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ABSTRACT

Under a threshold management strategy, harvesting occurs at a constant rate but
ceases when a population drops below a threshold. The threshold approach seeks to
enhance long-term yield of a population and to maintain population renewability. 1
evaluated threshold management strategies for selected herring and pollock stocks in
Alaska.

First, I examined stock-recruitment data from 19 major herring stocks worldwide
to provide the basis for evaluating threshold management strategies. Seventy-three
percent of these stocks exhibited statistically significant density-dependence. Most
stocks have compensatory, dome-shaped stock-recruitment curves.

Then. I simulated threshold management strategies for eastern Bering Sea (EBS)
pollock and herring and Prince William Sound (PWS) herring using a single-species
model. I further examined seven alternative threshold estimation methods. Cohornt
analysis, catch-at-age analysis, and catch and population sampling yielded estimates of
population parameters. The objective function was a weighted function of increased
average yield and decreased standard deviation of yield over a planning horizon.
Compared to a non-threshold approach, threshold management strategies increase the
long-term average yields, stabilize population abundances. shorten rebuilding times, and
increase management flexibility.

For a maximum yield criterion and Ricker stock-recruitment models, optimal
fishing mortalities are slightly above fishing mortalities at maximum sustained yield
(MSY), and optimal threshold levels range from 40% to 60% of pristine biomass for
EBS pollock. from 40% to 50% for EBS herring and from 30% to 60% for PWS
herring. With fishing mortality at MSY and the criterion of equal trade-oft between
yield and its variation, optimal thresholds range from 20% to 30% of pristine biomass

for pollock. With the status guo exploitation rate of 20%, optimal thresholds range from

.
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10% to 25% of pristine biomass for EBS herring, and from 5% to 25% for PWS
herring.

Of the threshold estimation methods evaluated, default percentage of pristine
biomass usually performs best. Loss of yield due to errors in threshold estimation is
small, generally under 10%. About 15 to 20 years of data are required to obtain a
reliable estimate of thresholds. With single-species dynamics, the form of the stock-
recruitment curve, exploitation rate and management objective are the most important

factors affecting optimal thresholds.
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Chapter One
INTRODUCTION

Two kinds of overfishing could occur for an exploited fish population: growth
and recruitment overtishing (Cushing 1977). Growth overfishing results from harvesting
fish so young that they do not have a chance to grow 1o optimal sizes. Recruitment
overfishing occurs when the spawning stock is reduced to a low level due to heavy
fishing so that recruitment is seriously affected. Growth overfishing has been recognized
since early this century (Cushing 1977) and is easily detected and avoided. Recruitment
overfishing may be disastrous and cause a population to lose its renewability, but it is
difficult to detect. After several important fisheries, like the Hokkaido-Sakhalin herring
(Clupea pallasi), the Norwegian herring (Clupeu harengus), the Japanese sardine
(Surdinops melanosticta), the Californian sardine (Sardinops sagax) and the Peruvian
anchovy (Engraulis ringens), collapsed during periods when fishing was high (Cushing
1971), recruitment overtfishing has increasingly been an important concern for fisheries
management.

Currently there is much interest in the development of harvest strategies to
ensure that fisheries resources are optimally utilized and that fish populations are not
overfished. As one example, the North Pacific Fishery Management Council, responsible
for management of U.S. groundtish resources in the northeastern Pacific Ocean, adopted
definitions of acceptable biological catch (ABC) and other management terms in 1988
that attempt to provide for both conservation and optimal utilization of the resources.
The ABC was defined as "an acceptable level of harvest which recognizes the status and
dynamics of the stock, environmental conditions, and ecological factors” and "must
equal zero when the stock is at or below its threshold”. The ABC definition contains
the concept of a threshold. a low population level below which there would be concern

about the ability of the population to increase and fishing would be prohibited.
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To promote the wise use and conservation of fish resources, the Secretary of
Commerce of the United States Government promulgated the national standard
definitions of fisheries management terms in 1989. These standards (section 602 of the
Federal Guidelines for Fishery Management Plans) list threshold as a "minimum level
of spawning biomass" and provide the option (but not requirement) of specifying
threshold levels for each managed fish population. Each fishery management plan for
species managed by the United States was required to be amended in 1990 to define
overfishing for each stock on the basis of a maximum fishing mortality and/or a
threshold population level,

A threshold management strategy seeks to prevent recruitment overfishing and
to optimally utilize fisheries resources, The threshold management strategy is defined
in this study such that harvest occurs at a constant exploitation rate but ceases when a
population drops below a threshold. For a given population, the most difficult tasks are
to judge whether a threshold approach can outperform a non-threshold approach in
terms of management objectives, and how to choose an optimal threshold level.

The threshold concept has evolved from the fixed escapement policy used
frequently in Pacific salmon management (Reed 1979; Getz and Haight 1989), with the
difference being that not all surplus fish are harvested under a threshold approach. The
threshold approach prohibits fishing to protect the population and to promote population
rebuilding when the population drops to a very low level. Optimal harvesting policies
have been derived or simulated for age-structured population models with both
deterministic and stochastic recruitment (Rorres and Fair 1975; Reed 1980; Deriso 1985,
1987: Horwood 1987; Getz and Haight 1989), but a threshold level has rarely been
explicitly embedded.

The threshold concept is relatively new to fishery management. Beddington and
Cooke (1983) used 20% of the average unexploited spawning biomass as a threshold
{or targeted spawning biomass level) to study the potential yield of fish stocks with
constant harvest rate and constant catch policies. Ruppert et al. (1984, 1985) introduced

a general harvesting policy that includes a threshold level to explore optimal harvesting
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strategies of the Atantic menhaden (Brevoortia tyrannus) fishery. This general
harvesting policy was used by Hightower and Lenarz (1989) to examine optimal
harvesting policies for the widow rockfish (Sebastes entomelas) fishery. Hilborn (1985)
applied a simple general harvesting policy with a threshold policy as a special case to
compare harvest policies for mixed-stock fisheries. The above studies either used
threshold as a constraint to compare other harvesting policies, or compared the threshold
policy with dther policies in terms of average yield or logarithm of yield. In their study
of alternative harvest strategies for Pacific herring (Clupea pallusiy in the Strait of
Georgia, British Columbia, Hall et al. (1988) compared the threshold policy with
constant harvest rate and constant escapement policies using three criteria: average
catch, catch variance and risk. None of these studies estimated optimal thresholds.
Most work with thresholds has occurred in conservation biology, and especially
in the study of endangered species (Mode and Jacobson 1987a; Soule 1987). The
common goal in conservation biology is to maintain the health and diversity of natural
biological systems---ecosystems, communities, habitats. as well as species. A population
threshold, also called minimum viable population size. is usually determined for a
species, especially endangered species, so that appropriate landscapes and habitats can
be preserved to avoid population from extinction (Shaffer 1983; Lande 1987; Mode and
Jacobson 1987b). Extinction is a probabilistic phenomenon, and time frame and security
levels are important factors to determine a population threshold level (Shaffer 1987;
Mode and Jacobson 1987b; Wissel and Stocker 1991). Shaffer (1981) reviewed the five
methods of determining population thresholds: experiments, biogeographic patterns,
theoretical models, simulation models and genetic considerations, and concluded that
the most promising approaches are biogeographic patterns and computer simulations.
The important distinction between the concepts of population thresholds in
fisheries management and conservation biology stems from the different management
objectives. While a threshold serves as a conservative measure for both commercial fish
and endangered wildlife populations, it is also used as u tool to enhance long-term

yields for exploited fish populations. The concept of economic extinction furnishes a
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bridge between these two disciplines. Economic extinction, defined as long-term
depression of a population below the minimum level necessary to sustain an
economically feasible harvest, may be the first step on the road to biological extinction.
Thresholds for exploited fish populations are generally chosen to meet economic
objectives and to prevent economic extinction, while thresholds for endangered wildlife
populations emphasize the prevention of biological extinction.

Threshold management policies have been applied to some fish populations
worldwide, especially pelagic species. A threshold level of 15 to 25% of either pristine
spawning biomass or average observed spawning biomass has been established for
Pacific herring in British Columbia, Canada, and Washington and Alaska, USA
(Trumble and Humphreys 1985). Although a threshold level was not specified, the
North Sea herring fishery was closed in the late 1970’s and the early 1980’s when the
population dropped down to a low level (Jakobsson 1985). Spawning biomasses of
50,000 tonnes and 600,000 tonnes have been used as thresholds for the northern
anchovy (Engraulis morax) off the coast of California and Atlantic mackerel (Scomber
scombrus) in the northeast Atlantic, respectively (J. Collie, personal communications).
Many crab stocks in Alaska have been managed with a threshold level which is used
to enhance the renewability and productivity of the stocks (Schmidt and Pengilly 1990).
For groundfish in western Canada, one of the possible management options is to stop
fishing when a stock falls below a certain level, although currently there are no stocks
so managed (Fargo and Tyler 1989).

Compared with a constant harvest rate approach, the threshold approach has an
advantage in terms of stable population size. The population is less prone to lose its
renewability and more likely to move toward improved long-term }:’iﬁid levels.
Threshold management strategies were shown to be effective for stock conservation and
increasing total yield for chub mackerel (Scomber Japonicus) in Japan under a
fluctuating environment (Matsuda et al. 1992). The threshold approach is especially
beneficial to rebuilding a depressed population. A simulation study of an overexploited

Pacific ocean perch (Sebastes alutus) stock in British Columbia demonstrated that
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rebuilding would be enhanced when fishing mortality was reduced or curtailed
(Archibald et al. 1983).

The disadvantages of the threshold approach are that the potential to prohibit
harvesting in some years may increase short-term harvest variation and adversely affect
the short-term economic well-being of users. All threshold management strategies to
date have been based on a single-species approach. It may be difficult to extend
threshold approaches to multi-species fisheries because of lack of detailed knowledge
on species interactions. When several species are harvested in the same fishery, bycatch
problems may be further complicated by threshold management policies. If the
assessment and management of a fishery primarily depends on commercial catch data,
the required data will not be available when the threshold takes effect.

In contrast to the threshold approach, a non-threshold approach, such as constant
harvest rate, has the advantage of easy implementation. Traditionally, constant harvest
rate is one of the most common management strategies (Getz and Haight 1989) and
several fishing mortality reference levels, such as 'Fy |, F__.. Frepr Fmsy and F, . have
been very well documented and applied to a variety of populations (Alverson and
Pereyra 1969; Gulland and Boerema 1973; Deriso 1987; Hightower and Grossman 1985:
Sissenwine and Shepherd 1987; Clark 1991). Data requirements for estimation of fishing
mortality levels are relatively flexible.

The constant harvest rate approach reduces variance in harvest, at the cost of
increased variance in population levels. It is beneficial to maintain a stable harvest if

alternate fisheries are not available. But some of the commonly-used fishing mortality

' F,, is the fishing mortality at which the slope of the yield per recruit curve as a
function of fishing mortality is equal to 10% of its value at the origin. F_, is the
fishing mortality at which the yield per recruit is maximized. Fip 18 the fishing mortality
at which the spawning biomass per recruit is reduced to the medxan value observed in
a set of stock-recruitment data. Fygy is the fishing mortality that produces the maximum
sustained yield for a population. F is the fishing mortality that maximizes the
minimum yield among all the stock-recruitment relationships considered.
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rates (F ), F_ ... and F = instantaneous natural mortality) are estimated from life history
parameters alone and their effects on spawners and subsequent recruitment are not taken
into account. These mortality rates may potentially deplete a stock if a period of poor
recruitment occurs. Even with a well-estimated fishing mortality rate, it is still
questionable whether this approach can reasonably maximize the returns from exploiting
the resources and provide necessary protection when the population levels are low.
especially when multi-species conservation criteria are also imposed.

Successful application of threshold management policies to fish populations
requires the development of methods to estimate and evaluate threshold levels on fish
population abundance and yield. If the threshold level is set too low, then it will not
provide sufficient protection for depleted populations to recover. If set too high. then
prohibition of harvesting will deprive harvesters of justifiable harvesting opportunities.

Two species, walleye pollock (Theragra chalcogramma) in the eastern Bering
Sea and Pacific herring in Alaska, will be the subject of my numerical study. These two
species provide contrast in population dynamics of groundfish versus pelagic fish.
Pollock populations tend to grow and decline rapidly and have comparatively high
mortalities. The pollock population in the eastern Bering Sea is of immense commercial
importance and is one of the most important components in its ecosystem (NPFMC
1991; Laevastu and Larkins 1981). Pollock is a semi-demersal species and classified as
"groundfish” in commercial fisheries. Cannibalism and predation are two important
biological features of pollock.

Herring is a pelagic species and is one of the most common fish species
throughout the world and well known for its fluctuations in abundance. In Alaska, large-
scale commercial harvest of herring started in 1920’s, and now this species supports one
of the most important fisheries in the state (Funk and Harris 1992). Ad hoc threshold
levels have been established for different stocks of herring in Alaska. This study will
evaluate these ad hoc threshold levels and suggest new optimal threshold levels
consistent with current management objectives. As generic models and computer

software have been developed for these two species, the methodology can be applied



to other species.

In this study I examined herring stock-recruitment data around the world to
illustrate the need for a threshold management strategy because understanding the
recruitment dynamics of fish stocks is crucial to selecting harvest strategies. Then
population parameters of eastern Bering Sea pollock and herring and Prince William
Sound herring were estimated and collected. Threshold management strategies were
evaluated for these three populations based on single-species models. Evaluation criteria
include an objective function, risk of overharvesting and rebuilding time, as well as
robustness to errors in estimation or implementation. The objective function is the trade-
off between increased average yield and decreased variation in yield over a planning
horizon of 20 to 50 years. The risk is defined here as the pmbabﬂity that a population
drops below a defined threshold level. The rebuilding time is total number of years for
a population to take to rebuild from an initial biomass to the biomass producing MSY.
I will address the following questions: 1) What data and techniques are required to
estimate threshold levels? 2) Given a harvesting rate and an objective function, which
threshold approach performs best? 3) What are the important factors affecting optimal
threshold levels? 4) How much can we gain by using a threshold approach, compared
with a non-threshold approach such as a constant harvest rate strategy?

The dissertation is presented in seven chapters. Chapter two discusses the
relation between spawners and recruitment of herring worldwide and herring recruitment
patterns. It was generally believed in the past that herring recruitment is regulated by
environmental factors and that density-dependent effects on herring recruitment are
weak or non-existent. This chapter is intended to test for density-dependent effects on
herring recruitment statistically and to examine at what spatial scale environmental
forces influence herring year-class strengths. Chapter three deals with threshold
management policies for the eastern Bering Sea pollock population. Threshold
management strategies for Alaska herring are evaluated in chapter four. Two of the
largest herring stocks in Alaska. eastern Bering Sea and Prince William Sound stocks,

are examined. Chapter five compares and evaluates seven different threshold estimation
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methods through computer simulations. Chapter six summarizes the results of sensitivity
analyses of optimal thresholds with different population parameters, environmental
noises, harvest levels and management objectives. The results in previous chapters are
integrated to identify key factors influencing optimal threshold levels. The final chapter

summarizes the conclusions for this study and discusses the limitations.



Chapter Two
HERRING STOCK-RECRUITMENT RELATIONSHIPS AND
RECRUITMENT PATTERNS IN THE NORTH ATLANTIC AND
NORTHEAST PACIFIC OCEANS

-SUMMARY

Recruits are the youngest age group in a fishery. Understanding the recruitment
dynamics of marine fish stocks is crucial in selecting harvest strategies. Revealing the
recruitment patterns is the first step to understanding the recruitment dynamics. In this
study, stock-recruitment data of 19 major herring stocks from the north Atlantic and
northeast Pacific Oceans were examined for density-dependent effects on recruitment
and for recruitment patterns over spatial scales. Two parametric and one nonparametric
tests indicate that the survival rates from eggs to recruits from about 73% of stocks are
related to spawning biomass, with high spawning biomass resulting in low survival
rates, Close to half the stocks show that year-class strengths are associated with
spawning biomass. Most stocks have compensatory. dome-shaped stock-recruitment
curves. Positive correlations are generally found among the geographically close
neighbor stocks. The recruitment patterns suggest each environmental process may play

an important role in recruitment dynamics of herring only within a certain spatial scale.

INTRODUCTION
Understanding the recruitment dynamics of a stock is essential for optimal uses of
the resource and maintenance of its renewability. The recruitment rate is one of the
most important determinants of the capacity of a stock to sustain exploitation (Getz et
al. 1987; Quinn et al. 1990). Recruitment dynamics also determine harvest management
strategies applied to the stock. If recruitment is not related to the corresponding

spawning stock, yield per recruit or economic return per recruit is a natural choice for
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the harvest management strategy (Beverton and Holt 1957). Otherwise, other
management strategies should be used (Getz and Haight 1989). Thus, the problem of
recruitment dynamics lies at the heart of fisheries management.

Stock-recruitment relationships describe the density-dependent variation of
recruitment. The commonly used stock-recruitment models were developed by Ricker
(1954) and Beverton and Holt (1957). Both models were derived from assumptions of
density~dcpénc§ent predation and/or food limitation. The Ricker model requires mortality
to be dependent on spawning stock abundance, whereas the Beverton-Holt model has
mortality dependent on pre-recruit densities over a sequence of stages from eggs o
recruits. The Ricker curve is dome-shaped, with maximum recruitment occurring at an
intermediate level of spawning stock. The Beverton-Holt curve is asymptotic. Deriso
(1980) described a general stock-recruitment model which includes the Ricker.
Beverton-Holt, constant recruitment and Schaefer models (Schaefer 1957) as special
cases. Cushing (1971) derived another common stock-recruitment model, relating
density-dependence to fecundity. Fish with low fecundities are expected to have a near-
linear relationship of recruitment with spawners, whereas the Ricker dome-shaped
curves would be characteristic of fish with high fecundities. Shepherd (1982) developed
a general model which can mimic the Ricker and Cushing curves and includes the
Beverton-Holt model as a special case. A Markov probability transition matrix model
1s also commonly used to describe stock-recruitment relationships (Getz and Swartzman
1981 Swartzman et al. 1983; Overholtz et al. 1986).

Stock-recruitment models have been fitted to a variety of data sets on marine
fishes (Cushing 1973; Cushing and Harris 1973; Csirke 1980; Jakobsson 1980: Buck
and Hay 1984; Garrod and Jones 1974; Huang and Walters 1983). The models often
explain only a small proportion of the recruitment variation. The apparent lack of stock-
recruitment relationships in many fish stocks can be attributed to measurement errors
in both stock and recruitment data (Walters and Ludwig 1981). stochasticity of actual
recruitment, or the actual lack of relationship between recruitment and spawning stock

over the observed range of dat.
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The difficulty of using spawning stock to explain variation of recruitment has
led to innumerable correlation studies in which recruitment indices are correlated with
one or more environmental variables (Davydov 1989; Donnelly 1983; Chebanov 1989:
Koslow et al. 1987; Lasker 1978; Shepherd et al. 1984; Wespestad 1991; Quinn and
Niebauer in press; Zebdi and Collie in press). Based on an assumption that recruitment
success is primarily determined by physical factors, these correlation studies aim at
nnderstandirig of recruitment variation and prediction of recruitment. Although some
environmental factors may have a plausible causal mechanism to affect spawning
success and pre-recruit survival, and in some cases regressions are highly significant,
few of these predictions of recruitment have stood the test of time. As pointed out by
Walters and Collie (1988): "It is entirely too easy to find spurious correlations”.

Another approach is to examine the recruitment patterns of different fish stocks
within or between regions to determine whether recruitment is regulated through large-
scale environmental forcing or biological interactions (Koslow 1984). If recruitment is
controlled primarily by large-scale environmental forcing, positive correlation should
be evident among recruitment for the same species over broad spatial scales (Koslow
1984). On the other hand, if recruitment is predominantly regulated through biological
interactions, stock-recruitment relationships should be evident. Koslow (1984) examined
recruitment patterns in northwest Atlantic fish stocks and concluded that large-scale
physical forcing primarily regulates recruitment. Hollowed et al. (1987) expanded
Koslow’s study to northeast Pacific stocks and found that recruitment success is strongly
influenced by environmental conditions. Pepin (1990) studied biological correlations of
recruitment variability in North Sea stocks and suggested that the dominant association
is between fluctuations in recruitment and plankton abundance.

In this paper, I examined stock-recruitment data of 19 herring stocks from the
north Atlantic and northeast Pacific Oceans. First, density-dependent effects and stock-
recruttment relationships were examined, aiming at testing the hypothesis that
recruitment ot herring is independent of its spawning stock size and at examining the

shape of stock-recruitment curves. Then, recruitment patterns were studied to determine



the possible role of large-scale physical forcing in herring recruitment variation.

METHODS

Data

Time series of recruitment and spawning biomass for 19 herring stocks from the
north Atlantic and northeast Pacific Oceans (Clupea harengus and Clupea pallasi) were
collected from various sources (Table 2.1 and Figure 2.1). These time series were
derived either by virtual population analysis (VPA) tuned by auxiliary information or
catch-at-age analysis with auxiliary information. Recruitment is defined as ages 1, 2 or
3, depending on stock, and was identified by brood year termed "year-class". The
estimates of stock and recruitment in the most recent years are highly influenced by
fishing mortality and auxiliary information in the terminal year. To reduce this
uncertainty, I discarded the data after year-class 1986, i.e., at least the data in the most
recent three years were discarded. The abundances at age 0 for Norwegian spring
spawning stock were multiplied by 0.51 (the survival rate from the lightest fishing year-
class 1950 during 1950-1969) to get recruitment at age 3 from 1950 to 1969 because
juvenile herring of this stock suffered high fishing mortality during this period
(Dragesund et al. 1980) and the recruitment data after 1969 are available only at age 3
(Anonymous 1993). In this study, [ accepted the stock definitions in the data sources

because the stock-recruitment data are available only for the defined stocks.

Stock-recruitment Relationships

Four approaches were used to test the two null hypotheses: 1) per capita
recruitment is independent of spawning stock size and 2) total recruitment is
independent of spawning stock size. First, Cushing (1971) proposed a simple stock-
recruitment model:
(1) R=aSh
where R is recruitment, S is spawning biomass, « is a constant and b is an index of

density dependence. When b is negative and as S approaches zero, R approaches




Table 2.1. Summary of data sources for 19 herring stocks.

et
[ee}

Stock Notation  Year-Class  Data Source

I North Sea NSea 48-90 Anonymous (1992)

2 ICES District Via North ViaN 70-89 Anonymous (1993)

3 Icelandic summer spawners  IceSum 48-89  Anonymous (1993)

4 Icelandic spring spawners IceSpr 48-72  Jakobsson (1980)

5 Norwegian spring spawners  Norwe 50-69  Dragesund et al.(1980)
70-89  Anonymous (1993)

6 Gulf of Maine Maine 66-90  NEFC (1992)

7 Newfoundland WBNDB WBNDB 64-82  Wheeler et al. (1985)

8 Newfoundland CBTB BBTB 64-82 Wheeler et al. (1985)

9 Newfoundland CBSS CBSS 64-82 Wheeler et al. (1985)

10 Eastern Bering Sea EBS 56-89  Zheng et al.(in press a)

Il Prince William Sound, AK  PWS 69-89  Funk & Zheng (1992a)

12 Sitka Sound, AK Sitka 68-89  D. Carlile, ADF&G

13 Seymour Canal, AK Seymour 73-89  D. Carlile, ADF&G

14 Kah Shakes, AK KahS 73-89  D. Carlile, ADF&G

15 Prince Rupert, BC BCPR 48-89  Schweigert et al.(1993)

16 Queen Charlotte Is., BC BCQCI 48-89 Schweigert et al.(1993)

17 Central Coast, BC BCCC 48-89  Schweigert et al.(1993)

18 West Vancouver Is..BC BCWV] 48-89 Schweigert et al.(1993)

19 Strait of Georgia, BC BCSG 48-89  Schweigert et al.(1993)

Abbreviations:

WBNDB: White Bay-Notre Dame Bay
CBTB: Bonavista Bay-Trinity Bay
CBSS: Conception Bay-Southern Shore
AK: Alaska, USA

BC: British Columbia, Canada.
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infinity. so the Cushing model is unrealistic for some data ranges. But the model is
handy for testing recruitment density-dependence. Linearizing equation (2.1) results in:
(2.2 In{R) = In(a) + b In(S).

Thus. testing the null hypotheses is equivalent to testing b values. Parameters a and b
were estimated by an ordinary linear regression. Log transformation of recruitment
reduces the influences of outliers of stock-recruitment data on parameter estimation and
gives an equal weight to each data p@iﬁt« Parameter b measures the degree of density
dependence of stock-recruitment data (Cushing 1971). It b is not significantly different
from 1, then the per capita recruitment (or the survival rate from egg to recruit) is
independent of egg density (null hypothesis (1)) because spawning biomass is
approximately proportional to fecundity for herring (Ware 1985). If b is not significantly
different from 0, then total recruitment (or year-class strength) is independent of
spawning btomass (null hypothesis (2)).

Secondly, I used Ricker’s stock-recruitment model to test density-dependence of
recruitment. The Ricker model is
(23) R=oaSexp(-BS+v)
and is linearized as
(24) In(R/S) =In(ax) - B S + v,
where

Vi = 0p O Vi 0 Vs
and r stands for time (year), o and f are parameters, and v, is a noise term. In contrast
to the common assumption of normality of v, (Walters 1986), 1 assumed v, as being
autocorrelated over time as some recruitment data indicated. ©, 1s normally and
independently distributed with mean of 0; o; and o, are autocorrelation coefficients. An
autocorrelation regression (procedure AUTOGRE, SAS Institute Inc. 1988) with a
maximum likelihood method was used to estimate parameters o, P, o, and o,. The
advantage of autocorrelation regression 1s to reduce the influence of the noise term on

the parameter estimates in the autocorrelation process. If 3 is significantly different from
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0. we can reject the null hypothesis (1). In addition, autocorrelation coefficients o and
o, were tested for significance for each data set.

Thirdly, 2 nonparametric classification technique (Rothschild and Mullen 1985)
was used to classify the stock-recruitment data. A chi-square test (for data sets with 30
or more data points) and Fisher’s exact test (for data sets with less than 30 data points)
were applied to test the null hypothesis (2). A 2*3 classification utilized the median
recruitment, 1/3 quantile and 2/3 quantile of spawning biomass to divide stock-
recruitment data into 6 categories. Quantile is the same as percentile except that quantile
refers to a fraction of a data set while percentile refers to a percent of a data set. A
value of | was assigned to a datum when recruitment was equal to or above the median:
otherwise 0 was assigned.

Finally, a LOWESS (locally weighted regression scatter plot smoothing)
procedure (Becker et al. 1988) was used to robustly smooth the logarithm of recruitment
data aguinst spawning biomass to reveal stock-recruitment relationships. Log
transformed recruitment data reduced the influence of extreme year-classes and residuals
derived from the smoothed curve approximated a normal distribution. I used 0.5 as the
fraction parameter f in the LOWESS procedure (Becker et al. 1988) to achieve a
relatively good fit for all data. The null hypotheses were not tested statistically, but

examined visually.

Recruitment Patterns

Three forms of recruitment data transformations were used to examine
recruitment patterns for herring: 1) log-transformed recruitment (Log(R)), 2) first order
differences of log-transformed recruitment (Dlog(R), i.g., for a given year ¢. Dlog(R))
= log(R,, ) - log(R) , and 3) residuals from the LOWESS curves (Lowess-Res). Log
transformation of recruitment minimizes the influences of extreme year-classes.
normalizes the data, and emphasizes long-term, low frequency variations (Koslow 1984:
Hennemuth et al. 1980). First-order diftferences of log-transformed recruitment filter out

low frequency variations and first-order autocorrelation of recruitment, and concentrate
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on short-term, high frequency variations (Pepin 1990: Thompson and Page [989).
Residuals from fitted stock-recruitment curves reflect recruitment variation independent
of spawning stock size.

All time series of recruitment data in each of these three forms were tested for
normality by the Lilliefors test (Conover 1980, p357). The null hypothesis of normality
was rejected for only 3 out of 57 data sets at a significance level of 0.05. Thus,
Pearson’s product-moment correlation coefficients were used to test whether recruitment
data sets between any two stocks are significantly correlated.

Hierarchical cluster analyses were conducted on 15 stocks for year-classes 1973-
1986 for each of these three data forms. The other 4 stocks were excluded because their
data did not completely overlap this time period. The distance for clustering was
obtained through | minus the correlation matrix and average distance was used for
clustering, |

Year-class strengths were summarized in terms of ratio of maximum to minimum
recruits, coefficient of variation, and frequency of stronger than average year-classes.
These statistics provide direct comparisons of year-class variations and skewness of

recruitment distributions from different stocks.

