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ABSTRACT

This dissertation includes three discrete projects addressing various aspects of the 

neuroendocrine control of song in the Dark-eyed Junco (Junco hyemalis), a migratory 

songbird. Specifically, the roles o f testosterone, photoperiodic condition, opioids, and 

age were investigated with respect to song production and neural plasticity in the regions 

o f the brain that control song (vocal control regions, VCRs), I found that, in males, 

photoperiodic condition and testosterone interact to regulate seasonal VCR volume 

plasticity, whereas testosterone alone controls song production. The opioid system is 

probably not involved in VCR plasticity or song production, but is indicated to play a role 

in song learning or auditory processing. Finally, VCR volumes and song production do 

not differ with age in photostimulated adult male juncos.
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I. INTRODUCTION

Why Study Birdsong?

The modem study of birdsong began with the work o f William Thorpe (1958, 

1961). He showed that chaffinches (Fringilla coelebs) collected as nestlings and reared 

in the laboratory in isolation from conspecific adult males produced very abnormal songs. 

However, if these birds were exposed to taped recordings of wild chaffinch songs, they 

eventually produced normal songs that closely matched those of the recordings. These 

studies showed for the first time that young birds must leam the song o f their species by 

listening to adult conspecifics. Peter Marler, one of Thorpe’s students, greatly expanded 

on this early work. Marler and his colleagues demonstrated that song learning is 

characterized by early sensitive periods, that birds have an innate predisposition to leam 

the song of their species, and that local geographic song dialects exist (Marler, 1970, 

1976). A student of Marler’s, Masakazu Konishi, showed that birds must be able to hear 

themselves sing to develop song normally (Konishi, 1965). Finally, Fernando 

Nottebohm, also a student of Marler’s, showed that the peripheral control o f song 

production is lateralized. Nottebohm and his colleagues subsequently identified the 

neural circuits in the avian forebrain that control song behavior (Nottebohm et al., 1976, 

1986). This important discovery paved the way for many investigators who have 

henceforth contributed to our understanding of song behavior and its neural control.

In general, song serves two main functions (Catchpole and Slater, 1995; 

Kroodsma and Miller, 1996). In many species, song is used to declare a territory from

L



which other birds are aggressively excluded, as shown by the fact that muting birds 

decreases their ability to deter intrusions by other birds. Both males and females may use 

song in this context. Song may also be used by males to attract females, as well as to 

stimulate the female’s reproductive behavior and physiology. In bird species residing in 

the tropics, song is often used for territorial defense throughout the year. In temperate- 

zone bird species, song used either in the territorial or mating context is produced at 

higher rates during the breeding season, and at lower rates or not at all outside the 

breeding season.

The birdsong system, therefore, offers several advantages as a model for 

identifying the neural mechanisms that underlie an observable, biologically relevant 

behavior (reviewed in Brenowitz et al., 1997). First, song is a learned behavior that is 

controlled by discrete neural circuits. Because there are distinct phases in the 

development of song, with well-defined sensitive periods, one can relate the ontogeny of 

song behavior to the development o f the underlying neural circuits. Song behavior and 

the associated neural circuits are also sexually dimorphic in most species, providing 

researchers with a valuable model for investigating the neural basis o f a sexually 

dimorphic behavior. Gonadal steroids have pronounced effects on the development and 

adult function o f the song control circuits, as well as on song behavior. There is 

extensive plasticity of the adult song system, including ongoing neurogenesis and 

seasonal changes in morphology. Finally, there is pronounced species diversity in 

different aspects of song behavior, including the timing of vocal learning, sex patterns of 

song production, number o f songs that are learned, and seasonality of song behavior.
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This diversity provides opportunities for comparative studies of the song system. 

Altogether, these attributes make the song system a valuable model for studying the 

neural acquisition and development of communication in higher vertebrates.

Song Development

Singing behavior develops in phases as a bird ages, and the timing of these phases 

differs among species (reviewed by Nottebohm, 1993; Marler, 1991). Birds memorize a 

song template shortly after hatching during the “sensory phase”. Konishi (1965) showed 

that birds must leam their song from an adult tutor, since birds deafened prior to song 

memorization or raised in acoustic isolation do not develop normal adult songs. The 

sensory phase is followed with a “plastic song phase” during which the birds attempt to 

match their own vocalizations to those o f the template (reviewed by Nottebohm, 1993). 

Auditory feedback is as essential here as during the sensory phase, because birds must 

hear their own song in order to compare it to the stored template (Konishi, 1965).

Finally, this plastic song develops into full adult, “crystallized” song (Nottebohm, 1993). 

Maintenance of adult song is also somewhat dependent on auditory feedback. For 

example, birds deafened after the time of song crystallization will eventually show song 

degradation (Nottebohm et al., 1976; Nordeen and Nordeen, 1992). Therefore, the 

memorization, vocalization, and auditory processing o f song are tightly intertwined, and 

the vocal control system plays an important role in all o f these aspects of song acquisition 

and production.



Song Control C ircuits and VCRs 

In oscines, song behavior is regulated by a discrete network o f interconnected 

brain regions collectively called the vocal control system (Nottebohm et al., 1976, 

reviewed in Konishi, 1994; Figure 1). The motor pathway controls the production of 

song, and some portion of this circuit presumably participates in learning. This circuit 

consists of projections from the thalamus nucleus Uva and the neostriatal nucleus NIf to 

the neostriatal nucleus HVc (higher vocal center). HVc projects to the robust nucleus of 

the archistriatum (RA) in the forebrain, and RA projects both to the dorsomedial part of 

the intercollicular nucleus in the midbrain and to the tracheosyringeal part of the 

hypoglossal motor nucleus in the brain stem (nXIIts). Motor neurons in nXIIts send 

axons to the muscles of the sound-producing organ, the syrinx. Neuronal activity in the 

premotor nuclei HVc and RA is synchronized with the production of sound by the syrinx 

(Vicario, 1991; Margoliash, 1997). If  nuclei in the motor pathway are inactivated, a bird 

may adopt appropriate posture and beak movements, but does not produce song 

(Nottebohm et al. 1976).

The second, or anterior forebrain, pathway is essential for song learning and 

recognition (reviewed by Doupe and Solis, 1997; Margoliash, 1997). This pathway 

consists of projections from HVc to Area X, then to nucleus DLM in the thalamus, from 

DLM to the lateral portion of the magnocellular nucleus of the anterior neostriatum 

(1MAN), and finally to RA. In addition, 1MAN neurons that project to RA send 

collaterals to Area X, thus providing the potential for feedback within this pathway. 

Inactivation of 1MAN, DLM, or Area X in adults apparently does not disrupt previously

4



crystallized song, whereas the same lesions in juveniles prevent the development of 

normal song (Bottjer et al., 1984; Sohrabji et al., 1990; Scharff and Nottebohm, 1991; 

Halsema and Bottjer, 1992), Juvenile males with lesions o f Area X persist in producing 

songs that are plastic in structure, as though they are unable to crystallize. Another lesion 

study found that HVc, which receives auditory input from the telencephalic Field L 

(Kelley and Nottebohm, 1979), is necessary for female canaries (Serinus canaria) to 

discriminate between conspecific and heterospecific songs (Brenowitz, 1991). Neurons 

in all telencephalic VCRs (Area X, 1MAN, HVc, and RA) respond to auditory stimuli, 

and many are selective for the bird’s own song, a characteristic that appears to develop 

during the plastic song phase (Margoliash, 1986; Margoliash and Fortune, 1992; Volman, 

1993; Doupe, 1997).

Seasonal Plasticity and Testosterone

VCRs undergo pronounced seasonal changes in morphology in the adults of 

several songbird species. These seasonal changes may be related to seasonal changes in 

the quality or quantity o f song production and may serve as a substrate for seasonal 

modifications of song in species that change their song from year to year (Nottebohm, 

1981; Nottebohm et al., 1986; Smith et al., 1995a; Smith et al., 1995b). Several 

attributes of certain song nuclei change seasonally, including the volume, size, density 

and number of neurons, and incorporation and survival o f new neurons (Nottebohm,

1981; Kira et al., 1989; Brenowitz et al., 1991, Smith et al., 1995b; Johnson and Bottjer, 

1995; Alvarez-Buylla et al., 1990; Nottebohm et al., 1994). One or more o f these
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seasonal changes have been found in several of the different song nuclei, including HVc, 

RA, and Area X.

Photoperiod is one o f the most important environmental cues regulating seasonal 

changes in reproductive physiology and behavior (reviewed in Wingfield and Kenagy, 

1991). Long days (LD) in spring initiate gonadal recrudescence and a resulting increase 

in plasma concentrations o f gonadal steroids (Wingfield and Famer, 1980; Famer, 1986). 

VCR volumes are also larger at this time than after the breeding season, when birds are 

photorefractory and have low plasma T levels (Bernard and Ball, 1995; Kim et a l ,  1989; 

Nottebohm, 1981). Most o f the song nuclei that undergo seasonal changes contain 

intracellular receptors for gonadal steroids (Arnold et a l,  1976; Gahr, 1990; Balthazart et 

a l ,  1992; Brenowitz and Arnold, 1992; Smith et a l,  1996). In" free-living birds, it is 

therefore likely that LD increases the size o f the song nuclei by increasing circulating 

concentrations o f T, which then acts directly or via estrogenic metabolites on steroid 

receptors in the song nuclei. In support o f this, comparable changes also occur in captive 

songbirds exposed to breeding versus nonbreeding photoperiods or testosterone (T) 

concentrations (Nottebohm, 1981; Kim et a l, 1989; Brenowitz et a l ,  1991; Smith et a l, 

1995b).

Photoperiod itself

Aside from inducing a vernal increase in plasma T levels, LD may either act on 

the VCRs via steroid-independent mechanisms or modulate the responsiveness o f the 

song nuclei to seasonal changes in gonadal steroid levels. Photoperiod has been shown to



have steroid-independent effects on neural and behavioral plasticity in other systems 

(Steel and Hinde, 1972; Campbell et al., 1978; Morin and Zucker, 1978; Meimicki et al., 

1990; Lee et al., 1995), However, there is also evidence that photoperiod modulates the 

actions of T on both song behavior and anatomical attributes of the VCRs (Smith et al., 

1997a,b; Nowicki and Ball, 1989; DeVoogd et al., 1985; Clower et al., 1989), Finally, 

photoperiodic condition may have effects on the VCRs as well. In many birds, 

continued exposure to LD during the summer does not maintain T levels and gonadal 

growth, but instead leads to a spontaneous collapse in gonad size and endocrine secretion, 

and a state of insensitivity to LD called photorefractoriness (Famer et al., 1983; Wilson 

and Donham, 1988; Nicholls et al., 1988). Normally, decreasing daylengths in the fall 

and early winter break this insensitivity to LD, thus making birds able to respond to LD 

again, or photosensitive (Nicholls et al., 1988). Studies by Nowicki and Ball (1989) and 

DeVoogd et al. (1985) indicate that T-induced song production is modulated by 

photoperiodic condition, and it is possible that the VCRs are affected in the same way.

Opioids

Although gonadal steroids are important, they do not control all aspects of sexual 

differentiation, song development, and song production (reviewed by Arnold et al.,

1996). Many other neurochemicals and/or their receptors have been found in the VCRs 

and these substances may play some role in the vocal control system (Ball et al., 1988; 

Casto and Ball, 1994; Soha et al., 1996; Kimpo and Doupe, 1997), Studies on adult birds 

have found that VCRs contain both opioid peptides (Ryan et al., 1981; Ball et al., 1988,
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1995; Bottjer and Alexander, 1995; Deviche and Gunturkun, 1992; Carrillo and Doupe, 

1995) and their receptors (Gulledge and Deviche, 1995, 1999). In chicks, the opioid 

system is involved in the control o f distress vocalizations (Panksepp et al., 1978, 1980).

In addition, opioids influence cell plasticity and neuronal survival (Meriney et al., 1991; 

Zagon and McLaughlin, 1987; Hammer and Hauser, 1992) and interact with gonadal 

steroids (Bhanot and Wilkinson, 1984; Nikolarikis et al., 1986; Forman and Estilow, 

1988; Deviche, 1992). Altogether, this information indicates that the opioid system may 

play a role in some aspect o f VCR plasticity and/or song behavior.

