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A B STR A C T

U nder a threshold m anagem ent strategy, harvesting occurs at a constant rate but 

ceases when a population drops below a threshold. The threshold approach seeks to 

enhance long-term  yield o f a population and to maintain population renewability. 1 

evaluated threshold m anagem ent strategies fo r selected herring and pollock stocks in 

Alaska.

First, I exam ined stock-recruitment data from  19 m ajor herring stocks worldwide 

to provide the basis for evaluating threshold m anagem ent strategies. Seventy-three 

percent o f these stocks exhibited statistically  significant density-dependence. M ost 

stocks have com pensatory, dom e-shaped stock-recruitment curves.

Then. 1 sim ulated threshold m anagem ent strategies for eastern Bering Sea (EBS) 

pollock and herring and Prince W illiam Sound (PWS) herring using a single-species 

m odel. I further exam ined seven alternative threshold estim ation methods. Cohort 

analysis, catch-at-age analysis, and catch and population sam pling yielded estim ates o f 

population param eters. The objective function was a weighted function o f increased 

average yield and decreased standard deviation o f yield over a planning horizon. 

C om pared to a non-threshold approach, threshold m anagem ent strategies increase the 

long-term  average yields, stabilize population abundances, shorten rebuilding tim es, and 

increase m anagem ent flexibility.

For a m axim um  yield criterion and Ricker stock-recruitm ent m odels, optimal 

fishing m ortalities are slightly above fishing m ortalities at maximum sustained yield 

(M SY), and optim al threshold levels range from 40% to 60% o f pristine biom ass for 

EBS pollock, from 40% to 50% for EBS herring and from 30% to 60% for PWS 

herring. With fishing mortality at MSY and the criterion of equal trade-off between 

yield and its variation, optimal thresholds range from 20% to 30% of pristine biomass 

for pollock. With the status quo exploitation rate o f 20% , optimal thresholds range from
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10% to 25% o f pristine biom ass for EBS herring, and from  5% to 25%  for PWS 

herring.

O f the threshold estim ation m ethods evaluated, default percentage o f  pristine 

biom ass usually performs best. Loss o f yield due to errors in threshold estim ation is 

sm all, generally under 10%. A bout 15 to 20 years of data are required to obtain a 

reliable estim ate o f thresholds. W ith single-species dynam ics, the form of the stock- 

recruitm ent curve, exploitation rate and m anagem ent objective are the m ost im portant 

factors affecting optimal thresholds.
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Chapter One 

INTRODUCTION

Tw o kinds o f overfishing could occur for an exploited fish population: growth 

and recruitment overfishing (Cushing 1977). G row th overfishing results from harvesting 

fish so young that they do not have a chance to grow  to optimal sizes. Recruitm ent 

overfishing occurs when the spawning stock is reduced to a low level due to heavy 

fishing so that recruitm ent is seriously affected. G row th overfishing has been recognized 

since early this century (Cushing 1977) and is easily detected and avoided. Recruitm ent 

overfishing may be disastrous and cause a population to lose its renewability, but it is 

difficult to detect. After several im portant fisheries, like the Hokkaido-Sakhalin herring 

(Clupea pallasi), the Norw egian herring (Clupea harengus), the Japanese sardine 

(Sardinops melanm ticta), the Californian sardine (Sardinops sagax) and the Peruvian 

anchovy (Engruulis ringeits), collapsed during periods when fishing was high (Cushing 

1971), recruitm ent overfishing has increasingly been an important concern for fisheries 

m anagem ent

Currently there is m uch interest in the developm ent of harvest strategies to 

ensure that fisheries resources are optim ally utilized and that fish populations are not 

overfished. As one exam ple, the North Pacific Fishery M anagem ent Council, responsible 

for m anagem ent o f U.S. groundfish resources in the northeastern Pacific Ocean, adopted 

definitions o f acceptable biological catch (ABC) and other m anagem ent terms in 1988 

that attem pt to provide for both conservation and optimal utilization of the resources. 

The ABC was defined as "an acceptable level of harvest which recognizes the status and 

dynam ics o f the stock, environm ental conditions, and ecological factors and must 

equal zero when the stock is at or below its threshold". The ABC definition contains 

the concept o f a threshold, a low population level below which there would be concern 

about the ability of the population to increase and fishing would be prohibited.
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To prom ote the wise use and conservation o f fish resources, the Secretary of 

Com m erce o f the United States G overnm ent promulgated the national standard 

definitions o f fisheries m anagem ent terms in 1989. These standards (section 602 of the 

Federal Guidelines for Fishery M anagem ent Plans) list threshold as a  "minim um  level 

o f spawning biomass" and provide the option (but not requirem ent) o f specifying 

threshold levels for each m anaged fish population. Each fishery m anagem ent plan for 

species m anaged by the U nited States was required to be am ended in 1990 to define 

overfishing for each stock on the basis o f  a m axim um  fishing mortality and/or a 

threshold population level,

A threshold m anagem ent strategy seeks to prevent recruitm ent overfishing and 

to optim ally utilize fisheries resources. The threshold m anagem ent strategy is defined 

in this study such that harvest occurs at a  constant exploitation rate but ceases when a 

population drops below a threshold. For a given population, the m ost difficult tasks are 

to judge w hether a threshold approach can outperform  a non-threshold approach in 

term s of m anagem ent objectives, and how to choose an optim al threshold level.

The threshold concept has evolved from  the fixed escapem ent policy used 

frequently in Pacific salm on m anagem ent (Reed 1979; Getz and Haight 1989), with the 

difference being that not all surplus fish are harvested under a  threshold approach. The 

threshold approach prohibits fishing to protect the population and to promote population 

rebuilding when the population drops to a very low level. O ptim al harvesting policies 

have been derived or sim ulated for age-structured population m odels with both 

determ inistic and stochastic recruitm ent (Rorres and Fair 1975; Reed 1980; D enso  1985, 

1987; Horwood 1987; G etz and Haight 1989), but a threshold level has rarely been 

explicitly em bedded.

The threshold concept is relatively new to fishery m anagem ent. Beddington and 

Cooke (1983) used 20% o f the average unexploited spawning biom ass as a threshold 

(or targeted spawning biom ass level) to study the potential yield o f fish stocks with 

constant harvest rate and constant catch policies. Ruppert et al. (1984, 1985) introduced 

a general harvesting policy that includes a threshold level to explore optimal harvesting
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strategies o f the Atlantic m enhaden (Brevoortia tyrannus) fishery. This general 

harvesting policy was used by H ightow er and Lenarz (1989) to exam ine optim al 

harvesting policies for the w idow  rockfish (Sebastes entomelas) fishery. H ilborn (1985) 

applied a sim ple general harvesting policy with a threshold policy as a special case to 

com pare harvest policies fo r m ixed-stock fisheries. The above studies either used 

threshold as a constraint to com pare o ther harvesting policies, o r com pared the threshold 

policy with other policies in term s o f average yield or logarithm  o f yield. In their study 

o f alternative harvest strategies for Pacific herring (Clupea pallasi) in the Strait of 

Georgia, British Colum bia, Hall et a t  (1988) compared the threshold policy with 

constant harvest rate and constant escapem ent policies using three criteria: average 

catch, catch variance and risk. None o f these studies estim ated optim al thresholds.

M ost work with thresholds has occurred in conservation biology, and especially 

in the study o f endangered species (M ode and Jacobson 1987a; Soule 1987). The 

com m on goal in conservation biology is to m aintain the health and diversity o f  natural 

biological system s— ecosystem s, com m unities, habitats, as well as species. A population 

threshold, also called m inim um  viable population size, is usually determ ined for a 

species, especially endangered species, so that appropriate landscapes and habitats can 

be preserved to avoid population from extinction (Shaffer 1983; Lande 1987; M ode and 

Jacobson 1987b). Extinction is a probabilistic phenomenon, and tim e frame and security 

levels are im portant factors to  determ ine a population threshold level (Shaffer 1987: 

M ode and Jacobson 1987b; W issel and Stocker 1991). Shaffer (1981) review ed the five 

m ethods o f determ ining population thresholds: experim ents, biogeographic patterns, 

theoretical m odels, sim ulation m odels and genetic considerations, and concluded that 

the m ost prom ising approaches are biogeographic patterns and com puter sim ulations.

The im portant distinction between the concepts o f population thresholds in 

fisheries m anagem ent and conservation biology stems from the different m anagem ent 

objectives. W hile a threshold serves as a conservative measure for both com m ercial fish 

and endangered wildlife populations, it is also used as a tool to enhance long-term 

yields for exploited fish populations. The concept of economic extinction furnishes a
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bridge between these two disciplines. Econom ic extinction, defined as long-term 

depression o f  a population below the m inim um  level necessary to sustain an 

econom ically feasible harvest, m ay be the first step on the road to biological extinction. 

Thresholds for exploited fish populations are generally chosen to m eet economic 

objectives and to  prevent econom ic extinction, while thresholds for endangered wildlife 

populations em phasize the prevention o f  biological extinction.

Threshold m anagem ent policies have been applied to som e fish populations 

worldwide, especially pelagic species. A threshold level o f 15 to 25%  o f either pristine 

spawning biom ass or average observed spaw ning biomass has been established for 

Pacific herring in British Colum bia, Canada, and W ashington and Alaska, USA 

(Trumble and H um phreys” 1985). A lthough a threshold level was not specified, the 

North Sea herring fishery w as closed in the late 1970’s and the early 1980’s when the 

population dropped down to a low level (lakobsson 1985). Spaw ning biom asses o f 

50,000 tonnes and 600,000 tonnes have been used as thresholds for the northern 

anchovy (Engraulis morax) o ff  the coast o f  California and Atlantic m ackerel (Scomber 

scombrus) in the northeast A tlantic, respectively (J. Collie, personal com m unications). 

M any crab stocks in A laska have been m anaged with a threshold level which is used 

to enhance the renewability and productivity o f  the stocks (Schmidt and Pengilly 1990). 

For groundfish in western Canada, one o f the possible m anagem ent options is to stop 

fishing when a stock falls below  a certain level, although currently there are no stocks 

so m anaged (Fargo and Tyler 1989).

Com pared with a constant harvest rate approach, the threshold approach has an 

advantage in term s o f stable population size. The population is less prone to lose its 

renewability and m ore likely to move toward improved long-term  yield levels. 

Threshold m anagem ent strategies were show n to be effective for stock conservation and 

increasing total yield for chub m ackerel (Scomber japonic us) in Japan under a 

fluctuating environm ent (Matsuda et al. 1992). The threshold approach is especially 

beneficial to rebuilding a depressed population. A simulation study o f an overexploited 

Pacific ocean perch (Sebastes alutus) stock in British Colum bia dem onstrated that



rebuilding would be enhanced when fishing mortality was reduced or curtailed 

(Archibald e t a t  1983).

The disadvantages o f the threshold approach are that the potential to prohibit 

harvesting in som e years may increase short-term  harvest variation and adversely affect 

the short-term econom ic w ell-being o f users. All threshold m anagem ent strategies to 

date have been based on a single-species approach. It m ay be difficult to extend 

threshold approaches to m ulti-species fisheries because of lack o f  detailed knowledge 

on species interactions. W hen several species are harvested in the sam e fishery, bycatch 

problem s may be further com plicated by threshold m anagem ent policies. If  the 

assessment and m anagem ent o f a fishery prim arily depends on com m ercial catch data, 

the required data will not be available when the threshold takes effect.

In contrast to the threshold approach, a non-threshold approach, such as constant 

harvest rate, has the advantage o f  easy im plem entation. Traditionally, constant harvest 

rate is one o f the m ost com m on m anagem ent strategies (G etz and Haight 1989) and 

several fishing mortality reference levels, such as 1F0 ,, Fmax, Frep, FMSY, and Fmmy, have 

been very well docum ented and applied to a variety of populations (Alverson and 

Pereyra 1969; Gulland and Boerema 1973; Deriso 1987; H ightow er and G rossm an 1985; 

Sissenw ine and Shepherd 1987; Clark 1991), D ata requirem ents for estim ation o f fishing 

m ortality levels are relatively flexible.

The constant harvest rate approach reduces variance in harvest, at the cost of 

increased variance in population levels. It is beneficial to m aintain a stable harvest if 

alternate fisheries are not available. B ut some of the com m only-used fishing mortality

1 F{) j is the fishing m ortality at which the slope o f the yield per recruit curve as a 
function o f fishing mortality is equal to 10% of its value at the origin. Fmax is the 
fishing m ortality at which the yield per recruit is maximized. F is the fishing mortality 
at which the spawning biomass per recruit is reduced to the m edian value observed in 
a set o f stock-recruitm ent data. FMsy is the fishing mortality that produces the maximum 
sustained yield for a population. Fmmy is the fishing m ortality that m axim izes the 
m inimum yield am ong all the stock-recruitm ent relationships considered.
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rates (F0 ,, Fmax, and F = instantaneous natural mortality) are estim ated from life history 

param eters alone and their effects on spawners and subsequent recruitm ent are not taken 

into account. These mortality rates may potentially deplete a stock if a period o f poor 

recruitm ent occurs. Even with a well-estim ated fishing m ortality rate, it is still 

questionable whether this approach can reasonably maximize the returns from exploiting 

the resources and provide necessary protection when the population levels are low. 

especially when m ulti-species conservation criteria are also im posed.

Successful application o f threshold m anagem ent policies to fish populations 

requires the developm ent o f m ethods to estim ate and evaluate threshold levels on fish 

population abundance and yield. If  the threshold level is set too low, then it will not 

provide sufficient protection fo r depleted populations to recover. If  set too high, then 

prohibition o f harvesting will deprive harvesters o f justifiable harvesting opportunities.

Two species, walleye pollock (Theragra chalcagramma) in the eastern Bering 

Sea and Pacific herring in Alaska, will be the subject of my num erical study. These two 

species provide contrast in population dynam ics of groundfish versus pelagic fish. 

Pollock populations tend to grow  and decline rapidly and have com paratively high 

mortalities. The pollock population in the eastern Bering Sea is o f  imm ense commercial 

importance and is one o f the m ost im portant components in its ecosystem  (NPFMC 

1991; Laevastu and Larkins 1981). Pollock is a semi-demersal species and classified as 

"groundfish" in comm ercial fisheries. Cannibalism  and predation are two important 

biological features o f pollock.

Herring is a pelagic species and is one o f the m ost com m on fish species 

throughout the world and well known for its fluctuations in abundance. In Alaska, large- 

scale com m ercial harvest o f herring started in 1920’s, and now this species supports one 

of the most im portant fisheries in the state (Funk and Harris 1992). Ad hoc threshold 

levels have been established for different stocks of herring in Alaska. This study will 

evaluate these ad hoc threshold levels and suggest new optim al threshold levels 

consistent with current m anagem ent objectives. As generic m odels and com puter 

software have been developed for these two species, the m ethodology can be applied
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to other species.

In this study I exam ined herring stock-recruitment data around the world to 

illustrate the need for a threshold m anagem ent strategy because understanding the 

recruitm ent dynam ics of fish stocks is crucial to selecting harvest strategies. Then 

population param eters o f eastern Bering Sea pollock and herring and Prince W illiam 

Sound herring were estim ated and collected. Threshold m anagem ent strategies were 

evaluated for these three populations based on single-species m odels. Evaluation criteria 

include an objective function, risk o f  overharvesting and rebuilding tim e, as well as 

robustness to errors in estim ation o r im plem entation. The objective function is the trade­

o ff betw een increased average yield and decreased variation in yield over a planning 

horizon o f 20 to 50 years. T he risk is defined here as the probability  that a population 

drops below a defined threshold level. The rebuilding time is total num ber o f years for 

a population to take to rebuild from  an initial biomass to the biom ass producing MSY, 

I will address the follow ing questions: 1) W hat data and techniques are required to 

estim ate threshold levels? 2) G iven a harvesting rate and an objective function, which 

threshold approach perform s best? 3) W hat are the im portant factors affecting optimal 

threshold levels? 4) How much can we gain by using a threshold approach, com pared 

with a non-threshold approach such as a constant harvest rate strategy?

The dissertation is presented in seven chapters. C hap ter two discusses the 

relation between spaw ners and recruitm ent o f  herring worldwide and herring recruitm ent 

patterns. It was generally believed in the past that herring recruitm ent is regulated by 

environm ental factors and that density-dependent effects on herring recruitm ent are 

w eak or non-existent. This chapter is intended to test for density-dependent effects on 

herring recruitm ent statistically and to exam ine at what spatial scale environm ental 

forces influence herring year-class strengths. Chapter three deals with threshold 

m anagem ent policies for the eastern Bering Sea pollock population. Threshold 

m anagem ent strategies for A laska herring are evaluated in chapter four. Tw o of the 

largest herring stocks in Alaska, eastern Bering Sea and Prince W illiam Sound stocks, 

are exam ined. C hapter five com pares and evaluates seven different threshold estimation



methods through com puter sim ulations. C hapter six sum m arizes the results o f sensitivity 

analyses o f optim al thresholds with different population param eters, environm ental 

noises, harvest levels and m anagem ent objectives. The results in previous chapters are 

integrated to identify key factors influencing optim al threshold levels. The final chapter 

sum m arizes the conclusions for this study and discusses the lim itations.
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Chapter Two

HERRING STOCK-RECRUITMENT RELATIONSHIPS AND 

RECRUITMENT PATTERNS IN THE NORTH ATLANTIC AND 

NORTHEAST PACIFIC OCEANS 

SUMMARY

Recruits are the youngest age group in a fishery. U nderstanding the recruitm ent 

dynam ics o f m arine fish stocks is crucial in selecting harvest strategies. Revealing the 

recruitm ent patterns is the first step  to understanding the recruitm ent dynam ics. In this 

study, stock-recruitm ent data o f 19 m ajor herring stocks from the north Atlantic and 

northeast Pacific O ceans were exam ined for density-dependent effects on recruitm ent 

and for recruitm ent patterns over spatial scales. Tw o param etric and one nonparametric 

tests indicate that the survival rates from eggs to recruits from  about 73% o f stocks are 

related to spaw ning biom ass, with high spaw ning biomass resulting in low survival 

rates. Close to half the stocks show that year-class strengths are associated with 

spawning biom ass. M ost stocks have com pensatory, dom e-shaped stock-recruitm ent 

curves. Positive correlations are generally found among the geographically close 

neighbor stocks. The recruitm ent patterns suggest each environm ental process may play 

an im portant role in recruitm ent dynam ics o f herring only w ithin a certain spatial scale.

INTRODUCTION

Understanding the recruitm ent dynam ics o f a stock is essential for optimal uses of 

the resource and m aintenance of its renew ability. The recruitm ent rate is one o f the 

most im portant determ inants o f the capacity o f a stock to sustain exploitation (Getz et 

al. 1987; Q uinn et al. 1990). Recruitm ent dynam ics also determ ine harvest m anagem ent 

strategies applied to the stock. If recruitm ent is not related to the corresponding 

spawning stock, yield per recruit or econom ic return per recruit is a natural choice for
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the harvest m anagem ent strategy (Beverton and Holt 1957). O therw ise, other 

m anagem ent strategies should be used (G etz and Haight 1989). Thus, the problem  of 

recruitm ent dynam ics lies at the heart o f fisheries m anagement.

S tock-recruitm ent relationships describe the density-dependent variation of 

recruitm ent. The com m only used stock-recruitm ent m odels were developed by Ricker 

(1954) and Beverton and H olt (1957). Both m odels were derived from assum ptions of 

density-dependent predation and/or food lim itation. The Ricker m odel requires mortality 

to be dependent on spaw ning stock abundance, whereas the Beverton-H olt model has 

mortality dependent on pre-recruit densities over a sequence o f  stages from  eggs to 

recruits. The Ricker curve is dom e-shaped, with maximum recruitm ent occurring at an 

interm ediate level o f spaw ning stock. The Beverton-Holt curve is asym ptotic. Deriso 

(1980) described a general stock-recruitm ent model which includes the Ricker. 

Beverton-Holt, constant recruitm ent and Schaefer models (Schaefer 1957) as special 

cases. Cushing (1971) derived another com m on stock-recruitm ent m odel, relating 

density-dependence to fecundity. Fish with low fecundities are expected to have a near- 

linear relationship o f recruitm ent with spaw ners, whereas the Ricker dom e-shaped 

curves would be characteristic o f fish with high fecundities. Shepherd (1982) developed 

a general m odel which can m im ic the R icker and Cushing curves and includes the 

Beverton-Holt m odel as a special case. A M arkov probability transition matrix model 

is also com m only used to describe stock-recruitm ent relationships (G etz and Swartzm an 

1981; Sw artzm an et al. 1983; O verholtz e t al. 1986).

S tock-recruitm ent m odels have been fitted to a variety o f data sets on marine 

fishes (Cushing 1973; Cushing and Harris 1973; Csirke 1980; Jakobsson 19X0; Buck 

and Hay 19X4; Garrod and Jones 1974; Huang and W alters 1983). The m odels often 

explain only a small proportion o f the recruitm ent variation. The apparent lack o f stock- 

recruitm ent relationships in many fish stocks can be attributed to m easurem ent errors 

in both stock and recruitm ent data (W alters and Ludwig 19X1). stochasticity o f actual 

recruitm ent, or the actual lack o f relationship between recruitm ent and spawning stock 

over the observed range o f data.



The difficulty o f using spaw ning stock to explain variation o f recruitment has 

led to innum erable correlation studies in which recruitm ent indices are correlated with 

one or more environm ental variables (Davydov 1989; Donnelly 1983; Chebanov 1989; 

Koslow et al. 1987; Lasker 1978; Shepherd et al. 1984; W espestad 1991; Quinn and 

Niebauer in press; Zebdi and Collie in press). Based on an assum ption that recruitment 

success is prim arily determ ined by physical factors, these correlation studies aim at 

understanding o f  recruitm ent variation and prediction o f rec ru itm en t Although some 

environm ental factors may have a plausible causal m echanism  to affect spawning 

success and pre-recruit survival, and in some cases regressions are highly significant, 

few of these predictions o f recruitm ent have stood the test o f tim e. A s pointed out by 

W alters and Collie (1988): "It is entirely too easy to find spurious correlations*'.

A nother approach is to exam ine the recruitm ent patterns o f  different fish stocks 

within or betw een regions to determ ine whether recruitm ent is regulated through large- 

scale environm ental forcing o r biological interactions (Koslow 1984). If recruitment is 

controlled prim arily by large-scale environm ental forcing, positive correlation should 

be evident am ong recruitm ent for the sam e species over broad spatial scales (Koslow 

1984). On the other hand, if recruitm ent is predom inantly regulated through biological 

interactions, stock-recruitm ent relationships should be evident, K oslow  (1984) examined 

recruitm ent patterns in northw est Atlantic fish stocks and concluded that large-scale 

physical forcing prim arily regulates recru itm ent Hollowed et al. (1987) expanded 

K oslow’s study to northeast Pacific stocks and found that recruitm ent success is strongly 

influenced by environm ental conditions. Pepin (1990) studied biological correlations of 

recruitm ent variability in North Sea stocks and suggested that the dom inant association 

is between fluctuations in recruitm ent and plankton abundance.

In this paper, I exam ined stock-recruitm ent data o f 19 herring stocks from the 

north Atlantic and northeast Pacific Oceans. First, density-dependent effects and stock- 

recruitm ent relationships were exam ined, aiming at testing the hypothesis that 

recruitm ent o f herring is independent o f its spawning stock size and at examining the 

shape o f stock-recruitm ent curves. Then, recruitm ent patterns were studied to determine
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M ETH O DS

Data

Time series of recruitment and spawning biomass for 19 herring stocks from the 

north Atlantic and northeast Pacific Oceans {Clupea harengus and Clupea pallasi)  were 

collected from various sources (Table 2.1 and Figure 2.1). These time series were 

derived either by virtual population analysis (VPA) tuned by auxiliary information or 

catch-at-age analysis with auxiliary information. Recruitment is defined as ages 1, 2 or 

3, depending on stock, and was identified by brood year termed "year-class". The 

estimates ot stock and recruitment in the most recent years are highly influenced by 

fishing mortality and auxiliary information in the terminal year. To reduce this 

uncertainty, I discarded the data after year-class 1986, i.e., at least the data in the most 

recent three years were discarded. The abundances at age 0 for Norwegian spring 

spawning stock were multiplied by 0.51 (the survival rate from the lightest fishing year- 

class 1950 during 1950-1969) to get recruitment at age 3 from 1950 to 1969 because 

juvenile herring of this stock suffered high fishing mortality during this period 

(Dragesund et al. 1980) and the recruitment data after 1969 are available only at age 3 

(Anonymous 1993). In this study, I accepted the stock definitions in the data sources 

because the stock-recruitment data are available only for the defined stocks.

Stock-recruitm ent Relationships

Four approaches were used to test the two null hypotheses: 1) per capita 

recruitment is independent of spawning stock size and 2) total recruitment is 

independent of spawning stock size. First, Cushing (1971) proposed a simple stock- 

recruitment model:

(2.1) R = a S b

where R is recruitment, S is spawning biomass, a is a constant and b is an index of 

density dependence. When b  is negative and as S approaches zero, R approaches

the possible role o f large-scale physical forcing in herring recruitment variation.



Table 2,1, Sum m ary o f data sources for 19 herring stocks.
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Stock Notation Year-Class Data Source

1 North Sea NSea 48-90 Anonymous (1992)

2 ICES D istrict V ia North ViaN 70-89 Anonymous (1993)

3 Icelandic sum m er spawners IceSum 48-89 Anonymous (1993)

4 Icelandic spring spawners IceSpr 48-72 Jakobsson (1980)

5 Norwegian spring spawners Norwe 50-69 Dragesund et al.(1980)

70-89 Anonymous (1993)

6 G ulf o f M aine Maine 66-90 NEFC (1992)

7 New foundland W BNDB W BNDB 64-82 Wheeler et al. (1985)

8 New foundland CBTB BBTB 64-82 W heeler et al. (1985)

9 N ew foundland CBSS CBSS 64-82 Wheeler et al. (1985)

10 Eastern Bering Sea EBS 56-89 Zheng et al.(/n press  a)

11 Prince W illiam  Sound, AK PWS 69-89 Funk & Zheng (1992a)

12 Sitka Sound, AK Sitka 68-89 D. Carlile, ADF&G

13 Seym our Canal, AK Seymour 73-89 D. Carlile, AD F& G

14 Kah Shakes, AK KahS 73-89 D. Carlile, ADF&G

15 Prince Rupert, BC BCPR 48-89 Schweigert et al.(1993)

16 Queen Charlotte Is., BC BCQCI 48-89 Sehweigert et al,(1993)

1? Central Coast, BC BCCC 48-89 Schweigert et al.(1993)

18 W est V ancouver ls.,BC BCWVI 48-89 Schweigert et al.( 1993)

19 Strait o f G eorgia, BC BCSG 48-89 Schweigert et al.(1993)

Abbreviations:
W BNDB: W hite Bay-Notre Dame Bay 
CBTB: Bon a vista Bay-Trinity Bay
CBSS: Conception Bay-Southern Shore
AK: Alaska, USA
BC: British Colum bia, Canada.
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infinity, so the C ashing m odel is unrealistic for some data ranges. But the m odel is 

handy for testing recruitm ent density-dependence. Linearizing equation (2,1) results in:

(2.2) ln(R) =  ln(a) + b ln(S).

Thus, testing the null hypotheses is equivalent to testing b  values. Param eters a and b 

were estim ated by an ordinary linear regression. Log transform ation o f recruitm ent 

reduces the influences o f outliers o f stock-recruitm ent data on param eter estim ation and 

gives an equal weight to each data p o in t Param eter b  m easures the degree o f density 

dependence o f stock-recruitm ent data (Cushing 1971). If b  is no t significantly different 

from 1, then the per capita recruitm ent (or the survival rate from  egg to recruit) is 

independent o f egg density (null hypothesis (1)) because spaw ning biom ass is 

approxim ately proportional to fecundity for herring (Ware 1985). If  b is not significantly 

different from  0, then total recruitm ent (or year-class strength) is independent of  

spawning biom ass (null hypothesis (2)),

Secondly, I used R icker’s stock-recruitm ent model to test density-dependence of 

recruitment. The Ricker m odel is

(2.3) R = a  S exp(-p S + vt) 

and is linearized as

(2.4) ln(R/S) = ln(a) - (3 S + vt 

where

v, =  a t + a ,  vt_, + a 2 vt_2

and t stands for time (year), a  and (3 are param eters, and v, is a noise term. In c o n te s t  

to the com m on assum ption o f  norm ality o f v, (W alters 1986), I assum ed vr as being 

autocorrelated over time as some recruitm ent data indicated, <J, is norm ally and 

independently distributed with m ean of 0; a ,  and tt2 are autocorrelation coefficients. An 

autocorrelation regression (procedure A U TOG RE, SAS Institute Inc, 1988) with a 

maximum likelihood m ethod was used to estim ate param eters a ,  (3, a i and ot2. The 

advantage o f autocorrelation regression is to reduce the influence of the noise term on 

the param eter estim ates in the autocorrelation process. If p is significantly different from
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0, we can reject the null hypothesis (1). In addition, autocorrelation coefficients ctt and 

a 2 were tested for significance for each data set.

Thirdly, a nonparametric classification technique (Rothschild and M ullen 1985) 

was used to classify the stock-recruitm ent data. A chi-square test (for data sets with 30 

or more data points) and Fisher’s exact test (for data sets with less than 30 data points) 

were applied to test the null hypothesis (2). A 2*3 classification utilized the median 

recruitm ent, 1/3 quantile and 2/3 quantile o f spawning biom ass to divide stock- 

recruitm ent data into 6 categories, Quantile is the same as percentile except that quantile 

refers to a fraction o f a data set while percentile refers to a  percent o f a data set. A 

value o f 1 was assigned to a datum when recruitm ent was equal to o r above the median: 

otherwise 0 was assigned.

Finally, a LOW ESS (locally weighted regression scatter plot sm oothing) 

procedure (B ecker e t al. 1988) was used to robustly smooth the logarithm  of recruitm ent 

data against spaw ning biomass to reveal stock-recruitm ent relationships. Log 

transform ed recruitm ent data reduced the influence of extrem e year-elasses and residuals 

derived from  the sm oothed curve approxim ated a normal distribution. I used 0.5 as the 

fraction param eter /  in the LO W ESS procedure (Becker et al. 1988) to achieve a 

relatively good fit for all data. The null hypotheses were not tested statistically, but 

exam ined visually.

R e c ru itm e n t P a tte rn s

Three form s of recruitm ent data transformations were used to examine 

recruitment patterns for herring: I) log-transformed recruitment (Log(R)), 2) first order 

differences o f log-transform ed recruitm ent (Dlog(R), i.g., for a given year t, Dlog(R() 

= log(Rt+I) - log(Rs)) , and 3) residuals from the LOW ESS curves (Lowess-Res). Log 

transform ation o f recruitm ent m inim izes the influences o f extrem e year-classes. 

normalizes the data, and em phasizes long-term , low frequency variations (Koslow 1984: 

Hennemuth et al. 1980). First-order differences of log-transform ed recruitm ent filter out 

low frequency variations and first-order autocorrelation of recruitment, and concentrate



on short-term , high frequency variations (Pepin 1990: Thom pson and Page 1989), 

Residuals from  filled stock-recruitm ent curves reflect recruitm ent variation independent 

o f spawning stock size.

All tim e series o f  recruitm ent data in each o f these three form s were tested for 

norm ality by the Lilliefors test (Conover 1980, p357). The null hypothesis o f norm ality 

was rejected fo r only 3 out o f 51 data sets at a significance level o f 0.05, Thus, 

Pearson’s product-moment correlation coefficients were used to test whether recruitm ent 

data sets betw een any two stocks are significantly correlated.

H ierarchical cluster analyses were conducted on 15 stocks for year-classes 1973­

1986 for each o f these three data forms, The other 4 stocks were excluded because their 

data did not com pletely overlap this tim e period. The distance for clustering was 

obtained through 1 m inus the correlation m atrix and average distance was used for 

clustering.

Y ear-class strengths were sum m arized in term s o f ratio o f  maximum to m inimum  

recruits, coefficient o f variation, and frequency o f stronger than average year-classes. 

These statistics provide direct com parisons o f year-class variations and skew ness o f 

recruitm ent distributions from different stocks.

RESULTS

Stock-recruitment Relationships

Tw o approaches were used to study the relationships o f herring stock- 

recruitm ent: the two null hypotheses were tested statistically and then stock-recruitm ent 

data were sm oothed to reveal the relationships. Table 2.2 sum m arizes the test statistics. 

The recruitm ent for three stocks (Prince W illiam  Sound, Sitka, and Kah Shakes) was 

too variable to reject the null hypothesis o f b = 0 or b = / .  For the rem aining 16 

stocks, only two stocks (the Icelandic spring spawners and Norwegian spring spaw ners) 

have b values not significantly different from I at 0.05 level (Table 2.2). The b  values 

for all other stocks were significantly less than 1, i.e.. per capita recruitm ent decreases 

as the spaw ning stock increases and thus the stock-recruitm ent relationships are
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Table 2.2. Summary of test statistics of density independence for herring recruitment 
from 19 stocks.

