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ABSTRACT

Spatial heterogeneity in selection pressures can lead to extensive morphological variation 

and differences at functional genes between populations across a species’ range without 

corresponding genetic variation at neutral loci. Divergent selection among populations 

may thus lead to intraspecific variation and in many cases speciation. Phenotypic and 

genetic structure within and between Cinnamon Teal (Anas cyanoptera) and the closely 

related Blue-winged Teal (A. discors) was assessed using body size measurements and 

neutral genetic markers in conjunction with a functional locus, hemoglobin. Cinnamon 

Teal are composed o f five subspecies corresponding to distinct ecogeographic regions in 

North and South America. Subspecies and geographic regions differed significantly in 

overall body size, with the largest subspecies and the largest individuals found at high 

elevations in the central Andes (A. c. orinomus) and at high latitudes in southern 

Patagonia (A. c. cyanoptera). South American populations showed strong positive 

correlations with latitude and elevation while the migratory subspecies in North America 

(A. c. septentrionalium) showed few significant correlations with elevation and no 

relationship between latitude and body size. In addition, plumage differences were 

restricted to between North and South America as there was extensive variation observed 

within continents. Cinnamon Teal highland and lowland populations showed strong 

divergence in body size (P s t  = 0.56) and exhibited frequency differences in one non- 

synonymous a-globin  amino acid polymorphism (A sn/Ser-a9; F st = 0.60), despite 

considerable admixture o f reference loci. Selection pressures imposed by the hypoxic 

highland environment have likely resulted in asymmetric gene flow from the highlands



into the lowlands following a highland colonization event from the lowlands. Cinnamon 

Teal and Blue-winged Teal show distinct but paraphyletic mitochondrial DNA (<J>sr = 

0.41) and broadly shared nuclear alleles. Unlike South American Cinnamon Teal, North 

American Cinnamon Teal and Blue-winged Teal are characterized by high genetic 

diversity, large effective population size, and recent population expansion. Haplotypic 

and allelic sharing across continents is likely because o f incomplete lineage sorting rather 

than ongoing gene flow. W ithin-continent estimates yielded higher migration rates 

consistent with hybridization. However, Cinnamon Teal and Blue-winged Teal are 

similar in body size; differences in plumage coloration may reduce hybridization events.
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INTRODUCTION

Natural selection, sexual selection, and the stochastic process o f  genetic drift are 

the key evolutionary processes leading to divergence between populations and, in many 

cases, speciation (Questiau 1999, Coyne and Orr 2004, Price 2008). Fully or partially 

isolated populations may evolve distinct morphology and/or behavioral traits in response 

to diversifying selection, leading to premating and postmating isolation even in the 

absence o f genome-wide genetic differentiation (M eyer 1993, Bematchez et al. 1996, 

Schluter 1998, Seehausen and van Alphen 1998, Hendry 2001, Odeen and Bjorklund 

2003). M orphological and behavioral responses to selection can cause incongruence 

between species limits based on phenotypic traits and gene genealogies, especially in 

recently diverged taxa (Funk and Omland 2003, Avise 2004, Buehler and Baker 2005, 

Joseph et al. 2006, Maley and W inker 2010). O f particular interest are sexual ornaments 

used for mate recognition, which are a major component o f variation both among closely 

related species and within species (W est-Eberhard 1983, Price 1998, Questiau 1999, 

Johnsen et al. 2006). Incongruence between morphological and molecular data can 

generate taxonomic uncertainty, but examples o f incongruence also provide a valuable 

opportunity to gain insight into the evolutionary processes leading to speciation (Edwards 

et al. 2005, Johnsen et al. 2006, Joseph et al. 2006, Omland et al. 2006).

Local adaptation can occur through the substitution o f alleles with large effects on 

phenotypes or through allelic changes with smaller effects that gradually accumulate over 

evolutionary time (Orr and Coyne 1992, Orr and Smith 1998, Orr 2005). In 

heterogeneous landscapes, selection may restrict the flow o f alleles that are beneficial in



one particular environment but have reduced fitness in another (Rundle and Nosil 2005, 

Nosil et al. 2008, M ila et al. 2009). Furthermore, selection is likely not homogeneous 

across the genome and may not limit gene flow o f neutral alleles, unless those alleles are 

closely linked to loci under selection (McKay and Latta 2002, Emelianov et al. 2004, 

M allet 2005, Garant et al. 2007, Via 2009). Similarly, adaptive differentiation can still 

occur even in the face o f countervailing gene flow, as long as the strength o f selection is 

greater than the migration rate (s > m\ Slatkin 1987, McKay and Latta 2002, McCracken 

et al. 2009a). The colonization o f new habitats could thus facilitate rapid divergence in 

advantageous traits with little genetic differentiation at neutral markers. Therefore 

divergence may only be observed in a small portion o f the genome (Orr and Smith 1998, 

Via 2009).

High-elevation regions provide excellent opportunities to investigate the 

molecular and morphological bases o f  local adaptation. Low temperatures, increased 

desiccation, higher atmospheric radiation, and especially hypoxic conditions (oxygen 

concentration ca. 40% lower at 4000 m than at sea level) can be debilitating for 

individuals from lowland populations (Tucker 1968, Scott et al. 2009). Highland resident 

species and populations have evolved a number o f different strategies to survive in this 

extreme environment, resulting in genetically determined adaptations (Jessen et al. 1991; 

Storz et al. 2007, 2010; Storz 2010; Yi et al. 2010; Peng et al. 2011; Scott et al. 2011). 

Hemoglobin in particular has been demonstrated to evolve in response to severe hypoxia 

in a variety o f high-altitude species (e.g., Jessen et al. 1991; Weber et al. 1993; Leon- 

Velarde et al. 1996; W eber 2002; Storz et al. 2007, 2010). Often, only one or a few

2



amino acid changes are observed in the Hb protein between highland and lowland 

conspecifics (Perutz 1983, Hiebl et al. 1987, Braunitzer and Hiebl 1988). However, 

when amino acid substitutions are compared across species, the same, similar, or adjacent 

substitutions have evolved independently in multiple highland taxa (McCracken et al. 

2009b,c).

Here we investigate the population genetic structure and morphological 

divergence in Cinnamon Teal (Anas cyanoptera) and the closely related Blue-winged 

Teal (A. discors) using nucleotide sequences from the mitochondrial DNA (mtDNA) 

control region, five nuclear introns, and functional genes (hemoglobin), and data for a 

series o f body-size and plumage coloration traits. Unlike Northern Hemisphere 

waterfowl, which are migratory and show little geographic variation, ducks in South 

America tend to be less migratory, more restricted in geographic range, and well 

differentiated into two or more subspecies (Phillips 1923, Johnsgard 1978, Williams 

1991, Bulgarella et al. 2007). Cinnamon Teal are no exception: widespread throughout 

the W estern Hemisphere, the species comprises five subspecies that inhabit distinct 

geographic and ecological zones (Snyder and Lumsden 1951, W ilson et al. 2010). 

Differences in life history traits (e.g., migratory behavior and habitat) enabled me to 

investigate patterns o f population subdivision and gain insight into how selection has 

produced adaptation at both the phenotypic and m olecular level.

Cinnamon Teal and Blue-winged Teal are closely related dabbling ducks that 

exhibit pronounced variation in body size, coloration in males, habitat choice, and 

behavioral traits (e.g., migratory behavior and territoriality; Gammonley 1996, Rohwer et



f

al. 2002). Despite considerable phenotypic differences in male breeding plumage, 

previous studies have found little or no genetic differentiation (Kessler and Avise 1984, 

Johnson and Sorenson 1999, Kerr et al. 2007), suggestive o f  recent divergence. Both 

species are widespread throughout the Western Hemisphere and are occasionally found in 

sympatry in western North America and in northern South America where they have been 

reported to occasionally hybridize (Spencer 1953).

In this study, I present analyses o f both population genetic and morphological 

data to explore the evolutionary relationships and adaptations o f Cinnamon Teal 

subspecies and Blue-winged Teal. The primary goals o f this study were to: (1) examine 

morphological variation among Cinnamon Teal populations in relation to subspecific 

status and ecogeographic region; (2) examine genotypic and phenotypic variation 

between low- and high-elevation populations o f Cinnamon Teal using a multilocus data 

from both presumably neutral and functional genes; (3) investigate the demographic 

history and timing o f divergence between Cinnamon Teal and Blue-winged Teal; (4) 

characterize body size and plumage coloration differences between Cinnamon Teal and 

Blue-winged Teal to provide guidelines for species identification; (5) examine plumage 

color differences among Cinnamon Teal subspecies from the visual perspective o f the 

birds using a model o f avian color discrimination (Vorobyev and Osorio 1998); and (6) 

assess specimen shrinkage in waterfowl and its impact on studies involving both museum 

specimens and live birds.
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CHAPTER 1

ECOGEOGRAPHIC VARIATION IN CINNAM ON TEAL (ANAS CYANOPTERA) 

ALONG ELEVATION AL AND LATITUDINAL GRADIENTS1

ABSTRACT

Cinnamon Teal (Anas cyanoptera) comprise five subspecies that inhabit a variety 

o f habitats along an elevational gradient at temperate and tropical latitudes. North 

American and South American subspecies differ in their migratory behavior, which may 

have contributed to differences in body size. We measured body size o f the five 

recognized subspecies (A. c. cyanoptera, A. c. orinomus, A. c. borreroi, A. c. tropica, and 

A. c, septentrionalium) throughout their ranges and evaluated morphometric 

differentiation in relation to Bergm ann’s rule. Subspecies and geographic regions 

differed significantly, with the largest subspecies and the largest individuals found at high 

elevations in the central Andes (A. c. orinomus) and at high latitudes in southern 

Patagonia (A. c. cyanoptera). Smaller-bodied individuals (A. c. cyanoptera) were found 

at the northern and southern limits o f the Altiplano, where intermixing between 

subspecies with different body sizes might occur. However, there is no direct evidence of

'W ilson, R. E., T. H. Valqui, & K. G. McCracken. 2010. Ecogeographic variation in 

Cinnamon Teal (Anas cyanoptera) along elevational and latitudinal gradients. 

Ornithological M onographs 67: 141-161.



A. c. cyanoptera  breeding at high elevations (>3,500 m). In contrast to patterns within 

South America, the migratory subspecies in North America (A. c. septentrionalium) 

showed few significant correlations with elevation and no relationship between latitude 

and body size. M orphological diversity within Cinnamon Teal appears to have arisen 

from spatial and temporal heterogeneity in selection pressures resulting in adaptations to 

their local environments.



Introduction

Geographic variation in morphology is common, and widespread patterns are often 

explained within an adaptive framework (Price 2008). One o f the best-known 

ecogeographical patterns o f variation in body size among vertebrates is Bergm ann’s rule, 

which states that individuals from populations in colder climates tend to be larger than 

those from populations in warmer climates (Bergmann 1847; Mayr 1956, 1963). 

M odifications to Bergm ann’s rule showed that larger body size would also be expected at 

higher latitudes and elevations, or in cooler or drier climates (Snow 1954; James 1968, 

1970, 1991). Even though birds show a strong tendency to conform to modified 

definitions o f Bergm ann’s rule (Ashton 2002, Meiri and Dayan 2003), the adaptive 

mechanisms responsible for this pattern have been debated. Various mechanisms have 

been proposed, such as heat conservation, fasting endurance, and competition for 

resources (Bergmann 1847; M cNab 1971; Calder 1974, 1984; James 1991). Thus, 

ecotypic variation may result from complex underlying processes involving various 

interrelated variables (M illien et al. 2006).

South American ducks (Anseriformes: Anatidae) are particularly good candidates 

for a study o f ecogeographic variation. Unlike their Northern Hemisphere relatives, 

which are migratory and show little morphological variation, ducks in South America 

tend to be less migratory, more restricted in geographic range, and well differentiated into 

two or more subspecies that differ in plumage and other morphological characters 

(Phillips 1923, Johnsgard 1978, W illiams 1991, Bulgarella et al. 2007). For example, the 

ducks that inhabit the puna grasslands and wetlands o f  the high Andes (3,000-5,000 m)



tend to have overall larger body size and differ in conspicuous traits, such as plumage, 

bill color, or eye color, from those in southern Patagonia, where most breeding habitat 

occurs below 1,500 m (Fjeldsa and Krabbe 1990). M ost Andean waterfowl thus comprise 

one or more predominantly lowland subspecies (or species) and one or more highland 

subspecies (Phillips 1923).

Cinnamon Teal (Anas cyanoptera) are widespread throughout the Western 

Hemisphere, and five subspecies that inhabit distinct geographic and ecological zones are 

currently recognized: A. c. cyanoptera, A. c. orinomus, A. c. borreroi, A. c. tropica, and 

A. c. septentrionalium  (Snyder and Lumsden 1951, Delacour 1956, American 

Ornithologists' Union 1957, Gammonley 1996). Anas c. septentrionalium  breeds 

throughout western North America (Bellrose 1980, M adge and Bum 1988, Gammonley 

1996), whereas the other four subspecies breed in South America. In South America, A. 

c. borreroi is endemic to the Colombian Andes and is replaced by A. c. tropica in the 

adjacent tropica] lowlands; intermediate elevational habitat is unsuitable for either 

subspecies (Snyder and Lumsden 1951, Delacour 1956). Anas c. orinomus is endemic to 

the Altiplano and adjacent puna region o f Argentina, Bolivia, Chile, and Peru. Anas c. 

cyanoptera  occurs throughout the Andean lowlands o f Peru, Bolivia, Chile, Paraguay, 

Brazil, Uruguay, and Argentina and is occasionally found sympatrically with A. c. 

orinomus in the high Andes (Evarts 2005). Each Cinnamon Teal subspecies thus has a 

distinct geographic distribution with little or no overlap, with the exception o f A. c. 

cyanoptera  and A. c. orinomus where they co-occur in the central high Andes.
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We collected Cinnamon Teal throughout their range in North America and South 

America and compared differences in body size among geographic regions. Evidence for 

B ergm ann’s rule was evaluated to gain insight into factors shaping morphological 

divergence over elevational and latitudinal gradients.

Methods

Specimen collection and  subspecies classification.— We collected 153 Cinnamon Teal 

(39 females and 114 males) from Argentina (2001, 2003), Bolivia (2001), Peru (2002), 

and the western United States (2002-2003) during the breeding season (Fig. 1.1 and 

Appendix 1.1). Voucher specimens are archived at the University o f Alaska Museum 

(Fairbanks), Museo de Historia Natural de la Universidad de San Marcos (Lima), and 

Coleccion Boliviana de Fauna (La Paz). Measurements from Colombian vouchered 

specimens from the Royal Ontario Museum and Smithsonian Institution National 

Museum of Natural History were obtained for A. c. borreroi (5 females and 13 males) 

and A. c. tropica (2 females and 2 males); new specimens could not be obtained because 

these subspecies are endangered.

We used a combination o f geography and wing chord length to classify each 

specimen (Snyder and Lumsden 1951, Blake 1977). Despite differences in plumage 

(e.g., Blake 1977), coloration is variable, and A. c. cyanoptera, A. c. orinomus, and A. c. 

septentrionalium  were difficult to classify to subspecies on the basis o f plumage color 

alone (W ilson et al. 2008). We classified all individuals from North America as A. c. 

septentrionalium  because it is the only subspecies known to occur there. The Colombian 

specimens we used were the basis o f the original subspecies descriptions (Snyder and
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Lumsden 1951), and we followed them in classifying highland specimens as A. c. 

borreroi and lowland specimens as A. c. tropica. Anas c. orinomus is the most distinct of 

all the subspecies, which led some early researchers to consider it a separate species 

(Oberholser 1906). Anas c. orinomus was easily differentiated from A. c. cyanoptera by 

overall body size. To check the accuracy o f classifications o f A. c. cyanoptera and A. c. 

orinomus in areas o f sympatry, we compared wing chord length to individuals o f known 

classification. All initial classifications were confirmed.

Body measurements.— W e took nine body-size measurements (±0.1 mm) from 

each bird: wing chord length (carpal joint to longest primary feather unflattened, ±1 mm), 

tail length (base o f the uropygial gland on back to tip o f the center tail feather, ±1 mm), 

exposed culmen length, bill length at nares (anterior edge o f nares to tip o f nail), tarsus 

bone length (tarsometatarsus), bill height (height o f  upper mandible at anterior edge o f 

nares), bill width (width o f  upper mandible at anterior edge o f  nares), and body mass (g). 

Body mass was not available from the Colombian subspecies and therefore was only used 

as a secondary character in subspecies identification. M easurements for all but 45 

recently collected specimens were taken the day o f collection and prior to preparation as 

m useum specimens (wet measurements), and then again several months or years after 

preparation (dry measurements; Appendix 1.2) by R.E.W. For 52 individuals from 

Argentina, Bolivia, and Colombia, only measurements from museum specimens were 

available (dry measurements). Specimen shrinkage during drying is a universal 

phenomenon and can cause analytical problems if  not properly accounted for in studies 

that combine live or freshly killed birds and museum specimens (e.g., W inker 1996).
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Fresh and dry measurements taken by the first author differed significantly (W ilson and 

M cCracken 2008). Therefore, dry measurements o f those 52 individuals could not be 

directly substituted for wet measurements. '

We chose to analyze wet measurements, and to use individuals missing these data 

we used a multiple imputation (MI) procedure implemented in the program NORM 

(Schafer 1999) to estimate wet measurements for the 52 individuals with only dry 

measurements, because we had both wet and dry measurements for most o f the data set. 

An expectation-maximization algorithm (EM) was used to obtain starting values for the 

multiple imputation procedure, followed by data augmentation using Markov-chain 

Monte Carlo to produce multiple imputations o f the missing data. W e used a random 

number seed and 10,000 iterations, with imputation every 1,000 iterations. The resulting 

10 data sets were combined following Rubin’s (1987) rules for scalar estimates to 

provide a single set o f estimates for each specimen with missing data. The combined 

data composed o f original wet measurements obtained from 123 specimens and estimated 

wet measurements from 52 specimens were used for all statistical analyses.

Statistical analysis o f  m easurements.— Statistical analyses were performed with 

MINITAB Statistical Software (Minitab, State College, Pennsylvania). All traits were 

tested for normality with Kolmogorov-Smimov tests and were normally distributed (Ps > 

0.05). A multivariate analysis o f variance (M ANOVA) was performed to evaluate 

overall differences among subspecies and geographic regions for each sex. Geographic 

regions were defined as follows (with the corresponding subspecies inhabiting each area): 

(1) North America (A. c. septentrionalium ); (2) Colombian highlands (A. c. borreroi)', (3)
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Colombian lowlands (A. c. tropica)-, (4) Peruvian coast (A. c. cyanoptera)', (5) central 

high Andes o f Argentina, Bolivia, and Peru (A. c. orinomus and A  c. cyanoptera)', and 

(6) lowland Argentina (includes Patagonia and lowland areas o f Cordoba; A. c. 

cyanoptera). Collection locations in North America (California, Oregon, and Utah) were 

treated as a single geographic unit, which is consistent with low levels o f male breeding- 

site fidelity in North America (Anderson et al. 1992). Analysis o f variance (ANOVA) 

and pairwise comparisons for each individual measurement were performed using a 

general linear model with Bonferroni correction for multiple comparisons. Pairwise 

comparisons were not made with A. c. tropica (lowland Colombia) because o f low 

sample size. W e used a principal component analysis to illustrate overall differences in 

body size among subspecies. Only those principal components with eigenvalues >1 were 

used for partial correlation and subspecies classification analyses.

