accompanied by lowest respiratory activity, have obvious 

important biological implications in maintaining the healthy physiological state of Porphyra 

conchocelis. Favorable environmental conditions (such as salinity) enable the conchocelis to 

maintain a relatively stable low respiration rate. Whereas unfavorable conditions would result in 

higher oxygen consumption leading to low net photosynthetic rates.

In artificial culture of sporophytic stage, control and regulation of various factors are 

crucial to inducing the development and maturation of conchocelis and to successful Porphxra 

cultivation. This series of experiments have revealed the optimal condition combinations for the
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conchocelis of each species to perform photosynthesis and respiration. This basic information 

could be used for the implementing of the culture of sporophytic stage of these indigenous 

Porphyra species. All three species are potential candidate species for commercial mariculture 

in Alaska. This conclusion is based on the existing local market trade, flavor, quality and 

adaptation to the environment.

Conclusions

Photosynthetic and respiratory activities can be used for evaluation of physiological and 

ecological characteristics of the sporophytic stage (microscopic life stage) of Porphyra species. 

Variations in photosynthetic and respiratory activities are the physiological responses of the 

conchocelis of these indigenous Porphyra species to various environmental conditions.

Existence of main effect and factorial interactions in photosynthetic and respiratory activities for 

these Porphyra species illustrate that physiological reactions of microscopic life stage of 

Porphyra are responsive to variations of environmental parameters.

Porphyra conchocelis can effectively utilize limited light due to low Ic (compensation 

point of photosynthesis) and low Imax (irradiance at which photosynthesis reached the 

maximum). The conchocelis of these indigenous Porphyra species could also adapt to a 

considerable variation in temperature and salinity. Such physiological characteristics may relate 

to adaptation to their unique natural habitat environments. Patterns in photosynthesis in response 

to the conditions varied with the different species. That means there are differences in 

photosynthetic adaptation among these species.

For respiratory responses, all three species were influenced by salinity and temperature 

factors, but basically there were no interactions between these factors and there were also no 

differences in respiratory response between these species.
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The optimal condition combinations for the conchocelis of each species to perform 

photosynthesis and respiration from my multiple-factor experimental study could be used as 

useful basis for the culture of sporophytic stage of these indigenous Porphyra  species.
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Table 4 .1. Irradiances of compensation point (Ic ), photosynthetic maxima ( P niax) and 
irradiance maxima (Imax) for the conchocelis of three species of Porphyra at three different 
temperatures.

Temp.

°C Ic

P. abbottae 

Imax Pmax

P. pseudolinearis 

Ic Imax Pmax Ic

P. torta

Imax Pmax

7°C 5.0 140 83 4.5 250 239 3.3 250 100
11°C 4.3 50 134 3.5 250 192 5.0 225 93
15°C 3.3 20 146 3.1 135 221 4.8 200 240

Note: Inwx , Ic = /vmol photons m '2 s'1 , P max = jimoles 0 : g dw ’1 I f1 . Ic values were estimated 
from the photosynthetic values intercepted on the x-axis by the points of 0 and the lowest 
irradiances for the P-I curves.
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Table 4.2. ANOVA table for photosynthesis of the conchocelis of three different Porphyra

species at combinations of salinity, irradiance and temperature. "10, 15, 20, 25, 30. 35, 40ppt:

^7, 11, 15°C; c30, 60, 120 p mol photons ;r f2 s"1; ^P. abbottae, P. pseudolinearis, P. torta 
(*P<0.05; **jP<0.01).

Source of variation df Sum of squares Mean square F

P. abbottae
Salinity" 6 300408.6 50068.1 57.00**
Temperature^ 2 59563.9 29781.9 33.90**
Light' 2 29330.2 14665.1 16.69**
Sal. x Temp. 12 17921.2 1493.4 1.70
Sal. x Light 12 28169.5 2347.5 2.67*
Temp, x Light 4 159544.9 39886.2 45.41**
Sal. x Temp, x Light 24 72261.9 3010.9 3.43**
Residuals 189 166024.6 878.4

P. pseudolinearis
Salinity" 6 178129.4 29688.2 40.44**
Temperature/' 2 255792.9 127896.5 174.20**
Light' 2 67343.8 33671.9 45.86**
Sal. x Temp. 12 45222 3768.5 5.13**
Sal. x Light 12 20179.3 1681.6 2.29*
Temp, x Light 4 14271.2 3567.8 4.86**
Sal. x Temp, x Light 24 7185.9 299.4 0.41
Residuals 189 138762.3 734.2

P. torta
Salinity" 6 143226.1 23871.0 50.83**
Temperature^ 2 180406.2 90203.1 192.09**
Light' 2 119321.4 59660.7 127.05**
Sal. x Temp. 12 57812.7 4817.7 10.26**
Sal. x Light 12 37097.9 3091.5 6.58**
Temp, x Light 4 15188.5 3797.1 8.09**
Sal. x Temp, x Light 24 39931.3 1663.8 3.54**
Residuals 189 88753.4 469.6
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Table 4.3. ANOVA table for respiration of the conchocelis of three different Porphyra species 

at combinations of salinity and temperature. " 10, 15, 20. 25. 30, 35, 4 0pp t;  ^7, 11, 15°C; CP. 
abbottae, P. pseudolinearis, P. torta {*P<0.05; **P<0.01).

Source of variation df Sum of squares Mean square F

Salinity" 6 14074.46 2345.7 17.16
Temperature* 2 16393.7 8196.9 59.95:
Species' 2 540.6 270.3 1.98
Sal. x Temp. 12 417.7 34.8 0.25
Sal. x Sp. 12 1167.5 97.3 0.71
Temp, x Sp. 4 1995.6 498.9 3.65*
Sal. x Temp, x Sp. 24 1697.9 70.7 0.52
Residuals 189 25840.5 136.7
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Table 4 .4 .  Statistical power ( 1 -6) based on the results of variance analysis for experiments 
with the photosynthetic activity of Porphyra conchocelis. Power values are determined by 
specific values of the degree of freedom (u). effect size index (f) and sample size (n) for each 
main effect. Desired minimum detectable difference in means is set at 20%. Significant 
criterion a  is equal to 0.05.
(** P<0.01 for F test).

F test Power

Effect df F u n f

Porphyra abbottae

Salinity 6 57.00** 6 28 0.3443 0.96
Temperature 2 33.90** 2 64 0.2826 0.94
Light 2 16.69** i 64 0.2880 0.95

Porphyra pseudolineari i-

Salinity 6 40.44** 6 28 0.297.3 0.88
Temperature 2 174.20** 2 64 0.2734 0.92
Light 2 45.86** 2 64 0.3.235 0.98

Porphyra torta

Salinity 6 50.83** 6 28 0.3451 0.96
Temperature 2 192.09** 2 64 0.3404 0.98
Light 2 127.05** 2 64 0.3606 >0.99
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Table 4. 5. Statistical power (1- £) based on the results of variance analysis for experiments 
with the respiratory activity of Porphyra  conchocelis. Power values are determined by specific 
values of the degree of freedom (u), effect size index (f ) and sample size (n) for each main effect. 
Desired minimum detectable difference in means is set at 10%. Significant criterion a  is equal to
0.05. (** P<0.01 for F test).

F test Power

Effect df F u n f

Salinity 6 17.16** 6 28 0.3259 0.93
Temperature 2 59.95** 2 64 0.3368 0.98
Species 2 1.98 2 64 0.2903 0.95
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Figure 4.1. Relationships between oxygen evolution (or oxygen consumption) and 
conchocelis amount, incubation time for three species of Porphyra (O , Pa; ■ ,  Pi; A, Pt). Oxygen 

evolution experiments were conducted at 11°C, 60 //mol photons n r 2 s ' 1 and 30ppt for Pa; at

15°C, 120 //mol photons m ' 2 s' 1 and 30ppt for Pi and Pt. Oxygen consumption experiments were 
conducted at 15°C and lOppt in darkness.
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Figure 4.2. Porphyra abbottae (Pa). The photosynthetic rate of conchocelis versus irradiance
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The dotted lines were drawn from the means of data points. Solid lines represent the fitted trend 
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Figure 4.3. Porphyra pseudolinearis (Pi). The photosynthetic rate of conchocelis versus

irradiance (//mol photons m"2s"') at three different temperature conditions (7, 11, 15°C). 
Salinity (30ppt). The dotted lines were drawn from the means of data points. Solid lines 
represent the fitted trend lines. Error bars are ± S.E. Photosynthesis is expressed as //mol O, g

dw "1 h ' 1.
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Figure 4.4. Porphyra torta (Pt). The photosynthetic rate of conchocelis versus irradiance
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The dotted lines were drawn from the means of data points. Solid lines represent the fitted trend 
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three species of Porphxra. Error bars are ± S.E. Same letters above the bars indicate no 
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Chapter 5 

Photosynthetic Pigment Content of Four Indigenous Alaskan Porphyra Species: 

Response to Environmental Variables 

Abstract

Variations of four photosynthetic pigments in conchosporangia of indigenous Alaskan 

Porphyra species, P. abbottae (Pa), P. pseudolanceolata  (Pe), P. pseudolinearis (Pi) and P. 

torta (Pt), were investigated in response to environmental variables. Conchosporangia were

cultured under different irradiances of 0, 10, 40 and 160 (amol photons m '2s ' ! and nutrient 

concentrations of 0, f/4, f/2 and f for up to 60 days (with temperature and salinity fixed at 11°C 

and 30ppt).