RESULTS

Stock-recruitment Relationships

Two approaches were used to study the relationships of herring stock-
recruitment: the two null hypotheses were tested statistically and then stock-recruitment
data were smoothed to reveal the relationships. Table 2.2 summarizes the test statistics.
The recruitment for three stocks (Prince William Sound, Sitka, and Kah Shakes) was
too variable to reject the null hypothesis of 5 = 0 or b = 1. For the remaining 16
stocks. only two stocks (the Ieelandic spring spawners and Norwegian spring spawners)
have b values not significantly different from 1 at 0.05 level (Table 2.2). The b values
for all other stocks were significantly less than I, Le.. per capita recruitment decreases

as the spawning stock increases and thus the stock-recruitment relationships are
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Table 2.2. Summary of test statistics of density independence for herring recruitment
from 19 stocks.

Stock Cushing Model Ricker Model Nonpar.

b p(=0) p(=1) -B*S pa pn @ p,; @ Py P

NSea 0.52 .000 .000 -0.76 .000 .000 0.20 .222 0.34 .044 .007
ViaN 0.15 .425 .000 -0.75 .005 .00l 0.00 .996 0.19 .537 .589
IceSum  0.52 .001 .001 -0.57 .119 .027 0.46 .011 0.02 910 .003
IceSpr 1.20 .000 .097 -0.43 433 .630 0.72 .013 0.17 .553 .00l
Norwe 0.88 .000 .266 -0.15 .409 310 0.14 .464 0.02 .897 .000
Maine 0.10 .446 .000 -0.82 .002 .000 0.19 463 0.07 .770 .536
WBNDB -1.81 .024 .002 -2.06 .117 .002 0.38 .242 0.25 499 .004
BBTB -1.79 .006 .000 -3.60 .000 .000 0.51 .103 -0.49 .157 .004
9 CBSS -0.91 .094 .003 -1.72 .065 .009 0.73 .053 -0.23 .513 .30l
10 EBS -0.52 .089 .000 -1.89 .000 .000 0.42 .052 -0.16 492 .047
Il PWS 0.50 .534 540 -0.70 .369 .635 0.02 .442 -0.57 .076 .037
12 Sitka 0.49 338 316 -0.53 .296 .600 0.59 .057 -0.71 .028 .145
13 Seymour -0.72 .087 .001 -1.83 .002 .000 0.17 .649 -0.41 .402 .056
14 KahS -0.69 375 .048 -1.77 .055 .074 -0.12 .803 -0.27 .605 .455
15 BCPR 0.09 .688 .000 -0.85 .018 .000 0.49 .011 -0.07 .707 .097
16 BCQCI  0.14 .444 000 -0.97 .001 .000 0.31 .088 -0.05 .787 .717
17 BCCC 0.08 .654 .000 -1.13 .000 .000 0.08 .683 -0.06 .754 .264
18 BCWVI  0.10 .581 .000 -0.86 .008 .002 0.41 .032 0.07 .713 .264
19 BCSG 0.34 .046 .000 -1.02 .000 .000 0.55 .005 -0.06 .759 .013

o N B W —

Abbreviations:

b: value of parameter b in equation (2.1)

p(=0): p value for null hypothesis of b =0

p(=1): p value for null hypothesis of b = 1

B*S: value of parameter B in equation (2.3) times mean spawning biomass
pa: p value for null hypothesis of B = 0 with autocorrelation regression
pn: p value for null hypothesis of B = 0 with ordinary regression

o,: autocorrelation coetficient with a time lag of one year

Pui: P value for null hypothesis of a; = 0

o,: autocorrelation coefficient with a time lag of two yeuars

Pui: P value for null hypothesis of o, = 0

p: p value for chi-square test of density independence.
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compensatory. Thus hypothesis (1) was rejected for 14 out of 16 stocks. The b values
for two of the Newfoundland stocks were significantly less than zero at 0.05 level
(Table 2.2), suggesting an overcompensatory stock-recruitment relationship.

Testing b = 0 is equivalent to testing the null hypothesis (2). The null hypothesis
{(2) was rejected for 6 out of the 9 Atlantic stocks and for 1 out of the 10 Pacific stocks
with a significance level of 0.05. Overall, more than 50% of stocks failed to reject the
null hypﬁthésis. With a significance level of 0.1, the null hypothesis was rejected for
10 out of 19 stocks.

The nonparametric classification tests the null hypothesis (2) by a different
statistical method. Results generally resemble the test of b = 0. For 9 and 11 out of 19
stocks, the null hypothesis was rejected at significance levels of 0.05 and 0.1.
respectively. The results also suggest that herring recruitment in the northeast Pacific
is less dependeﬁt on spawning biomass than recruitment to the north Atlantic stocks
(Table 2.2).

An alternative index of density dependence is the product of -B from the Ricker
curve and mean spawning biomass (Cushing and Harris 1973; Winters and Wheeler
1987). The indices for all 19 stocks varied from -0.15 to -3.6 and were all negative
(Table 2.2), indicating the compensatory stock-recruitment curves. Fourteen out of the
19 stocks rejected the null hypothesis (1) of B = 0 with an ordinary Ricker model at a
significance level of 0.05 (Table 2.2). When autocorrelations with time lags of | and
2 years were included in the Ricker model, only 11 out of the 19 stocks rejected the
null hypothesis (1). The autocorrelation coefficients with a time lag of 1 year were
generally positive and ranged from -0.12 to 0.73, with most of them less than 0.4. Only
5 out of the 19 stocks had autocorrelation coefficient o, significantly different from 0
at 0.05 probability level. Autocorrelation coefficient o, was not significantly different
from 0 in 17 out of the 19 stocks. Although not shown here, no stocks had significant
autocorrelation coefficients with a time lag of more than 2 years.

The LOWESS procedure was used to smooth the stock-recruitment data, The

stock-recruitment relationships are population-dependent. For the Pacific stocks. strong
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dome-shaped stock-recruitment curves occurred with the Seymour Canal and the Strait
of Georgia stocks, and weak dome-shaped curves occurred with the eastern Bering Sea,
the central coast of British Columbia and Prince Rupert stocks (Figure 2.2). The year-
class strengths appeared independent of spawning biomass for the Queen Charlotte
Island and the west coast of Vancouver Island stocks. No meaningful stock-recruitment
relationships were found for the Prince William Sound. Sitka Sound, and Kah Shakes
stocks.

Stock-recruitment relationships were better defined for the Atlantic stocks than
the Pacific stocks. A curve with a shape between a Beverton-Holt curve and a Ricker
curve was revealed for the North Sea, Icelandic spring spawning and Norwegian spring
spawning stocks, with weak recruits associated with low spawning biomass (Figure 2.3).
A dome-shaped curve was apparent for the stock in ICES district Via north. Lower and
much more variable recruitments were associated with low spawning biomasses than
with high spawning biomasses for the Icelandic summer spawning stock. Strong dome-
shaped curves were evident for the three Newfoundland stocks, with weak recruitments
associated with high spawning biomasses. No apparent stock-recruitment relationship

was found for the Gulf of Maine stock.

Recruitment Patterns

Recruitment data were transformed in three ways (Log(R), Dlog(R), and Lowess-
Res) and compared in Figure 2.4. Dlog(R) represented high frequency components in
the recruitment data and were more variable than Log(R) and Lowess-Res data. Lowess-
Res data were similar to Log(R) data for stocks in which spawning biomass explained
little variation of recruitment.

Table 2.3 summarizes the p-value matrices for testing correlation between the
recruitment data for different stocks. The p value gives the probability of obtaining a
value of the test statistic at least as unfavorable to null hypothesis as the observed value.
Correlations were much stronger among stocks in the same region than stocks in

different regions. For Log(R) data, extremely strong positive correlations existed among
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Table 2.3. P values for the null hypothesis that the correlation coefficient equals 0 for 19 herring stocks. Negative sign
indicates a negative correlation coefficient. See notation for stock number in Tuble 2.1. (NA denotes the time series
data are not overlapped so that no correlation can be tested).

4. Log Transformed Recruitment data

Stock 2 3 4’ 5.6 7 8 9 10 11 12 13 14 15 16 17 18 19

I 'NSea .00 .73 .10 .01 .09 .00 .00 .01 -09 84 -80 .46 -45 .12 -83 .33 -78 -97
2 ViaN -84 NA 40 05 .52 .18 .57 -22 52 84 35 89 02 38 .19 .90 -.51
3 IceSum 0037 -87 -01 -00 -02 .58 -66 .54 -75 -48 .54 -97 43 5] 01
4 lceSpr 00 NA NA NA NA 06 NA NA NA NA 31 50 .16 .84 .00
5 Norwe 03 .01 04 04 16 92 .52 -95 -50 -.83 -25 23 99 3p
6 Maine A3 .21 .55 18 24 22 97 -80 .56 -82 .87 -47 -22
7 WBNDB 00 .00 -11 -88 -52 NA NA -86 -25 -37 -50 -0l
8§ BBTB 00 -39 -92 -45 NA NA .89 -26 -40 -47 -0l
9 CBSS ~37 -31 -16 NA NA 99 -22 -23 .53 -2
10 EBS 5235 13 .03 68 97 93 .94 54
Il PWS L0026 05 23 -67 89 -17 -24
12 Sitka 30 .06 .50 -30 -84 -10 -.66
13 Seymour 05 28 85 -71 -35 -.03
14 KahS 03 .13 .33 -35 -35
I5 BCPR 00000 .03 .00
16 BCQCI L0 .00 .00
17 BCCC 000 .00
18 BCWVI 00
19 BCSG 00




Table 2.3 (continue)

b. First Difference of Log Transformed Recruitment data

I NSea 02 -53 .18 .82 .72 -22 -45 -38 -34
2 ViaN -39 NA 19 .04 -82 71 -61 -96
3 IceSum =30 .03 71 .59 -31 -97 -64
4 TceSpr -63 NA NA NA NA -65
5 Norwe A4 16 .53 39 .78
6 Maine 49 46 -65 -95
7 WBNDB 00 .00 .69
8 BBTB 00 45
9 CBSS 94
10 EBS

11 PWS

12 Sitka

13 Seymou

14 KahS

15 BCPR

16 BCQCI

17 BCCC

18 BCWVI

19 BCSG



53 -80 .57 -42 -96 .63 .93 -69 -67
J7 .97 80 55 .25 14 13 17 72
- 18 -32 .73 99 -25 -34 -52 .85 -93
NA NA NA NA 46 -40 92 -81 .54
-63 80 -38 -44 -01 -07 -84 37 42
28 16 -90 82 83 76 .52 -B2 -99
73 33 NA NA -77 -84 -42 -64 -60
65 42 NA NA -60 -47 -28 -28 -28
-49 -62 NA NA -44 -32 -07 -33 -33
85 74 .02 .02 .30 .22 -63 -61 -8l
00 84 42 35 -81 -91 -15 -25

-98 35 43 -90 .78 -61 .97

06 .10 .22 -93 -64 -.15

000 .01 .21 -91 97

D001 17 13

00 .04 .01

00 .00



Table 2.3 (continue)
¢. Residuals from LOWESS Fit Stock-Recruitment Data

Stock 2 3 4 5 6 7 8 9 10

I NSea .00 -63 .67 -90 .68 -17 -50 -43 -.55
2 VN 05 NA 25 .19 -24 .65 -13 .81
3 IceSum 34 .62 -91 -82 -25 -55 -.64
4 lceSpr -03 NA NA NA NA 55
S5 Norwe 31 68 04 25 .39
6 Maine d0 700 .67 <06
7 WBNDB -.82 .02 -.13
8 BBTB 19 .06
9 CBSS -.44
10 EBS

11 PWS

12 Sitka

13 Seymour

14 KahS

15 BCPR

16 BCQCI

17 BCCC

18 BCWV1

19 BCSG




-96 -39 27 -61 28 78 .57 -8 -44
-98 -70 .61 27 .03 44 07 .64 -.11
-30 -70 -80 -54 91 .61 .66 .10 .03
NA NA NA NA 30 -62 -97 -36 .79
=90 .49 -30 -46 -69 -25 30 31 .41
-61 -40 -50 66 28 39 21 46 -47
69 -99 NA NA -67 .33 94 .50 -94
53 .33 NA NA 71 -17 -16 -22 46
-60 -.66 NA NA -99 -71 -38 .56 .49
A8 12 1t 28 78 -37 -47 -33 66
00 .89 .09 80 -77 92 -.19 -28

-86 .28 -30 -37 -88 -28 .80

24 88 74 -19 -14 -01

27 11 42 -67 -63

00 .00 .01 .0t

000 .00 .00

00 .00
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all 5 stocks in British Columbia, among 3 stocks in Newtfoundland, between the Prince
William Sound and Sitka Sound stocks, between the North Sea and ICES district Via
north stocks, and between the Icelandic summer spawning and Norwegian spring
spawning stocks (Table 2.3a). Among significant inter-regional comparisons, stocks of
North Sea and Norwegian spring spawners were positively correlated to three
Newfoundland stocks which were in turn negatively associated the Icelandic summer
spawning stock and the Strait of Georgia stock in British Columbia. The Kah Shakes
stock in Southeast Alaska was positively and significantly correlated with all stocks
from the eastern Bering Sea to Prince Rupert in the northern part of British Columbia.
However, the Seymour stock in Southeast Alaska did not associate with any of these
stocks other than the Kah Shakes stock.

After filtering out the low frequency signals by differencing, correlations among
the Dlog(R) data were less significant than the Log(R) data. For the Dlog(R) data, the
correlations were generally positive among stocks within the same region and negative
among stocks in different regions (Table 2.3b). But the correlations among stocks in
different regions were very weak, with most of p values larger than 0.2. With a
significance level of 0.05, significant correlations accurred between the North Sea and
ICES district Via north stocks, between the Icelandic summer spawning and Norwegian
spring spawning stocks, between Norwegian spring spawners and the Gulf of Maine
stocks, and among the three stocks in Newfoundland. Of the Pacific stocks, the eastern
Bering Sea stock did not associate with its neighbor stock of Prince William Sound, but
with the Seymour and Kah Shakes stocks in Southeast Alaska. The Prince William
Sound and Sitka Sound stocks were strongly correlated with each other, but not with
other stocks. The stocks in the central and southern British Columbia were strongly
associated with each other, but the Prince Rupert stock was correlated only with its
neighbor Queen Charlotte Island and central coast stocks in British Columbia and the
Kah Shakes stock in the Southeast Alaska.

After removing the influences of spawning biomass. the correlations among

stocks with the same region decreased (Table 2.3¢). For the LOWESS-Res data, the
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strong positive correlations still held between the North Sea and ICES district Via north
stocks, between the White Bay-Notre Dame Bay and Conception Bay-Southern Shore
stocks in Newfoundland, between the Prince William Sound and Sitka Sound stocks.
and among the stocks in British Columbia.

Three large clusters were found with the Log(R) data: an Atlantic group
(Icelandic summer spawners, Norwegian spring spawners, the Gulf of Maine, North Sea
and ICES district Via north), a central and southern British Columbia group (West
Vancouver Island, Strait of Georgia, Queen Charlotte Island and central coast of British
Columbia), and a northern Pacific group (eastern Bering Sea, Seymour Canal, Prince
William Sound, Sitka Sound, Kah Shakes and Prince Rupert) (Figure 2.5). These three
groups did not relate to each other. Within each group. many stocks were not associated
with each other with a 0.05 significance level. Five small and strongly associated
clusters were evident among the 15 stocks: Prince William Sound and Sitka Sound, Kah
Shakes and Prince Rupert, West Vancouver Island and Strait of Georgia, Queen
Charlotte Island and central coast of British Columbia, and North Sea and ICES district
Via north.

For the high frequency data of Dlog(R), the distances between the large clusters
were somewhat longer than the Log(R) data (Figure 2.6). The small and closely
associated clusters also included Prince William Sound and Sitka Sound, and North Sea
and ICES district Via north. But another three small clusters emerged different from the
Log(R) data. Three stocks from neighborhood geographic areas (Queen Charlotte Island.
Prince Rupert and Kah Shakes) formed a strong cluster. Three stocks from the central
and southem British Columbia (central coast. west Vancouver Island and Strait of
Georgia) were linked as another cluster. the eastern Bering Sea stock was associated
with the Seymour Canal stock to form a cluster.

Compared with the Log(R) and Dlog(R) data. the major difference with the
residuals from LOWESS fits of stock-recruitment data was that the Atlantic stocks were
not grouped together other than the Icelandic summer spawning and Norwegian spring

spawning stocks (Figure 2.7). Other mujor differences were that the Kah Shakes stock
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Figure 2.5. Cluster diagram of log-transformed herring recruitment data from 15 stocks
in the north Atlantic and northeast Pacific Oceans. Group-average linking was used. See
stock notations in Table 2.1.
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Figure 2.6. Cluster diagram of first-difference of log-transtormed herring recruitment |
data from 15 stocks in the north Atlantic and northeast Pacific Oceans. Group-average
linking was used. Sea notations in Table 2.1.
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Figure 2.7. Cluster diagram of residuals from LOWESS fitted curves of herring stock-
recruitment data from 15 stocks in the north Atlantic and northeast Pacific Oceans.
Group-average linking was used. Sea notations in Table 2.1.
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did not relate to its neighbor the Prince Rupert stock at all, and that the eastern Béring
Sea stock was more closely associated with the Prince William Sound and Sitka Sound
stocks. The clusters were more loosely grouped together with the residual data than the
Log(R) and Dlog(R) data because the correlations among the stocks were weaker for
the residual data than the other two data forms.

Herring recruitment was very variable, with the ratio of maximum to minimum
recruitment up to 700 (Table 2.4). With stocks having more than 30 years of data, the
strongest year-class was at least 29 times larger than the weakest one. Some stocks, like
Icelandic spring spawners, still have not recovered after collapsing about three decades
ago. The recruitment distributions of many stocks (3 Newfoundland stocks, Prince
William Sound, Sitka Sound, Kah Shakes, Queen Charlotte Island, and central coast of
British Columbia stocks) were highly skewed to the strong year-classes and the
populations were basically supported by a few stronger-than-average year-classes (Table
2.4). Some stocks, especially the Atlantic stocks, could take up to 17 years to get a
stronger-than-average year-class. The variations of year-classes 1970-1986 were
generally similar to year-classes 1948-1986 with one exception. The Norwegian spring
spawning stock had only one stronger-than-average vear-class during 1970-1986.
Overall, the recruitment of less variable stocks (North Sea, ICES district Via north,
Icelandic summer spawners, Seymour Canal and Strait of Georgia) depended more

strongly on spawning biomass than did other more variable stocks (Tables 2.2 and 2.4).

DISCUSSION :
Herring, classified by Cushing (1982) as an "environmental type” species, is one
of the marine fish species with the most variable recruitment. For such a fish species,
is recruitment related to its spawning stock? The answer 15 definitely yes, at least at low
spawning stock levels. It is intuitive that recruits are survivors from the eggs which are
spawned by the spawning stock. No eggs will result in no recruits in a closed
population. The critical questions are how important are the density-dependent effects

on recruitment and whether we can detect them statistically. The results in this study
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Table 2.4. Summary of herring recruitment from 19 stocks in the north Atlantic and
northeast Pacific Oceans.

Year-classes 1948-1986 Year-classes 1970-1986

Stock Ratio C.V. N Yr N/yrMaxyr Ratio C.V. N Yr N/yr Maxyr
I NSea 512 071 18 39 22 17 359 091 6 17 28 >12
2 ViaN 7.1 055 8 17 21 6 7.1 055 8 17 21 6
3 IceSum 417 074 18 39 22 ¥ 154 074 6 17 28 »5
4 JeeSpr 121070 090 9 22 24 >30 NA NA NA NA NA NA
5 Norwe 6208 1.57 13 37 2.8 17 1685 273 1| 17 17.0 >14
6 Maine 185 066 8 21 26 6 185 070 6 17 28 6
7 WBNDB 1696 141 5 16 32 >10 296 123 4 10 25 5
8 BBTB 5203 215 3 16 53 >10 317 126 3 10 33 7
9 CBSS 7353 237 4 16 40 >10 360 109 4 10 25 5
10 EBS 1357 098 10 31 3.1 >7 1357 L18 4 17 43 >7
11 PWS 669 126 S5 18 36 6 669 123 5 17 34 6
12 Sitka 4290 145 4 19 48 >9 4290 136 4 17 43 >7
13 Seymour 6.2 053 6 14 23 >5 6.2 033 6 14 23 >5
14 KahS 202 100 4 14 35 >5 202 1.00 4 14 35 >5
15 BCPR 572 075 14 39 28 9 102 076 5 17 34 >8
16 BCQCI 131.7 125 10 39 39 8 434 119 6 17 28 5
17 BCCC 03 09 12 39 33 9 187 1.08 4 17 43 8
18§ BCWVI 137.2 0.68 15 39 26 10 152 077 6 17 28 10
19 BCSG 289 058 16 39 24 10 47 045 8 17 2.1 6
Average 178.2 1.09 3.2 57.5 099 3.6
Abbreviations:

Ratio: ratio between the strongest to weakest year-classes

C.V.: coetficient of variation of recruitment

N: number of stronger-than-average year-classes

Yr: total number of years with recruitment data

N/yr: average number of years between stronger-than-average year-classes (equal to
number of stronger-than-average year-classes divided by total number of yeurs)

Maxyr: maximum number of years between stronger-than-average year-classes (i.e.,
maximum interval between two stronger-than-average year-classes).
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indicate that recruitment from the majority of the 19 herring stocks in the Atlantic and
Pacific Oceans is compensatory density-dependent. The survival rates from eggs to
recruits decrease as the spawning biomass increases. The relationships between year-
class strength and spawning biomass are difficult to detect. These relationships cannot
be detected for slightly more than half of the stocks at a 0.05 significance level. Three
different statistical tests (2 parametric and | non-parametric tests) reach similar
conclusions.

As expected, a majority of the stocks have a dome-shaped stock-recruitment
curve, with strong recruitment associated with intermediate spawning biomass. Dome-
shaped stock-recruitment curves have been reported for several herring stocks worldwide
(Cushing 1973), for the herring stock in the Strait of Georgia (Stocker et al. 19%5), and
for several Newfoundland herring stocks (Winters and Wheeler 1987). The dome-shaped
curve may partially result from density-dependent mortality of herring eggs. Herring are
demersal spawners with limited spawning grounds due to limited suitable bottom
substrate for spawn deposition (Haegele and Schweigert 1985). A large spawning
biomass deposits a high density of eggs that result in high egg mortality due to
suffocation (Haegele and Schweigert 1985). On the other hand, high egg mortality may
result from the low egg density because predation of herring eggs by birds is relatively
constant over time (Haegele and Schweigert 1985). Maximum larval production was
observed to occur at medium egg densities (Taylor 1971). A detailed discussion on the
biological basis of the dome-shaped stock-recruitment curve for herring can be found
in Winters and Wheeler (1987).

Stock-recruitment relationships for some herring stocks were neither statistically
nor visually apparent. Measurement errors in the estimation of spawning stock and
recruitment and stochasticity of actual recruitment due to environmental variation can
mask these stock-recruitment relationships (Walters and Ludwig 1981). Current survey
methods of herring abundances include aerial, spawn deposition, hydroacoustic and
larval trawl surveys (Jukobsson 1985; Trumble and Humphreys 1985), which are prone

to different levels of measurement errors. Koslow (1992) demonstrated that a stock-
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recruitment relationship could not be defined for a fish stock with high fecundiry. High
fecundity could increase variation of recruitment, which results in difficulty in detecting
the stock-recruitment relationship. But high fecundity does not necessarily mask the
stock-recruitment relationship for herring stocks, because many herring stocks in this
study have similar fecundity and natural mortality. but some of them have well-defined
stock-recruitment relationships and others do not.

For a given spawning biomass, stock-recruitment relationships can describe only
mean recruitment, which is likely modified by environmental conditions and mult-
species interactions. Thus, stock-recruitment relationships are valuable in studying long-
term harvest strategies (Walters 1986), but not accurate for short-term forecasts.
Spawning stocks and environmental factors are usually combined to examine
recruitment dynamics. Wespestad (1991) showed that herring recruitment in the eastern
Bering Sea was related to spawning biomass, sea surface temperature and wind-driven
transport. Stocker et al. (1985) indicated that spawning stock. sea surface temperature
and summer river discharge were important factors in determining year-class strengths
of the Strait of Georgia herring. Winters and Wheeler (1987) concluded that much of
the recruitment variation of seven herring stocks in Newfoundland could be explained
by spawning stock, sea surface temperature and salinity. Although many correlation
studies such as the above indicate that recruitment was highly significantly associated
with environmental factors, it is an open question whether such correlations are real or
spurious. Schweigert and Noakes (1991) showed that stock-recruitment models
combined with environmental factors did not improve the recruitment forecast precision
of British Columbia herring stocks from the stock-recruitment models without
environmental factors., Thus, recruitment-environmental relationships are probably not
useful for predicting recruitment. However, recruitment-environmental relationships are
useful for factoring out some of the recruitment variation to better reveal the underlying
stock-recruitment relationship. For example, the stock-recruitment relationship was not
apparent for the Sitka Sound herring stock until the effect of seu surface temperature

was removed (Zebdi and Collie in press). The relationships between herring recruitment
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and environmental factors may be far more complex than simple correlation studies
reveal.

Herring recruitment variation may also be partially caused by species
interactions. Walters et al. (1986) demonstrated that the herring recruitment in the
Hecate Strait, British Columbia, is strongly influenced by cod predation, Ware and
McFarlane (1986) showed that the herring year-class strengths off the west coast of
Vancouver Island are weakly correlated with the biomass of adult Pacific hake.
However, the effects of species interactions on herring recruitment from elsewhere have
seldom been demonstrated.

Recruitment data transformations (e.g., Log (R)) that emphasize low-frequency
variation have stronger correlations between different stocks than the transformations
(e.g., Dlog(R)) that emphasize high-frequency variation. After removing the influence
of spawning stocks, the data sets have the weakest correlations among these three data
sets. These results are consistent with the conclusions by Hollowed et al. (1987) in
which correlations among low-frequency data were much stronger than among the high-
frequency data. The strong correlations among low-frequency data might be caused by
the synchrony of recruitment, autocorrelation of recruitment or by both. Positive
autocorrelation with a time lag of one year occurred for some stocks. Taking the first-
differences of log-transformed recruitment can increase the reliability of the statistical
test (Thompson and Page 1989). Overall, the three data forms shared some common
results: significant. positive correlations existed among neighboring stocks for some
areas. Since this synchrony could not be explained by spawning biomass, the
environmental forcing may be an important factor on herring recruitment within a
certain geographic area.

In the north Atlantic Ocean, three oceanic stocks. Icelandic summer spawners,
Icelandic spring spawners and Norwegian spring spawners, are not closely related,
although they share u common environment during certain periods of life cycles
(Jakobsson 1980). Strong recruitment occurred for the Icelundic summer spawners

regularly, whereas Norwegian spring spawners took 17 vears to produce a strong year-
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class after the collapse in the late 1960’s. Icelandic spring spawners have not recovered
after their collapse about three decades ago. It is apparent that local environments and
spawning stocks are important regulators of these stocks. The North Sea and ICES
district Via north stocks are neighboring shelf stocks. The recruits of these two stocks
are highly correlated. although the recruitment of ICES district Via north stock is much
more variable interannually. Common environmental forces might have influenced these
two close stocks, but more than half of recruitment variations for both stocks could be
explained by spawning biomass alone. Recruitment dynamics of herring stocks in
Newfoundland were comprehensively examined by Winters and Wheeler (1987). Three
geographically close stocks in Newfoundland are subjected to the influences of the
Labrador Current and highly associated each other (Winters and Wheeler 19%87). In
addition to environmental conditions, spawning biomass is also an important factor. The
environmental forces influencing Newfoundland stocks apparently do not extend to the
Gulf of Maine because there is no association between the Gulf of Maine stock and
Newfoundland stocks.