Stock Cushing Model Ricker Model Nonpar.

b p(=0) P(=D -p*s pa pn Pa! a 2 Pcc2 P

1 NSea 0.52 .000 .000 -0.76 .000 .000 0.20 .222 0.34 .044 .007
2 ViaN 0.15 .425 .000 -0.75 .005 .001 0.00 .996 0.19 .537 .589
3 IceSum 0.52 .001 .001 -0.57 .119 .027 0.46 .011 0.02 .910 .003
4 IceSpr 1.20 .000 .097 -0.43 .433 .630 0.72 .013 0.17 .553 .001
5 Norwe 0.88 .000 .266 -0.15 .409 .310 0.14 .464 0.02 .897 .000
6 Maine 0.10 .446 .000 -0.82 .002 .000 0.19 .463 0.07 .770 .536
7 WBNDB -1.81 .024 .002 -2.06 .117 .002 0.38 .242 0.25 .499 .004
8 BBTB -1.79 .006 .000 -3.60 .000 .000 0.51 .103 -0.49 .157 .004
9 CBSS -0.91 .094 .003 -1.72 .065 .009 0.73 .053 -0.23 .513 .301
10 EBS -0.52 .089 .000 -1.89 .000 .000 0.42 .052 -0.16 .492 .047
11 PWS 0.50 .534 .540 -0.70 .369 .635 0.02 .442 -0.57 .076 .037
12 Sitka 0.49 .338 .316 -0.53 .296 .600 0.59 .057 -0.71 .028 .145
13 Seymour -0.72 .087 .001 -1.83 .002 .000 0.17 .649 -0.41 .402 .056
14 KahS -0.69 .375 .048 -1.77 .055 .074 -0.12 .803 -0.27 .605 .455
15 BCPR 0.09 .688 .000 -0.85 .018 .000 0.49 .011 -0.07 .707 .097
16 BCQCI 0.14 .444 .000 -0.97 .001 .000 0.31 .088 -0.05 .787 .717
17 BCCC 0.08 .654 .000 -1.13 .000 .000 0.08 .683 -0.06 .754 .264
18 BCWVI 0.10 .581 .000 -0.86 .008 .002 0.41 .032 0.07 .713 .264
19 BCSG 0.34 .046 .000 -1.02 .000 .000 0.55 .005 -0.06 .759 .013

Abbreviations:
b: value of parameter b in equation (2.1) 
p(=0): p value for null hypothesis o f b = 0 
p(=l): p value for null hypothesis of b = 1
P*S: value o f parameter P in equation (2.3) times mean spawning biomass
pa: p value for null hypothesis of p = 0 with autocorrelation regression
pn: p value for null hypothesis o f P = 0 with ordinary regression
a ,: autocorrelation coefficient with a time lag of one year
pul: p value for null hypothesis of a , = 0
a 2: autocorrelation coefficient with a time lag of two years
pul: p value for null hypothesis of a., = 0
p: p value for chi-square test of density independence.



compensatory. Thus hypothesis (1) was rejected for 14 out o f 16 stocks. The b values 

tor two of the N ew foundland stocks were significantly less than zero at 0.05 level 

(Table 2,2), suggesting an overcompensatory stock-recruitm ent relationship.

Testing b =  0 is equivalent to testing the null hypothesis (2), The null hypothesis 

(2) was rejected for 6 out o f the 9 Atlantic stocks and for 1 out o f  the 10 Pacific stocks 

with a significance level ot 0.05. Overall, m ore than 50% o f stocks failed to reject the 

null hypothesis. W ith a significance level o f 0.1, the null hypothesis was rejected for 

10 out o f 19 stocks.

The nonparametric classification tests the null hypothesis (2) by a different 

statistical m ethod. Results generally resem ble the test o f b = 0. For 9 and 11 out o f 19 

stocks, the null hypothesis was rejected at significance levels o f 0.05 and 0.1, 

respectively. The results also suggest that herring recruitm ent in the northeast Pacific 

is less dependent on spaw ning biom ass than recruitm ent to the north Atlantic stocks 

(Table 2.2).

An alternative index o f density dependence is the product of -{3 from the Ricker 

curve and m ean spawning biom ass (Cushing and Harris 1973; W inters and W heeler 

1987), The indices for all 19 stocks varied from -0.15 to -3.6 and were all negative 

(Table 2.2), indicating the com pensatory stock-recruitm ent curves. Fourteen out o f  the 

19 stocks rejected the null hypothesis (1) o f  (5 = 0  with an ordinary Ricker m odel at a 

significance level o f 0,05 (Table 2.2). W hen autocorrelations with time lags o f 1 and 

2 years were included in the R icker m odel, only 11 out of the 19 stocks rejected the 

null hypothesis (1), The autocorrelation coefficients with a tim e lag of I year were 

generally positive and ranged from -0.12 to 0.73, with m ost o f them less than 0.4. Only 

5 out of the 19 stocks had autocorrelation coefficient a ,  significantly different from 0 

at 0.05 probability lev e l Autocorrelation coefficient a 2 was not significantly different 

from  0 in 17 out of the 19 stocks. A lthough not shown here, no stocks had significant 

autocorrelation coefficients with a time lag o f  more than 2 years.

The LO W ESS procedure was used to smooth the stock-recruitment data. The 

stock-recruitment relationships are population-dependent. For the Pacific stocks, strong
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dome-shaped stock-recruitment curves occurred with the Seymour Canal and the Strait 

of Georgia stocks, and weak dome-shaped curves occurred with the eastern Bering Sea, 

the central coast of British Columbia and Prince Rupert stocks (Figure 2.2). The year- 

class strengths appeared independent o f spawning biomass for the Queen Charlotte 

Island and the west coast of Vancouver Island stocks. No meaningful stock-recruitment 

relationships were found for the Prince William Sound. Sitka Sound, and Kah Shakes 

stocks.

Stock-recruitment relationships were better defined for the Atlantic stocks than 

the Pacific stocks. A curve with a shape between a Beverton-Holt curve and a Ricker 

curve was revealed for the North Sea, Icelandic spring spawning and Norwegian spring 

spawning stocks, with weak recruits associated with low spawning biomass (Figure 2.3). 

A dome-shaped curve was apparent for the stock in ICES district Via north. Lower and 

much more variable recruitments were associated with low spawning biomasses than 

with high spawning biomasses for the Icelandic summer spawning stock. Strong dome­

shaped curves were evident for the three Newfoundland stocks, with weak recruitments 

associated with high spawning biomasses. No apparent stock-recruitment relationship 

was found for the Gulf o f Maine stock.

Recruitm ent Patterns

Recruitment data were transformed in three ways (Log(R), Dlog(R), and Lowess- 

Res) and compared in Figure 2.4. Dlog(R) represented high frequency components in 

the recruitment data and were more variable than Log(R) and Lowess-Res data. Lowess- 

Res data were similar to Log(R) data for stocks in which spawning biomass explained 

little variation o f recruitment.

Table 2.3 summarizes the p-value matrices for testing correlation between the 

recruitment data for different stocks. The p value gives the probability of obtaining a 

value of the test statistic at least as unfavorable to null hypothesis as the observed value. 

Correlations were much stronger among stocks in the same region than stocks in 

different regions. For Log(R) data, extremely strong positive correlations existed among
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Table 2.3, P values for the null hypothesis that the correlation coefficient equals 0 for 19 herring stocks. Negative sign 
■indicates a negative correlation coefficient. See notation for stock num ber in Table 2.1. (NA denotes the time series 
data are not overlapped so that no correlation can be tested). '

a. Log Transform ed Recruitm ent data 

Stock 2 3 4 5 6 7 8 9 10

1 NSea .00 .73 .10 .01 .09 .00 .00 .01 -.09
2 ViaN -.84 NA .40 .05 .52 .18 .57 -.22
3 IceSum .00 .37 -.87 - .01 -.00 -.02 .58
4 IceSpr .00 NA NA NA NA .06
5 Norwe .03 .01 .04 .04 .16
6 M aine .13 .21 .55 -.18
7 W BNDB .00 .00 -.11
8 BBTB .00 -.39
9 CBSS -.37
10 EBS
11 PW S
12 Sitka
13 Seym our
14 KahS
15 BCPR
16 BCQCi
17 BCCC
18 BCWVI
19 BCSG

11 12 13 14 15 16 17 18 19

.84 -.80 .46 -.45 .12 -.83 ,33 -.78 -.97

.52 .84 .35 .89 .02 .38 .19 .90 -.51
-.66 .54 -.75 -.48 .54 -.97 .43 .51 .01
NA NA NA NA .31 .50 .16 .84 .00
.92 .52 -.95 -.50 -.83 -.25 .23 .99 .36
.24 .22 .97 -.80 .56 -.82 .87 -.47 -.22

-.88 -.52 NA NA -.86 -.25 -.37 -.50 -.01
-.92 -.45 N A NA .89 -.26 -.40 -.47 -.01
-.31 -.16 NA NA .99 -.22 -.23 -.53 -.02
.52 .35 .13 .03 .68 .97 .93 -.94 .54

.00 .26 .05 .23 -.67 .89 -.17 -.24
.30 .06 .50 -.30 -.84 -.10 -.66

.05 .28 .85 -.71 -.35 -.03
.03 .13

.00
.33
.00
.00

-.35
.03
.00
.00

-.35
.00
.00
.00
.00
.00



Table 2,3 (continue)

b. First D ifference o f Log Transform ed Recruitm ent data

Stock 2 3 4 5 6 7 8 9 10

1 NSea .02 -.53 .18 .82 .72 -.22 -.45 -.38 -.34
2 ViaN -.39 NA .19 .04 -.82 .71 -.61 -.96
3 IceSum -.30 .03 ,71 .59 -.31 -.97 -.64
4 fceSpr -.63 NA NA NA NA  -.65
5 Norwe .04 ,16 .53 .39 -.78
6 Maine .49 .46 -.65 -.95
7 W BNDB .00 .00 .69
8 BBTB .00 .45
9 CBSS .94
10 EBS
11 PW S
12 Sitka
13 Seymou
14 KahS
15 BCPR
16 BCQCI
17 BCCC
18 BCWVI
19 BCSG



11 12 13 14 15 16 17 18 19

.53 -.80 .57 -.42 -.96 .63 .93 -.69 -.67

.77 .97 .80 .55 .25 ,14 ,13 ,17 .72
-,18 -.32 -.73 .99 -.25 -.34 -.52 ,85 -.93
NA NA NA N A  .46 -.40 .92 -.81 .54

-.63 .80 -.38 -.44 -.01 -.07 -.84 .37 .42
,28 .16 -.90 .82 .83 .76 .52 -.82 -.99
.73 .33 NA NA -.77 -.84 -.42 -.64 -.60
.65 .42 NA NA -.60 -.47 -.28 -.28 -.28

-.49 -.62 N A  N A  -.44 -.32 -.07 -.33 -.33
.85 .74 .02 .02 .30 .22 -.63 -.61 -.81

.00 .84 .42 .35 -.81 -.91 -.15 -.25
-.98 .35 .43 -.90 .78 -.61 .97

.06 .10 ,22 -.93 -.64 -.15 
.00 ,01 .21 -.91 .97

.00 .01 .17 .13
,00 .04 .01 

,00 .00 
.00 
.00



c. Residuals from LOW ESS Fit Stoek-Recruitnient Data 

Stock 2 3 4 5 6 7 8 9 10

Table 2.3 {continue)

1 NSea .00 -.63 .67 -.90 .68 -.17 -.50 -.43 -.55
2 ViuN -.05 NA .25 .19 -.24 .65 -.13 .81
3 leeSum  .34 .62 -.91 -.82 -.25 -.55 -.64
4 IceSpr -.03 N A  N A  N A  N A  .55
5 Norwe .31 .68 .04 .25 .39
6 M aine ,11 .70 .67 -.06
7 W BNDB -.82 .02 -.13
8 BBTB .19 .06
9 CBSS -.44
10 EBS
11 PW S
12 Sitka
13 Seym our
14 KahS
15 BCPR
16 BCQC1
17 BCCC
18 BCW VI
19 BCSG



11 12 13 14 15 16 17 18 19

-.96 -.39 ,27 -.61 .28 .78 .57 -.78 -.44
-.98 -.70 .61 .27 .03 .44 .07 .64 -.11
-.30 -.70 -.80 -.54 .91 .61 .66 .10 .03
NA HA N A  NA .30 -.62 -.97 -.36 .79

-.90 .49 -.30 -.46 -.69 -.25 .30 .31 ,41
-.61 -.40 -.50 .66 .28 .39 .21 .46 ' -.47
.69 -.99 N A  NA -.67 .33 .94 .50 -.94
.53 .33 NA NA .71 -.17 -.16 -.22 .46

-.60 -.66 NA NA -.99 -.71 -.38 .56 .49
.18 .12 .11 .28 -.78 -.37 -.47 -.33 .66

.00 .89 .09 .80 -.77 .92 -.19 -.28
-.86 .28 -.30 -.37 -.88 -.28 .80

.24 ,88 .74 -.19 -.14 -.01
.27 .11 .42 -.67 -.63

.00 .00 .01 .01
.00 .00 .00 

.00 .00 
.00 
.00



all 5 stocks in British C olum bia, am ong 3 stocks in N ew foundland, between the Prince 

W illiam Sound and Sitka Sound stocks, betw een the North Sea and ICES district Via 

north stocks, and between the Icelandic sum m er spawning and Norwegian spring 

spawning stocks (Table 2,3a), A m ong significant inter-regional com parisons, stocks of 

North Sea and Norwegian spring spaw ners were positively correlated to three 

New foundland stocks which w ere in turn negatively associated the Icelandic sum m er 

spawning stock and the S trait o f  G eorgia stock in British Colum bia, The Kah Shakes 

stock in Southeast Alaska was positively and significantly correlated with all stocks 

from the eastern Bering Sea to Prince Rupert in the northern part o f British Colum bia. 

However, the Seym our stock in Southeast A laska did not associate with any o f these 

stocks other than the Kah Shakes stock.

A fter filtering out the low frequency signals by differencing, correlations among 

the Dlog(R) data were less significant than the Log(R) data. For the Dlog(R) data, the 

correlations w ere generally positive am ong stocks within the sam e region and negative 

among stocks in different regions (Table 2.3b). But the correlations among stocks in 

different regions were very weak, with m ost of p values larger than 0.2. W ith a 

significance level o f 0.05, significant correlations occurred between the North Sea and 

ICES district V ia north stocks, betw een the Icelandic sum m er spaw ning and Norwegian 

spring spaw ning stocks, betw een Norwegian spring spawners and the G ulf o f  Maine 

stocks, and am ong the three stocks in New foundland. O f the Pacific stocks, the eastern 

Bering Sea stock did not associate with its neighbor stock of Prince W illiam Sound, but 

with the Seym our and Kah Shakes stocks in Southeast Alaska, The Prince W illiam  

Sound and Sitka Sound stocks were strongly correlated with each other, but not with 

other stocks. The stocks in the central and southern British Colum bia were strongly 

associated with each other, but the Prince Rupert stock was correlated only with its 

neighbor Q ueen Charlotte Island and central coast stocks in British Colum bia and the 

Kah Shakes stock in the Southeast Alaska.

After rem oving the influences of spawning biomass, the correlations among 

stocks with the same region decreased (Table 2.3c). For the LOWESS-Res data, the
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strong positive correlations still held between the North Sea and ICES district V ia north 

stocks, between the W hite Bay-Notre Dame Bay and Conception Bay-Southern Shore 

stocks in New foundland, betw een the Prince W illiam Sound and Sitka Sound stocks, 

and among the stocks in British Colum bia.

Three large clusters were found with the Log(R) data: an A tlantic group 

(Icelandic sum m er spawners, Norwegian spring spawners, the G ulf of M aine, North Sea 

and ICES district V ia north), a central and southern British Colum bia group (W est 

Vancouver Island, Strait o f G eorgia, Queen Charlotte Island and central coast of British 

Colum bia), and a northern Pacific group (eastern Bering Sea, Seym our C a n a l Prince 

William Sound, Sitka Sound, Kah Shakes and Prince Rupert) (Figure 2.5). These three 

groups did not relate to each other. W ithin each group, many stocks were not associated 

with each o ther with a 0.05 significance level. Five small and strongly associated 

clusters were evident among the 15 stocks: Prince W illiam Sound and Sitka Sound, Kah 

Shakes and Prince Rupert, W est V ancouver Island and Strait of Georgia, Queen 

Charlotte Island and central coast o f British Colum bia, and North Sea and ICES district 

Via north.

For the high frequency data of Dlog(R), the distances between the large clusters 

were som ew hat longer than the Log(R) data (Figure 2.6). The small and closely 

associated clusters also included Prince W illiam  Sound and Sitka Sound, and North Sea 

and ICES district Via north. But another three small clusters emerged different from the 

Log(R) data. Three stocks from neighborhood geographic areas (Queen Charlotte Island. 

Prince Rupert and Kah Shakes) formed a strong cluster. Three stocks from the central 

and southern British Colum bia (central coast, west Vancouver Island and Strait of 

Georgia) were linked as another cluster, the eastern Bering Sea stock was associated 

with the Seym our Canal stock to form a cluster.

Com pared with the Log(R) and Dlog(R) data, the m ajor difference with the 

residuals from  LOW ESS fits o f stock-recruitment data was that the Atlantic stocks were 

not grouped together other than the Icelandic sum m er spawning and Norwegian spring 

spawning stocks (Figure 2,7). O ther m ajor differences were that the Kah Shakes stock
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did not relate to its neighbor the Prince Rupert stock at ail, and that the eastern Bering 

Sea stock was more closely associated with the Prince W illiam  Sound and S itka Sound 

stocks. The clusters were m ore loosely grouped together with the residual data than the 

Log(R) and D log(R) data because the correlations among the stocks were w eaker for 

the residual data than the other two data forms.

H erring recruitm ent was very variable, w ith the ratio o f  m axim um  to m inim um  

recruitm ent up to 700 (Table 2.4). W ith stocks having more than 30 years o f  data, the 

strongest year-class was at least 29 times larger than the weakest one. Some stocks, like 

Icelandic spring spawners, still have not recovered after collapsing about three decades 

ago. The recruitm ent distributions o f m any stocks (3 New foundland stocks, Prince 

W illiam  Sound, Sitka Sound, K ah Shakes, Queen Charlotte Island, and central coast o f 

British Colum bia stocks) w ere highly skew ed to the strong year-classes and the 

populations were basically supported by a few stronger-than-average year-classes (Table 

2.4). Some stocks, especially the Atlantic stocks, could take up to 17 years to  get a 

stronger-than-average year-class. The variations o f year-classes 1970-1986 were 

generally sim ilar to year-classes 1943-1986 with one exception. The N orw egian spring 

spawning stock had only one stronger-than-average year-class during 1970-1986. 

Overall, the recruitm ent o f  less variable stocks (North Sea, ICES district V ia north, 

Icelandic sum m er spawners, Seym our Canal and Strait o f  Georgia) depended more 

strongly on spaw ning biom ass than did o ther more variable stocks (Tables 2.2 and 2.4).

DISCUSSION *

Herring, classified by Cushing (1982) as an "environmental type" species, is one 

o f the m arine fish species with the most variable recruitment. For such a fish species, 

is recruitment related to its spaw ning stock? The answer is definitely yes, at least at low 

spawning stock levels. It is intuitive that recruits are survivors from the eggs w hich are 

spawned by the spawning stock. No eggs will result in no recruits in a closed 

population. The critical questions are how im portant are the density-dependent effects 

on recruitm ent and whether we can detect them  statistically. The results in this study
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Table 2.4. Sum m ary o f herring recruitm ent from 19 stocks in the north A tlantic and 
northeast Pacific Oceans.

Y ear-classes 1948-1986 Year-classes 1970-1986

Stock Ratio C.V. N Yr N/yr Maxyr Ratio C.V. N Yr N/yr Max]

1 NSea 51.2 0.71 18 39 2.2 17 35.9 0.91 6 17 2.8 >12
2 ViaN 7.1 0.55 8 17 2.1 6 7.1 0.55 8 17 2.1 6
3 IceSum 41.7 0.74 18 39 2.2 8 15.4 0.74 6 17 2.8 >5
4 IceSpr 12107.0 0.90 9 22 2.4 >30 NA NA NA NA NA NA

5 Norwe 620,8 1.57 13 37 2.8 17 168.5 2.73 1 17 17.0 >14

6 M aine 18.5 0.66 8 21 2.6 6 18.5 0.70 6 17 K> bo 6
7 W BNDB 169.6 1.41 5 16 3.2 >10 29.6 1.23 4 10 2.5 5
8 BBTB 520.3 2.15 3 16 5.3 >10 31.7 1.26 3 10 3.3 7
9 CBSS 7 3 5 3 2.37 4 16 4.0 >10 36.0 1.09 4 10 2.5 5
10 EBS 135.7 0.98 10 31 3.1 >7 135.7 1.18 4 17 4.3 >7

11 PWS 66.9 1.26 5 18 3.6 6 66,9 1.23 5 17 3.4 6
12 Sitka 429.0 1.45 4 19 4.8 >9 429.0 1.36 4 17 4.3 >7
13 Seym our 6.2 0.53 6 14 2.3 >5 6.2 0.53 6 14 2.3 >5
14 KahS 20.2 1.00 4 14 3.5 >5 20.2 1.00 4 14 3.5 >5
15 BCPR 57.2 0.75 14 39 2.8 9 10.2 0.76 5 17 3.4 >8
16 BCQCI 131.7 1.25 10 39 3.9 8 43.4 1.19 6 17 2.8 5
17 BCCC 30.3 0.96 12 39 3.3 9 18.7 1.08 4 17 4.3 8
18 BCWVI 137.2 0.68 15 39 2.6 10 15.2 0.77 6 17 2.8 10
19 BCSG 28.9 0.58 16 39 2.4 10 4.7 0.45 8 17 2.1 6

Average 178.2 1.09 3.2 57.5 0.99 3.6

Abbreviations:
Ratio: ratio between the strongest to w eakest year-classes 
C.V.: coefficient o f variation o f  recruitm ent 
N: num ber o f stronger-than-average year-classes 
Yr; total num ber of years with recruitm ent data
N/yr: average num ber o f years between stronger-than-average year-classes (equal to 

num ber of stronger-than-average year-classes divided by total num ber o f years) 
Maxyr: m axim um  num ber o f years between stronger-than-average year-classes (i.e., 

m axim um  interval between two stronger-than-average year-classes).



indicate that recruitm ent from the majority o f the 19 herring stocks in the Atlantic and 

Pacific O ceans is com pensatory density-dependent. The survival rates from eggs to 

recruits decrease as the spaw ning biomass increases. The relationships between year- 

class strength and spaw ning biomass arc difficult to detect. These relationships cannot 

be detected fo r slightly m ore than half o f the stocks at a 0.05 significance level. Three 

different statistical tests (2 param etric and i non-parametric tests) reach sim ilar 

conclusions.

As expected, a m ajority o f the stocks have a dom e-shaped stock-recruitment 

curve, with strong recruitm ent associated w ith intermediate spaw ning biomass. D om e­

shaped stock-recruitm ent curves have been reported for several herring stocks worldwide 

(Cushing 1973), for the herring stock in the Strait o f Georgia (Stocker et al. 1985), and 

for several New foundland herring stocks (W inters and W heeler 1987). The dom e-shaped 

curve may partially result from  density-dependent mortality o f herring eggs. Herring are 

demersal spaw ners with lim ited spawning grounds due to lim ited suitable bottom 

substrate for spawn deposition (Haegele and Schweigert 1985). A large spawning 

biomass deposits a high density o f eggs that result in high egg mortality due to 

suffocation (Haegele and Schweigert 1985). On the other hand, high egg m ortality may 

result from the low egg density because predation of herring eggs by birds is relatively 

constant over tim e (Haegele and Schw eigert 1985). M aximum larval production was 

observed to occur at medium egg densities (Taylor 1971). A detailed discussion on the 

biological basis o f the dom e-shaped stock-recruitment curve fo r herring can be found 

in W inters and W heeler (1987),

S tock-recruitm ent relationships for som e herring stocks were neither statistically 

nor visually apparent. M easurem ent errors in the estimation o f spawning stock and 

recruitm ent and stochasticity o f actual recruitm ent due to environm ental variation can 

mask these stock-recruitm ent relationships (W alters and Ludwig 1981), Current survey 

m ethods o f herring abundances include aerial, spawn deposition, hydroacoustic and 

larval trawl surveys (Jakobsson 1985; Trum ble and Humphreys 1985), which are prone 

to different levels of m easurem ent errors. Koslow (1992) demonstrated that a stock-

49



recruitm ent relationship could not be defined for a fish slock with high fecundity. High 

fecundity could increase variation o f recruitm ent, which results in difficulty in detecting 

the stock-recruitm ent relationship. But high fecundity does not necessarily mask the 

stock-recruitm ent relationship for herring stocks, because m any herring stocks in this 

study have sim ilar fecundity and natural m ortality, but some o f  them  have well-defined 

stock-recruitm ent relationships and others do n o t

For a given spaw ning biom ass, stock-recruitm ent relationships can describe only 

m ean recruitm ent, which is likely m odified by environm ental conditions and m ulti­

species interactions. Thus, stock-recruitm ent relationships are valuable in studying long­

term harvest strategies (W alters 1986), but not accurate fo r short-term  forecasts. 

Spawning stocks and environm ental factors are usually com bined to exam ine 

recruitm ent dynam ics. W espestad (1991) show ed that herring recruitm ent in the eastern 

Bering Sea was related to spaw ning biom ass, sea surface tem perature and w ind-driven 

transport. S tocker e t al. (1985) indicated that spaw ning stock, sea surface tem perature 

and sum m er river discharge were im portant factors in determ ining year-class strengths 

o f the Strait o f  G eorgia herring. W inters and W heeler (1987) concluded that m uch of 

the recruitm ent variation o f  seven herring stocks in Newfoundland could be explained 

by spawning stock, sea surface tem perature and salinity. A lthough many correlation 

studies such as the above indicate that recruitm ent was highly significantly associated 

with environm ental factors, it is an open question whether such correlations are real or 

spurious. Schw eigert and Noakes (1991) showed that stock-recruitm ent m odels 

combined with environm ental factors did not im prove the recruitm ent forecast precision 

o f British C olum bia herring stocks from  the stock-recruitm ent m odels w ithout 

environm ental factors. Thus, recruitm ent-environm ental relationships are probably not 

useful for predicting recruitm ent. However, recruitm ent-environm ental relationships are 

useful for factoring out som e of the recruitm ent variation to better reveal the underlying 

stock-recruitm ent relationship. For exam ple, the stock-recruitm ent relationship was not 

apparent for the Sitka Sound herring stock until the effect o f sea surface tem perature 

was rem oved (Zebdi and Collie in press). The relationships between herring recruitm ent
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and environm ental factors may be far more com plex than sim ple correlation studies 

reveal.

Herring recruitm ent variation may also be partially caused by species 

interactions, W alters e t al. (1986) dem onstrated that the herring recruitm ent in the 

Hecate Strait, British Colum bia, is strongly influenced by cod predation. W are and 

McFarlane (1986) showed that the herring year-class strengths off the west coast o f 

Vancouver Island are weakly correlated with the biomass o f adult Pacific hake. 

However, the effects o f species interactions on herring recruitm ent from elsewhere have 

seldom been demonstrated.

Recruitm ent data transform ations (e.g., Log (R)) that em phasize low-frequency 

variation have stronger correlations between different stocks than the transform ations 

(e.g., Dlog(R)) that em phasize high-frequency variation. After rem oving the influence 

o f spawning stocks, the data sets have the w eakest correlations among these three data 

sets. These results are consistent with the conclusions by H ollowed et al. (198?) in 

which correlations among low-frequency data were much stronger than among the high- 

frequency data. The strong correlations am ong low-frequency data m ight be caused by 

the synchrony o f recruitm ent, autocorrelation o f recruitment or by both. Positive 

autocorrelation with a tim e lag o f one year occurred for some stocks. Taking the first- 

differences o f log-transform ed recruitm ent can increase the reliability o f the statistical 

test (Thom pson and Page 1989), Overall, the three data forms shared som e com m on 

results: significant, positive correlations existed among neighboring stocks for some 

areas. Since this synchrony could not be explained by spawning biomass, the 

environm ental forcing m ay be an im portant factor on herring recruitm ent within a 

certain geographic area.

In the north Atlantic Ocean, three oceanic stocks. Icelandic sum m er spawners, 

Icelandic spring spaw ners and Norwegian spring spawners, are not closely related, 

although they share a common environment during certain periods o f life cycles 

(Jakobsson 1980). Strong recruitment occurred for the Icelandic summer spawners 

regularly, whereas Norwegian spring spawners took 17 years to produce a strong year-
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class after the collapse in the late 1960’s, Icelandic spring spaw ners have not recovered 

after their collapse about three decades ago. It is apparent that local environm ents and 

spawning stocks are im portant regulators o f these stocks. The North Sea and ICES 

district V ia north stocks are neighboring shelf stocks. The recruits o f  these two stocks 

are highly correlated, although the recruitm ent o f ICES district V ia north stock is much 

more variable interannually. Com m on environm ental forces m ight have influenced these 

two close stocks, but more than half o f recruitm ent variations for both stocks could be 

explained by spawning biom ass alone. R ecruitm ent dynam ics o f herring stocks in 

N ew foundland were com prehensively exam ined by W inters and W heeler (1987). Three 

geographically close stocks in N ew foundland are subjected to the influences o f the 

Labrador C urrent and highly associated each other (W inters and W heeler 1987). In 

addition to environm ental conditions, spaw ning biom ass is also an im portant factor. The 

environm ental forces influencing N ew foundland stocks apparently do not extend to the 

G ulf o f M aine because there is no association between the G u lf o f M aine stock and 

New foundland stocks.

For first-differenced data sets in the northeast Pacific O cean, the Prince W illiam 

Sound and Sitka Sound stocks are strongly clustered and their populations have 

prim arily been supported by strong recruitm ent every 4 years since 1976. Zebdi and 

Collie (in press) showed that sea surface tem perature significantly influences the year- 

class strengths for the Sitka Sound stock, but the m ost crucial issue, the cause o f the 

strong 4-year cycle, has not been found. Since the spawning stocks o f these two stocks 

consist o f 5 to 10 age groups and are located separately along the G ulf o f Alaska, the 

m ost likely m echanism  causing the 4-year cycle is the environm ental force operating 

in the G ulf o f Alaska. Three stocks in central and southern British Colum bia are highly 

correlated. Between these two groups o f herring stocks are located three stocks: Kah 

Shakes, Prince Rupert and Queen Charlotte Island. These three stocks are not only 

closely associated each other, but also have some patterns sim ilar to their northern and 

southern neighboring groups. These three groups o f herring stocks are approxim ately 

located in three oceanic dom ains proposed by Ware and M cFarlane (1989): the northern
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group in the Coastal Downwelling dom ain, the m iddle group in the Transition Zone and 

the boundary between the Transition Zone and the Coastal D ow nw elling dom ain, and 

the southern group in the Coastal Upwelling domain and the boundary between 

Transition Zone and the Coastal Upwelling dom ain. The different recruitm ent patterns 

in these three groups m ay have been caused by the different environm ental forces in 

three oceanic dom ains (W are and McFarlane 1989). These environm ental forces and 

species interactions (W alters et al. 1986; W are and M cFarlane 1986) m ay be the 

important factors that result in weak density-dependent effects on the recruitm ent of 

many herring stocks along the G ulf o f Alaska. The eastern Bering Sea stock is not 

related to the northern group, but is related to the Seym our Canal stock located on the 

inside waters geographically close to the Sitka Sound stock. W hy the eastern Bering Sea 

and Seym our Canal stocks are associated is not d e a r , but about half o f recruitm ent 

variation of the easter Bering Sea stock and the m ost of recruitm ent variations of the 

Seym our C anal stock could be explained by spawning biomass. The recruitm ent for 

Seym our Canal stock may be more influenced by the local environm ental conditions 

than the oceanic domain because it is located in the inside waters.