Phycoerythrin (PE), phycocyanin (PC) , carotenoids (Ca) and chlorophyll a (Chi. a) 

contents were extracted and measured by spectrophotometry. PE and PC were the dominant 

photosynthetic pigments. Phycobiliprotein (PE + PC) comprised 72-95% of total pigments 

depending on culture conditions, whereas Ca and Chi. a accounted for a small percentage of total 

pigments.

Photosynthetic pigments were significantly affected by irradiance, nutrient concentration 

and culture duration. For Pa, Pi and Pt, maximal PE (63.2-95.1 mg/g.dw) and PC content ( 28.8-

64.8 mg/g.dw ) generally occurred at 10 //mol photons n r 2 s ' 1, f/4-f/2 nutrient concentration and 

10-20 day culture duration, while Pe had highest PE (73.3 mg/g.dw) and PC content (70.2

mg/g.dw) at 10 //mol photons m ' 2 s ' 1, f nutrient concentration and 60 day culture duration. For 

all four species, the highest Ca (3.4 - 6.3 mg/g.dw) and Chi. a content (3.6-8.1 mg/g.dw)

occurred at 0-10 //mol photons m'2 s'1, f/2-f nutrient concentration and 20-30 day culture. There 

were significant differences in photosynthet'C pigment content among the four species. P.
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abbottae had higher PE content than the other three species and Pe had the highest PC content. Pt 

had the lowest content for all four kinds of pigment. Porphyra conchosporangia generally had 

higher photosynthetic pigment contents at O-lOpmol photons ir f2 s ' 1, f/4-f nutrient concentration. 

Higher irradiances (40 pmol photons m '2s_l ), low nutrients and longer culture duration generally 

caused a decline of photosynthetic pigment content.



Introduction

Because control of the sporophytic ctage (i. e. conchocelis stage) is very important to 

successful Porphyra aquaculture, the influences of environmental factors on important 

physiological processes and the biochemical composition of the Porphyra  conchocelis stage need 

to be investigated prior to the establishment of a nori mariculture industry. Furthermore, because 

photosynthetic pigments involve the conversion of light energy to chemical energy in all 

photosynthetic organisms (Glazer 1977, Grabowski 1978), the study of photosynthetic pigment is 

an important aspect of physiology of plants. Unfortunately, to date, the physiology and 

biochemistry of the microscopic life stage has received little attention. Little is understood about 

effects of environmental factors on the pigment content of Porphyra  conchocelis stage.

Marine red algae like Porphyra contain a series of special pigment proteins known as 

phycobiliproteins (Glazer 1977, 1981, Yu et al. 1981). These phycobiliproteins have unique 

applications in immunology and diagnostic medicine (Loken et al. 1977, Mishell et a l., 1980, 

Mota et al., 1978). They can be coupled to specific antibodies, usually as monoclonals. When 

the antibody attaches to its specific receptor site on a cell or tissue, the latter can readily be 

visualized by their fluorescence. Other potential applications include the fluorescence-labeling of 

DNA probes and fluorescence immunoassays of molecules and cells. Phycobiliproteins may also 

be coupled to enzymes and other proteins, polypeptide, hormones, nucleic acids, drugs, vitamins, 

etc. (Deisenhofer 1981,Koppel et al 1976, Ledbetta et al., 1981, Reihorst et al., 1979, Terhorst et 

al., 1980, Taylor & Wang 1980). High-purity phycobiliproteins have maintained a market price 

as high as $25-60 per milligram (Sigma, 1999).

There are several advantages for phycobiliproteins to be extracted from the sporophytic 

stage of Porphyra: ( 1) there is no limit to the yield of phycobiliprotein products because 

Porphxra conchocelis can be grown abundantly in the lab environment. Therefore,
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phycobiliprotein products can be acquired at any time, year round, without going to the field for 

sample-collecting or depending on the availability of wild agal material (usually marine algae are 

only available in limited seasonal periods). (2). It is relatively easy to extract the pigments from 

the uniseriate filaments. (3). high-quality and high-purity phycobiliprotein can be obtained from 

conchocelis cultures grown under artificially-controlled conditions.

Chlorophyll a , phycoerythrin, phycocyanin and carotenoids are the principal light- 

harvesting pigments in the chloroplasts of marine red algae. In the photosynthetic processes of 

red algae, accessory pigments (phycoerythrin, phycocyanin and carotenoids) absorb different 

wavelengths of light and transfer the light energy to chlorophyll a, which converts all absorbed 

light energy into chemical energy (ATP) and reducing power (NADPH) that are used in the 

synthesis of organic compounds from carbon dioxide. Therefore, these four harvesting pigments 

are important in determining physiological responses of Porphyra conchocelis stage to 

environment.

This research was conducted with the following objectives:

( 1). to investigate whether or not light has an effect on the pigment content of conchosporangia 

of Alaskan Porphyra species;

(2). to determine the effect of nutrient concentration on the pigment content of conchosporangia;

(3). to determine whether culture age has an effect on the pigment content of the 

conchosporangia stage;

(4). to investigate interactions among these different factors regarding their effects on the 

pigment contents;

(5). to compare absorption spectra for photosynthetic pigments from different species of 

Porphyra.
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Materials and Methods

Unialgal cultures of each Porphyra species (Porphyra abbottae Krishnamurthy - strain 

PaSGSOl, P. pseudolanceolata  Krishnamurthy - strain PeJB03, P. pseudolinearis IJeda - strain 

PiSC14 and P. torta Krishnamurthy - strain PtCH13a) were obtained from carpospore release. 

Mature blades of the gametophyte stage of each species were collected from the field. Blades 

were washed and scrubbed with sterile seawater to remove surface contamination. The cleaned 

blades were placed in sterile seawater in petri dishes for carpospore release. After 24-36 hours 

the blades were removed and the dishes incubated in Provasoli’s enriched seawater (PES; 

McLachlan, 1973) under 16L:8D photoperiod at 11°C. Conchocelis segments (around 110-250 

pm ) of each species were placed in cell well plates (one piece per well) and incubated at 30ppt

salinity and 11°C (100-120 pmol photons m ' 2 s' 1 irradiance) for the culture of pure genotype 

conchocelis. which were used for culture of bulk conchocelis materials for experiments. PES 

enriched seawater culture medium was used for the conchocelis stage. When conchocelis began 

to develop into the conchosporangia stage, they were incubated at 11°C and 25 pmol photons m ' 2

s' 1 irradiance with f/2 culture media.

Conchosporangia used for pigment experiments were incubated at 11 °C and illuminated 

with cool-white fluorescent lamps. Irradiance gradients were obtained by wrapping the culture 

containers with varying layers of white paper. Irradiance was measured by a Li-Cor Radiation 

Sensor (Li-190SB Quantum Sensor). The pH of the culture medium was adjusted to 7.8 - 8.0 (the 

ambient pH of the seawater in the inside waters of SE Alaska) using 6 M HC1 or 6 M NaOH. The 

salinity of experimental seawater was set at 30ppt. Culture media were changed every 7 days. 

Long day (16L: 8D) photoperiods were used. Nutrients were added as an f culture medium 

concentration (Guillard and Rvther, 1962). which has a nitrogen concentration of 1.747 mM; 

therefore, nutrient levels of  0. f/4, f/2 and f  concentrations represented 0.02. 0.437. 0.874 and
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1.747 mM of nitrogen concentration respectively (conchosporangia at 0 nutrient concentration 

represented those incubated in natural seawater with a nitrogen concentration of 0.02 mM, i.e., no 

f  culture medium was added). In order to ensure sufficient inorganic carbon source available to 

the conchocelis, culture media were supplemented with 5mM NaHCOv For pigment experiments, 

different levels of three environmental factors were employed: nutrient levels of 0, f/4, f/2, f 

concentration; irradiances of 0, 10, 40, 160 |amol photons m ' 2 s' 1 ; culture duration of 10, 20, 30, 

60 days.