For first-differenced data sets in the northeast Pacific Ocean. the Prince William
Sound and Sitka Sound stocks are strongly clustered and their populations have
primarily been supported by strong recruitment every 4 years since 1976. Zebdi and
Collie (in press) showed that sea surface temperature significantly influences the year-
class strengths for the Sitka Sound stock, but the most crucial issue, the cause of the
strong 4-year cycle, has not been found. Since the spawning stocks of these two stocks
consist of 5 to 10 age groups and are located separately along the Gulf of Alaska. the
most likely mechanism causing the 4-year cycle is the environmental force operating
in the Gulf of Alaska. Three stocks in central and southern British Columbia are highly
correlated. Between these two groups of herring stocks are located three stocks: Kah
Shakes. Prince Rupert and Queen Charlotte Island. These three stocks are not only
closely associated each other, but also have some patterns similar to their northern and
southern neighboring groups. These three groups of herring stocks are approximately

located in three oceanic domains proposed by Ware and McFarlane (1989): the northern
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group in the Coastal Downwelling domain, the middle group in the Transition Zone and
the boundary between the Transition Zone and the Coastal Downwelling domain. and
the southern group in the Coastal Upwelling domain and the boundary between
Transition Zone and the Coastal Upwelling domain. The different recruitment patterns
in these three groups may have been caused by the different environmental forces in
three oceanic domains (Ware and McFarlane 1989). These environmental forces and
species interactions (Walters et al. 1986; Ware and McFarlane 1986) may be the
important factors that result in weak density-dependent effects on the recruitment of
many herring stocks almig the Gulf of Alaska. The eastern Bering Sea stock is not
related to the northern group, but is related to the Seymour Canal stock located on the
inside waters geographically close to the Sitka Sound stock. Why the eastern Bering Sea
and Seymour Canal stocks are associated is not clear. but about half of recruitment
variation of the easter Bering Sea stock and the most of recruitment variations of the
Seymour Canal stock could be explained by spawning biomass. The recruitment for
Seymour Canal stock may be more influenced by the local environmental conditions
than the oceanic domain because it is located in the inside waters.

The results regarding the spatial patterns in the northeast Pacific in this study are
somewhat different from the conclusions of Zebdi and Collie (in press) and Ware and
McFarlane (1989). Ware and McFarlane (1989) clustered three major groups of herring
in British Columbia from the recruitment data, and Zebdi and Collie (in press) separated
them as two groups corresponding to the Coastal Downwelling and the combined
Transition Zones and Coast Upwelling by using log-transformed recruitment data. Zebdi
and Collie (in press) also found a correspondence between these recruitment patterns
and sea surface temperature patterns. Besides the different treatment of recruitment data.
there are noticeable differences between this study and the past studies (Schweigert et
al. 1993): 1) the stock definitions for British Columbia herring have been changed; 2)
catch-age analyses for British Columbia herring have been modified to estimate
instantaneous natural mortality: and 3) different time series of recruitment data were

used. If the whole time series of log-transformed recruitment data are applied. all
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herring stocks in British Columbia are strongly correlated and no discrimination can be
made. By taking first-difference of log-transformed recruitment data. I was able to
detect the gradient changes of the herring recruitment patterns among the three oceanic
domains. The boundaries of these oceanic domains may shift from year to year and
herring may spend some time in other oceanic domains during their life cycles (Ware
and McFarlane 1989), which make the stock grouping more of a gradient.

The herring recruitment patterns suggest that spatial scale is an important factor
in examining the relationships between environmental conditions and recruitment
dynamics. Each environmental process may play an important role in recruitment
dynamics of herring within a limited spatial scale. In studying the relationships between
the anomalous environmental conditions and synchronous extreme year-classes of
several northeast Pacific marine fish stocks, Hollowed (1990) was able to identify
environmental conditions for synchronous extreme year-classes of some groundfish
stocks, but failed to find environmental patterns for environmental type stocks of pelagic
fish. Thus, the environmental influences on recruitment may be large scale for some
stocks and on a very limited scale for others.

The density-dependent recruitment for many herring stocks has important
implications for herring fisheries management. Many herring stocks have followed boom
and bust cycles, and during the last three decades, heavy fishing was followed by the
bust cycles of several major herring stocks (Jakobsson 1985; Hourston 1980). Once a
stock collapsed, it would take many years to produce a strong recruitment to recover
under a low spawning stock (Table 2.5). Some stocks could not recover even after two
to tour decades. Within a few years after fisheries were closed when stock abundances
fell below low levels, many herring stocks began to recover (e.g., the Kamishak Bay
stock, leelandic summer spawners, the North Sea stocks. the West coast of Vancouver
Island and Queen Charlotte Island stocks. see Table 2.5). In cases in which no
management actions were taken to stop fishing, many stocks have not yet shown signs
of recovering since collapses two to four decades ago (e.g.. the lcelandic spring

spawning and the Hokkaido herring stocks). Although fishery closures may not help all



Table 2.5. Examples of collapse and recovery of herring stocks. Summary of peak spawning biomass during observed
period, period of fishery closure, spawning biomass when the fishery closure occurred and when the fishery was re-

opened.

Stock

Kamishak Bay, Alaska
Nelson Island, Alaska
Queen Charlotte Is., Canada
West Vancouver Is., Canada
Icelandic Summer Spawners
North Sea

Norwegian Spring Spawners
Hokkaido

Icelandic Spring Spawners
Lynn Canal, Alaska

Peak Spawning Observed  Closed Biomass at  Biomass at
Biomass (t) Period Period Closure (t)  Opening (t)
28,032 1978-92 1980-84 2,631 11,057
10,000 1978-92 1990-91 2,454 4,785
50,449 1951-92 1968-71 2,712 17,384
112,700  1951-92 1968-71 8,132 61,240
313,000  1947-92 1972-74 11,000 119,000
3,890,000  1948-92 1977-80 60,000 215,000
11,150,000 1952-92 1971-83* 50,000 590,000
975,000° 1890-1956 1956-NA°  NA NA
819,000 1947-92 1968-NA° 3,300 NA
11,294 1972-92 1983-present 1,623 1,678¢

% A small amount of catch quota was allowed for some years. ®: Total catch. : No management action was taken to
close the fishery and the fishing was stopped by fishermen due to low catch; no signs of recovery have been seen for

these two stocks. 4

: spawning biomass in 1992; the fishery has been closed since 1983.

Sources: See Table 2.1 for stocks in Canada, North Sea, Iceland and Norway; Bucher and Hammarstrom (1993) for
the Kamishak Bay stock; Hamner and Kerkvliet (1992) for the Nelson Island stock; D. Carlile of Alaska Department
of Fish and Game (personal communications) for the Lynn Canal stock; and Morita (1985) for the Hokkaido stock.
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(]




56

depressed herring stocks to recover within a short time horizon (e.g., the Lynn Canal
stock (Table 2.5)) and favorable environmental conditions also help stock recovery
(Corten 1986), prohibiting fishing is one of the most important factors affecting the
timing of recovery of a depressed stock. Thus, management strategies for herring
fisheries should take into account spawning stocks, and prevent overfishing. One of the
most effective management strategies to protect the spawning stocks and prevent
overfishing zs a threshold management strategy, in which no fishing will be allowed if
the stock falls to a low level. The next stage of this study will examine methods
defining threshold levels and factors influencing the optimal threshold levels for a given

fish stock.



Chapter Three
THRESHOLD MANAGEMENT STRATEGIES FOR
EASTERN BERING SEA POLLOCK

SUMMARY

A single-species simulation model of an age-structured population with stochastic
recruitment was constructed for eastern Bering Sea (EBS) pollock with a threshold
management strategy. Other factors considered were fishing mortality, recruitment, and
initial biomass. The objective function was a weighted function of increased average
yield and decreased standard deviation of yield over a planning horizon. I used my
model to solve two problems. First, I determined the optimal threshold given a
prescribed fishing mortality. Second, 1 determined optimal threshold and fishing
mortality, simultaneously. Applied o EBS pollock. a threshold management policy
always increased average yield over a non-threshold policy. For the first problem,
optimal threshold levels ranged from 20% to 30% of pristine biomass. For the second
problem, each scenario had a unique threshold and fishing mortality. with fishing
mortality slightly above the maximum sustainable yield (MSY) level and a threshold
range of 25-50%. These results were robust with regards to other factors. Benefits of
the threshold policy were greater with higher fishing mortality and with a Ricker
spawner-recruit model than with a Beverton-Holt model. The success of the threshold
management policy is due to the relatively rapid rebuilding of a population to levels

producing MSY.

INTRODUCTION
The gadoid fish species walleye pollock, Theragra chalcogramma (Pallas 1811),
is the only recognized member of the genus Theragra and is the most abundant fish

species in the northeast Pacific Ocean. In the EBS. the peak abundance of pollock was
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esumated at 12.6 million t from 1964 to 1987 (Bakkala 1988). Pollock not only supports
a huge fishery but also forms one of the most important components of the Bering Sea
biological system, representing a large fraction of the total standing stock of EBS
demersal fish. The majority of the groundfish catch in the EBS and Aleutian Islands
region is pollock (NPFMC 1991).

A comprehensive review of the biology and management of walleye pollock
from around the world was presented in a symposium organized by Alaska Sea Grant
College Program (1989). Pollock is a semidemersal species, usually forming schools
near the bottom during daytime and dispersing up into the water column at night (Smith
1981). In the EBS, the female pollock start to mature at age 2, and the majority of
females mature between ages 3 and 6. The spawning period of pollock has been
reported to extend from the end of February through July, with peak spawning activity
from the middle of March until the middle of May (Smith 1981; Bailey et al. 1986).
Cannibalism and predation are important determinants of pollock population dynamics
in the EBS (Smith 1981; Bakkala 1988; Honkalehto 1989: Livingston 1989: Mito 1990).
although I do not have enough information to make use of those features in my model.

Before 1963, small amounts of pollock in the EBS were occasionally harvested
by Japanese trawlers. Because of declining catch rates of yellowfin sole in the Bering
Sea. Japanese trawlers began directed pollock fisheries in 1964. After processing
techniques were developed to manufacture pollock into Surimi, a traditional Japanese
seafood commodity, commercial catches increased rapidly in 1967 and reached a peak
in 1970-1975 with catches ranging from 1.3 to 1.9 million tonnes annuaily. Pollock
catches were gradually reduced through bilateral agreements between Jupan and the
USSR after the peak catch in 1972 (Bakkala et al. 1987). After implementation of the
Magnuson Fishery Conservation and Management Act (MFCMA) in 1977, catch quotas
have been set from 950,000 tonnes to 1.4 million tonnes since 1977. In 1980, U.S.
trawlers began harvesting pollock and by 1990 the pollock fishery was fully
Americanized. Figure 3.1 illustrates total pollock catches and population biomass of

ages 3-9 in the EBS from 1964 to 1990. Since implementation of MFCMA,
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Sea. Two series of biomass were estimated with CAGEAN and cohort analysis,
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conservative harvest rates of around 25% or less have been used.

The population dynamics and management strategies of EBS pollock have been
a subject of intensive study during the last two decades. Population dynamics was
examined by Chang (1974) with a surplus production model, yield per recruit analysis
and cohort analysis. Chang’s studies were extended by Low (1974) to multi-species
population dynamics. Population dynamics and consequences of harvests were
investigated with ecosystem simulation approaches by Laevastu and Favorite (1976).
Laevastu and Larkins (1981), and Knechtel and Bledsoe (1983). Wespestad and Terry
(1984) used an age-structured population model containing economic functions to study
biological and economic yields under differing harvesting regimes. Constant effort and
fixed escapement policies were compared for Bering Sea pollock by Getz et al. (1987)
through computer simulations. Alternative population models for ERS pollock were
examined by Quinn and Collie (1990). None of these studies embedded a threshold level
in their population models.

In this chapter (based on Quinn et al. 1990). I analyzed walleye pollock
population dynamics in the EBS with an age-structured computer simulation model
similar to Deriso et al. (1985) and Quinn (1986) under various threshold rules and
investigate the effects of some important factors on each threshold management policy.
Optimal threshold levels and fishing mortality rates were determined as a function of
average yield and standard deviation of yield. The first optimality problem determined
the optimal threshold given a prescribed level of fishing mortality. The second
optimality problem determined optimal levels for the threshold and fishing mortality.

simultaneously,

METHODS
Data Analysis
Natural mortality, length, weight, fecundity and catch-age data were provided
by V. Wespestad (NWAFC, NMFS, NOAA, Seattle WA), covering ages 2 through 9

between 1964 and 1987, Table 3.1 summarizes populution parameters, In addition, three
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Table 3.1. Estimates of natural mortality, maturity, fecundity and selectivity, and growth
and spawner-recruit parameters of eastern Bering Sea pollock. The Beverton-Holt curve

was fitted by eye so that standard deviations of estimated parameters and R? are not
available.

Instantaneous Proportion Fecundity  Gear
Age Natural Mortality  Mature (# of Eggs) Selectivity

045  0.008 16200 0.163

2
3 0.30 0.289 44100 0.474
4 0.30 0.641 77900 1.000
5 0.30 0.842 114000 1.000
6 0.30 0.901 133000 0.990
7 0.30 0.947 169000 0.587
8 0.30 0.963 193000 0.634
9 0.30 0.970 206000 0.694
Growth (kg) model Spawner-recruit model
W, = 1.537 Ricker Beverton-Holt
k =0.221 o =0.06211 0.104274
t, =-0.827 B = 0.00205 0.009932
= 3.353 y=0.0 -1.0
o =047 NA
SD(e) = 0.01844 NA
SD(B) = 0.00040 NA

R* = 0.61 (DF=17) NA
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estimates of fishing mortality from combined hydroacoustic trawl surveys were available
(0.666 in 1979, 0.152 in 1982, and 0.100 in 1985). Finally, virtual population analysis
(VPA) was provided, which involved tuning the procedure with the survey information
(Quinn and Collie 1990). Previous analyses of walleye pollock (Alton and Deriso 1983:
Wespestad and Traynor 1988) were helpful in model construction.

Population abundance was estimated with carch-age analysis with auxiliary
information and the catch-age analysis computer program CAGEAN (Deriso et al. 1985.
1989). Natural mortality was set to 0.45 at age 2 and 0.30 at older ages in accord with
other analyses (e.g., Wespestad and Traynor 1988). Age selectivity was set to | for ages
4-5, based on results from the VPA procedure. Catch-age analysis was performed by
Dr. Terry Quinn of University of Alaska Fairbanks and the methods and results of the
catch-age analysis are described by Quinn et al. (1990) and Quinn and Collie (1990).

Figure 3.2 shows the relationship between recruitment (numbers of fish at age
2) and number of eggs (numbers of fish times percent maturity and fecundity). One very
strong year-class (1978) is evident. The deviation of the 1978 year-class is thought to
be due to environmental variation (Quinn and Niebauer in press). Recruitment declines
asymptotically with increasing egg number for sufficiently large values of eggs. The
three most recent estimates of recruitment (year-classes 83, 84 and 85) are less than
expected from the overall pattern. These values are highly uncertain, being based on few
observations of each year-class in the commercial fishery. These three data points were
excluded from fitting spawner-recruitment functions.

Two common spawner-recruitment models, the Ricker and the Beverton-Holt,
were fitted to the data. The Ricker model appears to fit better than the Beverton-Holt
model (Figure 3.2). Because the Ricker model was derived from a process in which
cannibalism of young fish by older fish results in declining overall spawning potential
at high spawner biomass (Ricker 1954; Gulland 1983). the Ricker model seems most
appropriate given pollock biology as well, as described in the introduction. Both
spawner-recruitment relationships with stochastic variation were used in the simulation

study described below, in order to determine if the threshold analysis was affected by
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the shape of the spawner-recruitment curve.

Age-structured Model

The age-structured model I used is similar to the one presented by Deriso et al.
(1985) and Quinn (1986). The recursion relation of abundance is
(3. N{+!,a+§ = Nz‘a exp('zt,a)

Z,=F,+M,
where ¢ stands for year and « for age, N, is abundance at the beginning of year r and
age a. F,  is fishing mortality in year ¢ for a-yr-olds. M, is natural mortality at age a.
and Z, , is total instantaneous mortality in year ¢ and age . Ages 2 to 9 were modelled.
Natural mortality is assumed to be time-independent and fishing mortality separable into
an age factor and a year factor,
(3.2)  F,.=5,1,
where age selectivity coefficient s, is equal to | for at least one age, and f, is full-
recruitment fishing mortality.

The Baranov catch equation (Ricker 1975),
(3.3) Cia =Ny [t-exp(-Z, )] FolZ,
was used to caleulate catches C, . The biomass and yield were obtained by multiplying
weight by age to abundance and catch. The weight w, is determined by a general von
Bertalanffy growth equation (Ricker 1973)
(3.4 w,=W_(l-exp[-K (a-t)])’
where W, k. 1, and b are growth parameters, given in Table 3.1.

The spawner-recruitment relationship is represented in the simulation model by
a general model proposed by Deriso (1980):
(35) N,=aE_(1-BvE )" exp(v)
where r is the recruitment age., equal to 2 for EBS pollock, &,, is recruitment in year
t, E., 1s number of eggs in year r-r, and «, P and 7y are parameters. The Ricker and

Beverton-Holt models are two special cases of equation {3.5) with y equal to 0 and -1,
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respectively (Table 3.1). The random variable v, is usually assumed to follow a normal
distribution with mean 0 and variance o°. The term exp(v,) is used to represent
environmental variation, both for mathematical convenience as well as for biological
realism. The theoretical justification for the lognormal distribution is that exp(v,) can
be interpreted as a random survival factor resulting from many independent and
multiplicative environmental factors. The term v, represents the sum of these random
factors, and thus should be approximately normally distributed by the Central Limit
Theorem (Walters and Hilborn 1976; Walters 1986). Hennemuth et al. (1980) and
Peterman (1981) offer further empirical justification. For the pollock population data
(Figure 3.2), the residuals of the Ricker curve are approximately lognormally
distributed, although the sample size is too small to allow a rigorous conclusion. The
estimated autocorrelation of the residuals for the Ricker model was also small (0. 156),
suggesting that there was no tendency for good years of recruitment to be followed by
either good years or bad years,.

Spawning was assumed to occur after fishing so that total numbers of eggs in
year t are calculated by
(36) E =2, (N, Com,f,
where m, is maturity rate at age a and f, fecundity, given in Table 3.1. This assumption
is approximately correct for pollock, for which a significant part of the total harvest is

a roe fishery, which directly removes eggs from the annual production.

Simulations

To investigate how the fishery might respond to different threshold management
policies should the amount of fish available for harvest decline to low biomass levels,
I used the age-structured model for numerical experiments in which the kind and
amount of fishing, the management policy, and the assumed characteristics of the
pollock stock were varied. I examined the fishery when managed at different threshold
values ranging from O (no threshold used) to the biomass level producing MSY. The

threshold level was expressed as a percentage of pristine biomass. Fourteen threshold
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levels (0, 5%, 7.5%. and 10% to 60% for each 5% increment) were evaluated for
searching optimal levels. The simulated fish stock experienced fishing mortality along
with naturally-occurring environmental variation. Each of several factors that might
affect the fishery was varied in the simulation to see its effects and how it interacted
with other factors to affect yield, vardation in yield. rebuilding time, time of first
upcrossing of the threshold level and total time below the threshold level (no fishing).
The rebuilding time is defined as total number of years for the population starting from
the initial biomass to reach its equilibrium biomass level. The factors considered are:

I. Environmental variation v, equation (3.5): I used two levels of environmental
variation. LOW variation is equivalent to one strong year-class (10 times average year-
class size) every 100 years (standard deviation ¢ = 0.5), the current best estimate for
EBS pollock (Table 3.1). HIGH variation is equivalent to one strong year-class every
10 years (o = 1.0). Recruitment variation this high has been observed for some marine
fish stocks (Rothschild 1986).

2. Environmental autocorrelation (AC): The tendency of "good" years for
recruitment to follow each other in time. I assumed three cases: NO autocorrelation (a
good year is as likely to be followed next year by another good year as it is by a bad
year). NEGATIVE autocorrelation -0.5 (a good year tends to be followed by a bad one),
and POSITIVE autocorrelation 0.5 (good years tend to be followed by good ones, and
bad years by bad ones).

3. Fishing mortality: I used LOW fishing mortality equivalent to full fishing
mortality rate at MSY from the age-structured model in the absence of environmental
variation (v, = 0). HIGH fishing mortality was set at 1.5 times the LOW fishing
mortality rate.

4. Planning horizon, the number of years for the simulation: I used @ SHORT
(20-yr) and a LONG (50-yr) horizon. It is recognized that even the SHORT haorizon
1s much longer thun those conventionally in effect when resource policy is driven solely
by economic or political considerations.

5. Spawner-recruit relationship: [ used RICKER and BEVERTON-HOLT models.
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6. Reproductive potential o in equation (3.5): the maximum potential recruits
that an individual fish is capable of producing under ideal conditions. I assumed three
levels -- MEDIUM (the level actually estimated from the EBS pollock data, Table 3.1),
a LOW level half this value, and a HIGH level 1.5 times the MEDIUM value for the
Ricker model. This parameter was not varied for the less-likely Beverton-Holt model,
due to the large number of other factors considered.

7. Initial biomass: I assumed that the stock had been reduced to 5% or
alternatively to 15% of its pristine biomass at the beginning of each computer
experiment.

A particular combination of the seven factors is called a scenario. All 192
possible scenarios were simulated. Numerical experiments using the model involved
simulated variation in the environment. For this reason. averages and variance around
averages for a given set of conditions were calculated from a sufficiently large number
of reblicate computer runs (5000 for scenarios with environmental autocorrelation and
2000 for the other scenarios) to make the estimates of averages and variances
statistically valid.

The simulations are straight forward. For each scenario, I started the simulation
from an initial biomass (Figure 3.3). During each fishing season, if the biomass was
above the threshold, fishing was allowed; otherwise the fishery was closed. Then the
population was updated to next year. If at the end of the duration (planning horizon),

the next replicate would be simulated until all replicates were done (Figure 3.3).

Threshold Levels and Optimality Criteria

Common objective functions for determining optimal harvest strategies include
the sum, discounted sum, average or median of yield. natural logarithm of yield, or a
power function of yield (Ruppert et al. 1984; Deriso 1985; Hightower and Grossman
1987: Getz and Haight 1989). Ideally. management of a fishery should increase yield
as well as decrease variation in yield. However, it is possible that a management policy

will increase both yield and its variation, leading to an optimization problem with two
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payoff functions (e.g. Ho 1970). Some trade-off between increased yield and decreased
variation in yield is needed to select an optimal threshold level. I chose a flexible
objective function of a linear combination of average vield and standard deviation of
yield to provide this trade-off. The goal is to maximize the objective over the planning
horizon, or
(3.7) max{(l - %) Y, - X SD,]
where Y, and SD,, is the average annual yield and standard deviation under threshold
management policy “t4", and X is a penalty weighting factor which measures the cost
of one unit of increase in variation in yield in term of a unit of increase in yield. With
A = 0.5, an equal trade-off of increased average yield with decreased standard deviation
is made. Two special cases of objective functions are maximum yield and minimum
variation in yield. which correspond to A equal to 0 and 1. respectively. I also examined
the objective of maximum logarithm of yield for some simulations and found that the
results were similar to objective function (3.7) with A approximately equal to 0.2.

Two optimality problems were considered. First. optimal threshold levels were
determined under a given level of fishing mortality rate from objective function (3.7).
Twa levels of fishing mortality rates, LOW and HIGH. were conditioned for the first
optimality problem. Examining this problem provides advice regarding implementing
a threshold level while continuing the current management practice of setting ABCMWith
a constant mortality rate policy. Current practice determines fishing mortality from
either the Fy, or Fygy approach, depending on population status (see NPFMC (1991
for its use with pollock).

Secondly, optimal combinations of threshold levels and fishing mortality rates
were determined, using objective function (3.7). This two-parameter optimization
problem was investigated to determine if there is a joint solution for finding the optimal
fishing mortality and threshold level for a given population, and to examine the

sensitivity of this combination to the other factors.
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RESULTS

A deterministic age-structured model with the population parameters in Table
3.1 was terated for a long enough period to determine associated equilibrium biomass
and yield as a function of fishing mortality. For the purpose of this study, the pristine
biomass for EBS pollock was defined as the maximum equilibrium biomass without
fishing under deterministic environmental conditions. The pristine biomass, maximum
equilibrium yicld and its associated equilibrium biomass were obtained for the Ricker
model with three levels of reproductive pétential o (equation 3.5) and for the Beverton-
Holt model (Table 3.2). The parameters were sensitive to the spawner-recruit model and
increased with increased reproductive potential.

The simulations with stochastic variation in recruitment were then made for the
scenarios listed above. Average and median yield and the standard deviation of yield
over the planning horizon were computed for each simulation and averaged over
replicates. Median yield results are not presented. becauss they did not differ
qualitatively. Although absolute levels of average yield and standard deviation of yield
varied appreciably among scenarios, the same qualitative conclusions were found
regarding the utility of threshold management policies. For all scenarios, average yield
increased as a function of the threshold value to a maximum value and then decreased
slightly. The standard deviation generally increased as well. As expected, the spawner-
recruit model, reproductive potential and environmental variation in recruitment had the
largest effects on average yield and standard deviation of yield, because these factors
affect average recruitment.

The benefits of inroducing a threshold level with the Ricker model with medium
reproductive potential, the most likely case for the pollock population, are illustrated in
Figure 3.4. The plot shows 24 different simulation scenarios with 5% of pristine
biomass as initial biomass. The scenarios are identified by four factors: fishing
mortality, environmental variation, planning horizon and environmental autocorrelation.
For each scenario, the results are shown for different levels of thresholds, varied from

0 (no threshold) to 60% of the pristine biomass.
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Table 3.2. Pristine biomass B__, biomass Bysy at maximum sustainable yield (MSY) and
its percentage of pristine biomass, MSY, in millions of tonnes, and fishing mortality
Fysy, in yr'!, for three different levels of the productivity parameter ¢ for the Ricker
spawner-recruit model and one level of the Beverton-Holt model.

Ricker Beverton-Holt

Parameter o =0.03 o = 0.0621 o = 0.09 o =0.1043

. 5 i w0 w0 Jp—

B., 5.99 10.42 16.77 13.83
Bysy 3.88 6.36 8.04 6.12
Bysy/B.  66% 61% 47% 4%
MSY 0.57 1.30 1.86 1.00
Fusy 0.27 0.42 051 0.31
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Figure 3.4, Mean yield (solid lines) and standard deviation of vield (dashed lines) a$ a function
of threshold level of 0-60% of pristine biomass for 24 scenarios with 5% initial biomass and
medium reproductive potential, ¢, for the Ricker model. The scenarios are classified by four
factors: fishing mortality (LOW: L Fishing, HIGH: H Fishing), environmental variation (LOW:
L Var, HIGH: H Var), planning horizon (20-yr, 50-yr} and environmental autocorrelation (-0.5,
0, 0.5).
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Under the low fishing mortality scenarios, the increase in yield was of order 10-
30%; under high fishing mortality scenarios the increase was of the order 40-170%
(Figure 3.4, Table 3.3). For scenarios with high fishing, a threshold management policy
provided an opportunity to reduce the fishing effort and keep the population near high
reproductive levels. Yield thus increased dramatically. But the increase in the standard
deviation beyond a certain threshold level (about 20-30%) was usually more than the
increase in yield. In contrast, at the threshold level corresponding to the maximum yield,
the increase in yield was often larger than the increase in the standard deviation under
scenarios with low fishing.

Of the other factors shown in Figure 3.4, environmental variation had the most
effect on average yield: the greater the level of environmental variation, the higher the
average yield. This effect occurred because higher environmental variation increased the
likelihood of a strong year-class and thus increased average recruitment. Nevertheless,
the trend in yield as a function of threshold level was similar under scenarios with high
and low levels of noise.

Other factors showed lesser effects, but some are notable. Average yields did not
differ appreciably in the scenarios with three different levels of autocorrelation of
environmental variation. But the variation in yield was affected greatly, especially in
concert with the high level of environmental variation. In this case, standard deviation
with negative autocorrelation in recruitment was much less than that assuming positive
autocorrelation. Under scenarios with a 20-year planning horizon, the increase in yield
was more than that with a 50-year planning horizon. The coefficient of variation of
yield also was much larger in scenarios with a 20-year horizon than in scenarios with
a 50-year horizon. This is intuitive because the threshold management policy played an
important role mainly during the rebuilding period of a population, and 20 years or less
were required for the simulated population to rebuild.

This set of 24 scenarios was repeated using the Beverton-Holt model (Figure
3.5). There were two main differences in yield and standard deviation between the

Ricker model and the Beverton-Holt model under all scenarios. First, although the




74

Table 3.3. Optimal threshold levels for combinations of the five factors under low and
high fishing mortalides; associated percentages of increased averaged yield, increased
standard deviation, and decreased rebuilding times over a policy with no threshold: and
number of years of no fishing. Results are given for a penalty weighting factor A of 0.5.