The results regarding the spatial patterns in the northeast Pacific in this study are 

som ew hat different from the conclusions o f  Zebdi and Collie (in press) and W are and 

M cFarlane (1989). Ware and M cFarlane (1989) clustered three m ajor groups o f herring 

in British Colum bia from the recruitm ent data, and Zebdi and Collie (in press) separated 

them as two groups corresponding to the Coastal Downwelling and the com bined 

Transition Zones and Coast Upwelling by using log-transform ed recruitm ent data. Zebdi 

and Collie (in press) also found a correspondence between these recruitm ent patterns 

and sea surface tem perature patterns. Besides the different treatm ent of recruitm ent data, 

there are noticeable differences between this study and the past studies (Schweigert et 

a l  1993): I) the stock definitions for British Colum bia herring have been changed; 2} 

catch-age analyses for British Colum bia herring have been modified to estimate 

instantaneous natural m ortality: and 3) different time series of recruitment data were 

used. If the whole time series of log-transformed recruitment data are applied, all



herring stocks in British Colum bia are strongly correlated and no discrim ination can be 

made. By taking first-difference o f log-transform ed recruitm ent data. 1 was able to 

detect the gradient changes o f  the herring recruitm ent patterns am ong the three oceanic 

domains. The boundaries o f these oceanic dom ains may shift from  year to year and 

herring m ay spend som e tim e in other oceanic dom ains during their life cycles (W are 

and McFarlane 1989), w hich m ake the stock  grouping more o f  a  gradient.

The herring recruitm ent patterns suggest that spatial scale is an im portant factor 

in exam ining the relationships between environm ental conditions and recruitm ent 

dynamics. Each environm ental process m ay play an im portant role in recruitm ent 

dynamics o f herring w ithin a lim ited spatial scale. In studying the relationships between 

the anom alous environm ental conditions and synchronous extrem e year-classes of 

several northeast Pacific m arine fish stocks. Hollowed (1990) was able to identify 

environm ental conditions fo r synchronous extrem e year-classes o f som e groundfish 

stocks, but failed to find environm ental patterns for environm ental type stocks o f pelagic 

fish. Thus, the environm ental influences on recruitm ent may be large scale fo r some 

stocks and on a  very lim ited scale for others.

The density-dependent recruitm ent for many herring stocks has im portant 

im plications fo r herring fisheries m anagem ent. Many herring stocks have followed boom 

and bust cycles, and during the last three decades, heavy fishing was followed by the 

bust cycles o f  several m ajor herring stocks (Jakobsson 1985; Hourston 1980). Once a 

stock collapsed, it would take m any years to produce a strong recruitm ent to recover 

under a low spaw ning stock (Table 2.5). Som e stocks could not recover even after two 

to four decades. W ithin a few  years after fisheries were d o sed  when stock abundances 

fell below low levels, m any herring stocks began to recover (e.g., the Kamishak Bay 

stock, Icelandic sum m er spaw ners, the North Sea stocks, the W est coast o f Vancouver 

Island and Queen C harlotte Island stocks, see Table 2.5). In cases in which no 

m anagem ent actions were taken to stop fishing, many stocks have not yet shown signs 

of recovering since collapses two to four decades ago (e.g.. the Icelandic spring 

spawning and the H okkaido herring stocks). Although fishery closures may not help all
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Table 2.5. Examples o f collapse and recovery o f herring stocks. Summary of peak spawning biomass during observed 
period, period o f fishery closure, spawning biomass when the fishery closure occurred and when the fishery was re­
opened.

Stock Peak Spawning Observed Closed Biomass at Biomass at
Biomass (t) Period Period Closure (t) Opening (t)

Kamishak Bay, Alaska 28,032 1978-92 1980-84 2,631 11,057

Nelson Island, Alaska 10,000 1978-92 1990-91 2,454 4,785

Queen Charlotte Is., Canada 50,449 1951-92 1968-71 2,712 17,384

West Vancouver Is., Canada 112,700 1951-92 1968-71 8,132 61,240

Icelandic Summer Spawners 313,000 1947-92 1972-74 11,000 119,000

North Sea 3,890,000 1948-92 1977-80 60,000 215,000

Norwegian Spring Spawners 11,150,000 1952-92 1971-83a 50,000 590,000

Hokkaido 975,OOOb 1890-1956 1956-NAC NA NA

Icelandic Spring Spawners 819,000 1947-92 I968-N AC 3,300 NA

Lynn Canal, Alaska 11,294 1972-92 1983-present 1,623 l,678d

: A small amount o f catch quota was allowed for some years. h: Total catch. c: No management action was taken to 
close the fishery and the fishing was stopped by fishermen due to low catch; no signs o f recovery have been seen for 
these two stocks. d: spawning biomass in 1992; the fishery has been closed since 1983.
Sources: See Table 2.1 for stocks in Canada, North Sea, Iceland and Norway; Bucher and Hammarstrom (1993) for 
the Kamishak Bay stock; Hamner and Kerkvliet (1992) for the Nelson Island stock; D. Carlile o f Alaska Department 
of Fish and Game (personal communications) for the Lynn Canal stock; and Morita (1985) for the Hokkaido stock.



depressed herring stocks to recover within a short time horizon (e.g., the Lynn Canal 

stock (Table 2.5)) and favorable environm ental conditions also  help stock recovery 

(Corten 1986), prohibiting fishing is one o f the m ost im portant factors affecting the 

tim ing o f recovery o f a  depressed stock. Thus, m anagem ent strategies for herring 

fisheries should take into account spawning stocks, and prevent overfishing. One o f the 

m ost effective m anagem ent strategies to protect the spaw ning stocks and prevent 

overfishing is a threshold m anagem ent strategy, in which no fishing will be allowed if 

the stock falls to a low level. The next stage of this study will exam ine m ethods 

defining threshold levels and factors influencing the optim al threshold levels for a given 

fish stock.
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C h a p te r  T h ree  

T H R E S H O L D  M A N A G E M E N T  S T R A T E G IE S  F O R  

E A ST E R N  B E R IN G  SEA  P O L L O C K

S U M M A R Y

A single-species sim ulation model o f  an age-structured population with stochastic 

recruitm ent w as constructed for eastern Bering Sea (EBS) pollock with a threshold 

m anagem ent strategy. O ther factors considered were fishing mortality, recruitm ent, and 

initial biom ass. The objective function was a weighted function o f  increased average 

yield and decreased standard deviation o f  yield over a planning horizon. I used my 

model to solve two problem s. First, I determ ined the o p tim a l. threshold given a 

prescribed fishing m ortality. Second, 1 determ ined optimal threshold and fishing 

mortality, sim ultaneously. Applied to EBS pollock, a threshold m anagem ent policy 

always increased average yield over a non-threshold policy. For the first problem , 

optimal threshold levels ranged from 20% to 30% of pristine biomass. For the second 

problem , each scenario had a unique threshold and fishing mortality, with fishing 

mortality slightly above the m axim um  sustainable yield (M SY) level and a threshold 

range of 25-50% . These results were robust with regards to other factors. Benefits of 

the threshold policy were greater with higher fishing mortality and with a Ricker 

spawner-recruit m odel than with a Beverton-H olt model. The success o f the threshold 

m anagem ent policy is due to the relatively rapid rebuilding o f a population to levels 

producing M SY.

INTRODUCTION

The gadoid fish species walleye pollock, Theragra chakogm m m a  (Pallas 1811), 

is the only recognized m em ber o f the genus Theragra and is the m ost abundant fish 

species in the northeast Pacific Ocean. In the EBS. the peak abundance o f pollock was
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estim ated at 12,6 m illion I from  1964 to 1987 (Bakkala 1988), Pollock not only supports 

a huge fishery but also form s one o f the m ost im portant com ponents o f the Bering Sea 

biological system , representing a large fraction o f the total standing stock o f EBS 

demersal fish. The m ajority o f the groundfish catch in the EBS and Aleutian Islands 

region is pollock (NPFMC 1991),

A com prehensive review  o f the biology and m anagem ent o f walleye pollock 

from around the world was presented in a symposium  organized by Alaska Sea Grant 

College Program  (1989), Pollock is a semidemersal species, usually form ing schools 

near the bottom  during daytim e and dispersing up into the w ater colum n at night (Smith 

1981), In the EBS, the fem ale pollock start to mature at age 2, and the m ajority of 

fem ales m ature betw een ages 3 and 6. The spawning period o f  pollock has been 

reported to extend from the end o f February through July, w ith peak spawning activity 

from the m iddle o f  M arch until the m iddle o f M ay (Smith 1981; Bailey et al. 1986). 

Cannibalism  and predation are im portant determ inants o f pollock population dynamics 

in the EBS (Sm ith 1981; Bakkala 1988; Honkalehto 1989; L ivingston 1989: M ito 1990). 

although I do not have enough inform ation to make use o f those features in my model. 

Before 1963, sm all am ounts o f pollock in the EBS were occasionally harvested 

by Japanese traw lers. Because o f declining catch rates o f yellovvfin sole in the Bering 

Sea, Japanese traw lers began directed pollock fisheries in 1964, After processing 

techniques were developed to m anufacture pollock into Surimi, a traditional Japanese 

seafood com m odity, com m ercial catches increased rapidly in 1967 and reached a peak 

in 1970-1975 with catches ranging from 1.3 to 1,9 million tonnes annually. Pollock 

catches were gradually reduced through bilateral agreem ents between Japan and the 

USSR after the peak catch in 1972 (Bakkala et al. 1987). A fter im plem entation o f the 

Magnuson Fishery Conservation and M anagem ent Act (MFCMA) in 1977, catch quotas 

have been set from 950,000 tonnes to 1.4 million tonnes since 1977, In 1980, U.S. 

trawlers began harvesting pollock and by 1990 the pollock fishery was fully 

Am ericanized. Figure 3,1 illustrates total pollock catches and population biomass of 

ages 3-9 in the EBS from 1964 to 1990. Since im plem entation o f M FCM A.
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Figure 3.1. Total catch and biomass o f ages 3*9 o f walleye pollock in the eastern Bering 
Sea. Two series o f biom ass were estim ated with CA G EA N  and cohort analysis, 
respectively.



conservative harvest rates o f around 25%  or less have been used.

The population dynam ics and m anagem ent strategies of EBS pollock have been 

a subject o f intensive study during the last two decades. Population dynam ics was 

exam ined by Chang (1974) with a surplus production m odel, yield per recruit analysis 

and cohort analysis. C hang’s studies were extended by Low (1974) to m ulti-species 

population dynam ics. Population dynam ics and consequences o f harvests were 

investigated with ecosystem  sim ulation approaches by Laevastu and Favorite (1976). 

Laevastu and Larkins (1981), and Knechtel and Bledsoe (1983). W espestad and Terry

(1984) used an age-structured population model containing econom ic functions to study 

biological and econom ic yields under differing harvesting regim es. Constant effort and 

fixed escapem ent policies were com pared for Bering Sea pollock by G etz e t al. (1987) 

through com puter sim ulations. A lternative population m odels for EBS pollock were 

exam ined by Q uinn and Collie (1990). None o f  these studies em bedded a threshold level 

in their population models.

In this chapter (based on Quinn et al. 1990). I analyzed walleye pollock 

population dynam ics in the EBS with an age-structured com puter sim ulation model 

sim ilar to Deriso et al. (1985) and Quinn (1986) under various threshold roles and 

investigate the effects o f som e im portant factors on each threshold m anagem ent policy. 

Optimal threshold levels and fishing m ortality rates were determ ined as a function of 

average yield and standard deviation o f yield. The first optim ality problem  determ ined 

the optimal threshold given a  prescribed level of fishing m ortality. The second 

optim ality problem  determ ined optimal levels for the threshold and fishing mortality, 

sim ultaneously,

M E T H O D S

D ata  A nalysis

Natural m ortality, length, weight, fecundity and catch-age data were provided 

by V, W espestad (N W A FC. NM FS, NOAA, Seattle W A), covering ages 2 through 9 

between 1964 and 1987. Table 3.1 sum m arizes population param eters. In addition, three
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Table 3 ,1, Estim ates of natural m ortality, m aturity, fecundity and selectivity, and growth 
and spawner-recruit param eters o f  eastern Bering Sea pollock. The Beverton-Holt curve 
was fitted by eye so that standard deviations o f estim ated param eters and R2 are not 
available.

Instantaneous Proportion Fecundity Gear 
Age Natural M ortality M ature (# o f Eggs) Selectivity

2 0.45 0.008 16200 0.163

3 0.30 0.289 44100 0.474

4 0.30 0.641 77900 1.000

5 0.30 0.842 114000 1.000

6 0.30 0.901 133000 0.990

7 0.30 0.947 169000 0.587

8 0 3 0 0.963 193000 0.634

9 0.30 0.970 206000 0.694

Growth (kg) m odel

W w = 1.537

k = 0.221 

% = -0 .8 2 7  

b = 3 .3 5 3

Spawner-recruit model

Ricker 

a  =  0.06211 

P = 0,00205 

y=  0.0 
cr = 0.47 

SD («) = 0.01844 

SD (p) = 0.00040 

R2 = 0.61 (DF=17)

Beverton-Holt

0.104274

0.009932

- 1.0

NA

NA

NA

NA



estim ates o f fishing m ortality from  com bined hydroacoustic trawl surveys were available 

(0.666 in 1979, 0.152 in 1982, and 0.100 in 1985), Finally, virtual population analysis 

(VPA) was provided, which involved tuning the procedure with the survey information 

(Quinn and Collie 1990). P revious analyses o f walleye pollock (A lton and Deriso 1983; 

W espestad and Traynor 1988) were helpful in model construction.

Population abundance was estim ated with catch-age analysis with auxiliary 

information and the catch-age analysis com puter program CA G EA N  (Deriso e t a l  1985, 

1989), Natural m ortality was set to 0.45 at age 2 and 0.30 at o lder ages in accord with 

other analyses (e.g., W espestad and Traynor 1988). Age selectivity was set to 1 for ages 

4-5, based on results from  the VPA procedure;. Catch-age analysis was performed by 

Dr. Terry Quinn o f U niversity o f Alaska Fairbanks and the m ethods and results o f the 

catch-age analysis are described by Quinn et al. (1990) and Q uinn and Collie (1990).

Figure 3.2 show s the relationship between recruitm ent (num bers of fish at age 

2) and num ber o f eggs (num bers o f  fish tim es percent m aturity and fecundity). One very 

strong year-class (1978) is evident. The deviation o f the 1978 year-class is thought to 

be due to environm ental variation (Quinn and Niebauer in press). Recruitm ent declines 

asym ptotically with increasing egg num ber for sufficiently large values o f eggs. The 

three m ost recent estim ates o f recruitm ent (year-classes 83, 84 and 85) are less than 

expected from  the overall pattern. These values are highly uncertain, being based on few 

observations erf each year-class in the com m ercial fishery. These three data points were 

excluded from  fitting spaw ner-recruitm ent functions.

Tw o com m on spaw ner-recruitm ent models, the R icker and the Beverton-Holt, 

were fitted to the data. The R icker model appears to fit better than the Beverton-Holt 

model (Figure 3.2). Because the R icker model was derived from  a process in which 

cannibalism  of young fish by older fish results in declining overall spawning potential 

at high spaw ner biomass (R icker 1954: Guliand 1983). the R icker model seem s most 

appropriate given pollock biology as well, as described in the introduction. Both 

spaw ner-recruitm ent relationships with stochastic variation were used in the sim ulation 

study described below, in order to determ ine if the threshold analysis was affected by
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Figure 3.2. Spawner-recruit estimates for each year-class and fits o f the Ricker and 
Beverton-Holt models for eastern Bering Sea walleye pollock. The numbers in the plot 
are brood-year.



the shape o f the spaw ner-recruitm ent curve.

64

A g e-s tru c tu red  M odel

The age-structured m odel I used is sim ilar to the one presented by D eriso e t al.

(1985) and Quinn (1986). The recursion relation o f abundance is 

(3.1) Nt+La+1 = Nt,a exp(-Z,^

^ t,a  =  ^ t,a +  ^ a»
where t stands for year and a for age, Ns a is abundance at the beginning o f year I and 

age a. Ft a is fishing m ortality in year t for a-yr-olds. Ma is natural m ortality at age a. 

and ZtM is total instantaneous m ortality in year t and age a. A ges 2 to 9 were m odelled. 

Natural m ortality is assum ed to be tim e-independent and fishing m ortality separable into 

an age factor and a year factor,

(3 2) F = s f  '‘ t,a a *t!

where age selectivity coefficient sa is equal to 1 for at least one age, and f t is full- 

recruitment fishing m ortality.

The Baranov catch equation (Ricker 1975),

0-3) C „  = N ,JI.exp(-Z1J iF , a/Z u ,
was used to calculate catches Cta. The biom ass and yield were obtained by m ultiplying 

weight by age to abundance and catch. The weight wa is determ ined by a general von 

Bertalanffy growth equation (R icker 1975)

(3.4) wa = W „ (I - exp[-K (a-t0)])b

where Wx , k. t0 and h are grow th param eters, given in Table 3,1.

The spaw ner-recruitm ent relationship is represented in the sim ulation m odel by 

a general m odel proposed by Deriso (1980):

(3.5) Nl>r = oc Et.r (1 - p y  exp(vE)

where r is the recruitm ent age, equal to 2 for EBS pollock, N, r is recruitm ent in year 

u E,,r is num ber of eggs in year t-r, and a ,  P and y  are parameters. The Ricker and 

Beverton-Holt m odels are tw o special cases o f equation (3.5) with y  equal to 0 and -1,



respectively (Table 3.1). The random  variable vt is usually assum ed 10 follow a normal 

distribution w ith m ean 0 and variance <r. The term  exp(vt) is used to represent 

environm ental variation, both for m athem atical convenience as well as for biological 

realism. The theoretical justification  for the lognorm al distribution is that exp(vt) can 

be interpreted as a random  survival factor resulting from  m any independent and 

m ultiplicative environm ental factors. The term  v, represents the sum  o f  these random  

factors* and thus should be approxim ately norm ally distributed by the Central Limit 

Theorem  (W alters and Hilbom 1976; W alters 1986), Hennemuth et al. (1980) and 

Peterm an (1981) offer further em pirical justification. For the pollock population data 

(Figure 3.2), the residuals o f  the R icker curve are approxim ately lognormally 

distributed, although the sam ple size is too small to allow a rigorous conclusion. The 

estim ated autocorrelation o f  the residuals for the Ricker m odel was also small (0.156), 

suggesting that there was no tendency for good years o f recruitm ent to be followed by 

either good years or bad years.

Spaw ning was assum ed to occur after fishing so that total num bers o f eggs in 

year t are calculated by

(3.6) E, = £ ,  (N u - C ,J  m , f,

where ma is m aturity rate at age a and f a fecundity, given in Table 3.1. This assum ption 

is approxim ately correct for pollock, for which a significant part o f  the total harvest is 

a roe fishery, w hich directly rem oves eggs from the annual production.

S im ula tions

To investigate how the fishery m ight respond to different threshold m anagem ent 

policies should the am ount o f fish available for harvest decline to low biomass levels,

I used the age-structured m odel for num erical experiments in which the kind and 

amount o f fishing, the m anagem ent policy, and the assumed characteristics o f the 

pollock stock w ere varied. 1 exam ined the fishery when managed at different threshold 

values ranging from  0 (no threshold used) to the biomass level producing M SY. The 

threshold level was expressed as a percentage o f  pristine biom ass. Fourteen threshold



levels (0, 5% , 1.5%. and 10% to 60%  for each 59c increm ent) were evaluated for 

searching optim al levels, The sim ulated fish stock experienced fishing mortality along 

with naturally-occurring environm ental variation. Each o f several factors that m ight 

affect the fishery was varied in the sim ulation to see its effects and how it interacted 

with o ther factors to affect yield, variation in yield, rebuilding tim e, time o f first 

upcrossing o f  the threshold level and total tim e below the threshold level (no fishing). 

The rebuilding time is defined as total num ber o f years for the population starting from 

the initial biomass to reach its equilibrium  biomass level. The factors considered are:

1. Environm ental variation vr  equation (3,5); I used tw o levels o f environm ental 

variation. LO W  variation is equivalent to  one strong year-class (10 tim es average year- 

class size) every 100 years (standard deviation 0  = 0,5 ), the current best estim ate for 

EBS pollock (Table 3.1), HIGH variation is equivalent to one strong year-class every 

10 years (o  = 1.0). Recruitm ent variation this high has been observed for some marine 

fish stocks (Rothschild 1986).

2, Environm ental autocorrelation (AC): The tendency o f "good" years for 

recruitm ent to follow  each o ther in tim e. 1 assum ed three cases: N O  autocorrelation (a 

good year is as likely to be follow ed next year by another good year as it is by a bad 

year), N EG A TIV E autocorrelation -0.5 (a good year tends to be follow ed by a bad one), 

and PO SITIV E autocorrelation 0.5 (good years tend to be follow ed by good ones, and 

bad years by bad ones),

3. Fishing mortality: 1 used LOW  fishing mortality equivalent to full fishing 

m ortality rate at MSY from the age-structured model in the absence o f environm ental 

variation (v, = 0), HIGH fishing mortality was set at 1.5 times the LOW fishing 

mortality rate.

4. Planning horizon, the number o f years for the simulation: I used a SHORT 

(20-yr) and a LONG (50-yr) horizon. It is recognized that even the SHORT horizon 

is much longer than those conventionally in effect when resource policy is driven solely 

by economic or political considerations.

5, Spawner-recruit relationship: 1 used RICKER and BEVERTON-HOLT models.
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6. Reproductive potential a  in equation (3.5): the maximum potential recruits 

that an individual fish is capable of producing under ideal conditions. I assumed three 

levels -  MEDIUM (the level actually estimated from the EBS pollock data. Table 3.1), 

a LOW level half this value, and a HIGH level 1.5 times the MEDIUM value for the 

Ricker model. This parameter was not varied for the less-likely Beverton-Holt model, 

due to the large number o f other factors considered.

7. Initial biomass: I assumed that the stock had been reduced to 5% or 

alternatively to 15% of its pristine biomass at the beginning of each computer 

experiment.

A particular combination of the seven factors is called a scenario. All 192 

possible scenarios were simulated. Numerical experiments using the model involved 

simulated variation in the environment For this reason, averages and variance around 

averages for a given set o f conditions were calculated from a sufficiently large number 

of replicate computer runs (5000 for scenarios with environmental autocorrelation and 

2000 for the other scenarios) to make the estimates o f averages and variances 

statistically valid.

The simulations are straight forward. For each scenario, I started the simulation 

from an initial biomass (Figure 3.3). During each fishing season, if the biomass was 

above the threshold, fishing was allowed; otherwise the fishery was closed. Then the 

population was updated to next year. If at the end of the duration (planning horizon), 

the next replicate would be simulated until all replicates were done (Figure 3.3).

Threshold Levels and O ptim ality Criteria

Common objective functions for determining optimal harvest strategies include 

the sum, discounted sum, average or median of yield, natural logarithm of yield, or a 

power function of yield (Ruppert et al. 1984; Deriso 1985; Hightower and Grossman 

1987: Getz and Haight 1989). Ideally, management of a fishery should increase yield 

as well as decrease variation in yield. However, it is possible that a management policy 

will increase both yield and its variation, leading to an optimization problem with two
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N ext R eplicate

Figure 3.3, Flow chart of com puter sim ulations to evaluate threshold m anagem ent 
strategies for eastern Bering Sea pollock. "



payoff functions (e.g. Ho 1970), Some trade-off between increased yield and decreased 

variation in yield is needed to select an optim al threshold le v e l I chose a flexible 

objective function' of a linear com bination o f average yield and standard deviation o f 

yield to provide this trade-off. The goal is to maximize the objective over the planning 

horizon, or

(3,7) raax[(l - X) Yth - 1  SDth]

where Ylh and SDlh is the average annual yield and standard deviation under threshold 

m anagem ent policy "th", and X is a penalty weighting factor which m easures the cost 

of one unit o f increase in variation in yield in term o f a unit o f increase in yield. With 

X = 0,5, an equal trade-off o f increased average yield with decreased standard deviation 

is made. Tw o special cases o f objective functions are maximum yield and minimum 

variation in yield, which correspond to X equal to 0 and 1. respectively. I also exam ined 

the objective o f maximum logarithm  o f yield for some sim ulations and found that the 

results were sim ilar to objective function (3,7) with X approxim ately equal to 0,2.

Tw o optim ality problem s were considered. First, optimal threshold levels were 

determined under a given level o f fishing m ortality rate from objective function (3 .7 ). 

Two levels o f fishing m ortality rates, LOW  and HIGH, were conditioned for the first 

optim ality problem . Exam ining this problem  provides advice regarding im plem enting 

a threshold level while continuing the current m anagement practice o f  setting ABC with 

a constant m ortality rate policy. Current practice determines fishing m ortality from 

either the F01 or FMSY approach, depending on population status (see NPFMC (199!) 

for its use with pollock).

Secondly, optimal com binations of threshold levels and fishing m ortality rates 

were determ ined, using objective function (3.7). This two-parameter optim ization 

problem was investigated to determine if there is a jo in t solution for finding the optimal 

fishing m ortality and threshold level for a given population, and to exam ine the 

sensitivity o f this com bination to the other factors.
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R E S U L T S

A determ inistic age-structured m odel with the population param eters in Table 

3,1 was iterated for a long enough period to determ ine associated equilibrium  biomass 

and yield as a function o f fishing m ortality. For the purpose o f  this study, the pristine 

biomass for EBS pollock was defined as the m axim um  equilibrium  biom ass without 

fishing under determ inistic environm ental conditions. The pristine biomass, m axim um  

equilibrium  yield and its associated equilibrium  biomass were obtained for the Ricker 

model with three levels o f reproductive potential a  (equation 3.5) and fo r the Beverton- 

Holt m odel (Table 3.2), The parameters were sensitive to the spaw ner-recruit m odel and 

increased with increased reproductive potential.

The sim ulations with stochastic variation in recruitm ent were then m ade for the 

scenarios listed above. Average and m edian yield and the standard deviation o f  yield 

over the planning horizon were com puted fo r each sim ulation and averaged over 

replicates. M edian yield results are not presented, because they did not differ 

qualitatively. Although absolute levels o f average yield and standard deviation o f yield 

varied appreciably am ong scenarios, the sam e qualitative conclusions were found 

regarding the utility of threshold m anagem ent policies. For all scenarios, average yield 

increased as a  function o f the threshold value to a m aximum  value and then decreased 

slightly. The standard deviation generally increased as well. As expected, the spawner- 

recruit m odel, reproductive potential and environm ental variation in recruitm ent had the 

largest effects on average yield and standard deviation o f yield, because these factors 

affect average recruitm ent.

The benefits o f introducing a threshold level with the R icker model with medium 

reproductive potential, the m ost likely case for the pollock population, are illustrated in 

Figure 3,4, The plot show s 24 different sim ulation scenarios with 5% of pristine 

biomass as initial biomass. The scenarios are identified by four factors: fishing 

mortality, environmental variation, planning horizon and environmental autocorrelation. 

For each scenario, the results are shown for different levels o f thresholds, varied from 

0 (no threshold) to 609c o f the pristine biomass.
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Table 3,2. Pristine biomass biomass BMSY at m aximum  sustainable yield (M SY) and 
its percentage o f pristine biom ass, M SY, in m illions o f tonnes, and fishing mortality 
^msy* *n yr > fo r three different levels o f the productivity param eter a  for the Ricker 
spaw ner-recruit model and one level o f  the Beverton-Holt m odel.

R icker Beverton-Holt

Param eter a  =  0.03 a  = 0.0621 a  = 0.09 a  = 0.1C
----------- -— — ---------- — --------.— — — -------------------------—— -— -

B« 5.99 10.42 16.77 13.83

®MSY 3.88 6.36 8.04 6.12

b msy/b „ 66% 61% 47% 44%

MSY 0.57 1.30 1.86 1.00

^MSY 0.27 0.42 0.51 0.31
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L Fishing H Fishing
L Var H Var L Var H Var

Thresho ld
Figure 3.4, Mean yield (solid lines) and standard deviation o f yield (dashed lines) as a function 
o f threshold level o f 0-60% o f pristine biomass for 24 scenarios w ith 5% in itia l biomass and 
medium reproductive potential, a , for the Ricker model. The scenarios are classified by four 
factors: fishing mortality (LOW; L fishing, HIGH: H Fishing), environmental variation (LOW; 
L Var, HIGH: H Var), planning horizon (20-yr, 50-yr) and environmental autocorrelation (-0.5, 
0,0 .5). “



U nder the low fishing mortality scenarios, the increase in yield was o f order 10­

30%; under high fishing m ortality scenarios the increase was o f  the order 40-170%  

(Figure 3.4, Table 3.3). For scenarios with high fishing, a threshold m anagem ent policy 

provided an opportunity to reduce the fishing effort and keep the population near high 

reproductive levels. Yield thus increased dram atically. But the increase in the standard 

deviation beyond a certain threshold level (about 20-30%) was usually m ore than the 

increase in yield. In contrast, at the threshold level corresponding to the m axim um  yield, 

the increase in yield was often larger than the increase in the standard deviation under 

scenarios with low fishing.

O f the other factors shown in Figure 3.4, environm ental variation had the m ost 

effect on average yield: the greater the level o f  environmental variation, the h igher the 

average yield. This effect occurred because h igher environm ental variation increased the 

likelihood of a strong year-class and thus increased average recruitment. Nevertheless, 

the trend in yield as a function o f threshold level was sim ilar under scenarios with high 

and low levels o f noise.

O ther factors showed lesser effects, but some arc notable. Average yields did not 

differ appreciably in the scenarios with three different levels o f autocorrelation of 

environm ental variation. But the variation in yield was affected greatly, especially in 

concert with the high level o f  environm ental variation. In this case, standard deviation 

with negative autocorrelation in recruitm ent was much less than that assum ing positive 

autocorrelation. Under scenarios with a 20-year planning horizon, the increase in yield 

was more than that with a 50-year planning horizon. The coefficient o f variation of 

yield also was much larger in scenarios with a 20-year horizon than in scenarios with 

a 50-year horizon. This is intuitive because the threshold m anagem ent policy played an 

im portant role mainly during the rebuilding period o f  a population, and 20 years or less 

were required for the sim ulated population to rebuild.