Procedures for measurement and analysis of pigment content:

Porphyra conchosporangia were grown in 200 ml flasks under the varying culture 

conditions. After being incubated for 10, 20, 30, 60 days, conchosporangia samples were rinsed 

with sterile seawater and ground in a mortar and pestle at low temperature and low light. Four 

replicates of conchosporangia samples from each combination of culture conditions were used for 

pigment measurements and one corresponding sample was used for measurement of the ratio of 

dry weight to fresh weight. Pigments were extracted at 4°C temperature and in the dark for 18 hr 

to ensure a complete extraction. Water-soluble accessory pigments-phycoerythrin (PE) and 

phycocyanin (PC) were measured and analyzed on the basis of their absorption peak values at the 

wavelengths of maximum light absorption (568nm and 620 nm wavelength were used for PE and 

PC measurements) after samples were ground and extracted with 0.05M sodium phosphate buffer 

solution (pH 6.7) and centrifuged at about 14,000g for 30 minutes. About 5-7 mg (fresh weight) 

of conchosporangia was extracted for PE and PC measurements. Chlorophyll a and carotenoid 

contents were measured and analyzed on the basis of their absorption peak values at the 

wavelengths of maximum light absorption (445 nm and 670 nm were used for chlorophyll a and 

carotenoid measurements) after the samples were ground and extracted by organic solvent 

(acetone, 90%) with one drop of saturated MgCO^ added and centrifuged at about 14,000g for 30
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minutes. About 4-6 mg (fresh weight) of conchosporangia was used for chlorophyll a and 

carotenoid measurements. Volume of extracted pigment solution was set to 2 ml for pigment 

measurements. Specific extinction coefficients used to calculate pigment amount in red seaweeds 

pigment extracts were obtained from OTiEocha (1971). Pigment absorbances were determined 

using a Gilford spectrophotometer 250.

The following formulae were used for the estimation of pigment contents in 

conchosporangia samples on the basis of the absorbances of the pigment extracts at specified 

wavelengths and their corresponding specific extinction coefficients:

Phycoerythrin (mg g.dw"1) = (246.9 - 91.0 A52oVsamP'e amount (mg.dw)

Phycocyanin (mg g .d w '1) = (303.0 A520 - 3 —8 A56g)/sample amount (mg.dw) 

Carotenoids (mg g.dw-1) = (7.14 A445 - 3.85 A ^ q  )/sample amount (mg.dw) 

Chlorophyll a (mg g.dw-1) = (19.8 A ^oV sam ple  amount (mg.dw)

Statistical analyses of the experimental data

In pigment content experiments, four species were used (P. abbottae, P. 

pseudolanceolata, P. pseudolinearis and P. torta). For each species, the experiment included

irradiance (0, 10, 40, 160 |jmol photons n r 2 s ' 1), nutrition concentration (0, f/4, f/2, f ) and 

incubation period (10, 20, 30, 60 days). There were sixty-four complete combinations of 

different levels of these factors with four replicates per treatment for a total of = 4 x 4 x 4 x 4  = 

256 data for data analysis of each species and each kind of pigment. A three-way model I 

ANOVA was performed to analyze the influences of these factors including potential interactions 

on each kind of pigment content of the conchosporangia for each species of Porphxra by using S- 

Plus 3.1 for windows (Statistical Sciences. Inc. 1993).
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The Newman-Keuls multiple comparison test (Zar, 1996) was performed to identify 

which factors were important in controlling pigment contents of the conchosporangia of 

Porphyra. Statistical power analysis for main effect factors was conducted according to Cohen’s 

methods (Cohen, 1988).

Results 

Comparison of absorption spectra

PE absorption has two peaks, one lower peak at about 495 nm and another main peak at 

568 nm. PC has an absorption peak at 620nm. The peak absorption of chlorophyll a occurs at 670 

nm and carotenoid has maximal absorption at 445 nm with a shoulder absorption at 475 nm. 

Pigments extracted from the conchosporangia of all four species of Porphyra  tested have uniform 

peak absorptions at corresponding wavelengths, there are no differences in wavelengths of peak 

absorption between different species (Figure 5.1).

Variations of photosynthetic pigments

1. Porphyra abbottae

Both phycoerythrin (PE) and phycocyanin (PC) content of the conchosporangia of 

Porphyra abbottae were significantly influenced by all three factors including some interactions 

between these factors (Figure 5.2, Figure 5.6, Table 5.1, Table 5.2). Conchosporangial cultures 

with no nutrients added had the lowest content of phycoerythrin and phycocyanin. Both PE and

PC content declined with an increase in irradiance. An irradiance of 40 /jrnol photons ir f2 s"1 

caused a significant decline of phycoerythrin and phycocyanin contents. At a relatively high 

irradiance, cultures with no nutrients added produced little PE and PC (Figure 5.2, Figure 5.6, 

Figure 5.18, Figure 5.19). The most suitable irradiance was 10 pmol photons ir f2 s ' 1 , at which 

maximal pigment content was generally achieved, particularly with the nutrient concentrations
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between f14 and f/2. Cultures in darkness usually had the second highest phycobilin content.

Both phycoerythrin and phycocyanin content decreased with culture duration (Figure 5.2, Figure 

5.6, Figure 5.18, Figure 5.19). The highest phycoerythrin and phycocyanin content (95.07 and

61.02 mg g .dw '1, respectively) occurred at 10 ^/mol photons ir f2 s' 1 , f/2 nutrient concentration 

after 10 days of culture.

Both carotenoid and chlorophyll a content of the conchosporangia of Porphyra abbottae 

were significantly influenced by all three factors, with interactions affecting chlorophyll a content 

but not carotenoid content (Figure 5.10, Figure 5.14, Table 5.3, Table 5.4).

Conchosporangial cultures with no nutrients added generally had significantly lower content of 

carotenoid (Ca) and chlorophyll a (Chi. a) after longer culture duration (20-60 days), but not for 

10-day cultures. At high irradiances, cultures with no nutrients added had the lowest carotenoid 

and chlorophyll a content (Figure 5.10, Figure 5.14, Figure 5.20, Figure 5.21).

Carotenoid and chlorophyll a content of Porphyra abbottae also varied with different

light environments. Cultures in darkness or at a low irradiance (10 /umol photons m ' 2 s' 1 ) had the

highest content of carotenoid and chlorophyll a. irradiances ^ 40 jumol photons m '; s' 1 resulted 

in a remarkable decline (Figure 5.10, Figure 5.14).

Carotenoid and chlorophyll a content also decreased with culture duration, with the 

lowest for 60-day culture duration but no significant variation for 30-60 days of culture (Figure 

5.10, Figure 5.14, Figure 5.20, Figure 5.21).

The maximal carotenoid and chlorophyll a contents (6.3 and 8.2 mg g.dw"1. 

respectively) were achieved at 0 /iinol photons r tf2 s' 1 , f/4- f/2 nutrient concentration and 10- 

20day culture duration.

Porphyra pseudolanceolata  (Pe).
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Phycoerythrin content of the conchosporangia of Porphyra pseudolanceolata  was only 

affected by nutrients and light, with interactions occurring between nutrient and light or nutrient 

and culture duration, whereas phycocyanin (PC) content was influenced by all three factors, 

including their interactions (Figure 5.3, Figure 5.7, Table 5.1, Table 5.2).

Conchosporangial cultures with no nutrients added generally had the lowest content of

phycoerythrin and phycocyanin. For example, at 40 //mol photons m"2 s_l of irradiance, 

phycoerythrin and phycocyanin content in cultures with no nutrients added decreased to below 9-

35 and 10-31 mg g.dw' 1 respectively (Figure 5.3, Figure 5.7, Figure 5.18, Figure 5.19).

In comparison with P. abbottae, when nutrients were provided P. pseudolanceolata had

an obvious optimal irradiance (10 //mol photons m '2 s"1 ) at which the highest contents of 

phycoerythrin and phycocyanin were obtained, particularly for the longer duration of cultures 

(20-60 days) and higher concentrations of nutrient (f/2-f).