Scenario Low fishing mortality High fishing mortality
ST EP AC T %Y %SD %Rb <T T %Y %SD %Rb <T
R 5L 20 -05 25 277 160 250 4 25 1198 1683 750 4
R 5L 20 0 25 287 17.6 353 4 20 1049 1296 650 4
R 5L 20 05 25 312 216 294 4 20 110.2 1204 650 4
R 5L 5 -05 25 75 -63 313 4 25 397 46 808 4
R 5L5 0 25 76 -44 313 4 25 47.1 185 760 5
R 5L 5 05 3 86 -09 353 4 30 690 461 821 8
R 5H2 -05 30 173 82 273 4 25 672 539 583 4
R SH20 0 25 176 102 273 3 20 636 466 538 3
R 5 H20 05 25 224 124 308 4 20 696 448 600 4
R 5HS5 -05 20 40 -1.7 273 3 35 242 99 583 6
R 5HS0 0 30 56 1.9 273 4 25 254 102 615 5
R S H5 05 25 9.0 57 308 5 30 473 263 667 10
R I5L20 -05 30 68 99 182 2 25 266 698 750 2
R I5L20 0 30 7.2 105 273 2 25 306 741 727 12
R ISL20 05 25 62 7.1 91 1 25 356 649 750 3
R 15 L50 -05 30 21 1.0 182 2 25 1L6 1L8 727 2
RI15LS5 0 3 25 1.2 273 2 25 166 203 727 3
R I5L5 05 3 28 20 250 2 30 331 399 750 6
R I5 H20 05 25 20 -22 143 1 20 117 90 400 1
R I5H20 0 25 33 1.3 143 1 25 210 206 400 2
R I5 H20 05 20 47 49 125 1 15 132 94 167 |
R 15 H50 -05 30 16 06 143 1 30 86 54 400 3
R 15 H50 0 25 1.3 -14 143 1| 30 145 97 400 4
R 15 H50 05 25 36 21 250 3 30 270 178 50.0 8
B 5L 20 -05 15 43 41 83 2 15 104 104 231 2
B 5L 20 0 15 44 43 83 2 15 113 114 308 2
B 5L 20 05 15 45 44 83 2 15 128 140 231 2
B 5L S50-05 20 18 13 167 3 15 35 -L5 231 2
B 5L5 0 15 15 00 83 2 15 37 02 308 2
B 5L 50 05 15 13 00 83 2 15 50 29 231 2



Table 3.3 (continue)

Scenario Low fishing mortality High fishing mortality

S T EP AC T %Y %SD %Rb <T T %Y %SD %Rb <T

5H20 -05 25 57 45 250 3 20 105 78 375 3
5H20 0 15 39 14 125 2 20 110 114 375 3
5H20 05 15 36 20 1LIL 2 15 115 98 222 3
5HS50 -05 30 22 12 250 3 20 37 1.0 375 3
5HS5 0 15 16 10 125 2 15 27 1.0 250 2
5HS50 05 15 L1 -01 1.1 2 15 55 15 333 4

Twwwww

15 L20-05 0 00 00 00 0 75 02 01 00

I5L20 0 75 00 -04 00 0 75 00 -05 00

IS L2 05 75 -02 -12 00 0 0 00 00 00

I5 L5 -05 10 01 02 00 0 5 00 -07 00

I5L50 0 5 03 -06 00 0 15 03 07 125

I5L30 0575 03 02 00 0 15 1.0 L35 125

3 -0, 0.5 -0.5 0.0 75 03 27 0.0
I5 H20 0 5 -02 -24 00 5 00 -12 00
IS H20 05 5 00 -1.7 0.0 0 00 00 00
15 H50 -05 25 07 -09 00 20 07 -08 250
I5 H50 0 15 -04 -16 0.0 I5 04 -08 0.0
I53 H50 05 5 -08 -38 0.0 200 3.8 36 20.0

Abbreviations:

S: Spawner-recruit curve: Ricker (R) & Beverton-Holt (B).

[: initial biomass (%).

E: environmental variation: LOW (L) & HIGH (H).

P: planning horizon (yr).

AC: environmental autocorrelation.

T: threshold level (%).

%Y: percentage of increase in average yield over not using a threshold.

%SD: percentage of increase in standard deviation of yield.

%Rb: percentage of decrease in rebuilding time.

<T: total number of years of no fishing.
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Figure 3.5. Mean yield (solid lines) and standard deviation of vield (dashed lines) as a function
of threshold level of 0-60% of pristine biomass for 24 scenarios with 5% initial biomass and
the Beverton-Holt model. The scenarios are classified by four factors: fishing mortality (LOW:
L Fishing, HIGH: H Fishing), environmental variation (LOW: L Var, HIGH: H Var), planaing
horizon (20-yr, 50-yr) and environmental autocorrelation (-0.5, 0, 0.5).
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average and median yield increased as a function of the threshold value to a maximum
yield and then decreased, the increase in yield was very minor. Because the Beverton-
Holt curve is asymptotic, it matters less to average yield whether spawning stock varies
tfrom the population biomass associated with MSY than a dome-shaped Ricker curve
does. Under low fishing scenarios the maximum increase in yield was less than 10%:
under scenarios with high fishing the maximum increase was of order 10-20% (Figure
3.5, Table 3.3). Secondly, in each scenario, there existed a threshold level over which
the standard deviation of yield increased quickly as the threshold level increased. This
breakpoint changed from scenario to scenario and was lower under scenarios with high
fishing than with low fishing. The second difference was more apparent under scenarios
with low level of environmental variation than with high level of environmental
variation,

Median rebuilding time is most usefully illustrated with scenarios using LOW
fishing mortality and a 50-year planning horizon (Figure 3.6). For HIGH fishing
mortality the population would never rebuild to the level corresponding to the MSY.
Scenarios with a 20-yr planning horizon had similar results for rebuilding time, but
there are enough scenarios in which the population did not rebuild to reduce contidence
in the rebuilding time results. As expected, times to rebuild to high productivity under
threshold management were always shorter, and often much shorter, than times to
rebuild with no threshold imposed (Figure 3.6). Higher threshold levels produced shorter
rebuilding times; cessation of fishing below the threshold allowed the population to
increase rapidly when good recruitment occurred. Rebuilding times under scenarios with
the Beverton-Holt model were much shorter than those with the Ricker model because
the population is required to rebuild to only 44% of pristine biomass for the Beverton-
Holt model, compared to 61% for the Ricker model. Median rebuilding times were
shorter with higher environmental variation. because the high level of environmental
variation produced an occasional strong year-cluss which rebuilt the population.
Generally. the rebuilding times slightly increased under scenarios with environmental

autocorrelation changing from negative to positive. Though not shown in Figure 3.6,
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Figure 3.6. Median rebuilding time for scenarios with low fishing mortality and a 50-year
planning horizon, classified by four factors: spawner-recruitment model (Ricker with medium
o, Beverton-Holt), initial biomass (5%, 15%), environmental variation (LOW: L Var, HIGH:
H Var) and environmental autocorrelation (solid lines for -0.5, dotted lines for O, dashed lines
for 0.5).
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higher reproductive potential allowed the stock to rebuild more quickly, but the
population was much more variable.

Overall, for high levels of the threshold (>25%) the rebuilding time was on the
order of 5-10 years; for low values of the threshold (<25%) the rebuilding time was on
the order of 10-20 years (Figure 3.6). Rebuilding time itself is a random variable
because recruitment is stochastic. The probability distribution of rebuilding time was
strongly skewed, which is why I chose median over average rebuilding time. The
simulated stock under many scenarios took far longer to rebuild than the median
rebuilding time.

Another way to examine the effects of introducing a threshold level on a fishery
is to estimate how often the fishery would be closed. Figufc 3.7 shows the median
percentage of years without fishing under scenarios with LOW fishing mortality and a
50-yr planning horizon. As expected, the percentage of years of no fishing increased
quickly as the threshold level increased. The maximum percentage was 36%. For a
threshold level less than 30%. fishing was not allowed about 10% of the time or less.
The Ricker and Beverton-Holt models had a similar pattern. Environmental
autocorrelation had an important influence on the percentage of years without fishing:
the percentage is much higher with positive autocorrelation than with negative
autocorrelation, especially when combining with high environmental variation. Lower
initial biomass resulted in higher percentage of years without fishing. After the

population had rebuilt, it rarely dropped below 20% of pristine biomass.

Optimization of Threshold Level

The optimal threshold level for a given penalty weighting factor A was
determined for each scenario by comparing the objective function values among the 14
threshold levels (0-60% of pristine biomass). Figure 3.8 illustrates the trade-off between
an increase in average yield and a decrease in standard deviation for selecting optimal
threshold levels under all scenarios. The trade-off was measured by the value of penalty

weighting factor A: when A was equal to (.5, the same weight was put on both increases
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Figure 3.7. Percentage of years of no fishing with low fishing mortality and a 50-year planning
horizon, classified by four factors: spawner-recruitment model (Ricker with medium o,
Beverton-Holt), initial biomass (5%, 15%), environmental variation (LOW: L. Var, HIGH: H
Var) and environmental autocorrelation (solid lines for -0.5, dotted lines for 0, dashed lines for
0.5n
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of average yield and decreases of standard deviation. As A varied from 0.5 to zero, more
weight was given to average yield: as A was changed from 0.5 t 1, heavier weight was
given to standard deviation. The distribution of the optimal thresholds was the least
broad with A = 0.5. In Figure 3.8, the distribution of optimal thresholds is shown over
all scenarios. The mode of this distribution shifted as a function of penalty weighting
factors from high to low threshold levels: the mode being about 40-45% of the pristine
biomass when average yield is the sole optimization criterion, about 20-25% for equal
weighing of yield and standard deviation (A = 0.5) and about 0% with minimum
standard deviation as the criterion.

I illustrate the effects of different factors on the optimum threshold level by
using a A of 0.5. The associated percentages of gained yields, standard deviations,
decreased percentage of median rebuilding time, and number of years of no fishing are
given for each scenario (Table 3.3). Under scenarios with the Ricker model with
medium reproductive potential, the optimal thresholds ranged from 20-30%, with a
median of 25%. The increases in vield based on these threshold levels were about 17-
31% for low fishing mortality, 5% initial biomass and a 20-year planning horizon; 4-9%
for a 50-year planning horizon. Under high fishing mortality scenarios, these figures
changed to 64-120% and 5-50%, respectively. Standard deviations increased less than
the increases in yield under scenarios with low fishing mortality, but more under
scenarios with high fishing mortality. There were several scenarios under which the
yields increased while the standard deviations decreased. For the Ricker model with 5%
initial biomass, the rebuilding times were reduced to about 25-35% for low tishing and
54-82% for high fishing. Fishing would not occur for up to 10 years under some
scenarios, but in most cases there were only about 2-4 years of cessation of fishing.
Percentages of increase in yield and standard deviation and percentages of decrease in
rebuilding time were much smaller under scenarios with 15% initial biomass.

Optimal thresholds for scenarios with the Beverton-Holt model with 5% initial
biomass were much lower than for the Ricker model and varied greatly. ranging from

010 30% with a median of 15% (Table 3.3). The percentages of increase in yield were
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much smaller than those with the Ricker model. The benefits of using the threshold
management policy completely disappeared under scenarios with 15% of pristine
biomauss as an initial biomass.

The first-order effects of the seven different factors in determining optimal
threshold levels were estimated from all 192 scenarios by constructing the frequency
distributions of the optimum threshold level, amalgamating over all other factors. The
results are illustrated in Figure 3.9 with A equal to 0 (maximizing average yield), 0.2
(maximizing average logarithm of yield) and 0.5 (equal wade-off between average yield
and standard deviation). Optimum threshold levels are highest for the objective function
for maximum yield. because the logarithmic and equal tradeoff objective functions
penalize for the higher standard deviation with higher threshold levels. A threshold level
would only rarely be implemented with the minimum standard deviation policy (A = 1,
not shown), because standard deviation increases with threshold level under most
scenarios.

The most important factors in determining optimal threshold level appear to be
the reproductive potential and spawner-recruit model. Reproductive potential was
negatively associated with the threshold levels, with high reproductive potential resulting
in low threshold levels. Threshold levels for the Ricker model were much higher than
those for the Beverton-Holt model.

There were some interactions of the objective function with the factors
considered. When heavier weight was given to standard deviation (an increase in A),
tishing mortality had little effect on optimal threshold levels. Optimal threshold levels
increased markedly as fishing mortality increased when the criterion was to maximize
average yield. This is intuitive because a high threshold level can bring an overfished
population back to a high productivity level quickly. Thus average yield increased, but
at a cost of increasing the variation in yield. Planning horizon had little effect on
optimal threshold levels. except that the optimal {hre:ihnid~ level for the longer horizon
was slightly higher for the equal trade-off function. Zero and 0.5 environmental

autocorrelation had similar distributions of optimal threshold level, both slightly lower
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Beverton-Holt model).
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thun those with -0.5 autocorrelation. Overall, environmental autocorrelation,
environmental variation, initial biomass and planning horizon had minor effects on

optimal threshold levels.

Simultaneous Optimization of Threshold Level and Fishing Mortality

The above optimal threshold levels were estimated under a given level of
fishing mortality. For this part of the study, the search for optimal levels was made
across the two-dimensional space of threshold level and fishing mortality with a grid
method. Both threshold levels ranging from 0 to 60% of pristine biomass and fishing
mortalities from 0.1 to 0.85 were divided into 14 small grids. Numerical simulations
were run at all grids for each combination of the factors. Only the Ricker model with
the medium reproductive potential was considered in this part of the study, which
corresponds to factor levels estimated for pollock from current data. The results are
illustrated with three levels of penalty weighting factor A: 0 (maximizing average yield),
0.2 (maximizing logarithm of yield) and 0.5 (equal trade-off).

A unique optimal combination of threshold level and fishing mortality existed
for all scenarios. With 5% initial biomass, the optimal threshold ranged from 10 to 60%
of pristine biomass, and the optimal fishing mortality was usually equal to or slightly
above Fygy (Table 3.4). The optimal threshold and fishing mortality declined as a
function of A, and were fairly robust to variations in the other factors. Average yield
and standard deviation for the optimal levels were affected by the level of
environmental variation, autocorrelation, and planning horizon, all of which influence
average recruitment levels. Scenarios with 15% initial biomass produced similar
qualitative conclusions. The one extreme result with an optimal F of 0.82 and an
optimal threshold level of 60% may be an artifact of the simulation (Table 3.4).

To compare results under different scenarios on a common scale, I show results
as contour plots of the objective function for each scenario scaled to a maximum value
of 1 as a function of fishing mortality and threshold level. The absolute yields and

standard deviations for the optimal combinations of threshold levels and fishing
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Table 3.4. Optimal fishing mortality and threshold levels for combinations of five
factors and associated levels of average yield and standard deviation. Results are given
for three values of the penalty weighting factor A: 0.0 (maximize yield), 0.2 (maximize
log(yield)), and 0.5 (maximize equal tradeoff of increased yield and decreased standard
deviation). Results are shown for the Ricker spawner-recruit model with medium
reproductive potential.

I E P AC A F T Y SD
5 L 20 -05 0 0.48 50 1.00 0.69
5 L 20 0 0 0.45 45 1.00 0.66
5 L 20 05 0 0.48 40 0.98 0.68
5 L 50 -05 0 0.82 60 1.25 1.29
5 L 50 0 0 0.48 50 1.22 0.64
5 L 50 05 0 0.45 45 1.21 0.65
5 H 20 -05 0 0.54 50 1.42 1.17 =
5 H 20 0 0 0.54 40 1.39 1.16
5 H 20 05 0 0.63 50 1.34 1.45
5 H 50 -05 0 0.63 55 1.71 1.30
5 H 50 0 0 0.54 40 1.68 1.21
5 H 50 05 0 0.63 50 1.63 1.59
5 L 20 053 02 0.42 a5 0.99 0.57
3 L 2u 0 0.2 0.45 40 0.99 0.62
5 L 20 05 0.2 0.45 35 0.97 0.64
5 L 5 -05 0.2 0.45 40 1.23 0.46
5 L 50 g 02 0.45 40 1.22 0.51
3 L 30 05 02 0.45 35 1.20 0.57
5 H 20 -05 0.2 0.48 35 1.38 0.99
5 H 20 0 0.2 0.54 40 1.39 1.16
5 H 20 05 02 0.54 35 1.32 1.28
5 H 50 -05 02 0.54 45 1.70 1.08
3 H 3 0 Q2 0.54 40 1.68 1.21
5 H 50 05 02 0.54 35 1.61 1.43
5 L 20 -05 0.5 0.42 25 0.96 0.53
s L 20 0 05 0.42 25 0.95 0.54
5 L 20 05 05 0.42 25 0.94 0.58
5 L 50 -05 05 0.42 25 L2l 0.43
a L 3 0 0.5 0.42 25 1.20 0.47
5 L 5 05 05 0.45 30 1.19 0.55
5 H 20 -05 0.5 0.48 30 1.36 0.96
5 H 20 0 05 0.48 20 1.29 0.99
5 H 20 05 0.5 0.45 20 1.25 113
5 H 50 -05 0.5 0.45 20 1.64 0.95
5 H 50 0 0.5 0.48 25 1.63 1.08
5 H 50 05 05 0.39 10 1.42 .18



Table 3.4 (continue)

I E P AC A F T Y SD
I5 L 20 -05 0 (.48 45 117 (.53
I5 L 20 0 0 (1.45 45 1.16 .57
15~ L 20 0.5 0 0.48 45 1.15 0.66
IS L 350 -05 0 0.82 60 1.31 1.30
15 L 50 0 0 0.4 45 1.29 0.48
15 L 50 0.5 0 (.48 45 1.27 .62
15 H 20 -05 0 0.54 55 1.61 1.i8
15 H 20 0 0 0.54 45 [.59 1.19
15 H 20 0.5 0 0.54 40 1.52 1.32
IS H 50 -05 0 0.54 45 1.79 1.08
15 H 350 0 0 0.54 50 1.75 1.25
15 H 350 0.5 0 (.63 45 .71 1.55
15 L 20 -053 0.2 (.45 40 1.16 0.47
Is L 20 0 0.2 .45 35 1.14 .48
15 L 20 0.5 0.2 0.42 35 1.13 0.54
15 L 5 05 0.2 0.45 40 1.29 (.36
15 L 350 ( 0.2 (.45 35 1.28 .41
i5 L 350 0.5 0.2 0.45 35 1.26 0.51
15 H 20 -05 0.2 (1.48 45 1.60 1.02
i5 H 20 0 0.2 (.48 35 1.57 1.06
15 H 20 0.5 0.2 (.45 30 1.50 1.22
15 H 30 -05 0.2 (.54 45 1.79 1.0R
15 H 350 4] 0.2 (.54 40 1.75 i.15
15 H 350 0.5 0.2 .54 35 1.68 [.40
15 L 20 -0.5 0.5 (.42 30 1.13 0.42
5 L 20 0 0.5 0.42 30 [.13 0.46
15 L 20 0.5 0.5 (.29 25 1.10 0.49
15 L 50 -05 0.5 0.42 30 1.28 0.34
15 L 30 0 0.5 .42 30 1.27 .40
15 L 50 0.5 0.5 0.42 30 1.25 0.49
15 H 20 -05 0.5 0.54 35 1.56 0.92
5 H 20 0 0.5 .45 30 1.52 0.97
15 H 20 0.5 0.5 (.48 20 1.41 111
IS5 H 30 -05 0.5 (.54 30 1.74 .92
I5 H 350 0 0.5 0.45 35 [.70 1.04
15 H 350 0.5 0.5 (.42 25 1.60 1.26
Abbreviations:

I: initial biomass (%).

E: environmental variation: LOW (L) and HIGH (H).
P: planning horizon (yr).

AC: environmental autocorrelation.

F: fishing mortality.

T: threshold level (%),

Y: average yield.

SD: standard deviation of yield.
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mortalities are given in Table 3.4. Because environmental autocorrelation had litde
effect on the optima, results are shown only for zero autocorrelation. Figure 3.10
illustrates results with 5% initial biomass. For the maximum yield criterion, the optimal
threshold levels ranged from 40 to 50% of pristine biomass and the optimal fishing
mortalities from 0.42 to 0.54 (Figure 3.10). For each scenario, there is a broad region
between the 0.8 contour line and the maximum value at I, which represents all the
possible combinations of the two-parameters that would produce approximately 80% or
more of the maximum yield. Such a flat response suggests that two-parameter
optimization would enhance the flexibility of management, because several
combinations of fishing mortalities and threshold levels would produce iyiaids very close
to the maximum yield. The threshold level commences its effect at a fishing mortality
of about 0.3, which is close to F,; of 0.31. For the same objective value, higher fishing
mortality requires a higher threshold level. In other words, the threshold level performs
the role of reducing average fishing mortality over time by fishery closure. For lower
fishing mortalities (less than Fy ), the contour lines are flat. i.e., the threshold does not
have much effect. This result is a consequence of the higher equilibrium biomass for
lower fishing Amorta}ity such that the population rarely fell below the threshold levels
after initial rebuilding. The results appear to be robust to environmental variation,
environmental autocorreladon and planning horizon, as in the one-parameter
optimization. A longer planning horizon induces a slight broadening of the contour
surface in a low threshold region as the benefits of the threshold wane at low fishing
mortalities.

For the log(yield) criterion. the optimal threshold levels were 40% of pristine
biomass, and the optimal fishing mortalities ranged from 0.45 to 0.54 for all scenarios.
both being slightly lower than for the maximum yield criterion (Figure 3.10). A slight
narrowing of the contours about the optimum point occurred, which reduces the
combinations of the two parameters that would be close to the optimum. Other factors
did not have much effect on the location of the optimum point.

For the equal trade-off criterion, the optimal threshold level varied tfrom 20 to
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Figure 3.10. Contour plots for the second optimization problem as a function of fishing mortality
and threshold level for three values of the penalty weighting factor A (0: Max Yield, 0.2: Max
Logyield, 0.5: Equal Tradeoff). The Ricker model with medium o and zero autocorrelation was
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25% of pristine biomass, much lower than for log(yield) criterion, and the optimal
fishing mortalities ranged from 0.42 to 0.48 for all scenarios (Figure 3.10). A further
narrowing of the contours about the optimum point occurred, which further reduces the
combinations of the two parameters that would be close to the optimum.

Figure 3.11 illustrates the results with 15% initial biomass. The contour plots are
similar with 5% initial biomass, except that the contour is broadened in the region with
low threshold level. The threshold level did not have much effect for levels below 10%
of pristine biomass because it was rare for the population to drop below such low
threshold levels. The optimal combinations of the two parameters are very close to each
other with 5% and 15% initial biomass, suggesting the initial biomass has little etfect

on the optimum.

DISCUSSION

Management policies that maximize average yield (maximum harvest strategies)
will also tend to result in high variation in yield. Such policies usually drive the
population close to the most productive level as quickly as possible and are very
sensitive to environmental variation. This result can be in direct conflict with some
management objectives, such as short term economic stability. The fixed escapement
policy, used mainly in management of salmon populations, is a typical example of
maximum harvest strategies (Reed 1979). Another common fisheries management
strategy, constant harvest rate policy, as Walters (1986) noted, gives a good balance
between average yield and variation in yield, provided the stock has not been and is not
being driven too far from the high productivity level. Hightower and Grossman (1985),
comparing the performance of different levels of constant harvest rates for fish stocks
with variable recruitment, indicated that under highly variable environmental conditions,
fishing effort does not affect average yield significantly, provided that fishing effort is
not too far trom MSY effort. Gatto and Rinaldi (1976) compared average yield and
variation in yield in fluctuating environments for these two kinds of fisheries

management strategies and demonstrated analytically that fixed escapement policies
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Figure 3.11. Contour plots for the second optimization problem as a function of fishing mortality
and threshold level for three values of the penalty weighting factor A (0: Max Yield, 0.2: Max
Logyield, 0.5: Equal Tradeoff). The Ricker model with medium o and zero autocorrelation was
used and initial hiomass was 15%. The plots are also classified by environmental variation
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scaled from the minimum value (0) to the maximum value (1).



92
should generally produce both higher average yield and higher variance in yield than
constant harvest rate policies. Deriso (1985) showed that constant harvest rate policies
are risk-averse.

Threshold management strategy synthesizes constant harvest rate and fixed
escapement policies, It is identical with the former when the stock is at a high
population level, and adapts the strategy of the latter when the population has dropped
to a low level. My results show that for a simulated pollock population, management
policies that set thresholds always produced some benefits in increased yield, even when
variation in yield also increased, and can, in some cases, increase average yield greatly
while increasing variation in yield only slightly over the entire period and over the first
20 years of the experiment. Environmental variation, environmental autocorrelation and
initial biomass had relatively little effect on my conclusions.

Optimal threshold levels for EBS pollock range from 5% to 60% of the pristine
biomass, depending upon the trade-off between the increase of yield and the decrease
of varation in yield. A compromise trade-off giving equal weight to these two
components results in the most robust optimal threshold levels, in the 20%-30% range
of values with a median of 25%, for the Ricker spawner-recruitment model with the
medium reproductive potential. These optimal threshold levels are slightly higher than
the 20% level proposed by Thompson (in press). Optmal fishing mortality rates are
equal to Fygy or slightly higher. The response surtuces are flat with two-parameter
optimization, which provides flexibility for management. These results were relatively
independent of the effects of environmental variation. environmental autocorrelation,
planning horizon and initial biomass. However, their possible robustness in a multi-
species context is not known.

Threshold management policies may be close to optimal regarding the class of
all possible policies for single-species models. In a study of an age-structured
population, Hightower and Grossman (1987) used a first-order gradient procedure to
obtain optimal strategies under several maximized eriteria. Frequently, their results

showed that the optimal strategy was no tishing for a few years followed by a fairly
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constant fishing effort. In a study of optimal harvesting policies for the widow rockfish
tishery. Hightower and Lenarz (1989) investigated several policies and concluded that
a two-parameter policy, such as constant fishing mortality with a threshold, may not
necessarily be more beneficial than a one-parameter policy of constant fishing mortality.
In contrast, my study showed that the use of a threshold pmduécs distinct benefits. This
suggests that optimal policies may be somewhat dependent on the species considered.
or the conditions simulated.

An alternative to the trade-off model between average yield and variation in
yield {equation 3.7) for selecting a desirable threshold is the Pareto Frontier (Walters
1975). where average yield is plotted against standard deviation of yield over different
threshold levels. It gives a visual display of combinations of yield and variation in yield,
but scale problems occur when comparing the effects of different factors.

The simulations showed that the spawner-recruitment relationship and
reproductive potential had significant effects on optimal threshold levels, which suggests
that there may exist other biological reference points more robust than the one expressed
as a percentage of pristine biomass. or optimal threshold levels may be a function of
several population parameters. I will investigate alternative methods to estimate
threshold levels in chapter five.

In this part of my study, for simplicity 1 assumed that we could measure the
population and implement the harvest strategies perfectly. In reality, there exist errors
in measuring the population and implementing the harvest strategies. [ will examine the
effects of these errors on optimal threshold levels in Chapters 5 and 6.

The threshold assumed for pollock was based on single-species considerations
and did not consider interactions with other marine species, including marine mammals
and seabirds. Certain marine mammals and seabirds teed on pollock and there has been
much recent discussion of possible impacts of pollock population fluctuations on them
in Alaska (Springer and Byrd 1989; Lowry et al. 1989). If species interactions can be
included in future experiments with threshold models, we will learn the probable impact

of these policies on pollock as well as other Bering Sea species. Furthermore, density-
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dependent effects on post-recruit natural mortality due to cannibalism and other
intraspecies effects could be important as well. T will conduct sensitivity analyses of
density-dependent natural mortality on optimal threshold levels for EBS herring in
Chapter six.

An alternative approach to threshold management strategies is biomass-based
strategies. Under biomass-based strategies, the fishing mortality is equal to Fygy when
the population biomass is equal to or above Bygy; the fishing mortality varies linearly
with the population biomass from zero to Fy, gy when the population increases from zero
to Bygy (NPFMC 1991). In recent years, the plan team for the groundfish fisheries of
the Bering Sea and Aleutian Islands has used biomass-based strategies to compute the
maximum allowable biological catch for EBS pollock (NPFMC 1991). Biomass-based
strategies do not stop fishing completely and thus produce relatively short-term
economic stability. Biomass-based strategies are attractive for fisheries like EBS
pollock, in which alternative resources are not available and bycatch problems are an
important concern. But biomass-based strategies may not have the same level of

resource protection as threshold strategies when the population is at a low level and 1t

may be ditficult to allocate catch quota among users when the quota is small,




Chapter Four
EVALUATION OF THRESHOLD MANAGEMENT STRATEGIES
FOR PACIFIC HERRING IN ALASKA

SUMMARY

Computer simulations were conducted to evaluate threshold management
strategies faf herring stocks in the eastern Bering Sea (EBS) and Prince William Sound
(PWS), Alaska, based on a single-species model. Population parameters were derived
from cohort analysis, catch-at-age analysis, and catch and population sampling. Several
threshold values ranging from 0 (no threshold) to the biomass level producing MSY, in
combination with different exploitation rates from 5% to 60%, were examined. Other
factors investigated were recruitment, initial biomass, natural mortality, implementation
error, and measurement error. Three criteria used to evaluate the threshold management
strategies were the trade-off between mean yield and standard deviation of yield, harvest
opportunity, and variation of spawning biomass. Recruitment, especially stock-
recruitment relationships, and exploitation rate are the most important factors
influencing optimal threshold levels. The combination of a high threshold level and a
high exploitation rate approximates a pulse fishing scenario that results in the highest
yield and variation in yield. Large measurement error decreases both the optimal
exploitation rate and threshold level. For EBS herring. optimal thresholds range from
10% to 25%, median of 20%, of pristine biomass under an exploitation rate of 20%
CH, e qo) and from 10% to 35%, median of 30%. of pristine biomass under an
exploitation rate of 31% (H, ;). Optimal thresholds for PWS herring vary from 5% to

25%, median of 15%, of pristine biomass and from 0 to 45%, median of 25%, with

* Hes quo 18 the exploitation rate currently used to manage the fishery. Hy, is the
exploitation rate at which the slope of the yield per recruit curve as a function of
exploitation rate is equal to 10% of its value at the origin. Hyygy is the exploitation rate

at which MSY is achieved. g5
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exploitation rates of Hy,o .., and Hy |, respectively. Rebuilding time with a threshold

approach is much shorter than with an exploitation rate approach alone.