This set o f 24 scenarios was repeated using the Beverton-Holt m odel (Figure 

3.5). There were two main differences in yield and standard deviation betw een the 

Ricker model and the Beverton-Holt model under all scenarios. First, although the
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Table 3,3. Optim al threshold levels for com binations of the five factors under low and 
high fishing mortalities; associated percentages o f increased averaged yield, increased 
standard deviation, and decreased rebuilding tim es over a policy with no threshold; and 
num ber o f years o f no fishing. Results are given fo r a penalty weighting factor X o f 0,5,

Scenario Low fishing m ortality High fishing mortality

s I E P AC T %Y %SD %Rb < 1 T % Y %SD %Rb <1

R 5 L 20 -0.5 25 27.7 16.0 25.0 4 25 119.8 168.3 75.0 4

R 5 L 20 0 25 28.7 17.6 35.3 4 20 104.9 129,6 65.0 4

R 5 L 20 0,5 25 31.2 21.6 29.4 4 20 I f  0,2 120.4 65.0 4

R 5 L 50 -0.5 25 7.5 -6.3 31.3 4 25 39.7 4.6 80.8 4

R 5 L  50 0 25 7.6 -4.4 31.3 4 25 47.1 18.5 76,0 5

R 5 L 50 0.5 30 8.6 -0.9 35.3 4 30 69.0 46,1 82.1 8

R 5 H 20 -0.5 30 17.3 8.2 27.3 4 25 67.2 53.9 58.3 4

R 5 B 20 0 25 17.6 10.2 27.3 3 20 63.6 46.6 53.8 3
R 5 H 20 0,5 25 22.4 12.4 30.8 4 20 69.6 44 .8 60.0 4

R 5 H 50 -0.5 20 4.0 -1.7 27.3 3 35 24.2 9.9 58.3 6

R 5 H 50 0 30 5.6 1.9 27.3 4 25 25.4 10.2 61.5 5

R 5 H 50 0.5 25 9.0 5.7 30.8 5 30 47.3 26.3 66.7 10

R 15 L 20 -0.5 30 6.8 9.9 18.2 2 25 26.6 69.8 75.0 2

R 15 L 20 0 30 7.2 10.5 27.3 2 25 30.6 74.1 72.7 2

R 15 L 20 0.5 25 6.2 7.1 9.1 1 25 35.6 64.9 75.0 3
R 15 L 50 -0.5 30 2.1 1.0 18.2 2 25 11.6 11.8 72.7 2

R 15 L 50 0 30 2.5 1.2 27.3 2 25 16.6 20.3 72.7 3

R 15 L 50 0.5 30 2.8 2.0 25.0 2 30 33,1 39.9 75.0 6

R 15 H 20 -0.5 25 2.0 -2.2 143 1 20 11.7 9.0 40.0 1

R 15 H 20 0 25 3.3 1.3 14.3 1 25 21.0 21.6 40.0 2

R 15 H 20 0.5 20 4.7 4.9 12.5 1 15 13.2 9,4 16.7 1

R 15 H 50 -0.5 30 1.6 0.6 14.3 1 30 8.6 5.4 40,0 3

R 15 H 50 0 25 1.3 -1.4 14.3 I 30 14.5 9.7 40.0 4

R 15 H 50 0.5 25 3.6 2.1 25.0 3 30 27.0 17.8 50.0 8

B 5 L 20 -0.5 15 4.3 4.1 8.3 2 15 10.4 10.4 23.1 2

B 5 L 20 0 15 4.4 4.3 8.3 2 15 11.3 11.4 30.8 2

B 5 L 20 0.5 15 4.5 4.4 8.3 2 15 12.8 14.0 23,1 2

B 5 L 50 -0.5 20 1.8 1.3 16.7 3 15 3.5 -1.5 23.1 2

B 5 L 50 0 15 1.5 0.0 8.3 2 15 3,7 0.2 30.8 2

B 5 L 50 0.5 15 1.3 0.0 8.3 2 15 5.0 2.9 23.1 2



Table 3,3 (continue)

Scenario Low fishing mortality High fishing mortality

s I E P A C T %Y %SD %Rb <T T 9&Y %SD %Rb <

r>B 5 H 20 -0.5 25 5.7 4.5 25.0 3 20 10.5 7.8 ^7 <5^ / * w* 3
B 5 H 20 0 15 3.9 1.4 12.5 2 20 11.0 11.4 37.5 3
B 5 H 20 0.5 15 3,6 2.0 11.1 2 15 11.5 9.8 10 0 3Dt> 5 H 50 -0.5 30 2 2 1.2 25.0 3 20 3,7 1.0 37,5 3
B 5 H 50 0 15 1.6 1.0 12.5 2 15 2.7 1.0 25.0 2
B 5 H 50 0.5 15 1.1 -0.1 11,1 2 15 5.5 1.5 33,3 4

B 15 L 20 -0.5 0 0.0 0.0 0.0 0 7.5 0.2 0.1 0,0 0
B 15 L 20 0 7.5 0.0 -0.4 0.0 0 7.5 0.0 -0.5 0.0 0
B 15 L 20 0.5 n c/ .3 -0.2 -1.2 0.0 0 0 0.0 0.0 0,0 0
B 15 L 50 -0.5 10 0.1 0.2 0,0 0 5 0.0 -0,7 0.0 0
B 15 L 50 0 5 0.3 -0.6 0.0 0 15 0.3 0.7 12,5 0
B 15 L 50 0,5 7.5 0.3 0.2 0.0 0 15 1.0 1,5 12.5 0
it) 15 H 20 -0.5 15 0.5 -0.5 0.0 0 7.5 0.3 -2.7 0.0 0
B 15 H 20 0 5 -0.2 -2.4 0,0 0 5 0.0 - 1,2 0.0 0
B 15 H 20 0.5 5 0.0 -1.7 0.0 0 0 0.0 0.0 0.0 0
B 15 H 50 -0.5 25 0.7 -0,9 0,0 1 20 0.7 -0.8 25.0 1
Dts 15 H 50 0 15 -0.4 -1.6 0.0 0 15 0.4 -0,8 0.0 1
B 15 H 50 0.5 5 -0.8 -3.8 0.0 0 20 3.8 3.6 20.0 4

Abbreviations:
S: Spaw ner-recruit curve: R icker (R) & Beverton-H olt (B).
I: initial biom ass (%),
E: environm ental variation: LOW  (L) &  H IG H  (H),
P: planning horizon (yr).
AC: environm ental autocorrelation,
T: threshold level (%).
%Y: percentage o f increase in average yield over not using a threshold, 
%SD: percentage o f increase in standard deviation o f yield,
%Kb: percentage o f decrease in rebuilding time,
<T: total num ber of years o f no fishing.
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Figure 3,5, Mean yield (solid lines) and standard deviation of yield (dashed lines) as a function 
of threshold level of 0-60% of pristine biomass for 24 scenarios with 5% initial biomass and 
the Beverton-Holt model. The scenarios are classified by four factors; fishing mortality (LOW: 
L Fishing, HIGH; H Fishing), environmental variation (LOW: L Var, HIGH: H Var), planning 
horizon (20-yr, 50-yr) and environmental autocorrelation (-0.5, 0, 0.5),



average and median yield increased as a function o f the threshold value to a m aximum  

yield and then decreased, the increase in yield was very minor. Because the Beverton- 

Holt curve is asym ptotic, it m atters less to average yield whether spawning stock varies 

trora the population biom ass associated with M SY than a dom e-shaped R icker curve 

does. U nder low fishing scenarios the m axim um  increase in yield was less than 10%; 

under scenarios with high fishing the m axim um  increase was o f order 10-20% (Figure 

3.5. Table 3.3). Secondly, in each scenario, there existed a threshold level over which 

the standard deviation o f yield increased quickly as the threshold level increased. This 

breakpoint changed from scenario to scenario and was lower under scenarios with high 

fishing than with low fishing. The second difference was more apparent under scenarios 

with low level o f environm ental variation than with high level of environm ental 

variation.

M edian rebuilding tim e is most usefully illustrated with scenarios using LOW  

fishing m ortality and a 50-year planning horizon (Figure 3.6). For HIGH fishing 

m ortality the population would never rebuild to the level corresponding to the M SY, 

Scenarios with a 20-yr planning horizon had sim ilar results for rebuilding tim e, but 

there are enough scenarios in which the population did not rebuild to reduce confidence 

in the rebuilding time results. As expected, tim es to rebuild to high productivity under 

threshold m anagem ent were always shorter, and often much shorter, than tim es to 

rebuild with no threshold imposed (Figure 3.6). H igher threshold levels produced shorter 

rebuilding tim es; cessation o f fishing below the threshold allowed the population to 

increase rapidly when good recruitm ent occurred. Rebuilding tim es under scenarios with 

the Beverton-H olt model were much shorter than those with the Ricker model because 

the population is required to rebuild to only 44%  o f pristine biomass for the Beverton- 

Holt m odel, com pared to 61% for the R icker model. M edian rebuilding tim es were 

shorter with higher environm ental variation, because the high level of environm ental 

variation produced an occasional strong year-class which rebuilt the population. 

Generally, the rebuilding tim es slightly increased under scenarios with environm ental 

autocorrelation changing from negative to positive. Though not shown in Figure 3.6,
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Ricker B everton-H olt

Th resho ld

Figure 3,6, Median rebuilding time for scenarios with low fishing mortality and a 50-year 
planning horizon, classified by four factors: spawner-recruitment model (Ricker with medium 
tx» Beverton-Holt), initial biomass (5%, 15%), environmental variation (LOW; L Var, HIGH: 
H Var) and environmental autocorrelation (solid lines for -0.5, dotted lines for 0, dashed lines 
for 0,5),



higher reproductive potential allowed the stock to rebuild m ore quickly, but the 

population was much more variable.

Overall, for high levels o f the threshold (>25% ) the rebuilding time was on the 

order o f 5-10 years; for low values o f the threshold (<25 %) the rebuilding tim e was on 

the order o f 10-20 years (Figure 3.6). R ebuilding time I tse lf  is a random variable 

because recruitm ent is stochastic. The probability distribution o f rebuilding tim e was 

strongly skew ed, which is why I chose m edian over average rebuilding tim e. The 

sim ulated stock under many scenarios took far longer to rebuild than the median 

rebuilding time.

A nother way to examine the effects o f  introducing a threshold level on a fishery 

is to estim ate how often the fishery would be closed. Figure 3.7 shows the median 

percentage o f years without fishing under scenarios with LOW fishing m ortality and a 

50-yr planning horizon. As expected, the percentage of years o f no fishing increased 

quickly as the threshold level increased. The maximum percentage was 36% . For a 

threshold level less than 30% , fishing was not allowed about 10% of the time or less. 

The R icker and Beverton-Holt m odels had a sim ilar pattern. Environm ental 

autocorrelation had an im portant influence on the percentage o f years without fishing; 

the percentage is much higher with positive autocorrelation than with negative 

autocorrelation, especially when com bining with high environm ental variation. Lower 

initial biom ass resulted in higher percentage o f years without fishing. A fter the 

population had rebuilt, it rarely dropped below  20% of pristine biomass.

O ptim ization of Threshold Level

The optim al threshold level for a given penalty weighting factor A, was 

determ ined fo r each scenario by com paring the objective function values am ong the 14 

threshold levels (0-60% of pristine biomass). Figure 3.8 illustrates the trade-off between 

an increase in average yield and a decrease in standard deviation for selecting optimal 

threshold levels under all scenarios. The trade-off was measured by the value o f penalty 

w eighting factor X: when X was equal to 0.5. the same weight was put on both increases
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Ricker B everton-H olt
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Figure 3,7. Percentage of years o f no fishing w i t h  low fishing mortality and a 50-year planning 
horizon, c la s s i f ie d  by four factors: s p a w n e r - r e c r u i t m e n t  model (Ricker with medium a ,  
B e v e r t o n - H o l t ) ,  initial biomass (5%, 15%), environmental variation (LOW: L Var, HIGH: H 
V a r )  and environmental autocorrelation (solid lines for - 0 .5 ,  dotted lines f o r  0, dashed lines for 
0 .5 ) .
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Figure 3.8, Frequency distributions of optimal threshold levels over penalty weighting 
factor X of 0-1.0 from all scenarios for the first optimization problem .



of average yield and decreases o f standard deviation. As X varied from  0.5 to zero, more 

weight was given to average yield; as X was changed from 0,5 to I, heavier weight was 

given to standard deviation. The distribution o f the optimal thresholds was the least 

broad with X = 0.5. In Figure 3.8, the distribution o f optim al thresholds is shown over 

all scenarios. The mode o f this distribution shifted as a function o f  penalty weighting 

factors from high to low threshold levels: the mode being about 40-45%  o f the pristine 

biomass when average yield is the sole optim ization criterion, about 20-25%  for equal 

weighing o f yield and standard deviation (X = 0.5) and about 0%  with minimum 

standard deviation as the criterion.

1 illustrate the effects o f  different factors on the optim um  threshold level by 

using a X o f 0.5. The associated percentages o f gained yields, standard deviations, 

decreased percentage o f m edian rebuilding tim e, and num ber o f  years o f no fishing are 

given for each scenario (Table 3.3), U nder scenarios with the R icker m odel with 

medium reproductive potential, the optim al thresholds ranged from  20-30%, with a 

median o f  25%. The increases in yield based on these threshold levels were about 17­

31% for low fishing m ortality, 5% initial biom ass and a 20-year planning horizon; 4-9% 

for a 50-year planning horizon. Under high fishing m ortality scenarios, these figures 

changed to 64-120%  and 5-50% , respectively. Standard deviations increased less than 

the increases in yield under scenarios with low fishing m ortality, but m ore under 

scenarios with high fishing m ortality. There were several scenarios under which the 

yields increased while the standard deviations decreased. For the Ricker model with 5% 

initial biomass, the rebuilding tim es were reduced to about 25-35%  for low fishing and 

54-82%  for high fishing. Fishing would not occur for up to 10 years under some 

scenarios, but in m ost cases there were only about 2-4 years o f cessation of fishing. 

Percentages o f increase in yield and standard deviation and percentages o f decrease in 

rebuilding time were much sm aller under scenarios with 15% initial biomass.

Optimal thresholds for scenarios with the Beverton-Holt m odel with 5% initial 

biomass were much low er than for the Ricker model and varied greatly, ranging from 

0 to 30% with a median o f 15% (Table 3.3). The percentages o f increase in yield were
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much sm aller than those with the Ricker m odel. The benefits o f using the threshold 

m anagement policy com pletely disappeared under scenarios with 15% o f pristine 

biomass as an initial biomass.

The first-order effects o f the seven different factors in determ ining optimal 

threshold levels were estim ated from all 192 scenarios by constructing the frequency 

distributions o f the optimum threshold level, am algam ating over all other factors. The 

results are illustrated in Figure 3.9 with X equal to 0 (m axim izing average yield), 0.2 

(maximizing average logarithm of yield) and 0.5 (equal trade-off betw een average yield 

and standard deviation). Optim um  threshold levels are highest for the objective function 

for maximum yield, because the logarithm ic and equal tradeoff objective functions 

penalize for the higher standard deviation with higher threshold levels. A threshold level 

would only rarely be im plem ented with the m inimum  standard deviation policy (X = 1, 

not shown), because standard deviation increases with threshold level under most 

scenarios.

The m ost im portant factors in determ ining optimal threshold level appear to be 

the reproductive potential and spaw ner-recruit model. Reproductive potential was 

negatively associated with the threshold levels, with high reproductive potential resulting 

in low threshold levels. Threshold levels for the Ricker model were much higher than 

those for the Beverton-Holt m o d el

There were some interactions o f the objective function with the factors 

considered. W hen heavier w eight was given to standard deviation (an increase in X), 

fishing m ortality 'had little effect on optim al threshold levels. Optim al threshold levels 

increased m arkedly as fishing m ortality increased when the criterion was to m aximize 

average yield. This is intuitive because a high threshold level can bring an overfished 

population back to a high productivity level quickly. Thus average yield increased, but 

at a cost o f increasing the variation in yield. Planning horizon had little effect on 

optimal threshold levels, except that the optim al threshold level for the longer horizon 

was slightly higher for the equal trade-off function. Zero and 0.5 environm ental 

autocorrelation had sim ilar distributions o f optimal threshold level, both slightly lower
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than those with -0,5 autocorrelation. Overall, environmental autocorrelation, 

environm ental variation, initial biomass and planning horizon had m inor effects on 

optimal threshold levels.

S im u ltaneous O ptim ization o f  T h re sh o ld  Level a n d  F ish ing  M o rta lity

The above optim al threshold levels were estimated under a given level o f 

fishing mortality. For this part o f the study, the search for optim al levels was made 

across the two-dim ensional space o f threshold level and fishing m ortality with a grid 

method. Both threshold levels ranging from  0 to 60% of pristine biom ass and fishing 

m ortalities from 0.1 to 0.85 were divided into 14 small grids. Num erical sim ulations 

were run at all grids fo r each com bination o f the factors. Only the Ricker model with 

the medium reproductive potential was considered in this part o f  the study, which 

corresponds to factor levels estim ated for pollock from current data. The results are 

illustrated with three levels o f  penalty weighting factor X: 0 (m axim izing average yield), 

0.2 (m axim izing logarithm o f  yield) and 0.5 (equal trade-off).

A unique optim al com bination of threshold level and fishing mortality existed 

for all scenarios. W ith 5% initial biomass, the optimal threshold ranged from 10 to 60% 

of pristine biomass, and the optim al fishing m ortality was usually equal to or slightly 

above FMSY (Table 3.4). The optim al threshold and fishing m ortality declined as a 

function of X, and were fairly robust to variations in the o ther factors. Average yield 

and standard deviation for the optim al levels were affected by the level of  

environm ental variation, autocorrelation, and planning horizon, all o f  which influence 

average recruitm ent levels. Scenarios with 15% initial biom ass produced sim ilar 

qualitative conclusions. The one extrem e result with an optim al F of 0.82 and an 

optimal threshold level of 60% may be an artifact of the sim ulation (Table 3.4).

To com pare results under different scenarios on a com m on scale, I show results 

as contour plots of the objective function for each scenario scaled to a maximum value 

of 1 as a function of fishing m ortality and threshold level. The absolute yields and 

standard deviations for the optim al combinations of threshold levels and fishing
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Table 3.4. Optimal fishing mortality and threshold levels for combinations o f five 
factors and associated levels o f average yield and standard deviation. Results are given 
for three values of the penalty weighting factor X: 0.0 (maximize yield). 0.2 (maximize 
log(yield)), and 0.5 (maximize equal tradeoff of increased yield and decreased standard 
deviation). Results are shown for the Ricker spawner-recruit model with medium 
reproductive potential.

I E P AC X F T Y SD

5 L 20 -0.5 0 0.48 50 1.00 0.69
5 L 20 0 0 0.45 45 1.00 0.66
5 L 20 0.5 0 0.48 40 0.98 0.68
5 L 50 -0.5 0 0.82 60 1.25 1.29
5 L 50 0 0 0.48 50 1.22 0.64
5 L 50 0.5 0 0.45 45 1.21 0.65
5 H 20 -0.5 0 0.54 50 1.42 1.17
5 H 20 0 0 0.54 40 1.39 1.16
5 H 20 0.5 0 0.63 50 1.34 1.45
5 H 50 -0.5 0 0.63 55 1.71 1.30
5 H 50 0 0 0.54 40 1.68 1.21
5 H 50 0.5 0 0.63 50 1.63 1.59

5 L 20 -0.5 0.2 0.42 35 0.99 0.57
5 L 20 0 0.2 0.45 40 0.99 0.62
5 L 20 0.5 0.2 0.45 35 0.97 0.64
5 L 50 -0.5 0.2 0.45 40 1.23 0.46
5 L 50 0 0.2 0.45 40 1.22 0.51
5 L 50 0.5 0.2 0.45 35 1.20 0.57
5 H 20 -0.5 0.2 0.48 35 1.38 0.99
5 H 20 0 0.2 0.54 40 1.39 1.16
5 H 20 0.5 0.2 0.54 35 1.32 1.28
5 H 50 -0.5 0.2 0.54 45 1.70 1.08
5 H 50 0 0.2 0.54 40 1.68 1.21
5 H 50 0.5 0.2 0.54 35 1.61 1.43

5 L 20 -0.5 0.5 0.42 25 0.96 0.53
5 L 20 0 0.5 0.42 25 0.95 0.54
5 L 20 0.5 0.5 0.42 25 0.94 0.58
5 L 50 -0.5 0.5 0.42 25 1.21 0.43
5 L 50 0 0.5 0.42 25 1.20 0.47
5 L 50 0.5 0.5 0.45 30 1.19 0.55
5 H 20 -0.5 0.5 0.48 30 1.36 0.96
5 H 20 0 0.5 0.48 20 1.29 0.99
5 H 20 0.5 0.5 0.45 20 1.25 1.13
5 H 50 -0.5 0.5 0.45 20 1.64 0.95
5 H 50 0 0.5 0.48 25 1.63 1.08
5 H 50 0.5 0.5 0.39 10 1.42 1.18
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Table 3,4 (continue)
I E P AC X F T Y c n

15 L 20 -0.5 0 0.48 45 1.17 0.53
15 L 20 0 0 0.45 45 1.16 0.57
15 ■ L 20 0,5 0 0.48 45 1.15 0.66
15 L 50 -0.5 0 0.82 60 1.31 1.30
15 L 50 0 0 0.45 45 1.29 0.48
15 L 50 0.5 0 0,48 45 1.27 0.62
15 14o 20 -0.5 0 0.54 55 1.61 1.18
15 t-Jn 20 0 0 0,54 45 1.59 1.19
15 14n 20 0,5 0 0.54 40 1.52 1.32
15 uri 50 -0.5 0 0.54 45 1.79 1.08
15 H 50 0 0 0.54 50 1.75 1.25
15 LIn 50 0.5 0 0.63 _ 45 1.71 1.55

15 L 20 -0.5 0.2 0.45 40 1.16 0.47
15 L 20 0 0.2 0.45 35 1.14 0.48
15 E 20 0.5 0.2 0.42 35 1.13 0.54
15 l.rf 50 -0.5 0.2 0.45 40 1.29 0.36
15 L 50 0 0,2 0.45 35 1.28 0.41
15 L 50 0.5 0.2 0.45 35 1.26 0.51
15 H 20 -0.5 0.2 0.48 45 1.60 1.02
15 H 20 0 0.2 0.48 35 1.57 1.06
15 on 20 0,5 0.2 0.45 30 1.50 1.22
15 H 50 -0.5 0.2 0.54 45 1.79 1.08
15 H 50 0 0.2 0.54 40 1.75 1.15
15 ol i 50 0,5 0.2 0,54 35 1.68 1.40

15 E 20 -0.5 0.5 0.42 30 1.13 0.42
15 L 20 0 0.5 0.42 30 1.13 0.46
15 L 20 0.5 0.5 0.39 25 1.10 0.49
15 L 50 -0,5 0.5 0.42 30 1.28 0.34
15 L 50 0 0.5 0,42 30 1.27 0.40
15 L 50 0,5 0.5 0.42 30 1.25 0.49
15 H .20 -0,5 0,5 0,54 35 1.56 0.92
15 un 20 0 0,5 0.45 30 1.52 0.97
15 H 20 0.5 0.5 0.48 20 1.41 1.11
15 H 50 -0.5 0.5 0,54 30 1.74 0.92
15 14rl 50 0 0.5 0.45 35 1.70 1.04
15 H 50 0.5 0.5 0.42 25 1.60 1.26

Abbreviations:
I: initial biom ass (%).
E: environm ental variation: LOW  (L) and HIGH (H), 
P: planning horizon (yr).
A D  environm ental autocorrelation.
F: fishing m ortality.
T: threshold level (%),
Y: average yield,
SD; standard deviation o f yield.



m ortalities are given in Table 3,4, Because environm ental autocorrelation had little 

effect on the optim a, results are shown only for zero autocorrelation. Figure 3.10 

illustrates results with 5% initial biomass. For the m aximum  yield criterion, the optimal 

threshold levels ranged from  40 to 50% o f pristine biom ass and the optim al fishing 

m ortalities from  0,42 to 0,54 (Figure 3.10), For each scenario, there is a broad region 

between the 0.8 contour line and the m axim um  value a t i ,  which represents all the 

possible com binations of the tw o-param eters that would produce approxim ately 80% or 

m ore of the maximum yield. Such a fla t response suggests that tw o-param eter 

optim ization would enhance the flexibility of m anagem ent, because several 

com binations o f fishing m ortalities and threshold levels would produce yields very close 

to the m aximum  yield. The threshold level com m ences its effect at a fishing mortality 

of about 0,3, which is d o se  to F0J o f 0,31. For the same objective value, higher fishing 

mortality requires a higher threshold level. In other words, the threshold level performs 

the role o f reducing average fishing m ortality over time by fishery closure. For lower 

fishing m ortalities (less than F0J), the contour lines are flat, i.e., the threshold does not 

have much effect. This resu lt is a consequence o f the higher equilibrium  biom ass for 

lower fishing m ortality such that the population rarely fell below  the threshold levels 

after initial rebuilding. The results appear to be robust to environm ental variation, 

environm ental autocorrelation and planning horizon, as in the one-param eter 

optim ization. A  longer planning horizon induces a slight broadening of the contour 

surface in a low threshold region as the benefits o f the threshold wane at low fishing 

mortalities.

For the log(yield) criterion, the optim al threshold levels were 4 0 9c o f pristine 

biomass, and the optimal fishing m ortalities ranged from 0,45 to 0.54 for all scenarios, 

both being slightly lower than for the maximum yield criterion (Figure 3.10), A slight 

narrowing of the contours about the optim um  point occurred, which reduces the 

com binations o f the two param eters that would be close to the optim um . O ther factors 

did not have much effect on the location of the optimum point.

For the equal trade-off criterion, the optimal threshold level varied from 20 to
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Figure 3,10, Contour plots for the second optimization problem as a function of fishing mortality 
and threshold level for three values of the penally weighting factor X (0: Max Yield, 0.2: Max 
Logyield, 0.5: Equal Tradeoff). The Ricker model with medium a  and zero autocorrelation was 
used and initial biomass was 5%. The plots are also classified by environmental variation 
(LOW: L Var, HIGH: H Var) and planning horizon (20-yr, 50-yr). The contour values were 
scaled from the minimum value (0) to the maximum value (1).



259c of pristine biomass, m uch tower than for log(yield) criterion, and the optim al 

fishing m ortalities ranged from 0.42 to 0.48 fo r all scenarios (Figure 3.10). A further 

narrowing o f  the contours about the optim um  point occurred, w hich further reduces the 

com binations o f the two param eters that w ould be close to the optim um .

Figure 3.11 illustrates the results with 15% initial biom ass. The contour plots are 

sim ilar with 5 % initial biomass, except that the contour is broadened in the region with 

low threshold level. The threshold level did not have much effect fo r levels below  10% 

of pristine biom ass because it was rare for the population to drop below such low 

threshold levels. The optim al com binations o f the two param eters are very d o s e  to each 

other with 5% and 15% initial biom ass, suggesting the initial biom ass has little effect 

on the optim um .

D ISC U SS IO N

M anagem ent policies that m axim ize average yield (m axim um  harvest strategies) 

will also tend to result in high variation in yield. Such policies usually drive the 

population close to the m ost productive level as quickly as possible and are very 

sensitive to environm ental variation. T his result can be in direct conflict with some 

m anagem ent objectives, such as short term econom ic stability. The fixed escapem ent 

policy, used m ainly in m anagem ent of salm on populations, is a typical exam ple of 

m aximum  harvest strategies (Reed 1979). Another com m on fisheries m anagem ent 

strategy, constant harvest rate policy, as W alters (1986) noted, gives a  good balance 

between average yield and variation in yield, provided the stock has not been and is not 

being driven too far from the high productivity level. H ightower and G rossm an (1985), 

com paring the perform ance of different levels of constant harvest rates for fish stocks 

with variable recruitm ent, indicated that under highly variable environm ental conditions, 

fishing effort does not affect average yield significantly, provided that fishing effort is 

not too far from  MSY effort. Gatto and Rinaldi (1976) com pared average yield and 

variation in yield in fluctuating environm ents for these two kinds o f fisheries 

m anagem ent strategies and dem onstrated analytically that fixed escapem ent policies
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Figure 3.11. Contour plots for the second optimization problem as a function of fishing mortality
and threshold level for three values of the penalty weighting factor X (0: Max Yield, 0.2: Max 
Logyieid, 0.5: Equal Tradeoff). The Ricker model with medium «  and zero autocorrelation was 
used and initial biomass was 15%. The plots are also classified hy environmental variation 
(LOW: L Var, HIGH: H Var) and planning horizon (20-yr, 50-yr), The contour values were 
scaled from the minimum value (0) to the maximum value CD.



should generally produce both higher average yield and higher variance in yield than 

constant harvest rate policies, Deriso (1985) showed that constant harvest rate policies 

are risk-averse.

Threshold m anagem ent strategy synthesizes constant harvest rate and fixed 

escapem ent policies. It is identical with the form er when the stock is at a high 

population level, and adapts the strategy o f the latter when the population has dropped 

to a low level. M y results show that for a sim ulated pollock population, m anagem ent 

policies that set thresholds alw ays produced som e benefits in increased yield, even when 

variation in yield also increased, and can, in som e cases, increase average yield greatly 

while increasing variation in yield only slightly over the entire period and over the first 

20 years o f the experim en t Environm ental variation, environm ental autocorrelation and 

initial biom ass had relatively little effect on my conclusions.

Optim al threshold levels for EBS pollock range from 5 % to 60%  o f the pristine 

biomass, depending upon the trade-off between the increase o f  yield and the decrease 

ot variation in yield, A com prom ise trade-off giving equal weight to these two 

com ponents results in the m ost robust optim al threshold levels, in the 20% -30%  range 

o f values with a  median o f  25%, for the R icker spaw ner-recruitm ent model with the 

medium reproductive potential. These optim al threshold levels are slightly higher than 

the 20% level proposed by Thom pson (in press). Optimal fishing m ortality rates are ' 

equal to FMsy or slightly higher. The response surfaces are flat with two-param eter 

optim ization, which provides flexibility fo r management. These results were relatively 

independent o f the effects o f environm ental variation, environm ental autocorrelation, 

planning horizon and initial biomass. H ow ever, their possible robustness in a m ulti­

species context is not known.

Threshold m anagem ent policies may be close to optimal regarding the class of 

all possible policies for single-species m odels. In a study o f an age-structured 

population, H ightow er and Grossm an (198?) used a first-order gradient procedure to 

obtain optim al strategies under several m axim ized criteria. Frequently, their results 

showed that the optim al strategy was no fishing for a few years followed by a fairly
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constant fishing effort. In a study o f optim al harvesting policies for the w idow rockfish 

fishery'. H ightow er and Lenarz (1989) investigated several policies and concluded that 

a tw o-param eter policy, such as constant fishing m ortality with a  threshold, may not 

necessarily be m ore beneficial than a one-param eter policy o f constant fishing mortality. 

In contrast, m y study showed that the use o f a threshold produces distinct benefits. This 

suggests that optim al policies may be som ew hat dependent on the species considered, 

or the conditions sim ulated.

An alternative to the trade-off m odel between average yield and variation in 

yield (equation 3.7) for selecting a desirable threshold is the Pareto Frontier (W alters 

1975). where average yield is plotted against standard deviation o f yield over different 

threshold levels. It gives a visual display o f com binations o f yield and variation in yield, 

but scale problem s occur when com paring the effects o f different factors.

The sim ulations showed that the spawner-recruitment relationship and 

reproductive potential had significant effects on optim al threshold levels, which suggests 

that there m ay exist other biological reference points more robust than the one expressed 

as a percentage o f  pristine biomass, or optim al threshold levels may be a function of 

several population parameters. I will investigate alternative m ethods to estim ate 

threshold levels in chapter five.

In this part of my study, for sim plicity 1 assum ed that we could m easure the 

population and im plem ent the harvest strategies perfectly. In reality, there ex ist errors 

in m easuring the population and im plem enting the harvest strategies. 1 will exam ine the 

effects o f these errors on optimal threshold levels in Chapters 5 and 6 ,

The threshold assumed for pollock was based on single-species considerations 

and did not consider interactions with other marine species, including marine m am m als 

and seabirds. Certain marine mammals and seabirds feed on pollock and there has been 

much recent discussion of possible im pacts of pollock population fluctuations on them 

in Alaska (Springer and Byrd 19X9; Lowry et al. 1989). If species interactions can be 

included in future experim ents with threshold models, we will learn the probable impact 

of these policies on pollock as well as other Bering Sea species. Furthermore, density-
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dependent effects on post-recruit natural m ortality due to cannibalism  and other 

intraspecies effects could be im portant as well. I will conduct sensitivity analyses of 

density-dependent natural m ortality on optim al threshold levels for EBS herring in 

Chapter six.

An alternative approach to threshold m anagem ent strategies is biom ass-based 

strategies. U nder biom ass-based strategies, the fishing m ortality is equal to Fu sr  when 

the population biom ass is equal to or above Bm r : the fishing m ortality varies linearly 

with the population biomass from  zero to Fm Y  when the population increases from  zero 

to Bmsy (N PFM C  1991), In recent years, the plan team for the groundfish fisheries of 

the Bering S ea and Aleutian Islands has used biom ass-based strategies to com pute the 

m aximum  allow able biological catch fo r EBS pollock (N PFM C 1991). Biom ass-based 

strategies do not stop fishing com pletely and thus produce relatively short-term  

econom ic stability. Biom ass-based strategies arc attractive fo r fisheries like EBS 

pollock, in w hich alternative resources are not available and bycatch problem s are an 

im portant concern . But biom ass-based strategies may not have the same level ot 

resource protection as threshold strategies when the population is a t a low level and it 

may be difficult to allocate catch quota am ong users when the quota is small.
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C h a p te r  F o u r

E V A L U A T IO N  O F  T H R E S H O L D  M A N A G E M E N T  S T R A T E G IE S  

F O E  P A C IF IC  H E R R IN G  IN A L A SK A

SU M M A R Y

C om puter sim ulations were conducted to evaluate threshold m anagem ent 

strategics fo r herring stocks in the eastern Bering Sea (EBS) and Prince W illiam Sound 

(PWS), A laska, based on a single-species m o d el Population param eters were derived 

from cohort analysis, cateh-at-age analysis, and catch and population sampling. Several 

threshold values ranging from 0 (no threshold) to the biomass level producing M SY, in 

com bination with different exploitation rates from 5% to 60%* were examined. O ther 

factors investigated were recruitm ent, initial biomass, natural mortality, im plem entation 

error, and m easurem ent error. Three criteria used to evaluate the threshold m anagem ent 

strategies were the trade-off between mean yield and standard deviation o f yield, harvest 

opportunity, and variation o f spaw ning biomass. Recruitm ent, especially stock- 

recruitm ent relationships, and exploitation rate are the m ost important factors 

influencing optim al threshold levels. The com bination o f a high threshold level and a 

high exploitation rate approxim ates a pulse fishing scenario that results in the highest 

yield and variation in yield. Large m easurem ent error decreases both the optimal 

exploitation rate and threshold lev e l For EBS herring, optim al thresholds range from 

109c to 25%, m edian o f 20%, o f  pristine biomass under an exploitation rate o f 20%

^~^stalus quo-̂ and from  10% to 35%, m edian o f  30%. o f pristine biomass under an 

exploitation rate o f 31% (H0 J). Optimal thresholds for PW S herring vary from 5% to 

259c, m edian of 15%, o f pristine biom ass and from 0 to 45% , median of 25%, with

“ H sttius quo is the exploitation rate currently used to manage the fishery. H0 , is the 
exploitation rate at which the slope o f the yield per recruit curve as a function of 
exploitation rate is equal to 10% of its value at the origin. HMSY is the exploitation rate 
at which M SY is achieved. 95



exploitation rates o f Hstams quo and H0 ,, respectively. Rebuilding time with a threshold 

approach is m uch shorter than with an exploitation rate approach alone.