Finally, the jo in t relationships between elevation and latitude and morphological 

variables were examined using partial correlation analysis for the following areas: all 

populations pooled, North America, South America, and southern South America 

(Altiplano and associated lowlands and Patagonia). In addition, correlations between 

latitude and body size were examined for A. c. cyanoptera (lowland and highland) 

separately, because it is the only subspecies with populations distributed over a large 

latitudinal gradient. Analyses were conducted separately for each sex, and significance 

levels were corrected for multiple comparisons using Bonferroni methods.

Subspecies classification.— We used two methods to evaluate subspecies 

identifications. We first used linear discriminant analysis to evaluate whether the
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Cinnamon Teal subspecies conformed, on the basis o f body-size measurements, to the 

75% rule (Amadon 1949, M ayr 1969), which states that 75% of the individuals o f one 

subspecies must be distinguishable from all other subspecies. Measurements found to be 

significantly different between at least two subspecies (classified based on overall body 

size) from the MANOVA and ANOVAs were included in this analysis. The reliability of 

the discriminant analysis was assessed using a cross-validation (jackknife) procedure, in 

which each observation was omitted one at a time and then reclassified using a 

classification function derived from the remaining observations (Manly 2000). Cross

validation gives a less biased error rate in classification, because it does not include 

observations that are used to create the classification function. We performed a 

discriminant analysis for each sex and locality o f collection and did not include A. c. 

tropica because o f low sample size.

We also tested the diagnosability o f subspecies using the method o f Patten and 

Unitt (2002), which focuses on the extent o f overlap rather than detecting mean 

differences. Diagnosability o f subspecies was determined for each measurement 

separately and for overall body size (PCI). An index value (Ay) > 0 indicates that 

subspecies i is diagnosable from subspecies j .  Reciprocal tests were performed to 

determine whether subspecies i is diagnosable from subspecies j  and whether subspecies j  

is diagnosable from subspecies /.

Results

Subspecies differed significantly in overall body size (W ilks’s X = 0.05, F  = 25.38, d f = 

28 and 574, P < 0.001), as did the sexes (W ilks’s K = 0.74, F  = 7.16, d f = 7 and 159, P <
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0.001; Table 1.1). There was no significant interaction between subspecies and sex 

(W ilks’s X -  0.78, F  = 1.46, d f = 28 and 574, P  = 0.061). Anas c. orinomus was 

significantly larger than A. c. tropica  (e. g., wing chord: 32.50 mm difference; tarsus:

4.01 m m  difference) and ,4. c. septentrionalium  (e. g., w ing chord: 31.50 mm difference; 

tarsus: 4.83 mm difference) in most measurements, with A. c. borreroi and A  c. 

cyanoptera  intermediate in body size (Tables 1.1 and 1.2). In addition, when individuals 

were grouped on the basis o f collection locality instead o f subspecies identification, 

geographic regions differed significantly in body size (W ilks’s X = 0.06, F  = 17.54, d f = 

35 and 662, P  < 0.001), as did the sexes (W ilks’s X = 0.75, F =  7.57, d f = 7 and 157, P < 

0.001). There was no significant interaction between geographic region and sex (W ilks’s 

X = 0.78, F =  1.16, d f = 35 and 662, P  = 0.244). The same basic overall pattern was 

observed, regardless o f whether individuals were grouped by subspecies or by geographic 

region. Highland individuals were significantly larger and intermediate body sizes were 

found in Patagonia (A. c. cyanoptera) and the Colombian highlands (A. c. borreroi), 

except for some notable exceptions. Among females, the lowland Argentine population 

(A. c. cyanoptera) was not significantly different from the central high Andean 

population (A. c. orinomus) in either bill length measurements (bill length at nares: 2.04 

mm difference; culmen length: 2.59 mm difference) or bill width (0.39 mm difference).

In males, the lowland Argentine population was similar to the Andean populations (A. c. 

cyanoptera  and A. c. orinomus combined) in tail length, bill length at nares, bill height, 

and bill width and was significantly larger than the Peruvian coastal population in most 

measurements (Table 1.3). Specimens o f A  c. cyanoptera collected at high elevation in
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the Andes were significantly smaller than A. c. orinomus for only wing chord (27.7 mm 

difference) and tail length (10.83 mm difference). The North American and Argentine 

lowland populations o f A. c. cyanoptera  had similar bill lengths, but the Argentine 

population had significantly greater bill height (1.17 mm difference) and bill width (0.91 

mm difference). North American populations had significantly larger bill length at nares 

(1.78 mm difference) and culmen length (1.65 mm difference) than Peruvian coastal 

populations o f A. c. cyanoptera.

Principal component analysis.— The first principal component (PC I; female 

eigenvalue = 3.54, male eigenvalue = 3.33) accounted for 50.5% and 47.6% of the 

variance for females and males, respectively, and represented an overall body size 

difference (Table 1.4). The second principal component (PC2; female eigenvalue = 1.57, 

male eigenvalue = 1.63) accounted for 23.2% and 22.5% o f the variance for females and 

males, respectively, and represented a bill shape difference among the subspecies, as bill 

measurements were the most influential variables. A longer, thinner bill corresponded 

with a higher score. Even though plots o f PCI versus PC2 showed some overlap among 

subspecies, only A. c. septentrionalium  and A. c. cyanoptera  did not differ in P C I, and A. 

c. orinomus and A. c. cyanoptera  did not differ in PC2 (Fig. 1.2). W hen subsets o f A. c. 

cyanoptera  were analyzed geographically (Argentina, Peruvian coast, and Andes), the 

Argentine population was significantly larger in overall body size (PC I), whereas the 

Peruvian coastal population was more similar to A. c. septentrionalium  (North America). 

Anas c. orinomus had the largest overall body size, with A. c. borreroi and the lowland 

Argentine population and individual A. c. cyanoptera  collected in northwest Argentina

15



showing intermediate body size. Anas c. septentrionalium  had the longest bill (PC2) 

after controlling for variation in body size (Fig. 1.2).

Partial correlation analysis.— Several significant patterns were found after 

Bonferroni correction in relation to latitude and elevation (Tables 1.5 and 1.6 and Figs. 

1.3-1.10). M ost measurements showed a significant increase with elevation for males 

and females among all individuals and within South America only (elevation increase of 

-4 ,000  m). In males, PC2 (bill shape) decreased when all individuals were pooled and 

increased within North America over an elevational increase o f -1 ,600  m.

Significant correlations with latitude were primarily restricted to males. In 

females, only bill height showed a positive correlation with latitude within southern 

populations in South America (A. c. cyanoptera and A. c. orinomus). In males, tarsus, tail 

length, and bill height showed a negative correlation, and bill length at nares, culmen 

length, and PC2 were positively correlated with increasing distance from the equator. 

W ithin southern South America, only bill height and bill width were positively correlated 

with increasing latitude. W hen only A. c. cyanoptera (lowland subspecies) was 

considered, there was a strong positive correlation between latitude and bill length at 

nares, culmen length, bill height, bill width, and PCI from the Peruvian coast to southern 

Patagonia.

Subspecies classification.— Discriminant analysis with cross-validation correctly 

classified males to originally assigned subspecies with 69-100%  and females with 40

100% accuracy (Table 1.7). Discriminant analysis correctly assigned 53.8-86.0%  o f 

males and 40.0-100.0%  o f females to their area o f origin (Table 1.8). Six misclassified
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male individuals from the central high Andes were assigned to the nearest lowland 

population adjacent to the area where they were collected, Argentina (n = 3) or the 

Peruvian coast (n = 3). All o f these individuals were assigned correctly as A. c. 

cyanoptera in the subspecies discriminant analysis.

Male A. c. orinomus were diagnosable from A. c. cyanoptera using wing chord, 

tarsus, tail length, and PC I; from A. c. septentrionalium  using wing chord, tarsus, tail 

length, bill height, and PC I; and from A. c. borreroi using wing chord, tarsus, and bill 

length at nares (Table 1.9). The same pattern was found in female A. c. orinomus, except 

that females could not be distinguished from A. c. borreroi using bill length at nares 

(Table 1.10). Anas c. septentrionalium  and A  c. borreroi were diagnosable using bill 

length at nares (A b = 9.74, £>bs = 1.50), culmen length (Ab = 7.63, A s  = 0.01), bill height 

(Asb = 0.02, Abs = 2.60), and PCI (A b = 4.40, Abs = 0.91) for males. When all three 

subpopulations o f A. c. cyanoptera were pooled, A. c. cyanoptera was not diagnosable 

from A. c. septentrionalium  or A. c. borreroi for any single measurement or P C I . 

However, at the individual population level, lowland Argentina (A. c. cyanoptera) was 

diagnosable from North America (A. c. septentrionalium) using tarsus (A a = 5.24, A s  =

0.90) and PCI (A a = 4.01, A s  = 0.61) and from males in the Colombian highlands (A. c. 

borreroi) using bill length at nares (Aba = 10.16, A ab = 0.80). The Peruvian coastal 

population (A. c. cyanoptera) was diagnosable from A. c. septentrionalium  using bill 

length at nares (A P = 4.91, D ps = 0.06). Female A. c. borreroi were diagnosable from 

both the Peruvian coast (Apb = 7.94, Abp = 1.60) and lowland Argentine (Aab = 7.12, Aba 

= 0.37) populations o f A. c. cyanoptera using P C I.
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Discussion

Cinnamon Teal are distributed along elevational and latitudinal gradients, and within 

these gradients climatic and habitat variables change abruptly, placing different selection 

pressures on different populations (e.g., subspecies). Variances in morphological 

characteristics appear to conform to ecogeographic regions, given that larger individuals 

occupied higher elevations in the Andes (A. c. orinomus and A  c. borreroi) and occur at 

higher latitudes in Patagonia (A. c. cyanoptera), whereas smaller conspecifics resided at 

lower elevations in temperate regions (A. c. cyanoptera, A. c. septentrionalium, and A. c. 

tropica). Environmental variables as a function o f temperature and humidity have been 

related to body size, and modifications o f Bergm ann’s rule have been made to take into 

account factors associated with high latitudes and elevations as well as arid habitats (e.g., 

“ latitude effect,” Snow 1954; “aridity effect,” Hamilton 1961). However, other factors, 

such as hypoxia, fasting endurance, and life history traits (resource competition and 

migration), are also known to facilitate variation in body size (Calder 1974, 1984;

Hopkins and Powell 2001; M illien et al. 2006).

The climate o f the Andes changes dramatically from the warm wet temperate 

zone o f the Colombian Andes to the colder arid climates characteristic o f the Altiplano 

and Patagonia. Patagonia is cool, dry, and windy, with substantial seasonal and diurnal 

temperature fluctuations. Birds that inhabit southern Patagonia experience average low 

temperatures ranging from 3°C (Esquel, Chubut) to 8°C (Rio Gallegos, Santa Cruz). The 

Andean Altiplano is also semi-arid, with most precipitation falling during the austral 

summer (Decem ber to February; Garreaud et al. 2003), leaving the rest o f the year cool,
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dry, and windy. The average low temperatures at Cusco, Peru (3,248 m), and La Paz 

(4,012 m) have been reported as 5°C and 1°C, respectively (Canty and Associates 2005). 

Separated by an average o f 115 km from the puna zone o f the Andes, the lowlands o f the 

Peruvian coast consist o f scattered river valleys and associated wetlands that are also 

classified as semi-arid (Pearson and Plenge 1974). However, in contrast to the climates 

o f the Altiplano and Patagonia, the Peruvian coast is, on average, 10°C warmer, with 

temperatures ranging from 15 to 18°C (Canty and Associates 2005). We found that 

individuals in the warmer, wetter climates o f North America (A. c. septentrionalium), the 

Colombian lowlands (A. c. tropica), and the Peruvian coast (A. c. cyanoptera) had 

smaller body sizes than those in the central high Andes (A. c. orinomus and A. c. 

cyanoptera) and Patagonia (A. c. cyanoptera).

Individuals in high-altitude populations o f Cinnamon Teal are significantly larger 

than their closest lowland relatives. The largest subspecies, A. c. orinomus, is found 

exclusively in the central high Andes, with no records o f dispersal to adjacent lowland 

habitats. Individuals collected at mid-elevations (-2 ,500 m; A. c. borreroi and A. c. 

cyanoptera  in northwest Argentina) tended to have intermediate body size (Figs. 1.7

1.10). High-altitude habitats exert selection pressures that arise from multiple factors 

(Monge and Leon-Velarde 1991). Besides having a cold, arid climate, these habitats 

have low air density and the partial pressure o f oxygen at 4,000 m is -60%  that at sea 

level which may also explain, in part, why high Andean resident populations have larger 

body size than individuals in populations at lower elevations in the Andes with similar 

climatic factors (Colombia and Patagonia). Hemoglobin oxygen affinity and body size,
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for example, have been found to be correlated, such that larger animals tend to have 

higher affinity (Schmidt-Nielsen and Larimer 1958, Hopkins and Powell 2001). By 

contrast, smaller-bodied animals tend to have higher metabolic requirements for oxygen, 

which may favor a higher venous oxygen tension (Schmidt-Nielsen and Larimer 1958, 

Hopkins and Powell 2001). Other waterfowl species that inhabit similar elevational 

gradients in the Andes also show a strong correlation between body size and elevation 

(Blake 1977, Bulgarella et al. 2007). Each highland population also possesses amino acid 

polymorphisms in the major hemoglobin genes that are likely adaptive (McCracken et al. 

2009a, b). Thus, there is an overall trend among South American waterfowl. Larger 

individuals are found at higher elevations, whereas the adjacent lowlands are inhabited by 

smaller conspecifics that also differ in other important traits.

Additionally, there is a general trend for sedentary species to comply more often 

with Bergm ann’s rule than migratory species, possibly because nonmigratory species are 

more affected than migratory species by climatic and other factors such as food 

availability, in that resident populations are exposed to the same local selection pressures 

throughout all seasons (Meiri and Dayan 2003). Cinnamon Teal comprise both sedentary 

and migratory subspecies, with the migratory small-bodied A  c. septentrionalium  

showing few significant correlations with either latitude or elevation. There was a 

correlation with bill shape (PC2) and elevation among males, which was attributable to a 

decrease o f <0.6 mm in bill width or bill height between Utah (1,275 m) and either 

Oregon or California (<700 m). However, male breeding-site philopatry is typically very 

low in dabbling ducks (Anderson et al. 1992). Conversely, South American subspecies,
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with the exception o f the southernmost populations in Argentina, may be predominantly 

nonmigratory and show significant correlations between morphological and geographic 

variables, especially A. c. cyanoptera , which occupies a wide range o f habitats from 

coastal Peru to southern Patagonia.

Little information is available on the movements o f individual teal between the 

lowlands and highlands o f South America. The lowland subspecies, A. c. cyanoptera, 

occurs in the highlands in small numbers, but the extent o f its distribution in the Andes is 

unknown. We sampled individual A. c. cyanoptera in the highlands at only the northern 

and southern edges o f the Altiplano. Six individuals o f this subspecies were collected at 

2,141-3,369 m in northwestern Argentina (KGM 442, KGM 1110, KGM 1142) and at 

3,393—4,039 m in Peru (REW  118, REW 122, REW 164). There are no records of A. c. 

cyanoptera breeding in the high Andes, and only one individual we collected was in 

breeding condition (KGM 1142), judging by gonad size (left testis: 3 0 x 1 0  mm), even 

though all individuals were in complete breeding plumage. Two individuals (REW 118, 

REW 122) from Jauja, Peru (3,506 m), were part o f a large group that contained both 

highland and lowland subspecies. All other individuals were either solitary or 

accompanied by one or two other individuals, and no other Cinnamon Teal were found in 

the surrounding areas. This suggests that these individuals may have been migrants or, 

more likely, vagrants to these areas rather than permanent residents, as each individual 

was assigned to the nearest lowland population. In addition, there are no records o f A. c. 

orinomus descending to coastal habitats. One A. c. orinomus (KGM 441) was collected 

at 1,468 m in Salta, Argentina, which, to our knowledge, is the lowest elevation reported
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for this subspecies. Pearson and Plenge (1974) recorded occasional sightings o f other 

Andean waterfowl species (e.g., A. puna  and A. flavirostris) on the coast o f Peru, which 

they attributed to decreased food availability at high elevations during the dry season or 

competition with seasonal migrants from the south. W ater temperature o f high Andean 

lakes (>4,000 m) shows little seasonal variation within the Andean tropical regions, and 

only the shallow ponds and lakes will freeze or dry up (R. E. W ilson pers. obs.). 

Cinnamon Teal populations thus face a variety o f environmental factors, and phenotypic 

diversity appears to have arisen from spatial and temporal heterogeneity in selection 

pressures resulting in adaptations to the local environment.

Subspecies classification.— M orphological (plum age and body size) 

distinctiveness o f individuals in adjacent geographic areas o f North America and South 

America led to the naming o f five Cinnamon Teal subspecies (Snyder and Lumsden 

1951). However, this classification had not previously been tested. Our analyses 

(M ANOVA and ANOVA) differentiated all subspecies for males, and female A. c. 

orinomus differed from all other subspecies. Discriminant analysis showed high 

accuracy o f subspecies prediction o f males for all subspecies and A. c. orinomus and A. c. 

cyanoptera  females. However, diagnosability o f  individuals to subspecific groups using 

the 75% rule (Amadon 1949) showed that few characters reliably distinguished 

subspecies, excluding A. c. orinomus. Low diagnosability among subspecies for females 

may be attributable in part to low sample sizes. The m ost reliable characters that enabled 

diagnosis between A. c. orinomus and the other subspecies were wing chord, tarsus,-and 

PCI (overall body-size variable). Low diagnosability o f A. c. cyanoptera with respect to
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North American and Colombian subspecies could be attributable to within-subspecies 

variation, given that there were significant mean differences between populations o f A. c. 

cyanoptera  populations. W hen analyzed at the population level, the Argentine and 

Peruvian coastal populations were diagnosable from A. c. borreroi and A. c. 

septentrionalium  using bill length measurements or PC I. Upon examination of 

measurements originally used to define these subspecies, the results are not surprising, 

because there is considerable overlap in body-size measurements, which indicates that 

measurements alone may not be sufficient to distinguish subspecies. Other characters, 

such as plumage coloration and patterns, have been proposed to differentiate subspecies 

(Snyder and Lumsden 1951). Although the coloration o f males within and among 

subspecies is variable, plumage divergence in color patches that appear identical to the 

human eye has been reported between A. c. septentrionalium  and South American 

subspecies (A. c. orinomus and A  c. cyanoptera', W ilson et al. 2008). The Colombian 

subspecies (A. c. borreroi and A. c. tropica) are typically darker in coloration, with 

spotting occurring at higher frequency (100% in A. c. tropica) than in the other three 

subspecies, but spotting also can be variable, with substantial overlap among other 

subspecies (Snyder and Lumsden 1951). The tone o f  the cinnamon color in males ranges 

from dark (Colombian subspecies) to pale (A. c. orinomus). Females are more difficult to 

differentiate with plumage, but in general, as with males, Colombian subspecies are 

darker in color. Thus, we suggest that the current subspecies classification is valid on the 

basis o f body-size measurements (present study) and plumage coloration and as described 

by Snyder and Lumsden (1951) and W ilson et al. (2008).
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Figure 1.1. Sampling localities and geographic ranges for Cinnamon Teal (Ridgely et al. 2003).

to>o



3

2

1

0

O ' 1
-2
- 3

-4
-5

“ nv* ™?x/ ?