INTRODUCTION

Pacific herring, Clupea pallasi, sustain one of the most important fisheries in the
State of Alaska. Commercial exploitation of herring in Alaska started at the beginning
of the 20th céntury, with two peak harvests of about 150,000 tonnes in 1934 and 1969
(Funk and Harris 1992). Herring were harvested primarily by a reduction fishery for oil
and meal products before 1960 (Funk and Harris 1992). Trawl fisheries of herring in
the EBS were developed by the Soviet Union and Japan in 1959 and were phased out
in the early 1980°s (Wespestad 1991). Sac roe fisheries began in the early 1970s and
have become important statewide fisheries, occurring from Kah Shakes in Southeast to
Port Clarence in the north (near the Arctic area). The largest herring fisheries are
currently located in Togiak, Prince William Sound, Cook Inlet, Kodiak, Sitka Sound and
Norton Sound (Funk and Harris 1992).

This study focussed on PWS and EBS herring stocks. In PWS, Alaska Board of
Fisheries regulations distribute the allowable harvest among five fisheries: sac roe purse
seine (58.1%), sac roe gillnet (3.4%), pound spawn-on-kelp (14.2%), natural spawn-on-
kelp (8%), and food/bait (16.3%). In the southeastern Bering Sea, primarily the Togiak
area. the regulations set aside 1361 tonnes of the allowable catch for the natural spawn
on kelp fishery, 7% of the remaining allowable catch to the food/bait fishery, and the
remainder to the sac roe fishery, of which 75% is allocated to the purse seine fleet and
25% to the gillnet fleet. In the central and northern EBS, primarily Norton Sound area,
more than 90% of the allowable catch is allocated to the sac roe gillnet fishery and the
balance to the sac roe beach seine fishery.

For the purpose of management, PWS herring are assumed to be a single stock.
Although Sandone et al. (1988) reported that length-at-age of herring from the food/bait
fishery in the fall in southeastern PWS during some years was significantly different

from that in the spring sac roe fisheries, Burkey (1986) found no genetic and scale
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pattern differences among herring spawning at different locations inside PWS. PWS
herring are geographically separated from other spawning stocks.

Based on the geographic separation of spawning grounds, there are more than
a half dozen herring stocks in the EBS. However, only three distinct stocks are apparent
in growth data: a southern stock which spawns at Togiak. Security Cove, and Goodnews
Bay: a central stock which spawns between the mouths of the Kuskokwim and Yukon
rivers; and a northern stock which spawns at Norton Sound and Port Clarence
(Wespestad 1991). Despite spawning, geographic and growth differences. no significant
genetic differences among the stocks from Norton Sound to Togiak have been found
(Grant and Utter 1984). For purposes of this analysis. I regard all EBS herring as one
single stock. This simplification allows me to make maximum use of existing data.
Furthermore, this simplification is pragmatic: about 80% of herring in the EBS spawn
in one location, Togiak (Wespestad 1991).

Herring fisheries in Alaska have followed a boom-and-bust syndrome typifying
herring fisheries throughout the world. Catches have ranged trom under 10,000 tonnes
to over 150,000 tonnes during the past six decades. Variations in herring populations
are caused by both environmental factors and human exploitation (Wespestad 1991). To
prevent overfishing, the goals of Alaska herring fisheries management are to protect the
sustained yield of the stocks and to provide an equitable distribution of the available
harvest between various users (ADF&G 1992). In an attempt to stabilize the fisheries,
Alaska herring fisheries have been managed with a runge of perceived conservative
exploitation rates of 0-20% since the early 1970s. In recent years, thresholds have been
established to be 20% or 25% of the "normal” biomass level. Methods to establish this
normal biomass level vary among areas. The effectiveness of the overall herring harvest
strategy has never been explicitly analyzed.

The purpose of this swdy (based on Zheng et al. in press a) was to evaluate and
compare the current management strategy with alternative threshold management
strategies through computer simulations for PWS and EBS herring stocks. The threshold

management strategy is defined such that harvesting occurs at a constant exploitation
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rate but ceases when a population drops below a threshold level (Quinn et al. 1990). A
threshold is defined as a percentage of pristine biomass which is estimated as a long-
term average of biomass in the absence of fishing and under average environmental
conditions. In this chapter, age-structured models were constructed to analyze the
population dynamics of EBS and PWS herring stocks under various thresholds. The
effects of some important factors--recruitment, initial biomass, natural mortality, and
error--on each threshold management strategy were investigated. Optimal threshold and
exploitation rate levels were estimated as a function of average yield and standard

deviation of yield.

METHODS
Data Analysis

Natural mortality. maturity and catch-age data of EBS herring from 1959 to 1988
were provided by Wespestad (1991), and the catch-age data were updated with the
recent data from Alaska Department of Fish and Game. Mature population abundances,
weight and age compositions estimated from aerial surveys and test (experimental)
tishing were available for EBS herring after 1977. Table 4.1 summarizes the population
parameters.

Wespestad (1991) applied cohort analysis to EBS herring. In his cohort analysis,
catch data were truncated at age 9, and for each year from 1959 to 1977 the averages
of fishing mortalities over ages 7 and 8 were used as terminal fishing mortalities at age
9. Terminal fishing mortalities after 1977 were tuned using the test fishing age
composition data in 1978, 1982, 1984. and 1988; population abundance was assumed
to equal aerial survey abundance in the terminal year (1988). Because the aerial survey
abundances are considered unreliable (Baker 1991; Wespestad 1991), cohort analysis
tuned with only one source of auxiliary information (age compositions of Spawning
population) is a natural choice for stock-reconstruction of EBS herring.

To update the cohort analysis. I followed, with some maodifications, Wespestad’s

approach. In my cohort analysis, 1 used the same natural mortalities as those used by
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Table 4.1. Estimates of natural mortality, maturity, selectivity, and growth and stock-
recruit parameters of eastern Bering Sea (EBS) and Prince William Sound (PWS)
herring.

Age Natural mortality = Maturity Selectivity
EBS PWS EBS PWS EBS PWS

SR SRPS SRGN Pound F/B
3 025 043 0.40 020 005 0.09 24 020 071
4 015 043 083 068 014 040 0.02 053 100
5 018 043 096 095 031 091 020 080 080
6 023 043 100 099 039 099 060 099 050
7
8
9

0.29 043 100 1.00 070 100 096 1.00 0.28

036 043 OO 1.00 075 1.00 100 100 0.14

045 043 1L.LOO 100 081 1.06 096 1.00 0.07

10 057 043 1.00 1.00 086 1.00 060 1.00 0.07
S 071 043 100 1.00 085 1.00 020 100 0.07
12 089 043 100 1.60  L0o0O 1.00 0.02 1.00 0.07
13 L12 043 1.00 1.00 100 100 24 100 007

Growth (kg) Parameters Stock-recruit Parameters
EBS PWS EBS PWS
Spawning Spawning F/B No-cycle ___Cycle__
W_= 0.5618 0.2036 0.1158 = 67028 12.039 15278 42.478
k = 0.2000 0.2856 0.4472 B =0.0054 00215 0.037 00145
= -1.8530 -1450 -1.771 o = 1.0000 12900 0.800 0.6

b = 34044 3283 2890 SD(o) =2.3770 8.7564 7.6936 NA
SD(B) =0.0010 0.0127 0.0094 NA

R® =0.54 0.15 056 NA

DF = 24 16 12 3

Abbreviations:

SR sac roe

"SRPS: sac roe purse seine
SRGN: suc roe gillnet
Pound: pound spawn-on-kelp
F/B: food/bait.
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Wespestad (1991). However, the catch data were truncated at age 12, and terminal
tishing mortalities at age 12 for each year from 1959 to 1977 were set equal to the
averages of fishing mortalities from ages 7 to 11. This assumed the same catchability
for these age groups. Furthermore, the terminal fishing mortalities after 1977 were
adjusted using the age composition data from test fishing in 1978 and from 1982 to
1990. Adjustments were made until the estimated population had the closest age
composition ’m those of test fishing. The important difference between the results of my
cohort analysis and those of Wespestad (1991) was that I estimated the peak biomasses
in the 1960°s and 1980’s to be of similar magnitude, whereas Wespestad (1991)
estimated the peak biomass in the 1960°s to be about twice as large as that in the
1980s.

A variety of data sources are available for PWS herring (Funk and Zheng
1992a). Catch-age data were classified by fishery and gear type from 1973 to 1992,
Mature population abundances and age compositions were estimated by aerial surveys
in 1974, and from 1976 to 1991, and spawning abundances by age were estimated
through spawn deposition surveys for six years: 1984 and 1988-1992. In addition, the
number of miles of milt observed by the aerial surveys from 1972 to 1992 was used as
a relative index of abundance.

To take advantage of the auxiliary information. catch-age analysis with auxiliary
information (Deriso et al. 1989) was applied to PWS herring. Funk and Sandone (1990)
conducted the initial catch-age analysis which was updated by Funk and Zheng (1992a).
Natural mortality, maturity, and selectivities were estimated from the catch-age analysis
and summarized in Table 4.1. The results of the updated catch-age analysis were used
in this study.

Since 1959, three very strong year-classes (1962, 1977, and 1978) of EBS
herring have occurred (Figure 4.1: Chapter 2). Environmental variation was assumed to
be the cause. Recruitment appears to decline asymptotically with extremely large
spawning biomass, suggesting the Ricker curve as a good cundidate for the stock-recruit

model (Figure 4.1; Chapter 2). The three most recent estimates of recruits (year-classes
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Figure 4.1. Stock-recruit estimates for each year-class and fits of Ricker models for eastern
Bering Sea (EBS) and Prince William Sound (PWS) herring. For EBS data, the solid line was
associated with estimated natural mortality and the dashed line with natural mortality of 0.2, For
PWS herring, the solid line was fitted to all data (no-cycle), the dotted line 10 weak recruitment,
and the dashed line to strong recruitment. The numbers in the plots are brood-year.
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1985, 1986, and 1987) were highly affected by the terminal fishing mortalities and
excluded from fitting stock-recruit models. 1 examined the sensitivity of choices of
natural mortality in the cohort analysis on the shape of the stock-recruit model using
constant natural mortalities ranging from 0.2 to 0.4 to repeat the cohort analysis. The
stock-recruit data with different natural mortalities were standardized by a common
scale and fitted to the Ricker model; the two most different curves are illustrated in
Figure 4.1. The shape of the stock-recruit curve influences optimal threshold levels
{Quinn et al. 1990), but the choice of natural mortalities in the cohort analysis has little
effect on the shape.

Strong year-classes of herring have occurred in PWS every 4 years since 1976
(Figure 4.1). This 4-year cycle was found in other herring stocks in the Guif of Alaska
as well (Collie 1991a; Haist and Schweigert 1990; Chapter 2). This phenomenon may
be caused by large-scale environmental factors, but causative factors are unknown
(Chapter 2). These PWS data were interpreted in two different ways.

First, the deviations of recruits from the stock-recruit relationship were
considered to be caused solely by the variation of environmental conditions. A Ricker
curve was fitted to the data regardless of the known 4-year cycle (called "no-cycle”).
Note that the recruits were so variable that the fitted curve explained only a very small
portion of the variation. Secondly, 1 assumed that there may be two kinds of
environmental conditions for herring recruits: every 4 years, favorable environmental
conditions occurred but the environmental conditions were unfavorable otherwise. Two
Ricker curves were fitted corresponding to these two environmental conditions (called
“cycle”). One was fit w all data except the four strongest year-classes. The other was
fit only to the four strongest year-classes. It was assumed that the stock-recruit curve
shifted from the weak recruit model to the strong recruit model once every four years
due to a shift to favorable environmental conditions. The initial phase of the cycle was
determined randomly. Both sets of the stock-recruit models derived by these two

interpretations were used in the simulation study described below.
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Age-structured Model

The simulation models were similar in approach for these two herring stocks
except that a different number of fisheries was modelled for each stock. To simulate
herring fisheries in a realistic fashion, I modelled five herring fisheries in PWS: sac roe
purse seine, sac roe gillnet, pound spawn-on-kelp, natural spawn-on-kelp, and food/bait,
according to the order of their occurrence. In the EBS, I did not explicitly model the
relatively small harvests by the Dutch Harbor food/bait fishery and the trawl bycatch
in which exploitation rates are typically 0.5% or 1%. Because gear selectivities of purse
seines and gillnets could not be separated in the cohort analysis for EBS herring, only
one fishery was modelled for this population, namely the sac roe fishery. The following
models were applied to PWS herring. For EBS herring, the models were identical except
that the models for pound spawn-on-kelp, natural spawn-on-kelp, and food/bait fisheries
were not applied.

In the spring each year before spawning, the mature herring biomass B, was
obtained as
(4. B, = XN, m w,]
where N, is abundance just before spawning in year ¢ and age a, m, is the proportion
mature and w, is weight at age a, which is determined by a general von Bertalanffy
growth equation
42) w,=W_ (I - exp[-k(a-t))])",
where W, k, 7, and b are growth parameters.

Total yield Y, was determined as
(43) Y, = B/ h,
where A, is exploitation rate in year ¢. The total yield was allocated to different fisheries
by predetermined proportions p, To convert the yield by fishery to catch in number by
age, I estimated exploitable biomass by fishery, EB, ,
(44) EB,;= 2N s,;w,1]
where age and fishery selectivity coefficient s, is equal to 1 for at least one age. The

effective exploitation rate by age and fishery is
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(4.5) Hp=prh s,s B/EB,.
The catches (in number) for the four spring fisheries were calculated as
(4.6) C,r=N_ H,-
Total spawning biomass, S,, was
(47 S, =L N, - LCap W, my.

Herring caught for the pound spawn-on-kelp fishery were released after
spawning and were assumed to have a 50% mortality rate (Lloyd A. Webb, Canada
Department of Fisheries and Oceans, Vancouver, personal communications). Total
number of fish dying due to fishing, D, ,, was estimated as
(48) D,=C,+C,,+05C,,
where s stands for sac roe purse seine, g for sac roe gillnet, and k.for pound spawn-on-
kelp.

About a half year after the spring fisheries, the abundance just before the fall
food/bait fishery was
(4.9) Nuosawos = Ny - D) exp(-0.5 M,).

Catch for the food/bait fishery was obtained by multiplying the abundance with the
effective exploitation rate, H, , ,:
(4.10) Cup = Nuosasos Hoapr

The abundance was advanced to the next year, N, ,, ;. as
(4.11) Nivtart = Nuosai0s - Crap) eXp(-0.5 M)
for all ages except the oldest age in the model and by
(4.12) Ny = Niyos1a05 - Criarp)eXp(-0.5 My ) + (N5 1o = Cupap) €xp(-0.5 M)
for the last age (la) in the model. The last age is a plus group for fish older than la.

The Ricker model was used to describe the stock-recruit relation because of
simplicity and best fit of the data:

(4.13) N, =a S exp(-BS, +v,).
where r is the starting age, o and [ are parameters, and v, is a random variable assumed

to follow a normal distribution with mean 0 and variance o (Quinn et al. 19903.
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Simulations

To investgate how a herring population might respond to different threshold
levels and exploitation rates when fish biomass declines to low levels. | used the age-
structured model for computer experiments., For this 1 varied threshold level,
exploitation rate, and several factors influencing herring population dynamics. Threshold
levels from O (no threshold) to 60% of the pristine biomass and exploitation rates from
5% to 60% were examined. Two different levels of initial biomass equal to 5% and
25% of pristine biomass, along with corresponding equilibrium age compositions, were
assumed. Previous simulation studies on EBS pollock indicated that the effects of
planning horizon on the optimal threshold levels were minor when the planning horizon
was 20 years or longer (Quinn et al. 1990). Therefore. I used a fixed planning horizon
of 50 years and replicated each scenario 200 times. To compare different scenarios
under the same environmental conditions, I used the same set of seeds for random
number generators for all scenarios. Note that 200 replicates are much smaller than
2000 or S000 replicates used for pollock simulations in Chapter 3. Because ditferent
seeds for random number generators were used for each scenario for pollock
simulations, a high number of replicates was required for meaningful comparisons.

Catches depend on exploitation rates and stock abundances which are estimated
with measurement error (ME). Measurement error during stock assessments was
assumed to follow a lognormal distribution. The true mature biomass B, and exploitable
biomass EB,«fccwmpuzed n equations (4.1) and (4.4) were multiplied by the measurement
error each year to obtain the estimated values. Catches also depend on how well a
harvest strategy is implemented. Implementation error, detined as the difference between
the intended catch quota and the actual catch, was assumed to follow a normal
distribution. Thus, the actual catch each year was equal to the intended catch quota
computed in equation (4.6) plus the implementation error. Three levels of measurement
error and implementation error, corresponding to standard deviations of 0. 0.2, and 0.5,
were examined. To prevent extremely large errors in both ends of the error distributions,

I tuncated the measurement errors by their 95% confidence limits and the
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implementation errors by their 90% confidence limits.

Consecutive poor recruitment for a number of years in conjunction with high
exploitation rates is often the cause of fishery collapse. This feature was simulated by
generating first-order autocorrelated errors (vy. Two levels of autocorrelation (AC), with
coefficients 0 and 0.5, were used in the simulations.

From each simulation, diagnostic statistics were (1) average yield, (2) standard
deviation of yield, (3) total time below a threshold level (no fishing), (4) coefficient of
variation of spawning biomass. These statistics were used as measures of the
performance of harvest policy combinations of thresholds and exploitation rates. In
addition, rebuilding time and total time to rebuild the population to a threshold level for
the simulations with 5% initial biomass were collected to examine how a threshold level
and exploitation rate would affect the time to enhance a population once it fell to a very

fow level.

Optimal Criteria

Management of a fishery should ideally achieve a stable optimal spawning
biomass, result in a large yield, avoid large annual variation in yield, and maintain
continuous harvest opportunity. Simulation results indicated that the standard deviation
of yield could be used linearly to approximate the coefficient of variation (CV) of
spawning biomass and the probability of no fishing. The optimization problem is then
simplified because the objective function needs only to consider average yield and
standard deviation of yield. 1 chose an objective function to provide the trade-off
between increased average yield and decreased variation in yield. Detailed descriptions
of this objective function are given by Quinn et al. (1990). The function is a linear
combination of average yield and the standard deviation of yield over the planning
horizon, or
(4.14) max [(1 - A) Y, - A SD, 1.
where ¥, and SD,, are average annual yield and standard deviation under threshold level

“th", and A is a penalty weighting factor. There are three special cases: maximum
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average yield (A=0). equal wrade-off of increased average yield with decreased standard
deviation (A=0.5), and minimum variation in yield (A=1.0).

Two optimization problems were considered. First, for a given exploitation rate,
the optimal thresholds were found from the objective function. Second, optimal
combinations of thresholds and exploitation rates were determined simultaneously using
the objective function. Solution of the first optimality problem provides advice on
adjustments to the current threshold level while continuing to implement the current
exploitation rate policy. Solution of the second problem provides advice on the current

management practices with respect to optimal threshold harvest policy.

RESULTS

Non-threshold, age-structured models with stochastic variation in recruitment for
PWS and EBS herring were replicated 500 times. Each replicate was iterated for 300
years. and the results in the last 100 years were used to determine associated average
mature biomass, and yield as a function of exploitation rate (Figure 4.2). For each
exploitation rate, the scaled frequency distributions of mature biomass and yield are
illustrated. Simulated herring population abundance and yield are extremely variable
(Figure 4.2). EBS herring are about five times as abundant as PWS herring. For EBS
herring, the maximum yield was achieved with an exploitation rate of 0.36 (Table 4.2),
and the probability of population collapse increased dramatically with exploitation rates
higher than 0.5 (Figure 4.2). For PWS herring without a 4-year cycle, exploitation rate
corresponding to maximum yield (Hygy) was 0.34 (Table 4.2), and an exploitation rate
of 0.4 or higher result in high probability of population collapse (Figure 4.2). If strong
recruitment occurred every 4 years for PWS herring, Hygy was 0.42 and the population
was more productive (Table 4.2).

Simulations under different threshold levels were then made for diffemnt
scenarios for each herring stock. In all scenarios under a constant exploitation rate of
0.2 or higher. the average yield increased as a function of the threshold to a maximum

value and then decreased. The standard deviation generally increased monotonically.
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Table 4.2. Pristine mature biomass, mature biomass Bygy at maximum average
sustainable yield (MSY) and its percentage of pristine mature biomass, MSY, in
thousands of tonnes, and exploitation rate Hygy, for EBS and PWS herring.

EBS PWS
Parameter No-cycle Cycle
B 421.0 83.4 81.5
Busy 254.0 45.6 45.0
Busy/B.. 0.6 0.55 0.55
MSY 92.0 15.5 18.9
Hysy 0.36 0.34 0.42

H,, 0.31 0.40 040
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The coefficient of variation (CV) of spawning biomass decreased with increasing
threshold levels, and the proportion of years without fishing increased. The proportion
of years without fishing was almost parallel to the standard deviation of yield as a
function of the threshold, whereas the decreased CV of spawning biomass and the
increased standard deviation of yield were roughly symmetrical over the increased
threshold levels.

Figuic 4.3 illustrates the benefits--increased average yield and reduced CV of
spawning biomass—of introducing a threshold level for EBS herring given an
exploitation rate of Hygy. Measurement error generally reduced the average yield and
increased the standard deviation of yield, CV of spawning biomass and proportion of
years without fishing. Implementation error (not shown here) also reduced the average
yield and increased the variation in yield, but the trends with threshold levels were the
same under different levels of implementation errors. Environmental autocorrelation had
etfects similar to measurement error, but the increase in average yield with a threshold
level under positive autocorrelation was slightly higher than without autocorrelation. A
threshold strategy was not as beneficial when the initial biomass was high as when the
initial biomass was low, because the population was less likely to drop to a threshold
level when it began high. However trends with threshold levels were similar.

Simulation results for PWS herring were qualitatively similar to those for EBS
herring in regard to the level of the threshold (Figure 4.4). The variation in yield and
CV of spawning biomass were much larger with no-cycle of recruitment than those with
a 4-year cycle, while the average yield with a 4-year cycle of recruitment was higher
than with no-cycle. The strong 4-year cycle of recruitment supported a relatively high
and stable population because the average recruitment was higher with 4-year cycle of
recruttment than without cycle.

Rebuilding time is defined as the total number of years for a population to
rebuild to the level associated with MSY after it falls to a very low level (Quinn et al.
1990). Because average rebuilding time from simulations wus skewed to the right,

median rebuilding time was used. Median time to rebuild a population from a low
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Figure 4.3. Average yield (solid lines). standard deviation (dotted lines), percentage of no fishing
{long dashed lines), and CV of spawning biomass (short dashed lines) as a function of threshold
level for eastern Bering Sea herring exploited at Hyygy. The plots are classified by three levels
of measurement error (ME 0. 0.2, 0.3}, two levels of autocorrelation (0, 0.5) and two levels of
initia} biomass (5%, 25%).
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Figure 4.4. Average yield (solid lines), standard deviation (dotted lines), percentage of no fishing
(long dashed lines), and CV of spawning biomass (short dashed lines) as a function of threshold
level for Prince William Sound herring exploited at Hygy. The plots are classified by three
levels of measurement error (ME 0, 0.2, 0.5), three recruitment scenarios (Cycle, AC 0, AC 0.5)
and two levels of initial biomass (5%, 25%).
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abundance to a threshold level without fishing, called first upcrossing time, was used
as a reference to rebuilding time. Without fishing. it took about 8-9 years for EBS
herring and 14-15 years tor PWS herring to rebuild trom 5% of pristine biomass to the
biomass associated with MSY (Figure 4.5). With a 20% exploitation rate and no
thresholds, the rebuilding time ranged from 12 to 15 years for EBS herring and from
16 to 24 years for PWS herring. With an exploitation rate of Hygy or higher and no
thresholds, it took a much longer time to rebuild an overexploited population. Threshold
approaches greatly shortened the rebuilding time, especially when the population was
heavily exploited (Figure 4.5). The shorter rebuilding time for EBS herring partially
results from the steeper slope of its stock-recruitment curve. As expected, the population
was rebuilt faster under scenarios with the strong 4-year cycle of recruitment than with
no-cycle for PWS herring. Overall, measurement error and environmental
autocorrelation increased the rebuilding time.

The optimal levels of threshold and exploitation rate were determined by
examining the response surface formed by values of the objective function over a grid
of thresholds and exploitation rate ranges. EBS herring was examined with two levels
of environmental autocorrelation, three levels of weighting factors, an initial biomass
of 5%, 3 levels of measurement error, and no implementation error (Figure 4.6). To
illustrate results on a common scale, I show the results as contour plots of the objective
function for each scenario scaled to a maximum value of 1 as a function of exploitation
rate and threshold level.

The optimal threshold level and exploitation rate declined as a function of the
weighting factor A and measurement error and were fairly robust to variations in the
other factors (Figure 4.6). That is, when the variation in yield is weighed more heavily
or the population biomass cannot accurately be estimated. a low threshold and a low
exploitation rate would be chosen. Environmental autocorrelation influenced the optimal
threshold and exploitation rate differently with different weighting factors. When A =
0, the maximum yield criterion. environmental autocorrelation increased the optimal

exploitation rate and average yield by using thresholds. When A = 0.5 (equal trade-off
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Figure 4.5. Contour plots of median rebuilding time (solid lines) and median time to
rebuild to a threshold level (dotted lines) in year as a function of threshold level and
exploitation rate for eastern Bering Sea (EBS) and Prince William Sound (PWS)
herring. The plots are also classified by three levels of measurement error (ME 0, 0.2,
0.5) and three recruitment scenarios (Cycle, AC 0, AC 0.5).
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between average yield and variation in yield). environmental autocorrelation decreased
both the optimal threshold level and exploitation rate. Combinations of a large
implementation error and a large weighting factor (A=0.3) slightly reduced the optimal
thresholds and exploitation rates. In other cases, optimal levels of thresholds and
exploitation rate were independent of implementation error.

For EBS herring under the maximum yield eriterion, A = 0, the optimal threshold
levels generally varied from 40% to 50% of pristine biomass and the optimal
exploitation rates varied from 35% to 45% among scenarios (Figure 4.6, Table 4.3). For
each scenario, there was a broad region between the 0.9 contour and the maximum point
at |, which represents the combinations of the two parameters that would produce
approximately 90% or greater of the maximum yield possible (Figure 4.6). This suggests
that several combinations could produce close to the maximum yield. For lower values
ot exploitation rate, the contour lines are tlat. indicating that the threshold level has
little effect when exploitation rate is small. For the status quo 20% exploitation rate.
optimal thresholds were about 25%, 75% or more of the average maximum catch was
obtained and less variation occurred (Table 4.3). If the exploitation rate was increased
to 31%, ie., Hy,, above 93% of the average maximum catch was obtained with an
optimal threshold of about 35%, but with much higher variability. Under the Hygy
exploitation rate, above 97% of the average maximum catch could be achieved with an
optimal threshold level of 40%.

For the equal trade-oft criterion, corresponding to A = 0.5, the optimal threshold
levels generally varied from 10% to 20% of pristine biomass, and the optimal
exploitation rates ranged from 15 to 30% among scenarios for EBS herring (Table 4.3).
The contour lines closed off the upper right-hand corner, which eliminates the
combinations of both high thresholds and exploitation rates from being the optimal
choice (Figure 4.6).