Age

It has been shown that year-classes differ in reproductive morphology and 

circulating levels o f T in free living Dark-eyed Juncos (Deviche, Wingfield, and Sharp, in 

press). Year-class differences in CP width, plasma T, and testes weight also occur in free 

living Mountain White-crowned Sparrows (Zonotrichia leucophrys oriantha) (Morton et 

al., 1990). In both cases, older adult males had higher levels of plasma T, larger CP 

widths, and heavier testes than their younger counterparts. As of yet, no study has 

investigated whether these differences also occur in song production or VCR volumes. 

Because song production and VCR volumes are influenced by T, it is possible that year- 

class differences in plasma T levels will translate to differences in song production and 

VCR volumes as well.



Thesis Objectives

There are three broad goals o f this thesis, each represented by one chapter. The 

first is to determine the relative contributions o f photoperiodic condition and testosterone 

to song production and VCR plasticity. The second goal is to investigate the role of 

opioids in the seasonal variation in song production and VCR volume plasticity in Dark

eyed Juncos. Finally, the third goal is to determine whether year-class differences in the 

reproductive physiology o f adult male juncos are also apparent in VCR volumes and song 

production. In all o f these studies, adult male Dark-eyed Juncos (Junco hyemalis) were 

our subjects. Juncos have been used for a long time to study photoperiodism, including 

the coordination o f reproductive activity with changes in photoperiod (Rowan, 1925), 

Juncos are locally abundant, relatively easy to capture, and easily cared for in captivity. 

Unlike studies on canaries and zebra finches, any information gained about the vocal 

control system and song behavior in juncos can be applied toward understanding the 

species in the natural environment.
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Figure 1. Diagram of the avian vocal control system. Hatched regions form the anterior 
forebrain pathway. Regions outlined in black form the motor pathway. (Adapted from 
Gulledge and Deviche, 1998)
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II. EFFECTS OF TESTOSTERONE AND PHOTOPERIODIC CONDITION ON 
SONG PRODUCTION AND VOCAL CONTROL REGION VOLUMES IN 

ADULT MALE DARK-EYED JUNCOS (Junco hyemalis)

(As submitted to Hormones and Behavior by Dloniak and Deviche)

ABSTRACT

In seasonally breeding male songbirds, song learning and production are 

controlled by an interconnected set o f brain regions (vocal control regions, VCRs) that 

exhibits seasonal neuronal plasticity throughout adulthood. Several o f the VCRs contain 

androgen receptors and are androgen-sensitive throughout adulthood. In the present 

work, we determined whether exposure o f photosensitive adult male Dark-eyed Juncos 

(Junco hyemalis) to long days influences VCR volumes and song production independent 

of plasma T levels by independently manipulating T and photoperiodic condition in 

castrated (Cx) adult males. We also compared the influence o f T administration on song 

expression and VCR volumes in photosensitive, photostimulated, and photorefractory 

adult male juncos. Exposing Cx photosensitive males to LD enhanced their HVc volumes 

and these volumes were not further increased by concurrent T treatment. HVc and Area 

X were smaller in photorefractory than photostimulated males, but HVc increased in 

response to T treatment in photorefractory males. T treatment to SD-exposed 

photosensitive males increased HVc, but not Area X, MAN, or RA volumes. Only T- 

treated males sang and this treatment was equally effective behaviorally when given to 

Cx photosensitive and photostimulated or photorefractory juncos. Thus, photostimulation 

can increase HVc volumes maximally, but large volume maintenance in these birds



apparently requires elevated plasma T levels. Further, the stimulating influence of LD 

exposure on HVc volumes is insufficient to induce song in the absence o f elevated 

plasma T levels.

INTRODUCTION

In most bird species breeding at middle and high latitudes, timing of reproduction 

is regulated by seasonal changes in photoperiod. Long days (LD; > approximately 12 

hours o f light per day) in the spring cause photosensitive birds to become 

photo stimulated, thereby initiating gonadal recrudescence and a resulting increase in 

circulating gonadal steroid levels (Wingfield and Famer, 1980; Famer, 1986). At the end 

of the breeding season, when days are still longer than the threshold necessary to 

stimulate the reproductive system in spring, birds become photorefractory, at which time 

secretion of gonadal steroids decreases and the reproductive system is no longer 

responsive to LD (Nicholls, Goldsmith, and Dawson, 1988). Finally, the very short days 

o f early winter (SD; < approx, 12 hours o f light per day) terminate the photorefractory 

period, thereby restoring photosensitivity in preparation for the next breeding season 

(Nicholls et al., 1988; Wilson, 1992). The physiological changes taking place during the 

reproductive period are associated with profound behavioral modifications. Most oscines 

sing at a high rate during the breeding season, when they are photostimulated and plasma 

testosterone (T) levels are high, and singing stops or decreases when plasma T levels 

drop after the breeding season, when birds are photorefractory (Marler, Peters, and 

Wingfield, 1987; Nottebohm, Nottebohm, Crane, and Wingfield, 1987). In several

12
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species, singing is diminished or eliminated by castration, and subsequent T treatment 

reinstates the behavior (Arnold, 1975; Heid, Guttinger, and Prove, 1985; Harding, 

Walters, Collado, and Sheridan, 1988).

In oscines, both song learning and production are controlled by an interconnected 

set o f brain regions (vocal control regions or VCRs) collectively called the vocal control 

system (Nottebohm et al., 1976; reviewed by Konishi, 1994). This system includes the 

high vocal center (HVc), Area X of the parolfactory lobe, magnocellular nucleus o f the 

anterior neostriatum (MAN), and robust nucleus of the archistriatum (RA). Area X and 

MAN are essential for song learning (Nottebohm et al., 1976; Bottjer, Meismer, and 

Arnold, 1984; Sohrabji, Nordeen, and Nordeen, 1990; Scharff and Nottebohm, 1991), 

whereas HVc and RA are necessary for song expression (Nottebohm et al., 1976).

The vocal control system exhibits neuronal plasticity throughout adulthood in 

many species (Nottebohm et al., 1976; Nottebohm, Nottebohm, and Crane, 1986; Smith, 

1996; Brenowitz, Baptista, Lent, and Wingfield, 1996; Gulledge and Deviche, 1997). In 

seasonally breeding adult songbirds, VCR volumes are larger during than after the 

breeding season (Smith, 1996; Brenowitz et al., 1996, Gulledge and Deviche, 1997). 

Changes similar to those observed in free-living birds occur in captive birds exposed to 

breeding versus nonbreeding photoperiods or T concentrations (Nottebohm, 1981; 

Brenowitz, Nalls, Wingfield, and Kroodsma, 1991; Smith, Brenowitz, Wingfield, and 

Baptista, 1995; Gulledge and Deviche, 1997). The effects o f T on VCR volumes and 

singing are presumably mediated by androgen receptors located in HVc, RA, and MAN 

(Arnold, Nottebohm, and Pfaff, 1976; Smith, Brenowitz, and Prins, 1996). Although
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androgen receptors are not present in Area X, this region receives projections from HVc, 

suggesting that the effects of T on this region are mediated by HVc (Arnold, 1980; Gahr, 

1990). MAN also projects to Area X and may play a role in the effects o f T on this 

region as well (Nixdorf-Bergweiler, Lips, and Heinemann, 1995; Vates and Nottebohm, 

1995).

In addition to stimulating T secretion, photoperiod itself has gonadal androgen- 

independent effects on VCRs. Tree Sparrows (Spizella arborea) that are castrated prior to 

photostimulation show increases in HVc, Area X, and RA volumes in response to LD 

exposure (Bernard, Wilson, and Ball, 1997). In Gambel’s White-crowned Sparrows 

(Zonotrichia leucophrys gambelii), Smith, Brenowitz, Beecher, and Wingfield (1997a) 

found a small but significant steroid-independent stimulatory effect o f photostimulation 

on the volume of HVc and the size of RA neurons. In adolescent photorefractory male 

Dark-eyed Juncos (Junco hyemalis), exposure to LD increases the volumes of Area X, 

HVc, and RA despite low plasma T concentrations (Gulledge and Deviche, 1998).

Finally, Kim and Schwabl (1997) have shown that seasonal changes in photoperiod 

regulate neuron death rate in adult male canaries independent of changes in gonadal 

steroid levels. ,

The actions of T on VCR volumes and song behavior are modulated by 

photoperiodic condition. Nowicki and Ball (1989) showed that the song rate of 

photosensitive T-treated male Song Sparrows (Melospiza melodia) increased following 

transfer from SD to LD, even though this transfer did not increase plasma T levels. In the 

same study, the authors concluded that T treatment is equally effective in inducing song

14



in both photorefractory and photosensitive birds exposed to LD. Bernard and Ball (1996) 

found that HVc volume was larger in T-treated photostimulated than in intact 

photosensitive or T-treated photorefractory adult male European Starlings (Stumus 

vulgaris). T administration to castrated photostimulated juncos also maintains large HVc 

and Area X volumes (Gulledge and Deviche, 1997), suggesting that large VCR volume 

maintenance in photostimulated birds depends on gonadal steroids.

No previous study has compared the effects of T treatment on song production 

and VCR volumes between photosensitive, photostimulated, and photorefractory males 

concurrently. In the present work, we independently manipulated photoperiodic condition 

and T treatment in adult male Dark-eyed Juncos, a photoperiodic, high-latitude breeder 

used in previous song system research (Gulledge and Deviche, 1997, 1998). We 

investigated the effects of T treatment on song rates across photoperiodic conditions, the 

relative importance of T treatment and photoperiodic condition in VCR volume 

plasticity, whether there is a relationship between VCR volume and song rate, and 

whether the VCRs of castrates undergo seasonal changes in volume.

MATERIALS AND METHODS

Experimental design

Experim ent 1: Photosensitive Males. We collected 48 adolescent male Dark-eyed 

Juncos from a wild population near Fairbanks, Alaska (65 °N, 148°W), in September, 

1997, using seed-baited Potter traps. Birds were brought into captivity and housed in 

groups o f 8-12 in indoor group flight cages. They were exposed to SD (8L: 16D; lights on
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at 0800 hrs) until March 11, 1998 (Figure 1). At this time, birds were moved to 

individual cages that were visually, but not acoustically, isolated from one another. Forty 

birds were bilaterally castrated under complete anesthesia via methoxyflurane inhalation 

(Metofane; Pitman-Moore Inc., Mundelerin, IL) between March 18 and 20. At this time, 

males either remained exposed to SD (n=16) or were transferred to a photostimulating 

light regime (n=24). Photostimulated birds were gradually exposed to increasingly longer 

days, by adding one hour of light per day until 20 hours o f light were reached (LD; 

20L:4D; lights on at 0400 hrs; Figure 1). The remaining eight birds were laparotomized 

and did not receive implants (see below). They were also transferred to LD to serve as a 

photostimulated intact group (STIM-I). On March 26, eight SD and eight LD (SENS-T 

and STIM-T) birds received two subcutaneous T-filled Silastic implants. T implants 

consisted o f a 10 mm length o f Silastic tubing (Konigsberg Instruments, Inc., Pasadena, 

CA; internal diameter, 1.5 mm; external diameter, 2 mm) filled with crystalline T (Sigma 

Chemical Co., St. Louis, MO) and sealed with silicone adhesive (Dow Coming, Midland, 

MI). All implants were incubated in a physiological saline solution at 37° C for 24 hours 

prior to implantation to initiate release of the steroid. Another eight SD and eight LD 

(SENS-C and STIM-C) birds received empty, control implants. Birds remained exposed 

to their respective photoperiods for the remainder of the experiment. All SD birds and 16 

LD birds (STIM-C and STIM-T) were killed on May 6 or 7. The remaining eight LD 

castrated birds were kept until they had become photorefractory (REF-CX), as 

determined by the onset o f prebasic molt (Morton, King, and Famer, 1969; Dawson, 

1997; Dawson and Sharp, 1998), and were killed on July 14 (approximately two weeks
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after the onset of molt). At the time of sacrifice, body cavities were inspected to ensure 

that castrations were complete. Throughout the study birds received Mazuri parrot and 

small bird pelleted food (PMI Nutrition Int., St. Louis, MO) and Avi-Con vitamin 

treated-water (Vet-A-Mix Inc., Shenandoah, IA) ad libitum.