IN T R O D U C T IO N

Pacific herring, Clupea pallasi, sustain one o f the m ost im portant fisheries in the 

State of A laska, Com m ercial exploitation o f  herring in A laska started at the beginning 

o f the 20th century, with two peak harvests o f about 150,000 tonnes in 1934 and 1969 

(Funk and H arris 1992). Herring were harvested prim arily by a reduction fishery for oil 

and m eal products before 1960 (Funk and H am s 1992). Trawl fisheries of herring in 

the EBS were developed by the Soviet U nion and Japan in 1959 and were phased out 

in the early 1980’s (W espestad 1991). Sac roe fisheries began in the early 1970’s and 

have becom e im portant statewide fisheries, occurring from Kah Shakes in Southeast to 

Port C larence in the north (near the Arctic area). The largest herring fisheries are 

currently located in Togiak, Prince W illiam  Sound, C ook Inlet, Kodiak, Sitka Sound and 

Norton Sound (Funk and H arris 1992),

This study focussed on PW S and EBS herring stocks. In PW S, Alaska Board o f 

Fisheries regulations distribute the allow able harvest among five fisheries: sac roe purse 

seine (53.1% ), sac roe gillnet (3.4% ), pound spawn-on-kelp (14.2% ), natural spawn-on- 

kelp (8 %), and food/bait (16.3% ). In the southeastern Bering Sea, primarily the Togiak 

area, the regulations set aside 1361 tonnes o f the allowable catch for the natural spawn 

on kelp fishery, 1%  o f the rem aining allow able catch to the food/bait fishery, and the 

rem ainder to the sac roe fishery, o f  which 75% is allocated to the purse seine fleet and 

259c to the g illnet fleet. In the central and northern EBS, prim arily Norton Sound area, 

more than 90%  of the allowable catch is allocated to the sac roe gillnet fishery and the 

balance to the sac roe beach seine fishery.

For the purpose of m anagem ent, PW S herring are assum ed to be a single stock. 

A lthough Sandone et a l  (1988) reported that length-at-age of herring from the food/bait 

fishery in the tall in southeastern PW S during some years was significantly different 

from that in the spring sac roe fisheries, Burkey (1986) found no genetic and scale
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pattern differences among herring spawning at different locations inside PWS. PWS 

herring are geographically separated from other spawning stocks.

Based on the geographic separation of spawning grounds, there are more than 

a half dozen herring stocks in the EBS, However, only three distinct stocks are apparent 

in growth data: a southern stock which spawns at Togiak. Security Cove, and Goodnew s 

Bay; a central stock which spaw ns between the mouths o f the Kuskokwim and Yukon 

rivers; and a northern stock which spaw ns at Norton Sound and Port Clarence 

(W espestad 1991). Despite spawning, geographic and growth differences, no significant 

genetic differences among the stocks from  Norton Sound to Togiak have been found 

(Grant and U tter 1984), For purposes o f this analysis, I regard all EBS herring as one 

single stock. This sim plification allows me to make maximum use o f existing data. 

Furthermore, this sim plification is pragm atic: about 80% o f herring in the EBS spawn 

in one location, Togiak (W espestad 1991),

H erring fisheries in A laska have followed a boom -and-bust syndrom e typifying 

herring fisheries throughout the world. Catches have ranged tram  under 10,000 tonnes 

to over 150,000 tonnes during the past six decades. Variations in herring populations 

are caused by both environm ental factors and human exploitation (W espestad 1991). To 

prevent overfishing, the goals o f Alaska herring fisheries m anagem ent are to protect the 

sustained yield o f the stocks and to provide an equitable distribution o f the available 

harvest betw een various users (ADF& G 1992), In an attempt to stabilize the fisheries, 

Alaska herring fisheries have been m anaged with a range o f perceived conservative 

exploitation rates o f 0-20%  since the early 1970’s, in recent years, thresholds have been 

established to be 20% or 25% of the "norm al” biomass level. M ethods to establish this 

normal biom ass level vary among areas. The effectiveness o f the overall herring harvest 

strategy has never been explicitly analyzed.

The purpose o f this study (based on Zheng et al, in press a) was to evaluate and 

compare the current m anagem ent strategy with alternative threshold m anagement 

strategies through com puter sim ulations for PW S and EBS herring stocks. The threshold 

m anagem ent strategy is defined such that harvesting occurs at a constant exploitation
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rate but ceases when a population drops below a threshold level (Quinn et al. 1990), A 

threshold is defined as a percentage o f pristine biomass which is estim ated as a long­

term average o f biomass in the absence o f fishing and under average environm ental 

conditions. In this chapter, age-structured m odels were constructed to analyze the 

population dynam ics o f EBS and PW S herring stocks under various thresholds. The 

effects o f som e im portant factors—recruitm ent, initial biomass, natural m ortality , and 

error—on each threshold m anagem ent strategy were investigated. Optimal threshold and 

exploitation rate levels were estim ated as a function o f average yield and standard 

deviation o f  yield.

M E T H O D S  

D ata  A nalysis

N atural m ortality, m aturity and catch-age data o f EBS herring from 1959 to 1988 

were provided by W espestad (1991), and the catch-age data were updated with the 

recent data from  A laska D epartm ent o f  Fish and Gam e. M ature population abundances, 

weight and age com positions estim ated from aerial surveys and test (experim ental) 

fishing were available for EBS herring after 1977. Table 4.1 sum m arizes the population 

param eters.

W espestad (1991) applied cohort analysis to EBS herring. In his cohort analysis, 

catch data were truncated at age 9, and for each year from 1959 to 1977 the averages 

ot fishing m ortalities over ages 7 and 8 were used as term inal fishing m ortalities at age 

9. Term inal fishing m ortalities after 1977 were tuned using the test fishing age 

com position data in 1978, 1982, 1984, and 1988; population abundance was assum ed 

to equal aerial survey abundance in the term inal year (1988). Because the aerial survey 

abundances are considered unreliable (Baker 1991; W espestad 1991), cohort analysis 

tuned with only one source o f auxiliary inform ation (age com positions o f spaw ning 

population) is a natural choice for stock-reconstruction of EBS herring.

To update the cohort analysis, I follow ed, with some m odifications, W espestad’s 

approach. In m y cohort analysis, I used the same natural m ortalities as those used by
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Table 4.1, Estim ates o f natural m ortality, m aturity, selectivity, and growth and stock- 
recruit param eters of eastern Bering Sea (EBS) and Prince W illiam Sound (PW S) 
herring.

Age Natural m oitality M aturity Selectivity

EBS PW S EBS PWS EBS PW S
SR SRPS SRGN Pound F/B

3 0.25 0.43 0.40 0.20 0.05 0.09 2e-4 0.20 0.71
4 0.15 0.43 0.83 0.68 0.14 0.40 0.02 0.53 LOO
5 0.18 0.43 0.96 0.95 0.31 0.91 0.20 0.80 0.80
6 0.23 0.43 LOO 0.99 0.39 0.99 0.60 0.99 0.50
7 0.29 0.43 LOO LOO 0.70 LOO 0.96 LOO 0.28
8 0.36 0.43 1.00 LOO 0,75 LOO LOO LOO 0.14
9 0.45 0.43 LOO LOO 0.81 LOO 0.96 LOO 0.07

10 0.57 0.43 LOO LOO 0.86 LOO 0.60 LOO 0.07
11 0.71 0.43 LOO LOO 0.85 LOO 0.20 1.00 0.07
12 0.89 0,43 LOO LOO LOO LOO 0.02 LOO 0.07
13 1.12 0.43 1.00 LOO LOO LOO 2e-4 LOO 0.07

Growth (kg) Param eters Stock-reeruit Param eters

EBS  PW S   ' EBS   PW S____
Spaw ning Spawning P/B N o -cy c le____ Cycle

W „= 0.5618 0.2036 0.1158 a = 6.7028 12.039 15.278 42.478
k = 0.2000 0.2856 0.4472 P = 0.0054 0.0215 0.037 0.0145
% = -1.8530 -1.450 -1.771 a = 1.0000 1.2900 0.800 0.6
b = 3.4044 3.283 2.890 SD (a) = 2.3770 8.7564 7.6936 NA

SD(p) = 0.0010 0.0127 0.0094 NA
R2 = 0.54 0.15 0.56 NA

DF = 24 16 12 3

Abbreviations;
SR: sac roe
SRPS: sac roe purse seine 
SRGN: sac roe gillnet 
Pound: pound spawn-on-kelp
F/B: food/bait.
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W espestad (1991), However, the catch data were truncated at age 12, and term inal 

fishing m ortalities at age 12 for each year from  1959 to 1977 were set equal to the 

averages o f fishing m ortalities from ages 7 to 11. This assum ed the same catchability 

for these age groups. Furtherm ore, the term inal fishing m ortalities after 1977 were 

adjusted using the age com position data from  test fishing in 1978 and from  1982 to 

1990. A djustm ents were m ade until the estim ated population had the closest age 

com position to those o f test fishing. The im portant difference betw een the results o f my 

cohort analysis and those o f W espestad (1991) w as that I estim ated the peak biomasses 

in the 1960’s and 1980’s to be of sim ilar m agnitude, w hereas W espestad (1991) 

estim ated the peak biom ass in the 1960’s to be about twice as large as that in the 

1980’s,

A variety of data sources are available for PW S herring (Funk and Zheng 

1992a), Catch-age data were classified by fishery and gear type from 1973 to 1992, 

Mature population abundances and age com positions were estim ated by aerial surveys 

in 1974. and from  1976 to 1991, and spaw ning abundances by age were estimated 

through spaw n deposition surveys for six years: 1984 and 1988-1992. In addition, the 

num ber o f m iles o f milt observed by the aerial surveys from  1972 to 1992 was used as 

a relative index o f abundance.

To take advantage o f the auxiliary inform ation, catch-age analysis with auxiliary 

information (Deriso et al. 1989) was applied to PW S herring. Funk and Sandone (1990) 

conducted the initial catch-age analysis which was updated by Funk and Zheng (1992a). 

Natural m ortality, m aturity, and select!vities were estim ated from the catch-age analysis 

and sum m arized in Table 4.1. The results o f  the updated catch-age analysis were used 

in this study.

Since 1959, three very strong year-classes (1962. 1977, and 1978) o f EBS 

herring have occurred (Figure 4.1: Chapter 2). Environmental variation was assumed to 

be the cause. Recruitment appears to decline asymptotically with extremely large

spawning biom ass, suggesting the Ricker curve as a good candidate for the stock-recruit 

model (Figure 4.1; Chapter 2). The three most recent estimates o f recruits (year-classes
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1985, 1986, and 1987) were highly affected by the term inal fishing m ortalities and 

excluded from fitting stock-reeruit models, I exam ined the sensitivity o f choices of 

natural m ortality in the cohort analysis on the shape o f the stock-recruit m odel using 

constant natural m ortalities ranging from 0.2 to 0.4 to repeat the cohort analysis. The 

stock-recruit data with d ifferent natural m ortalities were standardized by a com m on 

scale and fitted to the R icker model; the two m ost different curves are illustrated in 

Figure 4.1, The shape o f the stock-recruit curve influences optim al threshold levels 

(Quinn et al. 1990), but the choice o f natural m ortalities in the cohort analysis has little 

effect on the shape.

Strong year-classes o f herring have occurred in PW S every 4 years since 1976 

(Figure 4.1). T his 4-year cycle was found in other herring stocks in the G ulf o f  Alaska 

as well (Collie 1991a; H aist and Schw eigert 1990; Chapter 2), This phenom enon may 

be caused by large-scale environm ental factors, but causative factors are unknown 

(Chapter 2). These PW S data were interpreted in two different ways.

First, the deviations o f recruits from  the stock-recruit relationship were 

considered to be caused solely by the variation o f environm ental conditions, A Ricker 

curve was fitted  to the data regardless o f the known 4-year cycle (called "no-cycle"). 

Note that the recruits were so variable that the fitted curve explained only a very small 

portion o f the variation. Secondly, 1 assum ed that there may be two kinds of 

environm ental conditions for herring recruits: every 4 years, favorable environm ental 

conditions occurred but the environm ental conditions were unfavorable otherwise. Two 

Ricker curves were fitted corresponding to these two environm ental conditions (called 

"cycle"). O ne was fit to all data except the four strongest year-classes. The other was 

fit only to the four strongest year-classes. It was assumed that the stock-recruit curve 

shifted from the weak recruit model to the strong recruit model once every four years 

due to a shift to favorable environm ental conditions. The initial phase of the cycle was 

determ ined random ly. Both sets of the stock-recruit m odels derived by these two 

interpretations were used in the sim ulation study described below.
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A g e -s tru c tu re d  M odel

The sim ulation m odels were sim ilar in approach for these two herring stocks 

except that a different num ber o f  fisheries w as m odelled for each slock. To sim ulate 

herring fisheries in a realistic fashion, I m odelled five herring fisheries in PW S: sac roe 

purse seine, sac roe gillnet, pound spawn-on-kelp, natural spawn-on-kelp, and food/bail, 

according to the order o f  their occurrence. In the EBS, I did not explicitly m odel the 

relatively sm all harvests by the Dutch H arbor food/bait fishery and the trawl bycatch 

in which exploitation rates are typically 0.5%  or 1%. Because gear seleetivities o f purse 

seines and gillnets could not be separated in the cohort analysis for EBS herring, only 

one fishery w as m odelled for this population, nam ely the sac roe fishery. The follow ing 

m odels were applied to PW S herring. For EBS herring, the m odels were identical except 

that the m odels for pound spawn-on-kelp, natural spawn-on-kelp, and food/bait fisheries 

were not applied.

In the spring each year before spaw ning, the mature herring biomass B t was 

obtained as

(4.1) Bt = £ a[Nt<a ma wa],

where Nua is abundance ju st before spawning in year t and age a, ma is the proportion 

mature and wa is weight at age a, which is determined by a general von Bertalanffy 

growth equation

(4.2) wa = W „ ( 1 -  exp[-k(a-t0)])b,

where W M, k , t0 and b  are growth parameters.

Total yield Y t was determined as

(4.3) Yt = B s ht,

where h, is exploitation rate in year t. The total yield was allocated to different fisheries 

by predetermined proportions pf . To convert the yield by fishery to catch in number by 

age, I estimated exploitable biomass by fishery, EBsf,

(4.4) EBlf  = E ,[N u  s l f  w j ,

where age and fishery selectivity coefficient sa f  is equal to 1 for at least one age. The 

effective exploitation rate by age and fishery is
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(4 -5 ) H«tf = Pf h« sa.f B /E B tf.

The catches (in num ber) for the four spring fisheries were calculated as

(4.6) CtAf «  N m HtAf.

Total spaw ning biomass, St, was

(4.7) S, = £ ,[ (N u  • Z<C,A,) » ,  m j.

H erring caught for the pound spawn-on-kelp fishery were released after 

spaw ning and were assum ed to have a 50%  m ortality rate (L loyd A. W ebb, Canada 

D epartm ent o f  Fisheries and Oceans, V ancouver, personal com m unications). Total 

num ber o f  fish dying due to  fishing, Dta, was estim ated as 

(4-8) D „ = CUJ + C,.,,, + 0.5 C1Ak,

where s stands for sac roe purse seine, g  for sac roe gillnet, and fc.for pound spawn-on- 

kelp.

A bout a half year after the spring fisheries, the abundance ju st before the fall 

food/bait fishery was

(4.9) N t+0 5 a+05 = (Nw - D t a) exp(-0.5 Ma).

Catch for the food/bait fishery was obtained by m ultiplying the abundance with the 

effective exploitation rate, Hta b:

(4.10) C t a b =  N t+0 5>a+0 5 Ht a b.

The abundance was advanced to the next year, Nt+la+h as

(4 n ) N t+i,a+i = (Nt+0,5,a+0.5 - C £Ab) exp(-0.5 Ma)

for all ages except the oldest age in the m odel and by

(4.12) N !+1>!a — (Nt+0 51a.0 5 - C Ua.j b)exp(-0.5 M la,j) + (N[+0 5 la - Ct<|ajb) exp(-0.5 MIa)

for the last age (la) in the model. The last age is a plus group for fish older than la.

The R icker model was used to describe the stock-recruit relation because of 

sim plicity and best fit o f  the data:

(4.13) N t+r>r =  a S, exp(-p  St + vt),

where r is the starting age, a  and p are param eters, and vt is a random  variable assumed 

to follow a norm al distribution with mean 0 and variance <r (Quinn et al. 1990).
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S im ulations

To investigate how a herring population m ight respond to different threshold 

levels and exploitation rates when fish biom ass declines to low levels. I used the age- 

structured m odel for com puter experim ents. For this I varied threshold level, 

exploitation rate, and several factors influencing herring population dynamics. Threshold 

levels from 0 (no threshold) to 60% of the pristine biomass and exploitation rates from 

5% to 60% were examined. Tw o different levels of initial biom ass equal to 5%  and 

25% of pristine biomass, along with corresponding equilibrium  age com positions, were 

assum ed. Previous sim ulation studies on EBS pollock indicated that the effects of 

planning horizon on the optim al threshold levels were m inor w hen the planning horizon 

was 20 years o r longer (Quinn et al. 1990). Therefore, 1 used a fixed planning horizon 

o f 50 years and replicated each scenario 200 tim es. To com pare different scenarios 

under the sam e environm ental conditions, I used the same set of seeds for random 

num ber generators for all scenarios. Note that 200 replicates are much sm aller than 

2000 or 5000 replicates used for pollock sim ulations in C hapter 3. Because different 

seeds for random  num ber generators were used for each scenario for pollock 

sim ulations, a high num ber o f replicates was required for m eaningful comparisons.

C atches depend on exploitation rates and stock abundances which are estim ated 

with m easurem ent error (M E). M easurem ent error during stock assessm ents was 

assumed to follow  a lognorm al distribution. The true mature biom ass Bt and exploitable 

biom ass EBtJ-com puted in equations (4.1) and (4.4) were m ultiplied by the m easurem ent 

error each year to obtain the estim ated values. Catches also depend on how well a 

harvest strategy is implem ented. Im plem entation error, defined as the difference between 

the intended catch quota and the actual catch, was assum ed to follow a normal 

distribution. Thus, the actual catch each year was equal to the intended catch quota 

com puted in equation (4,6) plus the im plem entation error. Three levels o f m easurem ent 

error and im plem entation error, corresponding to standard deviations of 0. 0.2, and 0.5 , 

were exam ined. To prevent extrem ely large errors in both ends o f the error distributions,

1 truncated the m easurem ent errors by their 959c confidence limits and the
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implementation errors by their 90% confidence limits.

Consecutive poor recruitm ent for a num ber o f years in conjunction with high 

exploitation rates is often the cause o f fishery collapse. This feature was sim ulated by 

generating first-order autocorrelated errors (vt). T w o levels o f  autocorrelation (A C), with 

coefficients 0 and 0,5, were used in the sim ulations.

From  each sim ulation, diagnostic statistics were ( 1) average yield, (2) standard 

deviation o f  yield, (3) total tim e below a threshold level (no fishing), (4) coefficient o f 

variation o f spaw ning biomass. These statistics were used as m easures o f the 

performance o f harvest policy com binations o f  thresholds and exploitation rates. In 

addition, rebuilding time and total tim e to rebuild the population to a threshold level for 

the sim ulations with 5% initial biomass were collected to exam ine how a threshold level 

and exploitation rate would affect the time to enhance a population once it fell to a very 

low level.

Optimal Criteria

M anagem ent o f a fishery should ideally achieve a stable optimal spawning 

biom ass, resu lt in a large yield, avoid large annual variation in yield, and maintain 

continuous harvest opportunity. Sim ulation results indicated that the standard deviation 

o f yield could be used linearly to approxim ate the coefficient o f variation (CV) of 

spaw ning biom ass and the probability o f no fishing. The optim ization problem is then 

sim plified because the objective function needs only to consider average yield and 

standard deviation o f yield. I chose an objective function to provide the trade-off 

between increased average yield and decreased variation in yield. Detailed descriptions 

o f this objective function are given by Quinn et al. (1990). The function is a linear 

com bination o f average yield and the standard deviation o f yield over the planning 

horizon, or

(4,14) max [(1 - X) Y,h - X SD th],

where Y,h and SDth are average annual yield and standard deviation under threshold level 

"th", and X is a penalty weighting factor. There are. three special cases: maximum
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average yield (X=0). equal trade-off of increased average yield with decreased standard 

deviation (X=0.5), and minimum variation in yield (X=1.0).

Tw o optim ization problems were considered. First, for a given exploitation rate, 

the optimal thresholds were found from  the objective function. Second, optimal 

com binations o f thresholds and exploitation rates were determ ined sim ultaneously using 

the objective function. Solution of the first optim ality problem  provides advice on 

adjustm ents to the current threshold level while continuing to im plem ent the current 

exploitation rate policy. Solution o f the second problem  provides advice on the current 

m anagem ent practices with respect to optim al threshold harvest policy.

R E SU L T S

N on-threshold, age-structured m odels with stochastic variation in recruitm ent for 

PW S and EBS herring were replicated 500 times. Each replicate was iterated for 300 

years, and the results in the last 100 years were used to determine associated average 

mature biom ass, and yield as a function o f exploitation rate (Figure 4.2). For each 

exploitation rate, the scaled frequency distributions o f mature biomass and yield are 

illustrated. Simulated herring population abundance and yield are extremely variable 

(Figure 4.2). EBS herring are about five tim es as abundant as PWS herring. For EBS 

herring, the maximum yield was achieved with an exploitation rate of 0.36 (Table 4.2), 

and the probability of population collapse increased dramatically with exploitation rates 

higher than 0.5 (Figure 4.2). For PWS herring without a 4 -year cycle, exploitation rate 

corresponding to maximum yield (HMSY) was 0.34 (Table 4.2), and an exploitation rate 

of 0.4 or higher result in high probability o f population collapse (Figure 4.2). If strong 

recruitment occurred every 4 years for PWS herring, HMSY was 0.42 and the population 

was more productive (Table 4.2).

Simulations under different threshold levels were then made for different 

scenarios for each herring stock. In all scenarios under a constant exploitation rate of

0.2 or higher, the average yield increased as a function o f the threshold to a maximum 

value and then decreased. The standard deviation generally increased monotonically.
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. Exploitation Rate
Figure 4.2. Catch and mature biomass distribution as a function of exploitation rate by computer 
simulations tor eastern Bering Sea (EBS) and Prince William Sound (PWS) herring. The vertical 
dashed bars show the frequency distributions of catch and mature biomass* for a given 
exploitation rate, The solid lines are the average catch or mature biomass, (unit; 1000 tonnes)
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Table 4,2, Pristine mature biomass, m ature biom ass BMSY at maximum average 
sustainable yield (MSY) and its percentage o f pristine m ature biomass, M SY, in 
thousands o f tonnes, and exploitation rate HMSY, for EBS and PW S herring.

EBS PW S

Param eter No-cycle Cycle

421.0 83.4 81.5

®MSY 254.0 45.6 45.0

0.6 0.55 ' 0.55

MSY 92.0 15.5 18.9

^MSY 0.36 0.34 0.42

H0.1 0.31 0.40 0.40



The coefficient of variation (CV) o f spawning biomass decreased with increasing 

threshold levels, and the proportion o f years w ithout fishing increased. The proportion 

of years w ithout fishing was alm ost parallel to the standard deviation o f yield as a 

function o f the threshold, w hereas the decreased CV of spaw ning biom ass and the 

increased standard deviation o f yield were roughly sym m etrical over the increased 

threshold levels.

Figure 4,3 illustrates the benefits—increased average yield and reduced CV of 

spawning biom ass—of introducing a threshold level for EBS herring given an 

exploitation rate o f HMSY. M easurem ent error generally reduced the average yield and 

increased the standard deviation o f yield, CV  o f spaw ning biom ass and proportion of 

years w ithout fishing. Im plem entation error (not shown here) also reduced the average 

yield and increased the variation in yield, but the trends with threshold levels were the 

sam e under different levels o f im plem entation errors. Environm ental autocorrelation had 

effects sim ilar to m easurem ent error, but the increase in average yield with a threshold 

level under positive autocorrelation was slightly higher than w ithout autocorrelation. A 

threshold strategy was not as beneficial when the initial biomass was high as when the 

initial biom ass was low, because the population was less likely to drop to a threshold 

level when it began high. H ow ever trends with threshold levels were similar.

Sim ulation results for PW S herring were qualitatively sim ilar to those for EBS 

herring in regard to the level o f the threshold (Figure 4.4). The variation in yield and 

CV of spawning biomass were much larger with no-cycle of recruitm ent than those with 

a 4-year cycle, while the average yield with a 4-year cycle o f recruitment was higher 

than with no-cycle. The strong 4-year cycle o f recruitm ent supported a relatively high 

and stable population because the average recruitm ent was h igher with 4-year cycle of 

recruitm ent than without cycle.

Rebuilding time is defined as the total num ber o f years fo r a population to 

rebuild to the level associated with M SY after it falls to a very low level (Quinn et al. 

1990). Because average rebuilding time from sim ulations was skewed to the right, 

median rebuilding time was used. M edian time to rebuild a population from a low
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abundance to a threshold level without fishing, called first upcrossing time, was used 

as a reference to rebuilding time. Without fishing, it took about 8-9 years for EBS 

herring and 14-15 years for PWS herring to rebuild from 5% of pristine biomass to the 

biomass associated with MSY (Figure 4.5). With a 20% exploitation rate and no 

thresholds, the rebuilding time ranged from 12 to 15 years for EBS herring and from 

16 to 24 years for PWS herring. With an exploitation rate o f HMSY or higher and no 

thresholds, it took a much longer time to rebuild an overexploited population. Threshold 

approaches greatly shortened the rebuilding time, especially when the population was 

heavily exploited (Figure 4.5). The shorter rebuilding time for EBS herring partially 

results from the steeper slope of its stock-recruitment curve. As expected, the population 

was rebuilt faster under scenarios with the strong 4-year cycle o f recruitment than with 

no-cycle for PWS herring. Overall, measurement error and environmental 

autocorrelation increased the rebuilding time.

The optimal levels o f threshold and exploitation rate were determined by 

examining the response surface formed by values o f the objective function over a grid 

of thresholds and exploitation rate ranges. EBS herring was examined with two levels 

of environmental autocorrelation, three levels o f weighting factors, an initial biomass 

of 5%, 3 levels of measurement error, and no implementation error (Figure 4.6). To 

illustrate results on a common scale, 1 show the results as contour plots of the objective 

function for each scenario scaled to a maximum value of 1 as a function of exploitation 

rate and threshold level.

The optimal threshold level and exploitation rate declined as a function of the 

weighting factor X and measurement error and were fairly robust to variations in the 

other factors (Figure 4.6). That is, when the variation in yield is weighed more heavily 

or the population biomass cannot accurately be estimated, a low threshold and a low  

exploitation rate would be chosen. Environmental autocorrelation influenced the optimal 

threshold and exploitation rate differently with different weighting factors. When X = 

0, the maximum yield criterion, environmental autocorrelation increased the optimal 

exploitation rate and average yield by using thresholds. When X = 0.5 (equal trade-off
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Threshold

Figure 4,5, C ontour plots o f m edian rebuilding time (solid lines) and m edian tim e to 
rebuild to a threshold level (doited lines) in year as a function o f threshold level and 
exploitation rate for eastern Bering Sea (EBS) and Prince W illiam  Sound (PW S) 
herring. The plots are also classified by three levels o f m easurem ent error (M E 0, 0.2, 
0.5) and three recruitm ent scenarios (Cycle, AC 0, AC 0,5).
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Fieu--e 4 6 Contour plots of the objective function values as a function of exploitation rate and 
threshold level for eastern Bering Sea herring. The plots are classified by three penalty weighting 
factors (X), three levels of measurement error (ME), and two levels of autocorrelation (AC). Initial 
biomass was 5%. The contour values were scaled from the minimum value (0) to the maximum
value Cl).



between average yield and variation in yield), environm ental autocorrelation decreased 

both the optim al threshold level and exploitation rate. C om binations o f a large 

im plem entation error and a large weighting factor (X=0.5) slightly reduced the optim al 

thresholds and exploitation rates, in o ther cases, optim al levels o f  thresholds and 

exploitation rate were independent o f im plem entation error.

For EBS herring under the m aximum  yield criterion. X = 0, the optim al threshold 

levels generally varied from  40%  to 50% o f pristine biom ass and the optim al 

exploitation rates varied from 35%  to 45%  am ong scenarios (Figure 4.6, Table 4,3). For 

each scenario, there was a broad region betw een the 0.9 contour and the m axim um  point 

at 1, which represente the com binations o f the two param eters that w ould produce 

approxim ately 90% or greater o f the m axim um  yield possible (Figure 4.6). T h is suggests 

that several com binations could produce close to the maximum yield. For low er values 

o f exploitation rate, the contour lines are flat, indicating that the threshold level has 

little effect when exploitation rate is sm all. For the status quo 20%  exploitation rate, 

optimal thresholds were about 25%, 75%  or more of the average m axim um  catch was 

obtained and less variation occurred (Table 4.3). If the exploitation rate w as increased 

to 31% , i.e., H0 ,, above 93%  of the average maximum catch was obtained with an 

optim al threshold o f about 35% , but with m uch higher variability. U nder the H Msy 

exploitation rate, above 91%  o f  the average m aximum  catch could be achieved with an 

optim al threshold level o f 40% .

For the equal trade-off criterion, corresponding to X = 0.5. the optim al threshold 

levels generally varied from  10% to 20% of pristine biom ass, and the optim al 

exploitation rates ranged from  15 to 30% am ong scenarios for EBS herring (Table 4,3). 

The contour lines closed off the upper right-hand corner, which elim inates the 

com binations o f both high thresholds and exploitation rates from being the optimal 

choice (Figure 4.6).

Optim al com binations o f threshold levels and exploitation rates were evaluated 

for PW S herring with an initial biomass of 5% and no im plem entation error (Figure 

4,7). The overall effects o f m easurem ent error and the weighting factor on the optim al
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Table 4.3. Optimal combinations o f threshold levels (T) and exploitation rates (OH) and 
associated levels of average yield (Y) and standard deviadon (SD), and optimal 
threshold levels and the percentages o f their objective values (Obj%) compared to the 
optimal objective values under a given exploitation rate. Results are shown for an initial 
biomass of 5% and no implementation error.