Optimal combinations of threshold levels and exploitation rates were evaluated
tor PWS herring with an initial biomass of 3% and no implementation error (Figure

4.7). The overall effects of measurement error and the weighting factor on the optimal
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Table 4.3. Optimal combinations of threshold levels (T) and exploitation rates (OH) and
associated levels of average yield (Y) and standard deviaton (SD), and optimal
threshold levels and the percentages of their objective values (Obj%) compared to the
optimal objective values under a given exploitation rate. Results are shown for an initial
biomass of 5% and no implementation error.

Factor Optimal Combination H=02 H=H;; H=Hysy

SN AME ACOH T Y SD T Obj% T Obj% T Obj%

EBS 0.0 0.0 00 045 50 80.97 78.46 25 756 35 947 40 98.2
EBS 0.0 0.0 05 045 45 7755 8278 25 750 35 933 40 97.2
EBS 0.0 02 00 040 45 79.83 7338 25 774 35 96.0 40 99.0
EBS 00 02 0.5 045 45 7693 87.20 25 763 35 94.0 40 97.7
EBS 0.0 05 0.0 035 40 7542 79.94 20 851 30 99.0 40 99.8
EBS 0.0 05 0.5 040 45 72.19 95.01 25 842 35 982 40 99.7

EBS 0.2 0.0 0.0 035 35 7899 56.81 20 835 30 98.6 35 99.8
EBS 0.2 0.0 05 040 35 76.29 71.96 20 850 30 98.0 35 99.7
EBS 0.2 0.2 0.0 035 30 78.17 58.65 20 849 30 99.0 30 99.7
EBS 0.2 0.2 0.5 035 30 7423 6897 20 86.2 30 98.7 30 99.9
EBS 0.2 0.5 0.0 030 25 7437 6696 20 91.0 25 99.7 30 97.8
EBS 0.2 0.5 0.5 030 25 70.09 7554 20 92.1 25 99.8 35 98.8

EBS 0.5 0.0 0.0 030 20 74.77 47.82 15 96.0 20 99.5 20 96.6
EBS 0.5 0.0 05 025 15 6495 50.69 15 989 20 984 20 954
EBS 05 02 00 030 20 75.00 51.16 15 973 20 994 20 96.2
EBS 0.5 02 05 023 15 6298 5125 15 996 IS5 97.6 15 94.0
EBS 05 05 00 022 15 67.10 5540 15 99.8 15 96.2 15 91.2
EBS 05 05 05 0.15 10 5043 4848 10 985 10 91.6 10 874

PWS 0.0 0.0 Cyc 0.55 35 1642 1503 20 62.6 30 93.4 30 947
PWS 0.0 0.0 0.0 0.60 40 16.17 33.76 20 60.8 35 88.1 30 82.1
PWS 0.0 0.0 050.60 40 14.83 2855 25 585 35 86.2 30 79.8
PWS 0.0 0.2 Cyc 0.60 40 1637 18.12 20 63.5 30 93.8 30 95.2
PWS 0.0 0.2 00 0.60 45 1585 33.51 20 62.7 35 896 30 83.8
PWS 00 0.2 05060 45 14.67 2992 25 599 35 87.2 30 81.0
PWS 0.0 0.5 Cyc 045 30 1535 1695 15 71.3 30 98.7 30 99.2
PWS 0.0 0.5 0.00.55 60 1432 3549 20 725 35 969 35 927
PWS 0.0 0.5 050.60 50 13.53 3283 25 67.7 45 93.6 40 88.2



Table 4.3 (continue)

Factor

Optimal Combination

SN

A ME AC OH

T

Y

SD

H=02

H =

Hy,
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PWS
PWS
PWS
PWS
PWS
PWS
PWS
PWS
PWS

PWS
PWS
PWS
PWS
PWS
PWS
PWS§S
PWS
PWS

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.0 Cyc 0.50
0.0 0.0 0.35

0.0 05055

0.2 Cyc 0.50
0.2 0.0 035
0.2 05050
0.5 Cyc 0.40
0.5 0.0 0.30
0.5 05035

0.0 Cyc 0.35
0.0 0.0 0.05
0.0 0.5 0.05
0.2 Cyc 0.35
0.2 0.0 0.05
0.2 0.5 0.05
0.5 Cyc 0.25
0.5 0.0 0.05
0.5 0.5 0.05

25
25
30
25
25
30
20
20
25

12.46
18.96
25.16
13.31
19.28
24.51
14.52
18.65
21.86

9.83
294
3.28
10.40
3.09
3.43
10.72
3.84
4.19

15

10
10
5
10
10
5
10
10
5

Obj% T Obj% T

25
30
25
20
30
25
20
30
30

15
15
5
15
I5
5
10
10
0

qqqqq

99.%
63.2
62.9
99.5
63.5
61.0
94.8
55.0
44.2

10

1o
10

Abbreviation:

Cyc:

Four-year cycle of strong recruitment for PWS herring.
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levels were similar to those for EBS herring. Because of a high standard deviation of
catch. the objective function values were close to zero or negative in scenarios with no-
cycle in recruitment and a weighting factor of 0.5, which suggested that the optimal
results were almost equivalent to total fishery closures (Figure 4.7).

For PWS herring under the maximum yield criterion (A = 0), the optimal
threshold levels varied from 30% to 60%, and the optimal exploitation rates ranged
from 45 to 60% among scenarios (Table 4.3). For the status quo exploitation rate of
20%. optimal thresholds were 15 to 25%, and more than 58% of the average maximum
catch could be obtained (Table 4.3). If H, ; exploitation rate was used. more than 86%
of the average maximum catch was obtained with optimal thresholds ranging from 30
to 45%. Under Hyqy exploitation rate, more than 80% of the average maximum catch
could be achieved with optimal threshold levels from 30 to 40%.

With A = 0.2, the highest contour values are associated with intermediate
threshold levels and high exploitation rates (Figure 4.7). Optimal threshold levels were
quite robust: 15% and 25% with 20% and Hygy exploitation rates, respectively (Table
4.3).

For the equal trade-off criterion, the optimal threshold levels were 10% or 5%,
and the optimal exploitation rates ranged from 25 to 33% among scenarios for PWS
herring with the 4-year recruitment cycle (Figure 4.7). When no-cycle in recruitment
occurred, both the optimal threshold levels and exploitation rates were 5% or less due

to large standard deviations of yield.

DISCUSSION
A threshold management strategy aims to conserve fish stocks, minimize the risk
of collapse of a fishery, and to enhance long-term productivity of a population.
However, over the short-term. such a policy increases the probability of economic
hardships for the fishing industry and fishing communities caused by closed fisheries.
Theretore, optimal threshold levels have o be determined by a trade-off among benefits

and costs. In this study, this trade-off was handled by choosing a weighting factor A.
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Certainly, the choice of X value is subjective, but most likely A ranges from 0 to 0.5.
In principle. fisheries management policies in Alaska traditionally favor a small
weighting factor, i.e., more weight is placed in protecting resources and maximizing
sustainable vield.

Optimal threshold levels from this study ranged from 10% to 40% of the pristine
biomass for EBS herring and from 0 to 60% for PWS herring. The threshold values
depended upon the trade-off between the increase of yield and the decrease of
variability in yield and exploitation rates. The response surfaces of the objective
function values were fairly flat, i.e., several combinations of exploitation rate and
threshold level could produce close to the maximum objective value possible. This
property of the objective function could increase management flexibility, Under the
status quo exploitation rate of 20% and the maximum yield criterion, optimal thresholds
varied from 20 to 25% for EBS herring and from 15 to 25% for PWS herring, but
increases in average yield by using a threshold were small. With all factors and
population models considered in this study. a threshold of 25% of pristine biomass
provides a safeguard for protecting the herring populations and approximately
maximizes the sustained yields under a 20% exploitation rate.

The current threshold levels for most of the herring stocks in Alaska are about
20-25% of the average observed biomass. The average observed biomass is likely less
than the pristine biomass defined in this study. Thus, thresholds used in current herring
management plans may be somewhat lower than optimal levels for maximizing average
yield. Estimation of pristine mature biomass is as important as definition of a percentage
for threshold level. The most current data should be examined to estimate pristine
biomass before setting thresholds. Incidentally, this study validated the threshold of 25%
of pristine biomass set arbitrarily for British Columbia herring stocks (Hall et al. 1988).

Under the maximum yield criterion, optimal exploitation rates were almost
always higher than Hygy. Combinations of high threshold levels and exploitation rates
approximated pulse fishing and resulted in maximum average yield, but with very high

variation. Yet the gain in yield was very little with an exploitation rate exceeding Hygy
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As with previous studies on Pacific herring management strategies (Funk 1991: Fried
and Wespestad 1985; Hall et al. 1988), exploitation rates Hy , and Hyysy were much
higher than the status quo exploitation rate of 20%. The status quo exploitation rate
resulted in 75%-85% and 59%-73% of the maximum yield possible for EBS and PWS
herring, respectively, with much less annual variation. Moreover, under the status quo
exploitation rate, the spawning biomass was less variable and the chance of closing a
fishery was much lower than under exploitation rates Hy, and Hygy. Unless the
management objective is solely to maximize average yield, it is not beneficial to move
the exploitation from the status quo to Hy, or Hysy.

Species interactions and depensatory predation mortality were not considered in
this study. Wespestad (1991) showed that EBS herring abundance is negatively
associated with EBS pollock abundance. Kajimura (1984) indicated that Pacific herring
is an important prey for northern fur seals along the coasts of Washington, British
Columbia, and Southeast Alaska. Haist et al. (in press) demonstrated that the fisheries
data of British Columbia herring are statistically better fitted with depensatory natural
mortality than with a constant natural mortality, and that maximum sustainable
exploitation rate is lower with a depensatory natural mortality than with a constant
mortality. Collie and Spencer (in press) applied a model with depensatory predation to
Sitka Sound herring and concluded that MSY occurred at fishing mortality of 0.2 for
the threshold policy. With the uncertainty of species interaction, the status quo
exploitation rate plus a threshold of 25% of pristine biomass may be a safe approach
for Alaska herring stocks. Further study on the optimal harvest strategies of Alaska
herring could yield insight by evaluating the consequences of different sets of
assumptions about species interactions.

Alternative objective functions for herring roe fisheries management include
maximizing roe production and maximizing economic return. Because the roe
production of Alaska herring was approximately a linear function of the body weight
(Linda Brannian, Alaska Department of Fish and Game, personal communications),

maximizing yield was close to maximizing roe production. Roe from old, large herring
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is generally more valuable than from young, small herring. Funk (1991) addressed this
economic problem and concluded that the exploitation rates corresponding to the
objectives of maximizing yield and maximizing economic return are similar for EBS
herring and only slightly different for PWS herring. Although the unit price of roe from
large herring is higher than that from small herring, the total economic return is not
necessary higher because many herring die off before they have an opportunity to grow
to a large size. On the other hand. when multiple users share a fisheries resource.
maximizing economic return is seldom the sole management objective. Equitable
allocation among different user groups outweighs the maximum economic return.
Herring fisheries in Alaska are such a case.

Successful threshold management strategies depend highly on accuracy of
population estimates. Two kinds of measurement error likely occur: random and
systematic errors. Random measurement error was examined in this study and could
reduce both optimal thresholds and exploitation rates. Spawn deposition surveys used
to estimate absolute herring abundance in PWS may result in standard deviations of
random measurement errors between 0.2 and 0.5 (Schweigert et al. 1985), as defined
in this study. Systematic bias may occur from aerial surveys. Peak biomass estimated
from aerial surveys may represent a fraction of total mature biomass because migrations
to and from the spawning grounds are spread over time and because poor weather often
reduces visibility during surveys. For EBS herring primarily in the Togiak area, aerial
surveys substantially underestimated spawning biomass during the mid-1980’s (Baker
1991; Wespestad 1991). Effectively. this reduces the maximum exploitation rate of 20%
to a smaller percentage. Systematic measurement error reduces not only average vield,
but also the effectiveness of threshold management strategies. A threshold is not needed
when the exploitation rate is very small.

Results of this study indicated that implementation error had relatively minor
effects on optimal threshold levels for Alaska herring. The most important effect of
implementation error on management strategies was to reduce the optimal threshold

levels and exploitation rates slightly when heavy weight was given to the variation in
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yield, because implementation error increased the variation in vield. Implementation
error was assumed to have a mean of zero, but actual herring catches in Alaska are
often slightly above the catch quota, which results in a positive mean for
implementation error (Funk and Zheng 1992b). The skewed implementation error does
not alter the conclusions of effects of implementation error on optimal threshold levels.
but it affects optimal exploitation rates. The positively skewed error cancels out a small
proportion of exploitation rate, and thus, optimal exploitation rates are a little lower than
those with an unskewed implementation error.

A stock-recruit relationship is a key element of long-term harvest strategies.
Optimal thresholds are sensitive to this relationship (Quinn et al. 1990). Commonly.
Ricker curves have been fitted to herring stock-recruit data (e.g., Hall et al. 1988;
Stocker et al. 1985; Stocker and Noakes 1988; Winters and Wheeler 1987). Density of
herring egg masses is generally related to spawning biomass, the survival and
development of eggs are inversely associated with egg densiry, and maximum larval
production occurs at medium egg densities (Taylor 1971). Together, these relationships
suggest a dome-shaped stock-recruit model. Furthermore, cannibalism in Pacific herring
is not uncommon (Grosse and Purcell 1990).

But environmental noises are so large that spawning biomass could explain only
a small proportion of recruitment variation. Environmentally stratified stock-recruit
curves were applied to Atlantic herring (Clupea harengus) (Anthony and Fogarty 1985)
and prawn (Penn and Caputi 1986; Tang et al. 1989). The occurrence of strong herring
recruitment every 4 years in the Gulf of Alaska since 1976 is most likely induced by
the variation of oceanographic conditions. Alternative explanations are that recruitment
cycles may result from oceanographic factors interacting with the dynamics of the stock,
or simply from the biology of the stock (Murphy 1968). Whatever the mechanism, these
herring populations primarily consist of two age groups, and stocks are very vulnerable
to overfishing. Whether this 4-year cycle continues to hold has important consequences
to herring fisheries management in the future.

Multiple herring stocks have been managed separately in the EBS according o
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their spawning locations. Thus, the threshold biomass for EBS herring has to be divided
for each substock according to the stock size. If EBS herring stocks all have similar
stock-recruit relationships, the conclusions about herring threshold management
strategies based on the assumption of a single stock in the EBS will still hold.
Furthermore, because of multi-stock management, it is unlikely that all stocks would fall
below a threshold level at the same time; thus, the impact of threshold closures on

harvest opportunities would be less than that under a single-stock management strategy.



Chapter Five
COMPARISON AND EVALUATION OF THRESHOLD ESTIMATION
METHODS FOR EXPLOITED FISH POPULATIONS

SUMMARY

Previous studies (Chapters 3 and 4) have shown that threshold management
policies for Single-species systems are robust and close to optimal in regard to the class
of all common policies. Application of these policies to fisheries management requires
developing methods of threshold estimation and evaluating alternative threshold
specifications on fish population dynamics and yields. Simulated age-structured
populations were used to compare and evaluate seven threshold estimation methods for
pollock and herring populations in the eastern Bering Sea (EBS). Parameters for these
two populations were obtained from cohort analysis. catch-at-age analysis and catch
sampling. The seven threshold estimation methods are: default percentages of pristine
biomass, Fowler’s rule, May’s method. surplus production model. depensatory
production model, stock-recruit model, and spawning biomass per recruit. Passively
adaptive simulations were conducted in which threshold levels were updated and applied
to fisheries management each year. Influences of several factors on threshold estimation
methods were examined. Several statistics were collected as criteria for comparison and
evaluation. It was found that the default percentages of pristine biomass usually
performed best. The estimation procedures of the surplus production model and
depensatory production model often failed. The stock-recruitment method could produce
large biased threshold estimates with a small data set. May’s method usually resulted
in high threshold levels that are favored with the objective of maximum yield, and
Fowler’s rule often produced low threshold levels which are preferred with the equal
trade-off criterion. These two methods did not result in reliable estimates of thresholds

given parameter uncertainties,
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INTRODUCTION

Common harvest strategies include constant catch, constant harvest rate, and
fixed escapement strategies (Getz and Haight 1989). The constant catch strategy
generates stable yield, but the yield level must be relatively low to sustain the
population. With the exception of some fisheries managed by international treaties, this
strategy is gradually losing favor. The constant harvest rate strategy gives a good
balance between average yield and yield variation (Walters 1986), yet it may not be
able to protect a population that drops to a very low level. On the other hand, maximum
yield can be obtained under the fixed escapement policy. but the variation in yield is
also largest compared to other common strategies (Reed 1979; Getz and Haight 1989).

A compromise between the constant harvest rate and fixed escapement strategies
is a threshold management policy, in which harvesting occurs at a constant harvest rate
but ceases when a population drops below a critical low level (Quinn et al. 1990). This
policy not only produces a good balance between average yield and variation in yield.
but also provides a conservative safeguard from overharvesting. Computer simulation
studies on EBS pollock (Theragru chalcogramma) have shown that a threshold policy
always increased average yield over that associated with the constant harvest rate policy,
and. in most cases, greatly increased average yield while only slightly increasing
variation in yield (Chapter 3; Quinn et al. 1990). An over-exploited population was
better protected and more quickly enhanced under the threshold policy than the constant
harvest rate policy (Chapter 3; Quinn et al. 1990). Threshold management policies for
British Columbia herring fisheries were evaluated and compared with other alternative
policies by Hall et al. (1988) and Haist (1990). Their results also indicated that setting
a threshold level in a harvest policy would have a positve effect on long term average
yield and would help safeguard a population from collapsing by reducing high harvest
rates when its abundance is low.

The threshold concept is relatively new in fisheries management and has been
primarily applied to species highly vulnerable to environmental variation such as herring

{Trumble and Humphreys 1985) and king and Tanner crabs (NPFMC 1990). No studies
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to date appear to have evaluated threshold estimation methods for exploited populations.
Most threshold levels used in fisheries management are set arbitrarily. A threshold of
20% of pristine biomass was analytically derived by Thompson (in press) to prevent
overfishing for exploited fish populations, but his results were mainly based on a
strongly depensatory Beverton-Holt stock-recruitment relationship. Successful
application of threshold management policy to fisheries requires developing methods of
threshold estimation and evaluating threshold levels under a given management
objective.

In this chapter (based on Zheng et al. in press b) I compared and evaluated
seven methods to estimate threshold levels by using computer simulations. The
parameters of simulated age-structured populations are from EBS pollock and herring,
two of the most commercially and ecologically important species in the northeast Pacific
Ocean. In the simulations I adopted a passively adaptive approach similar to Hilborn
(1979), in which available data were used to update threshold levels, and the updated
thresholds were applied to harvest management each vear. Effects of measurement
errors and implementation errors on threshold estimation were investigated. Evaluation
criteria included average yield, standard deviation of yield, mean threshold levels,
variation of estimated thresholds and spawning biomass, and percentage of years

without fishing.

METHODS

Age-structured Model

Typical age-structured single-species models were used in this study. The models
and population parameters for EBS pollock and herring were described by Quinn et al.
(1990) and Zheng et al. (in press a). Recruitment for both stocks was modelled by
Ricker curves and lognormally distributed environmental noises. The main differences
between the pollock and herring models were that fishing mortality and total number
of eggs as a spawning index were applied to pollock, and exploitation rate and spawning

biomass as a spawning index to herring.



Threshold Estimation Methods
Seven alternative methods were investigated to estimate threshold levels. Each
method has two parameters to be estimated during simulations.

I. Default percentage of pristine biomass. Thirteen levels ranging from 0 to 60%

were examined. This method requires estimates of a pristine biomass, which is defined
as the average biomass over a long period under average environmental conditions
without fishing‘ Each simulated year, the parameters of a Ricker stock-recruit model
were estimated using the available data, and an age-structured model was simulated for
150 years in the absence of fishing mortality, and the biomasses during the last 100
years were averaged to estimate the pristine biomass under this new set of population
parameters.

2. Fowler’s rule. If the approximate shape of a tish population growth curve is
known, a threshold can be established in the absence of detailed stock-recruitment data
because differently-shaped growth curves are known w produce well-defined
quantitative differences in the dynamics of the population. The shapes of population
growth curves can be determined by the locations of their inflection and peak points.
The inflection point is an important biological reference point at which the maximum
growth rate occurs. The location of the inflection point can be used as a threshold level.
This method is applicable to a population with high fecundity whose stock-recruit curve
peaks sharply near the origin. Fowler (1981, 1988) showed that the shapes (inflection
points) of known growth curves for fish, mammals. insects and protozoans can be
predicted from typical production/biomass ratios for each species via an empirical linear
regression:

(5.1) TP =a + b La(MSY/Bygy),

where TP is threshold level (percentage of pristine biomass), Bygy is biomass at
maximum average sustainable yield (MSY), and « and b are parameters estimated from
empirical data, equal to 0.11 and -0.074 for fish. respectively. Becuuse | did not use
stock-recruit data for this method, L estimated production/biomass ratio at the MSY level

and pristine biomass through a surplus production mode! similar to Quinn et al. (19%4)
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during simulations.

3. May’s method. Thresholds can be estimated from life-history and

environmental parameters of a fish stock through a resource-consumer approach. This
strategy was developed by MacArthur (1972) and applied to fish by Rothschild (1986).
May (1980) proposed using this approach to determine a critical stock density (Bygy)
below which stock collapse is likely, and he provided an explicit equation for this
threshold in a model system based on a Beverton-Holt stock-recruit relationship.

Let M be instantaneous natural mortality, r the intrinsic population growth rate

of a conventional logistic equation, and v the coupling coefficient representing the
effective strength of the coupling between the resource and its consumer, then
(5.2) TP=[(1 +1% - 1),
where T = (1 - v)fv + M/r).
It is difficult 1o estimate the coupling coefficient v, which relates the consumption rate
of a consumer to the renewable rate of its resource. U was arbitrarily set to 0.45 and
0.28 for EBS pollock and herring, respectively. M is approximated as 0.3 for pollock
and 0.25 for herring. Parameter r and pristine biomass were estimated during
simulations by a surplus production model.

4. Stock-recruit model. If a stock-recruit model is known, a threshold level can

be defined in terms of the slope of the curve. Egg number or spawning biomass
corresponding to an equilibrium point on the stock-recruit curve with slope of 10% of
the slope at the origin is used as a threshold (Sissenwine and Shepherd 1987). The
parameters of the Ricker stock-recruit function were estimated each year during
simulations.

5. Spawning biomass (eggs) per recruit. Spawning biomass per recruit can be

used as a basis for thresholds and has been implemented in fisheries management by
ICES (1984) and NEFMC (1985). Sissenwine and Shepherd (1987) gave another option

for this method. This method is more suitable for selecting a fishing mortality when a

stock-recruit function is not available (Clark 1991: Thompson in press). To be
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compatble with other threshold methods in the simulation framework, a biomass
threshold was adopted. Before starting simulations, a spawning biomass per recruit of
20% of the pristine value was used to compute a threshold fishing mortality. During
simulations, a stock-recruit function was fitted each year to estimate the equilibrium
spawning biomass corresponding to the threéhald fishing mortality. This equilibrium
spawning biomass was used as the biomass threshold.

6. Surplus production model. The traditional surplus production model can be

modified to incorporate a threshold parameter that corresponds to a biomass level below
which the productivity of the population is assumed to be zero (Quinn and Collie 1990).
The relation between equilibrium yield Y. and biomass B. is

(53) Y.=[4m/(B, - T)}(B« - T) - [4m/(B_ - T)*}(B. - T)*,

where m is MSY, T threshold biomass and B_, pristine biomass. Equation (5.3) is easily
transtormed to a second order polynomial regression by replacing equilibrium yield with
annual surplus production (EASP) and equilibrium biomass with annual exploitable
biomass (EB), i.e.,

(54) EASP =by+b, EB, + b, EB”.

Solving equations (5.3) and (5.4) results in estimates of T and B.:

(5.5) T =[-b; + (b, - 4byb,)"?)/ 2b,,

and

(5.6) B, =[-b, - (b, - 4byb,)'?}/ 2b,.

7. Depensatory production model. The traditional surplus production model can

be further modified to include a depensatory effect. The estimated biomass level, below
which the productivity of a population would be negative. can be used as a threshold
(Clurk 1976);

(5.7) Y.=1BuBJT- 1) {1 -BJB_).

Replacing equilibrium yield with EASP and equilibrium biomass with EB results in a
polynomial regression of order 3 with an intercept equal to 0, or,

(58) EASP =b, EB, +b, EB’ + b, EB.

Threshold and pristine biomass are estimated as



(5.9) T =[-b, + (b," - 4b,b;)]/2b,,
and

(5.10) B, = b/(b;T).

Simulations

Hilborn (1979) gave a comprehensive description of the use of computer
simulations to test alternative management policies. I followed his approach to simulate
a fishery management process using feedback estimation and control. Figure 5.1
illustrates the flow diagram of computer simulations used to compare and evaluate
alternative threshold estimation methods. Two sets of simulations were constructed. For
the first set, I selected an initial condition and a fishing period of 15 years with fishing
mortalities randomly chosen from a range of 1/2 Fyqy to > Fygy such that the average
population biomass in year 16 was about 20% of its pristine biomass during each
simulaton. Equal starting biomass was necessary to compare the diagnostic statistics
under different threshold rules. Starting from year 6. Fygy was used. a threshold was
estimated, and the fisheries were managed according to the estimated threshold. Each
year the same Fygy was used, a new data point was added to the growing database,
and the threshold was re-estimated. The process continued until year 65, ie., the
planning horizon is 50 years. From each simulation I compiled statistics on average
yield. standard deviation of yield, total time below the threshold level (no fishing), mean
and median threshold levels, standard deviation of thresholds, and variation in spawning
biomass.

The second set of simulations was constructed to compare variation of estimated
thresholds over time. The simulations were the same as the first set except that the
initial fishing period was 5 years and thresholds were estimated starting from the sixth
year. The same planning horizon of 50 years was used. The main purpose of estimating
thresholds starting from the sixth year rather than the sixteenth year was to examine
how muny years of data were required to stabilize the estimated thresholds.

The parameters of the models, including the seeds for the random generator,
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were identical for all simulations. After some test runs. 101 replicates were used to
ensure consistency of the results for each simulation for the first set of simulations and
200 replicates for the second set of simulations.

Two initial population conditions, pristine and overexploited, were tested. The
major difference of the results was that the thresholds estimated by production model
methods (Fowler’s rule, May’s method, surplus production model. and depensatory
production modei) during the first several years were slightly more variable when
starting with the overexploited condition than with the pristine condition. However,
when the initial fishing mortality was adjusted so that the biomass was about 20% of
the pristine value in year 16, the diagnostic statistics resulting from the overexploited
condition were very similar to those obtained from the pristine condition. Therefore, the
only results of using pristine biomass as initial biomass are reported.

Measurement errors have a profound effect on the estimated stock-recruit
functions and performance of fisheries management policies (Walters and Ludwig
1981). A lognormal distribution is usually assumed for measurement errors (Haist 1990).
I examined alternative management policies under three levels of measurement errors
with standard deviations 0, 0.2 and 0.5 of the corresponding lognormal distribution and
mean 0. The true biomass was multiplied by the measurement error each year to obtain
the estimated biomass.

In practice, catch quotas are seldom reached exactly. a phenomenon resulting in
implementation error. Implementation errors, which are defined as the differences
between the pre-determined catch quota and the actual catch, were incorporated into the
simulations for realism and were assumed to follow normal distribution. Three levels
of implementation errors with standard deviations of 0, 0.2 and 0.5. and mean 0 were
used in the simulations. To prevent extremely large errors from the two tails of the error
distributions. measurement errors were truncated by their 95% confidence limits and
implementation errors by their 90% confidence limits. If an error was outside its range,
it was discarded and a new error was generated.

Some methods failed to estimate threshold levels because they failed to converge
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for some years during simulations. If a failure occurred, the average of past estimated
threshold levels from the same method was used. If this average was not available at
the beginning of a simulation, a default threshold of 25% of pristine biomass was
adopted.

The same set of simulations was repeated using fixed threshold levels rather than
estimating them during simulations. These fixed thresholds were estimated before
simulations using the existing population data. By comparing the results under the fixed
thresholds with those under re-estimated thresholds during simulations, I was able to
quantify the loss of objective function values stemming from estimation errors of

thresholds.

Optimal Threshold Criteria

From the simulations it was found that the standard deviation of yield was
linearly related to the variation of spawning biomass and percentage of years without
fishing. Following Quinn et al. (1990), for the sake of simplicity, I chose a flexible
abjective function that is a linear combination of average yield and standard deviation
of yield. To select the optimal threshold levels, the objective function was maximized
over the planning horizon, or
(5.11) max[(I - &) Yy, - A SDy].
where ¥, and SD,, is the average annual yield and standard deviation under threshold

management policy "th", and A is a penalty weighting factor.