Experim ent 2: Photorefractory Males. During the second half o f June, 1998, when birds 

are naturally exposed to constant light, we used mist nets and conspecific song playbacks 

to collect 22 adult male juncos. Birds were housed in visually isolated individual cages, 

received food and water ad libitum as in the first experiment, and they continued to be 

exposed to LD (20L:4D; lights on at 0500 hrs). They were checked periodically for the 

onset o f molt as an indicator of photorefractoriness. All birds were molting by July 14.

On July 21, 12 birds received T implants (REF-T) as described in the first study.

Duration o f T treatment was identical to that o f experiment 1. The remaining 10 males 

received empty implants (REF-C). Birds were kept on LD until they were killed on 

September 2 or 3.

Blood Samples and Testosterone Assay

During each study, blood samples were collected from the left alar wing vein 12 

or 13 and 32 or 33 days after hormonal treatments began. Samples were immediately 

centrifuged and plasma was drawn off and stored at -20° C until assay. Aliquots of 

plasma (25 p.1) were assayed for total T by radioimmunoassay using a commercial coated 

tube 125I kit (Diagnostic Products Corp., Los Angeles, CA). This assay has been used
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previously for measuring T in Dark-eyed Juncos (Gulledge and Deviche, 1998) and is 

both sensitive (lower detection limit: 10 pg/tube) and specific (cross-reactivity: 3% with 

dihydrotestosterone, 0.02% with estradiol). All samples were assayed in duplicate in two 

series. The intra- and inter-assay coefficients o f variation were 5.8% and 11.6%, 

respectively.

M orphological M easures

In order to assess the effectiveness of T implants, we measured cloacal 

protuberance widths (CP; a T-sensitive secondary sex characteristic: Schwabl and Famer, 

1989; Deviche, 1992) to the nearest 0.1 mm with calipers 12 and 33 days after 

implantation. Gonads o f photorefractory birds were collected and weighed to the nearest 

mg at the time of sacrifice.

Song R ate

In each study, the average song rate o f each bird was quantified twice: between 7 

and 10 and between 28 and 31 days after the onset o f T administration. At both times, the 

same observer recorded the number o f times each bird sang during two 30 min periods. 

Time periods were randomly assigned to each bird, and all observations were made 

between 0600 and 1130 hrs. The two counts of number o f songs produced by each 

individual were then averaged at each time.
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B rain  processing and V CR volume m easurem ent

All birds were killed by in vivo perfusion. Briefly, males were anesthetized by a 

xylazine/ketamine pectoral injection (0.032 mg xylazine (Loyd Laboratories,

Shenandoah, IA) and 1.6 mg ketamine (Phoenix Pharmaceutical Inc., St. Joseph, MO) 

per 0.2 ml sterile saline), followed by methoxyflurane inhalation. Once completely 

anesthetized, each bird received 0.3 ml of a heparin solution (1000 IU per ml 0.1 M 

phosphate buffer; Sigma Chemical Co.) followed by transcardial injection o f 0.1 M 

phosphate buffer and 4% buffered paraformaldehyde. Brains were stored in situ in 4% 

paraformaldehyde at 4°C for 24 hours, then were dissected out, weighed, and stored in a 

sodium azide-containing buffer solution at 4°C for 4 days, followed by a 30% sucrose 

solution at 4°C for 4 days. At this time, they were frozen on powdered dry ice and stored 

at -70°C until further processed. Brains were coronally sectioned (section thickness -  35 

jum) on a cryostat, and alternate sections were collected on gelatin-coated slides and 

stained for Nissl substance using thionin. We used the MCID image analysis system 

(Imaging Research, St. Catherine, Canada) as described in Gulledge and Deviche (1998) 

to measure the volumes o f four VCRs: HVc, RA, MAN, and Area X. We also measured 

the volume of a control region not associated with the control of song (nucleus rotundus, 

Rt). Regions were identified using the canary stereotaxic atlas (Stokes, Leonard, and 

Nottebohm, 1974; Nottebohm et al., 1976). Lateral and medial MAN were measured 

together due to the difficulty distinguishing the boundary between them. Volumes of 

HVc were measured using the inclusive boundaries for the nucleus as described in Kim, 

Clower, Kroodsma, and DeVoogd (1989). Telencephalon width was measured to
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determine if overall brain sizes differed between groups. To do this, three sections with 

the anterior commissure present were chosen from each brain. The width of the 

telencephalon at the widest point on each section was then measured and averaged over 

the three sections.

All methods were approved by the Institutional Animal Care and Use Committee 

of the University o f Alaska Fairbanks and met the standards of the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals.

RESULTS

Comparison of intact, castrated, and T-treated castrated photostimulated males

To determine whether T treatment to castrated photostimulated males induced 

physiological effects, we compared the STIM-I, STIM-C, and STIM-T groups using one

way and one-way repeated measures Analyses of Variance (ANOVA), followed by 

Student Newman-Keuls (SNK) pair-wise multiple comparisons tests when appropriate. 

All data sets except song rates met assumptions o f normality and equal variance. 

Therefore, song data were ranked prior to analysis.

Plasma T levels were higher in STIM-T than in STIM-I or STIM-C birds on both 

sampling dates (F221 = 104.0, p = 0.0001; SNK, p < 0.05; Table 2), but they were within 

the range o f those measured at the beginning o f the breeding season in free-living males 

(Deviche, Wingfield, and Sharp, in press). Time and treatment interacted to affect CP 

width (F2 21 = 13.1, p = 0.0002; Table 2). On Day 12, STIM-T birds had larger CPs than 

STIM-I birds, who in turn had larger CPs than STIM-C birds. On Day 33, STIM-T and
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STIM-I birds had similar CP widths, and they were both larger than CP widths o f STIM- 

C birds.

Song rates were significantly higher on Days 7-10 and 28-31 in STIM-T and 

STIM-I males than in STIM-C males, which did not sing (F221 = 11.65, p = 0.0004; SNK, 

p < 0.05; Table 2). VCR volumes and other brain measures did not differ between STIM- 

I, STIM-C, and STIM-T groups (Figures 2 and 3).

Comparison of intact and castrated photorefractory males

We compared brain measurements and CP widths of REF-CX and REF-C juncos 

to test the possibility that methodological differences (time spent in captivity, surgery, 

etc.) between experiments 1 and 2 resulted in differences between these two groups. Both 

data sets met assumptions of normality and homoscedasticity for all variables. Therefore, 

Students t-tests were utilized to compare VCR volumes, brain weight, and telencephalon 

width between the two groups. CP widths were analyzed using one-way repeated 

measures ANOVA.

REF-CX and REF-C males did not differ with respect to any parameters (p’s all > 

0.20; Figures 1 and 2; Table 2) and no bird had detectable plasma T. Thus, castrated and 

intact photorefractory males did apparently not differ from each other in any respect.

Effects of testosterone treatment across photoperiodic conditions.

To investigate whether the effects of T depended on photoperiodic condition, we 

compared SENS-C, SENS-T, STIM-C, STIM-T, REF-C, and REF-T groups using two by
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three factorial ANOVAs and two-way repeated measures ANOVAs, with implant and 

photoperiodic condition as the independent variables. Data for Area X were 

heteroscedastic and were ranked prior to analysis. Song data were also ranked prior to 

analysis. When appropriate, Student Newman-Keuls pair-wise multiple comparisons tests 

(SNK) were used to determine specific group differences. The proportions of birds 

singing within T-treated groups were compared using a two by three contingency table 

and the x,2 statistic. Correlations between HVc volume and song rate, and between plasma 

T and song rate, were made with Spearman rank correlations. Due to unequal variance, 

gonad weights in REF-C and REF-T birds were compared with the Mann-Whitney U- 

test.

Control birds had non-detectable plasma T levels, whereas T-treated birds had 

high plasma T levels that did not differ between the two sampling times (Tables 1 and 2; 

effects of time and interactions between time and all other ANOVA main factors: p ’s all 

> 0.6), One STIM-C bird had detectable T (0.8 ng/ml) on Day 12, and was, therefore, 

eliminated from the study. SENS-C, STIM-C, and REF-C birds had small CPs that did 

not differ from each other. CP widths were larger in birds receiving T-filled than empty 

implants, regardless o f photoperiodic condition (Tables 1 and 2). CP widths were similar 

in all T-treated birds, indicating that photoperiodic condition did not modulate the effects 

o f T-implants on this parameter. In experiment 2, REF-T birds had heavier gonads (128 ± 

74 mg) than REF-C birds (20 ± 5 mg; U005>9i,2 = 92 , p = 0.02). Molt progressed normally 

in REF-C males, but stopped in REF-T males.
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No bird receiving empty implants ever sang. All SENS-T and STIM-T males 

sang, but only 2/3 of the REF-T birds sang. Neither median song rates (Tables 1 and 2; 

effects of time and all time interactions; p > 0.12) nor the proportion o f birds singing 

(X20.05,2 = 3.6101, p > 0.25) differed between these T-treated groups. Song rates of T- 

treated birds did not correlate with plasma T levels ( r  = 0.052, p = 0.79) or HVc volumes 

(:r2 = -0.206, p = 0.29).

Photostimulation o f castrated males increased the volume of HVc. This effect was 

not enhanced by concurrent T administration (comparison of STIM-C and STIM-T 

males: SNK, p > 0.05; Table 1; Figure 2). T treatment was equally effective in increasing 

HVc volume in photosensitive (STIM-T) and refractory (REF-T) males. RA volumes 

showed the same pattern of change as HVC, but the six groups o f birds did not differ 

significantly from each other. T-treatment increased MAN volume in photorefractory 

birds to the same size as that of photosensitive and photostimulated birds. REF-C birds 

had smaller MAN volumes than all other groups (SNK, p < 0.05). Photoperiodic 

condition influenced Area X volumes (Table 1; Figure 2), but multiple pairwise 

comparisons tests did not reveal significant differences across groups. T treatment did not 

affect Area X volume, regardless of photoperiodic condition. Telencephalon width, Rt 

volume, and brain weight were similar in all groups (Table 1; Figure 3).

Effect of photoperiodic condition in castrated males.

To determine the effect of photoperiodic condition on VCR volume changes in 

castrated males, we compared these volumes between SENS-C, STIM-C, and REF-CX
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groups using one-way ANOVAs, followed by SNK multiple comparisons tests when 

appropriate. All data sets met assumptions o f normality and equal variance.

HVc volumes differed across photoperiodic conditions (F221 = 4.13, p = 0.03; 

Figure 2). The previously noted increase in HVc volume resulting from photostimulation 

dissipated as birds became photorefractory. All other VCR volumes and brain measures 

were similar among groups (all p > 0.20; Figures 2 and 3).

DISCUSSION

This study was designed to examine the independent and synergistic effects o f T 

and photoperiodic condition on song production and VCR volumes in Dark-eyed Juncos. 

Our results support previous studies in that we found effects o f T as well as 

photoperiodic condition on VCR volumes. However, we report here for the first time that 

LD exposure to castrated photosensitive males increases HVc volume maximally. Unlike 

in White-crowned Sparrows (Smith et al., 1997b), concurrent T administration does not 

further increase HVc volume in juncos. Also in contrast to other studies, we found that 

song production in response to T treatment does not depend on photoperiodic condition.

In addition, a large HVc is not necessarily associated with song production, as 

photostimulated castrates never sang despite having large HVc volumes. Finally, we have 

shown that castrated males show seasonal plasticity in HVc volume in the absence of 

detectable circulating T.