■  Altiplano
'rgentina cyar 

□  Pern coast 
A orinomus 
X septentrionalium 
+  tropica 
♦  borreroi

-4 -3 -2 -1 0 1 2 3 4 5 6
PCI

Figure 1.2. Principal component analysis (PCI vs. PC2) o f  nine body-size measurements for male (left) and female (right) 
Cinnamon Teal.

o



31

250

■£230
E,
^ 2 1 0
o
■5 190O)c
^170

150

120

110
"e
E 100
£
o> 90
ca> 80
i i 70

60

y = -0.169x + 189.0 
r2 =0.13

A* □

-6 0  -4 0  -2 0

**

40 

38 

^  36

£  34
(/> __
|  32 
|5 30

28

y = 0.032x + 33.78 
r2= 0.08

l i

0 20 40 60

y = -0.135x + 79.30 
\  r2 = 0.10

26
-6 0 -4 0  -20 20 40 60

-6 0  -4 0  -2 0 20 40 60 -6 0  -4 0  -2 0 20 40 60

-6 0  -4 0  -2 0

■  Altiplano
lowland Argentina > cyanoptera 

□  Peru coast J 
A  orinomus

20 40 60 -6 0  -4 0  -20
Latitude

20 40 60

X septentrionalium 
+  tropica 
♦  borreroi

Figure 1.3. Relationships between latitude and body-size measurements for male 
Cinnamon Teal. Regression line is for A. c. cyanoptera populations only.



P
C

II
 

Bi
ll 

wi
dt

h 
(m

m
)

20

19

18

17

16

15

14

- 6 0

3

1

-1

-3

-5  _  

-60

32

y = -0.030x + 15.36 
r2= 0.44

-4 0  -2 0

O 1

20 40 60

-1

- 3

□ X

-6 0  -^ 0  -2 0  0 20 40 60

-4 0  -2 0  0 20 40 60

lowland Argentina l f
□  Peru coast /  y  w 
A  orinomus 
X septentrionalium 
+  tropica 
♦  borreroi

Latitude

Figure 1.4. Relationships between latitude and body-size measurements for male 
Cinnamon Teal. Regression line is for/I. c. cyanoptera  populations only.



33

250

■§230

^210
o
u 190o>c
^ 1 7 0

150
-6 0

150

.130

'110

y = -0.048x + 179.48
r2 . 0.04

-4 0  -2 0

E
E

o>
S 90

|2
70

20 40 60

y = -0.060x + 76.43 
r2= 0.02

-Q
□
□

-6 0  -4 0  -2 0

_  40 
|  38

» 36 
£ 34
2 32

30
n  28 
j j  26
=  24
m 22

20 40 60

y = -0 .015x + 31.51 
* r2= 0.08

-6 0  -4 0  -2 0  0 20 40
lowland Argentina i 

□  Peru coast 
A  orinomus

60

40
38
36

34
32

CO 3 
£
I® 30 

28

26 
-6 0

50
48

E
E 46
£  44 o>
c 42 0)
c 40<D
e  38 
O 36

y = 0.029x + 31.90 
r2= 0.11

-4 0  -2 0 20 40 60

-0.01 Ox + 41.81 
r2= 0.01

34
-6 0  -4 0  -2 0 20 40 60

1J cyanoptera

-6 0  -4 0  -2 0  0 20
Latitude x  septentrionalium

+  tropica 
♦  borreroi

40 60

Figure 1.5. Relationships between latitude and body-size measurements for female 
Cinnamon Teal. Regression line is for A. c. cyanoptera  populations only.



PC
ii 

Bi
ll 

wi
dt

h 
(m

m
)

34

-60 —40 -20  
3i

0 20 40 60

1 

-1

-3

-5
-60

h .  & *

—40 -20 0 20 40 60

O
CL

5 

3 

1

-3  

-60 -40

a-'

-20 20 40 60

lowland Argentina 1 cyanoptera 
□  Peru coast /
A  orinomus 
X septentrionalium 
+  tropica 
♦  borreroi

Latitude

Figure 1.6. Relationships between latitude and body-size measurements for female 
Cinnamon Teal. Regression line is for A. c. cyanoptera  populations only.



Bi
ll 

len
gt

h 
at 

na
re

s 
(m

m
) 

Ta
il 

len
gt

h 
(m

m
) 

W
ing

 
ch

or
d 

(m
m

)

35

250

230

210

190

170

150 -  
-500 

120

110

100

90

80

70

60 - 
-500 
42

40 y = 0.001x + 34.11 * “ 17
38 „ r2= 0.13 ^  -g. 16

36' IT  J
34 *. y  1 1 4

32 a t * South America S  13
30 c j  y = 0.001x + 33.43 25 12
28 • * r2= ° - 1 7 ‘ H

26 J   ■     • 1 0 
-500 500 1500 2500 3500----- 4500 -500

■  Altiplano y Elevation
lowland Argentina > cyanoptera 

□  Peru coast J
A orinomus

Overall 
0.007X+ 186.81 

r2= 0.58

Overall 
0.001x+31.29 
r2= 0.44

South America 
= 0.001 x + 32.48 

r2= 0.37

South America 
= 0.007x+ 190.04 

r2= 0.58

South America 
= 0.002x + 84.65 

r2= 0.16

Overall 
0.0004X + 44.87 

r2= 0.07

Overall ■ 
0.003X + 81.40 

r2= 0.24

South America 
= 0.001x + 44.29 

r2= 0.11

Overall 
0.001x + 34.11 
_ r2= 0.13

Overall 
0.0003X + 13.65 
,  r2= 0.17 .

South America 
= 0.001X + 33.43 
’ r2= 0.17 ‘

South America 
= 0.0002x+ 14.15 

r2= 0.08

500 1500 2500 3500 4500
X septentrionalium 
+  tropica 
♦  borreroi

40 

38 

_  36

I 34 
1 32 
I2  30

Figure 1.7. Relationships between elevation and body-size measurements for male 
Cinnamon Teal. Dashed regression lines are for South American individuals only.



PC
II 

Bi
ll 

wi
dt

h 
(m

m
)

36

20

19

18

17

16

15

Overall 
y = 0.0002x + 16.79 

♦ r2= 0.13
* \

141— 
-500 

3

1

-1

-3

-5

South America 
y = 0.0002x+ 16.95 

r2= 0.10

500 1500 2500 3500 4500
Overall 

x y = -0.0001x + 0.16

■ -  h . rJ=o°i*  ̂ a &
-

I 4
♦ South America 

.  y = 7E-05x - 0.61 
r2= 0.01

-500 500 1500 2500 3500 4500

6

4

2

0

-2

Overall South America L 
y = 0.001 x - 1.35 y = 0.001x -1.13

r2= 0.49 0.56

-500 500 1500 2500 3500

■  Altiplano *
lowland Argentina > cyanoptera 

□  Peru coast J
A  orinomus 
X septentrionalium 
+  tropica 
♦  borreroi

Elevation

4500

Figure 1.8. Relationships between elevation and body-size measurements for male 
Cinnamon Teal. Dashed regression lines are for South American individuals only.



Bi
ll 

len
gt

h 
at 

na
re

s 
(m

m
) 

Ta
il 

len
gt

h 
(m

m
) 

W
ing

 
ch

or
d 

(m
m

)

37

230

210

190

170

Overall

y = 0.007x + 178.55 
r2= 0.86

150
-500

150

130

110

90

7C

500 1500 2500 3500 4500

Overall South America
y = 0.003x+ 78.99 y = 0.003x + 81.08

0.16 = 0.13

-500 
40 
38 
36 
34 
32 
30 
28 
26 
24 
22 
20  -  

-500

500 1500 2500 3500 4500

Overall
y = 0.001x+ 31.56* \

CJ21 - ■ ■

South America 
y = 0.001x+ 31.09 

rJ= 0.29

500 1500 2500 3500 4500

40

38

"E 36 
£  34
</>
|  32
,CO

30

28

2 6 1—  
-500 
50 

48

§ 46 

£  44
O)
g 42

■*= 14 .2>

f  13 
5  12

11
104 
-500

lowland Argentina 1 .
Peru coast }^ n o p te r a

Elevation
□
A  orinomus

500 1500 2500 3500 4500

Overall ,
y = 0.001x + 41.85 “A 

f2= 0-21

40 

38 

36 
34 
-500 
181 
17 

16 

15

South America 
* y = 0.001x + 41.35 

r2= 0.32

500 1500 2500 3500 4500

Overall South America
y = 0.0003x + 13.15 y=  0.0002X+ 13.47 

r2= 0.16 r2= 0.14
t ♦ a

500 1500 2500 3500 4500
X  septentrionalium 
+  tropica 
♦  borreroi

Figure 1.9 Relationships between elevation and body-size measurements for female 
Cinnamon Teal. Dashed regression lines are for South American individuals only.

Overall 
y = 0.001x+30.61 

rJ= 0.52

South America 
y = 0.001x+ 30.88 

r2= 0.57



PC
II 

Bi
ll 

wi
dt

h 
(m

m
)

38

20

19 y =

18

17
y

16
B

15

14
-500

Overall South America
,0003x+ 16.02 y = 0.0003X+ 16.01 
rJ=0 .27  * r2= 0.34

500 1500 2500 3500 4500

Overall 
x y = -O.OOOIx + 0.21 

* i  r2= 0.03,

South America 
y = -4E-05x - 0.21 

r2= 0.002

-500 500 1500 2500 3500 4500

O 1 
Q.

-1

- 3

Overall 
y = 0 .0 0 1 x -1.58 

r2= 0.63

South America 
y = 0 .0 0 1 x -1.55 

r2= 0.72

-500 500 1500 2500 3500 4500

■ lowland Argentina l cyanoptera 
□  Peru coast J 
A  orinomus 
X  septentrionalium 
+  tropica 
,♦  borreroi

Elevation

Figure 1.10. Relationsl ps between elevation and body-size measurements for female 
Cinnamon Teal. Dashed regression lines are for South American individuals only.



Table 1.1. W et measurements (mm) and body mass (g) for male Anas cyanoptera cyanoptera , A. c. orinomus, and A  c. 
septentrionalium  and dry measurements for A. c. borreroi and A. c. tropica. Letters after mean value correspond to subspecies 
(o = orinomus, c = cyanoptera, b =  borreroi, and s = septentrionalium ) and indicate significant pairwise differences 
determined using Bonferroni corrected P  values (^adjusted < 0.05). Pairwise comparisons were not performed for A  c. tropica 
because o f  the small sample size.

Mass Wing
chord

Tarsus Tail Nare Culmen Bill
height

Bill width

orinomus Mean 498.8 223.4 cbs 35.52 cbs 93.28 cbs 37.28 cbs 47.85 cbs 14.67 cs 17.41 cs
n =  13 SE 10.7 2.20 0.37 1.14 0.38 0.57 0.19 0.18

Range 425-550 211-237 33.8-37.6 86.7-99.9 35.6—40.4 44.9-52.1 13.7-15.9 16.1-18.3
cyanoptera Mean 414.5 191.9 ob 32.95 os 81.95 ob 33.96 o 44.55o 14.02 obs 16:92 o
n = 28 SE 7.60 1.20 0.32 1.33 0.35 0.41 0.19 0.19

Range 340-515 181-205 29.1-35.9 69.5-97.6 30.6-37.6 40.5-48.7 12.4-16.3 15.2-19.2
septentrionalium Mean 361.8 188.8 ob 31.01 ocb 80.47 ob 35.00 ob 45.63 o 13.39 ocs 16.76 ob
n = 50 SE 3.30 0.90 0.15 0.58 0.17 0.20 0.08 0.07

Range 310-420 168-201 28.1-33.4 66.0-87.0 32.4-37 1 42.5-47.9 12.3-15.1 15.7-17.8
borreroi Mean — 196.0 ocs 31.93 os 99.54 ocs 32.91 os 43.65 o 14.39 cs 16.57 s
n =  13 SE — 1.86 0.43 2.77 0.88 0.73 0.21 0.25

Range — 179-205 28.7-35.2 82-115 28.3-40.2 38.9-46.7 13 1-15.9 15.2-18.2,
tropica Mean - 184.0 30.93 105 29.68 40.99 14.13 16.54
n - 2 SE — 2.50 0.59 6.00 0.36 0.03 0.17 0.62

Range 182-187 30.2-31.4 99-111 29.3-30.0 40.9-41.0 13.9-14.3 15.9-17.2
P l -0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

’ANOVAs for subspecies effect based on pooled data (wet measurements and transformed dry measurements). Sample sizes: 
orinomus (n =  30), cyanoptera (n =  34), septentrionalium (n =  50), borreroi (n = 13), and tropica (n = 2).

VO



Table 1.2. Wet measurements (mm) and body mass (g) for female Anas cyanoptera cyanoptera, A. c. orinomus and A. c. 
septentrionalium  and dry measurements for A  c. borreroi and A  c. tropica. Letters after mean value correspond to subspecies 
(o = orinomus, c = cyanoptera, b =  borreroi, and s = septentrionalium) and indicate significant pairwise differences 
determined using Bonferroni corrected P  values (^adjusted < 0.05). Pairwise comparisons were not performed for A. c. tropica 
because o f  the small sample size.

Mass Wing
chord

Tarsus Tail Nare Culmen Bill
height

Bill width

orinomus Mean 450.6 209.9 cbs 34.59 cbs 88.96 s 33.94 c 44.34 c 13.81 s 17.26 cs
n - 9 SE 11.30 1.32 0.24 1.62 0.24 0.51 0.26 0.22

Range 390-495 204—217 33.7-36.1 77.9-95.7 33.1-35.1 41.7-46.2 12.6-14.8 16.1-18.3
cyanoptera Mean 394.2 180.5 bo 31.14o 77.85 b 31 .85o 42.15o 12.29 b 16.01 o
n=  13 SE 10.60 1.10 0.37 1.97 0.26 0.41 0.22 0.22

Range 340-470 172-185 29.2-33 1 63.1-90.0 30.1-33.6 38.8-44.6 12.1-14.9 15.1-17.6
septentrionalium Mean 363.5 180.7 b 30.69 o 76.30 ob 32.74 43.10 12.59 ob 16.13o
n=  10 SE 14.20 1.60 0.55 2.02 0.48 0.61 0.23 0.25

Range 315—430 171-187 29.2-34.9 67.0-86.0 30.5-35.1 40.1—46.0 11 1-13.8 15.0-17.4
borreroi Mean — 190.6 ocs 31 .22o 104.8 cs 33.81 41.58 14.06 cs 15.92
n = 5 SE — 2.68 0.99 10.4 1.19 1.01 0.46 0.50

Range — 182-198 30.1-35.2 86-145 29.6-36 9 38.1—43.8 12.6-14.9 14.9-17.6
tropica Mean — 171.5 28.94 104.00 24.82 37.84 14.28 15.39
n = 2 SE — 4.50 0.78 5.00 0.21 0.52 0.82 0.40

Range - 167-176 28.2-29.7 99-109 24.6-25.0 37.3-38.4 13.5-15.1 14.9-15.8
P l <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003

'ANOVAs for subspecies effect based on pooled data (wet measurements and transformed dry measurements). Sample sizes: 
orinomus (n = 15), cyanoptera (n = 14), septentrionalium (n = 10), borreroi (n = 5), tropica (n = 2).



Table 1.3. Measurements (mm) and body mass (g) for populations o f  Anas c. cyanoptera in lowland Argentina, the Peruvian 
coast, and the central high Andes.

Male
Mass

Wing
chord

Tarsus Tail Nare Culmen Bill height Bill width

Argentina M ean 429.2 194.96 32.50 85.53 35.64 46.02 14.56 17.68
n=  10 SE 9.67 1.20 0.55 1.08 0.46 0.54 0.26 0.28

Range 450-540 190-200 29.6-34.8 80.9-91.0 33.0-37.6 43.3—48.7 13.5-15.9 16.7-19.2
Peruvian
coast

M ean 394.4 190.5 33.06 80.39 33.21 43.98 13.74 16.51

H = 18 SE 4.88 1.61 0.37 1.52 0.36 0.43 0.16 0.14
Range 340-430 181-205 29.1-35.4 69.5-97.6 30.6-36.1 40.5—47.6 12.7-15.1 15.2-17.6

Andes Mean 429.2 195.68 34.07 82.45 34.71 44.45 13.79 17.13
n = 6 SE 14.4 3.18 0.48 - 2.61 0.38 0.89 0.60 0.38

Female
Range 380-470 186-204 32.5-35.9 75.7-92.6 33.4—35.9 42.6-47.3 12.4-16.3 15.5-18.3

Argentina M ean 418.8 182.23 30.75 81 32.24 42.09 14.14 16.73
n = 4 SE 21.4 0.65 0.87 3.32 0.53 0.84 0.34 0.34

Range 365—470 181-184 29.3-32.3 76.0-90.0 31.2-33.6 40.3-43.6 13.3-14.9 15.9-16.9
Peruvian
coast

M ean 387.0 179.8 31.5 76.4 31.68 41.98 12.95 15.71

10 SE 10.4 1.37 0.40 2.15 0.26 0.48 0.16 0.18
Range 340-430 172-185 29.2-33.1 63.1-86.7 30.1-32.8 38.8-44.6 12.1-13.9 15.1-16.9
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Table 1.4. Principal components (PCI and PC2), eigenvectors, eigenvalues, and percent 
o f variance calculated from male and female Cinnamon Teal (Anas cyanoptera).

Males Females
PCI PC2 PCI PC2

W ing chord 0.48 0.01 0.48 -0 .06
Tarsus bone 0.41 -0 .09 0.42 0.05
Tail 0.32 -0.48 0.14 -0 .66
Bill length-N are 0.33 0.56 0.39 0.41
Culmen length 0.33 0.54 0.40 0.36
Bill height 0.36 -0 .39 0.30 -0.51
Bill width 0.39 -0 .09 0.42 -0 .12
Eigenvalue 3.33 1.63 3.54 1.57
Variance (%) 47.6 23.2 50.5 22.5
Cumulative % 47.6 70.9 50.5 73.0
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Table 1.5. Partial correlation coefficients between latitude1 and body measurements and 
principal components for Cinnamon Teal (A. cyanoptera). Significant values determined 
using Bonferroni corrected P  values (̂ adjusted < 0.05) are in bold.
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W ing chord -0 .096 0.381 0.097 0.145 -0 .092 0.044 -0.061 0.329
Tarsus bone -0 .343 -0 .280 -0.213 0.029 -0 .178 -0 .219 -0.290 -0.371
Tail -0 .425 0.319 0.184 0.039 -0 .362 -0.321 0.041 0.449
Bill length-N are 0.476 0.619 0.382 0.088 0.223 0.081 0.113 -0.101
Culmen 0.358 0.544 0.294 -0.155 0.291 0.081 0.052 -0.173
Bill height -0 .278 0.557 0.434 0.197 -0 .236 0.681 0.569 -0.334
Bill width -0.005 0.662 0.560 -0 .33 0.022 0.407 0.438 -0.589
PCI -0.065 0.629 0.383 -0.013 0.007 0.320 0.271 -0.340
PC2 0.582 0.259 0.133 -0.111 0.398 -0 .240 -0.366 -0.261

'Latitude is calculated in degrees as the absolute value o f distance from the equator.
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Table 1.6. Partial correlation coefficients between elevation and body measurements and 
principal components for Cinnamon Teal (Anas cyanoptera). Significant values 
determined using Bonferroni corrected P  values (^adjusted < 0.05) are in bold.

Elevation
Pooled
data

Male
South
America

North
America

Pooled
data

Female
South
America

North
Americ

Wing chord 0.724 0.782 -0 .038 0.905 0.928 -0.122
Tarsus bone 0.603 0.619 -0.018 0.705 0.754 0.018
Tail 0.417 0.354 -0.265 0.388 0.333 -0.529
Bill length-N are 0.381 0.547 0.270 0.454 0.575 -0.356
Culmen 0.262 0.426 0.312 0.458 0.611 -0.167
Bill height 0.292 0.275 -0.243 0.357 0.373 -0.590
Bill width 0.265 0.356 -0 .188 0.497 0.605 -0.461
PCI 0.649 0.710 -0 .040 0.784 0.861 -0.419
PC2 -0 .018 0.214 0.494 -0.118 0.007 0.584
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Table 1.7. Classification o f predicted Cinnamon Teal (Anas cyanoptera) subspecies 
based on body-size measurements and discriminant analysis with (inside parentheses) and 
without (outside parentheses) cross-validation. The percent o f individuals that were 
assigned to their initial subspecific classification are in bold text.