Unlike P. abbottae. cultures in the dark usually did not have the second highest PE or PC

content and had significantly lower PE or PC content than at 10 //mol photons m ' 2 s' 1 irradiance. 

There was a relatively high PE and PC content at higher irradiances (40-160 /umol photons ir f2 

s' 1 ) when nutrients were added at higher concentrations (f/2-f). In contrast to P. abbottae, PE 

and PC content did not decrease with culture duration, conversely, there was a slight increase for 

20-60day culture ( Figure 5.3, Figure 5.7, Figure 5.18, Figure 5.19). The highest phycoerythrin 

and phycocyanin contents (73 and 71 mg g.dw'"1, respectively) both occurred at 10/jmol photons

m~2 s' 1 , f nutrient concentration and 60-day culture duration.

Carotenoid content of the conchosporangia of P. pseudolanceolata  was affected by 

nutrient level and culture duration but not light. However, there was an interaction between light 

and culture duration, chlorophyll a content were influenced by all three factors with the same 

interaction as in carotenoid content (Figure 5.1 I, Figure 5.15, Table 5.3, Table 5.4).
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Conchosporangial cultures with no nutrients added generally had low contents of 

carotenoid and chlorophyll a for 20-60day culture duration, but not for lOday culture. There 

was a significant difference in chlorophyll a content between different light environments, with

significantly higher content occurring in dark environment or at 10 //mol photons m"2 s ' 1.

Nutrients between f/4 and f concentrations did not significantly affect the carotenoid and 

chlorophyll a contents of P. pseudolanceolata, which had a pooled mean of carotenoid and 

chlorophyll a of 2.3-2.5 and 3.0-3.3 mg g .d w '1, respectively. However, cultures with no nutrients 

added had significantly lower content of carotenoid and chlorophyll a than those with nutrients 

added.

Basically, carotenoid and chlorophyll a content of P. pseudolanceolata  declined with 

culture duration, except significantly higher content occurred for 20 day cultures (Figure 5.20, 

Figure 5.21). The highest carotenoid and chlorophyll a content were achieved at 0 //mol photons

m"2 s' 1 , f  nutrient concentration and 20day culture duration (Figure 5.11, Figure 5.15).

Porphyra pseudolinearis  (Pi)

All three factors, including two-factor interactions, influenced phycoerythrin and 

phycocyanin contents of the conchosporangia of Porphyra pseudolinearis (Figure 5.4, Figure 5.8, 

Table 5.1, Table 5.2).

Conchosporangial cultures with no nutrients added had the lowest content of 

phycoerythrin and phycocyanin, especially with an increase in irradiance (Figure 5.4, Figure 5.8, 

Figure 5.18, Figure 5.19). The conchosporangia of P. pseudolinearis appeared to be sensitive to

higher irradiances. For instance, 40 //mol photons i r f2 s' 1 resulted in a significant decline of 

phycoerythrin and phycocyanin content (Figure 5.4, Figure 5.8, Figure 5.18, Figure 5.19).

Like P. pseudolanceolata , when nutrients were provided, P. pseudolinearis had an

optimal irradiance ( 10//mol photons i r f2 s' 1 ) at which more phycoerythrin and phycocyanin
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were produced, particularly for cultures with f/4-f/2 nutrient concentration. Similar to P.

pseudolanceolata, cultures in darkness usually had the second highest PE content, but they were

not significantly lower than at 10 //mol photons m"2 s' 1 (Figure 5.4, Figure 5.18). Also similar to 

P. abbottae, cultures in the dark generally had the highest PC content, but they were not

significantly higher than at 10 //mol photons n r 2 s”1 (Figure 5.8, Figure 5.19). There was a 

relatively high PE and PC content at higher irradiances when nutrients were added at 

concentrations between f/4 and f/2. In contrast to P. abbottae, PE and PC contents increased for 

20-60day cultures (Figure 5.4, Figure 5.8, Figure 5.18, Figure 5.19).

Both the highest phycoerythrin and phycocyanin content occurred at 10 //mol photons

n r 2 s' 1 , f/2 nutrient concentration and 20day culture duration.

Both carotenoid and chlorophyll a contents of the conchosporangia of Porphyra 

pseudolinearis were influenced by all three factors tested, including interactions between these 

factors (Figure 5.12, Figure 5.16, Table 5.3. Table 5.4).

Conchosporangial cultures with no nutrients added generally had lower content of 

carotenoid and chlorophyll a, particularly for longer culture durations (Figure 5.12, Figure 5.16, 

Figure 5.20, Figure 5.21). At higher irradiances, cultures with no nutrients added had especially 

low carotenoid and chlorophyll a contents (Figure 5.12, Figure 5.16).

Carotenoid and chlorophyll a content of P. pseudolinearis varied with different light 

environments. Cultures in darkness or at the low irradiance with nutrients generally had higher 

carotenoid and chlorophyll a. High irradiances resulted in a remarkable decline of carotenoid 

and chlorophyll a (Figure 5.12, Figure 5.16, Figure 5.20, Figure 5.21).

Cultures in darkness usually had the highest levels of carotenoid and chlorophyll a , but 

these were not significantly higher than that at 10 //mol photons m-2 s' 1 (Figure 5.20, Figure 

5.21). Statistical tests showed no effect of culture duration (Figure 5.20, Figure 5.21).
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The peak contents were achieved for carotenoid (5.1 mg g.dw"1) at 10 /jmol photons m' 2 

s'* , f/2 nutrient concentration and 30day culture duration and for chlorophyll a (7.2 mg g.dw ' 1 ) 

at 0 yumol photons n r 2 s 1 , 0 nutrient concentration and 30day culture duration.

Porphyra torta (Pt)

All three factors, including their interactions influenced phycoerythrin and phycocyanin 

contents of the conchosporangia of Porphyra torta (Figure 5.5, Figure 5.9. Table 5.1, Table 5.2).

Conchosporangial cultures with no nutrients added had significantly lower content of 

phycoerythrin and phycocyanin (Figure 5.18, Figure 5.19). But unlike the other three species, 

phycocyanin content in cultures with no nutrients added did not have an obvious declining trend 

with an increase in irradiance (Figure 5.5, Figure 5.9). Cultures with nutrients added were 

sensitive to light environments, with significantly higher PE and PC contents occurring at 10

yumol photons ir f2 s '1.

Unlike the other three species, cultures of P. torta under dark environment had 

significantly lower PE and PC contents (Figure 5.5, Figure 5.9. Figure 5.18, Figure 5.19). There 

was a relatively reasonably high PE and PC content at higher irradiances (40-160 /jmol photons

ir f2 s' 1 ) when nutrients were provided.

As for P. abbottae , PE content of P. torta significantly decreased with culture duration. 

However, in contrast to P. abbottae, there was an obvious increase in PC content for a longer 

culture ( Figure 5.5, Figure 5.9, Figure 5.18, Figure 5.19).

The highest phycobilin content occurred at 10 /irnol photons m ' 2 s '1, f/2 nutrient 

concentration and 10-day culture duration (for PE content) and 10 //mol photons m ' 2 s '1, f 

nutrient concentration and 60-day culture duration (for PC content).
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All three factors tested had effects on carotenoid content but only nutrient and light 

affected chlorophyll a content of the conchosporangia of Porphyra. There were no interactions 

occurring among factors (Figure 5.13, Figure 5.17, Table 5.3, Table 5.4).

Conchosporangial cultures with no nutrients added generally had low contents of 

carotenoid and chlorophyll a (Figure 5.13, Figure 5.17, Figure 5.20, Figure 5.21).

Unlike the other three species, the conchosporangia of P. torta contained more 

carotenoid and chlorophyll a under dark environm ent than the light environment. Cultures under 

the light environment had little variation in carotenoid and chlorophyll a contents (Figure 5.13, 

Figure 5.17, Figure 5.20, Figure 5.21).

Like P. pseudolinearis, there was no effect of culture duration for chlorophyll a.

The maximal pigment contents were achieved at 0 //mol photons m ' 2 s' 1 , f  nutrient 

concentration and lOday culture duration (for carotenoid content) and 0 j jmol photons m ' 2 s"1 , f 

nutrient concentration and 30-day culture duration (for chlorophyll a content), respectively.

The effect difference between species

Comparison of pooled pigment content of four species of Porphyra for each parameter 

tested (for comparison of effect difference between species) is shown in the right column of 

Figure 5.18. to Figure 5.21. These pooled data analyses showed that for PE content, Pa generally 

had the highest PE content at each level of all three factors (nutrient concentration, irradiance and 

culture duration), with Pe and Pi having the second highest and Pt having the lowest PE content. 