One purpose of this study was to determine the effects o f T treatment on song 

rates in adult male Dark-eyed Juncos across photoperiodic conditions. T treatment
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induced comparable circulating levels of this steroid, irrespective o f whether birds were 

photosensitive and held on short days, photostimulated, or photorefractory. T treatment 

also induced similar song rates regardless of photoperiodic condition. Song rate was not 

correlated with HVc volume, which is consistent with a finding by MacDougall- 

Shackleton, Hulse, and Ball (1998). There were no differences in song rates or in the 

proportion o f birds singing in each photoperiodic condition. Our results differ from those 

of Nowicki and Ball (1989), who found that photostimulation increased song rate 

independent of T. However, that study did not include untreated controls. In addition, 

Nowicki and Ball measured song rates after photostimulated birds had been exposed to T 

for 6-8 weeks, whereas photosensitive birds had been exposed to T for only 1 to 4 weeks. 

Therefore, the increase in song rate found in photostimulated birds could have been an 

effect of a longer total exposure to T instead of an independent effect o f photoperiod 

(refer to Smith et ah, 1997b, for a detailed description). We conclude that adult male 

juncos have the potential to respond behaviorally to T treatment irrespective of their 

photoperiodic condition. Because we only measured average song rates of birds, 

additional studies are needed that will investigate whether juncos given exogenous T in 

different photoperiodic conditions differ with respect to their song structure. Smith et al. 

(1997a) found differences in song attributes across seasons in adult male Song Sparrows. 

Specifically, trill length, note structure stereotypy, and the rate o f song type variations 

changed seasonally. However, changes in these attributes all coincided with changes in T 

levels, indicating that photoperiodic condition does not play a major role.

25



Our second purpose was to determine the relative importance o f T treatment and 

photoperiodic condition on the control o f VCR volumes and to determine relationships 

between VCR volumes and singing behavior. Song production was associated with a 

large HVc in all photoperiodic conditions. This result does not necessarily indicate a 

causal relationship between HVc volume and song, and in fact we found no correlation 

between HVc volume and song rate. T administration to SD photosensitive or to 

photorefractory birds increased HVc volume to the same degree, and HVc size did not 

differ among T-treated birds, regardless o f photoperiodic condition. Therefore, adult 

male Dark-eyed Juncos can increase their HVc volumes to the same size whether they 

receive T treatment while photosensitive or photorefractory. However, exposure to LD 

was sufficient to increase HVc volume in photostimulated birds, and concurrent T 

treatment did not increase this volume further. These results differ from those o f Smith et 

al. (1997b). These authors found an increase in HVc volume induced by LD exposure, 

but also reported that T treatment induced an additional volume increase in 

photostimulated adult male Gambel’s White-Crowned Sparrows (Zonotrichia leucophrys 

gambelii). Our results also differ from those o f Bernard et al. (1997) who found that T 

administration to photorefractory male European Starlings does not increase HVc volume 

to a size similar to that o f T-treated SD photosensitive males. However, this study did not 

include a photorefractory group that did not receive T implants, so we do not know if  T 

treatment had even a small effect on HVc in photorefractory birds.

All photostimulated castrated juncos had large HVc volumes, but only males that 

received T sang, indicating that this steroid is required for song expression. Further, the
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volumes o f HVc in castrated photostimulated and T-treated castrated photosensitive birds 

did not differ. Thus, LD exposure may increase HVc volume, but T alone could do it to 

the same degree. It is likely that photoperiod and T exert different cellular effects on the 

HVc and possibly RA. Smith et al. (1997b) showed that photoperiod and T interact to 

increase the cross-sectional area o f neurons in the HVc in GambeFs White-crowned 

Sparrows, whereas T alone increases the number o f neurons in HVc. Together, they both 

cause an increase in HVc volume. Juncos that breed in Interior Alaska are naturally 

exposed to LD starting in March, i.e., over one month before reaching their breeding 

grounds. In other migratory species, plasma T levels remain relatively low in males until 

they reach their breeding areas (Wingfield and Famer, 1978a; 1978b). We suggest that 

increasing HVc volume in response to LD, but before high plasma levels o f T are 

reached, may facilitate song production as soon as birds arrive on their breeding 

territories. This would be particularly adaptive in situations where the period that is 

favorable for completing breeding activities is very brief, as is generally the case at high 

latitudes. Different cellular effects o f T and photoperiod could also help explain why LD 

castrates do not sing even though they have large HVc volumes. Additionally, song 

production may require stimulating effects o f T on the syrinx musculature (Deviche and 

Schumacher, 1982; Luine, Nottebohm, Harding, and McEwen, 1980).

The mechanism of action o f the T-independent changes in VCR volumes is, as of 

yet, unknown. A recent investigation reported effects o f melatonin on VCR volumes 

(Bentley, Van’t Hof, and Ball, 1999). Specifically, exogenous melatonin treatment to 

male European Starlings attenuated the LD-induced increase in HVc volumes and



decreased the volume of Area X. Other studies have described melatonin binding sites 

within the song system (Gahr and Kosar, 1996; Whitfield-Rucker and Cassone, 1996). 

Thus, melatonin is a potential mediator of T-independent LD-induced volume changes.

The third goal o f this study was to determine if the VCRs of castrated birds 

undergo seasonal changes in volume. To our knowledge, this is the first study 

investigating seasonal VCR volume plasticity in males that were castrated prior to 

photoperiodic manipulations. For example, Bernard et al. (1997) found testis-dependent 

and -independent effects o f photoperiod in American Tree Sparrows, but they castrated 

photorefractory sparrows after they had become photorefractory. Bentley et al. (1999) 

also compared VCR volumes of castrated photorefractory starlings with those of 

photostimulated and photosensitive birds. However, starlings in that study were also 

castrated when photorefractory, and the authors did not report whether their 

photosensitive birds were castrated. Therefore, prior to the present work, it had not been 

determined whether birds castrated while on SD (i.e., prior to the breeding season) would 

undergo seasonal changes in VCR volumes as they became photostimulated and then 

photorefractory. We found that castrated photorefractory birds had smaller HVc volumes 

than castrated photostimulated birds. This suggests that the seasonal changes in HVc 

volume in male Dark-eyed Juncos can be mediated entirely by photoperiodic condition in 

the absence of gonadal steroids.

In the present work, Area X and MAN were large in both control and T-treated 

SD photosensitive castrated birds. Area X in adolescent male juncos is the same size as 

in breeding adult males, even though plasma T levels are low in adolescence and high



during the breeding season (Gulledge and Deviche 1997). Taken together, these results 

indicate that Area X volume increases in an androgen-independent fashion in adolescents 

in the fall, and is still large in early spring, when birds are still exposed to SD and have 

non-detectable T levels. Gulledge and Deviche (1997) found that castrating adult male 

juncos during the breeding season caused Area X to shrink compared to T-treated 

castrated birds. This indicated that T was necessary to maintain large Area X volumes 

during the breeding season. Although we found no difference between T-treated and 

control castrated photostimulated males, we saw a trend in photorefractory birds for T 

treatment to increase Area X volume, supporting the idea that Area X volume becomes 

androgen-dependent after a bird’s first breeding season.
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Legend to Figures

Figure 1. Design o f experiment 1. Abbreviations: SD, short days; LD, long days; n, 
sample size; SENS-C, photosensitive control; SENS-T, photosensitive T-treated; STIM- 
C, photostimulated control; STIM-T, photostimulated T-treated; STIM-I, * 
photostimulated intact; REF-CX, photorefractory castrated.

Figure 2. Volumes of Area X, RA, HVc, and RA of photosensitive (SENS), 
photostimulated (STIM), and photorefractory (REF) adult male juncos 35 days after 
receiving T-filled or empty implants. Also included are intact photostimulated (STIM- 
I) and castrated photorefractory (REF-CX) males. Data are presented as means ± 
standard deviations, except for Area X data, which are presented as medians + 0.05 
interquartile intervals. Different letters indicate significant differences among groups 
analyzed with two-way ANOVAs (Student Newman-Keuls, p < 0.05).

Figure 3. Rt volume, telencephalon width, and brain weight o f photosensitive (SENS), 
photostimulated (STIM), and photorefractory (REF) adult male juncos 35 days after ’ 
receiving T-filled or empty implants. Also included are intact photostimulated (STIM- 
I) and castrated photorefractory (REF-CX) males. Data are presented as means ± 
standard deviations.
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Table 1. Two-way ANOVA results for analysis 2.

Parameter Photoperiodic Condition Testosterone P x T 1

Area X volume F2>46 = 3.81, p = 0.03 Fi,46 = 1-28, p = 0.26 F2,46 = 2.77, p = 0.07

RA volume F2,46 = 1.34, p = 0.27 FM 6  = 3.44, p = 0.07 F246 = 2.81, p = 0.07

HVc volume F2,46 = 4.55, p = 0 . 0 2 F 1>46 = 24.6, p <  0.001 F24 6  = 6.07, p < 0.001

MAN volume F24 6  = 6.81, p < 0.001 FM 6  = 2.72, p = 0.11 F2)46 = 4.53, p = 0.02

Rt volume F2;46 = 0, p = 0.96 F i,46 = 1-51, p = 0.23 F2>46 = 0.01, p = 0.99

Brain weight F2i46= 1.13, p = 0.32 F, 46 = 0.05, p = 0.89 F2)46 = 0.07, p = 0.78

Tel. width F246 = 3 . 81, p = 0.03 F 146 = 3.81, p = 0.03 F2>46 = 3.81, p = 0.03

CP width2 F2>77 = 2.57, p = 0.08 F 1>77 = 196, p <  0.0001 F2i77 = 0.42, p = 0.66

Plasma T2 F2 77 = 2.33, p = 0.13 F 1>77 = 551, p <  0.0001 F277 = 1.65, p = 0.20

Song rate2 F2 77 = 0.34, p = 0.71 F 1>77 = 56.3, p <  0.0001 F277 = 0.08, p = 0.91

1 P x T = photoperiodic condition x testosterone interaction
2 CP widths, plasma T levels, and song rates were analyzed using two-way repeated measures ANOVA. 
Significant effects o f time or time interactions are presented in the text.



Table 2. Plasma T levels, CP width, and song rates.

Plasma T (ng/ml)1,2 CP Width (mm)1’2 Song Rate2,3

Photoperiodic condition Day 12 Day 33 Day 12 Day 33 Days 7-10 Days 28-31

SENS-T (n = 8) 11.50 ± 2.90a 12.19 ± 3.74a 4.6 ± 0.6a 4.7 ± 0.6a 24 ± 20a 15 ± 17a

SENS-C (n= 8) n.d.b n.d.b 3.6 ± 0.4b 3.4 ± 0.4b 0b 0b

STIM-T (n = 8) 13.95 ± 2.90a 13.97 ± 5.72a 5.0 ± 0.6a 5.1 ± 0.4a 21 ± 19a 18 ± 18a

STIM-C (n = 7) n.d.b n.d.b 3.7 ± 0.3b 3.7 ± 0.3b 0b 0b

REF-T (n = 12) 12.44 ± 3.29a 12.35 ± 4.92a 4.6 ± 0.5a 4.8 ± 0.6a 16 ± 19a 24 ± 23

REF-C (n = 10) n.d.b n.d.b 3.7 ± 0.3b 3.5 ± 0.3b 0b 0b

STIM-I (n=8) 1.06 ± 1.09 0.62 ± 0.66 4.0 ± 0.4 5.6 ± 0.8 12 ± 9 13 ± 17

1 Means ± standard deviations.
2 Days indicate the number of days after the onset of testosterone treatment.
3 Median number of songs counted during 30 min observation periods ± 0.5 interquartile intervals, 

n.d. = non-detectable
a,b Different letters indicate significant differences among groups.
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III. CHRONIC OPIOID RECEPTOR BLOCKADE DOES NOT AFFECT SONG 
PRODUCTION OR VOCAL CONTROL REGION VOLUMES IN ADULT MALE

DARK-EYED JUNCOS {Junco hyemalis)

(As submitted to Hormones and Behavior as Dloniak and Deviche)

ABSTRACT

Photoperiodic adult male songbirds display pronounced seasonal variation in song 

production and vocal control region (VCR) volumes that correlate with changes in 

plasma testosterone (T) levels. VCRs contain opioid peptides and receptors, but the 

functions of these peptides and receptors in the vocal control system are unknown. This 

study investigated the effects of chronic opioid receptor blockade induced by the 

administration o f a selective opioid receptor antagonist, naloxone, on song production, 

VCR volumes, and reproductive physiology o f adult male Dark-eyed Juncos (Junco 

hyemalis) exposed either to short or to long days. Birds exposed to long days sang and 

had larger HVc and Area X volumes, as well as larger gonads and higher plasma 

testosterone (T) levels, than did birds exposed to short days, which never sang. Naloxone 

treatment did not influence song production, VCR volumes, gonad weight, or plasma T 

concentrations regardless of photoperiod, suggesting that opioids are not involved in 

regulating adult song production or VCR volume plasticity. Although apparently not 

involved in the regulation o f song expression, VCR opioids and their receptors may 

control other aspects of vocal behavior such as song learning or auditory processing.