Factor Optimal Combination H = 0.2 H = H0, H = Hmsy

SN X ME AC OH T Y SD T Obj% T Obj% T Obj%

EBS 0.0 0.0 0.0 0.45 50 80.97 78.46 25 75.6 35 94.7 40 98.2
EBS 0.0 0.0 0.5 0.45 45 77.55 82.78 25 75.0 35 93.3 40 97.2
EBS 0.0 0.2 0.0 0.40 45 79.83 73.38 25 77.4 35 96.0 40 99.0
EBS 0.0 0.2 0.5 0.45 45 76.93 87.20 25 76.3 35 94.0 40 97.7
EBS 0.0 0.5 0.0 0.35 40 75.42 79.94 20 85.1 30 99.0 40 99.8
EBS 0.0 0.5 0.5 0.40 45 72.19 95.01 25 84.2 35 98.2 40 99.7

EBS 0.2 0.0 0.0 0.35 35 78.99 56.81 20 83.5 30 98.6 35 99.8
EBS 0.2 0.0 0.5 0.40 35 76.29 71.96 20 85.0 30 98.0 35 99.7
EBS 0.2 0.2 0.0 0.35 30 78.17 58.65 20 84.9 30 99.0 30 99.7
EBS 0.2 0.2 0.5 0.35 30 74.23 68.97 20 86.2 30 98.7 30 99.9
EBS 0.2 0.5 0.0 0.30 25 74.37 66.96 20 91.0 25 99.7 30 97.8
EBS 0.2 0.5 0.5 0.30 25 70.09 75.54 20 92.1 25 99.8 35 98.8

EBS 0.5 0.0 0.0 0.30 20 74.77 47.82 15 96.0 20 99.5 20 96.6
EBS 0.5 0.0 0.5 0.25 15 64.95 50.69 15 98.9 20 98.4 20 95.4
EBS 0.5 0.2 0.0 0.30 20 75.00 51.16 15 97.3 20 99.4 20 96.2
EBS 0.5 0.2 0.5 0.23 15 62.98 51.25 15 99.6 15 97.6 15 94.0
EBS 0.5 0.5 0.0 0.22 15 67.10 55.40 15 99.8 15 96.2 15 91.2
EBS 0.5 0.5 0.5 0.15 10 50.43 48.48 10 98.5 10 91.6 10 87.4

PWS 0.0 0.0 Cyc 0.55 35 16.42 15.03 20 62.6 30 93.4 30 94.7
PWS 0.0 0.0 0.0 0.60 40 16.17 33.76 20 60.8 35 88.1 30 82.1
PWS 0.0 0.0 0.5 0.60 40 14.83 28.55 25 58.5 35 86.2 30 79.8
PWS 0.0 0.2 Cyc 0.60 40 16.37 18.12 20 63.5 30 93.8 30 95.2
PWS 0.0 0.2 0.0 0.60 45 15.85 33.51 20 62.7 35 89.6 30 83.8
PWS 0.0 0.2 0.5 0.60 45 14.67 29.92 25 59.9 35 87.2 30 81.0
PWS 0.0 0.5 Cyc 0.45 30 15.35 16.95 15 71.3 30 98.7 30 99.2
PWS 0.0 0.5 0.0 0.55 60 14.32 35.49 20 72.5 35 96.9 35 92.7
PWS 0.0 0.5 0.5 0.60 50 13.53 32.83 25 67.7 45 93.6 40 88.2
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Table 4.3 (continue)

Factor Optim al Com bination H = 0.2 H := 1̂ H = H msy

SN X M E AC OH T Y SD T Obj% T O b j7 c T Obj%

PW S 0.2 0.0 Cyc 0.50 25 16.05 12.46 15 73.1 25 97.5 25 98.3
PW S 0.2 0.0 0.0 0.35 25 1336 18.96 15 88.9 30 99,6 25 99.7
PW S 0.2 .0.0 0.5 0.55 30 14.13 25.16 15 85,6 25 98.1 25 95.9
PWS 0.2 0.2 Cyc 0.50 25 16.04 1331 15 74.6 20 98.1 25 98.7
PWS 0.2 0.2 0,0 0 3 5 25 13.38 19.28 15 89.4 30 99.9 25 99.8
PW S 0.2 0,2 0,5 0.50 30 13.66 24.51 15 87.1 25 99.0 25 97 J
PWS 0.2 0.5 Cyc 0.40 20 15.06 14.52 15 81,4 20 100 20 99.6
PW S 0.2 0.5 0.0 0.30 20 12.57 18.65 15 93,2 30 97.1 25 99.4
PW S 0.2 0.5 0.5 0.35 25 11.87 21.86 15 92,6 30 99,8 25 99.9

PW S 0.5 0.0 Cyc 0.35 15 1436 9.83 10 93.9 15 99,8 15 99.3
PW S 0.5 0.0 0.0 0.05 5 3.14 2.94 10 90.5 15 63.2 15 72.2
PWS 0.5 0.0 0.5 0.05 5 2.86 3.28 5 79.7 5 62.9 5 6 7 3
PW S 0.5 0.2 Cyc 0.35 15 14.44 10.40 10 95.2 15 99.5 15 99.0
PW S 0.5 0.2 0.0 0.05 5 3.19 3.09 10 89,4 15 63.5 10 71.5
PW S 0.5 0.2 0.5 0.05 5 2,90 3.43 5 77.7 5 61,0 5 65.1
PW S 0.5 0.5 Cyc 0.25 10 12.49 10.72 10 99.8 10 94.8 10 93.6
PW S 0.5 0.5 0.0 0.05 5 3.43 3.84 10 81.7 10 55.0 10 63.4
PW S 0.5 0.5 0.5 0.05 0 3,09 4.19 5 69,1 0 44.2 5 56.3

A bbreviation:
Cyc: Four-year cycle o f strong recruitm ent for PW S herring.
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Figure 4.7, Contour plots o f  the objective function values as a function of exploitation rase and 
threshold level for Prince William Sound herring. The plots are classified by three penalty weiuhiirm 
factors(>.), three levels of measurement error (ME), and two sets of stock-recruit curves iCxcle. No", 
cycle). Initial b iomass was 5c'r and no autocorrelation was assumed. The contour values were scaled 
from the m inimum value ( 0 ) to the maximum value (1).



levels were sim ilar to those for EBS herring. Because of a high standard deviation o f 

catch, the objective function values were close to zero or negative in scenarios with no­

cycle in recruitm ent and a weighting factor o f 0.5, which suggested that the optimal 

results were alm ost equivalent to total fishery closures (Figure 4.7).

For PW S herring under the m axim um  yield criterion (k  = 0), the optim al 

threshold levels varied from  30%  to 60% , and the optimal exploitation rates ranged 

from  45 to 60%  among scenarios (Table 4.3). For the status quo exploitation rate of 

20% , optim al thresholds were 15 to 25% , and m ore than 58% o f the average maximum  

catch could be obtained (Table 4.3). If H0J exploitation rate w as used, more than 86% 

o f the average maximum catch was obtained with optimal thresholds ranging from  30 

to 45% . U nder HMSY exploitation race, m ore than 80% of the average m axim um  catch 

could be achieved with optim al threshold levels from  30 to 40% .

W ith X =  0.2, the highest contour values are associated with interm ediate 

threshold levels and high exploitation rates (Figure 4.7). Optimal threshold levels were 

quite robust: 15% and 25%  with 20% and H MSY exploitation rates, respectively (Table 

4.3).

For the equal trade-off criterion, the optim al threshold levels were 10% or 15%, 

and the optim al exploitation rates ranged from  25 to 35% am ong scenarios for PWS 

herring with the 4-year recruitm ent cycle (Figure 4.7). W hen no-cycle in recruitm ent 

occurred, both the optimal threshold levels and exploitation rates were 5% or less due 

to large standard deviations o f yield,

D ISC U SSIO N

A threshold m anagem ent strategy aim s to conserve fish stocks, m inimize the risk 

o f collapse o f a fishery, and to enhance long-term  productivity o f a population. 

However, over the short-term, such a policy increases the probability of econom ic 

hardships for the fishing industry and fishing com m unities caused by closed fisheries. 

Therefore, optim al threshold levels have to be determined by a trade-off am ong benefits 

and costs. In this study, this trade-off was handled by choosing a weighting factor X.
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Certainly, the choice o f X value is subjective, but m ost likely X ranges from 0 to 0.5, 

In principle, fisheries m anagem ent policies in Alaska traditionally favor a small 

w eighting factor, i.e., more w eight is placed in protecting resources and m axim izing 

sustainable yield.

O ptim al threshold levels from this study ranged from 10% to 40% o f the pristine 

biom ass for EBS herring and from 0 to 60%  for PW S herring. The threshold values 

depended upon the trade-off between the increase o f yield and the decrease of 

variability in yield and exploitation rates. The response surfaces o f the objective 

function values were fairly flat, i.e., several com binations o f exploitation rate and 

threshold level could produce close to the m axim um  objective value possible. This 

property o f  the objective function could increase m anagem ent flexibility. U nder the 

status quo exploitation rate o f 20% and the m axim um  yield criterion, optim al thresholds 

varied from  20 to 25% for EBS herring and from  15 to 25% for PW S herring, but 

increases in average yield by using a  threshold were sm a ll With all factors and 

population m odels considered in this study, a threshold o f 25% of pristine biom ass 

provides a safeguard for protecting the herring populations and approxim ately 

m axim izes the sustained yields under a 20% exploitation rate.

The current threshold levels for m ost o f  the herring stocks in Alaska are about 

20-25%  o f the average observed biomass. T he average observed biomass is likely less 

than the pristine biomass defined in this study. Thus, thresholds used in current herring 

m anagem ent plans may be som ew hat low er than optim al levels for m aximizing average 

yield. Estim ation o f pristine mature biom ass is as im portant as definition of a percentage 

for threshold level. The m ost current data should be examined to estim ate pristine 

biomass before setting thresholds. Incidentally, this study validated the threshold o f 25% 

of pristine biom ass set arbitrarily for British C olum bia herring stocks (Hall e t al. 1988).

U nder the maximum yield criterion, optimal exploitation rates were alm ost 

always higher than HMSY. Com binations o f high threshold levels and exploitation rates 

approxim ated pulse fishing and resulted in m axim um  average yield, but with very high 

variation. Y et the gain in yield was very little with an exploitation rate exceeding HMSY.
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As with previous studies on Pacific herring m anagem ent strategies (Funk 1991; Fried 

and W espestad 1985; Hall et al. 1988), exploitation rates Hq , and HMSY were much 

higher than the status quo exploitation rate o f 20% . The status quo exploitation rate 

resulted in 75% -85%  and 59% -73%  o f the m axim um  yield possible for EBS and PW S 

herring, respectively, w ith m uch less annual variation. M oreover, under the status quo 

exploitation rate, the spaw ning biomass w as less variable and the chance o f  closing a 

fishery was m uch lower than under exploitation rates H0J and HMSY. Unless the 

m anagem ent objective is solely to m axim ize average yield, it is not beneficial to move 

the exploitation from  the status quo to H0 j or HMsy.

Species interactions and depensatory predation m ortality w ere not considered in 

this study. W espestad  (1991) show ed that EBS herring abundance is negatively 

associated w ith EBS pollock abundance. Kajiraura (1984) indicated that Pacific herring 

is an im portant prey for northern fur seals along the coasts o f  W ashington, British 

Colum bia, and Southeast A laska. Haist e t al. (in press) dem onstrated that the fisheries 

data o f British Colum bia herring are statistically better fitted w ith depensatory natural 

m ortality than w ith a  constant natural m ortality, and that m axim um  sustainable 

exploitation rate is low er w ith a depensatory natural m ortality than with a constant 

m ortality. C ollie  and Spencer (in press) applied a m odel w ith depensatory predation to 

Sitka Sound herring and concluded that M SY  occurred at fishing m ortality o f 0.2 for 

the threshold policy. W ith the uncertainty o f  species interaction, the status quo 

exploitation rate plus a threshold o f 25%  o f  pristine biom ass m ay be a safe approach 

for A laska herring stocks. Further study on the optim al harvest strategies o f  Alaska 

herring could yield insight by evaluating the consequences o f  different sets of 

assum ptions about species interactions.

A lternative objective functions for herring roe fisheries m anagem ent include 

m axim izing roe production and m axim izing econom ic return. Because the roe 

production o f  A laska herring was approxim ately a linear function o f the body weight 

(Linda Brannian, Alaska Departm ent o f  Fish and Game, personal com m unications), 

m axim izing yield was close to m axim izing roe production. Roe from old, large herring
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is generally m ore valuable than from young, small herring. Funk (1991) addressed this 

economic problem  and concluded that the exploitation rates corresponding to the 

objectives o f m axim izing yield and m axim izing econom ic return are sim ilar for EBS 

herring and only slightly different for PW S herring. Although the unit price o f roe from 

large herring is higher than that from sm all herring, the total econom ic return is not 

necessary h igher because many herring die o ff  before they have an opportunity to grow 

to a large size. On the o ther hand, when m ultiple users share a fisheries resource, 

m axim izing econom ic return is seldom  the sole m anagem ent objective. Equitable 

allocation am ong different user groups outw eighs the maximum  econom ic return. 

Herring fisheries in Alaska are such a case.

Successful threshold m anagem ent strategies depend highly on accuracy of 

population estim ates. Two kinds of m easurem ent error likely occur: random  and 

system atic errors. Random m easurem ent error was exam ined in this study and could 

reduce both optim al thresholds and exploitation rates. Spawn deposition surveys used 

to estim ate absolute herring abundance in PW S may result in standard deviations of 

random m easurem ent errors between 0,2 and 0.5 (Schweigert e t al, 1985), as defined 

in this study. System atic bias may occur from aerial surveys. Peak biomass estim ated 

from aerial surveys may represent a fraction o f  total mature biom ass because m igrations 

to and from  the spawning grounds are spread over time and because poor weather often 

reduces visibility during surveys. For EBS herring prim arily in the Togiak area, aerial 

surveys substantially  underestim ated spaw ning biomass during the m id-1980’s (Baker 

1991; W espestad 1991), Effectively, this reduces the maximum  exploitation rate o f 209c 

to a sm aller percentage. System atic m easurem ent error reduces not only average yield, 

but also the effectiveness o f threshold m anagem ent strategies. A threshold is not needed 

when the exploitation rate is very small.

Results ot this study indicated that im plem entation error had relatively m inor 

effects on optim al threshold levels for A laska herring. The m ost important effect of 

im plem entation error on m anagem ent strategies was to reduce the optimal threshold 

levels and exploitation rates slightly when heavy weight was given to the variation in
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yield, because implementation error increased the variation in yield. Im plementation 

error was assum ed to have a m ean o f zero, but actual herring catches in Alaska are 

often slightly above the catch quota, which results in a positive m ean for 

im plem entation error (Funk and Zheng 1992b). The skewed im plem entation error does 

not alter the conclusions o f effects o f im plem entation error on optim al threshold levels, 

but it affects optim al exploitation rates. The positively skewed error cancels out a small 

proportion o f exploitation rate, and thus, optim al exploitation rates are a little low er than 

those with an unskewed im plem entation error.

A stock-recruit relationship is a key elem ent o f long-term  harvest strategies. 

Optimal thresholds are sensitive to this relationship (Quinn el al. 1990). Com m only. 

Ricker curves have been fitted to herring stock-recruit data (e.g.. Hall e t al. 1988; 

Stocker e t al. 1985; Stocker and Noakes 1988; W inters and W heeler 1987). D ensity o f 

herring egg m asses is generally related to spaw ning biom ass, the survival and 

developm ent o f eggs are inversely associated with egg density, and maximum larval 

production occurs at medium egg densities (Taylor 1971). Together, these relationships 

suggest a dom e-shaped stock-recruit model. Furthermore, cannibalism  in Pacific herring 

is not uncom m on (Grosse and Purcell 1990).

But environm ental noises are so large that spawning biomass could explain only 

a small proportion o f recruitm ent variation. Environm entally stratified stock-recruit 

curves were applied to A tlantic herring (Clupea harengus) (Anthony and Fogarty 1985) 

and prawn (Penn and Caputi 1986; Tang et al. 1989). The occurrence of strong herring 

recruitm ent every 4  years in the G ulf o f A laska since 1976 is m ost likely induced by 

the variation of oceanographic conditions. A lternative explanations are that recruitm ent 

cycles may result from oceanographic factors interacting with the dynamics o f the stock, 

or sim ply from the biology o f the stock (M urphy 1968). W hatever the m echanism , these 

herring populations prim arily consist o f two age groups, and stocks are very vulnerable 

to overfishing. W hether this 4-year cycle continues to hold has im portant consequences 

to herring fisheries m anagem ent in the future.
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their spaw ning locations. Thus, the threshold biomass for EBS herring has to be divided 

for each substock according to the stock size. If EBS herring stocks all have sim ilar 

stock-recruit relationships, the conclusions about herring threshold m anagem ent 

strategies based on the assumption o f a  single stock in the EBS will still hold. 

Furtherm ore, because o f m ulti-stock m anagem ent, it is unlikely that all stocks would fall 

below a threshold level a t the sam e time; thus, the im pact o f threshold closures on 

harvest opportunities would be less than that under a single-stock m anagem ent strategy.
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Chapter Five

COMPARISON AND EVALUATION OF THRESHOLD ESTIMATION 

METHODS FOR EXPLOITED FISH POPULATIONS

SUMMARY

Previous studies (Chapters 3 and 4) have shown that threshold m anagem ent 

policies for single-species system s are robust and close to optim al in regard to the class 

of all com m on policies. A pplication o f these policies to fisheries m anagem ent requires 

developing m ethods o f threshold estim ation and evaluating alternative threshold 

specifications on fish population dynam ics and yields. Sim ulated age-structured 

populations w ere used to com pare and evaluate seven threshold estim ation m ethods for 

pollock and herring populations in the eastern Bering Sea (EBS). Param eters for these 

two populations were obtained from cohort analysis, catch-at-age analysis and catch 

sampling. The seven threshold estim ation m ethods are: default percentages o f pristine 

biomass, F ow ler’s rule, M ay’s m ethod, surplus production m odel, depensatory 

production m odel, stock-recruit model, and spawning biom ass per recruit. Passively 

adaptive sim ulations were conducted in which threshold levels were updated and applied 

to fisheries m anagem ent each year. Influences o f several factors on threshold estim ation 

m ethods were exam ined. Several statistics were collected as criteria  for com parison and 

evaluation. It was found that the default percentages o f pristine biom ass usually 

performed best. The estim ation procedures o f the surplus production m odel and 

depensatory production model often failed. The stock-recruitm ent m ethod could produce 

large biased threshold estim ates with a sm all data set. M ay’s m ethod usually resulted 

in high threshold levels that are favored with the objective o f  maximum yield, and 

Fow ler’s rule often produced low threshold levels which are preferred with the equal 

trade-off criterion. These two m ethods did not result in reliable estim ates o f thresholds 

given param eter uncertainties.
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IN T R O D U C T IO N

Com m on harvest strategies include constant catch, constan t harvest rate, and 

fixed escapem ent strategies (Getz and H aight 1989), The constant catch strategy 

generates stable yield, but the yield level m ust be relatively low to sustain the 

population. W ith the exception o f some fisheries managed by international treaties, this 

strategy is gradually losing favor. The constant harvest rate strategy gives a good 

balance betw een average yield and yield variation (W alters 1986), yet it m ay not be 

able to protect a population that drops to a very low lev e l On the other hand, maximum 

yield can be obtained under the fixed escapem ent policy, but the variation in yield is 

also largest com pared to other com m on strategies (Reed 1979; Getz and Haight 1989).

A com prom ise between the constant harvest rate and fixed escapem ent strategies 

is a threshold m anagem ent policy, in which harvesting occurs a t a constant harvest rate 

but ceases w hen a  population drops below a critical low level (Quinn et al. 1990), This 

policy not only produces a good balance betw een average yield and variation in yield, 

but also provides a conservative safeguard from overharvesting. Com puter sim ulation 

studies on EBS pollock (Theragra chalcogrammu) have shown that a threshold policy 

always increased average yield over that associated with the constant harvest rate policy, 

and, in m ost cases, greatly increased average yield while only slightly increasing 

variation in yield (Chapter 3; Quinn et al. 1990). An over-exploited population was 

better protected and more quickly enhanced under the threshold policy than the constant 

harvest rate policy (Chapter 3; Quinn et al, 1990), Threshold m anagem ent policies for 

British C olum bia herring fisheries were evaluated and compared with other alternative 

policies by Hall e t al. (1988) and Haist (1990), Their results also indicated that setting 

a threshold level in a harvest policy would have a positive effect on long term average 

yield and would help safeguard a population from collapsing by reducing high harvest 

rates when its abundance is low.

The threshold concept is relatively new in fisheries m anagem ent and has been 

primarily applied to species highly vulnerable to environm ental variation such as herring 

(Trumble and Hum phreys 19K5) and king and Tanner crabs (NPFM C 1990). No studies



to date appear to have evaluated threshold estim ation m ethods for exploited populations, 

M ost threshold levels used in fisheries m anagem ent are set arbitrarily, A threshold o f 

20% o f pristine biom ass was analytically derived by Thom pson (in press) to prevent 

overfishing for exploited fish populations, but his results w ere m ainly based on a 

strongly depensatory Beverton-H olt stock-recruitm ent relationship. Successful 

application o f  threshold m anagem ent policy to  fisheries requires developing m ethods o f 

threshold estim ation and evaluating threshold levels under a given m anagem ent 

objective.

In this chapter (based on Zheng et al. in press b) I com pared and evaluated 

seven m ethods to  estim ate threshold levels by using com puter simulations. The 

param eters o f  sim ulated age-structured populations are from  EBS pollock and herring, 

tw o o f the m ost com m ercially and ecologically im portant species in the northeast Pacific 

Ocean, In the sim ulations I adopted a passively adaptive approach similar to H ilbom  

(1979), in w hich available data were used to update threshold levels, and the updated 

thresholds w ere applied to harvest m anagem ent each year. E ffects o f m easurem ent 

errors and im plem entation errors on threshold estim ation were investigated. Evaluation 

criteria included average yield, standard deviation o f yield, m ean threshold levels, 

variation o f  estim ated thresholds and spaw ning biomass, and percentage o f  years 

without fishing.

METHODS

Age-structured Model

Typical age-structured single-species m odels were used in this study. The m odels 

and population param eters for EBS pollock and herring were described by Quinn et al, 

(1990) and Zheng et al. (in press  a). Recruitm ent for both stocks was m odelled by 

Ricker curves and lognorm ally distributed environm ental noises. The main differences 

between the pollock and herring models were that fishing m ortality and total num ber 

o f eggs as a spaw ning index were applied to pollock, and exploitation rate and spaw ning 

biomass as a spaw ning index to herring.
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Threshold Estimation Methods

Seven alternative m ethods were investigated to estim ate threshold levels. Each 

method has tw o param eters to be estim ated during simulations.

1. D efault percentage o f  pristine biom ass. Thirteen levels ranging from 0 to 60% 

were exam ined. This m ethod requires estim ates o f a pristine biom ass, which is defined 

as the average biom ass over a long period under average environm ental conditions 

without fishing. Each sim ulated year* the param eters o f a R icker stock-recruit model 

were estim ated using the available data, and an age-structured m odel was sim ulated for 

150 years in the absence o f fishing m ortality, and the biom asses during the last 100 

years were averaged to estim ate the pristine biom ass under this new set of population 

parameters.

2- Fow ler’s role. If  the approxim ate shape of a fish population growth curve is 

known, a threshold can be established in the absence of detailed stock-recruitment data 

because differently-shaped growth curves are known to produce well-defined 

quantitative differences in the dynamics o f the population. The shapes o f population 

growth curves can be determ ined by the locations o f their inflection and peak points. 

The inflection point is an im portant biological reference point a t which the maximum 

growth rate occurs. The location o f the inflection point can be used as a threshold lev e l 

This m ethod is applicable to a population with high fecundity w hose stock-recruit curve 

peaks sharply near the origin. Fowler (1981, 1988) showed that the shapes (inflection 

points) o f know n grow th curves for fish, m am m als, insects and protozoans can be 

predicted from  typical production/biom ass ratios for each species via an em pirical linear 

regression:

(5.1) TP = a -f b Ln(M SY/BMSY),

where TP is threshold level (percentage o f  pristine biomass), Bm r  is biomass at 

maximum average sustainable yield (MSY), and a and b are param eters estim ated from 

empirical data, equal to 0.11 and -0.074 for fish, respectively. Because I did not use 

stock-recruit data  for this method, I estim ated production/biomass ratio at the M SY level 

and pristine biom ass through a surplus production model similar to Quinn et al. (1984)
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3- May s method. Thresholds can be estim ated from  life-history and 

environm ental param eters of a fish stock through a resource-consumer approach. This 

strategy was developed by MacArthur (1972) and applied to fish by Rothschild (1986). 

M ay (1980) proposed using this approach to determ ine a critical stock density (Busr) 

below which stock collapse is likely, and he provided an exp lic it equation fo r this 

threshold in a m odel system  based on a Beverton-H olt stock-recruit relationship.

Let M  be instantaneous natural m ortality, r  the intrinsic population growth rate 

o f a conventional logistic equation, and u  the coupling coefficient representing the 

effective strength o f the coupling between the resource and its consumer* then

(5.2) TP = [(1 +  x)0'5 - 1] /t ,  

where x  = (J - xs)/(xt + M/r).

It is difficult to estim ate the coupling coefficient v ,  which relates the consum ption rate 

o f a consum er to the renew able rate o f its resource, u  was arbitrarily  set to 0.45 and 

0.28 for EBS pollock and herring, respectively. M  is approxim ated as 0.3 for pollock 

and 0.25 for herring. Param eter r and pristine biom ass were estim ated during 

sim ulations by a  surplus production model.

4- Stock -rec ru it.m odel. I f  a  stock-recruit m odel is know n, a threshold level can 

be defined in term s of the slope o f the curve. Egg num ber or spawning biomass 

corresponding to an equilibrium  point on the stock-recruit curve with slope o f 10% of 

the slope at the origin is used as a threshold (Sissenwine and Shepherd 1987). The 

param eters o f the R icker stock-recruit function were estim ated each year during 

sim ulations.

5. Sjaowning biom ass (eggs) per recruit. Spawning biom ass per recruit can be

used as a basis for thresholds and has been implem ented in fisheries m anagem ent by 

ICES (1984) and NEFM C (1985). Sissenw ine and Shepherd (1987) gave another option 

for this m ethod. This m ethod is more suitable for selecting a fishing mortality when a 

stock-recruit function is not available (Clark 1991; Thom pson in press). To be
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compatible with other threshold m ethods in the sim ulation fram ew ork, a biomass 

threshold was adopted. Before starting sim ulations, a spawning biomass per recruit of 

20% of the pristine value was used to com pute a threshold fishing mortality. During 

sim ulations, a stock-recruit function was fitted each year to estim ate the equilibrium  

spawning biom ass corresponding to the threshold fishing m ortality. This equilibrium  

spawning biom ass w as used as the biom ass threshold.

6- Surplus production m odel. The traditional surplus production m odel can be 

modified to incorporate a threshold param eter that corresponds to  a  biom ass level below 

which the productivity o f the population is assum ed to be zero (Quinn and Collie 1990). 

The relation betw een equilibrium  yield Y* and biom ass Bm is

(5.3) Y« = [4m /(B„ - T)](B* - T) - [4m /(B„ - T)2](B . - T)2,

where m  is M SY , T  threshold biomass and pristine biomass. Equation (5.3) is easily 

transformed to a second order polynomial regression by replacing equilibrium yield with 

annual surplus production (EASP) and equilibrium biomass with annual exploitable 

biomass (EB), i.e.,

(5.4) EASPt =  b0 +  b, EBt + b, EBt2.

Solving equations (5.3) and (5.4) results in estim ates o f T  and Bx :

(5.5) T  = [-bj +  (b ,2 - 4b0b2) l/2J/ 2b2, 

and

(5.6) B„ = [-b, - ( b f  - 4b0b2) l/2]/ 2b2.

7. Dgpensatorv production m odel. The traditional surplus production m odel can 

be further m odified to include a depensatory effect. The estim ated biomass level, below 

which the productivity of a population would be negative, can be used as a threshold 

(Clark 1976);

(5.7) Y . = rB ,(B „/T  - 1) (1 - B ./B J .

Replacing equilibrium  yield with EASP  and equilibrium  biom ass with EB results in a 

polynomial regression of order 3 with an intercept equal to 0, or,

(5.8) EASP, = bj EB, + b, EB t2 + b , EBtl  

Threshold and pristine biomass are estim ated as
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(5.9) T  = [-b , + (b ,2 - 4b]b3)]/2b3,

and

(5.10) Bm = b ,/(b?T).

Simulations

H ilbom  (1979) gave a com prehensive description o f  the use o f com puter 

sim ulations to test alternative m anagem ent policies. I follow ed his approach to sim ulate 

a fishery m anagem ent process using feedback estim ation and co n tro l Figure 5.1 

illustrates the flow  diagram  o f com puter sim ulations used to com pare and evaluate 

alternative threshold estim ation m ethods. Tw o sets o f sim ulations were constructed. For 

the first set, 1 selected an initial condition and a  fishing period o f 15 years with fishing 

m ortalities random ly chosen from  a range o f 1/2 FMSY to > FMSY such that the average 

population biom ass in year 16 was about 20% of its pristine biom ass during each 

sim ulation. Equal starting biom ass was necessary to com pare the diagnostic statistics 

under different threshold rules. Starting from year 16. FMSY was used, a threshold was 

estimated* and the fisheries were m anaged according to the estim ated threshold. Each 

year the sam e FMSY was used, a new data point was added to the growing database, 

and the threshold was re-estim ated. The process continued until year 65, i.e., the 

planning horizon is 50 years. From each sim ulation I com piled statistics on average 

yield, standard deviation o f yield, total time below the threshold level (no fishing), mean 

and median threshold levels, standard deviation o f thresholds, and variation in spawning 

biomass.

The second set o f sim ulations was constructed to com pare variation o f estim ated 

thresholds over time. The sim ulations were the sam e as the first set except that the 

initial fishing period was 5 years and thresholds were estim ated starting from the sixth 

year. The sam e planning horizon o f 50 years was used. The main purpose o f estim ating 

thresholds starting from the sixth year rather than the sixteenth year was to examine 

how many years o f data were required to stabilize the estim ated thresholds.

The param eters o f the m odels, including the seeds fo r the random generator,
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Figure 5.1. Flow chart o f com puter sim ulations to com pare and evaluate different 
threshold estim ation methods.



were identical fo r all sim ulations. A fter som e test runs, 101 replicates were used to 

ensure consistency o f the results for each sim ulation for the first set of sim ulations and 

200 replicates for the second set o f sim ulations.

Tw o initial population conditions, pristine and overexploited, were tested. The 

m ajor difference o f the results was that the thresholds estim ated by production model 

m ethods (Fow ler’s rule, M ay’s m ethod, surplus production m odel, and depensatory 

production m odel) during the first several years were slightly more variable when 

starting w ith the overexploited condition than with the pristine condition. However, 

when the initial fishing m ortality was adjusted so that the biom ass was about 20% of 

the pristine value in year 16, the diagnostic statistics resulting from  the overexploited 

condition were very sim ilar to those obtained from the pristine condition. Therefore, the 

only results o f using pristine biom ass as initial biomass are reported.

M easurem ent errors have a profound effect on the estim ated stock-recruit 

functions and perform ance o f  fisheries m anagem ent policies (W alters and Ludwig 

1981). A lognorm al distribution is usually assum ed for measurement errors (Haist 1990).

I exam ined alternative m anagem ent policies under three levels o f m easurem ent errors 

with standard deviations 0, 0,2 and 0.5 o f the corresponding lognormal distribution and 

mean 0. The true biom ass was m ultiplied by the measurement error each year to obtain 

the estim ated biomass.

In practice, catch quotas are seldom reached exactly, a phenom enon resulting in 

im plem entation error. Im plem entation errors, which are defined as the differences 

between the pre-determined catch quota and the actual catch, were incorporated into the 

sim ulations for realism  and were assum ed to follow normal distribution. Three levels 

o f im plem entation errors with standard deviations o f 0 , 0,2 and 0,5 , and mean 0 were 

used in the sim ulations. To prevent extrem ely large errors from the two tails o f the error 

distributions, m easurem ent errors were truncated by their 959c confidence lim its and 

im plem entation errors by their 909c confidence limits. If an error was outside its range, 

it was discarded and a new error was generated.

Som e m ethods failed to estim ate threshold levels because they failed to converge
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for some years during simulations. If a failure occurred, the average of past estimated 

threshold levels from the same m ethod was used. If this average was not available at 

the beginning of a sim ulation, a default threshold o f 25% o f pristine biomass was 

adopted.

The sam e set o f sim ulations was repeated using fixed threshold levels rather than 

estim ating them  during sim ulations. These fixed thresholds were estim ated before 

sim ulations using the existing population data. By com paring the results under the fixed 

thresholds with those under re-estim ated thresholds during sim ulations, I was able to 

quantify the loss o f objective function values stem m ing from  estim ation errors o f 

thresholds.

Optimal Threshold Criteria

From the sim ulations it was found that the standard deviation o f yield was 

linearly related to the variation of spaw ning biom ass and percentage o f years without 

fishing. Follow ing Quinn et al. (1990), fo r the sake o f sim plicity, I chose a flexible 

objective function that is a linear com bination o f average yield and standard deviation 

o f yield. To select the optim al threshold levels, the objective function was maximized 

over the planning horizon, or

(5.11) max[( 1 - X) Yth - X 5D th],

where Yth and SDth is the average annual yield and standard deviation under threshold 

m anagem ent policy "th", and X is a penalty weighting factor.

RESULTS

Frequency Distribution of Estimated Thresholds

A desirable m ethod would estim ate threshold levels that are least variable and 

m ost robust to m easurem ent and im plem entation errors. Plots o f frequency distributions 

o f estim ated thresholds allow the com parisons of the variation and robustness o f each 

method. The estim ated thresholds were quite dispersed, especially with m ethods ’S -R \ 

’S /R \ and ’M ay’ (see Table 5.1 for notation) for EBS pollock (Figure 5.2).
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Table 5.1. Summary of notations used in figures.

DepS (D): depensatory production model

Fowl (F): Fowler’s rule

Lam: lambda (X), penalty weighting factor

May (A): May’s method

ME: measurement error

S-R (E): stock-recruit model

S/R (R): spawning biomass per recruit

SB: spawning biomass

Surp (S): surplus production model

10%-50% (0-60): default percentage of pristine biomass
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Figure 5.2, Frequency distributions of estimated thresholds by eleven methods (level-; for 
eastern Bering Sea pollock. Solid lines are for implementation error 0,  dotted hues for 0,2. 
and dashed fines for 0.5. The numerical values are CV o f  estimation and the percentages 
are the probability of successful estimation. When this percentage is not shown, it is KXK7. 
See Table 5 .1 for notations of threshold estimation methods.



The default percentage m ethod had the least variation o f  estimated thresholds 

with CV values ranging from 19% to 25% (Figure 5.2). H igher measurement error (ME 

0,5) and low er threshold levels increased the variation. The distributions of thresholds 

with Fow ler’s rule and M ay’s m ethod exhibited a com m on feature: m easurem ent error 

helped to reduce the variation o f estim ated thresholds, and h igher threshold levels were 

associated with sm aller m easurem ent errors. Both m ethods depended on the parameters 

estim ated by a conventional surplus production analysis. Thresholds were successfully 

estim ated m ore than 90% o f the time. The stock-recruit and spawning biomass per 

recruit m ethods produced the m ost variable estim ates o f thresholds, especially under 

higher m easurem ent errors. The m ajority o f  the estim ated thresholds were 0 with the 

surplus production and depensatory production models. This is not surprising, because 

the m odels I used for the sim ulations did not contain zero or negative productivity when 

spawning biom ass was greater than zero. Im plem entation errors made very little 

difference in the frequency distributions o f  thresholds estim ated by all seven methods.