RESULTS
Frequency Distribution of Estimated Thresholds
A desirable method would estimate threshold levels that are least variable and
most robust to measurement and implementation errors. Plots of frequency distributions
of estimated thresholds allow the comparisons of the variation and robustness of each
method. The estimated thresholds were quite dispersed. especially with methods "S-R”,

"S/R’. and "May’ (see Table 5.1 for notation) for EBS pollock (Figure 5.2),



Table 5.1. Summary of notations used in figures.

DepS (D):

Fowl (F):
Lam:
May (A):
ME:

S-R (E):
S/R (R):
SB:

Surp (S):

depensatory production model
Fowler’s rule

lambda (A), penalty weighting factor
May’s method

measurement error

stock-recruit model

spawning biomass per recruit
spawning biomass

surplus production model

10%-50% (0-60): default percentage of pristine biomass as threshold level
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The default percentage method had the least variation of estimated thresholds

with CV values ranging from 19% to 25% (Figure 5.2). Higher measurement error (ME
0.5) and lower threshold levels increased the variation. The distributions of thresholds
with Fowler’s rule and May’s method exhibited a common feature: measurement error
helped to reduce the variation of estimated thresholds, and higher threshold levels were
associated with smaller measurement errors. Both methods depended on the parameters
estimated by a conventional surplus production analysis. Thresholds were successfully
estimated more than 90% of the time. The stock-recruit and spawning biomass per
recruit methods produced the most variable estimates of thresholds, especially under
higher measurement errors. The majority of the estimated thresholds were 0 with the
surplus production and depensatory production models. This is not surprising, because
the models I used for the simulations did not contain zero or negative productivity when
spawning biomass was greater than zero. Implementation errors made very little
difference in the frequency distributions of thresholds estimated by all seven methods.
The frequency distributions of estimated thresholds for EBS herring were similar

to those for pollock with two exceptions (Figure 5.3). First, the thresholds were much
more variable and the chances of successfully estimating a threshold for herring were
smaller for most methods. This might be caused by the influence of higher
environmental noise on recruitment; the environmental noise for herring is double that
for pollock. Only Fowler’s rule and May’s method had similar levels of variation of
thresholds to those for pollock. Second, measurement errors increased the variation of
estimated thresholds for all methods except the stock-recruit model. spawning biomass

per recruit and depensatory production model methods.

Average Yield, Standard Deviation, Percentage of No Fishing, and CV of Spawning
Biomass

A good estimation method would not only be robust to noise, but would also
maximize yield. minimize variation in yield, stabilize spawning biomass, and minimize

the chance of closing a fishery. Figure 5.4 compares these statistics for different
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estimation methods. Under the method of the default percentage of pristine biomass,
maximum average yields occurred at intermediate threshold levels for pollock. These
threshold levels were reduced by measurement error. The standard deviations of yield
were similar with low threshold levels, then increased quickly when the thresholds were
beyond certain levels. For each scenario there existed a threshold level below which the
increase of the average yield was greater than the increase in standard deviation of
yieid.AAvarage yields were slightly less and standard deviations of yield were slightly
higher under the scenarios with thresholds being re-estimated during simulations than
those scenarios with fixed thresholds. For other alternative methods, average yields and
standard deviations of yield were within the range experienced by the default percentage
method: May’s method had higher yield and higher standard deviation of yield. and
Fowler's rule had relatively high yield and low standard deviation of yield.
Measurement error decreased the average yields slightly and increased the standard
deviations of yield greatly.

The chances of closing fisheries ranged from 0 to 45%, and the coefficients of
variation of spawning biomass ranged from 25% to 52% for pollock among all of the
estimation methods (Figure 5.4). Measurement error increased these two quantities
greatly. The level of the uncertainty of biomass estimation was a very important factor
influencing how often a fishery would be closed. For a given level of measurement
error, a high threshold level generated a high percentage of years of no fishing and a
low coefficient of variation of spawning biomass. Closing a fishery would increase the
varation of yield but stabilize the spawning population. Therefore, the percentage of
years of no fishing was positively associated with the standard deviation of yield and
negatively associated with the coefficient of variation of spawning biomass (Figure 5.4).
All scenarios in which thresholds were estimated iteratively during simulations (except
May’s method with 0 measurement error) had lower percentages of years without
fishing and higher coefficients of variation of spawning biomass than those under the
scenarios with fixed threshold levels. In other words, if the fixed thresholds were true,

threshold levels were often underestimated during simulations.
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Trends and qualitative results by different threshold estimation methods for EBS
herring were similar to those for pollock (Figure 5.4). But benefits with a threshold
policy were less for herring than for pollock. The standard deviations of yield,
percentages of years without fishing, and coefficients of variation of spawning biomass
were much higher for herring. The increase of average yield with a threshold was
accompanied with a large increase of standard deviation of yield and percentage of
years without fishing. Nevertheless, spawning biomass was much more stable when a
high threshold level was used. The influence of measurement error was less important
for herring than for pollock. Fowler’s rule had a relatively high average yield, low
standard deviation of yield, and small chance of closing a fishery. May’s method over-

estimated the threshold level.

Optimum Threshold Levels

The objective function was used to rank the threshold estimation methods. The
top ten methods or levels are illustrated in Figure 5.5 with three levels of measurement
error and three weighting factors. There were some decreases in objective function
values with estimation error in thresholds. These decreases were less when weighing the
standard deviation more heavily. As expected from the results in Chapters 3 and 4,
heavier weight put on the standard deviation of yield resulted in smaller optimum
threshold levels. Measurement error reduced the value of the objective function and the
opumum threshold levels. These results were expected because measurement error
greatly reduced the justifiable fishing opportunities, especially with a high threshold
level (Figure 5.4). As seen in the previous plots, measurement error also affected the
objective functions for pollock more than those for herring. The objective function
values of several threshold methods or levels were close to each other, which indicated
that the response surfaces were flat.

For EBS pollock, the estimation methods with the best performance were the
defuult 35-50% of pristine biomass and May’s method for a weighting factor of 0

(maximum average yield), the default 30-45% of pristine biomass for a weighting factor
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of 0.2, and the default 20-35% of pristine biomass and Fowler’s rule for a weighting
tactor of 0.5 (equal weighing of average yield and standard deviation of yield; Figure
5.5). Low optimum threshold levels are associated with high measurement errors,

Herring had slightly lower optimum threshold levels than pollock. For EBS
herring with the maximum yield criterion, the best methods were the default 35-40%
of pristine biomass and spawning biomass per recruit method (Figure 5.5). The
perf(}rmance' of Fowler’s rule was very good when estimating the threshold but just
average using the fixed threshold. In contrast, the performance of May’s method was
very good with respect to the fixed threshold value but very poor when estimating
thresholds. With a weighting factor of 0.2, the best methods were the default 30-35%
of pristine biomass, stock-recruit model and Fowler's rule. With equal trade-off
criterion, the default 10-25% of pristine biomass and Fowler’s rule performed better
than other methods. Again as with pollock, measurement errors decreased the optimal

threshold levels.

Variation of Estimated Thresholds Over Time

To estimate how many years of data are required to reliably estimate thresholds,
I constructed simulations to compare estimated thresholds and their standard deviation
as the number of years of data increased with different estimation methods. For EBS
pollock. estimated thresholds gradually approached the true values, and the standard
deviation generally decreased over time with the default percentage method (Fi gure 5.6).
About 15 to 20 years were required to obtain a reliable estimate of thresholds and to
stabilize standard deviation, shorter time being associated with higher levels of
thresholds. The trends of estimated thresholds and standard deviation over time with the
stock-recruit and spawning biomass per recruit methods were similar under measurement
errors O and 0.2, and standard deviations were extremely high during the first several
years. A high level of measurement error caused large overestimation of thresholds with
the stock-recruit method and slight underestimation of thresholds with spawning biomass

per recruit method.  About 15 to 20 years were required to get a close estimate of
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thresholds and to stabilize standard deviations by these two methods (Figure 5.6).

Fowler’s rule and May’s method exhibited similar patterns and were greatly
influenced by measurement error (Figure 5.6). The estimated thresholds by these two
methods increased monotonically without measurement error and gradually approached
but did not reach the true values with measurement errors 0.2 and 0.5. Measurement
error might reduce the influences of environmental errors and time-lag on recruitment
and thus res&lt In better estimates of thresholds. Most of the variations of estimated
thresholds were attributed to the pristine biomass estimated by the conventional surplus
production model. If auxiliary information were available to constrain the estimates of
pristine biomass, the estimated thresholds by these two methods might be greatly
improved. Estimated thresholds by the surplus production model and depensatory
production model were small and continued to decrease over time, and in many cases
they eventually approached zero (Figure 5.6).

The estimated thresholds for herring over time were more variable and took a
slightly longer time to approach true values than those for pollock (Figure 5.7). These
results may mainly be caused by the influence of higher environmental error on herring
recruitment. However, the qualitative conclusions for each method were similar for

herring and pollock.

DISCUSSION

Biomass-based threshold estimation methods can be separated into two groups.
The first group requires a stock-recruit relation and an estimate of pristine biomass from
age-structured models. The default percentage and stock-recruit methods belong to this
group.

In this study the default percentage method was the most robust and generally
outperformed all other methods. Another advantage of the default percentage method
is its flexibility: different percentages can be adopted to achieve different management
objectives. The default percentage method is also simple and easy to understand. The

common default threshold of 25% pristine biomass was among the optimal threshold
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levels when the increase in mean yield and the decrease in standard deviation of yield
were weighed equally. Higher threshold levels were required to maximize mean yield.
Estimates of pristine biomass may change over time, and thus the estimates need to be
updated each year when new data are available.

Theoretically speaking, the stock-recruit method is the best choice for conserving
a stock and maximizing its productivity. But in reality. this method is least reliable due
to the fact that the stock-recruit method depends only on a which is very sensitive to
environmental noise and measurement error (Walters and Ludwig 1981; Armstrong and
Shelton 1988). The thresholds estimated by the stock-recruit method were the most
variable in this simulation study. Because fecundity is approximately a linear function
of body weight for many marine fish, the default percentage method has a similar
function as the stock-recruit method to protect a population and enhance its productivity.
Therefore, if a stock-recruit relation is available, the default percentage method is
recommended.

The second group of threshold estimation methods includes Fowler’s rule, May’s
method and two production models and requires only time series of biomass or
catch/effort data. Pristine biomass and threshold level are estimated through production
models. Fowler’s rule normally provided threshold levels of 15-25% of pristine biomass
and performed very well when standard deviations of yield were weighted heavily.
May’s method estimated a biomass reference point associated with MSY (Bygy) and
was favored when the objective function was to maximize yield. Although highly
simplified parameters were used in May’s model to describe consumer-resource
relations. it is difficult to find a marine fish population in which these parameters can
be estimated directly.

Because the simulated age-structured models did not contain a depensatory
mechanism, I was unable to completely evaluate surplus production and depensatory
production models. The majority of estimated thresholds by surplus production and
depensatory production models in this study were zero or negative. Actual data for EBS

pollock and herring provide estimates of threshold levels of about 10% or less of
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pristine biomass for these two methods (Quinn and Collie 1990). Unless a given
pupulation has a strong depensatory mechanism, surplus production and depensatory
production models may not be useful for estimating threshold levels.

The estimation methods of the second group were generally outperformed by the
default percentage method of the first group. Furthermore, as Hilborn (1979) observed,
catch/effort data alone often failed to estimate the parameters of production models, or
generated estimates too far away from the true values. In the case that data are too
limited to apply the default percentage method, Fowler's rule gives quite robust results
if auxiliary data are available to constrain the pristine biomass estimated by production
models.

If only life history parameters are available, it is difficult to estimate biomass-
based threshold, but at least one method can be used to estimate a threshold for
exploitation rate: spawning biomass per recruit. This method generates exploitation rates
that can provide a high yield at low risk (Clark 1991; Sissenwine and Shepherd 1987
Thompson in press). The exploitation rates estimated by the spawning biomass per
recruit method were converted to spawning biomass thresholds using stock-recruit
relations in this study. Most of the variation of estimated thresholds by this method
were attributed to the variation of stock-recruit relations. The performance of this
method was generally not as good as that of the stock-recruit model.

Environmental factors are believed to influence the recruitment of EBS herring
much more strongly than the pollock population. As a result, the estimated thresholds
were much more variable, and reliable estimates of thresholds and a stable standard
deviation required longer time series of data for herring than for p(}llmck. The optimal
threshold levels for herring were generally about 5% less than those for pollock.

The response surfaces of the objective function were flat across threshold
estimation methods, and the top five threshold levels (or methods) produced very close
objective function values. Thus, threshold management strategies are tlexible and a
small error in estimation of threshold will not affect the return very much. The loss in

objective function values due to estimation error was less than 10% for herring and less
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than 5% for pollock and smaller with a larger penalty weighting factor.

Because the purpose of this study is to compare different threshold estimation
methods with the same set of population parameters, Fyy was assumed known during
the simulations. In reality, Fygy is not known for many fish populations and has to be
adaptively estimated. If thresholds and Fygy are simultaneously estimated during
simulations, the performance of a threshold estimation method may be affected by the
estimated Fygy. The bias of estimated Fyqy and threshold level is likely be at the same
direction (i.e., overestimate or underestimate both Fygy and threshold level at the same
tme), and thus a portion of the bias may be canceled out.

Actively adaptive management perturbs a population deliberately to provide
information to improve estimates of population parameters, especially the stock-recruit
relationship (Walters 1986). More accurate population parameters will improve the
precision of threshold estimates. In rare cases when a "backup” population is available
to enhance the collapsed stock, a population may be used for experimentation to study
its dynamics at low biomass levels. Although actively adaptive management benefits
threshold management strategies, the gain by adaptive management may be minor

because the loss due to estimation errors is small.



Chapter Six
FACTORS AFFECTING OPTIMAL THRESHOLD LEVELS FOR
EASTERN BERING SEA HERRING

SUMMARY

Computer simulations were conducted to examine the effects of stock-
recruitment fciatianships, environmental conditions, management objectives and errors.
mortalities and other factors on optimal threshold levels for eastern Bering Sea (EBS)
herring. A standard set of model parameter values was used for all simulations in which
the examined factors were varied over plausible ranges of values. The form of the
stock-recruitment (S-R) curve, exploitation rate, and management objective are the three
most important factors affecting optimal thresholds. A second group of important factors
includes environmental cycle, environmental variation, S-R o planning horizon, density-
dependent natural mortality and measurement error. Environmental autocorrelation and
natural mortality patterns are relatively unimportant factors. S-R B, initial biomass and
implementation error are unimportant. Optimal thresholds are insensitive to all but the

most extreme environmental conditions.

INTRODUCTION

Threshold management strategies aim to protect fisheries resources and enhance
long-term productivity of fish stocks. Computer simulations on EBS pollock, Theragra
chulcogramma, and Pacific herring, Clupea pallasi. demonstrated that threshold
management policy generally increases average yield and rebuilds overexploited stocks
much more quickly than a constant harvest rate policy (Chapters 3 and 4; Quinn et al.
1990; Zheng et al. in press a). A threshold management policy also increases
management flexibility by furnishing an alternative method to reduce fishing efforts. For

some fisheries involving many interest groups, temporarily banning fishing to protect
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fish stocks may be more acceptable than reducing high fishing efforts (Jakobsson 1985).
Optimal thresholds are population levels or indices which result in the best trade-
 off between preserving population reproductive potential for the future recruitment and
obtaining current yields under a given management objective. If recruitment is density-
dependent for a stock, this trade-off is apparent. In cases in which recruitment is
regulated by environmental forces, it is also necessary to maintain a minimum level of
spawning stock to keep the stock from extinction or falling below a low population
level before favorable environmental conditions occur (Sigler and Fujioka in press).
Several methods have been developed to estimate optimal threshold levels, and
computer simulation studies suggested that the default percentage of pristine biomass
method usually outperforms other methods (Chapter 5: Zheng et al. in press b).
Optimal threshold levels are not only influenced by management objectives and
population characteristics, but also by environmental conditions. Computer simulation
studies indicate that the management objective, the stock-recruitment relationship, and
harvest rate are among the most important factors affecting optimal threshold levels
(Quinn et al. 1990; Zheng et al. in press a). Although previous simulation studies were
able to identify the important factors which affect the optimal threshold levels, the
relationships between these factors and the optimal threshold levels are not clear. This
chapter extends the previous computer simulations to allow a comprehensive study of
the robustness of optimal threshold levels as several factors varied concurrently. For
each factor, the likely range of values was divided into small grids (or intervals). An
optimal threshold level was estimated for each grid point of these value ranges through

computer simulations.

METHODS
Data and Population Models
Preliminary simulations indicated that the effects of several factors on optimal
thresholds are qualitatively similar for both EBS pollock and herring, so comprehensive

simulations would be conducted only for EBS herring and reported here. Zheng et al.
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(in press a) conducted cohort-analysis tuned with survev information for EBS herring
and summarized the population parameters.

As with previous simulation studies, a typical age-structured single-species
model was used in this study. EBS herring are primarily exploited during the sac roe
fishery in the late spring or early summer and other fisheries are insignificant. So, I
modelled only the sac roe fishery. In the spring each year before spawning, the mature
herring biomass B, was obtained as
61 B, = I[N, m, w]
where N, , is abundance just before spawning in year r and at age a, m, is maturity rate
and w, is weight at age a, which is determined by a general von Bertalanffy growth
equation
(6.2) w,=W,_ (1 -exp[-k(a-t,)])",
where W, k, 7, and b are growth parameters.

Total yield Y, was determined as
(63) Y, = B, h,
where A, is exploitation rate in year 7. To convert the yield to catch in number by age,
I estimated exploitable biomass EB, as
(64) EB, =X N, s, w]l
where s, is gear selectivity coefficient by age. The effective exploitation rate by age is
(6.5) H_, =h s, B/EB,

The catch (in number) was calculated as
(66) C,=N_,H,.,

Total spawning biomass, S, was

6.7) S, =X [N,-C, w,m]

The abundance was advanced to the next year, N, .., as
(6.8) N = (N, - C ) exp(-M)

for all ages except the oldest age in the model and by

L.a

td,o !

(6.9 Ny = Ny -Copp )exp(-My, )+(N, 1,-Cj)exp(-My,) for the maximum age (la)
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in the model.
A general model was used to describe the stock-recruit relationship because of
tlexibility (Deriso 1980):
(6.10) N, =a S [1-BvyS 1" exp(v).
where r is the recruiting age, o, B and v are parameters, and v, is a random variable

representing influences of environmental factors on recruitment.

Simulations

Fifteen factors were examined in the simulations and each factor was evaluated
for at least 10 grid points within the most likely data range. The data range for each
factor was summarized in Table 6.1. These factors include 3 parameters from the stock-
recruitment model, eipi@imtion rate, natural mortality pattern, density-dependent
mortality, environmental variation, autocorrelation and cycle, measurement and
implementation errors, initial biomass and planning horizon.

Ten hypothetical instantaneous natural mortality patterns are shown in Figure
6.1. The overall nawral mortalities of the whole population are basically the same
among these ten patterns. The difference among the patterns is mortality by age. The
highest mortality occurs in youngest and oldest fish with patterns | and 10, respectively.

Density-dependent natural mortality on herring was proposed by Haist et al. (in
press). The instantaneous natural mortality in year 7 is
(6.11) M, = [m, + exp(-d B/B)I/G,
where my, d and G are constants, and B, is the pristine biomass. Mg was approximately
set to 0.2, based on the results by Haist et al. (in press) and G was adjusted such that
M, would be 0.35 (the average natural mortality) if the population biomass wus equal
to the biomass associated with maximum sustained vield (MSY). Parameter J was
varied to examine the density-dependent effects.

Many environmental factors fluctuate with a long-term, periodic  cycle,
superimposed by random noises (Koslow 1989: Hollowed 1990). A convenient way to

maodel this phenomena is by a sine function:
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Table 6.1. Summary of ranges of factors examined for their influences on optimal
threshold levels. If two or more increments were used for a factor, smaller increments
were generally used for the lower end of the data range.

Factor Value Range  Grid Point # Increment

Penalty Weighting Factor 0.0  to 1.0 11 0.1

SRa 10 w200 16 05, 10,20
S-R B 0.001 w0 0.016 16 0.001
S-Ry 20 w 04 16 0.1, 0.2
Exploitation Rate 0.1 to 06 16 0.025, 0.05
M Pattern 1. to 10, 10 1

D-D Mortality (d) -2.0  to 5.5 16 0.5
Environ. Variation (o) 0.0 w 2.0 16 0.15, 0.2
Environ. Autocorrelation  -0.95 w0  0.95 16 0.1, 0.15
Cycle Amplitude (A) 0.0 w 5.0 il 0.5

Cycle Period (x,in Yr) 0. o 30, i1 3
Measurement Error 0.0 w 1.0 11 0.1
Implementation Error 00 tw 10 I 0.1

Inital Biomass 5% to 60% 16 2.5%, 5%
Planning Horizon (Yr) 5. to 100 16 5, 10
Abbreviations:

S-R: stock-recruitment model
M: instantaneous natural mortality
D-D: density-dependent,
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Bering Sea herring.
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(6.12) v, = A sin(t 2n/Kk + 5) + V',
where A 1s amplitude, x period, and s a phase determined randomly for each replicate.
During the simulations A and x were varied to examine their effects on optimal
threshold levels. An adjusted constant C was added to equation (6.12) such that the
expected value of exp(A sin(t 2r/x + 5))/C was equal 1o | to correct the skewed effects
of high A values. v’, is a random variable assumed to follow a normal distribution with
mean 0 and variance o© (Quinn et al. 1990).

Different values of a factor may result in different pristine biomasses and
optimal exploitation rates, which will affect the optimal threshold levels. To minimize
the influences of pristine biomass and exploitation rate, the threshold levels were
expressed as percentage of pristine biomass, and exploitation rate associated with MSY
was used in simulations for each grid of each factor. An exception was made in
simulations for examining the exploitation rate factor, in which different levels of
exploitation rates were used. For each grid of a factor, an age-structured model was
iterated for 300 years with expected effects of environmental noises on recruitment. and
the statistics from the last 200 years were averaged. The average biomass without
exploitation was used as pristine biomass, and the exploitation rate that produced the
highest average yield was termed the exploitation rate associated with MSY.

To compare all factors on a common standard, all simulations were carried out
with a standard set of parameters except the values of the factor examined. The standard
population parameters were those estimated for EBS herring. Meuasurement error,
implementation error, and environmental avtocorrelation were all assumed not to occur.
The planning horizon was 50 years and initial biomass was 15% of the pristine level.
Because | am interested only in comparing optimal thresholds for different values of the
- examined factors under a given environmental condition in this Chapter, 101 replicates
were adopted and an identical set of numbers was used as seeds for random number

generator for all factors.
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Optimal Criteria

The objective function to evaluate optimal threshold levels is the trade-off
between increased average yield and decreased variation in yield. Detailed descriptions
of this objective function are given by Quinn et al. (1990) and Zheng et al. (in press a).
The function is a linear combination of average yield and the standard deviation of yield
over the planning horizon, or
(6.13) max [(1 - A) Yy, - A SD,],
where Y, and SD,;, are average annual yield and standard deviation under threshold level
"th", and A is a penalty weighting factor. There are three special cases: maximum
average yield (A=0), equal trade-off of increased average yield with decreased standard

deviation (A=0.5), and minimum variation in yield (A=1.0).

RESULTS

Stock-recruitment Relationship

The relationships among optimal threshold levels. the penalty weighting factor
and three parameters of the general stock-recruitment curve are shown in Figure 6.2,
Each plot in Figure 6.2 consists of three planes: XY. XZ and YZ. The XY plane is
contours of optimal threshold levels, the XZ plane shows the relationship between
weighting factor and optimal thresholds, and the YZ plane illustrates the general trend
of optimal thresholds versus the three S-R parameters. The dots in the XZ and YZ
planes are estimated optimal threshold levels for all values of the XY grid, and the solid
lines are LOWESS smoothing curves (Becker et al. 1988) over the estimated optimal
threshold levels. The common feature for three parameters was that optimal thresholds
were negatively associated with weighting factor: the heavier the varation in yield is
weighed, the smaller the optimal thresholds. If the objective function was to minimize
the variation in yield, then no threshold should be applied.

Parameter y represents the form of the stock-recruitment curve and was the most
important factor to affect optimal threshold levels (Figure 6.2). A smaller y results in

less density-dependent recruitment and a dome-shaped stock-recruitment curve oceurs
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Figure 6.2. Contour plots for the optimal threshold levels (% of pristine biomass) as a
function of penalty weighting factor and three parameters of stock-recruitment model.
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when y > -1.0. For a given weighting factor, higher v resulted in higher optimal
thresholds. When v < -1.0, all optimal thresholds were less than 25% of pristine
biomass. Optimal threshold levels were much higher with a Ricker stock-recruitment
curve (Y = () than with a Beverton-Holt curve {(y=-1).

Parameter o represents productivity potential or the original slope of the stock-
recruitment curve. Optimal threshold levels were very sensitive to low « values which
resulted in small optimal threshold levels (Figure 6.2). When o was close to or larger
than the estimated values, the optimal thresholds were fairly constant, with higher «
values resulting in slightly smaller optimal threshold levels.

As expected, density-dependent parameter B did not affect the optimal threshold
levels (Figure 6.2). This is primarily due to the fact that threshold levels are expressed
as percentages of pristine biomass. Although B affects both the absolute threshold and
pristine biomass, effects of B may have been canceled out after the absolute threshold
15 divided by the pristine biomass, because B is a scale parameter that alters dimensions
of the curve but not its shape.

To illustrate the effects of S-R parameter interactions on optimal threshold
levels, 1 estimated optimal threshold levels through computer simulations under
combinations of parameters o and Y. Figure 6.3 shows those optimal thresholds with 3
levels of weighting factors: 0.0, 0.2 and 0.5. As expected. the greatest effects on optimal
thresholds resulted from parameter . The optimal thresholds were more sensitive to Y
with o close to or greater than the estimated level than with o being small. The
parameter ¢ affected the optimal threshold levels more strongly with ¥ > 0.0 than with
other y values. The patterns of optimal threshold levels among three levels of weighting
factors were similar except that higher weighting factors were associated smaller optimal

thresholds.

Mortalities

The etfects of three kinds of mortalities on optimal thresholds were examined.
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Instantaneous natural mortality pattern (i.e., age-dependent natural mortality) generally
had a very minor effect on optimal thresholds (Figure 6.4). Higher natural mortality for
younger fish resulted in slightly smaller optimal threshold levels. This supports the
results for parameter o (Figure 6.2), because higher mortality for younger fish
{recruitment) is one factor that would result in lower productivity (i.e., small ).
Different levels of natural mortalities on older fish did not affect optimal thresholds
with weighting factors less than 0.5.

The relationships between density-dependent mortality and optimal thresholds
were complex. When density-dependence was weak (coefficient o is about from -0.5 to
0.5). the effects of density-dependent mortality on optiinal thresholds were minor
(Figure 6.4). Optimal threshold levels for a given weighting factor tended to rise with
increasing compensatory density-dependent mortalities (d < 0). Higher depensatory
density-dependent mortalities resulted in much larger optimal threshold levels for
weighting factors less than 0.5. This would prevent the stock from reaching low
abundance levels. High depensatory density-dependent mortality increased the variation
of population abundance and yield. Such high standard deviations of yields resulted in
negative objective function values with weighting factors greater than 0.6, so the
optimal threshold levels were equal to zero (Figure 6.4).

Exploitation rate was an important factor affecting optimal thresholds. With
weighting factors less than 0.5, optimal threshold levels were positively related to
exploitation rate (Figure 6.4). When exploitation rate was very low, no threshold was
needed. On the other hand, when exploitation rate was very high, a high threshold
effectively reduced the fishing mortality, resulting in a pulse fishing scenario in which

the highest possible yield could be obtained, but with extremely high variation in yield.

Environmental Noises on Recruitment
First-order environmental autocorrelation was used in this part of the study.
Here, negative autocorrelation means a strong year-cluss tends to follow a weak year-

class and vice versa. With positive autocorrelation, a strong-year class ends to follow
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another strong year-class, and a weak year-class tends to follow another weak one. The
simulation results show that with autocorrelation coefficients ranging from -0.5 to 0.5,
optimal thresholds were basically independent of environmental autocorrelation (Figure
6.5). With extreme negative autocorrelations, optimal thresholds tended to increase with
a given weighting factor, Extreme positive autocorrelations slightly reduced the optimal
threshold levels with weighting factor less than 0.3.