INTRODUCTION

In songbirds, song learning and production are controlled by an interconnected set 

of brain regions (vocal control regions, VCRs) collectively called the song system 

(Nottebohm, Stokes, and Leonard, 1976; Vicario, 1991; Johnson and Bottjer, 1992). In 

species that breed seasonally, the song system exhibits neuronal plasticity. The volumes 

o f several VCRs, as well as the size, density, and replacement rate of neurons within 

certain VCRs, change across seasons (Brenowitz, Nalls, Wingfield, and Kroodsma, 1991; 

Nottebohm, 1981; Alvarez-Buylla and Kim, 1997). For example, in male Dark-eyed 

Juncos (Junco hyemalis, a sexually dimorphic, seasonal oscine), the volumes of two 

VCRs (Area X o f the parolfactory lobe and HVc, the high vocal center) are larger during 

than after the breeding season (Gulledge and Deviche, 1997).

Seasonal changes in plasma testosterone (T) levels correlate to changes in VCR 

volumes. When seasonally breeding male birds experience a long photoperiod (> approx. 

12 hours of light per day), the reproductive system is stimulated. Plasma T levels rise, 

gonad size increases, and birds start to sing (Wingfield and Hahn, 1994; Smith, 

Brenowitz, Wingfield, and Beecher, 1997; Deviche, Wingfield, and Sharp, in press). 

During the breeding season, VCR volumes are also large (Nottebohm, 1981; Kim, 

Clower, Kroodsma, and DeVoogd, 1989; Bernard and Ball, 1995). After the breeding 

season, birds have very low to non-detectable T levels, gonads regress, VCRs decrease in 

size, and singing decreases or stops (Smith, 1996; Brenowitz, Baptista, Lent, and 

Wingfield, 1996; Gulledge and Deviche, 1997). The seasonal pattern of changes in VCR 

volumes can be simulated in captive birds by exposure to long photoperiod or



administration of T (Nottebohm, 1981; Brenowitz, Nalls, Wingfield, and Kroodsma, 

1991; Smith, Brenowitz, Wingfield, and Baptista, 1995), The effects o f T may be 

mediated by androgen receptors located in the VCRs (HVc, the robust nucleus of the 

archistriatum (RA), and the magnocellular nucleus of the anterior neostriatum (MAN); 

Smith, Brenowitz, andPrins, 1996; Bottjer, Meismer, and Arnold, 1984; Arnold, 1980). 

Although Area X does not have androgen receptors, it receives projections from HVc, 

and the effects of T on Area X may be mediated by these projections (Arnold, 1980;

Gahr, 1990).

The VCRs o f several species contain opioid peptide-like immunoreactivity 

(Ryan, Arnold, and Elde, 1981; Ball, Faris, Hartman, and Wingfield, 1988; Ball, 

Richardson, and Balthazart, 1995; Bottjer and Alexander, 1995; Deviche and Gunturkun, 

1992; Carrillo and Doupe, 1995). In addition, VCRs o f Dark-eyed Juncos contain 

receptors that are specific for these peptides (Gulledge and Deviche, 1995, 1999), 

suggesting that opioid peptides bind to these receptors within the VCRs. The functions of 

opioid peptides and receptors in the song system are, however, unknown.

In other vertebrates, including non-oscine birds, opioid peptides and their 

receptors regulate many types o f behavior, including sexual behavior and vocalizations. 

For example, administration o f opioid agonists disrupts male sexual behavior in rats 

(Matuszewich, Ormsby, Moses, and Lorrain, 1995; Bitran and Hall, 1987; McIntosh, 

Vallano, and Barfield, 1980), while opioid antagonists facilitate it (Myers and Baum, 

1979; McIntosh et a l ,  1980). In socially isolated chicks, opioid peptides reduce distress 

vocalizations (Panksepp, Vilberg, Bean, Coy, andKastin, 1978a), whereas opioid

43



receptor blockade with the selective opioid antagonist naloxone increases these 

vocalizations (Panksepp, Bean, Bishop, Vilberg, and Sahley, 1980; Sufka, Hughes, 

McCormick, and Borland, 1994). These results suggest a role for VCR opioid peptides in 

the control o f vocal expression. Gulledge and Deviche (1995), however, found no 

seasonal differences in 8, k ,  or ^  opioid receptor densities between breeding (singing) 

and post-breeding (non-singing) adult male juncos, suggesting that seasonal differences 

in song production and VCR volumes do not result from modifications in VCR opioid 

receptor densities. Although receptor densities do not change seasonally, there could be 

behaviorally important changes in opioid peptide synthesis and secretion, resulting in 

seasonal changes in receptor occupancy. Therefore, the first purpose of this study was to 

determine whether blockade of opioid receptors by naloxone influences song expression 

in adult male juncos.

Gonadal steroids influence VCR plasticity (Nottebohm et al., 1987; Smith et al., 

1995; Gulledge and Deviche, 1997). The mechanisms involved in this influence remain 

largely speculative, although recent work has indicated that some o f the effects o f 

testosterone on neuronal recruitment are mediated through brain-derived neurotrophic 

factor (BDNF) (Rasika, Alvarez-Buylla, and Nottebohm, 1999). These steroids influence 

the opioid system (Morrell, Schwanzel-Fukuda, Fahrbach, and Pfaff, 1984; Wardlaw, 

Thoren, and Franz, 1982; Bhanot and Wilkinson, 1983; Van Vugt, Sylvester, Aylsworth, 

and Meites, 1982), and opioids themselves exert widespread effects on cell survival and 

plasticity. Specifically, these peptides can inhibit neural cell proliferation (Zagon and 

McLaughlin, 1987; Zagon and McLaughlin, 1991) and increase neural cell survival
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(Sakaguchi, Fugimori, Satoh, Satoh, Takeuchi, and Matsumura, 1999; Meriney, Ford, 

Olivia, and Pilar, 1991). Therefore, opioids may meditate some effects of steroids on the 

VCRs, and our second purpose was to examine the effects of naloxone treatment on VCR 

volume plasticity.

Elevated T levels are required for song expression in juncos (see chapter II). 

Naloxone increases circulatory T levels in rabbits (Pedron, Gonzalez-Unzaga, and De 

Celis, 1998) and suppresses testicular growth at certain times in the Red Munia, Estrildo 

amandava (Lai and Rajeshwari Devi, 1997). Thus, any effects of naloxone administration 

on the vocal control system could be mediated by alterations of gonadal function. To test 

this hypothesis, we determined the effects of naloxone treatment on gonad weight and 

plasma T levels.

Birds exposed to short days have an inactive hypothalamalo-pituitary-gonadal 

axis (low plasma T, no singing), whereas birds exposed to long days have an active axis 

(high plasma T, singing; Nicholls et al., 1988). Therefore, we administered naloxone to 

both short day and long day birds in order to determine whether the effects, if  any, of the 

antagonist were stimulatory (i.e., stimulating song production or increasing VCR 

volumes in short day birds) or inhibitory (i.e., decreasing or eliminating song production 

or decreasing VCR volumes in long day birds). Because administration of naloxone 

causes short-term anorexia in birds (Deviche 1992; Deviche, Melmer, and Schepers,

1984; Deviche and Schepers, 1984), we measured food consumption, feeding behavior, 

and body condition. Finally, we measured several other behaviors (preening, drinking, 

and locomotion) to determine the behavioral specificity o f the effects resulting from
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opioid receptor blockade. .

MATERIALS AND METHODS 

Animal Collection and Housing

Thirty-two adult male Dark-eyed Juncos were collected from a wild population 

near Fairbanks, Alaska (65°N, 148°W), between May 1 and 15, 1997, i.e., at the 

beginning of the breeding season. At this time, males sing at high rates, plasma T levels 

are elevated, and the reproductive system is rapidly recrudescing (Deviche, Wingfield, 

and Sharp, in press). Birds were lured into mist nets by playbacks o f taped conspecific 

song. All birds were brought to the University o f Alaska Fairbanks and housed in 

individual cages, with Mazuri parrot and small bird pelleted food (PMI Nutrition Int., St. 

Louis, MO) and Avi-Con vitamin treated-water (Vet-A-Mix Inc., Shenandoah, IA) 

available ad libitum throughout the experiment. Birds were not visually or acoustically 

separated from one another and were initially exposed to short days (SD; 7L:17D; lights 

on at 0800 hrs) to slow gonadal recrudescence.

Experimental Design

On May 23 (Day 1), birds were randomly divided into two groups. Sixteen males 

remained exposed to SD, and the rest (n=16) were transferred to long days (LD; 20L:4D; 

lights on at 0800 hrs). At this time, 8 SD and 8 LD males (SD-NAL and LD-NAL 

groups) each received an i.p. Alzet minipump (model 1002; capacity 0.1 ml; Alza 

Pharmaceuticals, Palo Alto, CA) prefilled with a solution o f naloxone hydrochloride
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(129.5 mg/ml sterile saline; Endo Pharmaceuticals, New York). Given a putative release 

rate o f 0.3089 jul/hr (figure provided by Alza Pharmaceuticals), each bird (mean body 

mass: 20 g) received on average 2 mg/kg body mass/hr o f naloxone. There are no 

published avian studies using naloxone-containing Alzet minipumps. Therefore, the 

above dosage was used based on mammalian investigations in which similar or smaller 

dosages induced physiological and/or behavioral effects (Jaloweic, Panksepp, Zolovick, 

Najam, and Herman, 1981; Weisenfeld and Hallin, 1983; Rocha, Ackermann, Nassir, 

Chugani, and Engel, 1993; Alcaraz, Vargas, Fuente, and Milanes, 1993; Malin, Hemple, 

Exley, and Addington, 1986). The remaining birds (SD-CON and LD-CON) each 

received a saline-filled pump. Pumps were administered under complete anesthesia 

induced by an intramuscular injection o f a xylazine/ketamine solution (0.032 mg 

xylazine and 1.6 mg ketamine per 0.2 ml sterile saline; ketamine from Phoenix 

Pharmaceutical Inc., St. Joseph, MO, and xylazine from Loyd Laboratories, Shenandoah, 

IA). On June 4 (Day 13) all pumps were removed and replaced with identically prepared 

pumps. Pumps were opened and inspected when removed to verify naloxone release. 

Birds were killed by perfusion on June 16 (Day 25). All methods were approved by the 

Animal Care and Use Committee o f the University o f Alaska Fairbanks and met the 

standards o f the National Institutes o f Health Guide for the Care and Use o f Laboratory 

Animals.

Blood Collection and Testosterone Assay

All birds were bled from an alar vein on May 22, June 3, and June 15 (Days 0, 12,

47



and 24). After centrifugation, the plasma was drawn off and stored at -20° C until assay. 

Plasma samples (25jal) were assayed for total testosterone (T) by radioimmunoassay 

using a commercial kit (Diagnostic Products Corporation, Los Angeles, CA). This assay 

has been used previously for measuring T in juncos (see Gulledge and Deviche, 1998, for 

further details) and is both sensitive (lower detection limit: 10 pg/assay tube) and 

specific (cross-reactivity: 3.3% with dihydrotestosterone, 0.02% with estradiol). All 

samples were assayed in duplicate in a single series. The intraassay coefficient of 

variation was 4.6%.