Predicted
Initially classified as: cyanoptera orinomus septentrionalium borreroi

Male (n = 127)
cyanoptera 76.5 (76.5) 0.0 (0.0) 14.7(14.7) 8.8 (8.8)
orinomus 0.0 (0.0) 100 (100) 0.0 (0.0) 0.0 (0.0)
septentrionalium 8.0(10.0) 0.0 (0.0) 92.0 (90.0) 0.0 (0.0)
borreroi 7.7(30.8) 0.0 (0.0) 0.0 (0.0) 92.3 (69.2)
Total correct: 89.8 (86.6)

Female (n = 44)
cyanoptera 85.7 (71.4) 0.0 (0.0) 0 .0(28.6) 0.0 (0.0)
orinomus 0.0 (0.0) 100 (100) 0.0 (0.0) 0.0 (0.0)
septentrionalium 30.0(50.0) 0.0 (0.0) 70.0 (50.0) 0.0 (0.0)
borreroi 0.0 (20.0) 0.0 (40.0) 0.0 (0.0) 100 (40.0)
Total correct: 88.6(72.7)



Table 1.8. Classification o f predicted area o f origin o f individual Cinnamon Teal (Anas cyanoptera) based on body-size 
measurements and discriminant analysis with (inside parentheses) and without (outside parentheses) cross-validation. The 
percent o f individuals that were assigned to their collection locality are in bold text.

Predicted
Initially classified as: Central high 

Andes
Argentina Peruvian Coast North America Colombia highlands

Male (« =  127)
Central high Andes 83.3 (83.3) 8.3 (8.3) 8.3 (8.3) 0.0 (0.0) 0.0 (0.0)

Argentina 0.0 (0.0) 80.0 (40.0) 20.0 (30.0) 0.0 (20.0) 0 .0(10.0)
Peruvian Coast 5.6 (5.6) 0.0 (0.0) 77.8 (77.8) 11.1 (11.1) 5.6 (5.6)
North America 0.0 (0.0) 6.0 (8.0) 4.0 (6.0) 90.0 (86.0) 0.0 (0.0)
Colombian highlands 7.7 (7.7) 23.1 (23.1) 0.0(15.4) 0.0 (0.0) 69.2 (53.8)
Total correct: 83.5 (77.2)

Female (n = 44)
Central high Andes 100 (100) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Argentina 0.0 (0.0) 75.0 (75.0) 25.0 (25.0) 0.0 (0.0) 0.0 (0.0)
Peruvian Coast 0.0 (0.0) 20.0 (20.0) 60.0 (60.0) 20.0 (20.0) 0.0 (0.0)
North America 0.0 (0.0) 10.0(10.0) 20.0 (40.0) 70.0 (50.0) 0.0 (0.0)
Colombian highlands 0.0 (20.0) 0.0 (20.0) 0.0 (0.0) 0.0 (0.0) 100 (40.0)
Total correct: 81.8(70.5)



Table 1.9. Pairwise diagnosability index values (D./Dj,) for males o f  Cinnamon Teal (Anas cyanoptera) subspecies. D l} values
greater than zero indicate that population i is diagnosable from population j  and are in bold.

Wing chord Tarsus Tail Nare Culmen Bill height Bill width PCI
orinomus 
and cyanoptera 37.91/ 5.57/ 21.27/ 5.41/ 5.35/ 2.50/ 2.27/ 0.37/

14.22 0.46 5.30 -0.45 -2 .04 -0 .02 -0.15 4.79
and borreroi 34.13/ 6.23/ -16.81/ 11.02/ 8.30/ -1 .27/ -2 .25/ -0.50/

7.73 0.58 9.06 1.82 -1.03 1.31 0.65 3.68
and 40.98/ 6.34/ 18.65/ 3.25/ 3.02/ 2.25/ 1.48/ 2.60/
septentrionalium 17.92 2.15 5.85 -1 .64 -3 .37 0.33 -0 .24 5.89
cyanoptera 
and borreroi -7 .06/ 3.33/ -5 .47/ 8.55/ 6.30/ -0 .33 / -1 .47/ 3.31/

17.32 -2 .52 24.28 -0.66 -2.33 2.85 1.99 -1.32
and 13.92/ • 3.43/ 7.30/ -0 .77/ -1 .01/ 1.31/ 0.69/ -0 .20/
septentrionalium -7 .18 -0 .96 -9 .40 4.13 4.67 -1.21 -1 .57 3.53
septentrionalium  
and borreroi -3 .40/ -1 .64/ —4.94/ 9.74/ 7.63/ 0.02/ -1 .55/ 4.40/

20.39 3.30 21.66 1.50 0.01 2.60 1.19 0.91



Table 1.10. Pairwise diagnosability index values (Aj/Dji) for females o f Cinnamon Teal (Anas cyanoptera) subspecies. D tj
values greater than zero indicate that population i is diagnosable from population j  and are in bold.

Wing chord Tarsus Tail Nare Culmen Bill height Bill width PCI
orinomus 
and cyanoptera 34.35/ 6.67/ 24.91/ 3.84/ 5.37/ 2.31/ 2.63/ 0.64/

16.45 1.80 3.07 -0 .64 -1 .14 -0 .62 -0.13 0.27
and borreroi 32.65/ 10.63/ -67.43/ 9.47/ 9.91/ -3 .02 / 4.18/ ^4.18/

3.85 1.58 9.29 -1.25 -0 .54 1.69 -0 .74 2.62
and 38.24/ 8.46/ 26.19/ 4.82/ 5.74/ 3.01/ 2.75/ 0.69/
septentrionalium 17.13 2.65 4.21 -1 .10 -1.91 0.05 -0 .22 4.96
cyanoptera 
and borreroi -5 .80/ -6 .70/ -55.88/ -7 .38 / -7 .48/ -2 .22/ -2 .99/ 1.27/

20.13 2.96 24.89 2.38 2.35 2.54 2.07 —4.51
and -11.40/ 4.53/ 14.64/ -2 .73 / -3 .32/ 2.22/ -1 .58/ -1 .14/
septentrionalium 6.83 -1.89 -12.21 2.22 3.71 -0 .84 1.55 2.77
septentrionalium  
and borreroi -5 .11/ -5 .84/ -54.72/ -7 .84 / 8.24/ -1 .54/ -3 .09 / 7.28/

24.01 4.75 26.17 3.36 -2.73 3.24 2.19 -0.01
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Appendix 1.1. Specimens o f Anas cyanoptera examined, with collection locality. KGM, 
JT, and REW specimens are catalogued at University o f Alaska Museum, Fairbanks.

A. c. borreroi
COLOMBIA: Dept. Putumayo, Sibundoy
ROM 79230, ROM 79231, ROM 79232, ROM 79233,ROM 79234, ROM 91946, ROM 
91947, ROM 91948, ROM 91949, ROM 91950, ROM 91954, SM437473, SM437474 
COLOMBIA: Dept. Cundinamarca, La Hererra 
ROM 91943, ROM 91953
COLOMBIA: Dept. Cundinamarca, Laguna Fuquene 
SM 437475 '
COLOMBIA: Dept. Cundinamarca, Sabana de Bogota 
ROM 91944, SM437472 
A. c. tropica
COLOMBIA: Dpto. Valle del Cauca, Vijes
ROM 91957, ROM 91958, ROM 91959, ROM 91960
A. c. septentrionalium
USA: Utah, W eber Co., 41°14’59.7"N, 112°07'55.8''W , 1,275 m 
REW 075
USA: Utah, Salt Lake Co., 40° 50’50.7"N, 112°01'50.9"W , 1,275 m 
REW 077, REW 078, REW 079
USA: Oregon, Columbia Co., 45°45’18.1''N, 122°50'51.4''W , 1 m
REW 797, REW 398, REW 399, REW 400, REW  401, REW 402, REW 403, REW 404,
REW 406
USA: California, Imperial Co., 33°11’24.0''N , 115°35 '18.5 ''W ,-6 8  m 
REW 411, REW 412, REW 414, REW 416, REW 418, REW 419, REW 421 
USA: California, Imperial Co., 33°11 ’39.0"N, 115°34'46.2"W , -73  m 
REW 415, REW 420
USA: California, Kerns Co., 34°47’43.5"N, 118°07'11.3"W , 693 m
REW 422, REW 423, REW 424, REW 425, REW 426, REW 427, REW 428, REW 429,
REW 430, REW 431, REW 432, REW 433, REW 434, REW 435, REW 436, REW 437
USA: Utah, Salt Lake Co., 40°50’45.1"N, 112° 01'41.7"W , 1,275 m
REW 438, REW 439, REW 440, REW 441, REW 442, REW 443, REW 444, REW 445,
REW 446, REW 447, REW 448, REW 449, REW 450, REW 451, REW 452, REW 453,
REW 454, REW 455, REW 456
USA: Colorado, M offat Co., 40°59’10.7"N, 108°59'10.5''W , 1,609 m 
REW 457, REW 458
USA: Oregon, Harney Co., 48°43’53.7''N, 118°50'25.3''W , 1,260 m 
REW 464 
A. c. cyanoptera
ARGENTINA: Neuquen, Rio Collon Cura, R.N. 40, 40°12’45"S, 70°38'58''W , 625 m 1 
KGM 268
ARGENTINA: Cordoba, Laguna La Felipa, 33°04’17''S, 63°31'33"W , 184 m 1 
KGM 310, KGM 313, KGM 311, KGM 312
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Appendix 1.1 continued.

ARGENTINA: Cordoba, S. Canals, 33°36’23"S, 62°53T6"W , 112 m a 
KGM 322
ARGENTINA: Jujuy, S. Purmamarca, 23°49’13''S, 65°28'34''W , 2,141 m 
KGM 442
PERU: Dpto. Lima, S Huacho, 11°10’12.9"S, 77°35'31.4''W , 15 m 
REW 081, REW 082
PERU: Dpto. Junin, Jauja, Laguna de Paca, 11°44’14.5"S, 75°29'32.7''W , 3,506 m 
REW 118, REW 122
PERU: Dpto. Ancash, Laguna Conococha, 10°07’10.8''S, 77°17'00.7''W , 4,039 m 
REW 164
PERU: Dpto. Lambayeque, ca. Puerto Eten, 06°54’51.9'S, 79°52'22.4''W , 13 m 
REW 193, REW 194, REW 195, REW 196
PERU: Dpto. Lambayeque, Playa Monsefii, 06°54’03.7"S, 79°53'42.4"W , 12 m 
REW 198, REW 199
PERU: Dpto. La Libertad, M agdalena de Cao, 07°51’54.3"S, 79°20'51.2''W , 23 m 
REW 200
PERU: Dpto. Ancash, Chimbote, 09°07’26.0"S, 78°33'11.3''W , 15 m 
REW 203, REW 204, REW 205
PERU: Dpto. Ancash, Puerto Huarmey, 10°05’52.0"S, 78°09'10.3''W , 14 m 
REW 206
PERU: Dpto. Lima, Albufera de Medio Mundo, 10°55’25.9"S, 77°40'10.8"W , 14 m 
REW 207
PERU: Dpto. Ica, Pisco, 13°41 ’46.8"S, 76°13'07.3''W , 7 m 
REW 235
PERU: Dpto. Ica, Pisco, 13°40’47.2"S, 76°12'56.6''W , 9 m 
REW 236
PERU: Dpto. Tacna, Ite, 17°52’47.2"S, 71°01'05.9"W , 10 m 
REW 298, REW 299, REW 300, REW 301, REW  302, REW 303, REW 304 
PERU: Dpto. Arequipa, Punta de Bombon-Islay, 17°11’31.9"S, 71°46'19.4"W , 8 m 
REW 305, REW 306
PERU: Dpto. Lima, 2 km N. La Laguna, 12°33’13.0"S, 76°42 '42 .r'W , 9 m 
REW 315, REW  316, REW 317
ARGENTINA: Chubut, Laguna Terraplen, 42°59’50.7''S, 71°30'55.1''W , 630 m 
KGM 712, KGM 713
ARGENTINA: Santa Cruz, Estancia Angostura, 48°38’33.9''S, 70°38'37.3"W , 460 m 
KGM 766, KGM 767
ARGENTINA: Santa Cruz, ca. Punta Loyola, 51 °37’35.7"S, 69°00'59.4''W , -3  m 
KGM 797, KGM 798
ARGENTINA: Santa Cruz, ca. Punta Loyola, 51°36’54.9"S, 68°59'26.6"W , 0 m 
KGM 799
ARGENTINA: Chubut, S. Lago Colhue Huapi, 45°38’49.6"S, 68°56'45.1''W , 256 m 
KGM 808
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Appendix 1.1 continued.

ARGENTINA: Catamarca, Antofogasta de la Sierra, Laguna La Alumbrera, 
26°06’46.4''S 67°25'26.7''W , 3,338 m 
KGM 1110
ARGENTINA: Catamarca, Embalse Cortaderas, 27°33’21.2''S, 68°08'41.9", 3,369 m 
KGM 1142 
A. c. orinomus
ARGENTINA: Salta, NE La Caldera, 24° 33 ’01''S, 65° 22'15"W , 1,468 m 
KGM 441
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16°11 ’45"S, 68°37'28''W , 3,808 m 
KGM 485, KGM 486, KGM 487
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16°20’ 13"S, 68°41'20"W , 3,854 m 
KGM 499
BOLIVIA: Dpto. Oruro, Lago Uru Uru, 18°02’03"S, 67°08'46"W , 3,735 m 
KGM 527, KGM 528, KGM 529, KGM 530, KGM 531, KGM 532, KGM 533, KGM 
534, KGM 535
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16°25’28"S, 68°51'43''W , 3,850 m 
KGM 557
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21 ’03"S, 68° 37'40"W , 3,839 m 
KGM 559, KGM 560
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21 ’02"S, 68°37'48''W , 3,840 m 
KGM 561, KGM 562
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16°21 ’07"S, 68°38'06''W , 3,845 m 
KGM 563, KGM 564, KGM 565, KGM 566
PERU: Dpto. Junin, Jauja, Laguna de Paca, 11°44’14.5"S, 75°29'32.7''W , 3,506 m 
REW 125, REW 126
PERU: Dpto. Cusco, Laguna Chacan, 13°26’02.6"S, 72°07'49.6"W , 3,533 m 
REW 238, REW 239, REW 240, REW  241, REW  242 
PERU: Dpto. Cusco, ca. Chinchero, 13°25’49.3"S, 72°03'41.7"W , 3,789 m 
REW 248
PERU: Dpto. Cusco, Urubamba Valley, 13°25’22.9''S, 72°02'38.2''W , 3,743 m 
REW 253, REW 254
PERU: Dpto. Cusco, ca. Laguna Pomacanchi, 14°06’51.9''S, 71°27'56.6''W , 3,781 m 
REW 255, REW  256, REW 257, REW 258, REW 259
PERU: Dpto. Puno, Lago Titicaca, Jaru Jaru, 15° 59’05.6"S, 69° 36'24.3''W , 3,824 m 
REW 268, REW 269
PERU: Dpto. Puno, Lago Titicaca, ca. Puno, 15°52’01.2"S, 69°56'21,3''W , 3,830 m 
REW 271
PERU: Dpto. Puno, Lago Umayo, Sillvstani, 15°42’45.8''S, 70°09'00.0''W , 3,853 m 
REW 272
PERU: Dpto. Puno, Deustva, 15°33’50.0"S, 70°14'33.1''W , 3,871 m
REW 284, REW 285, REW  286_________________________________________________
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Appendix 1.1 continued.

'These elevation values are interpolated from the U.S. Geological Survey’s G TO P030 
digital elevation model (available at eros.usgs.gov/); all other elevations were measured 
with a GPS receiver.



Appendix 1.2. Dry body-size measurements (mm) for three subspecies o f Cinnamon Teal.

A. c. orinomus 1 A. c. cyanoptera 1 A. c. septentrionalium  1
Male Mean SE Range Mean SE Range Mean SE Range
Wing chord 215.4 1.05 200-229 186.8 1.39 176-201 185.5 1.0 163-199
Tarsus bone 34.75 0.30 32.2-37.3 32.31 0.21 30.1-34.1 30.32 0.14 27.7-32.1
Tail 96.07 1.08 82.0-108.0 86.52 1.22 75-102 78.75 0.53 66.0-85.0
Bill length-Nare 36.61 0.32 32.4-39.6 34.32 0.37 30.9-37.6 35.05 0.16 32.0-36.8
Culmen 47.19 0.44 42.0-52.4 44.36 0.49 40.1-49.3 44.70 0.20 41.7-47.1
Bill height 14.36 0.23 12.5-17.6 13.34 0.14 11.5-15.2 12.58 0.10 11.0-14.4
Bill width 16.49 0.13 14.9-17.4 16.05 0.18 14.1-17.7 15.58 0.15 12.6-17.4
Female

Wing chord 202.4 1.7 193-217 177.9 2.0 167-191 178.5 1.8 169-186
Tarsus bone 33.59 0.54 30.6-37.2 31.29 0.45 29.3-33.5 30.29 0.43 28.8-32.8
Tail 91.87 1.48 84.0-102.0 83.94 2.85 71.3-102.0 77.10 1.86 69.0-88.0
Bill length-Nare 34.16 0.44 32.2-37.9 31.83 0.34 29.9-33.1 32.83 0.49 30.5-35.4

Culmen 44.57 0.55 41.7-49.8 41.41 0.62 38.6-43.8 42.37 0.54 39.7-44.9

Bill height 13.82 0.24 12.5-15.5 12.80 0.29 11.1-14.1 11.83 0.28 10.2-13.1
Bill width 15.70 0.28 13.6-17.2 15.04 0.16 14.2-16.2 15.07 0.39 13.1-17.3

'Sample sizes: A. c. orinomus (29 male, 14 female), A. c. cyanoptera (27 male, 10 female), A. c. septentrionalium  (47 male, 10 
female).



54

CHAPTER 2

GENETIC AND PHENOTYPIC DIVERGENCE BETW EEN HIGH- AND LOW- 

ELEVATION POPULATIONS OF TWO RECENTLY DIVERGED CINNAMON

TEAL SUBSPECIES1

ABSTRACT

Geographic variation in selection often leads to divergent selection between 

populations occupying different parts o f a species’ range, ultimately leading to population 

divergence. The colonization o f new areas can thus facilitate divergence in beneficial 

traits with little genetic differentiation at neutral markers. We investigated genetic and 

phenotypic patterns o f divergence between high- and low-elevation populations of 

Cinnamon Teal (Anas cyanoptera) in the Andes and adjacent lowland regions o f South 

America (normoxia vs. hypoxia environments). Cinnamon Teal showed strong 

divergence in body size (PC I; Pst = 0.56) and exhibited significant frequency differences 

in a single non-synonymous a-globin amino acid polymorphism (A sn/Ser-a9; Fst =

0.60) between environmental extremes, despite considerable admixture o f reference loci 

( F s t  = 0.004-0.168). Inferences o f strong population segregation were further supported

’W ilson, R. E. and K. G. McCracken. Genetic and phenotypic divergence between highl

and low-elevation populations o f two recently diverged Cinnamon Teal subspecies. 

Prepared for AUK.



by the observation o f few mismatched individuals in either environmental extreme. 