However, these four species exhibited no differences in PE content between 40 and 160 fjmol

photons n r 2 s' 1 (Figure 5.18). Pe generally had the highest PC production , with Pi and Pa 

having the second highest and Pt having the lowest PC production for almost all levels of nutrient 

and irradiance (with exception of PC content under dark environment).
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There were also significant differences in PC content between species for culture 

duration. Pt had the lowest PC content for all culture periods. During a 10 day culture Pa had the 

highest PC content. For 20-30day culture. Pa, Pe and Pi had significantly higher PC content than 

Pt, but no differences in PC content existed between these three species. For the longest culture 

duration (60 day), Pe had the highest PC content, with Pi having the second highest (Figure 5.19). 

Overall, Pa and Pi had significantly higher Ca and Chi. a contents than the other two species for

comparison at all levels of three factors (with exception of 160 |jm ol photons ir f2 s' 1 irradiance). 

Pt had the lowest Ca and Chi. a content at all levels of three factors (Figure 5.20, Figure 5.21).

Conchosporangia cultures with nutrient added had significantly higher PE content than 

cultures with no nutrient added. Significant higher PE content (grand mean 56.5 mg g.dw"1 ) was

obtained at 10 ^imol photons i r f2 s '1, with the second highest PE content being under dark 

environment. PE content decreased with culture duration (Figure 5.22). Pe had the highest PC

content (grand mean 36.5 mg g.dw ' 1 ), with Pa and Pi the second highest and Pt having the 

lowest PC content (grand mean 15 mg g.dw"1). There was also a significant difference in PC 

content between cultures with nutrient added and cultures with no nutrient added (grand mean 19

vs. 32 mg g.dw"1).

Similarly, significantly higher PC content (grand mean 38.5 mg g.dw ' 1 ) was obtained at

10 |jmol photons m"2 s '1, with the second highest PC content occurring under dark environment. 

PC content also decreased with culture duration (Figure 5.23). Com parison of grand mean value 

for both Ca and Chi. a followed similar results. Pa and Pi had significantly higher Ca and Chi. a 

contents than the other two species.

Cultures with no nutrient added had significantly lower Ca and Chi. a contents than those

with nutrient added (grand mean 2.2 vs. 3.0 mg g.dw"1 for Ca content, and 2.7 vs. 3 ..6 mg g.dw"1
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for Chi. a co n ten t). Cultures under dark environment and at 10 ^m ol photons m ' 2 s' 1 had 

significantly higher Ca and Chi. a contents than those at higher irradiances (Figure 5.24, Figure 

5.25).

Statistical power (1- S) analysis for the experiments of pigment content

The results of statistical power (1- S ) analysis indicated that main effect factors (nutrient 

concentration, light, duration) have high power values (>0.80) when the minimum detectable 

difference in means for pigment content of conchosporangia is set at 15% (Table 5.5, Table 5.6, 

Table 5.7, Table 5.8).

Discussion

Hannach (1989) reported that the spectral absorbances of P. abbottae gametophytes from 

W ashington State increased in low light and high nutrient levels. Based on previously 

determined growth rates, she postulated that nutrient saturated P. abbottae blades can synthesize 

photosynthetic pigments in excess of immediate needs, with main allocation being given to the 

phycobiliproteins, especially phycocyanin . She reported that P. abbottae blades grown under

different conditions contained 4.7-7.2 mg Chi. a g d w '1, 23.2-40.6 mg PE g dw ' 1 and 13.3-22.6 

mg PC g dw-1 if a conventional conversion coefficient of 10 was used for the ratio of fresh 

weight to dry weight of red algae. It appears that both sporophytic and gametophytic stages of P. 

abbottae have similar chlorophyll a content. However, compared with her results, the 

conchosporangia have a much higher content of phycobilin (phycoerythrin and phycocyanin) 

based on my experim ental results.

In a field investigation of the green seaweed Codium fragile , total chlorophyll levels were

found to vary inversely with the depth, namely, the amount of available light (Wassman 1973).

This conclusion is similar to my experimental results, which showed that chlorophyll a content of



Porphyra conchsporangia was highest at low light (10 jumol photons m ' 2 s '1), with significant 

decline at higher irradiances. Furthermore, my experimental results also indicated a similar 

variation in phycobiliprotein contents. This is a phenomenon worth-discussing., what are its 

physiological, ecological and biological implications? What is its mechanism? Here are some 

possible interpretations. In red algal cells, the photosynthetic pigments are associated closely 

with proteins in the thylakoid membranes of chloroplasts to form light-harvesting complexes 

(e.g., phycobiliproteins are on the surfaces of thylakoids and further organized into granular 

phycobilisomes, which are the principal light-harvesting structures and transfer light energy to 

chlorophyll a embedded in the thylakoid membrane). Occurrence of photosynthetic activity must 

rely upon pigment-protein com plexes, which structurally are biological macro-molecules and 

needs some time for their synthesis in plant cells. Unlike sun plants or other plants which can, 

obtain regular light, cryptic Porphyra sporophytes have relatively few chances to access light 

because of living in the shell substrates. Therefore, as an adaptation mechanism, one possible 

reason that they maintain high contents o f photosynthetic pigments under low light or darkness is 

in order to catch and utilize light, i.e., their photosynthetic pigments are ready for light 

harvesting at any time when light becomes available. This could be interpreted as increasing 

pigments to maximize num bers of photons collected, an advantage for benthic algae.

Another likely reason is that high content of phycobiliprotein is possibly related to some 

potential pathways of nitrogen uptake, utilization and storage. These photosynthetic pigment 

complexes contain a significant amount of nitrogen in their chromophores and their proteins that 

are bonded with pigments (O ’Carra 1965). In some studies, color and content of photosynthetic 

pigments in Porphyra blades have been used as indicators of nitrogen supply and availability in 

the field cultivation waters (Amano & Noda 1978, Fujita & Migita 1984). These stored
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components may be used for growth and other necessary physiological processes when nitrogen 

supply becomes insufficient for marine alg;’e (Lobban & Harrison 1994, Hwang et al., 1987).

Color and content of photosynthetic pigments can be used to determine the physiological 

responses of Porphyra sporophytes. From my experimental observations, there was a distinct 

pigmentation of the conchosporangia phase under optimal culture conditions, where the color of 

the conchocelis appeared particularly dark brown-red (an indication of best and healthiest 

conchosporangia cultures) due to the abundant amount of phycobilin in plant cells. This is in 

contrast to only very a slight red color or bleached pale color occurring under unfavorable or 

extremely-stressed culture conditions such as those absent nutrients added and those exposed to 

high irradiance.

Because photosynthetic pigments are essential for plants to perform photosynthetic 

process, variations of pigment content likely can determine growth, development , physiological 

responses and survival of plants (Fortes & Luning 1980, Zavodnik 1987). My experimental 

findings showed that photosynthetic pigments of the conchosporangia for four species of 

indigenous Porphyra are significantly influenced by environmental factors such as irradiance, 

nutrient concentration and culture duration, including some interactions among these factors, with 

salinity and temperature fixed at 30ppt and 11°C respectively. Pigment content of the 

conchosporangia appear to be sensitive to environmental change and indicate physiological 

responses of sporophytic stage of Porphyra to environmental fluctuation. Since relatively low 

content and little variation of carotenoid and chlorophyll a occurred under all culture conditions, 

the change of accessory pigments (phycoerythrin and phycocyanin) is principally responsible for 

variations of the photosynthetic pigments. Accessory pigments could possibly determine the 

magnitude of any physiological responses of Porphyra conchosporangia.
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Overall, the conchosporangia of all four species of Porphyra contained higher levels of 

photosynthetic pigments, especially phycoerythrin and phycocyanin at a low irradiance ( !0 /vmol 

photons m ' 2 s ' 1) or even in a dark environment. So unique a physiological trait is evidence that 

Porphyra conchosporangia have the adaptability to a low irradiance or the dark environment.