Morphology

We measured the body mass, cloacal protuberance (CP) width, and furcular fat 

score of each bird on days 12 and 24. Body mass was measured to the nearest 0.1 g. CP 

width (an index o f gonadal development: Schwabl and Famer, 1989; Deviche, 1992) was 

measured to the nearest 0.1 mm. Furcular fat scores vary between 0 (empty furcular 

space) and 5 (furcular space filled with fat) and correlate with total body fat (Rogers, 

1991; Silverin, Viebke, and Westin, 1989).

24-hour food consumption

We determined the 24-hour food intake o f  each bird to the nearest 0.1 gram at 

two times during the experiment: 8 to 10 and 16 to 18 days after implantation. Food 

intake was defined as the mean difference between the weight o f food in feed dishes at 

the beginning and end of a 24-hour period over three consecutive days.
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Behavior

Each bird was videotaped for one hour while in its home cage on two different 

days between June 10 and 13, for a total of two hours of observation for each bird. 

Videotaping was done in a random order and between 0900 hours and 1330 hours to 

minimize the influence o f daily fluctuations in behavior frequencies. Each tape was 

subsequently watched by two independent observers who were unaware of the 

experimental treatment received by each bird. The number o f songs produced by each 

bird was counted, and the occurrence (presence/absence during each minute of 

observation) o f specific behaviors (singing, preening, feeding, locomotion, drinking) was 

determined.

Tissue processing and VCR volume m easurem ent

All birds were killed by in vivo perfusion. For this, they were first anesthetized by 

a xylazine/ketamine pectoral injection, followed by methoxyflurane inhalation 

(Metofane: Pitman-Moore Inc., Mundelerin, IL). Birds then received 0.3 ml o f a heparin 

solution (1000IU per 0.1 M phosphate buffer; Sigma Chemical Co., St. Louis, MO) 

intracardiacally, followed by transcardial injection of 0.1 M phosphate buffer and 4% 

buffered paraformaldehyde. Testes were removed and weighed at the time o f perfusion. 

Brains were stored in situ in 4% paraformaldehyde at 4°C for 24 hours, then were 

dissected out, weighed, and stored in sodium azide-containing buffer at 4 °C for 4 days, 

followed by 30% sucrose-containing buffer at 4°C for 4 days. They were then frozen on



powdered dry ice and stored at -70 °C until processed. Brains were coronally sectioned 

(section thickness = 35 /urn) on a cryostat. Alternate sections were collected on gelatin- 

coated slides and stained for Nissl substance using thionin.

We used the MCID image analysis system (Imaging Research, St. Catherine, 

Canada) as described in Gulledge and Deviche (1998) to measure the volumes of four 

VCRs: HVc, RA, MAN, and Area X. We also measured the volume of a control region, 

nucleus rotundus (Rt), which is not involved in vocal behavior. Regions were identified 

using the canary stereotaxic atlas (Stokes, Leonard, and Nottebohm, 1974; Nottebohm et 

al., 1976). Lateral and medial MAN were measured together due to the difficulty of 

distinguishing the boundary between them. Volumes o f HVc were measured using the 

inclusive boundaries o f the nucleus as described in Kim, Clower, Kroodsma, and 

DeVoogd (1989). Telencephalon width was measured as an index o f overall brain size.

To do this, three sections with the anterior commissure present were chosen from each 

brain. The width o f the telencephalon at the widest point on each section was then 

measured and averaged over the three sections.

Statistical Analyses

All brain and behavior data, as well as gonad weights, were analyzed using two 

way analyses o f variance (ANOVAs), with naloxone treatment and photoperiod as the 

independent variables. Data sets for singing and gonad weight did not meet assumptions 

o f homoscedasticity and/or normality and were, therefore, ranked prior to analysis. 

Morphological data (CP width, body mass, and fat scores), 24-hour food consumption,
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and plasma T levels were analyzed using two way repeated measures ANOVAs. When 

appropriate, multiple pair-wise comparisons were performed using Student Newman 

Keuls (SNK) tests. Data are expressed as means ± standard deviations or, when 

transformed to ranks before analysis, as medians ± 0.5 interquartile intervals (Nicholson, 

Bowyer, and Kie, 1997). -

RESULTS

Plasma T levels and reproductive morphology

Exposure to LD stimulated T secretion and reproductive system development. 

Birds exposed to LD had significantly higher plasma T levels than birds exposed to SD 

(Figure 1). Photoperiod and time interacted to affect plasma T levels (F 2 26 = 9.01, p = 

0.0033). These levels did not differ between any o f the groups on Day 0. On Days 12 and 

24, birds exposed to LD had higher T levels than birds exposed to SD. When sacrificed, 

LD-exposed birds had developed gonads (LD-CON: 350 ± 59 mg; LD-NAL: 280 ± 100 

mg), whereas SD birds had completely regressed gonads (SD-CON: 4.9 ±1.3 mg; SD- 

NAL: 4.5 ±1.5 mg; F 328= 89.18, p = 0.0001). LD-exposed juncos also had larger CP 

widths than SD-exposed juncos CF2 2g= 112.10, p = 0.0001; Table 1). CP widths did not 

differ between Days 12 and 24. There was no effect o f naloxone treatment on plasma T 

levels, paired testis weights, or CP widths.

Food consumption, feeding frequency, and body condition

Average 24-hour food consumption was higher (Table 2), whereas the number of
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visits to the feeder was lower (Table 3), in birds exposed to LD than to SD. Naloxone 

administration did not affect either 24-hour food consumption or feeding frequency. 

Photoperiod had no effect on fat reserves, but naloxone and time interacted to affect these 

reserves (Table 1). The fat scores o f naloxone-treated birds increased over time, but a 

multiple comparisons test revealed no significant differences among groups. There was a 

significant time x photoperiod interaction effect on body mass. SD birds had greater body 

mass than LD birds on Day 24 (Table 1). There was no effect of naloxone on body mass.

Song and other behaviors

LD-exposure induced singing (Table 3). No SD-exposed males ever sang, and 

song rates did not differ between naloxone-treated and control birds on LD. Neither 

naloxone treatment nor photoperiod affected preening, drinking, or locomotion (Table 3).

Vocal control region volumes

Volumes of HVc and Area X were significantly larger in LD- than SD-exposed 

males (Figure 2), but were not affected by naloxone treatment. The volumes o f RA, 

MAN, and Rt, as well as brain weight and telencephalon width, did not differ between 

groups (Figures 2 and 3).

DISCUSSION

Previous studies demonstrated the presence o f opioid peptides and receptors in 

the oscine vocal control system, but the functions of these peptides and receptors in this
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system are unknown. In mammals as well as non-oscine birds, vocal behavior is affected 

by manipulations o f the opioid system (dogs: Panksepp, Herman, Conner, Bishop, and 

Scott, 1978b; Rhesus monkeys: Kalin and Shelton, 1989; rats: Borszcz, Johnson, and 

Thorp, 1996; chicks: Panksepp et al,, 1978a, 1980; Sufka et al., 1994). Other studies 

have shown that the central opioid system controls aspects o f reproductive behavior in 

mammals (Fabbri, Jannini, Gnessi, Ulisse, Moretti, and Isadori, 1989; Sirinathsinghji, 

1986; Weisner and Moss, 1986) as well as oscines (Maney and Wingfield, 1998). 

Specifically, the latter authors reported that endogenous opioids increase corticotrophin- 

releasing factor-induced suppression of courtship behavior in female White-crowned 

Sparrows (Zonotrichia leucophrys).

In a previous study, breeding (singing) and post-breeding (non-singing) adult 

male Dark-eyed Juncos had similar opioid receptor densities in their VCRs (Gulledge and 

Deviche, 1995). Although opioid receptor densities did not differ between singing and 

non-singing males, seasonal changes in peptide production or release may modulate 

singing behavior. One goal o f the present investigation was to investigate this hypothesis 

by blocking access of endogenous peptides to their receptors. By administering an opioid 

antagonist to LD- and SD-exposed adult male juncos, we could determine whether 

chronic opioid receptor blockade inhibits or stimulates singing and/or influences VCR 

plasticity. Birds exposed to LD had higher plasma T levels and larger CPs than SD- 

exposed males. LD males also had larger HVc and Area X than SD birds. MAN and RA 

volumes showed the same trend, but did not differ significantly across groups. Volume 

differences in HVc and Area X were specific to the song system, as neither telencephalon



width nor Rt volume differed across groups. Birds exposed to LD also sang, whereas 

birds exposed to SD never sang during the course o f the experiment. These data are 

consistent with those reported in other passerine species (Nottebohm, 1981; Smith, 

Brenowitz, Beecher, and Wingfield, 1997; Brenowitz et al., 1991) and probably resulted 

from differences in plasma T levels (Gulledge and Deviche, 1997), although we cannot 

exclude a T-independent effect o f photoperiod (Dloniak and Deviche, in preparation). 

Within the two photoperiods, however, naloxone and control groups did not differ with 

respect to VCR volumes or song production. There was also no effect o f naloxone 

administration on any other parameters measured. Previous studies found that acute, as 

well as chronic, naloxone administration exerts an anorexic effect (rats: Jaloweic et al., 

1981; Brands, Thornhill, Hirst, and Gowdy, 1979; juncos: Deviche, 1992; pigeons: 

Deviche et al., 1984; Deviche and Schepers, 1984). In pigeons, intracranial injection of 

P-endorphin dose-relatedly increases food consumption (Deviche and Shepers, 1983). In 

the present study, however, we observed no significant effect o f chronic naloxone 

treatment on feeding frequency, food intake, body mass, or fat reserves. Three mutually 

non-exclusive hypotheses may explain the absence of effects of naloxone treatment in 

this study.

First, VCR opioid receptors may not influence song production or adult VCR 

plasticity in oscines. This hypothesis is consistent with the results o f Gulledge and 

Deviche (1995), which indicated that opioid receptor densities in the VCRs do not differ 

between breeding and post-breeding adult male juncos.

Second, opioids may be involved in aspects of song behavior other than



expression, such as learning or auditory processing. Gulledge and Deviche (1999) found 

that, in juncos, VCR opioid receptor densities differ as a function of age and sex. 

Specifically, adolescent males and females had higher 6 and/or ji opioid receptor 

densities than adults in Area X, RA, and nucleus intercollicularis. This suggests that the 

opioid system is involved in aspects of vocal control that change with age, such as song 

learning and VCR development. Opioids have previously been implicated in vocal 

control system development (Carillo and Doupe, 1995). These authors found that opioid

like immunoreactivity in Area X and RA, but not HVc or MAN, decreased between day 

35 and adulthood in male Zebra Finches (Taeniopygia guttata), suggesting a role for 

opioids in the development of these regions. Opioids also facilitate learning in chicks 

(Schulteis, Janak, Derrick, and Martinez, 1990; Csillag, Stewart, Szekely, Magloczky, 

Bourne, and Steele, 1993; Columbo, Rivera Martinez, Bennett, and Rosenweig, 1997) 

and rodents (Rigter, Jansen, Martinez, Messing, Vasquez, Liang, and McGaugh, 1980; 

Castellano and Pavone, 1985).

Opioids may modulate the filtering o f auditory information as it is processed in 

the VCRs. Opioid receptors are present throughout Area X, HVc, n. intercollicularis, and 

the songbird auditory cortex analogue (Gulledge and Deviche, 1999), which are all 

involved in receiving and responding to auditory stimuli. Neurons in HVc, Area X, RA, 

and MAN of adult males are more responsive to the bird’s own song than to other sounds, 

including conspecific and heterospecific song (Doupe, 1997). A common effect of 

opioids is an inhibition of neuronal activity (reviewed in Same et al., 1996; Furukawa, 

Kotegawa, and Tsutsui, 1995). In humans, naloxone treatment increased
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electrophysiological measures o f selective auditory information processing (Amsten, 

Neville, Hillyard, Janowsky, and Segall, 1984). Opioids may, therefore, inhibit non- 

selective neuronal responses to auditory stimuli in the VCRs, facilitating the 

discrimination o f relevant acoustic information.