Coalescent analyses indicated that the highlands were most likely colonized from 

lowland regions more recently than other waterfowl species and since divergence gene 

flow has been asymmetric from the highlands into the lowlands. Multiple selection 

pressures associated with high elevation habitats, including cold and hypoxia, have likely 

shaped divergence within South American Cinnamon Teal.



Introduction

Species are often comprised o f populations distributed across ecologically different 

environments. As populations colonize new environments, particular traits can become 

modified via divergent selection enabling individuals to exploit differences in habitat or 

to gain advantages in competition for contested resources (M ayr 1963; West-Eberhard 

1983; Endler 1986; Schluter 1998, 2001). In heterogeneous landscapes, gene flow may 

be restricted by selection because alleles and traits that are beneficial in one particular 

environment may result in reduced fitness in another environment (Rundle and Nosil 

2005, Nosil et al. 2008, Mila et al. 2009). The strength o f selection is not likely to be 

homogeneous across the genome, as selection may not limit the dispersal o f neutral 

alleles, unless those alleles are linked to loci under selection (McKay and Latta 2002, 

Emelianov et al. 2004, Mallet 2005, Garant et al. 2007, Via 2009). Similarly, adaptive 

differentiation can still occur even in the face o f countervailing gene flow, so long as the 

strength o f selection is greater than the force o f migration ( 5  > m; Slatkin 1987, McKay 

and Latta 2002, M cCracken et al. 2009a). The colonization o f new environments could 

thus facilitate divergence in advantageous traits with little genetic differentiation at 

neutral markers and may only result in divergence in a small portion o f the genome (Orr 

and Smith 1998, Via 2009).

Isolation is also a strong barrier to gene flow and promotes the evolution of 

subsequent isolating barriers. For example, individual preferences for different habitats 

may reduce the likelihood o f encounters between individuals o f diverging populations, 

facilitating pre-zygotic isolation when mating occurs in or near preferred habitat (Funk et
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al. 2002, Rundle and Nosil 2005, Hendry et al. 2007). Furthermore, the limitation of 

gene flow between populations adapted to spatially segregated environments may 

promote population divergence. When isolation develops between populations, divergent 

selection through adaptation may act selectively on the genome, effecting rapid changes 

at key loci while leaving the rest o f the genome virtually unchanged (W u 2001, Via 

2009).

A comparative approach contrasting functional genes and phenotypic traits with 

an independent set o f putatively neutral markers can help determine a population’s 

response to differing environmental selection pressures in the context o f heterogeneous 

landscapes. Spatial differences in allelic variation among genes that are associated with 

potential agents o f selection versus allelic variation at neutral molecular markers can 

provide insight into the evolutionary history o f adaptive divergence. This approach is 

especially effective in the early stages o f population divergence, when neutral markers 

typically still reflect a combination o f unresolved ancestral polymorphisms, recent gene 

flow, and the stochastic effects o f the coalescent process (M addison 1997, Via 2009).

The premise o f this approach is that the effects o f selection are likely to be locus-specific, 

whereas demographic processes (nonadaptive processes) are expected to have uniform 

effects across the genome (Cavalli-Sforza 1966, Lewontin and Krakauer 1973, Storz and 

Dubach 2004, Beaumont 2005).

High-elevation regions provide an excellent opportunity to investigate the 

molecular and morphological bases o f local adaptation imposed by strong selection. The 

selection pressures imposed by high-elevation habitats are relatively well understood, and
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numerous genes under selection have been identified. The low temperatures, increased 

desiccation, higher atmospheric radiation, and especially hypoxic conditions (oxygen 

concentration approx. 40% lower at 4,000 m than at sea level) can be debilitating for 

lowland individuals (Tucker 1968, Scott et al. 2009). Populations that exist in highland 

areas have evolved a number o f different strategies, resulting in genetically based 

adaptations (Jessen et al. 1991; Storz et al. 2007, 2010; Storz 2010; Yi et al. 2010; Peng 

et al. 2011; Scott et al. 2011). Hemoglobin in particular has repeatedly been 

demonstrated to exhibit an important evolutionary response to severe hypoxia in high- 

elevation species (e.g., Jessen et al. 1991; W eber et al. 1993; Leon-Velarde et al. 1996; 

W eber 2002; Storz et al. 2007, 2010). It is often the case that only one or a few amino 

acid changes are found in the hemoglobin protein (Perutz 1983, Hiebl et al. 1987, 

Braunitzer and Hiebl 1988), but when compared across species it has been shown that the 

same, similar, or adjacent substitutions appear in multiple highland taxa (McCracken et 

al. 2009b,c). In addition, body size is often correlated with hemoglobin oxygen affinity, 

with larger animals tending to have higher oxygen affinity (Schmidt-Nielson and Larimer 

1958, Hopkins and Powell 2001). This is often interpreted as a thermoregulatory 

adaptation to the colder arid climates associated with high elevation. Functional changes 

in hemoglobin structure and an increase in body size provide two important mechanisms 

in coping with high elevations.

W aterfowl (Anatidae) are well known for their ability to thrive in extreme 

environments, and they are well suited to cope with hypoxic stress in high elevation 

habitats (Faraci 1991, W eber et al. 1993, Hopkins and Powell 2001). Amino-acid
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polymorphisms that are likely targets o f selection in the major hemoglobin genes have 

been identified in all lineages o f high-elevation waterfowl surveyed to date (McCracken 

et al. 2009b,c). Cinnamon Teal (Anas cyanoptera), in particular, are excellent candidates 

for studying the molecular and morphological basis o f adaptation to high-elevation. Two 

subspecies o f Cinnamon Teal (Anas cyanoptera) inhabit southern South America. A 

small-bodied subspecies A  c. cyanoptera (340-515 g, 181-205 mm wing length) is 

widespread in lowland habitats (< 1,000 m) from the Pacific coast o f Peru to southern 

Argentina, but it is replaced by the larger-bodied subspecies A. c. orinomus (425-550 g, 

211-237 mm wing length) at elevations o f 3,500-4,600 m in the central high Andes 

(W ilson et al. 2010). Cold temperatures at high elevations is one environmental factor 

that has likely contributed to the larger body size o f this subspecies (W ilson et al. 2010), 

but other factors such as hypoxia also can contribute to body size differences (Hopkins 

and Powell 2001) and have likely shaped the evolution o f hypoxia resistance in this 

species.

Using a series o f vouchered specimens collected from the high Andes and 

adjacent lowlands o f South America, we sought evidence o f divergent selection in 

hemoglobin and phenotypic characteristics in contrast to divergence in neutral markers, 

consisting o f five nuclear introns and the mitochondrial DNA (mtDNA) control region. 

Specifically, we aim to assess which evolutionary mechanism, genetic drift following 

isolation or recent divergence with divergent selection, more likely explains the observed 

patterns in genetic and morphologic variation between highland and lowland populations. 

If  functional traits have diverged greater than neutral loci, this would provide evidence



that those traits have diversified more than expected by genetic drift alone indicating that 

selection has played a role in the genetic or morphological structure observed. In 

addition, using classic population genetic approaches coupled with coalescent theory, we 

assessed how adaptations to high elevation influence population genetic structure and 

gene flow between environments.

Methods

Specimen collection andD N A  extraction.— We collected 52 A. c. cyanoptera and 50 A. c. 

orinomus from low- and high-elevation regions o f Argentina, Bolivia, and Peru between 

2001 and 2005 (Fig. 2.1, Appendix 2.1). We used published subspecific morphological 

characters to classify each specimen to subspecies (Snyder and Lumsden 1951, Blake 

1977, W ilson et al. 2010). Six small-bodied individuals were collected in highland 

localities (> 2,100 meters) at the northern and southern limits o f the orinomus 

distribution. Based on morphological characters, these individuals were assigned to 

cyanoptera and treated as part o f the lowland population (W ilson et al. 2010).

Preliminary molecular analysis showed no significant structure among lowland localities 

in Argentina and the west slope o f the Andes in Peru (mtDNA: F s t  = 0.03, P-value 0.07; 

nuclear introns: F s t  = 0.00); therefore all lowland populations were treated as a single 

population. Vouchered specimens and frozen tissues are archived at the University of 

Alaska M useum (Fairbanks, Alaska), Museo de Historia Natural de la Universidad de 

San Marcos (Lima, Peru), and Coleccion Boliviana de Fauna (La Paz, Bolivia). Genomic 

DNA was extracted from muscle tissue using standard protocols and a QIAGEN DNeasy 

Tissue Kit (QIAGEN, Valencia, CA).
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DNA Sequencing .— We sequenced the two adult hemoglobin genes (aA; 677 bp 

and PA; 1582 bp) that comprise the major hemoglobin isoform (HbA). Five autosomal 

introns that map to different locations in the chicken genome also were sequenced to be 

compared to hemoglobin genes (Table 2.1): ornithine carboxylase intron six (ODC1; 351 

bp), a-enolase intron eight (EN O l; 312bp), beta fibrinogen intron 7 (FGB; 245 bp), N- 

methyl D aspartate receptor type I intron 11 (GRIN1; 330bp), and phosphoenolpyruvate 

carboxykinase intron 9 (PCK1; 345bp). Polymerase chain reaction (PCR), sequencing 

protocols and primers are described by M cCracken et al. (2009b). We also sequenced 

1,272 bp o f the mtDNA control region and adjacent phenylalanine tRNA and 12S rRNA 

gene using the overlapping primer pairs L78-H 774 and L736-H 1530 (Sorenson and 

Fleischer 1996, Sorenson et al. 1999), and two additional primers (L627: 5 ’-  

T AAGCCTGG AC AC ACCTGCGTT ATCG -3 ’; H693: 5 -  

CA GTG TCA A G GTG A TTCCC-3’) designed specifically for Cinnamon Teal.

Sequences from opposite strands were reconciled using Sequencher 4.1.2 (Gene 

Codes Corporation, Ann Arbor, Michigan). Sequences that contained double-peaks, 

indicating the presence o f two alleles, were coded with IUPAC degeneracy codes and 

treated as polymorphisms. Indels were resolved by comparing the unambiguous 5'-ends 

o f sequences to the 3'-ambiguous ends between forward and reverse strands (Peters et al. 

2007). Gaps resulting in shifted peaks in the chromatograms, thus, enabled us to resolve 

length polymorphisms within the sequences. All sequences were aligned by eye using 

the sequence alignment editor Se-Al 2.0a 11 (Rambaut 2007). Sequences and voucher 

information including georeferenced localities are deposited in GenBank (accession
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numbers G Q269364-G Q269772, GQ271146-GQ271246, GQ271884-GQ271985, 

JF914653-JF919754).

Gametic phase o f  nuclear allele sequences . -T he  allelic phase o f each nuclear 

sequence that was heterozygous at two or more nucleotide positions was determined 

using allele-specific priming and the software PHASE 2.1 (Stephens et al. 2001).

PHASE uses a Bayesian method to infer haplotypes from diploid genotypic data with 

recombination and the decay o f linkage disequilibrium (LD) with distance. Each data set 

was analyzed using the default values (100 main iterations, 1 thinning interval, 100 burn- 

in) followed by 1,000 main iterations and 1,000 burn-in (-X10 option) for the final 

iteration. The PHASE algorithm was run five times automatically (-x5 option) from 

different starting points, selecting the result with the best overall goodness o f fit. We 

next selected individuals with allele pair probabilities <80% and designed allele-specific 

primers to amplify one allele but not the other (Bottema et al. 1993, Peters et al. 2005). 

The resulting haploid allele sequence was then subtracted from the diploid consensus 

sequence to obtain the gametic phase o f the second haplotype. Each data set was then 

analyzed five more times using PHASE and the additional known allele sequences (-k 

option). The gametic phases o f 97.1% (n -  692) o f  the 713 individual autosomal 

sequences that we analyzed were identified experimentally or with >95% posterior 

probability, and 98.0%) (n = 699) were identified with >90% posterior probability.

Estimation o f  Genetic Diversity.—Nucleotide diversity (jt), expected and observed 

heterozygosities, and linkage disequilibrium (LD) between nuclear introns were 

calculated in ARLEQUIN 3.11 (Excoffier et al. 2005). Allelic networks were
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constructed in NETW ORK 4.5.1 (Fluxus Technology Ltd. 2004) using the reduced 

median algorithm (Bandelt et al. 1995), to illustrate possible reticulations in the gene 

trees due to homoplasy or recombination. Gaps were treated as a fifth base, and indels 

were treated as a single insertion/deletion event.

To test for departures from neutrality in scenarios characterized by an excess o f 

rare alleles, we calculated Tajim a’s D  (Tajima 1989). Significantly negative values for 

this test statistic may indicate a population evolving under non-random processes such as 

directional or balancing selection, or demographic expansion or contraction.

Estimation o f  Population Subdivision .— To assess levels o f population 

subdivision between highland (orinomus) and lowland (cyanoptera) populations, we 

calculated pairwise ® st and Fsr f°r sequence data in ARLEQUIN using the best-fit 

nucleotide substitution model, as identified in M ODELTEST 3.06 (Posada and Crandall

1998) under the Akaike Information Criterion (AIC; Akaike 1974). P-values were 

adjusted for multiple comparisons using permutations (3,000) or Bonferroni corrections 

(a = 0.05).

We used STRUCTURE 2.2 (Pritchard et al. 2000) to examine population 

differentiation. STRUCTURE uses a Bayesian method to assign individuals to 

populations by maximizing Hardy-W einberg equilibrium and minimizing linkage 

disequilibrium. Data were analyzed using an admixture model without priori knowledge 

o f specimen localities, assuming correlated frequencies with a burn-in period o f 100,000 

iterations, 1,000,000 M arkov chain Monte Carlo iterations. Four analyses were 

performed, one including only the five autosomal introns and three additional analyses



with five introns and mtDNA plus either the aA  subunit or pA subunit. No prior 

population information was used, and analyses were perform ed for one and two 

population models (K  = 1 or 2) to compute the probability o f assignment to the lowland 

or highland population and identify individuals with admixed lowland and highland 

genotypes.

Estimation o f  Gene Flow and Timing o f  D ivergence .— We estimated gene flow 

between highland and lowland populations using two methodologies: IM (Hey and 

Nielsen 2004, Hey 2005) and BayesAss 1.3 (W ilson and Rannala 2003). IM uses the 

isolation-with-migration coalescent model, which treats divergence t (|j,7) and population 

splitting (s) as independently estimated parameters in addition to the effective population 

size param eter (0 = 4Ne[i) and gene flow (M =  m!\i\ Hey and Nielsen 2004, Hey 2005). 

BayesAss uses an assignment methodology, which does not incorporate genealogy 

(W ilson and Rannala 2003). Estimates o f the gene flow rate can thus be interpreted 

differently at different temporal scales with IM estimating gene flow since population 

divergence, whereas BayesAss reflects gene flow that occurred only in the past several 

generations.

For the IM analyses, we simultaneously estimated the following parameters 

scaled to the mutation rate per locus: effective population sizes (0), immigration rates 

(M ), and time since population divergence'(0- We also estimated the splitting parameter 

(s) to test for the genetic signature o f the direction o f colonization.

IM assumes that the loci are free from intralocus recombination. We tested for 

recom bination within each nuclear intron using a four-gamete test in DNAsp v. 4.10
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(Rozas et al. 2003) and included the largest independently segregating block o f sequence 

consistent with no recombination. Only ENOl and GRIN1 showed evidence of 

recom bination and were truncated to the 5 ’ end positions 15-312 and 60-206, 

respectively. For the hem oglobin genes, the longest fragment with no recombination that 

included all non-synonymous amino acid replacements were 1-338 for the aA  subunit 

and 118-587 for the (3A subunit. The remaining loci had no detectable recombination; 

therefore the full sequences were used in the analysis. Additionally, we verified the four- 

gamete tests with an independent estimate o f the overall recombination rate (r) for each 

locus using LAM ARC 2.1.6 (Kuhner 2006) with the upper and lower limits for r set to 0 

and 10, respectively.

W e defined inheritance scalars in IM for mtDNA as 0.25 (maternally inherited) 

and for autosomal introns as 1.0 (biparentally inherited) to reflect differences in effective 

population sizes. We used the HKY model o f m utation for mtDNA and infinite sites 

model for the nuclear introns. We initially ran IM using large, flat priors for each 

parameter. Based on the results o f these runs, we defined narrower upper bounds for 

each param eter that encompassed the full posterior distributions from each initial run. 

Using those priors, we then used a burn-in o f 500,000 steps and recorded results every 50 

steps for more than 2 million steps. Effective sample sizes for each parameter exceeded 

100. We repeated the analyses three times using a different random number seed to 

verify that independent runs converged on the same values.

To convert IM estimates to biologically informative values, we estimated the

Q
mutation rate ([x per locus) using a mutation rate o f 4.8 x 10' substitutions/site/year



f

(s/s/y) for the mtDNA control region (range: 3.1 x 10'8 -  6.9 x 10'8 s/s/y; Peters et al. 

2005) and calibrated mutation rates for introns on the goose-duck split following methods 

outlined by Peters et al. (2007, 2008). Using the geometric mean o f substitution rates 

averaged for mtDNA and introns (7.57 x 10"7 s/s/y), we converted t and TMRCA to years 

before present (T) using t = Tjx and by dividing the IM estimate o f TMRCA by geometric 

mean o f |x.

For the BayesAss analysis genotypic allelic data was grouped as follows: (1) 

nuclear introns, (2) five nuclear introns and (3A subunit, and (3) five nuclear introns, (3A 

subunit, and a A  subunit. BayesAss was initially run with the default delta values for 

allelic frequency (P), migration rate (m), and inbreeding (F). Subsequent runs 

incorporated different delta values to ensure that proposed changes between chains at the 

end o f the run were between 40-60%  of the total chain length to maximize log likelihood 

values and ensure the most accurate estimates (W ilson and Rannala 2003). Final delta 

values used were AP = 0.06, Am = 0.03, and AF = 0.09. We performed five independent 

runs (50 million iterations, 5 million burn-in, and sampling frequency o f 2000) with 

different random seeds to ensure convergence across runs.

Sim ulated Neutral Genetic D iversity .—  Using the parameters inferred from the 

isolation-with-migration coalescent model, we simulated genetic data under a model o f 

selective neutrality in the program ms (Hudson 2002). We also included locus-specific 

recombination rates estimated in LAMARC as well as mutation rates based on empirical 

data for the five nuclear introns and mtDNA control region described above. We 

simulated a total o f 1,000 data sets from which the distribution o f pairwise O st expected
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under selective neutrality was calculated and compared to estimates o f aA  and |3A 

subunits as well as morphometric divergence ( P s t )  to determine if  a neutral trait could 

generate the divergence estimates observed.

Estimation o f  M orphometric D ivergence .— Phenotypic differentiation was 

assessed using a phenotypic-Q s t  ( P s t , Ssether et al. 2007, W hitlock 2008) for seven 

previously published body size measurements taken from a recent analysis o f Cinnamon 

Teal morphology (W ilson et al. 2010): wing chord length (carpal joint to longest primary 

feather unflattened, ±1 mm), tail length (base o f the uropygial gland on back to tip o f the 

center tail feather, ±1 mm), exposed culmen length, bill length at nares (anterior edge o f 

nares to tip o f nail), tarsus bone length (tarsometatarsus), bill height (height o f upper 

mandible at anterior edge o f nares), and bill width (width o f upper mandible at anterior 

edge o f nares). Due to low female sample size, we used a Bartlett’s equal o f variance test 

with Bonferroni-correction for multiple comparisons to determine whether male and 

female data sets could be pooled. No significant differences ( P  > 0.05) were found; 

therefore, female values were adjusted to male equivalents by adding the mean difference 

between sexes to females. A principal components analysis was performed on the seven 

body measurements excluding body mass to extract an overall body size index. In 

addition, a discriminant analysis was performed to estimate the probability o f assignment 

to highland or lowland population based on all seven measurements.