M any studies have indicated that nutrients, especially nitrogen could affect both growth 

and quality of Porphyra blades. My experimental results also indicated that nutrients are very 

important for sporophytic stage of Porphyra. Under the light environment, conchosporangia 

grown in media with nutrients added had much higher contents of photosynthetic pigments and 

evidently exhibited a healthy brown-red color, in contrast to cultures with no nutrients added that 

had very low amounts of photosynthetic pigments and were bleached. Nitrogen supply in coastal 

waters are related to the seasonal occurrence, causing variations of growth and abundance of 

marine algae (Hanisak 1983. Hannach 1989, Grobe, Yarish & Davison 1998, W heeler & North 

1980). Because in natural habitats Porphyra sporophytes occur mainly during the period of 

summer season for the most of species, without doubt, their occurrence during this season would 

encounter the limiting nitrogen availability. For instance, in Alaska, a drastic decline of nutrient 

concentration usually occurs during the late spring and summer as the result of frequent 

phytoplankton blooms. Hence, shortage of nutrient supply during this period would potentially 

depress growth, development and survival of natural populations of Porphyra sporophytes.

Sufficient nutrient supply is necessary to promote higher production of phycobilin for 

Porphyra conchosporangia. However, different species exhibited differences in nutrient 

requirements. For example, higher nutrient concentration (f concentration) might be needed for 

P. pseudolanceolata. For the other three species, intermediate nutrient concentrations (f/4-f/2 ) 

were basically sufficient for high pigment content. Culture duration also should be taken into 

consideration in order to maximize phycobilin production. P. abbottae tended to synthesize
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significantly less photosynthetic pigments with prolonged culture duration, in contrast to the other 

three species having a relative constant pigment production throughout the entire period of 

culture.

The conchosporangial stage is critical to the successful mariculture of Porphyra. The 

possibility of conchospore maturation and release, to a great extent, rests on whether or not the 

best cultures of the conchosporangia are grown. The optimal culture conditions at which the 

highest production o f phycoerythrin and phycocyanin occurred could provide high quality and 

healthy conchosporangia for successful cultivation of these indigenous Porphyra species for food 

production purposes or for phycobilin extraction.

Conclusions

Four kinds of photosynthetic pigments in the conchosporangia of Porphyra  are 

significantly influenced by environmental factors such as irradiance, nutrient concentration and 

culture duration, including some interactions among these factors. Pigment contents of the 

conchosporangia are sensitive to environmental conditions and can be used to indicate the 

physiological state of the sporophytic stage of Porphyra.

Phycobilins (phycoerythrin and phycocyanin) are the major com ponents of total 

pigments, there are relatively small amounts of carotenoid and chlorophyll a in the cells of 

Porphyra sporophytes. Porphyra conchosporangia have the apparent adaptability to low 

irradiances and perhaps even to complete darkness. The conchosporangia of four species of 

Porphyra produced and maintained high contents of photosynthetic pigments, especially

phycoerythrin and phycocyanin at low light (10 //mol photons m~2 s ' 1) or in a dark environment. 

Such a physiological trait, derived likely from historical adaptation to environments and the 

process of natural selection, could possess important biological implication for them to survive
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and persist in habitats with limited light. Variation and magnitude of pigment contents of the 

conchosporangia vary considerably from species to species in response to varying environments.

Sufficient nutrients are necessary for high production of photosynthetic pigments. 

However, different species exhibited differences in nutrient requirements.

P. abbottae tends to synthesize significantly less photosynthetic pigments with prolonged 

culture duration, in contrast to the other three species, which generally have a relative constancy 

in pigment production throughout the entire period of culture.

The conchosporangia stage is critical to successful mariculture of Porphyra. The 

possibility of conchospore maturation and release, to a great extent, rests on whether or not 

healthy cultures of the conchosporangia are grown. The optimal culture conditions at which the 

highest production of phycoerythrin and phycocyanin occur could provide high quality and 

healthy conchosporangia for successful mariculture of these indigenous Porphyra species or for 

the purposes of phycobilin extracts.
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Table 5.1. ANOVA table for phycoerythrin content of the conchosporangia of four different 
Porphyra species at combinations of nutrient concentration (Nc), irradiance (Light) and culture

duration (day). a 0, f/4, f/2, f; ^ 0, 10, 40, 160 /jmol photons ir f -  s'* ; r 10, 20, 30, 60 days.
(*P<0.05; **P<0.01)._____________________________________________________________________

Source of variation df Sum of squares Mean square F

P. abbottae
Nutrient" 3 29251.47 9750.49 59.61**
Light*7 3 56923.70 18974.57 116.12**
Day' 3 47115.78 15705.26 96.11**
Nc x Light 9 12038.16 1337.57 8.19**
Nc x Day 9 2648.46 294.27 1.80
Light x Day 9 1985.22 220.58 1.35
Nc x Light x Day 27 8092.99 299.74 1.83*
Residuals 192 31374.09 163.41

P. pseudolanceolata
Nutrient" 3 25264.14 8421.38 95.90**
Light*' 3 7886.83 2628.94 29.94**
Day' 3 150.75 50.25 0.57
Nc x Light 9 8387.13 931.90 10.61**
Nc x Day 9 2979.42 331.05 3.77**
Light x Day 9 1507.65 167.52 1.91
Nc x Light x Day 27 3390.62 125.58 1.43
Residuals 192 16861.10 87.82

P. pseudolinearis
Nutrient" 3 35291.62 11763.87 119.25**
Light" 3 24063.84 8021.28 81.31**
Day1 3 1734.97 578.32 5.86**
Nc x Light 9 11989.34 1332.15 13.50**
Nc x Day 9 4058.94 450.99 4.57**
Light x Day 9 1791.95 199.11 2.02*
Nc x Light x Day 27 3050.22 112.97 1.15
Residuals 192 18940.94 98.65
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(Continued Table 5.1.)

Source of variation df Sum of squares Mean square F

P. torta
Nutrient" 3 8096.91 2698.97 31.00**
Light" 3 17579.17 5859.72 67.31**
Day' 3 15102.35 5034.12 57.83**
Nc x Light 9 4301.83 477.98 5.49**
Nc x Day 9 1701.54 189.06 2.17*
Light x Day 9 5622.43 624.71 7.18**
Nc x Light x Day 27 3746.94 138.78 1.59*
Residuals 192 16714.84 87.06
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Table 5.2. ANOVA table for phycocyanin content of the conchosporangia of four different 
Porphyra species at combinations of nutrient concentration (Nc), irradiance (Light) and culture 
duration (day) . 11 0, f/4, f/2, 1; ^ 0, 10, 40, 160 //mol photons m"2 s~*; c 10, 20, 30, 60 days. 
(*P<0.05; **P<0.01)._____________________________________________________________________

Source of variation df Sum of squares Mean square F

P. abbottae
Nutrient" 6520.24 2173.41 44.35**
Light" 3 25892.80 8630.93 176.11**
Day' 3 23185.40 7728.47 157.70**
Nc x Light 9 2645.01 293.89 6.00**
Nc x Day 9 531.83 59.09 1.21
Light x Day 9 1743.89 193.77 3.95**
Nc x Light x Day 27 2494.35 92.38 1.89**
Residuals 192 9409.62 49.01

P. pseudolanceolata
Nutrient" 3 13290.40 4430.13 85.07**
Light'’ 3 20415.47 6805.16 130.68**
Day‘ 3 505.67 168.56 3.24*
Nc x Light 9 5796.90 644.10 12.37**
Nc x Day 9 1364.74 151.64 2.91**
Light x Day 9 3721.60 413.51 7.94**
Nc x Light x Day 27 2267.19 83.97 1.61*
Residuals 192 9998.42 52.08

P. pseudolinearis
Nutrient" 3 11886.83 3962.28 69.75**
Light" 3 44793.45 14931.15 262.83**
Day' J) 7952.78 2650.93 46.66**
Nc x Light 9 7088.97 787.66 13.87**
Nc x Day 9 1339.64 148.85 2.62**
Light x Day 9 3665.41 407.27 7.17**
Nc x Light x Day 27 2139.92 79.26 1.40
Residuals 192 10907.32 56.81
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(Continued Table 5.2.)