Finally, we cannot exclude the possibility that the amount o f naloxone released by 

the minipumps was insufficient to induce behavioral and physiological effects. As was 

previously stated, no published study has documented effects resulting from the 

administration o f naloxone via Alzet minipumps to a passerine bird. However, similar or 

smaller dosages in rats (0.95 mg/kg/hr: Jaloweic et al., 1981) and mice (0.2 mg/kg/hr: 

Yobum, Billings, and Duttaroy, 1993) decreased food intake and up-regulated opioid 

receptor densities, respectively. It is possible that dosages higher than those used in the 

present study are required to tonically antagonize opioid receptors in passerines. It is also 

conceivable that naloxone is metabolized and removed from the passerine circulatory 

system faster than in mammals, leading to decreased effectiveness. Naloxone binds with 

high affinity to both 8 and \i receptor subtypes of the junco brain (Deviche, 1997), but we 

do not know what percentages o f these receptors were occupied by the antagonist as a 

result o f the experimental treatment.

Based on the information available to date, we conclude that the opioid system 

does not regulate song expression or VCR volume plasticity in adult songbirds. Further 

investigations are, however, necessary to elucidate the roles o f this system in auditory 

processing, song learning, and neuroanatomical aspects o f vocal control system 

development.
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Legend to Figures

Figure 1. Plasma Testosterone levels (means ± standard deviations) in adult male Dark
eyed Juncos exposed to either short days (SD) or long days (LD) and receiving 
naloxone-filled (NAL) or control (CON) mini pumps. Treatments were 
administered on Day 1. Stars indicate significant differences between 
photoperiods on a given day (Student Newman-Keuls, p < 0.05).

Figure 2. Volumes of HVc, Area X, RA, and MAN (means ± standard deviations) of 
naloxone-treated (NAL) or control (CON) male juncos exposed to either short 
(SD) or long days (LD). Differing letters indicate significant differences across 
groups (Student Newman-Keuls, p < 0.05).

Figure 3. Rt volume, telencephalon width, and brain weight (means ± standard
deviations) of naloxone-treated (NAL) or control (CON) male juncos exposed to 
either short (SD) or long days (LD).
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Table 1. Body .measurements over time for LD and SD birds receiving either naloxone or a control 
treatment for 25 days.

Photoperiod Treatment Day 12 Dav24 ANOVA1

Fat Score LD C 1 ±0.5 1 ±0.5 n x t:
NAL 1 ± 1 1.5 ± 1.5 p = 0.0441

SD C 2 ± 2 2 ±  1.5
NAL 1 ± 1 2.5 ± 1.5

Body Mass (g) LD C 19.2 ±0.7 19.2 ± 0.6a p x t:
NAL 18.6 ±0.6 18.8 ± 0.4a p = 0.0227

SD C 19.9 ± 1.7 20.7 ± 2.6b
NAL 20.1 ±2.1 21.1 ± 3 .2b

CP Width (mm) LD C 5.87 ± 0.7a 6.63 ± 0.7a photo:
NAL 5.01 ± 1.0a 6.05 ± 1.3a p = 0.0001

SD C 3.73 ± 0.4b 3.61 ± 0 .4 b
NAL 3.59 ± 0.3b 3.46 ± 0.4b

Note: Fat score data expressed as medians ± 0.5 interquartile intervals.
Body mass and CP width expressed as means ± standard deviations.
a,bDifferent letters indicate significant differences on the specified date (SNK, p < 0.05).
'ANOVA p values: n x t indicates naloxone x time interaction, p x t indicates photoperiod x 
time interaction, and photo indicates photoperiod.



Table 2. Mean 24-Hour Food Consumption in grams
71

Group Days 8-10 Days 16-18 ANOVA

SD-Control 4.2 ± 0.8 a 3.7 ± 0 .4  a p = 0.0044
SD-Naloxone 4.3 ±0 .5  a 4.0 ± 0.3 a
LD-Control 5.1 ± 0.7 b 5.8 ± 0.6 b
LD-Naloxone 5.1 ± 0.5 b 4.7 ± 0.6 b

Note: Data are expressed as means ± standard deviations.
Different letters indicate significant differences within a 
column (SNK, p < 0.05). ANOVA p value refers to the 
effect o f photoperiod.

Table 3. Frequencies o f behaviors in long and short day-exposed juncos 
receiving either naloxone or control treatment.

Short days Long days
Behavior Control Naloxone Control Naloxone ANOVA

Singing 0a 0a 15 ± 22b 36 ± 38b p = 0.0031
Feeding 20 ± 10a 18 ± 7a 15 ± 5b 11 ± 2 .5 b p = 0.0280
Drinking . 7 ± 2 6 ±  1.5 8 ± 3 6 ± 2 p = 0.1127
Preening 10 ± 6 5 ± 3 5 ± 3 7 ± 5 p = 0.1850
Locomotion 37 ± 14 40 ± 10 45 ± 10 38 ± 9 p = 0.4720

Note: All data are expressed as medians ± 0.5 interquartile intervals. Different 
letters indicate significant differences for a given parameter (SNK, p < 0.05). 
ANOVA p values refer to the effect of photoperiod.



Table 4. VCR Volumes and Total Brain Size o f LD- and SD-exposed juncos after 25 days of 
naloxone or saline (control) treatment.

Short days Long days ANOVA
Control Naloxone Control Naloxone

HVc volume (mm3) 0.30 ± 0.07a 0.30 ± 0.04a 0.46 ± 0.10b 0.48 ± 0.07b p = 0.0001
Area X volume (mm3) 0.50 ± 0.10a 0.44 ± 0.10a 0.76 ± 0.23b 0.72 ± 0.20b p = 0.0001
MAN volume (mm3) 0.05 ±0.01 0.05 ±0.01 0.07 ± 0.02 0.07 ± 0.03 p = 0.0966
RA volume (mm3) 0.09 ± 0.03 0.09 ±0.02 0.13 ±0.05 0.14 ±0.04 p = 0.1133
Rt volume (mm3) 1.16 ±0.27 1.13 ±0.07 1.12 ± 0.13 1.06 ±0.13 p = 0.4982
Brain weight (mg) 817 ± 37 826 ± 47 823 ± 29 845 ± 25 p = 0.4633
Telencephalon width (mm) 12.6 ±0.26 12.8 ± 0.40 12.6 ±0.26 12.6 ±0.30 p = 0.5920

Note: All data are expressed as means ± standard deviations. Different letters indicate significant 
differences within a given row (SNK, p < 0.05). ANOVA p values are for the effect of photoperiod.
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IV. VOCAL CONTROL REGION VOLUMES, SONG PRODUCTION, AND 
PLASMA TESTOSTERONE DO NOT DIFFER WITH YEAR-CLASS IN 

CAPTIVE PHOTOSTIMULATED ADULT MALE DARK-EYED JUNCOS
(<Junco hyemalis)

ABSTRACT

Year-class comparisons in reproductive morphology, plasma testosterone (T), 

song production, and vocal control region (VCR) volumes were made in captive 

photostimulated adult male Dark-eyed Juncos (.Junco hyemalis). We measured paired 

testis mass and cloacal protuberance (CP) width as indicators of reproductive condition, 

circulating plasma T, song rates, and the volumes of Area X, HVc, MAN, and RA in two 

year classes: SY (Second Year = males entering their first breeding season) and ASY 

(After Second Year = males entering at least their second breeding season). There were 

no differences in SY and ASY paired testes masses or plasma T levels, but SY males had 

smaller CP widths than ASY males as time after initial photostimulation increased. 

Although we found no difference in median song rates, we found our data to be 

inconclusive due to the fact that only 50% of the birds ever sang, and song rates among 

singers were highly variable. VCR volumes were similar in SY and ASY males, 

although SY males had heavier brains and greater telencephalon widths than ASY birds. 

Previous studies have shown year-class differences in plasma T, CP widths, and testis 

mass in free-living juncos. Our results indicate that VCR volumes and song production 

are independent of year-class, and they support the hypothesis that year-class differences 

in reproductive condition between SY and ASY juncos may be mediated by interactions 

with conspecific birds.
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INTRODUCTION

In oscines, song learning and production are controlled by an interconnected set 

of brain nuclei (vocal control regions; VCRs) collectively called the song system, which 

exhibits neuronal plasticity throughout adulthood in all species studied to date 

(Nottebohm et a l , 1976, 1986; reviewed by Konishi, 1994; Smith, 1996; Brenowitz et 

a l,  1996; Gulledge and Deviche, 1997). Well-studied VCRs include the higher vocal 

center (HVc), Area X of the parolfactory lobe, the magnocellular nucleus of the anterior 

neostriatum (MAN), and the robust nucleus of the archistriatum (RA). HVc and RA are 

necessary for song expression (Nottebohm et al., 1976), and Area X and MAN have been 

shown to be essential for song development (Nottebohm et al., 1976; Bottjer et a l ,  1984; 

Sohrabji et a l ,  1990; Scharff and Nottebohm, 1991).

In bird species breeding at high latitudes, such as Dark-eyed Juncos (Junco 

hyemalis), song production (as well as other reproductive activities) exhibits dramatic 

seasonal changes which coincide with seasonal changes in photoperiodic condition. 

Juncos sing during the breeding season, when they are photostimulated and plasma T 

levels are high. Singing stops when plasma T levels drop after the breeding season and 

the birds become photorefractory. In several species, singing is diminished or eliminated 

by castration, and subsequent T treatment reinstates the behavior (Arnold, 1975; Harding 

et al., 1988). VCR volumes are also larger during than after the breeding season. 

Therefore, VCR volumes are large when birds are singing, plasma T is high, and the days 

are long. VCR volumes decrease when day length and plasma T decrease and birds stop 

singing (Smith, 1996; Brenowitz et al., 1996, Gulledge and Deviche, 1997). This 

seasonal pattern in VCR volumes has also been simulated in captivity (Nottebohm, 1981;
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Brenowitz et a l,  1991; Smith et al., 1995) by comparing adult male birds exposed to 

either SD or LD or given exogenous T treatment. The effects o f T on VCR volumes are 

presumably mediated by the androgen receptors located in HVc, RA, and MAN (Arnold 

et al., 1976; Smith et al., 1996).

Previous studies have shown year-class differences in reproductive morphology 

and circulating levels o f T in free living Dark-eyed Juncos (Deviche et al., in press), as 

well as year-class differences in CP width, plasma T, and testes weight in free living 

Mountain White-crowned Sparrows {Zonotrichia leucophrys oriantha) (Morton et al., 

1990). In both cases, older adult birds had higher levels of plasma T, larger CP widths, 

and heavier testes than their younger counterparts. As o f yet, no study has investigated 

whether these differences also occur in song production or VCR volumes. Because song 

production and VCR volumes are influenced by T, it is possible that year-class 

differences in plasma T levels will translate to differences in song production and VCR 

volumes as well.

The present investigation compares aspects o f reproductive morphology and 

circulating plasma testosterone levels, as well as song production and VCR volumes in 

captive second-year (SY; birds hatched the previous year and entering their first breeding 

season) and older (After-second-year: ASY; birds having undergone at least one 

photoinduced gonadal cycle) photostimulated male Dark-eyed Juncos {Junco hyemalis).

If  VCR volumes and song production follow the pattern shown for reproductive 

morphology and plasma T in previous studies, we predict that SY birds will have smaller 

VCRs and sing less than ASY photostimulated males.
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M ATERIALS AND M ETHODS 

Experimental design We collected 10 adolescent and 10 adult male Dark-eyed Juncos 

from a wild population near Fairbanks, Alaska (65° N, 148° W) in September, 1997.

Birds were captured using seed-baited Potter traps. Birds were then housed in indoor 

group flight cages, given food and water ad libitum, and housed on a short day 

photoperiod (SD; 8L:16D) until March 11, 1998. At this time, birds were moved to 

individual cages which were visually, but not acoustically, isolated from one another. All 

birds were then gradually exposed to increasingly longer days, by adding one hour of 

light per day until 20 hours of light was reached (LD; 20L:4D). Birds remained on LD 

until they were killed on May 6.