The frequency distributions of estim ated thresholds for EBS herring were similar 

to those for pollock with tw o exceptions (Figure 5.3). First, the thresholds were much 

more variable and the chances o f successfully estim ating a threshold for herring were 

sm aller for m ost methods. This m ight be caused by the influence of higher 

environm ental noise on recruitm ent; the environm ental noise for herring is double that 

for pollock. O nly Fow ler’s rule and M ay’s m ethod had sim ilar levels o f variation of 

thresholds to those for pollock. Second, measurement errors increased the variation of 

estim ated thresholds for all m ethods except the stock-recruit m odel, spawning biomass 

per recruit and depensatory production model methods.

A verage  Y ield , S ta n d a rd  D eviation . P e rcen tag e  o f No F ish ing , a n d  CY o f S paw ning  

B iom ass

A good estimation m ethod would not only be robust to noise, but would also 

m aximize yield, m inimize variation in yield, stabilize spawning biomass, and minimize 

the chance o f closing a fishery. Figure 5.4 com pares these statistics for different

138



Fre
qu

en
cy 

Dis
trib

uti
on

 
S/R

 
De

pS
 

Su
rp

 
Ma

y 
S-R

 
Fo

wl
 

50%
 

40%
 

30%
 

20%
 

10
%

139

10 30 50 70 10 30 50 70 10 30 50 70
Threshold

Figure 5,3, Frequency distributions o f estim ated thresholds by eleven methods (levels) 
for eastern Bering Sea herring. See the caption 'o f Figure 5.2 and Table 5 ,1 for 
explanation o f the notations.
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estim ation m ethods. Under the m ethod o f the default percentage o f pristine biomass, 

maximum average yields occurred at interm ediate threshold levels for pollock. These 

threshold levels were reduced by m easurem ent error. The standard deviations o f yield 

were similar with low threshold levels, then increased quickly when the thresholds were 

beyond certain levels. For each scenario there existed a  threshold level below which the 

increase o f the average yield was greater than the increase in standard deviation of 

yield. Average yields were slightly less and standard deviations o f yield were slightly 

higher under the scenarios with thresholds being re-estim ated during sim ulations than 

those scenarios with fixed thresholds. For other alternative m ethods, average yields and 

standard deviations o f yield w ere within the range experienced by the default percentage 

method: M ay’s m ethod had higher yield and higher standard deviation o f yield, and 

Fow ler’s rule had relatively high yield and low standard deviation o f yield. 

M easurem ent error decreased the average yields slightly and increased the standard 

deviations o f  yield greatly.

The chances o f closing fisheries ranged from 0 to 45% , and the coefficients of 

variation o f spaw ning biom ass ranged from  25%  to 52% for pollock among all o f  the 

estim ation m ethods (Figure 5,4). M easurem ent error increased these two quantities 

greatly. The level o f the uncertainty o f biomass estimation was a  very im portant factor 

influencing how often a fishery would be closed. For a given level o f m easurem ent 

error, a high threshold level generated a high percentage o f years o f no fishing and a 

low coefficient o f variation of spawning biomass. Closing a fishery would increase the 

variation o f yield but stabilize the spaw ning population. Therefore, the percentage of 

years o f no fishing was positively associated with the standard deviation o f yield and 

negatively associated with the coefficient o f variation o f spawning biomass (Figure 5 .4 ). 

All scenarios in which thresholds were estim ated iteratively during sim ulations (except 

M ay’s m ethod with 0 m easurem ent error) had low er percentages o f years w ithout 

fishing and higher coefficients o f variation o f spawning biomass than those under the 

scenarios with fixed threshold levels. In o ther words, if the fixed thresholds were true, 

threshold levels were often underestim ated during simulations.



Trends and qualitative results by different threshold estim ation m ethods for EBS 

herring were sim ilar to those for pollock (Figure 5.4). But benefits with a threshold 

policy were less for herring than for pollock. The standard deviations o f yield, 

percentages o f years w ithout fishing, and coefficients o f variation o f spawning biom ass 

were much higher for herring. The increase o f  average yield with a threshold was 

accom panied with a large increase o f standard deviation o f yield and percentage of 

years w ithout fishing. Nevertheless, spaw ning biom ass was m uch more stable when a 

high threshold level was used. The influence o f measurement erro r was less im portant 

for herring than for pollock. Fow ler’s rule had a relatively high average yield, low 

standard deviation o f yield, and small chance o f closing a fishery. M ay’s m ethod over­

estim ated the threshold level.

Optimum Threshold Levels

The objective function was used to rank the threshold estim ation m ethods. The 

top ten m ethods or levels are illustrated in Figure 5.5 with three levels o f measurement 

error and three weighting factors. There were som e decreases in objective function 

values with estim ation error in thresholds. These decreases were less when w eighing the 

standard deviation more heavily. As expected from  the results in Chapters 3 and 4, 

heavier w eight put on the standard deviation o f yield resulted in sm aller optimum 

threshold levels. M easurem ent error reduced the value o f the objective function and the 

optimum threshold levels. These results w ere expected because m easurem ent error 

greatly reduced the justifiable fishing opportunities, especially with a high threshold 

level (Figure 5.4). As seen in the previous plots, m easurem ent error also affected the 

objective functions for pollock more than those fo r herring. The objective function 

values o f several threshold m ethods or levels were close to each other, which indicated 

that the response surfaces were flat.

For EBS pollock, the estim ation m ethods with the best performance were the 

default 35-50%  of pristine biomass and M ay’s m ethod for a weighting factor of 0 

(maximum average yield), the default 30-45%  of pristine biom ass for a weighting factor
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of 0.2, and the default 20-35%  o f  pristine biomass and Fow ler’s rule for a weighting 

factor o f 0,5 (equal weighing o f  average yield and standard deviation o f yield; Figure 

5.5). Low optim um  threshold levels are associated with high m easurem ent errors.

Herring had slightly low er optim um  threshold levels than pollock. For EBS 

herring with the maximum yield criterion, the best m ethods were the default 35-40%  

o f pristine biom ass and spaw ning biom ass per recruit m ethod (Figure 5.5). The 

perform ance o f  Fow ler’s rule was very good when estim ating the threshold but ju st 

average using the fixed threshold. In contrast, the perform ance o f  M ay’s m ethod was 

very good with respect to the fixed threshold value but very poor when estim ating 

thresholds. W ith a weighting factor o f 0.2, the best m ethods were the default 30-35%  

of pristine biom ass, stock-recruit m odel and Fow ler’s rule. W ith equal trade-off 

criterion, the default 10-25% o f  pristine biom ass and Fow ler’s rule performed better 

than other m ethods. Again as with pollock, m easurem ent errors decreased the optim al 

threshold levels.

Variation of Estimated Thresholds Over Time

To estim ate how m any years o f data are required to reliably estimate thresholds,

I constructed sim ulations to com pare estim ated thresholds and their standard deviation 

as the num ber o f years o f data increased with different estim ation methods. For EBS 

pollock, estim ated thresholds gradually approached the true values, and the standard 

deviation generally  decreased over time with the default percentage method (Figure 5.6), 

A bout 15 to 20 years were required to obtain a reliable estim ate o f thresholds and to 

stabilize standard deviation, shorter tim e being associated with higher levels o f 

thresholds. The trends of estim ated thresholds and standard deviation over time with the 

stock-recruit and spawning biom ass per recruit m ethods were sim ilar under m easurem ent 

errors 0 and 0.2 , and standard deviations were extremely high during the first several 

years. A high level of m easurem ent error caused large overestim ation o f thresholds with 

the stock-recruit method and slight underestim ation o f thresholds with spawning biom ass 

per recruit m ethod. About 15 to 20 years were required to get a close estim ate of
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Figure 5.6. Average estimated thresholds and standard deviations over time for eastern Bering Sea pollock 
by eleven methods (levels) with three levels of measurement error {.ME}. Implementation error in zero 
Solid lines are for average estimated thresholds, dotted lines for true thresholds, and dashed line' iur 
standard deviations of  estimated thresholds. Year number 0 corresponds to year 5. i.e., onh 5-\r duu 
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thresholds and to stabilize standard deviations by these two m ethods (Figure 5.6).

Fow ler s rule and M ay’s m ethod exhibited similar patterns and were greatly 

influenced by measurement error (Figure 5,6). The estim ated thresholds by these two 

m ethods increased monotonically without m easurem ent error and gradually approached 

but did not reach the true values with m easurem ent errors 0.2 and 0.5 . M easurem ent 

error m ight reduce the influences o f environm ental errors and tim e-lag on recruitm ent 

and thus result in better estim ates o f  thresholds, M ost o f the variations o f  estim ated 

thresholds were attributed to the pristine b iom ass estim ated by the conventional surplus 

production m odel. I f  auxiliary inform ation w ere available to constrain the estim ates o f 

pristine biom ass, the estim ated thresholds by these two m ethods m ight be greatly 

improved. Estim ated thresholds by the surplus production m odel and depensatory 

production m odel were sm all and continued to  decrease over tim e, and in m any cases 

they eventually approached zero (Figure 5.6),

The estim ated thresholds for herring over time were m ore variable and took a 

slightly longer tim e to approach true values than those for pollock (Figure 5 .7 ), These 

results may m ainly be caused by the influence o f  higher environm ental error on herring 

recruitm ent. How ever, the qualitative conclusions for each m ethod were sim ilar for 

herring and pollock.

D IS C U S S IO N

B iom ass-based threshold estim ation m ethods can be separated into two groups.

The first group requires a stock-recruit relation and an estimate o f  pristine biom ass from

age-structured models. The default percentage and stock-recruit m ethods belong to this 

group,

In this study the default percentage m ethod was the m ost robust and generally 

outperform ed all other methods. A nother advantage o f the default percentage m ethod 

is its flexibility: different percentages can be adopted to achieve different m anagem ent 

objectives. The default percentage m ethod is also simple and easy to understand. The 

com m on default threshold o f  25% pristine biom ass was among the optimal threshold

146



147

MEO ME 0.2 ME 0.5

c
o

"5
>
0)

Q

03
■o

LO
~oc
03

O
. c
cn  
0

h -
0
O)
2
0
>

<

Year Number
Figure 5.7. Average estimated thresholds and standard deviations o\er time tor eastern Bering Sea herring 
bv eleven methods (levels) with three levels o f measurement error (ME). Implementation error is /.cm  
Solid lines are for average estimated thresholds, dotted lines for true thresholds, and dashed lines tor 
standard deviations of estimated thresholds. Year number 0 corresponds to year 5. i.e.. onh 5 -\r  data 
available. See Table 5.1 for notations of threshold estimation methods.



levels when the increase in m ean yield and the decrease in standard deviation o f yield 

were weighed equally. H igher threshold levels were required to m axim ize m ean yield. 

Estim ates o f pristine biomass may change over tim e, and thus the estim ates need to be 

updated each year when new data are available.

Theoretically speaking, the stock-recruit m ethod is the best choice for conserving 

a stock and m axim izing its productivity. B ut in reality, this m ethod is least reliable due 

to the fact that the stock-recruit m ethod depends only on a  which is very sensitive to 

environm ental noise and m easurem ent e rror (W alters and Ludwig 1981; A rm strong and 

Shelton 1988), The thresholds estim ated by the stock-recruit m ethod were the m ost 

variable in this sim ulation study. Because fecundity is approxim ately a linear function 

o f body w eight fo r m any m arine fish, the default percentage m ethod has a sim ilar 

function as the stock-recruit m ethod to protect a population and enhance its productivity. 

Therefore, if  a stock-recruit relation is available, the default percentage m ethod is 

recom m ended.

The second group o f threshold estim ation methods includes Fow ler’s rule. M ay’s 

m ethod and two production m odels and requires only tim e series o f biomass or 

catch/effort data. Pristine biom ass and threshold level are estim ated through production 

models, Fow ler’s rule norm ally provided threshold levels of 15-25% o f pristine biom ass 

and perform ed very well when standard deviations of yield were weighted heavily. 

M ay’s m ethod estim ated a biom ass reference point associated w ith MSY (BMSY) and 

was favored when the objective function was to m aximize yield. A lthough highly 

sim plified param eters were used in M ay’s m odel to describe consumer-resource 

relations, it is difficult to find a m arine fish population in which these param eters can 

be estim ated directly.

Because the sim ulated age-structured m odels did not contain a depensatory 

m echanism , I was unable to com pletely evaluate surplus production and depensatory 

production m odels. The m ajority o f estim ated thresholds by surplus production and 

depensatory production m odels in this study were zero or negative. Actual data fo r EBS 

pollock and herring provide estim ates o f threshold levels o f about 10% or less of
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pristine biom ass for these two m ethods (Quinn and Collie 1990), Unless a given 

population has a strong depensatory m echanism , surplus production and depensatory 

production m odels may not be useful for estim ating threshold levels.

The estim ation m ethods o f the second group were generally outperform ed by the 

default percentage m ethod o f the first group. Furtherm ore, as H ilbom  (1979) observed, 

catch/effort data alone often failed to estim ate the param eters o f  production m odels, or 

generated estim ates too far aw ay from the true values. In the case that data are too 

lim ited to apply the default percentage m ethod, Fow ler’s rule gives quite robust results 

if auxiliary data arc available to constrain the pristine biomass estim ated by production 

models.

If only life history param eters arc available, it is difficult to estim ate biomass- 

based threshold, but at least one m ethod can be used to estim ate a threshold for 

exploitation rate; spawning biom ass per rec ru it This m ethod generates exploitation rates 

that can provide a high yield at low risk (C lark 1991; Sissenwine and Shepherd 1987; 

Thom pson in press). The exploitation rates estim ated by the spawning biom ass per 

recruit m ethod were converted to spaw ning biomass thresholds using stock-recruit 

relations in this study. M ost o f the variation o f  estim ated thresholds by this m ethod 

were attributed to the variation o f stock-recruit relations. The performance o f this 

m ethod was generally not as good as that o f the stock-recruit m odel

Environm ental factors are believed to influence the recruitm ent o f EBS herring 

much more strongly than the pollock population. As a result, the estim ated thresholds 

were much m ore variable, and reliable estim ates o f thresholds and a stable standard 

deviation required longer tim e series o f data for herring than for pollock. The optim al 

threshold levels for herring were generally about 5%- less than those for pollock.

The response surfaces o f the objective function were flat across threshold 

estim ation m ethods, and the top five threshold levels (or methods) produced very close 

objective function values. Thus, threshold m anagem ent strategies are flexible and a 

small error in estim ation o f threshold will not affect the return very much. The loss in 

objective function values due to estim ation error was less than 10% for herring and less
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than 5% for pollock and sm aller with a larger penalty weighting factor.

Because the purpose o f this study is to com pare different threshold estim ation 

m ethods with the same set o f  population param eters, FMSY w as assum ed known during 

the sim ulations. In reality, FMSY is not .known fo r many fish populations and has to be 

adaptively estim ated. If thresholds and FMSY are sim ultaneously estim ated during 

sim ulations, the perform ance o f a threshold estim ation m ethod may be affected by the 

estim ated FMSY. The bias o f estim ated FMSY and threshold level is likely be at the same 

direction (i.e., overestim ate o r underestim ate both ^msy and threshold level at the same 

tim e), and thus a portion o f the bias may be canceled out.

Actively adaptive m anagem ent perturbs a population deliberately to provide 

inform ation to im prove estim ates o f population param eters, especially the stock-recruit 

relationship (W alters 1986). M ore accurate population param eters will im prove the 

precision o f threshold estim ates. In rare cases when a "backup" population is available 

to enhance the collapsed stock, a population m ay be used for experim entation to study 

its dynam ics at low biom ass levels. A lthough actively adaptive m anagem ent benefits 

threshold m anagem ent strategies, the gain by adaptive m anagem ent may be m inor 

because the loss due to estim ation errors is sm a ll
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C h a p te r  Six

F A C T O R S  A F F E C T IN G  O P T IM A L  T H R E S H O L D  L E V E L S F O R  

E A ST E R N  B E R IN G  SEA  H E R R IN G

S U M M A R Y

C om puter sim ulations were conducted to examine the effects o f stock- 

recruitment relationships, environmental conditions, m anagem ent objectives and errors, 

m ortalities and other factors on optima! threshold levels for eastern Bering Sea (EBS) 

herring. A standard set of m odel param eter values was used for all sim ulations in which 

the exam ined factors were varied over plausible ranees o f values. The form  o f the 

stock-recruitment (S-R) curve, exploitation rate, and m anagem ent objective are the three 

m ost im portant factors affecting optim al thresholds. A second group of important factors 

includes environm ental cycle, environm ental variation, S-R a ,  planning horizon, density- 

dependent natural m ortality and m easurem ent error. Environm ental autocorrelation and 

natural m ortality patterns are relatively unim portant factors. S-R p, initial biom ass and 

im plem entation error are unim portant. O ptim al thresholds are insensitive to all but the 

m ost extrem e environm ental conditions.

IN T R O D U C T IO N

T hreshold m anagem ent strategies aim  to protect fisheries resources and enhance 

long-term  productivity o f fish stocks. C om puter sim ulations on EBS pollock, Theragra 

chalcogramma, and Pacific herring, Clttpea pallasi. demonstrated that threshold 

m anagem ent policy generally increases average yield and rebuilds overexploited stocks 

much m ore quickly than a constant harvest rate policy (Chapters 3 and 4; Quinn et al. 

1990; Zheng et al. in press a). A threshold m anagement policy also increases 

m anagem ent flexibility by furnishing an alternative method to reduce fishing efforts, f o r  

some fisheries involving many interest groups, temporarily banning fishing to protect
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fish slocks m ay be more acceptable than reducing high fishing efforts (Jakobsson 1985), 

Optimal thresholds are population levels or indices which result in the best trade­

o ff between preserving population reproductive potential for the future recruitm ent and 

obtaining current yields under a given m anagem ent objective. If  recruitm ent is density- 

dependent for a stock, this trade-off is apparent. In cases in which recruitm ent is 

regulated by environm ental forces, it is also necessary to m aintain a minimum  level o f 

spaw ning stock to keep the stock from extinction or falling below  a low population 

level before favorable environm ental conditions occur (S igler and Fujioka in press). 

Several m ethods have been developed to estim ate optimal threshold levels, and 

com puter sim ulation studies suggested that the default percentage o f pristine biom ass 

m ethod usually outperform s o ther m ethods (C hapter 5: Zheng et al. in press b).

Optim al threshold levels are not only influenced by m anagem ent objectives and 

population characteristics, but also by environm ental conditions. Com puter sim ulation 

studies indicate that the m anagem ent objective, the stock-recruitm ent relationship, and 

harvest rate are among the m ost im portant factors affecting optim al threshold levels 

(Quinn et al. 1990; Zheng et al. in press a). A lthough previous sim ulation studies were 

able to identify the im portant factors which affect the optim al threshold levels, the 

relationships between these factors and the optim al threshold levels are not clear. This 

chapter extends the previous com puter sim ulations to allow a com prehensive study o f 

the robustness o f optimal threshold levels as several factors varied concurrently. For 

each factor, the likely range o f values was divided into small grids (or intervals). An 

optim al threshold level was estim ated for each grid point o f these value ranges through 

com puter sim ulations.

M E T H O D S

D ata  a n d  P o p u la tio n  M odels

Prelim inary sim ulations indicated that the effects o f several factors on optim al 

thresholds are qualitatively sim ilar for both EBS pollock and herring, so comprehensive 

sim ulations would be conducted only for EBS herring and reported here. Zheng et a l
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(in press  a) conducted cohort-analysis tuned with survey information for EBS herring 

and sum m arized the population param eters.

As w ith previous sim ulation studies, a typical age-structured single-species 

m odel was used in this study. EBS herring are prim arily exploited during the sac roe 

fishery in the late spring or early sum m er and other fisheries are insignificant. So, I 

m odelled only the sac roe fishery. In the spring each year before spawning, the mature 

herring biom ass Bt was obtained as '

(6.1) B t = E a[Nt,  ma w j ,

where N m  is abundance ju st before spaw ning in year t and at age a, ma is m aturity rate 

and wa is w eight at age a, which is determ ined by a  general von Bertalanffy growth 

equation

(6.2) wa = W „ (1 - exp[-k(a-t0)])b,

where Wm, k, t0 and b are growth param eters.

Total yield Yt was determ ined as

(6.3) Y, = B ,h p  '

where ht is exploitation rate in year t. To convert the yield to catch in num ber by age, 

I estim ated exploitable biom ass EB, as

(6.4) EB, = £ a[Nta sa w#],
where sa is gear selectivity coefficient by age. The effective exploitation rate by age is

(6.5) Ht a = ht sa B/EB,.

The catch (in num ber) was calculated as

(6.6) Cua = Nu  Hu .

Total spaw ning biom ass, St, was,

(6.7) S, = Z .K N ,, - C ,J  » ,  m j.

The abundance was advanced to the next year, Nl4.La+], as 

(6-3) Nt+1<a+I = (N,_a - Cw) exp(-M a) 

for all ages except the oldest age in the m odel and by

(6.9) N I4.Ua = (N Ua. j -CUa. ,)exp(-M la. , )+(N ula-CtJa)exp(-Mla) for the maximum  age (la)
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A general model was used to describe the stock-recruit relationship because o f 

flexibility (Deriso 1980):

(6,10) Nt>r =  a St.r [ i  - P y S , J ,/y exp(vt),

where r is the recruiting age, a ,  fJ and y are param eters, and vt is a random variable 

representing influences of environm ental factors on recru itm ent

Simulations

Fifteen factors were exam ined in the sim ulations and each factor was evaluated 

for at least 10 grid points w ithin the m ost likely data range. The data range for each 

factor was sum m arized in Table 6.1. These factors include 3 param eters from the stock- 

recruitm ent m odel, exploitation rate, natural m ortality pattern, density-dependent 

m ortality, environm ental variation, autocorrelation and cycle, measurement and 

im plem entation errors, initial biomass and planning horizon.

Ten hypothetical instantaneous natural m ortality patterns are shown in Figure 

6 . 1. The overall natural m ortalities o f the whole population are basically the same 

among these ten patterns. The difference am ong the patterns is mortality by age. The 

highest m ortality occurs in youngest and oldest fish with patterns 1 and 10, respectively.

D ensity-dependent natural m ortality on herring was proposed by Haist et a l  (in 

press). The instantaneous natural m ortality in year r is

(6 .1 1) Mt = [mQ + exp(~d B /B J J /G ,

where m0, d  and G  are constants, and is the pristine biomass. m0 was approxim ately 

set to 0.2, based on the results by Haist ei al. (in press) and C  was adjusted such that 

M t would be 0.35 (the average natural m ortality) if the population biomass was equal 

to the biom ass associated with maximum sustained yield (M SY). Parameter d  was 

varied to exam ine the density-dependent effects.

M any environm ental factors fluctuate with a long-term, periodic cycle, 

superim posed by random noises (Koslow 1989; Hollowed 1990). A convenient way to 

model this phenom ena is by a sine function:
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Table 6.1. Summary o f ranges o f factors exam ined for their influences on optimal 
threshold levels. If two or more increm ents were used for a factor, sm aller increm ents 
were generally used for the low er end o f the data range.

Factor Value Range Grid Point #  Increm ent
—— ~~---- -——

Penalty W eighting Factor 0.0 to 1.0 11 0.1

S-R a 1.0 to 20.0 16 0.5, 1.0, 2.0

S-R p 0.001 to 0.016 16 0.001

S-R y -2.0 to 0.4 16

fs|
0

r
O

Exploitation Rate 0.1 t o 0.6 16 0.025, 0.05

M Pattern 1. to 10. 10 1

D-D M ortality (d) -2.0 to 5.5 16 0.5

Environ. Variation (0 ) 0.0 to 2.0 16 0.15, 0.2

Environ. Autocorrelation -0.95 to 0.95 16 0.1, 0.15

Cycle Am plitude (A) 0.0 to 5.0 11 0.5

Cycle Period (tc,in Yr) 0. to 30. 11 3

Measurement Error 0.0 to 1.0 11 0.1

Im plem entation Error 0.0 to 1.0 i l 0.1

Initial Biom ass 5% to 60% 16 2.5% , 5%

Planning Horizon (Yr) 5. to 100 16 5, 10

Abbreviations:
S-R: stock-recruitm ent model 
M: instantaneous natural m ortality 
D-D: density-dependent.
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(6.12) vt = A sin(t 2%/k + s) + v ’t,

where A is amplitude, k period, and s a phase determ ined random ly for each replicate. 

During the sim ulations A and K  were varied to exam ine their effects on optimal 

threshold levels. An adjusted constant C  w as added to equation (6.12) such that the 

expected value o f exp(A sin(t 2m/k + s))/C  w as equal to I to correct the skewed effects 

o f high A values. v ’t is a random  variable assum ed to follow a normal distribution with 

mean 0 and variance <r  (Quinn et al. 1990),

D ifferent values o f a factor m ay resu lt in different pristine biom asses and 

optimal exploitation rates, which will affect the optim al threshold levels. To minimize 

the influences o f pristine biom ass and exploitation rate, the threshold levels were 

expressed as percentage o f pristine biomass, and exploitation rate associated with MSY 

was used in sim ulations for each grid o f each factor. An exception was made in 

sim ulations for exam ining the exploitation rate factor, in which different levels of 

exploitation rates were used. For each grid o f a factor, an age-structured model was 

iterated for 300 years with expected effects o f environm ental noises on recruitment, and 

the statistics from  the last 200 years were averaged. The average biomass without 

exploitation w as used as pristine biomass, and the exploitation rate that produced the 

highest average yield was term ed the exploitation rate associated with MSY.

To com pare all factors on a com m on standard, all sim ulations were carried out 

with a standard set of param eters except the values o f the factor exam ined. The standard 

population param eters were those estim ated for EBS herring. M easurement error, 

im plem entation error, and environm ental autocorrelation were all assumed not to occur. 

The planning horizon was 50 years and initial biom ass was 15% o f the pristine lev e l 

Because \ am  interested only in comparing optim al thresholds for different values o f the 

exam ined factors under a given environm ental condition in this Chapter, 101 replicates 

were adopted and an identical set o f num bers was used as seeds for random num ber 

generator for all factors.

157



Optimal Criteria

The objective function to evaluate optim al threshold levels is the trade-off 

between increased average yield and decreased variation in yield. Detailed descriptions 

o f this objective function are given by Quinn e t a l  (1990) and Zheng et al. (in press  a). 

The function is a  linear com bination o f average yield and the standard deviation o f yield 

over the planning horizon, or

(6.13) max [(1 - X) Yth - X SDth],

where Yth and S D th are average annual yield and standard deviation under threshold level 

"th", and A. is a  penalty weighting factor. There are three special cases: m aximum  

average yield (X=0), equal trade-off o f increased average yield with decreased standard 

deviation (X=0.5), and m inim um  variation in yield (X=1.0).

RESULTS

Stock-recruitment Relationship

The relationships am ong optimal threshold levels, the penalty weighting factor 

and three param eters of the general stock-recruitm ent curve are shown in Figure 6.2. 

Each plot in Figure 6.2 consists of three planes: XY, X Z and YZ. The XY plane is 

contours o f optim al threshold levels, the X Z  plane shows the relationship between 

weighting factor and optim al thresholds, and the YZ plane illustrates the general trend 

o f optim al thresholds versus the three S-R param eters. The dots in the XZ and YZ 

planes are estim ated optim al threshold levels for all values o f the XY grid, and the solid 

lines are LO W ESS sm oothing curves (Becker et al. 1988) over the estim ated optimal 

threshold levels. The com m on feature for three param eters was that optimal thresholds 

were negatively associated with weighting factor: the heavier the variation in yield is 

w eighed, the sm aller the optim al thresholds. If the objective function was to minimize 

the variation in yield, then no threshold should be applied.

Param eter y represents the form of the stock-recruitm ent curve and was the most 

im portant factor to affect optim al threshold levels (Figure 6.2). A sm aller y  results in 

less density-dependent recruitm ent and a dom e-shaped stock-recruitm ent curve occurs
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when y > -1.0. For a given w eighting factor, higher y  resulted in higher optimal 

thresholds. W hen y < -1.0, all optimal thresholds were less than 25% o f pristine 

biomass. Optim al threshold levels were m uch higher with a R icker stock-recruitm ent 

curve (y =  0 ) than with a Beverton-H olt curve (y = - /) .

Param eter a  represents productivity potential or the original slope o f the stock- 

recruitm ent curve. Optimal threshold levels were very sensitive to low a  values which 

resulted in sm all optim al threshold levels (Figure 6,2). W hen a  w as close to or larger 

than the estim ated values, the optim al thresholds were fairly constant, with higher «  

values resulting in slightly sm aller optim al threshold levels.

As expected, density-dependent param eter (3 did not affect the optim al threshold 

levels (Figure 6.2). This is prim arily due to the fact that threshold levels are expressed 

as percentages o f pristine biom ass. A lthough (3 affects both the absolute threshold and 

pristine biom ass, effects o f (3 m ay have been canceled out after the absolute threshold 

is divided by the pristine biom ass, because P is a scale param eter that alters dim ensions 

o f the curve but not its shape.

To illustrate the effects o f S-R param eter interactions on optimal threshold 

levels, I estim ated optim al threshold levels through com puter sim ulations under 

com binations o f param eters a  and y. Figure 6.3 shows those optim al thresholds with 3 

levels o f w eighting factors: 0.0, 0.2 and 0.5. As expected, the greatest effects on optimal 

thresholds resulted from param eter y. The optim al thresholds were more sensitive to y 

with a  close to or greater than the estim ated level than with a  being small. The 

param eter a  affected the optim al threshold levels more strongly with y > 0.0 than with 

other y  values. The patterns o f optim al threshold levels among three levels o f weighting 

factors were sim ilar except that higher w eighting factors were associated sm aller optimal 

thresholds.

M o rta litie s

The effects of three kinds o f m ortalities on optimal thresholds were examined.
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Instantaneous natural m ortality pattern (i.e., age-dependent natural m ortality) generally 

had a very m inor effect on optim al thresholds (Figure 6.4), H igher natural mortality for 

younger fish resulted in slightly sm aller optim al threshold levels. This supports the 

results for param eter a  (Figure 6.2), because higher m ortality for younger fish 

(recruitm ent) is one factor that would resu lt in low er productivity  (i.e., sm all a ). 

D ifferent levels o f natural m ortalities on older fish did not affect optimal thresholds 

with weighting factors less than 0.5,

The relationships betw een density-dependent m ortality and optim al thresholds 

were com plex. W hen density-dependence was w eak (coefficient d  is about from -0.5 to

0.5), the effects o f density-dependent m ortality on optim al thresholds were minor 

(Figure 6.4). Optim al threshold levels fo r a given weighting factor tended to rise with 

increasing com pensatory density-dependent m ortalities (d < 0). H igher depensatory 

density-dependent m ortalities resulted in m uch larger optim al threshold levels for 

weighting factors less than 0.5, This w ould prevent the stock  from reaching low 

abundance levels. High depensatory density-dependent m ortality increased the variation 

o f population abundance and yield. Such high standard deviations o f yields resulted in 

negative objective function values with w eighting factors greater than 0.6 , so the 

optim al threshold levels were equal to zero (Figure 6.4).

Exploitation rate w as an im portant factor affecting optim al thresholds. With 

weighting factors less than 0.5, optim al threshold levels were positively related to 

exploitation rate (Figure 6.4). W hen exploitation rate was very low, no threshold was 

needed. On the other hand, when exploitation rate was very high, a high threshold 

effectively reduced the fishing m ortality, resulting in a pulse fishing scenario in which 

the highest possible yield could be obtained, but with extrem ely high variation in yield.

E n v iro n m en ta l Noises on  R e c ru itm e n t

First-order environm ental autocorrelation was used in this part o f the study. 

Here, negative autocorrelation m eans a strong year-class tends to follow a weak year- 

class and vice versa. W ith positive autocorrelation, a strong-year class tends to follow
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Figure 6.4. C ontour plots for the optimal threshold levels (% of pristine biom ass) as a 
function of penalty weighting factor, natural mortality pattern, coefficient of density- 
dependent natural mortality and exploitation rate.



another strong year-class, and a weak year-class tends to follow  another weak one. The 

sim ulation results show that with autocorrelation coefficients ranging from -0.5 to 0.5 , 

optimal thresholds were basically independent o f  environm ental autocorrelation (Figure 

6.5). W ith extrem e negative autocorrelations, optim al thresholds tended to increase with 

a given weighting factor. Extrem e positive autocorrelations slightly reduced the optimal 

threshold levels with w eighting factor less than 0 3 .

Environm ental variation (i.e., param eter 0 ) m easures the proportion of 

recruitm ent variation caused by environm ental forces. W hen a  was less than 0.4, 

environm ental variation had a very little effect on optim al threshold levels (Figure 6.5). 