Source of variation df Sum of squares Mean square F

P. torta
Nutrient" 3 1299.67 433.22 89.23**
Light* 3 4063.94 1354.65 279.01
Day" 3 1039.86 346.62 71.39**
Nc x Light 9 671.27 74.59 15.36**
Nc x Day 9 215.67 23.96 4.94**
Light x Day 9 349.23 38.80 7 99**
Nc x Light x Day 27 466.76 17.29 3.56**
Residuals 192 932.20 4.86



144

Table 5.3. ANOVA table for carotenoid content of the conchosporangia of four different 
Porphyra species at combinations of nutrient concentration (Nc). irradiance (Light) and culture 
duration (day). a 0, f/4, f/2, f; ^ 0, 10, 40, 160 /j mol photons n r -  s " ' ; c 10, 20, 30, 60 days. 
(*P<0.05; **P<0.01).____________________________________________________________________

Source of variation df Sum of squares Mean square F

P. abbottae
Nutrient" 3 26.8694 8.9565 5.424**
Light" 3 389.5719 129.8573 78.639*:
Day' 3 57.8462 19.2821 I 1.677*
Nc x Light 9 12.4006 1.3778 0.834
Nc x Day 9 14.6073 1.6230 0.983
Light x Day 9 8.8640 0.9849 0.596
Nc x Light x Day 27 7.3458 0.2721 0.165
Residuals 192 317.0494 1.6513

P. pseudolanceolata
Nutrient" 3 20.6513 6.8838 14.544*:
Light* 3 3.4866 1.1622 2.455
Day1 3 23.9163 7.9721 16.843*
Nc x Light 9 4.8898 0.5433 1.148
Nc x Day 9 2.2420 0.2491 0.526
Light x Day 9 11.6384 1.2932 2.732**
Nc x Light x Day 27 7.8932 0.2923 0.618
Residuals 192 90.8746 0.4733

P. pseudolinearis
Nutrient" 3 74.6694 24.8898 46.391*
Light* 3 72.4945 24.1648 45.040*
Day' 3 5.4269 1.8090 3.372*
Nc x Light 9 23.4517 2.6057 4.857**
Nc x Day 9 16.6328 1.8481 3.445**
Light x Day 9 16.1365 1.7929 3.342**
Nc x Light x Day 27 20.0840 0.7439 1.386
Residuals 192 103.0122 0.5365
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(Continued Table 5.3.)

Source of variation df Sum of squares Mean square F

P. torta
Nutrient" 3 9.9316 3.3105 6.758**
Light'’ 3 58.2839 19.4280 39.661*
Day' 3 10.1840 3.3947 6.930**
Nc x Light 9 5.9471 0.6608 1.349
Nc x Day 9 0.5849 0.0650 0.133
Light x Day 9 4.4003 0.4889 0.998
Nc x Light x Day 27 6.5450 0.2424 0.495
Residuals 192 94.0521 0.4899
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Table 5.4. ANOVA table for chlorophyll a content of the conchosporangia of four different 
Porphyra species at combinations of nutrient concentration (Nc), irradiance (Light) and culture 
duration (day). a 0, f/4, f/2, f; ^ 0, 10,40, 160 //mol photons m '^  s ' c 10, 20, 30, 60 days. 
(*P<0.05; **P<0.01)._____________________________________________________________________

Source of variation df Sum of squares Mean square F

P. abbottae
Nutrient" 3 39.3185 13.1062 18.203**
Light'’ 3 832.2614 277.4205 385.302**
Day' 3 109.0687 36.3562 50.494**
Nc x Light 9 36.9991 4.11 10 5.710**
Nc x Day 9 22.0478 2.4498 3.402**
Light x Day 9 26.5725 2.9525 4.101**
Nc x Light x Day 27 21.1674 0.7840 1.089
Residuals 192 138.2416 0.7200

P. pseudolanceolata
Nutrient" 3 34.7435 11.5812 18.994**
Light" 3 42.5447 14.1816 23.258**
Day' 3 33.3750 11.1250 18.246**
Nc x Light 9 6.0534 0.6726 1.103
Nc x Day 9 4.0953 0.4550 0.746
Light x Day 9 34.1028 3.7892 6.214**
Nc x Light x Day 27 18.3748 0.6805 1.116
Residuals 192 117.0698 0.6097

P. pseudolinearis 
Nutrient" 3 77.7924 25.9308 27.179**
Light" 3 318.3588 106.1196 1 11.227**
Day' 3 24.0444 8.0148 8.401**
Nc x Light 9 50.9408 5.6601 5.932**
Nc x Day 9 33.4742 3.7194 3.898**
Light x Day 9 32.3669 3.5963 3.769**
Nc x Light x Day 27 45.1706 1.6730 1.754*
Residuals 192 183.1837 0.9541
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(Continued Table 5.4.)

Source of variation df Sum of squares Mean square F

P. torta
Nutrient1' 3 9.5275 3.1758 5.805*:
Light" 3 135.0219 45.0073 82.272:
Day' 3 4.1820 1.3940 2.548
Nc x Light 9 6.0129 0.6681 1.221
Nc x Day 9 1.3153 0.1461 0.267
Light x Day 9 5.1561 0.5729 1.047
Nc x Light x Day 27 9.6414 0.3571 0.653
Residuals 192 105.0350 0.5471
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Table 5 .5 . Statistical power (1- ft) based on the results o f  variance analysis for experiments 
o f  the effects o f  environmental factors on the phycoerythrin content o f  Porphyra  
conchosporangia. Power values are determined by specific values o f  the degree o f freedom (u), 
effect size index (f) and sample size (n) foi each main effect. Desired minimum detectable 
difference in means is set at 15%. Significant criterion a  is equal to 0.05. (** P<0.01 for F test).

Effect d f

F test 

F u n f

Power

Porphyra abbottae

N utrient 3 59.61** 3 49 0.3208 0.97
Light ->J 116.12** 3 49 0.3527 >0.99
Day -» 96.11** 3 49 0.3403 0.98

Porphyra pseudolanceolata

Nutrient 3 95.90** 3 49 0.5142 >0.99
Light 3 29.94** 3 49 0.4312 >0.99
Day 3 0.57 3 49 0.4052 >0.99

Porphyra pseudolineari's

Nutrient 3 119.25** 3 49 0.3878 >0.99
Light 3 81.31** 3 49 0.3584 >0.99
Day 3 5.86** 3 49 0.3155 0.97

Porphyra torta

Nutrient 3 31.00** 3 49 0.3321 0.98
Light 3 67.31** 3 49 0.3595 >0.99
Day 3 57.83** 3 49 0.3517 >0.99
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Table 5. 6. Statistical power (1-15) based on the results o f  variance analysis for experiments 
o f  the effects o f  environmental factors on the phycocyanin content o f  Porphyra  conchosporangia. 
Power values are determined by specific values o f the degree o f  freedom (u), effect size index (f) 
and sam ple size (n) for each main effect. Desired minimum detectable difference in means is set 
at 15%. Significant criterion a  is equal to 0.05.
(** P<0.01, * P<0.05 for F test).

F test Power

Effect d f F u n f

Porphyra abbottae

Nutrient n
J 44.35** ->

J 49 0.2912 0.94
Light 3 176.11** 3 49 0.3466 0.98
Day 3 157.70** j 49 0.3369 0.98

Porphyra pseudolanceolata

N utrient 3 85.07** 3 49 0.4109 >0.99
Light 3 130.68** 3 49 0.4488 >0.99
Day 3 3.24* 3 49 0.3618 >0.99

Porphyra pseudolinearis

Nutrient 3 69.75** 3 49 0.3878 >0.99
Light J 262.83** 3 49 0.3584 >0.99
Day 3 46.66** 3 49 0.3155 0.97

Porphyra torta

Nutrient 3 89.23** 3 49 0.2776 0.91
Light 3 279.01** 3 49 0.3653 >0.99
Day 3 y ] 39** 3 49 0.2708 0.89
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Table 5. 7. Statistical power (1- B) based on the results o f  variance analysis for experiments 
o f  the effects o f  environmental factors on the carotenoids content o f  Porphyra  conchosporangia. 
Power values are determined by specific values o f the degree o f  freedom (u), effect size index (f) 
and sample size (n) for each main effect. Desired minimum detectable difference in means is set 
at 15%. Significant criterion a  is equal to 0.05.
(** P<0.01, * P<0.05 for F test).

F test Power

Effect d f F u n f

Porphyra abbottae

Nutrient 3 5.424** J 49 0.3102 0.96
Light 3 78.639** 3 49 0.4180 >0.99
Day 3 11.677** 3 49 0.3164 0.97

Porphyra pseudolanceolata

Nutrient 3 14.544** 3 49 0.4362 >0.99
Light 3 2.455 3 49 0.4125 >0.99
Day 3 16.843** 3 49 0.4412 >0.99

Porphyra pseudolinearis

Nutrient 3 46.391** 3 49 0.4993 >0.99
Light 3 45.040** 3 49 0.4972 >0.99
Day 3 3.372* 3 49 0.4432 >0.99

Porphyra torta

Nutrient 3 6.758** 3 49 0.3135 0.96
Light 3 39.661** 3 49 0.3666 >0.99
Day 3 6.930** 3 49 0.3137 0.96
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Table 5. 8. Statistical power (1- fi>) based on the results o f  variance analysis for experiments 
o f  the effects o f  environmental factors on the chlorophyll a content o f Porphyra  conchosporangia. 
Power values are determined by specific values o f the degree o f freedom (u), effect size index (f) 
and sam ple size (n) for each main effect. Desired minimum detectable difference in means is set 
at 15%. Significant criterion a  is equal to 0.05.
(** P<0.01for F test).