Blood Samples and Testosterone Assay  Blood samples were collected from the left alar 

wing vein 12 and 32 days after birds were transferred to LD. Samples were immediately 

centrifuged and plasma was drawn off and stored at -20° C until assay. Aliquots of 

plasma from each male at each sample time were assayed for total testosterone (T) using

I I ^ C    ^

a coated tube I kit obtained from Diagnostic Products Corp. (Los Angeles, CA). This 

assay has been used previously for measuring T in Dark-eyed Juncos (Gulledge and 

Deviche, 1998) and is both sensitive (lower detection limit: 10 pg/tube) and specific 

(cross-reactivity: 3% with dihydrotestosterone, 0.02% with estradiol). The intra- and 

inter-assay coefficients o f variation for this assay are roughly 6% and 12%, respectively. 

All samples were assayed in duplicate in a single series and the averages were used for 

statistical analysis.
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Morphological Measures In order to assess the reproductive condition of each bird 

throughout the experiments, we measured cloacal protuberance width (CP: a reliable 

indicator o f reproductive system development (Schwabl and Famer, 1989; Deviche, 

1992)) to the nearest 0.01 mm 12 and 32 days after initial exposure to LD. Also, at the 

time o f sacrifice, testes were collected and weighed to the nearest mg.

Song Behavior The average song rate of each bird was quantified twice; between 7 and 

10 and between 28 and 31 days after the onset o f LD exposure. At both times, the same 

observer recorded the number of times each bird sang during two 30 minute periods.

Time periods were randomly assigned to each bird, and all were between the hours of 6 

and 11:30am (2 to 7 hours after lights on). The two counts o f number of songs produced 

were then averaged at each time.

Brain processing and VCR volume measurement 40 days after exposure to LD began, 

all birds were killed by in vivo perfusion under complete anesthesia (methoxyflurane 

inhalation followed by transcardial injection o f 0.2 M phosphate buffer and 4% buffered 

formalin). After perfusion, brains were collected, weighed to the nearest mg, and stored 

in a 30% sucrose solution for 4 days. Brains were then cryoprotected, frozen on 

powdered dry ice, and stored at -70° C. Brains were coronally sectioned (section 

thickness = 35//m) on a cryostat, and alternate sections were collected on gelatin-coated 

slides and stained for nissl substance using thionin. We used the MCID image analysis 

system (Imaging Research, St. Catherine, Canada) as previously described in Gulledge 

and Deviche (1998) to measure the volumes o f four VCRs: HVc, RA, MAN, and Area X.
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We also measured the volume of n. rotundus (Rt), a region not associated with the control 

o f song, as a control nucleus. Regions were identified using the canary stereotaxic atlas 

(Stokes et al., 1974; Nottebohm et al., 1976). Lateral and medial MAN were measured 

together due to the difficulty distinguishing the boundary between them. Volumes of 

HVc were measured using the inclusive boundaries for the nucleus as described in Kim et 

al. (1989). Telencephalon width was also measured to determine if  overall brain sizes 

were different between groups. To do this, three sections with the anterior commissure 

present were chosen from each brain. The width o f the telencephalon at the widest point 

on each section was then measured and averaged over the three sections.

All methods described were first approved by the Institutional Animal Care and

*
Use Committee o f the University of Alaska Fairbanks and also met the standards o f the 

National Institutes o f Health Guide for the Care and Use of Laboratory Animals.

Statistical Analyses All data sets except song rates were normally distributed and 

homoscedastic. Song rates were therefore ranked prior to analysis. We compared testes 

weight and all brain measures between SY and ASY males using student’s t-tests. CP 

widths, plasma T, and song rates were analyzed using one-way repeated measures 

ANOVA, followed by Student Newman Keuls multiple comparisons test if  a significant 

time x age interaction was present.

RESULTS

Plasma T levels were not different between groups at either time, although the 

time x age interaction effect barely missed significance (F ij4 = 3.8907, p = 0.0686;



Figure 1.) It appears that, in captivity, SY birds have lower plasma T levels than ASY 

birds as the time since initial exposure to LD increases. CP width follows this same 

pattern, and the time x age interaction effect on CP width was significant (F ij4  = 5.6859, 

p = 0.0318; Figure 1.) CP width increased in both SY and ASY birds, but increased to a 

higher degree in ASY males. Mean CP width was significantly greater in ASY birds than 

SY birds on Day 33 (SNK, p < 0.05). Mean paired testes mass did not differ between 

groups (SY: 264 ± 106 mg; ASY: 261 + 66 mg).

We found no effect of age or time on song rate. However, our results are not 

conclusive due to the fact that, during the course o f the experiment, only 3 ASY and 5 SY 

birds ever sang, and these birds did not sing during every observation. During the first 

sampling period (Days 7 - 10), the median (± 0.05 interquartile interval) song rates for 

SY and ASY males were 5 ± 6 and 0 ± 0 songs / 30 min., respectively. During the 

second sampling period (Days 28 - 31), SY birds sang 6 ± 6 times in 30 min., and ASY 

birds sang 0 ± 5 times in 30 min.

All VCR volumes were similar in SY and ASY photostimulated male juncos 

(Table 1.). Volumes o f Rt, a control nucleus, were also similar. SY males had heavier 

brains (ti(H = 16.54, p = 0.0012), as well as greater telencephalon widths ( t i j 4  = 13.51, p 

= 0.0025) than ASY males (Table 1.). Due to this difference in brain size, we also 

analyzed VCR volumes that were adjusted for telencephalon width. These results were 

almost identical to those o f the original data, therefore we only present the latter here.
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DISCUSSION

The present investigation describes plasma T concentrations, reproductive 

morphology, song production, and VCR volumes in captive photostimulated adult male 

Dark-eyed Juncos of two year-classes: SY males experiencing their first cycle of gonadal 

development and regression and ASY males that have already undergone at least one 

such cycle. We found that CP widths were larger in ASY than SY males after 33 days of 

photostimulation. Plasma T levels, testes weights, and VCR volumes were similar in SY 

and ASY birds. We also found no difference in song rates, however, we do not feel that 

our data are conclusive. SY birds had heavier brains with greater telencephalon widths 

than ASY birds.

Previous studies have shown age differences in gonadal weights and plasma T 

concentrations in free-living Dark-eyed Juncos (Deviche et al., in press; Ketterson and 

Nolan, 1992) and Mountain White-crowned Sparrows (Morton et al., 1990). In all cases, 

older birds had higher plasma T levels and heavier gonads. Although not significant, our 

results indicate the same trend in plasma T levels in captive birds. We did see a 

difference in CP widths consistent with the results of Deviche et al. (in press). These 

minor discrepancies may be explained by the removal of social stimuli in our captive 

birds. Many other studies have shown effects of social interactions with conspecific 

young and other adults on reproductive physiology (Schwab and Lott, 1969; Dufty and 

Wingfield, 1986; Wingfield and Wada, 1989; Ketterson et al., 1990; Wingfield et al., 

1994). Perhaps different year-classes are affected differently by social stimuli, hence 

removal o f all social stimuli may affect them differently as well. These results do
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indicate that careful consideration o f data collected from captive versus free-living birds 

is necessary.

Due to the fact that SY and ASY birds in this study had statistically similar 

plasma T levels, we could not test the hypothesis that VCR volumes and song production 

varied with differences in plasma T. Plasma T levels of intact, captive, breeding male 

juncos never come close to reaching the levels of T measured in the blood of free-living 

breeding males (Deviche, unpublished observation). Also, as was previously stated, we 

do not feel that our song rate data are conclusive, and we will not discuss those results 

further. Therefore, we can not comment further on possible year-class differences in 

VCR volumes or song production. Due to the high variability in song rates and relatively 

low plasma T levels in captive birds, future studies of this kind should be conducted on 

free-living birds. By measuring song rates and plasma T levels of free-living birds, and 

then collecting them and measuring their VCR volumes, year-class questions could be 

better addressed, as well as kept in their correct environmental context.
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Legend to Figure

Figure 1. Plasma testosterone levels and cloacal protuberance (CP) widths in Second-
Year (SY) and After-Second-Year (ASY) photostimulated male juncos. Data are 
expressed as means ± standard deviations.
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Table 1. A comparison of VCR volumes and brain morphology in Second-Year (SY) 
and After-Second Year (ASY) photostimulated male Dark-eyed Juncos. *

SY ASY p value

VCR volumes (mm3) 
Area X 0.73 ± 0.20 0.69 ±0.17 0.6391

MAN 0.07 ± 0.02 0.05 ± 0.02 0.1050

HVc 0.45 ± 0.08 0.49 ±0.12 0.4830

RA 0.16 ±0.03 0.16 ±0.03 0.7740

Rt volume (mm3) 1.04 ±0.14 1.04 ±0.08 0.9535

Telencephalon width (mm) 12.67 ±0.37 12.00 ±0.37 0.0025

Brain weight (mg) 872 ± 39 795 ± 37 0.0012

* All data are presented as means ± standard deviations.
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V. CONCLUSIONS

The major goals of this thesis were outlined in the introductory chapter. The 

following three chapters described experiments designed to meet these goals and the 

results provide new information on avian vocal control system function. Below I discuss 

what I believe to be the most important conclusions from my thesis work, as well as 

future directions to take within each of the areas studied.

Testosterone and Photoperiodic Condition

Chapter 1 dealt with the independent effects o f testosterone (T) and photoperiodic 

condition, as well as effects of T which are modulated by photoperiodic condition, on 

song production and vocal control region (VCR) volumes. Previously, Nowicki and Ball 

(1989) showed that T-induced song production in Tree Sparrows {Spizella arborea) was 

modified by photoperiodic condition. This is not the case in Dark-eyed Juncos, because 

administration o f T induces singing at similar rates regardless of photoperiodic condition. 

This could be due to a species difference or the different experimental designs of the two 

studies. We also found an independent effect o f photoperiodic condition on the volume 

of HVc: photostimulation alone increased HVc volume and concurrent T administration 

did not increase it further. Previous studies by Smith et al. (1997) and Bernard et al. 

(1997) also indicated that exposure to LD increases HVc volume independent of T, but 

Smith et al. (1997) also showed an additional increase with T administration. Again, a 

different species (Gambel’s White-crowned Sparrows, Zonotrichia leucophrys gambelii)



was used by Smith et al. (1997). Another major finding of chapter 1 is the fact that T is 

required for song production. Although our castrated, photostimulated male juncos had 

large VCR volumes, they never sang. Finally, chapter 1 shows for the first time that HVc 

still shows seasonal plasticity in castrated males.

Chapter 1 represents the first comprehensive study to date that simultaneously 

investigates song rates and VCR volumes in a wild passerine species across all 

photoperiodic conditions. The results are slightly different from previous studies on 

other species, indicating that species and experimental design differences should be taken 

into account before generalizing the results of a single experiment to all oscines. More 

comparative studies, as well as studies which investigate the mechanisms by which 

photoperiod itself affects VCR volumes, are needed.

Roles for Opioids

Opioid peptides (Ryan et al., 1981; Ball et al., 1988; Bottjer and Alexander, 1995; 

Deviche and Gunturkun, 1992; Carrillo and Doupe, 1995) and receptors (Gulledge and 

Deviche, 1995) are present within the VCRs. However, the function o f the opioid system 

in the VCRs is unknown. Opioids do play a role in neuronal plasticity during 

development in birds (Meriney et al., 1991), and opioid peptides reduce distress 

vocalizations in chicks (Panksepp et ah, 1987). In chapter 2, we investigated whether 

chronic opioid receptor blockade affected VCR plasticity or song production in adult 

male juncos. The results presented in chapter 2, together with the work of Gulledge and 

Deviche (1998), allow us to conclude that opioids are not involved in song production or
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VCR volume plasticity. Additional studies are needed to determine the roles the opioid 

system has in avian vocal control. Specifically, future research on VCR opioids should 

focus on the effects o f opioid receptor blockade on song learning and auditory 

processing.

Year-classes are Not Different

Finally, in chapter 3, we investigated whether there are year-class differences in 

VCR volumes or song production in captive adult male photostimulated juncos. We 

found no differences between second year and after second year males. Because we also 

did not see any differences in plasma T levels, which is the case in free-living birds, we 

suggest that any future studies on year-class differences in song or VCR volumes be done 

using free-living birds.
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