To assess the degree o f differentiation in phenotypic traits, we partitioned the 

morphological variation between subspecies by calculating a phenotypic-Q^r ( P s t ', Sasther 

et al. 2007, W hitlock 2008). P h e n o ty p ic -^ r  can be interpreted as an F St  analogue for
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quantitative traits provided that within- and between-population variance in trait values is 

exclusively attributable to additive genetic effects (W right 1943, 1951; Rogers and 

Harpending 1983). Otherwise, P St  estimates may be biased if  within- and between- 

population components o f environmental variance are not proportional (Merila and 

Cm okrak 2001). Comparisons o f P s t  and F St  are typically interpreted as follows: P s t  > 

F St , the trait(s) that P s t  was calculated from has diversified more than expected based on 

genetic drift alone; P s t  < F St , the trait(s) are under stabilizing selection that maintained 

the same value across the heterogeneous landscape in spite o f genetic drift; and Q s t  =

F s t , there is insufficient evidence to suggest that selection is acting differentially or 

uniformly across the landscape and genetic drift cannot be ruled out as a driving force in 

diversification (Rogers 1986, Lande 1992, W hitlock 1999, Merila and Cmokrak 2001, 

M cKay and Latta 2002).

P s t  variance measures were calculated as described in Storz (2002) and Saether et 

al. (2007). Phenotypic variation was partitioned into within- and between-group 

components using a variance component model (M odel II ANOVA) on PCI and PC2 

scores and individual measurements from W ilson et al. (2010). As the data are solely 

phenotypic, assumptions about the heritability o f the traits were made as outlined in Storz 

(2002) and Merila (1997) where morphological traits were assumed to have a narrow- 

sense habitability o f 0.5 based on heritabilities o f quantitative traits in avian and 

mammalian taxa (e.g., Boag and van Noordwijk 1987, Larsson 1993, M erila and 

Gustafsson 1993, Falconer and M ackay 1996). In addition, morphological trait 

differences (e.g., wing chord) have been shown to be genetically controlled along an



elevational gradient in passerines (Junco hyemalis\ Rasner et al. 2004, Bears et al. 2008) 

and other Andean waterfowl (e.g., Anas puna  and Lophonetta specularioides) bred in 

captivity in lowlands show morphological differences observed in the wild. Furthermore, 

it has been shown that only an extremely large environmental component o f between 

group variance would affect the estimation o f P st and lead to accepting the null 

hypothesis o f neutral phenotypic divergence (M erila 1997, Storz 2002, Sasther et al. 

2007).

It is important to note that comparisons o f P st and F st provide an initial starting 

point to identify potential characters that may be under selection as detailed experiments 

such as reciprocal transplant experiments, physiological studies, and correlation of 

morphology with environmental conditions are needed to confirm findings o f these types 

o f comparisons (W hitlock 2008). However, the selection pressures imposed by high 

elevation are well defined, and two main environmental factors (lower temperatures and 

hypoxia) are known to facilitate morphological variation (Bergmann 1894, James 1968, 

1970, 1991, Hopkins and Powell 2001). Therefore, trait(s) showing an elevated level of 

phenotypic divergence ( P s t )  would be predicted to be a strong candidate to be under 

directional selection associated with high elevation.

Results

Genetic D iversity .— Five to 22 alleles were identified in the five autosomal introns, with 

three to 18 polymorphic sites per locus. Observed heterozygosity was moderate to high 

(0.48 to 0.92) for all reference loci and similar between subspecies (Table 2.2). Genetic 

diversity, in terms o f number o f alleles and polymorphic sites, was higher than the introns



for both the a A  and |3A subunits (Table 2.2), which had 17 and 21 alleles with 15 and 63 

polymorphic sites, respectively. Twenty-seven mtDNA haplotypes characterized by 18 

variable sites were identified within Cinnamon Teal (Fig. 2.2).

Observed heterozygosity at the aA  and (3A subunits was similar to levels 

observed for autosomal introns for lowland cyanoptera  (Ho = 0.58 and 0.77, respectively; 

Table 2.2). In contrast, observed heterozygosity for the a A  subunit was considerably 

lower than levels observed for the nuclear introns for highland orinomus; most 

individuals in the highlands were homozygous for a single a A  subunit allele (Ho = 0.06; 

Table 2.2, Fig. 2.2). All reference loci were in Hardy-W einberg equilibrium except for 

FGB; cyanoptera  exhibited heterozygote deficiency (Table 2.2). In contrast to the five 

introns, both a A  and |3A subunits were out o f Hardy-W einberg equilibrium.

Heterozygote deficiency was observed the aA  subunit when highland and lowland 

populations were pooled (42% vs. 68%; P  < 0.001), however, orinomus and cyanoptera 

were in Hardy-W einberg equilibrium when analyzed separately (Ps > 0.5). In addition, 

the lowland population was found to be heterozygote deficient (58% vs. 78%) for the |3A 

subunit, whereas the highland population was in Hardy-W einberg equilibrium (Table 

2.2). The five autosomal introns were in linkage equilibrium (Ps > 0.05).

Tajim a’s D  was not significant for any comparisons involving the five nuclear 

introns, |3A subunit, or mtDNA (Ps > 0.50; Table 2.2). However, orinomus exhibited a 

significant Tajim a’s D, indicating a significant excess o f rare alleles for the aA  subunit in 

the highland population (Table 2.2; Fig. 2.2).
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Population Subdivision.— Significant variance in the spatial distribution o f allelic 

and haplotypic frequencies was observed across loci within Cinnamon Teal. Low to 

moderate levels o f genetic structure were observed across the five introns (O st = 0.007

0.087; Table 2.2, Fig. 2.2). In contrast, very high differentiation was observed for the aA  

subunit between lowland cyanoptera and highland orinomus populations falling outside 

the 95% confidence limit o f simulated data ( O s t  = 0.551, Table 2.2, Fig. 2.2 and 2.3). 

Despite high levels o f subdivision observed for the a A  subunit, the PA subunit showed 

levels o f structure similar to variance estimates calculated for the autosomal introns ( O s t  

= 0.061; Table 2.2, Fig. 2.2).

Little evidence o f population structure was detected within Cinnamon Teal using 

Structure and a two-population model (K  = 2) with either the autosomal introns or the 

mtDNA data set (posterior assignment probabilities averaged 50.8% and 50.7%, 

respectively; Fig. 2.4). Results from the combined analysis o f five introns and mtDNA 

with the PA subunit were similar (posterior assignment probabilities = 51.4 ± 3.2% SD; 

Fig. 2.4). However, with the inclusion o f the a A  subunit, lowland cyanoptera 

individuals and highland orinomus individuals were assigned to two clusters with high 

posterior probabilities (94.5 ± 9.4% SD; Fig. 2.4).

Hemoglobin amino acid substitutions.— Two nonsynonymous substitutions were 

observed on the aA  subunit. One substitution resulted in an amino acid replacement 

(Asn -> Ser-a9), which showed highly significant allele frequency differences between 

cyanoptera  and orinomus (F s t  = 0.94) and has not been recorded in any other waterfowl 

species (M cCracken et al. 2009b). N inety-four percent o f individual cyanoptera were



homozygous for Asn, whereas 94% of individual orinomus were homozygous for Ser. 

Three (6%) heterozygous individuals were found in cyanoptera and three in orinomus.

All six cyanoptera  individuals collected above 2,000 m and at the northern and southern 

borders o f Altiplano were homozygous for the allele that occurred at high frequency in 

the lowland population, Asn-a09. The second substitution we observed was Ala -> Thr- 

a28 . One orinomus (KGM 499) collected on Lake Titicaca and four cyanoptera in 

Patagonia were heterozygous Ala/Thr-a28 with all remaining individuals homozygous 

Ala/Ala-a28. Ala is a synapomorphy for Cinnamon Teal and other members o f the blue

winged duck group, whereas Thr-a28 is the ancestral state found in all other dabbling 

ducks (M cCracken 2009b). The |3A subunit possessed only silent (i.e., synonymous) 

polymorphisms.

Time since divergence.— Based on joint estimate for mtDNA and five nuclear 

introns, time since divergence peaked at 0.13 (95% Cl = 0.05-0.72; Fig. 2.5), suggesting 

that lowland and highland subspecies began diverging about 171,730 years before present 

(ybp; range = 62,500-901,750). Assuming an exponential growth model, the posterior 

distribution o f the splitting parameter, s, peaked at 94.95 % (8.25-98.15) as the percent of 

the ancestral population that contributed to cyanoptera, indicating a highland 

colonization from the lowlands.

Gene flow .— IM estimated the joint gene flow rate for mtDNA and nuclear introns 

into the lowlands Mc to be approximately 28.56 times greater than the mutation rate (95% 

Cl = 6.82-83.81), which exceeded the migration rate into the highlands (M0= 1.94; 95% 

Cl = -0 .00 -65 .39 ; Fig. 2.5). There was considerable overlap in estimates; however, we
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could not reject a hypothesis o f no gene flow into the highlands. Multiplying through by 

d, the jo in t estimate indicated that there were on average 27.2 migrants/generation into 

the lowlands and effectively no migrants into the highlands. The posterior distribution of 

the time at which each gene flow event was recorded peaked at t = 0  for all loci, 

suggesting that the majority o f the gene flow occurred after divergence, which peaked at 

0.13 (Fig. 2.5). Single-locus IM analysis for the aA  subunit could not estimate 

population parameters, presumably because one allele predominated the highland 

population causing the effective population size to be zero.

Consistent with the pattern observed for the isolation-with-migration model (IM), 

an asymmetrical downslope migration rate for the five nuclear introns was also observed 

under the BayesAss assignment model. There was restricted upslope migration, with 

approximately 0.8% (0.0-3.1% ) o f the highland population comprised o f migrant origin 

with 0.272 (0.161-0.325) o f the lowland population having a highland origin. Similar 

results were obtained with nuclear introns and (3A subunit combined. However, there 

was restricted gene flow estimated in both directions when the aA subunit was included, 

with 0.7%) (0 .0 -2 .6 %) o f the highland population and 1.5% (0.1-4.4% ) o f the lowland 

population showing a migrant origin. The inference o f restricted gene flow in the aA 

subunit was further suggested by the higher proportion o f nonmigrant individuals 

estimated in the cyanoptera  population than in the orinomus population (0.985, 95% Cl 

0.956-0.999, and 0.993, 95% Cl 0.974-1.000, respectively).

Population Size .— The population size parameter,©, estimated in IM for mtDNA 

and nuclear introns combined was higher for cyanoptera than orinomus (Fig. 2.5). The
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effective population sizes (Ne) for cyanoptera and orinomus were estimated to be 98,091 

(47,497-256,071) and 49,560 (20,650-120,807), respectively. Also, posterior 

distributions were smaller than the ancestral size (397,510; 187,923-971,630), suggesting 

population contractions following divergence. The effective population size and census 

size were in close agreement, as current population estimates for cyanoptera range from 

25,000-100,000 (Rose and Scott 1997) and 10,000-100,000 for orinomus (Wetlands 

International 2002).

Morphometric divergence.-—The first principal component (PC I) accounted for 

59.9% o f the variance in morphology (eigenvalue = 4.20 and represented an overall body 

size vector, as factor loadings for all measurements were uniformly high and positive.

The second principal component (PC2) accounted for 11.2% o f the variance and 

represented a bill shape difference, as bill measurements were the most influential 

variables. Highland (orinomus) individuals were significantly larger than lowland 

(icyanoptera) individuals (ANOVA: F / 93 = 135.57, P < 0.001). Discriminant analysis 

showed a high overall probability o f subspecific assignment (Fig. 2.3). For males, only 

one orinomus (KGM 441; 92%) and one cyanoptera  (REW  316; 80%) had an assignment 

probability o f less than 95% to subspecies. All females had 100% probability o f 

assignment.

Body size (PC I) divergence between subspecies was approximately five times 

larger { P s t  = 0.586) than the highest F s t  value (0.103, FGB) from the five nuclear introns. 

Among individual measurements, P s t  estimates for wing chord (0.822), tarsus (0.470), 

and tail length (0.640) showed similar pattern as PCI (body size), with P Sr  falling far
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outside the 95% confidence limit o f simulated neutral genetic data (Fig. 2.3).

Divergences in bill shape were roughly similar to F st estimates falling within the 

simulated data: bill length at nares (P st = 0 .0 0 0 ), culmen length (0.217), bill width 

(0.127), and bill height (0.135). In addition, there were significant added variance 

components (Ps < 0.05) except for bill length at nares, indicating that individuals from 

different environments differ more from each other than do individuals from the same 

environment. All P s t  values were similar when males and females were analyzed 

separately (data not shown).

Discussion

Hemoglobin and phenotypic divergence .— Cinnamon Teal showed strong divergence in 

hemoglobin and body size despite a pattern o f  considerable admixture o f reference loci 

between environmental extremes. The lack o f significant allelic frequency differences 

across all nuclear introns (F St =  0.004, P  > 0.05) and STRUCTURE analysis indicated 

little evidence for genetic structuring among sampled sites. However, a single 

nonsynonymous substitution on the aA hemoglobin subunit (Asn -*  Ser-a9; F Sr=  0.94) 

and large body size (PC I; P s t  = 0.560) were two characteristics o f highland individuals, 

whereas lowland individuals generally lacked this allele and possessed a smaller body 

size. The observed amino acid substitution (a9) is located on an exterior, solvent- 

accessible position on the A helix (McCracken et al. 2009c), which is known to undergo 

an important conformational change during the transition from the deoxy to the oxy state 

suggesting this amino acid may confer a functional response to hypoxia (Perutz 1990).
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If  genetic drift has played a major role in shaping adaptive traits, then differences 

between highlands and lowlands should be roughly equivalent to divergence found in 

neutrally evolving genetic markers. Both multivariate (first principal component) and 

univarate (wing chord and tarsus) indicators o f overall body size (Rising and Somers 

1986, Senar and Pascual 1997) as well as aA hemoglobin subunit showed elevated 

divergence in comparison to reference loci. Divergence estimates (P s t  and & s t )  for body 

size and aA  hemoglobin subunit were outside the distribution o f simulated values of 

neutral divergence indicating it would be unlikely that a neutral trait could generate the 

observed levels o f divergence. This is suggestive that local adaptation to high elevation 

has influenced body size and hemoglobin structure. The increase in body size observed 

with elevation is consistent with Bergm ann’s rule, which predicts that individuals in 

colder arid environments tend to be larger in size (W ilson et al. 2010). In addition, high 

elevation habitats exert multiple environmental pressures (Monge and Leon-Velarde 

1991), which may act synergistically with the resulting interacting effects, posing a 

greater challenge than each factor alone. Therefore it is not surprising that hemoglobin- 

oxygen affinity and body size are often correlated, such that larger animals tend to have 

higher hem oglobin-02 affinity (Schmidt-Nielsen and Larimer 1958, Hopkins and Powell 

2001).

Pre-zygotic isolation can occur when populations are separated in space. When 

habitat segregation occurs due to genetically-based adaptations, isolation can arise that 

reduces the likelihood o f heterospecific encounters (Rice and Salt 1990, Johnson et al. 

1996, Rundle and Nosil 2005). The spatial distributions o f hemoglobin alleles and body
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types suggest that there is a strong tendency for individuals to remain in their native 

elevation, as there were only a few individuals with mismatched genotypes and/or 

phenotypes to their environment. Each population contained three individuals (3% 

overall) that were heterozygous (A sn/Ser) at their typical elevation, while there were six 

mismatched, small-bodied individuals found in the highlands that possessed the lowland 

aA  hemoglobin allele. O f these six individuals, only two were found in sympatry with 

orinomus at Laguna de Paca (Junin, Peru) where orinomus is not known to breed. The 

remaining four individuals were collected at the periphery o f the range o f orinomus and 

were either observed as solitary pairs or a small group o f no more than four individuals.

In addition, no other lowland Cinnamon Teal were encountered in the surrounding areas 

or within the main breeding area o f orinomus', thus the likelihood o f intermixing of 

highland and lowland populations appears to be low.

Gene flo w .— Although gene flow estimates were restricted between highland and 

lowland populations when the full data set was analyzed (reference loci and hemoglobin), 

dispersal is likely much higher than the rate o f gene flow (Garant et al. 2007). Transplant 

experiments have demonstrated that lowland birds have difficulty successfully breeding 

at high elevation (M onge and Leon-Velarde 1991) and that selection imposed by hypoxia 

are the main cause o f  low hatchability o f  eggs (Visschedijk et al. 1980). A t elevations of 

4,000 m or greater, there is a shift in physiological mechanism regulating gas exchange 

from conservation o f w ater and CO 2 at middle elevation to mechanisms improving O 2 

availability (Carey 1994). Adult hemoglobin has been shown to appear by day six during 

embryonic development (Leon-Velarde and Monge-C 2004), and if  the observed amino
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acid substitution confers a higher oxygen affinity, it would likely ensure higher O 2 

content required for embryonic growth and development at high elevations. Individuals 

possessing mismatched genotypes were found in Cinnamon Teal in this study and in a 

recent study o f Yellow-billed Pintail (A. georgica, M cCracken et al. 2009a), indicating 

that individuals can disperse into the highlands, perhaps because they can initially 

acclimate to hypoxia via multiple physiological pathways. However, the susceptibility of 

the avian embryo to hypoxia most likely limits these individuals from successfully 

breeding in the highlands.

Furthermore, reference loci (mtDNA and introns) showed asymmetrical gene 

flow, with a greater immigration into the lowlands from the highlands, whereas 

immigration into the highlands was indistinguishable from zero. Highland species have 

been successfully bred in captivity in lowland environments from wild stock with no 

difficulty (Delacour 1956), and these captive stock Andean waterfowl continue to possess 

the molecular (hemoglobin) and morphological (body size) adaptations o f wild 

populations (Chloephaga melanoptera  Hiebl et al. 1987, Anser indicus Scott et al. 2011, 

A. puna  pers. observ.). Thus, it is unlikely that high-elevation adaptations restrict 

highland birds from breeding in the lowlands. Andean coots (Fulica ardesiaca) breeding 

at sea level on the west slope o f Peru, for example, have been shown to have elevated 

hem oglobin - 0 2  affinity that is sharply left-shifted and indistinguishable from individuals 

from the highlands (M onge and Leon Velarde 1991). It is likely that such Andean west 

slope populations may actually be o f highland origin, as highland birds more often 

descend to the west slope (Pearson and Plenge 1974, Fjeldsa 1985). However, we found



no highland individuals in the lowlands except for one individual at approximately 1,500 

m, suggesting that movement into the lowlands is uncommon even though the 

populations are separated by only < 100 km in some parts o f their range. Therefore, 

factors other than high-elevation adaptations are likely restricting gene flow to the 

lowlands (e.g., migratory behavior, availably o f forging habitat, etc.).

Timing and direction o f  colonization and adaptive trait change.— Residents of 

high elevations often develop long-term, genetic adaptations, in particular to the 

hemoglobin molecule, to reduce the physiological stress impose by hypoxic environment 

(Leon-Velarde 1996; W eber 2007; M cCracken 2009b,c). Adaptations can accumulate 

over a long period o f time or can occur over a very short time period, as evident in high- 

elevation populations o f chickens in the Andes that have likely acquired higher Hb-C>2 

affinity within the last 500 years (Leon-Velarde et al. 1991). Coalescent analyses suggest 

that lowland cyanoptera and highland orinomus have been diverging for at least 62,500 

years. Compared to other waterfowl species, Cinnamon Teal have a shallower 

divergence (e.g., Lophonetta specularioides Bulgarella unpublished data, Anas 

flavirostris  M cCracken et al. 2009b, and A. puna/A. versicolor Johnson and Sorenson

1999), which maybe indicative o f  a shorter period o f  isolation in the highlands.