Effect d f

F test 

F u n f

Power

Porphyra abbottae

Nutrient 3 18.203** 3 49 0.3153 0.97
Light 3 385.30** 3 49 0.5475 >0.99
Day 3 50.494** 3 49 0.3250 0.97

Porphyra pseudolanceolata

Nutrient 3 18.994** 3 49 0.4236 >0.99
Light 3 23.258** 3 49 0.4302 >0.99
Duration 3 18.246** 3 49 0.4225 >0.99

Porphyra pseudolinearis

Nutrient 3 27.179** 3 49 0.3834 >0.99
Light 3 111.23** 3 49 0.4755 >0.99
Day 3 8.401** -)J 49 0.3692 >0.99

Porphyra torta

Nutrient 3 5.805** "> 49 0.2563 0.86
Light 3 82.27** 3 49 0.3524 >0.99
Day 3 2.548 3 49 0.2537 0.85
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Figure 5.1. Comparison of absorption spectra of photosynthetic pigments extracted from the 
conchosporangia of four species of Alaskan Porphyra.
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Figure 5.2. Porphxra abbottae (Pa). Phycoerythrin content of the conchosporangia as a
function of irradiance. nutrient concentration (♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.3. Porphyra pseudolanceolata  (Pe). Phycoerythrin content of the conchosporangia
as a function of irradiance, nutrient concentration (♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture
duration. Error bars are ± S.E.
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Figure 5.4. Porphyra pseudolinearis (Pi). Phycoerythrin content of the conchosporangia as
a function of irradiance, nutrient concentration (♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.5. Porphyra torta (Pt). Phycoerythrin content of the conchosporangia as a function
of irradiance, nutrient concentration ( ♦ ,  0; ■  , f/4; A. f/2; O, f ) and culture duration. Error bars
are ± S.E.
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Figure 5.6. Porphyra abbottae (Pa). Phycocyanin content of the conchosporangia as a
function of irradiance, nutrient concentration ( ♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.7. Porphyra pseudolanceolata (Pe). Phycocyanin content of the conchosporangia as 
a function of irradiance, nutrient concentration (♦ .  0; ■  , f/4; A, f/2; O , f ) and culture duration. 
Error bars are ± S.E.
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Figure 5.8. Porphyra pseudolinearis (Pi). Phycocyanin content of the conchosporangia as a
function of irradiance, nutrient concentration ( ♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.9. Porphyra torta (Pt). Phycocyanin content of the conchosporangia as a function
ofirradiance, nutrient concentration (♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration. Error bars
are ± S.E.
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Figure 5.10. Porphyra abbottae (Pa). Carotenoid content of the conchosporangia as a
function of irradiance, nutrient concentration ( ♦ ,  0; I , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.



C
ar

ot
en

oi
ds

 
co

nt
en

t 
(m

g/
g.

dw
) 

C
ar

ot
en

oi
ds

 
co

nt
en

t 
(m

g/
g.

dw
)

162

Figure 5.11. Porphyra pseudolanceolata (Pe). Carotenoid content of the conchosporangia as
a function of irradiance, nutrient concentration ( ♦ .  0; ■  , f/4; A. f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.12. Porphyra pseudolinearis (Pi). Carotenoid content of the conchosporangia as a
function of irradiance, nutrient concentration (♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.13. Porphyra torta (Pt). Carotenoid content of the conchosporangia as a function of
irradiance, nutrient concentration ( ♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration. Error bars are
± S.E.
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Figure 5.14. Porphyra abbottae (Pa). Chlorophyll a content of the conchosporangia as a
function of irradiance, nutrient concentration ( ♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.15. Porphyra pseudolanceolata  (Pe). Chlorophyll a content of the conchosporangia
as a function of irradiance, nutrient concentration (♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture
duration. Error bars are ± S.E.
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Figure 5.16. Porphyra pseudolinearis (Pi). Chlorophyll a content of the conchosporangia as
a function of irradiance, nutrient concentration (♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration.
Error bars are ± S.E.
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Figure 5.17. Porphyra torta (Pt). Chlorophyll a content of the conchosporangia as a function
of irradiance, nutrient concentration ( ♦ ,  0; ■  , f/4; A, f/2; O , f ) and culture duration. Error bars
are ± S.E.
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Figure 5.18. Comparison of pooled phycoerythrin content of the conchosporangia of four species of 
Porphyra for each parameter tested. Error bars are ± S.E. Different letters above the bars indicate 
significant difference (P<0.01) based on multiple comparisons using the Newman-Keuls test. Letter 
comparisons are relevant within a species (for the figures on the left) and relevant between species (for the 
figures on the right). Units of parameters tested are: irradiance (/jmol photons in-2 s ']). nutrient 
concentration (expressed as the f fraction) and culture duration (day).
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Figure 5.19. C om parison  o f  pooled  phycocyanin  content o f  the conchosporang ia  o f  four species o f  
P orphyra  for each param eter tested. Error bars are ±  S.E. Different letters above the bars indicate 
significant difference (PcO.Ol) based on multiple com par isons using the N ew m an -K eu ls  test. Letter 
com parisons are relevant w ith in  a  species (for the figures on the left) and relevant be tw een species (for the

figures on the right). Units of parameters tested are: irradiance (/jmol photons m"2 s '1), nutrient
concentration (expressed as the f fraction) and culture duration (day).
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Figure 5.20. Comparison of pooled carotenoid content of the conchosporangia of four species of 
Porphyra for each parameter tested. Error bars are ± S.E. Different letters above the bars indicate 
significant difference (P<0.01) based on multiple comparisons using the Newman-Keuls test. Letter 
comparisons are relevant within a species (for the figures on the left) and relevant between species (for the
figures on the right). Units of parameters tested are: irradiance (//mol photons m~- s '1), nutrient
concentration (expressed as the f fraction) and culture duration (day).
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Figure 5.21. Comparison of pooled chlorophyll a content of the conchosporangia of four species of 
Porphyra for each parameter tested. Error bars are ± S.E. Different letters above the bars indicate 
significant difference (P<0.01) based on multiple comparisons using the Newman-Keuls test. Letter 
comparisons are relevant within a species (for the figures on the left) and relevant between species (for the
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Figure 5.22. Comparison of pooled phycoerythrin content (grand average value) of the conchosporangia 
of four species of Porphyra for each parameter tested. Error bars are ± S.E. Different letters above the 
bars indicate significant difference (P<0.01) based on multiple comparisons using the Newman-Keuls test.
Units of parameters tested are: irradiance (//mol photons itT 2 s ' 1), nutrient concentration (expressed as the 1

fraction) and culture duration (day).
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Figure 5.23. Comparison of pooled phycocyanin content (grand average value) of the conchosporangia 
of four species of P orph yra for each parameter tested. Error bars are ± S.E. Different letters above the 
bars indicate significant difference (P<0.01) based on multiple comparisons using the Newman-Keuls test. 
Units of parameters tested are: irradiance (//mol photons m'2 s'1), nutrient concentration (expressed as the f 
fraction) and culture duration (day).
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Figure 5.24. C om parison  o f  pooled  carotenoid content (grand average value) o f  the conchosporang ia  o f  
four species o f  P orphyra  for each param eter tested. E rror bars are ± S.E. Different letters above the bars 
indicate significant d ifference (P<0.01) based on multiple com parisons using the N e w m an -K eu ls  test.

Units of parameters tested are: irradiance (//mol photons m'- s_l), nutrient concentration (expressed as the f
fraction) and culture duration (day).
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Figure 5.25. C om parison  o f  pooled chlorophyll a content (grand average value) of the conchosporangia  
o f  four species o f  P orphyra  for each param eter tested. E rror bars are ± S.E. Different letters above the 
bars indicate significant d ifference (P<0.01) based on multiple com par isons  using the N ew m an -K eu ls  test.

Units of parameters tested are: irradiance (/vmol photons irf2 s '1), nutrient concentration (expressed as the f
fraction) and culture duration (day).