Optimal thresholds slightly decreased with a given weighting factor when a  gradually 

increased from 0.4 to 1.3, and dram atically decreased when a  is larger than 1.3. I t  is 

intuitive that h igher environm ental variation results in less dependence o f recruitm ent 

on spawning stocks and m ore difficulty in m aintaining the stock at a desired abundance 

level, thus reduces optim al threshold levels. The effects o f environm ental variation on 

optim al thresholds were m uch larger with m anagem ent objectives favoring stable yield 

than favoring m axim um  yield (Figure 6.5).

The influences o f  environm ental cycles on optimal thresholds depended on the 

amplitude and period o f cycles and weighting factors (Figure 6 .6). W ith weighting 

factors < 0.2 , optim al thresholds were basically independent o f environm ental cycles 

with periods < 8 years and periods from 13 to 30 years with am plitudes < 2.0, and 

m arkedly decreased with periods increasing from  8 to 12 years. The average life span 

of EBS herring is about 8 to 12 years with HMSY exploitation rate. W hen the period 

became greater than the herring life span, there was no way to keep the stock above a 

high threshold, thus optim al thresholds decreased with period length. W ith a weighting 

factor equal to 0.5, the equal trade-off between average yield and standard deviation of 

yield, environmental cycles with periods from 2 to X years reduced optim al threshold 

levels dram atically. G enerally speaking, increasing amplitudes o f environm ental cycles 

resulted in decreasing optim al threshold levels. The most sensitive effects o f amplitudes 

on optimal thresholds occurred for am plitudes from 1.0 to 2.0. The optimal threshold
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Figure 6,5. C ontour plots for the optim al threshold levels (% o f pristine biom ass) as a 
function o f penalty weighting factor, environm ental autocorrelation and environm ental 
variation (0 ),
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levels with a given period were relatively unrelated to am plitudes o f environmental 

cycles when the amplitudes were greater than 2.0 (Figure 6 .6),

Management Errors

In m anaging a fishery, two kinds o f  m anagem ent errors m ay occur: errors in 

m easuring population abundances (m easurem ent error) and errors in im plem enting 

harvest strategies (im plem entation error). In this study, m easurem ent error was assumed 

to follow a lognorm al distribution and im plem entation error a normal distribution. To 

reduce the influences o f  extrem e outliers, I truncated m easurem ent error by 95% 

confidence intervals and im plem entation error by 90%  confidence intervals.

The contours o f optim al threshold levels as a function o f  m easurem ent and 

im plem entation errors are shown in Figure 6.7. Overall, im plem entation error had a very 

m inor effect on optim al thresholds. W hen m anagem ent objectives were to maximize 

average yield, optimal thresholds were generally independent o f m easurem ent error. 

Extrem ely high m easurem ent errors slightly increased optim al threshold levels. Under 

the m anagem ent objective o f equal trade-off between average yield and standard 

deviation o f  yield, optim al thresholds w ere negatively associated with m easurem ent 

errors, with higher m easurem ent errors resulting in much sm aller optim al threshold 

levels, because the standard deviation o f yield increased much more rapidly than the 

average yield as the threshold level increased.

O th e r  F a c to rs

Initial biom ass determ ines the population status, when the sim ulations start. The 

sim ulation results show that optim al thresholds were not related to initial biomass, 

especially w ith weighting factors < 0.5 (Figure 6 .8).

Planning horizon is the duration in which population and catch statistics are 

collected in the sim ulations. A short and a long planning horizon m eans that the 

m anagem ent objectives focus on short-term  and long-term benefits, respectively. As 

expected, a short planning horizon (less than 7 years) resulted in small optimal threshold
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levels, or no thresholds at all (Figure 6 ,8), For a given w eighting factor, optimal

threshold levels gradually increased with increasing planning horizons from  5 to 30

years. W ith weighting factors less than 0,5, optim al thresholds were generally constant

with planning horizons from 30 to 50 years and slightly increased with planning

horizons greater than 50 years. This results occurred because the population was initially 

rebuilding,

DISCUSSION

M anagem ent objectives are one o f the m ost im portant factors affecting optimal 

threshold levels. Results in this chapter corroborated the findings in Chapters 3 , 4 and

5. The sim ple objective function includes a variety o f m anagem ent objectives ranging 

from  m axim izing average yield, which results in the highest optim al thresholds, to 

m inim izing variation in yield (or obtaining constant yield), which results in no threshold 

at all. For herring fisheries in Alaska, the m anagem ent objectives are between maximum 

average yield and equal trade-off between average yield and variation in yield, so that 

the resources can be protected and high yield sustained (Zheng et al. in press a).

The form  o f the stock-recruitm ent curve has m ajor effects on optimal threshold 

levels. It also plays a m ajor role in determ ining average yield and exploitation rate. 

Optimal thresholds with the sam e m anagem ent objectives, M SY  and fishing mortality 

associated with M SY are larger with a R icker model than a Beverton-H olt model for 

EBS pollock (Quinn et al. 1990). For the three stocks exam ined in this study, the 

highest optim al thresholds were found for EBS pollock with the m ost dom e-shaped 

stock-recruitm ent curve and the lowest optim al thresholds were obtained for PW'S 

herring with the least dom e-shaped curve. Sm aller y  results in a lower percentage of 

pristine biom ass and exploitation rate associated with MSY, which partially explains the 

sm aller optim al threshold levels and MSY. Optimal thresholds are generally less or 

equal to the percentage of pristine biomass producing MSY. A nother im portant factor 

contributing to the sm aller optim al threshold levels is that with sm aller y the recruitm ent 

is less density-dependent on spawning stocks. The benefits o f enhancing the
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reproductive potential and long-term  yield by fishery closure are sm aller with less 

density-dependent recruitment unless the spaw ning stock is very low,

Cushing and Harris (1973) show ed that the forms o f  stock-recruitm ent curves 

were strongly dom e-shaped for the gadoid stocks (high y), dom e-shaped for the salmon 

stocks* and flat for the flatfish stocks (low y). Thus, higher optim al thresholds may be 

needed and larger benefits may be realized from  a threshold approach for the gadoid 

and salm on stocks than for the flatfish stocks. B ut we must be cautious in generalizing 

the form  o f  stock-recruitm ent curves for a large group o f  fish stocks. For exam ple, 

Koslow et al. (1987) concluded that the recruitm ent is independent o f spawning stock 

for both A tlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks 

in the northw est Atlantic. Chapter 2 show ed that although m any herring stocks exhibit 

dom e-shaped stock-recruitm ent curves, no stock-recruitm ent relationships can be found 

for some other herring stocks.

The relationship betw een productivity param eter a  and the optimal threshold 

levels is som ew hat more com plex, and for a given m anagem ent objective the highest 

optim al thresholds occur with interm ediate a. Low er productivity for a stock provides 

less incentive to  close fishing when stock abundances are relatively high because the 

loss due to natural mortality outweighs the gain o f future recruitm ent, and thus results 

in sm aller optim al thresholds. On the other hand, higher productivity m eans the 

recruitm ent is less dependent on spaw ning biom ass, thus the optim al thresholds are 

smaller. A lthough density-dependent param eter p is the m ost important factor 

determ ining the optimal escapem ent goal for many fish stocks, its effects on optimal 

thresholds are canceled out after expressing the threshold levels as a percentage of 

pristine biom ass.

Exploitation rate is positively associated with optim al thresholds for the 

m anagem ent objective of m axim um  yield. This suggests the m aximum  yield for a 

population m ay be realized by different harvest strategies with a similar level of 

exploitation, G etz et al. (1987) reached sim ilar conclusions for three different stocks. 

The level o f  exploitation can be a constant exploitation rate, or a combination of
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exploitation rates and thresholds. The advantages o f the threshold approach axe to 

increase m anagem ent flexibility and robustness, at least theoretically. The response 

surface o f yield is much flatter with a threshold approach than with an exploitation rate 

approach alone, and a yield close to the m axim um  yield could be produced under many 

com binations o f exploitation rates and thresholds (Quinn et a l  1990; Zheng et al, in 

press a). In addition, a threshold approach will prevent overfishing and protect the 

reproductive potential when exploitation rate is high. Furtherm ore, when a population 

is overexploited, a threshold approach will rebuild the population much more quickly 

than an exploitation rate approach alone (Chapters 3 and 4; Quinn et al. 1990),

O ptim al thresholds are not strongly influenced by density-dependent natural 

mortality unless such mortality is very high. H ighly density-dependent natural mortality 

results in m uch higher optimal threshold levels than those under a  constant natural 

mortality. In sim ulation studies on herring fisheries in British Colum bia, H aist et al. (in 

press) show ed that depensatory natural mortality not only reduces the exploitation rate- 

associated w ith M SY, but also increases the chance of stock collapse. Their results 

suggest that a threshold is needed for such a population to prevent population collapse. 

Sim ilar results were obtained from a surplus production model w ith depensatory natural 

mortality and autocorrelated environm ental noise for Sitka Sound herring (Collie and 

Spencer in press). The likely m echanism s to cause density-dependent natural mortality 

are predation and competition. W hen the population abundance is low, predation may 

remove a h igher proportion o f the population, which results in depensatory natural 

m ortality. On the other hand, when the population abundance is high, competition for 

food and space, or easily spreading contagious diseases could lead to compensatory' 

natural m ortality. Therefore, when the effects o f species interactions are taken into 

account, a higher threshold may be required to protect the population and meet 

m anagem ent objectives.

The effects of environm ental factors on optimal thresholds are manifested 

through their influences on recruitment. W hen recruitm ent variation is primarily caused 

by environm ental forces, there is less incentive to preserve current spawning stocks to
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ensure future recruitm ent. Thus, optim al threshold levels are m uch higher without 

environm ental effects than with strong environm ental influences. Environm ental 

variation (param eter a) accounts for random  environm ental conditions and is less than 

1.2 for a variety of com m ercially im portant populations around the world (H ightow er 

and G rossm an 1985). Values in this range have only m inor influences on optim al 

threshold levels. Environm ental autocorrelations for herring generally involve a tim e lag 

o f I or 2 years with an autocorrelation coefficient less than 0.5 (Chapter 2). so their 

effects on optim al thresholds are negligible. The m ost im portant effects of  

environm ental conditions on optim al thresholds are caused by low-frequency and high- 

amplitude cycles. Such strong cycles, if  they exist, primarily control recruitm ent success 

and can keep the population low for a long period of time; thus the optimal thresholds 

are small. Nevertheless, in this case the threshold approach still outperform s non­

threshold approaches because a threshold is still needed to m inim ize the risk of 

population collapse. For such environm ental conditions, two levels o f thresholds may 

be more appropriate: a high level for favorable environm ental conditions and a low level 

for unfavorable environm ental conditions. In exam ining the population dynam ics under 

the environm ental cycle. Parm a (1990) concluded that the optim al m anagem ent strategy 

for m axim izing expected discounted yield is to raise escapem ents when favorable 

environm ental conditions are anticipated and to lower escapem ents when poor 

environm ental conditions are expected. How ever, the optimal time-dependent feedback 

strategy for m axim izing expected sum  o f  discounted logarithm s o f catches closely 

resem bles a  constant harvest rate strategy (Parm a 1990). A lthough many populations 

have been docum ented with low-frequency and high-amplitude cycles (Cushing 1982; 

Koslow et al. 1987; Koslow 1989), recruitm ent tim e series for many populations are too 

short to offer com pelling evidence for such cycles.

For stocks with cyclic, periodic recruitm ent, the threshold approach works like 

a "banking policy": to protect the capital for future returns. The "banking policy" works 

only if two assum ptions are valid: i ) a certain level of spawning stocks is needed to 

produce average or strong year-classes; 2) the mean lifespan of a stock is longer than

173



the unfavorable period o f environm ental cycles. The optimal threshold levels are the 

trade-off am ong the mean lifespan o f the stock, the period length o f environm ental 

cycles and the productivity o f  the stock. The "banking policy" may be attractive to a 

long-lived species because o f the long lifespan.

Because threshold m anagem ent strategies aim to enhance the well-being of 

populations and yields over the long term , the planning horizon should be long-term. 

A long-term  planning horizon generally does not significantly influence optimal 

threshold levels. -

Initial biom ass represents the initial status o f  the stock when sim ulations start, 

A low initial biom ass m eans the stock has been overexploited and needs to rebuild. 

A lthough the results in this C hapter suggest that optim al thresholds are insensitive to 

initial biom ass, the gain in average yield from  a  threshold approach over a non­

threshold approach is greater with a low initial biom ass than with a high initial biomass 

(Chapters 3 and 4). If an initial biom ass equal to or greater than the biomass at MSY 

and a low or intermediate exploitation rate are used, and if the sim ulated population 

alw ays stays a t about the equilibrium  level, a threshold approach will be identical with 

a constant harvest rate approach, because the population does not fall below any 

threshold levels. But for a long horizon, say 50 years, it is rare to find any exploited 

populations which abundances always are a t equilibrium  levels, or equal to or greater 

than the abundances at M SY, Besides enhancing long-term yield, a threshold approach 

can also reduce the risk o f population collapse (Single and Fujioka in press). 

Furtherm ore, once a population collapses, the population will rebuild more quickly with 

threshold m anagem ent strategies than non-threshold strategies.

A low initial biomass puts the population below m any threshold levels and 

perform ance o f different threshold levels can be evaluated. Alternatively, the causes for 

population collapse are built in the sim ulations to evaluate the threshold approach (e.g.. 

Collie and Spencer in press). The likely causes for population collapse are high fishing 

m ortality, suddenly increase o f natural m ortality and continuous failure of recruitment.

It is a challenge to build a sim ulation incorporating all these causes for a specific
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population, because it is difficult to m odel variation in natural m ortality over tim e and 

the causes o f recruitm ent failure. Using a low initial biomass is a sim ple way to avoid 

modelling the causes for population collapse. Some com puter sim ulations (e.g.. 

Hollowed and M egrey in press) neither started from a low initial biom ass, nor 

incorporated the causes for population collapse. It is not surprising that the results from 

such sim ulation studies suggest that a  threshold approach is useless, because the 

sim ulated populations hardly dropped below a threshold level. The threshold approach 

primarily deals with the population dynam ics at low population abundance levels. 

Simulation studies without incorporating low  population abundances cannot be used to 

evaluate the threshold approach.

The sim ulation results show that random  m anagem ent errors (m easurem ent and 

im plem entation errors) have m inor effects on optim al threshold levels unless the 

weighting factor is very high, but nonrandom  m anagem ent errors could occur for a 

fishery (Zheng et a l  in press a). The effects o f system atic, nonrandom  m anagem ent 

errors on optim al thresholds are likely sim ilar to those o f  exploitation rate. 

System atically overestim ating or underestim ating population abundances, or 

overharvesting or underharvesting, will result in higher or low er than expected 

exploitation rates, which may increase or decrease the optim al threshold levels. If 

system atic m anagem ent errors exist for a fishery, it is impossible to estim ate optimal 

thresholds and exploitation rates unless the m agnitude o f errors is known. If known, the 

magnitude o f  the systematic errors can be used to adjust the exploitation rates. The 

optimal thresholds are then adjusted to the corrected exploitation rates,

in sum m ary, factors affecting optim al thresholds can be classified at four levels 

of decreasing im portance. The form of stock-recruitm ent curve (i.e., S-R y), exploitation 

rate, and m anagem ent objective are the three m ost important factors. The second group 

of im portant factors consists o f environm ental cycle, environm ental variation, S-R a . 

planning horizon, density-dependent natural mortality and m easurem ent error. 

Environm ental autocorrelation and natural m ortality patterns belong to the third group 

o f relatively unim portant factors. In the last group. S-R (3. initial biomass and

175



im plem entation error are unim portant. In determ ining optim al threshold levels for a 

population w ith single-species dynamics, if  the population approxim ately m eets the 

assum ptions for these factors, the first group o f factors is essential, the second group 

should be considered, the third group m ay be passed by, and the last group can be 

com pletely ignored.



Chapter Seven 

LIMITATIONS AND CONCLUSIONS

LIMITATIONS

The population m odels in this study assum ed single-species dynamics. A single 

species approach is sim ple and practical, and m akes data collection cost-effective. It is 

also routinely adopted for fisheries m anagem ent and applied to m odelling the dynam ics 

of exploited fish populations (e.g., Beverton and Holt 1957; Deriso 1980: H ightow er and 

Grossm an 1985, 1987; Getz e t al. 1987; Matsuda et al. 1992). M ulti-species biological 

and technical, interactions are, however, well-known to influence stock and fishery 

dynamics (e.g., M ay et al. 1979; Laevastu and Larkins 1981; M ercer 1982; Kerr and 

Ryder 1989). How im portant is the role o f  species interactions in determ ining optimal 

threshold levels? W hat im plications do species interactions have on im plem enting 

threshold harvest strategies? The species interactions were briefly discussed in chapters 

3, 4 and 6 . The following further discusses these limitations. Another m ajor lim itation 

of this study is that no bioeconomic m anagem ent objectives were considered in 

determ ining optim al thresholds.

Biological Interactions

Species interactions affect population dynamics directly through predation and 

com petition, which affect growth and m ortality o f a population, especially during the 

early life from  eggs to recruits. At the ecosystem  lev e l food webs represent a static 

picture o f  the dynam ic processes, predation and competition. Figure 7.1 is the partial 

food web for pollock and herring in the eastern Bering Sea, based on stom ach content 

data (Perez 1990; Livingston 1991; Livingston et al. 1986, 1993), Pollock abundance 

is at least an order o f m agnitude larger than any other single fish species observed and 

is the central com ponent of the food web in the eastern Bering Sea. The im portant prey
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Figure 7.1. Partial food web for pollock and herring in the eastern Bering Sea, based on the stom ach content data. 
The line types indicate the strength o f the interactions: dotted line: weak; solid line: interm ediate; bold line: strong. 
Arrows point toward prey species.



are euphausiids and copepods for juvenile pollock and juvenile pollock for adult pollock 

(Livingston 1991; Livingston e t al. 1986, 1993). Pacific cod appears to be the most 

im portant predator o f pollock (Livingston 1991; Livingston et al. 1986, 1993). The diets 

o f sea birds and marine mammals (e.g., seals and sea lions) also include pollock, 

especially juvenile pollock (Perez 1990; Low ry et al. 1989; Springer and Byrd 1989).

Trophic relationships for eastern Bering Sea herring are som ew hat less well 

understood than for pollock. Herring prim arily feed on copepods, fish eggs and larvae. 

Flatfish, Pacific cod and seals may be im portant predators o f herring (Livingston 1991; 

L ivingston e t al. 1993; Perez 1990), Predation on herring by groundfish in the eastern 

Bering Sea appears to be sporadic in tim e and space (Livingston 1991; Livingston et 

aJ. 1993). A lthough the im portant trophic relationships can qualitatively be identified 

from the stom ach content data as show n in Figure 7.1, the dynamic functional 

relationships am ong them rem ain to be quantified because of inform ation gaps (Smith 

et al. 1984; Kajim ura and Fow ler 1984). Species interactions for Prince W illiam Sound 

herring are unclear.

Because m ost o f predation m oitality in the eastern Bering Sea occurs before 

recruitm ent, the m ost im portant effects o f  species interactions may be on year-class 

strength. A single-species approach basically assum es that m oitality from eggs to 

recruits caused by species interactions is indistinguishable from other environm ental 

factors. Three patterns of pre-recruitm ent m ortality were exam ined in this study: 

random ness, autocorrelation, and periodic cycle. These three patterns may well cover 

the effects o f species interactions on recruitm ent. Under m anagem ent objectives as the 

trade-off betw een yield and variation in yield for a single species, the results show  that 

random ness and autocorrelation with the observed data ranges have very m inor effects 

on optim al threshold levels. Periodic cycles are important in determining optimal 

threshold levels if the amplitude of the cycle is high and the period is long. But periodic 

cycles o f both pollock and herring recruitm ent are weak and affect optimal thresholds 

insignificantly. Furtherm ore, cannibalism  appears Us be the m ajor source o f predation 

m ortality on pre-recruit pollock (Livingston 1989; Livingston et a l  1986, 1993) and
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may be accounted for by using the R icker stock-recruitm ent curve. Thus, species 

interactions m ay play a m inor role in pollock recruitm ent dynam ics in the eastern 

Bering Sea.

In this context, it is im portant to distinguish between cycles in recruitm ent and 

cycles in total population biom ass. Som e cycles reported in the literature are biom ass 

cycles due to the lack o f long tim e series o f recruitm ent data. It is easy to show that a 

random  tim e series o f recruitm ent can produce a cycling population biomass. The 

strongly cycling population biom ass o f eastern Bering Sea pollock and herring during 

the last three decades was caused by three to four exceptionally strong year-classes.

The effects o f species interaction on adult fish may result in depensatory or 

com pensatory natural m ortality. M y results show that such natural mortality has m inor 

effects on optim al thresholds unless the m ortality is extrem ely high. Com pared to 

juveniles, predation mortality on adult pollock and herring in the eastern Bering Sea is 

relatively m inor. Com petition for eastern Bering Sea pollock and herring and Prince 

W illiam  Sound herring has not been dem onstrated and is largely speculative. Overall, 

the effects o f  species interactions on optim al threshold levels o f pollock and herring in 

the eastern Bering Sea m ay be minor.

If the m anagem ent objectives are to protect the whole ecosystem  or m aximize 

the yield or econom ic returns fo r all com m ercially im portant species rather than a single 

species, species interactions may have profound effects on threshold m anagem ent 

strategies. A lthough pollock recruitm ent m ay not be affected by other species, pollock 

recruitm ent m ay affect other species abundance, especially m arine m am m als and sea 

birds. If som e marine m am m als or sea birds depend mainly on pollock or herring for 

food, how m any pollock or herring have to be saved for these m arine m am m als or sea 

birds to protect the predators? Should we reduce pollock abundance to make room for 

other econom ically  more valuable species if  they exist? M ulti-species models and 

ecosystem  m odels may help refine these questions, which in turn raise im portant policy 

issues beyond the scope of this discussion. Adaptive m anagem ent may be implem ented 

to test alternative hypotheses (Collie 1991b).



The eastern Bering Sea has been one o f the m ost intensively studied areas in 

fisheries and ecosystem  m odelling during the last three decades. M ulti-species and 

ecosystem  m odels were constructed for the eastern Bering Sea more than a decade ago 

(Laevastu and Larkins 1981; Knechtel and Bledsoe 1981, 1983). These m odels have 

enhanced the understanding o f the ecosystem , but like other ecosystem  m odels, the 

precision o f  such models has not been high enough for m anagem ent purposes. The 

information gaps are currently too large to m ake such complex models attractive for 

fisheries m anagem ent. A lthough species interactions are intuitively im portant for 

population dynam ics, little convincing evidence has been found that species interactions 

affect the abundance of predators or prey in the eastern Bering Sea. For example, there 

is no shortage o f conflicting hypotheses about how pollock m ight influence sea lions 

in the eastern Bering Sea (Springer 1992). Not surprisingly, this problem is riddled with 

confusion.

Like m ost fisheries around the w orld, the fisheries in the eastern Bering Sea and 

other parts o f Alaska have prim arily been m anaged with a single-species approach. 

However, future insights about species interactions* perhaps o f a radically new  sort 

going far beyond conventional m ulti-species and ecosystem  approaches, could offer 

potential alternatives to single-species approaches to fisheries m anagement. W ith reliable 

m ulti-species or ecosystem  m odels at hand, threshold m anagem ent strategies a t the 

m ulti-species o r ecosystem  levels could be evaluated and optimal thresholds estim ated.

M ulti-species m odels for sim ple ecosystem s were exam ined by May et al, 

(1979). M ercer (1982) and Kerr and R yder (1989) offered a variety of m ulti-species 

approaches to fisheries m anagement. A lternative ecosystem approaches can be found in 

Laevastu and Larkins (1981), Knechtel and Bledsoe (1981. 1983), and Grant (19X6). It 

appears that further work along these o r different lines will be necessary before the 

goals o f m ulti-species m anagem ent in marine ecosystem s can be achieved.

Technical Interactions

Technical interactions o f multiple species offer further challenges to fisheries
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m anagers for im plem enting single-species threshold m anagem ent strategies. Because 

many species share the same space in the sam e tim e, it is impossible for certain gears, 

especially traw l, to catch only a single species. Bycatch is the catch o f non-targeted 

species in a fishery. Herring fisheries in A laska occur prim arily in spawning areas, and 

bycatch o f o ther species is too small to be o f  concern. Bycatch o f  herring occurs in the 

eastern Bering Sea trawl fisheries and is very sm all, com pared with herring abundance 

(Funk et al. 1990). But pollock bycatch in the eastern Bering Sea is very high because 

pollock is so abundant. Bycatches o f o ther species also occur in the pollock trawl 

fishery.

One solution to the bycatch problem  is to set bycatch lim its for each fishery. 

A lternative solutions arc to harvest targeted species when they are less mixed with other 

noh-targeted species, to use highly selective gears to reduce bycatch rates, or to have 

an econom ic penalty for the am ount o f bycatch. Successful threshold m anagem ent 

strategies m ay require that targeted fisheries are closed and that bycatches in non­

targeted fisheries are m inim ized when the abundance o f concerned species falls below 

threshold levels.

Bioeconomic Management Objectives

The objective function in this study is a linear com bination of average yield and 

variation in yield. It will be equivalent to a trade-off between total economic value and 

econom ic stability if the price for a unit o f  yield is constant. The high yield may result 

in a low price for a unit o f yield according to the conventional theory o f supply and 

dem and. Thus, m aximum  yield may not necessarily result in maximum  economic value. 

Both A laska pollock and herring products are sold in international markets, thus the 

prices o f these fish products are affected by the catches worldwide as well. Prices may 

be exogenous for Alaska herring because A laska herring products share a  small 

proportion of the international markets. Prices are endogenous for Bering Sea pollock 

because it supports the largest single-species fishery in the world. On the other hand, 

a high price is beneficial to the fishing industry, but may hurt consumers. So total
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econom ic value for the fishing industry is not necessary equivalent to total value to the 

whole society if  the resources belong to the whole society. Because the consum ers of 

Alaska herring and pollock products are prim arily  international, it may not be a m ajor 

concern for the total value to the whole society. Furtherm ore, m axim izing profits may 

result in less em ploym ent opportunity for fishing com m unities where many fisherm en 

regard fishing as a living style. Therefore, fisheries m anagem ent objectives are com plex 

and som etim es conflict. I f  total econom ic value is the m anagem ent objective, the 

optim al threshold levels are affected by the relationship between the fish price and total 

yield. If  a  low  yield results in a disproportionally  high price, the optimal threshold 

levels will be very low and even close to  zero.

This study did not exam ine the catch  allocation, and fishing cost, both o f  which 

are im portant to determ ine the econom ic profits from  fishing operations. M axim izing 

econom ic profits may be a goal for an individual fisherm an or a fishing com pany, but 

it is seldom  a sole objective o f fisheries m anagem ent. Equitable allocation among 

different user groups may outweigh the econom ic profits. For example, the herring 

pound fishery is m uch more valuable than o ther herring fisheries per unit herring, and 

a fraction o f  the herring in the pound fishery can survive. The pound fishery in Alaska 

is lim ited to a sm all percent because o f equitable allocation and dem and for roe on kelp. 

Current fishing capabilities for both herring and pollock in A laska may be far m ore than 

needed to produce M SY, but it is not easy to reduce the num ber o f  fishing vessels. For 

exam ple, for som e purse seine herring fisheries in Alaska, the current allowed fishing 

duration is 20 o r 30 minutes! In such fisheries, a  small fraction o f  the current fishing 

effort can easily catch the same amount o f  catch quota. The key to optimize econom ic 

efficiency is how  to find a way to reduce the excess effort and solve overcapitalization 

problem s w hich are beyond the scope o f  this study.

If the m anagem ent objective is econom ic profit, there exists an econom ic 

threshold. C osts for fishing operation consist o f  fixed costs and variable costs (Clark 

1976, 1985). Fixed costs are the capital costs o f  fishing com panies and fishing vessels, 

and variable costs are the expenses occurring during fishing. If the total revenue from
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a fishing opening Is less than the total variable cost, the population abundance is below 

the econom ic threshold and fishing shall be prohibited. The econom ic threshold m ay be 

sm aller o r greater than the biological threshold  considered in this study, depending on 

fixed costs, variable costs, fish prices and population characteristics. I f  there is a strong 

dem and for a fish product and the fish price goes up dram atically with decreasing 

supply, the econom ic threshold will be very  sm all. If  a population like herring forms 

schools such that catch per unit o f  effort is independent o f population abundance, the 

econom ic threshold may be m uch sm aller than the biological threshold. If  fixed costs 

are high relative to variable costs, the econom ic threshold will be low. It is likely that 

the econom ic threshold for a population changes from  year to year because the fixed 

and variable costs and fish prices are likely to change annually.

In bioeconom ic studies, a discount rate is usually used to discount the future 

yield. C lark  (1985) stated that "higher d iscount rates norm ally imply lower levels o f  

resource conservation by private resource owners, other things being equal’* as a 

fundam ental principle o f renew able resource econom ics. Because a threshold approach 

seeks to protect resources and enhance the future yields, discount rates are negatively 

associated w ith optimal threshold levels. A  h igh discount rate will favor non-threshold 

approaches. Furtherm ore, a positive discount rate m ay result in an optimal m anagem ent 

strategy that drives the population to extinction if  the discount rate is higher than the 

overall population growth rate (C lark 1985). Com m on discount rates for public resource 

m anagem ent range from 0 to 3% (C lark 1985). The British Colum bia Salmonid 

Enhancem ent Program  used a 10% discount rate for evaluating new projects (J. Collie, 

personal com m unications). In this study, a zero discount rate was used. In reality, all 

fisheries in A laska have been m anaged with a zero discount rate and fisheries 

m anagem ent elsewhere has rarely applied a specified positive discount rate.

C O N C LU SIO N S

1. The survival rates from  eggs to recruits from 14 o f the 19 herring stocks in 

the north A tlantic and northeast Pacific O ceans are significantly related to spawning
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biomass, w ith high spawning biom ass resulting in low survival rates. The year-class 

strengths from  about 41% o f the stocks are statistically associated with spawning 

biomass. M ost stocks have com pensatory, dom e-shaped stock-recruitm ent curves.

2. Positive correlations o f herring recruitm ent are generally found among 

geographically close stocks. Environm ental processes may play an im portant role in 

herring recruitm ent dynamics within a certain spatial scale.

3. D efault percentage o f pristine biom ass usually perform s best am ong the 

threshold estim ation methods. The loss o f yield due to errors in threshold estim ation is 

sm all, generally under 10%. About 15 to 20 years o f data are required to obtain a 

reliable estim ate o f thresholds.

4. The m ost im portant factors affecting optim al threshold levels are m anagem ent 

objectives, the form of stock-recruitm ent curve and fishing mortality. Environm ental 

cycle, environm ental variation, the original slope o f stock-recruitm ent curve, planning 

horizon, density  dependent natural m ortality and m easurem ent error also influence 

optimal threshold levels. Optim al thresholds are generally insensitive to environm ental 

autocorrelation, natural mortality patterns, initial biomass and im plem entation error.

5. C om pared to a non-threshold approach, threshold m anagem ent strategies 

increase the long-term  average yield, stabilize population abundance, shorten rebuilding 

time, and increase m anagem ent flexibility.

6 . W hen sim ultaneously optim izing threshold level and fishing mortality with the 

maximum yield objective, optim al fishing m ortality is slightly above fishing m ortality 

at MSY, and optim al threshold levels range from  40%  to 60% of pristine biom ass for 

eastern Bering Sea pollock, from 40% to 50%  for eastern Bering Sea herring and from 

30% to 60%  for Prince W illiam  Sound herring. The response surfaces are flat: several 

com binations o f fishing mortality and threshold level could produce close to the 

maximum yield possible.

7. W ith fishing mortality at M SY (PMSY = 0-42 for EBS pollock, HMSY = 0.3ft 

for EBS herring, HMSY = 0.34 for PWS herring (no-cycle recruitment), and HMSY = 0.42 

for PWS herring (cycle recruitment)) and a management objective of equal trade-off
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between the increase o f yield and the decrease o f  variation in yield, optimal thresholds 

range from  20%  to 30% o f pristine biom ass, w ith a m edian o f 25% , for eastern Bering 

Sea pollock, from  10% to 20%  with a m edian o f 20%  for eastern Bering Sea herring, 

and from  5%  to 15% with a m edian o f 10% for Prince W illiam  Sound herring.

8, W ith the status quo exploitation rate o f  20%  and objective functions from 

m axim um  yield to equal trade-off betw een yield and variation in yield, optim al 

thresholds range from  10% to 25% , m edian o f  20% , o f pristine biom ass for eastern 

Bering Sea herring, and from  5% to 25% , m edian o f  15%, fo r Prince W illiam Sound 

herring.
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