Therefore, Cinnamon Teal may be a more recent Andean resident. This conclusion is 

consistent with the observation that only a single, derived amino acid polymorphism 

(A sn/Ser-a9) exhibited significant frequency differences between the lowlands and the 

highlands.



The splitting param eter provided further evidence that the highlands were most 

likely colonized from the lowlands, suggesting that less than 10% of the ancestral 

population contributed to the highland orinomus. However, the splitting parameter had a 

large confidence interval with some values being inconsistent with a colonization event 

(95%) Cl o f s = 8-98% ), indicating that the possibility that the ancestral population 

contributed equally to cyanoptera  and orinomus could not be completely rejected. 

However, the alternative hypothesis o f lowland colonization from the highlands is 

unlikely, as values indicative o f this direction had extremely low probability. The 

splitting param eter suggested that the majority (s = 95%) o f the ancestral population 

contributed to the lowland cyanoptera, which would correspond to other Andean 

avifauna that appear to have colonized the highlands from the southern lowlands (Fjeldsa 

1985, Vuilleumier 1986, M cCracken et al. 2009b). Therefore it is likely that Cinnamon 

Teal also had its origins in the lowlands.

Assuming that the highlands were colonized from the lowlands, we can infer that 

small body size and Asn-a9 are the ancestral traits. Many closely related species differ in 

elevational distributions, which led to the suggestion that habitat change might have been 

the initial step in divergence, and that body size differences and other traits arose later 

(Diamond 1986, Richmond and Price 1992). As seen in Cinnamon Teal, other Andean 

waterfowl show similar patterns o f body size (Blake 1977, Bulgarella et al. 2007) and 

hemoglobin structure changes (McCracken et al. 2009b,c) between lowland and highland 

counterparts. Given that Cinnamon Teal began diverging well after the uplift o f the 

Altiplano/Puna region and associated climate change (Gregory-W odzicki 2000), it is



unlikely that the divergence originated within a single lowland habitat and that 

differentiated populations later gave rise to different forms when additional habitats (e.g. 

Andean Altiplano) become available.

Our conclusions on the adaptive function o f morphological and hemoglobin 

divergence rely on three assumptions about the evolutionary mechanisms underlying 

divergence observed: (i) divergent selection in different habitats has caused the 

differences in traits, (ii) hemoglobin amino acid polymorphism likely alters hemoglobin 

function, and (iii) morphological traits are heritable and not subject to substantial 

phenotypic plasticity. The parallel patterns o f hemoglobin amino acid substitution and 

consistent body size changes across all Andean waterfowl (Blake 1977, Bulgarella et al. 

2007, M cCracken et al. 2009a,b) are consistent with functional predictions to deal with a 

hypoxic, cold habitat and suggest that these morphological and physiological differences 

are a product o f directional selection (Bulgarella et al. 2007; M cCracken et al. 2009b,c; 

W ilson et al. 2010). However, the structural and functional effect o f the observed Asn -> 

Ser-a9 is still unknown, and further research is required to determine its role in the 

oxygen transport system. Although the structural and functional effects o f the observed 

amino acid change are yet to be determined, the genetic and morphological divergence 

observed has likely resulted due to strong selection imposed by high-elevation 

environment.
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Figure 2.1. Sampling localities and geographic ranges for Cinnamon Teal (Anas 
cyanoptera) in this study (Ridgely et al. 2003).
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Figure 2.2. Allelic networks for eight loci. Alleles for A  c. cyanoptera are shown in black, and alleles for A. c. orinomus are 
shown in white. Significant Fst (P  < 0.05) is indicated by an asterisk. Circle area is proportional to the number o f each allele 
found and small gray circles indicate intermediate alleles not sampled.
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Figure 2.3. Simulated values o f  O s t for 1,000 simulated data sets for neutral loci (grey line) and empirical values for the a A  
hemoglobin subunit (HBA; closed circle and dashed line) and p h en o ty p ic -^ r  (P st, open circles and solid black line) for 
morphological traits.
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Table 2.1. Genes sequenced and their chromosomal positions in the chicken genome.

Locus Base pairs sequenced Chicken chromosome1

mtDNA control region (mtDNA) 1,270-1,272 mtDNA
Ornithine decarboxylase intron 5 (O DC1) 351 3
a  enolase intron 8  (EN O l) 312 2 1

(3 fibrinogen intron 7 (FGB) 245 4
N-methyl D aspartate 1 glutamate receptor intron 11 (GRIN1) 330 17
Phosphoenolpyruvate carboxykinase intron 9 (PCK1) 345 2 0

a  A hemoglobin subunit (HBA1) 678 14
(3A hemoglobin subunit (HBB) 1,578-1,582 1

1 Location in the chicken genome as defined by Hillier et al. (2004).
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Table 2.2. Number o f alleles, nucleotide diversity, heterozygosity (observed Ho and expected He), F s t , and O s t  for five 
unlinked autosomal introns, mtDNA control region, and the a A  and (3A hemoglobin subunits from A. c. cyanoptera (lowland) 
and A. c. orimonus (highland) subspecies o f Cinnamon Teal.

Population
No. polymorphic 

sites
No.

Alleles

Nucleotide
Diversity

(jr/site)

Tajima's
D

Ho/He 1 Fst <pST2

Ornithine decarboxylase cyanoptera 9 7 0.0078 1 . 8 6 0.81/0.79 0.060 0.011

orinomus 9 7 0.0079 1.71 0.74/0.81

a  enolase cyanoptera 14 9 0.0129 -0.11 0.77/0.86 0.035 0.087

orinomus 7 7 0.0077 -0.05 0.74/0.78

(3 fibrinogen cyanoptera 5 4 0.0078 2.05 0.65/0.70 0.103 0.043

orinomus 6 5 0.0056 0.38 0.50/0.50

N-methyl D aspartate 
receptor type I intron 13 cyanoptera 18 18 0.0161 1.97 0.75/0.80 0.015 0.019

orinomus 1 2 1 2 0.0146 2.77 0.92/0.83

Phosphoenolpyruvate cyanoptera 4 5 0.0019 -0.33 0.48/0.60 0.009 0.007

carboxykinase orinomus 3 4 0 . 0 0 2 2 0.59 0.60/0.63

Averaged introns cyanoptera

orinomus

— — 0.0092

0.0075

— — 0.004 0.036



Table 2.2 continued.

Population
No. polymorphic 

sites
No.

Alleles

Nucleotide
Diversity

(it/site)

Tajima's
D Ho/He 1 Fst <pST2

mtDNA control region cyanoptera 29 16 0.0034 -1.45 — 0.168 0.072

orinomus 2 1 13 0.0019 -1.47 —

aA  hemoglobin cyanoptera 1 2 16 0.0025 -0.75 0.77/0.71 0.602 0.551

orinomus 7 4 0 . 0 0 0 2 -1.94 0.06/0.06

PA hemoglobin cyanoptera 59 15 0.0076 0.40 0.58/0.78 0.082 0.061

orinomus 54 1 1 0.0042 -1.07 0.48/0.46

'Populations out o f Hardy-Weinberg equilibrium are shown in bold. 
Significant values (P  < 0.05) are shown in bold.
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Appendix 2.1. Localities o f Anas cyanoptera  specimens. KGM, JT, and REW 
specimens are cataloged at University o f Alaska Museum.

A. c. cyanoptera
ARGENTINA: Neuquen, Rio Collon Cura, R.N. 40, 40° 12' 45" S, 70° 38' 58" W, 625 
m
KGM 268
ARGENTINA: Cordoba, Laguna La Felipa, 33° 04' 17" S, 63° 31' 33" W, 184 m 1 

KGM 310, KGM 313, KGM 311, KGM 312
ARGENTINA: Cordoba, S. Canals, 33° 36' 23" S, 62° 53' 16" W, 112 m 1 

KGM 322
ARGENTINA: Jujuy, S. Purmamarca, 23° 49' 13" S, 65° 28' 34" W, 2,141 m 
KGM 442
PERU: Dpto. Lima, S Huacho, 11° 10' 12.9" S, 77° 35 '31 .4" W, 15 m 
REW 081, REW 082
PERU: Dpto. Junin, Jauja, Laguna de Paca, 11° 44' 14.5" S, 75° 29' 32.7" W, 3,506 m 
REW 118, REW 122
PERU: Dpto. Ancash, Laguna Conococha, 10° 07' 10.8" S, 77° 17' 00.7" W, 4,039 m 
REW 164
PERU: Dpto. Lambayeque, ca. Puerto Eten, 06° 54' 51.9" S, 19° 52' 22.4" W, 13 m 
REW 193, REW 194, REW 195, REW 196
PERU: Dpto. Lambayeque, Playa Monsefu, 06° 54' 03.7" S, 19° 53' 42.4" W, 12 m 
REW 198, REW 199
PERU: Dpto. La Libertad, M agdalena de Cao, 07° 51' 54.3" S, 19° 20' 51.2" W, 23 m 
REW 200
PERU: Dpto. Ancash, Chimbote, 09° 07’ 26.0" S, 78° 33’ 11.3" W, 15 m 
REW 203, REW  204, REW 205
PERU: Dpto. Ancash, Puerto Huarmey, 10° 05' 52.0" S, 78° 09' 10.3" W, 14 m 
REW 206
PERU: Dpto. Lima, Albufera de Medio Mundo, 10° 55’ 25.9" S, 77° 40' 10.8" W, 14 m 
REW 207
PERU: Dpto. Ica, Pisco, 13° 41’ 46.8" S, 76° 13' 07.3" W, 7 m 
REW 235
PERU: Dpto. Ica, Pisco, 13° 40’ 47.2” S, 76° 12’ 56.6" W, 9 m 
REW  236
PERU: Dpto. Tacna, Ite, 17° 52' 47.2" S, 71° 01' 05.9" W, 10 m
REW 298, REW 299, REW 300, REW 301, REW 302, REW  303, REW 304
PERU: Dpto. Arequipa, Punta de Bombon-Islay, 17° 11' 31.9" S, 71° 46' 19.4" W, 8  m
REW 305, REW 306
PERU: Dpto. Lima, 2 km N. La Laguna, 12° 33' 13.0" S, 76° 42' 42.1" W, 9 m 
REW 315, REW 316, REW 317
ARGENTINA: Chubut, Laguna Terraplen, 42° 59' 50.7" S, 71° 30' 55.1" W, 630 m 
KGM 712, KGM 713
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Appendix 2.1 continued.

ARGENTINA: Santa Cruz, Estancia La Angostura, 48° 38' 33.9” S, 70° 38' 37.3" W, 
460 m
KGM 766, KGM 767
ARGENTINA: Santa Cruz, ca. Punta Loyola, 51° 37' 35.7” S, 69° 00' 59.4" W, -3 m 
KGM 797, KGM 798
ARGENTINA: Santa Cruz, ca. Punta Loyola, 51° 36' 54.9" S, 6 8 ° 59' 26.6" W, 0 m 
KGM 799
ARGENTINA: Chubut, S. Lago Colhue Huapi, 45° 38' 49.6" S, 6 8 ° 56' 45.1" W, 256 m 
KGM 808
ARGENTINA: Catamarca, Antofogasta de la Sierra, Laguna La Alumbrera, 26° 06' 
46.4" S 67° 25' 26.7" W, 3,338 m 
KGM 1110
ARGENTINA: Catamarca, Embalse Las Cortaderas, 27° 33' 21.2" S, 6 8 ° 08’ 41.9",
3,369 m 
KGM 1142
ARGENTINA: Buenos Aires, 34° 52' 27" S, 61° 23' 19.2", 8 6  m 
JT011
ARGENTINA: Buenos Aires, 34° 53' 15" S, 61° 21' 51", 8 6  m 
JT 046, JT 047 
A. c. orinomus
ARGENTINA: Salta, NE La Caldera, 24° 33’ 01" S, 65° 22' 15" W, 1,468 m 
KGM 441
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16° 11' 45" S, 6 8 ° 37' 28" W, 3,808 m 
KGM 485, KGM 486, KGM 487
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16° 20' 13" S, 6 8 ° 41' 20" W, 3,854 m 
KGM 499
BOLIVIA: Dpto. Oruro, Lago Uru Uru, 18° 02' 03" S, 67° 08' 46" W, 3,735 m 
KGM 527, KGM 528, KGM 529, KGM 530, KGM 531, KGM 532, KGM 533, KGM 
534, KGM 535
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16° 25' 28" S, 6 8 ° 51' 43" W, 3,850 m 
KGM 557
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21' 03" S, 6 8 ° 37' 40" W, 3,839 m 
KGM 559, KGM 560
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21' 02" S, 6 8 ° 37' 48" W, 3,840 m 
KGM 561, KGM 562
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21' 07" S, 6 8 ° 38' 06" W, 3,845 m 
KGM 563, KGM 564, KGM 565, KGM 566
PERU: Dpto. Junin, Jauja, Laguna de Paca, 11° 44' 14.5" S, 75° 29' 32.7" W, 3,506 m 
REW 125, REW 126
PERU: Dpto. Cusco, Laguna Chacan, 13° 26' 02.6" S, 72° 07’ 49.6" W, 3,533 m 
REW 238, REW 239, REW 240, REW 241, REW 242
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Appendix 2.1 continued.

PERU: Dpto. Cusco, ca. Chinchero, 13° 25' 49.3" S, 72° 03' 41.7" W, 3,789 m 
REW 248
PERU: Dpto. Cusco, Urubamba Valley, 13° 25' 22.9" S, 72° 02' 38.2" W, 3,743 m 
REW 253, REW 254
PERU: Dpto. Cusco, ca. Laguna Pomacanchi, 14° 06' 51.9" S, 71° 27' 56.6" W, 3,781 m 
REW  255, REW  256, REW 257, REW 258, REW  259
PERU: Dpto. Puno, Lago Titicaca, Jaru Jaru, 15° 59' 05.6" S, 69° 36' 24.3" W, 3,824 m 
REW 268, REW  269
PERU: Dpto. Puno, Lago Titicaca, ca. Puno, 15° 52' 01.2" S, 69° 56' 21.3" W, 3,830 m 
REW 271
PERU: Dpto. Puno, Lago Umayo, Sillvstani, 15° 42' 45.8" S, 70° 09’ 00.0" W, 3,853 m 
REW  272
PERU: Dpto. Puno, Deustva, 15° 33' 50.0" S, 70° 14' 33.1" W, 3,871 m
REW 284, REW  285, REW 286___________________________________________________

'These elevation values are interpolated from the U.S. Geological Survey’s G TO P030 
(http://eros.usgs.gov); all other elevations were measured with a GPS receiver.

http://eros.usgs.gov
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CHAPTER 3

SPECIATION, SUBSPECIES DIVERGENCE, AND PARAPHYLY IN CINNAMON

TEAL AND BLUE-W INGED TEA L 1

ABSTRACT

Divergent selection can lead to extensive morphological and behavioral 

differences despite low neutral genetic differentiation. We examined the evolutionary 

history o f two closely related waterfowl species, Cinnamon Teal (Anas cyanoptera) and 

Blue-winged Teal (A. discors) that are morphologically distinct but have paraphyletic 

mitochondrial DNA (mtDNA) and shared allozyme alleles. Our results based on mtDNA 

and nuclear intron sequence data revealed that North American Cinnamon Teal (n = 70) 

and Blue-winged Teal (n = 76) are characterized by high genetic diversity, a large 

effective population size, and a recent population expansion. In contrast, South 

American Cinnamon Teal (n = 102) have less genetic diversity, a smaller effective 

population size, and have had more stable effective population sizes. We found 91 

unique mtDNA haplotypes with only a few haplotypes shared among Cinnamon Teal

'W ilson, R. E., M. D. Eaton, S. A. Sonsthagen, J. L. Peters, K. P. Johnson, B. Simarra, 

and K. G. McCracken. Speciation, subspecies divergence, and paraphyly in Cinnamon 

Teal and Blue-winged Teal. Condor: in press.



subspecies or between species, but haplotypes were intermixed in a polyphyletic 

relationship and diagnostic phylogroups were not observed. Moreover, populations were 

strongly differentiated for mtDNA (Os7- = 0.41) compared to nuclear introns (<I>st= 0.04

0.06). Isolation with migration (IM) analyses indicated that haplotypic and allelic sharing 

across continents is most likely attributable to incomplete lineage sorting rather than gene 

flow, whereas w ithin-continent estimates yielded higher migration rates. The oldest 

divergence was between North American Cinnamon Teal and the other taxa, whereas 

Blue-winged Teal likely split from South American Cinnamon Teal more recently. 

However, there was considerable overlap in divergence confidence intervals suggesting 

that these taxa diversified rapidly.



f

INTRODUCTION

Natural selection, sexual selection, and stochastic processes such as genetic drift and 

founder events are important evolutionary forces leading to divergence between 

populations and ultimately, in many cases, to speciation (Questiau 1999, Coyne and Orr 

2004, Price 2008). As populations colonize new environments, particular traits become 

m odified to exploit new resources or to gain advantages in social competition for 

contested resources such as food and mates (W est-Eberhard 1983). Incipient species thus 

can develop distinct morphology or behavior in response to varying selection that result 

in premating and postmating isolation, with little or no neutral genetic differentiation 

(M eyer 1993, Bernatchez et al. 1996, Schluter 1998, Seehausen and van Alphen 1998, 

Hendry 2001, Odeen and Bjorklund 2003). These morphological and behavioral 

responses can cause incongruence between species limits based on phenotypic traits and 

gene genealogies, especially in recently diverged taxa (Funk and Omland 2003, Avise 

2004, Buehler and Baker 2005, Joseph et al. 2006, Maley and W inker 2010). 

Furthermore, a major component o f variation among closely related species or subspecies 

often results from differences in sexual ornaments used for mate recognition (West- 

Eberhard 1983, Price 1998, Questiau 1999, Johnsen et al. 2006). Such discrepancies 

between morphological and molecular data have resulted in questions regarding species 

status; however, they provide a valuable opportunity to gain insight into species’ biology 

and the evolutionary processes leading to speciation (Edwards et al. 2005, Johnsen et al. 

2006, Joseph et al. 2006, Omland et al. 2006).
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Cinnamon Teal (Anas cyanoptera) and Blue-winged Teal (A. discors) are two 

species o f closely related dabbling ducks that are particularly well suited for studying 

divergence and gene flow between paraphyletic species and subspecies with shallow 

genetic differentiation. These species exhibit pronounced differences in body size, 

coloration, habitat choice, and aspects o f their behavior (e.g., migratory behavior and 

territoriality; Gammonley 1996, Rohwer et al. 2002), but mitochondrial DNA (mtDNA) 

suggests a recent divergence (Kessler and Avise 1984, Johnson and Sorenson 1999, Kerr 

et al. 2007). Both species are widespread throughout the W estern Hemisphere and are 

occasionally found in sympatry in western North America and in northern South America 

(Fig. 3.1). Cinnamon Teal are composed o f five morphologically distinct subspecies that 

are distinguished by unique geographic and ecological zones: A. c. cyanoptera (lowland 

South America and occasionally the high Andes), A. c. orinomus (endemic to the high 

Andes), A. c. borreroi (Colombian Andes), A. c. tropica  (Colombian Andean lowlands), 

and A  c. septentrionalium  (North America; Snyder and Lumsden 1951, American 

O rnithologists’ Union 1957, Gammonley 1996, W ilson et al. 2010). Blue-winged Teal 

are found throughout most o f  North America but occur at low densities in western North 

America where they are sympatric with A. c. septentrionalium. Although Blue-winged 

Teal are common wintering migrants to Central America and northern South America, 

only a small num ber o f individuals occur year round in Colombia and Peru (Fjeldsa and 

Krabbe 1990); a small breeding population was recently established in Colombia (G.