Environmental variation (i.e., parameter ©) measures the proportion of
recruitment variation caused by environmental forces. When o was less than 0.4,
environmental variation had a very little effect on optimal threshold levels (Figure 6.5).
Optimal thresholds slightly decreased with a given weighting factor when o gradually
increased from 0.4 to 1.3, and dramatically decreased when o is larger than 1.3. It is
intuitive that higher environmental variation results in less dependence of recruitment
on spawning stocks and more difficulty in maintaining the stock at a desired abundance
level, thus reduces optimal threshold levels. The effects of environmental variation on
optimal thresholds were much larger with management objectives favoring stable yield
than favoring maximum yield (Figure 6.5).

The influences of environmental cycles on optimal thresholds depended on the
amplitude and period of cycles and weighting factors (Figure 6.6). With weighting
factors £ 0.2, optimal thresholds were basically independent of environmental cycles
with periods < 8 years and periods from 13 to 30 years with amplitudes < 2.0, and
markedly decreased with periods increasing from 8 to 12 vears. The average life span
of EBS herring is about 8 to 12 years with Hy,q, exploitation rate. When the period
became greater than the herring life span, there was no way to keep the stock above a
high threshold, thus optimal thresholds decreased with period length. With a weighting
factor equal to 0.5, the equal trade-off between average vield and standard deviation of
yield, environmental cycles with periods from 2 to 8 vears reduced optimal threshold
levels dramatically. Generally speaking, increasing amplitudes of environmental cycles
resulted in decreasing optimal threshold levels. The most sensitive effects of amplitudes

on optimal thresholds occurred for amplitudes from 1.0 to 2.0, The optimal threshold
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levels with a given period were relatively unrelated to amplitudes of environmental

cycles when the amplitudes were greater than 2.0 (Figure 6.6).

Management Errors

In managing a fishery, two kinds of management errors may OCCUr: errors in
measuring population abundances (measurement error) and errors in implementing
harvest straiegies (implementation error). In this study, measurement error was assumed
to follow a lognormal distribution and implementation error a normal distribution. To
reduce the influences of extreme outliers, I truncated measurement error by 95%
confidence intervals and implementation error by 90% confidence intervals.

The contours of optimal threshold levels as a function of measurement and
implementation errors are shown in Figure 6.7. Overall, implementation error had a very
minor effect on optimal thresholds. When management objectives were to maximize
average yield, optimal thresholds were generally independent of measurement error.
Extremely high measurement errors slightly increased optimal threshold levels. Under
the management objective of equal trade-off between average yield and standard
deviation of yield, optimal thresholds were negatively associated with measurement
errors, with higher measurement errors resulting in much smaller optimal threshold
levels, because the standard deviation of yield increased much more rapidly than the

average yield as the threshold level increased.

Other Factors

Initial biomass determines the population status when the simulations start. The
simulation results show that optimal thresholds were not related to initial biomass,
especially with weighting factors < 0.5 (Figure 6.8).

Planning horizon is the duration in which population and catch statistics are
collected in the simulations. A short and a long planning horizon means that the
management objectives focus on short-term and long-term benefits, respectively. As

expected, a short planning horizon (less than 7 years) resulted in small optimal threshold
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Figure 6.8. Contour plots for the optimal threshold levels (% of pristine biomass) as a
function of penalty weighting factor, initial biomass and planning horizon.
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levels, or no thresholds at all (Figure 6.8). For a given weighting factor, optimal
threshold levels gradually increased with increasing planning horizons from 5 to 30
years. With weighting factors less than 0.5, optimal thresholds were generally constant
with planning horizons from 30 to 50 years and slightly increased with planning
horizons greater than 50 years. This results occurred because the population was initially

rebuilding.

DISCUSSION

Management objectives are one of the most important factors affecting optimal
threshold levels. Results in this chapter corroborated the findings in Chapters 3, 4 and
5. The simple objective function includes a variety of management objectives ranging
from maximizing average yield, which results in the highest optimal thresholds, to
minimizing variation in yield (or obtaining constant yield), which results in no threshold
at all. For herring fisheries in Alaska, the management objectives are between maximum
average yield and equal trade-off between average yield and variation in yield, so that
the resources can be protected and high yield sustained (Zheng et al. in press a).

The form of the stock-recruitment curve has major effects on optimal threshold
levels. It also plays a major role in determining average yield and exploitation rate.
Optimal thresholds with the same management objectives, MSY and fishing mortality
associated with MSY are larger with a Ricker model than a Beverton-Holt model for
EBS pollock (Quinn et al. 1990). For the three stocks examined in this study, the
highest optimal thresholds were found for EBS pollock with the most dome-shaped
stock-recruitment curve and the lowest optimal thresholds were obtained for PWS
herring with the least dome-shaped curve. Smaller Y results in a lower percentage of
pristine biomass and exploitation rate associated with MSY, which partially explains the
smaller optimal threshold levels and MSY. Optimal thresholds are generally less or
equal to the percentage of pristine biomass producing MSY. Another important factor
contributing to the smaller optimal threshold levels is that with smaller ¥ the recruitment

is less density-dependent on spawning stocks. The benefits of enhancing  the
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reproductive potential and long-term yield by fishery closure are smaller with less
density-dependent recruitment unless the spawning stock is very low.

Cushing and Harris (1973) showed that the forms of stock-recruitment curves
were strongly dome-shaped for the gadoid stocks (high ¥), dome-shaped for the salmon
stocks, and flat for the flatfish stocks (low y). Thus, higher optimal thresholds may be
needed and larger benefits may be realized from a threshold approach for the gadoid
and salmon stocks than for the flatfish stocks. But we must be cautious in generalizing
the form of stock-recruitment curves for a large group of fish stocks. For example,
Koslow et al. (1987) concluded that the recruitment is independent of spawning stock
for both Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks
in the northwest Atlantic. Chapter 2 showed that although many herring stocks exhibit
dome-shaped stock-recruitment curves, no stock-recruitment relationships can be found
for some other herring stocks.

The relationship between productivity parameter o and the optimal threshold
levels is somewhat more complex. and for a given management objective the highest
optimal thresholds occur with intermediate o.. Lower productivity for a stock provides
less incentive to close fishing when stock abundances are relatively high because the
loss due to natural mortality outweighs the gain of future recruitment, and thus results
in smaller optimal thresholds. On the other hand, higher productivity means the
recruitment is less dependent on spawning biomass, thus the optimal thresholds are
smaller. Although density-dependent parameter [ is the most important factor
determining the optimal escapement goal for many fish stocks, its effects on optimal
thresholds are canceled out after expressing the threshold levels as a percentage of
pristine biomass.

Exploitation rate is positively associated with optimal thresholds for the
management objective of maximum yield. This suggests the maximum yield for a
population may be realized by different harvest strategies with a similar level of
exploitation. Getz et al. (1987) reached similar conclusions for three different stocks.

The level of exploitation can be a constant exploitation rate, or a combination of
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exploitation rates and thresholds. The advantages of the threshold approach are to
increase management flexibility and robustness, at least theoretically. The response
surtace of yield is much flatter with a threshold approach than with an exploitation rate
approach alone, and a yield close to the maximum yield could be produced under many
combinations of exploitation rates and thresholds (Quinn et al. 1990; Zheng et al. in
press a). In addition, a threshold approach will prevent overfishing and protect the
repraductivépawndai when exploitation rate is high. Furthermore, when a population
is overexploited, a threshold approach will rebuild the population much more quickly
than an exploitation rate approach alone (Chapters 3 and 4; Quinn et al. 1990).

Optimal thresholds are not strongly influenced by density-dependent natural
mortality unless such mortality is very high. Highly density-dependent natural mortality
results in much higher optimal threshold levels than those under a constant natural
mortality. In simulation studies on herring fisheries in British Columbia, Haist et al. (in
press) showed that depensatory natural mortality not only reduces the exploitation rate
associated with MSY, but also increases the chance of stock collapse. Their results
suggest that a threshold is needed for such a population to prevent population collapse.
Similar results were obtained from a surplus production model with depensatory natural
mortality and autocorrelated environmental noise for Sitka Sound herring (Collie and
Spencer in press). The likely mechanisms to cause density-dependent natural mortality
are predation and competition. When the population abundance is low. predation may
remove a higher proportion of the population, which results in depensatory natural
mortality. On the other hand, when the population abundance is high, competition tor
food and space, or easily spreading contagious diseases could lead to compensatory
natural mortality. Therefore, when the effects of species interactions are taken into
account, a higher threshold may be required to protect the population and meet
management objectives.

The etfects of environmental factors on optimal thresholds are manifested
through their intluences on recruitment. When recruitment variation is primarily caused

by environmental forces, there is less incentive to preserve current spawning stocks to
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ensure future recruitment. Thus, optimal threshold levels are much higher without
environmental effects than with strong environmental influences. Environmental
variation (parameter ¢) accounts for random environmental conditions and 1s less than
1.2 for a variety of commercially important populations around the world (Hightower
and Grossman 1985). Values in this range have only minor influences on optimal
threshold levels. Environmental autocorrelations for herring generally involve a time lag
of 1or2 yéars with an autocorrelation coefficient less than 0.5 (Chapter 2), so their
effects on optimal thresholds are negligible. The most important effects of
environmental conditions on optimal thresholds are caused by low-frequency and high-
amplitude cycles. Such strong cycles, if they exist, primarily control recruitment success
and can keep the population low for a long period of time; thus the optimal thresholds
are small. Nevertheless, in this case the threshold approach still outperforms non-
threshold approaches because a threshold is still needed to minimize the risk of
population collapse. For such environmental conditions. two levels of thresholds may
be more appropriate: a high level for favorable environmental conditions and a low level
tor unfavorable environmental conditions. In examining the population dynamics under
the environmental cycle, Parma (1990) concluded that the optimal management strategy
for maximizing expected discounted yield is to raise escapements when favorable
environmental conditions are anticipated and to lower escapements when poor
environmental conditions are expected. However, the optimal time-dependent feedback
strategy for maximizing expected sum of discounted logarithms of catches closely
resembles a constant harvest rate strategy (Parma 1990). Although many populations
have been documented with low-frequency and high-amplitude cycles (Cushing 1982;
Koslow et al. 1987; Koslow 1989), recruitment time series for many populations are too
short to otter compelling evidence for such cycles.

For stocks with eyclic, periodic recruitment, the threshold approach works like
a "banking policy": to protect the capital for future returns, The "banking policy” works
only if two assumptions are valid: 1) a certain level of spawning stocks is needed to

produce average or strong year-clusses: 2) the mean lifespan of a stock is longer than
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the unfavorable period of environmental cycles. The optimal threshold levels are the
trade-off among the mean lifespan of the stock, the period length of environmental
cycles and the productivity of the stock. The "banking policy” may be attractive to a
long-lived species because of the long lifespan.

Because threshold management strategies aim to enhance the well-being of
populations and yields over the long term, the planning horizon should be long-term.
A long-term planning horizon generally does not significantly influence optimal
threshold levels.

Initial biomass represents the initial status of the stock when simulations start.
A low initial biomass means the stock has been overexploited and needs to rebuild.
Although the results in this Chapter suggest that optimal thresholds are insensitive to
initial biomass. the gain in average yield from a threshold approach over a non-
threshold approach is greater with a low initial biomass than with a high initial biomass
(Chapters 3 and 4). If an initial biomass equal to or greater than the biomass at MSY
and a low or intermediate exploitation rate are used, and if the simulated population
always stays at about the equilibrium level, a threshold approach will be identical with
a constant harvest rate approach, because the population does not fall below any
threshold levels. But for a long horizon, say 50 years, it is rare to find any exploited
populations which abundances always are at equilibrium levels, or equal to or greater
than the abundances at MSY. Besides enhancing long-term yield, a threshold approach
can also reduce the risk of population collapse (Single and Fujicka in press).
Furthermore, once a population collapses, the population will rebuild more quickly with
threshold management strategies than non-threshold strategies.

A low initial biomass puts the population below many threshold levels and
performance of different threshold levels can be evaluated. Alternatively, the causes for
population collapse are built in the simulations to evaluate the threshold approach (e.g..
Collie and Spencer in press). The likely causes for population collapse are high fishing
mortality. suddenly increase of natural mortality and continuous failure of recruitment.

It is a challenge to build a simulation incorporating all these causes for a specific
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population, because 1t is difficult to model variation in natural mortality over time and
the causes of recruitment failure. Using a low inital biomass is a simple way to avoid
modelling the causes for population collapse. Some computer simulations (e.g..
Hollowed and Megrey in press) neither started from a low initial biomass. nor
incorporated the causes for population collapse. It is not surprising that the results from
such simulation studies suggest that a threshold approach is useless, because the
simulated pépuia&iong hardly dropped below a threshold level. The threshold approach
primarily deals with the population dynamics at low population abundance levels.
Simulation studies without incorporating low population abundances cannot be used to
evaluate the threshold approach.

The simulation results show that random management errors (measurement and
implementation errors) have minor effects on optimal threshold levels unless the
weighting factor is very high, but nonrandom management errors could occur for a
fishery (Zheng et al. in press a). The effects of systematic, nonrandom management
errors on optimal thresholds are likely similar to those of exploitation rate.
Systematically overestimating or underestimating population abundances, or
overharvesting or underharvesting, will result in higher or lower than expected
exploitation rates, which may increase or decrease the optimal threshold levels. If
systematic management errors exist for a fishery, it is impossible to estimate optimal
thresholds and exploitation rates unless the magnitude of errors is known. If known, the
magnitude of the systematic errors can be used to adjust the exploitation rates. The
optimal thresholds are then adjusted to the corrected exploitation rates.

In summary, factors affecting optimal thresholds can be classified at four levels
of decreasing importance. The form of stock-recruitment curve (i.e., S-R y), exploitation
rate. and management objective are the three most important factors. The second group
of important factors consists of environmental cycle, environmental varnation, S-R o.
planning horizon, density-dependent natural mortality and measurement  error.
Environmental autocorrelation and natural mortality patterns belong to the third group

of relatvely unimportant factors. In the last group. S-R B. initial biomass and
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implementation error are unimportant. In determining optimal threshold levels for a
population with single-species dynamics, if the population approximately meets the
assumptions for these factors, the first group of factors is essential, the second group
should be considered, the third group may be passed by, and the last group can be

completely ignored.



Chapter Seven
LIMITATIONS AND CONCLUSIONS

LIMITATIONS

The population models in this study assumed single-species dynamics. A single
species approach is simple and practical, and makes data collection cost-effective. It is
also routinely adopted for fisheries management and applied to modelling the dynamics
of exploited fish populations (e.g., Beverton and Holt 1957; Deriso 1980: Hightower and
Grossman 1985, 1987; Getz et al. 1987; Matsuda et al. 1992). Multi-species biological
and technical interactions are, however, well-known to influence stock and fishery
dynamics (e.g., May et al. 1979; Laevastu and Larkins 1981; Mercer 1982; Kerr and
Ryder 1989). How important is the role of species interactions in determining optimal
threshold levels? What implications do species interactions have on implementing
threshold harvest strategies? The species interactions were briefly discussed in chapters
3. 4 and 6. The following further discusses these limitations. Another major limitation
of this study is that no bioeconomic management objectives were considered in

determining optimal thresholds.

Biological Interactions

Species interactions affect population dynamics directly through predation and
competition, which affect growth and mortality of a population, especially during the
early life from eggs to recruits. At the ecosystem level. food webs represent a static
picture of the dynamic processes, predation and competition. Figure 7.1 is the partial
food web for pollock and herring in the eastern Bering Sea, based on stomach content
data (Perez 1990; Livingston 1991; Livingston et al. 1986, 1993). Pollock abundance
is at least an order of magnitude larger than any other single fish species observed and

is the central component of the food web in the eastern Bering Sea. The important prey
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are euphausiids and copepods for juvenile pollock and juvenile pollock for adult pollock
(Livingston 1991; Livingston et al. 1986, 1993). Pacific cod appears to be the most
important predator of pollock (Livingston 1991; Livingston et al. 1986, 1993). The diets
of sea birds and marine mammals (e.g.. seals and sea lions) also include pollock,
especially juvenile pollock (Perez 1990; Lowry et al. 1989; Springer and Byrd 1989).

Trophic relationships for eastern Bering Sea herring are somewhat less well
understood than for pollock. Herring primarily feed on copepods, fish eggs and larvae.
Flatfish, Pacific cod and seals may be important predators of herring (Livingston 1991;
Livingston et al. 1993; Perez 1990). Predation on herring by groundfish in the eastern
Bering Sea appears to be sporadic in time and space (Livingston 1991; Livingston et
al. 1993). Although the important trophic relationships can qualitatively be identified
from the stomach content data as shown in Figure 7.1, the dynamic functional
relationships among them remain to be quantitied because of information gaps (Smith
et al. 1984; Kajimura and Fowler 1984). Species interactions for Prince William Sound
herring are unclear.

Because most of predation mortality in the eastern Bering Sea occurs before
recruitment, the most important effects of species interactions may be on year-class
strength. A single-species approach basically assumes that mortality from eggs to
recruits caused by species interactions is indistinguishable from other environmental
factors. Three patterns of pre-recruitment mortality were examined in this study:
randomness, autocorrelation, and periodic cycle. These three patterns may well cover
the effects of species interactions on recruitment. Under management objectives as the
trade-off between yield and variation in yield for a single species, the results show that
randomness and autocorrelation with the observed data ranges have very minor effects
on optimal threshold levels. Periodic cycles are important in determining optimal
threshold levels if the amplitude of the cycle is high and the period is long. But periodic
cycles of both pollock and herring recruitment are weuk and affect optimal thresholds
insignificantly. Furthermore, cannibalism appears to be the major source of predation

mortality on pre-recruit pollock (Livingston 1989: Livingston et al. 1986, 1993) and
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may be accounted for by using the Ricker stock-recruitment curve. Thus, species
interactions may play a minor role in pollock recruitment dynamics in the eastern
Bering Sea.

In this context, it is important to distinguish between cycles in recruitment and
cycles in total population biomass. Some cycles reported in the literature are biomass
cycles due to the lack of long time series of recruitment data. It is easy to show that a
random time series of recruitment can produce a cycling population biomass. The
strongly cycling population biomass of eastern Bering Sea pollock and herring during
the last three decades was caused by three to four exceptionally strong year-classes.

The effects of species interaction on adult fish may result in depensatory or
compensatory natural mortality. My results show that such natural mortality has minor
effects on optimal thresholds unless the mortality is extremely high. Compared to
Juveniles, predation mortality on adult pollock and herring in the eastern Bering Sea is
relatively minor. Competition for eastern Bering Sea pollock and ﬁerring and Prince
William Sound herring has not been demonstrated and is largely speculative. Overall,
the effects of species interactions on optimal threshold levels of pollock and herring in
the eastern Bering Sea may be minor.

It the management objectives are to protect the whole ecosystem or maximize
the yield or economic returns for all commercially important species rather than a single
species, species interactions may have profound effects on threshold management
strategies. Although pollock recruitment may not be affected by other species, pollock
recruitment may affect other species abundance, especially marine mammals and sea
birds. If some marine mammals or sea birds depend mainly on pollock or herring for
food. how many pollock or herring have to be saved for these marine mammals or sea
birds to protect the predators? Should we reduce pollock abundance to make room for
other economically more valuable species if they exist? Multi-species models and
ecosystem models may help refine these questions, which in turn raise important policy
issues beyond the scope of this discussion. Adaptive management may be implemented

to test alternative hypotheses (Collie 1991b).
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The eastern Bering Sea has been one of the most intensively studied areas in
fisheries and ecosystem modelling during the last three decades. Multi-species and
ecosystem models were constructed for the eastern Bering Sea more than a decade ago
(Laevastu and Larkins 1981; Knechtel and Bledsoe 1981. 1983). These models have
enhanced the understanding of the ecosystem, but like other ecosystem models, the
precision of such models has not been high enough for management purposes. The
information gaps are currently too large to make such complex models attractive for
fisheries management. Although species interactions are intuitively important for
population dynamics, little convincing evidence has been found that species interactions
affect the abundance of predators or prey in the eastern Bering Sea. For example, there
is no shortage of conflicting hypotheses about how pollock might influence sea lions
in the eastern Bering Sea (Springer 1992). Not surprisingly. this problem is riddled with
confusion.

Like most fisheries around the world, the fisheries in the eastern Bering Sea and
other parts of Alaska have primarily been managed with a single-species approach.
However, future insights about species interactions, perhaps of a radically new sort
going far beyond conventional multi-species and ecosystem approaches. could offer
potential alternatives to single-species approaches to fisheries management. With reliable
multi-species or ecosystem models at hand. threshold management strategies at the
multi-species or ecosystem levels could be evaluated and optimal thresholds estimated.

Multi-species models for simple ecosystems were examined by May et al.
(1979). Mercer (1982) and Kerr and Ryder (1989) offered a variety of multi-species
approaches to fisheries management. Alternative ecosystem approaches can be found in
Laevastu and Larkins (1981), Knechtel and Bledsoe (1981, 1983), and Grant (1986). It
appears that further work along these or different lines will be necessary before the

goals of multi-species management in marine ecosystems can be achieved.

Technical Interactions

Technical interactions of multiple species offer further challenges to fisheries



182
managers for implementing single-species threshold management strategies. Because
many species share the same space in the same time, it is impossible for certain gears,
especially trawl, to catch only a single species. Bycatch is the catch of non-targeted
species in a fishery. Herring fisheries in Alaska occur primarily in spawning areas, and
bycatch of other species is too small to be of concern. Bycatch of herring occurs in the
eastern Bering Sea trawl fisheries and is very small, compared with herring abundance
(Funk et al. 1990). But pollock bycatch in the eastern Bering Sea is very high because
pollock is so abundant. Bycatches of other species also occur in the pollock trawl
fishery.

One solution to the bycatch problem is to set bycatch limits for each fishery.
Alternative solutions are to harvest targeted species when they are less mixed with other
non-targeted species, to use highly selective gears to reduce bycatch rates, or to have
an economic penalty for the amount of bycatch. Successful threshold management
strategies may require that targeted fisheries are closed and that bycatches in non-
targeted fisheries are minimized when the abundance of concerned species falls below

threshold levels.

Bioeconomic Management Objectives

The objective function in this study is a linear combination of average yield and
variation in yield. It will be equivalent to a trade-off between total economic value and
economic stability if the price for a unit of yield is constant. The high yield may result
in a low price for a unit of yield according to the conventional theory of supply and
demand. Thus, maximum yield may not necessarily result in maximum economic value.
Both Alaska pollock and herring products are sold in international markets, thus the
prices of these fish products are atfected by the catches worldwide as well, Prices may
be exogenous for Alaska herring because Alaska herring products share a small
proportion of the international markets. Prices are endogenous for Bering Sea pollock
because it supports the largest single-species fishery in the world. On the other hand,

a high price is beneficial to the fishing industry, but may hurt consumers. So total
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economic value for the fishing industry is not necessary equivalent to total value to the
whole society if the resources belong to the whole society. Because the consumers of
Alaska herring and pollock products are primarily international, it may not be a major
concern for the total value to the whole society. Furthermore, maximizing profits may
result in less employment opportunity for fishing communities where many fishermen
regard fishing as a living style. Therefore, fisheries management objectives are complex
and sometimes conflict. If total economic value is the management objective, the
optimal threshold levels are affected by the relationship between the fish price and total
yield. If a low yield results in a disproportionally high price, the optimal threshold
levels will be very low and even close to zero.

This study did not examine the catch allocation and fishing cost, both of which
are important to determine the economic profits from fishing operations. Maximizing
economic profits may be a goal for an individual fisherman or a fishing company, but
it is seldom a sole objective of fisheries management. Equitable allocation among
different user groups may outweigh the economic profits. For example, the herring
pound fishery is much more valuable than other herring fisheries per unit herring, and
a fraction of the herring in the pound fishery can survive. The pound fishery in Alaska
is limited to a small percent because of equitable allocation and demand for roe on kelp.
Current fishing capabilities for both herring and pollock in Alaska may be far more than
needed to produce MSY, but it is not easy to reduce the number of fishing vessels. For
example, for some purse seine herring fisheries in Alaska, the current allowed fishing
duration is 20 or 30 minutes! In such fisheries, a small fraction of the current fishing
effort can easily catch the same amount of catch quota. The key to optimize economic
efficiency is how to find a way to reduce the excess effort and solve overcapitalization
problems which are beyond the scope of this study.

If the management objective is economic profit, there exists an economic
threshold. Costs for fishing operation consist of fixed costs and variable costs (Clark
1976, 1985). Fixed costs are the capital costs of fishing companies and fishing vessels,

and variable costs are the expenses occurring during fishing. If the total revenue from
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a fishing opening is less than the total variable cost, the population abundance is below
the economic threshold and fishing shall be prohibited. The economic threshold may be
smaller or greater than the biological threshold considered in this study, depending on
fixed costs, variable costs, fish prices and population characteristics. If there is a strong
demand for a fish product and the fish price goes up dramatically with decreasing
supply, the economic threshold will be very small. If a population like herring forms
schools such that catch per unit of effort is independent of population abundance, the
economic threshold may be much smaller than the biological threshold. If fixed costs
are high relative to variable costs, the economic threshold will be low. It is likely that
the economic threshold for a population changes from vear to year because the fixed
and variable costs and fish prices are likely to change annually.

In biceconomic studies, a discount rate is usually used to discount the future
yield. Clark (1985) stated that "higher discount rates normally imply lower levels of
resource conservation by private resource owners, other things being equal” as a
fundamental principle of renewable resource economics. Because a threshold approach
seeks to protect resources and enhance the future yields, discount rates are negatively
associated with optimal threshold levels. A high discount rate will favor non-threshold
a;ﬁproaches. Furthermore, a positive discount rate may result in an optimal management
strategy that drives the population to extinction if the discount rate is higher than the
overall population growth rate (Clark 1985). Common discount rates for public resource
management range from 0 to 3% (Clark 1985). The British Columbia Salmonid
Enhancement Program used a 10% discount rate for evaluating new projects (J. Collie,
personal communications). In this study, a zero discount rate was used. In reality, all
fisheries in Alaska have been managed with a zero discount rate and fisheries

management elsewhere has rarely applied a specified positive discount rate.

CONCLUSIONS
1. The survival rates from eggs to recruits from 14 of the 19 herring stocks in

the north Atlantic and northeast Pacific Oceans are significantly related to spawning
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biomass, with high spawning biomass resulting in low survival rates. The year-class
strengths from about 41% of the stocks are statistically associated with spawning
biomass. Most stocks have compensatory, dome-shaped stock-recruitment curves.

2. Positive correlations of herring recruitment are generally found among
geographically close stocks. Environmental processes may play an important role in
herring recruitment dynamics within a certain spatial scale.

3. Default percentage of pristine biomass usually performs best among the
threshold estimation methods. The loss of yield due to errors in threshold estimation is
small, generally under 10%. About 15 to 20 years of data are required to obtain a
reliable estimate of thresholds.

4. The most important factors affecting optimal threshold levels are management
objectives, the form of stock-recruitment curve and fishing mortality. Environmental
cycle, environmental variation, the original slope of stock-recruitment curve, planning
horizon, density dependent natural mortality and measurement error also influence
optimal threshold levels. Optimal thresholds are generally insensitive to environmental
autocorrelation, natural mortality patterns, initial biomass and implementation error.

5. Compared to a non-threshold approach, threshold management strategies
increase the long-term average yield, stabilize population abundance, shorten rebuilding
time, and increase management flexibility.

6. When simultaneously optimizing threshold level and fishing mortality with the
maximum yield objective, optimal fishing mortality is slightly above fishing mortality
at MSY, and optimal threshold levels range from 40% to 60% of pristine biomass for
eastern Bering Sea pollock, from 40% to 50% for eastern Bering Sea herring and from
30% to 60% for Prince William Sound herring. The response surfaces are flat: several
combinations of fishing mortality and threshold level could produce close to the
maximum yield possible.

7. With fishing mortality at MSY (Fygy = 0.42 for EBS pollock, Hygy = 0.36
for EBS herring, Hygyy = 0.34 for PWS herring (no-cycle recruitment), and Hyqy = 0.42

for PWS herring (cycle recruitment)) and a management objective of equal trade-otf
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between the increase of yield and the decrease of variation in yield, optimal thresholds
range from 20% to 30% of pristine biomass, with a median of 25%, for eastern Bering
Sea pollock, from 10% to 20% with a median of 20% for eastern Bering Sea herring,
and from 5% to 15% with a median of 10% for Prince William Sound herring.

8. With the status quo exploitation rate of 20% and objective functions from
maximum yield to equal trade-off between yield and variation in yield, optimal
thresholds range from 10% to 25%, median of 20%, of pristine biomass for eastern
Bering Sea herring, and from 5% to 25%, median of 15%, for Prince William Sound

herring.
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