Stiles pers. comm.).
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Breeding plumages o f male Cinnamon Teal and Blue-winged Teal are distinctive. 

Cinnamon Teal males are reddish brown throughout, and Blue-winged Teal males have a 

characteristic steel-blue neck and head with a white facial crescent. Despite these 

striking plumage and coloration differences in males, females and juveniles are difficult 

to distinguish, as is often the case between closely related avian species (West-Eberhard 

1983). Additionally, post-zygotic isolation in ducks is weak, and hybridization is 

common among waterfowl (Tubaro and Lijtmaer 2002); most reproductive isolation 

occurs by other mechanisms that usually involve premating behaviors. Hybridization 

between Cinnamon Teal and Blue-winged Teal has been reported infrequently in the wild 

(only hybrid males can be recognized based on plumage), perhaps because o f limited 

overlap in their breeding distributions. However, interbreeding occurs freely in captivity 

(Delacour and M ayr 1945), suggesting that Cinnamon Teal and Blue-winged Teal 

diverged too recently for the evolution o f strong pre- or post-mating isolation 

mechanisms.

Here we investigate the evolutionary histories o f Cinnamon Teal and Blue-winged 

Teal sampled from widespread locations throughout their breeding distributions by 

comparing sequences from the hyper-variable mtDNA control region and two 

independent nuclear loci. We evaluate whether there are distinct lineages or haplotypic 

frequency differences between Cinnamon Teal subspecies and Blue-winged Teal. We 

also use coalescent methods to examine the demographic history o f this species complex 

(Nielsen and W akeley 2001, Hey and Nielsen 2004). We compare times o f divergence 

and gene flow within and between continents and between species to evaluate the roles
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these two factors play in the shallow genetic divergence and mitochondrial paraphyly 

observed between the taxa.

M ETHODS

SPECIMEN COLLECTION

Vouchered specimens o f 52 A. c. cyanoptera, 50 A. c. orinomus, 70 A. c. 

septentrionalium, and 76 A. discors, were collected in Argentina (2001, 2003, 2005), 

Bolivia (2001, 2005), Colombia (2004), Peru (2002), and the United States (2002, 2003; 

Fig. 3.1, Appendix 3.1). For Cinnamon Teal, we used published subspecific 

morphological characters to classify each specimen to subspecies (Snyder and Lumsden 

1951; W ilson et al. 2010). A. c. borreroi and A. c. tropica  were not included because 

they are critically endangered (Black 1998) and sufficient specimens of these subspecies 

do not exist.

DNA EXTRACTION, PCR, AND DNA SEQUENCING

Genomic DNAs were extracted from muscle tissue using a QIAGEN DNeasy Tissue Kit 

(QIAGEN, Valencia, California). We amplified 1,272 bp o f  the mtDNA control region, 

phenylalanine tRNA, and part o f the 12S rRNA gene using the overlapping primer pairs 

L78-H 774 and L736-H 1530 (Sorenson and Fleischer 1996, Sorenson et al. 1999) and 

two additional primers (L627: 5 ’-TA AGCCTGG ACACA CCTGCG TTATCG -3 ’; H693:

5 ’-CA G TG TCA A G G TG A TTCCC -3 ’). PCR amplifications were carried out in a 50 ^L 

volume; 2-100 ng genomic DNA, 0.5 [iM each primer, 1.0 (iM dNTPs, 10X PCR buffer,
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2.5 |aM M gCh, and 0.2 units Taq Polymerase. PCR reactions began with 94°C for 7 min 

followed by 45 cycles o f 94°C for 20 sec, 52°C for 20 sec, and 72°C for 1 min with a 7 

min final extension at 72°C. PCR products were gel-purified and both strands were 

sequenced using BigDye Terminator Cycle Sequencing Kits on an ABI 3100 or 377 

DNA sequencer (Applied Biosystems, Foster City, California). Sequences from opposite 

strands were reconciled using Sequencher 4.1.2 (Gene Codes Corporation, Ann Arbor, 

Michigan).

We also sequenced two independent nuclear introns: ornithine decarboxylase 

(ODC1) intron five (353 bp) and a-enolase (E N O l) intron eight (312 bp) (Peters et al. 

2008, M cCracken et al. 2009a). These two introns were sequenced using techniques 

described above with an annealing temperature o f 60°C and AmpliTaq Gold PCR Master 

Mix (Applied Biosystems, Foster City, California). Sequences that contained double

peaks, indicating the presence o f two alleles, were coded with IUPAC degeneracy codes 

and treated as polymorphisms. Insert/deletions (indels) were resolved by comparing the 

unambiguous 5'-ends o f sequences to the 3'-ambiguous ends between forward and reverse 

strands (Peters et al. 2007). Gaps resulting in shifted peaks in the chromatograms 

enabled us to resolve length polymorphisms within the sequences. All sequences were 

aligned by eye using the sequence alignment editor Se-Al 2.0a 11 (Rambaut 2007). 

Sequences were deposited in GenBank (accession numbers GQ269364-GQ269567 and 

JF914362-JF914900).



GAM ETIC PHASE OF ALLELE SEQUENCES

We used a two-step procedure to determine the gametic phase o f each intron sequence 

that was heterozygous at two or more nucleotide positions. W e first analyzed the diploid 

consensus sequences o f each individual using PHASE 2.1 (Stephens et al. 2001).

PHASE uses a Bayesian method to infer haplotypes from diploid genotypic data with 

recom bination and the decay o f linkage disequilibrium (LD) with distance. Each dataset 

was analyzed using the default values ( 1 0 0  main iterations, 1 thinning interval, 1 0 0  burn- 

in) followed by 1 0 0 0  main iterations and 1 , 0 0 0  burn-in (-X 1 0  option) for the final 

iteration. The PHASE algorithm was run five times automatically (-x5 option) from 

different starting points, selecting the result with the best overall goodness-of-fit. We 

next selected individuals with low allele pair probabilities (<80%) and designed allele- 

specific primers to selectively amplify one allele (Bottema et al. 1993, Peters et al. 2005). 

The resulting haploid allele sequence was then subtracted from the diploid consensus 

sequence to obtain the gametic phase o f the second haplotype. Each dataset was then 

analyzed five more times using PHASE and the additional known allele sequences (-k 

option). The gametic phases o f 92% (n = 456) o f 495 individual autosomal sequences 

were identified experimentally or with >95% posterior probability, and 95% (n = 469) 

were identified with >90%  posterior probability.

GENETIC DIVERSITY AND POPULATION SUBDIVISION

Nucleotide diversity (it), expected and observed heterozygosities, and LD between ODC1 

and EN O l were calculated in ARLEQUIN 3.11 (Excoffier et al. 2005). Allelic richness



was standardized to the smallest sample size (n = 50). Allelic networks were constructed 

in NETW ORK 4.5.1 (Fluxus Technology Ltd.) using the reduced median algorithm 

(Bandelt et al. 1995) to illustrate possible reticulations in the gene trees due to homoplasy 

or recombination. Gaps were treated as a fifth state, and indels were treated as a single 

insertion/deletion event regardless o f length.

Preliminary analyses showed no significant genetic differentiation ( O s t )  among 

populations within A. cyanoptera subspecies or between North America and Colombia A. 

discors. Thus all analyses were done at the subspecific and species level. To assess 

levels o f population structure between species (A. discors and A  cyanoptera) and among 

subspecies (A. cyanoptera), we calculated pairwise O st for sequence data in ARLEQU1N 

using the best-fit nucleotide substitution model, as identified in M ODELTEST 3.06 

(Posada and Crandall 1998) under the Akaike Information Criterion (AIC; Akaike 1974). 

Additionally, a hierarchical analysis o f molecular variance (AMOVA) was performed in 

ARLEQUIN to analyze spatial variance in haplotypic and allelic frequencies between 

species and among populations. P-values were adjusted for multiple comparisons using 

permutations (3000) or Bonferroni corrections (a = 0.05).

We used STRUCTURE 2.2.3 (Pritchard et al. 2000) to evaluate the number of 

genetic clusters (K) present in our dataset. STRUCTURE assigns individuals to 

populations by maximizing Hardy-W einberg equilibrium and minimizing linkage 

disequilibrium. For this analysis, we coded each mtDNA or nuclear DNA haplotype as a 

separate allele. M tDNA and nuclear sequence data were analyzed using an admixture 

model w ithout a priori information about specimen identification or collection locality.



The analysis was run for K = 1-15 populations with 100 000 burn-in iterations and 1 000 

000 M arkov chain M onte Carlo iterations; the analysis was repeated ten times to ensure 

consistency across runs. We used the AK  method o f Evanno et al. (2005) to determine 

the most likely number o f groups at the uppermost level o f population structure.

To test for past changes in effective population size, we calculated Fu’s Fs (Fu 

1997) and Tajim a’s D  (Tajima 1989) based on the site-frequency spectrum o f segregating 

sites for mtDNA. Negative values o f Tajim a’s D  or F u’s Fs result when there is an 

excess o f  low frequency polymorphisms, which can result from rapid population 

expansion or a selective sweep acting on linked polymorphisms. Conversely, a positive 

value for either test statistic can be indicative o f a population decline. Additionally, 

mismatch distributions o f mtDNA haplotype data were calculated in ARLEQUIN. 

M ismatch distributions that are multimodal in shape indicate a population that is at 

demographic equilibrium, whereas a unimodal distribution is consistent with a population 

that has undergone a recent expansion (Slatkin and Hudson 1991, Rogers and Harpending 

1992). W e used parametric bootstrapping based on the sum o f square deviation (SSD) 

between observed and expected distributions to test the fit o f the stepwise expansion 

model. In addition, we used a coalescent model in LAM ARC 2.1.3 (Kuhner 2006) to 

calculate the population growth rate param eter (g) for mtDNA from each Cinnamon Teal 

subspecies and from A. discors (each population was treated independently). W e used 

Bayesian analyses with 1 million recorded genealogies sampled every 50 steps, with a 

burn-in o f 100 000 (10%) genealogies. Priors were flat with the upper limit for growth 

set to 15 0 0 0 .
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COALESCENT A NALY SES-GEN E FLOW  AND TIME OF DIVERGENCE 

We used a coalescent model in IM (Hey and Nielsen 2004, Hey 2005) to determine 

whether patterns o f differentiation between species and subspecies were the result of 

incomplete lineage sorting, gene flow, or a combination o f both. W e simultaneously 

estimated the following parameters scaled to the mutation rate: time since divergence 

between populations (t), immigration rates (m ), and effective population sizes o f ancestral 

(0A) and contemporary populations (0i and 6 2 ). In addition, we ran each set of 

comparisons assuming constant population size and incorporating exponential population 

growth with the splitting param eter (5 ). W e ran paired two-population analyses for a 

combined analysis o f mtDNA and two nuclear loci, ODC1 and E N O l: (1) within North 

America (A. c. septentrionalium  vs. A. discors), (2) within South America (A. c. 

cyanoptera  vs. A. c. orinomus), and (3) between continents (A. c. cyanoptera  vs. A. 

discors and A. c. cyanoptera  vs. A. c. septentrionalium). W ithin-continent comparisons 

were used to test hypotheses about gene flow patterns between partially sympatric taxa. 

Comparisons between continents were used to determine if  shared haplotypes and 

mtDNA paraphyly resulted from incomplete lineage sorting or ongoing gene flow and to 

test for the genetic signature o f  the direction o f  colonization (the splitting parameter,

Hey 2005). The isolation-with-migration model assumes that the two populations being 

compared are each panmictic and are not exchanging genes with other populations or 

species (Hey and Nielsen 2004, Won et al. 2005), which would likely be violated. 

However, simulations suggest that IM is fairly robust to violations o f those assumptions



(Strasburg and Rieseberg 2010). In addition, the species tree for this group is unknown 

precluding a four-population analysis using IMa2. Thus, paired two-population analyses 

are the most suitable for analyzing patterns o f divergence and gene flow within this 

species complex.

IM further assumes that loci are selectively neutral with no intralocus 

recombination. W e tested for recombination within each nuclear intron using a four- 

gamete test in DNAsp v. 4.10 (Rozas et al. 2003) and included the largest independently 

segregating block o f  sequence consistent with no recombination. ODC1 and ENOl were 

truncated to the 5 ’ end positions 82-327 and 152-312, respectively. We defined 

inheritance scalars for mtDNA as 0.25 (maternally inherited) and for autosomal introns as 

1.0 (biparentally inherited) to reflect differences in effective population sizes. We used 

the HKY model o f mutation for mtDNA and infinite sites model for the nuclear introns. 

W e initially ran IM using large, flat priors for each parameter. Based on the results o f 

these runs, we defined narrower upper bounds for each parameter that encompassed the 

full posterior distributions from each initial run. However, estimates o f current 

population sizes sometimes contained distinct peaks but the tails did not approach zero.

In those cases, we used priors that contained the peak and the point near where the 

distribution began flattening. Using those priors, we used a bum-in o f 500 000 steps and 

recorded results every 50 steps for more than 1 x 106 steps. Effective sample sizes for 

each param eter exceeded 100. We repeated the analyses three times using a different 

random number seed to verify that independent runs converged on the same values. We 

converted t to real time (t) using t = t|a. We used mutation rates o f 4.8 x 10'8
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substitutions/site/year (s/s/y) for mtDNA control region (Peters et al. 2005), 1.0 x 10‘9 

s/s/y for E N O l, and 1.2 x 10'9 s/s/y for ODC1 (Peters et al. 2008). The geometric mean 

o f  substitution rates among the three loci was used for conversions.

RESULTS

POPULATION STRUCTURE AND GENETIC DIVERSITY 

The 248 individuals o f Blue-winged Teal and Cinnamon Teal surveyed contained 91 

unique mtDNA control region haplotypes comprising 76 variable sites. No fixed 

differences were observed among subspecies or between species, but rather haplotypes 

were intermixed in a polyphyletic relationship (Fig. 3.2). Ten haplotypes were shared 

among species or subspecies; five haplotypes were shared between A. c. septentrionalium  

and A. discors in North America, three haplotypes were shared between A. discors and 

the South American Cinnamon Teal subspecies, and two haplotypes were shared between 

the South American subspecies A. c. cyanoptera  and A. c. orinomus (Fig. 3.2, Appendix 

3.2). A. c. septentrionalium  did not share any haplotypes with either o f the South 

American subspecies. Overall, North American taxa had higher genetic diversity than 

South American taxa (Table 3.1).

The global <I>sr for mtDNA control region was high, with 41 % o f the genetic 

diversity explained by differences among taxa (® st = 0.41, P  < 0.001). Inter-subspecies 

®sr values ranged from 0.07-0.51 (Table 3.2). The highest O sr was between A. c. 

septentrionalium  and A. discors in North America, and the lowest was between A. c. 

cyanoptera  and A. c. orinomus in South America. Variance in mtDNA haplotype

115



frequencies among groups was maximized when samples were grouped based on 

(sub)species (O cr = 0.43, P < 0.001) rather than geographic proximity (O cr = 0.12, P  = 

0.14).

Twenty-three ODC1 alleles comprising 20 variable sites and 38 ENOl alleles 

comprising 29 variable sites were found in the autosomal intron sequences. Most alleles 

were broadly shared among all four taxa (Fig. 3.2). Nucleotide diversity was consistently 

higher for the introns relative to mtDNA, and heterozygosity ranged from 65.2-96.1%  

(Table 3.1). All taxa were in Hardy-W einberg equilibrium, and no LD was detected 

between ODC1 and E N O l, confirming that these loci are independent. Both introns were 

significantly structured between most taxa (0 5 7 -= 0.00-0.12 for ENOl and 0.00-0.08 for 

O DC1; Table 3.2). In contrast to mtDNA, the among group variance for both nuclear 

introns combined was maximized when taxa were grouped on the basis o f geographic 

proximity (i.e., North America versus South America; ®c7-= 0.05, P -  0.01) rather than 

by (sub)species ( O c r -  0.03, P  = 0.03), but the differences between the two models were 

small.

The Bayesian clustering analysis in STRUCTURE using mtDNA and both 

nuclear introns supported a two-population model (Fig. 3.3). Most A. c. cyanoptera 

(87%>) and A. c. orinomus (94%) were assigned to one genetic cluster, whereas all A. c. 

septentrionalium  and A. discors where assigned to a second cluster with high probability 

(98%>). Seven A. c. cyanoptera  individuals assigned to the North American cluster with 

probability > 6 6 %> were collected at lowland sites in Argentina (JT 011, JT 046, KGM 

322, KGM 798, KGM  808) or the Peruvian coast (REW 081, REW 303). Three A. c.
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orinomus individuals (KGM 441, REW 698, REW 708) were also assigned to the North 

American cluster with probability >50%. In summary, majority o f individuals were 

assigned to clusters corresponding to their geographic location in South America (A. c. 

cyanoptera  and A. c. orinomus) or North America (A. c. septentrionlium  and A. discors).

IM COALESCENT ANALYSES

In general, the population size parameter (0 )  was larger for North American A. c. 

septentrionlium  and A. discors (Fig. 3.4). W ithin the North American comparison, 0  was 

similar for A. discors and A. c. septentrionalium  (7.79; 3.59-12.94 and 6.04; 2.75-15.25, 

respectively). Both population sizes were larger than the ancestral population size (3.31; 

2.07-10.83), suggesting population expansions, but posterior distributions broadly 

overlapped. In the South American comparison, the population size parameter was larger 

for A. c. cyanoptera  (1.22; 0.49-4.67) than for A. c. orinomus (0.60; 0.24-2.02).

Posterior distributions were smaller than the ancestral size (9.08; 3.23-44.23), suggesting 

population contractions following divergence.

The most probable estimate for the migration rate (m ) between continents was low 

(0.00-1.35), and confidence intervals broadly overlapped zero in all directions, except 

in to /1  c. septentrionalium  f ro m /I  c. cyanoptera  (95% Cl: 0.39-5.70; Fig. 3.4). 

Comparing the North American taxa yielded higher migration rates. Although 

confidence intervals were broadly overlapping, the most probable estimates suggested 

that migration rates were higher into A. c. septentrionalium  (1.49; 0.39-5.76) than into A. 

discors (0.49; ~0.00-3.34). In the South American comparison, IM suggested low
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migration into the highlands (0.33; 0.00-42.87), and we could not reject a hypothesis of 

no gene flow into A. c. orinomus from A. c. cyanoptera. However, no gene flow was 

rejected in the opposite direction as the posterior distribution o f m into A. c. cyanoptera 

did not overlap with zero (18.05; 7.45-79.05).

TIM E SINCE DIVERGENCE

The coalescent analyses suggested that the oldest divergence (t, scaled divergence times) 

was between A. c. septentrionalium  and the other taxa, although there was broad overlap 

among comparisons (Fig. 3.5). The divergence between A. c. septentrionalium  compared 

to A. c. cyanoptera  peaked at 0.19 (0.11-0.77) suggesting a divergence o f approximately 

95 000 ybp (years before present; range = 33 000-700 000 ybp). Posterior distributions 

o f t for A. discors compared to A. c. septentrionalium  (0.14; 0.09-0.42) and to A. c. 

cyanoptera (0.13; 0.07-0.26) were similar, which when converted to years, suggested 

that A. discors diverged around 70 000 ybp (range = 27 000-385 000 ybp; within 

continent comparison) or 65 000 ybp (range = 21 000-238 000 ybp; between continent 

comparison). For the South American comparison, peak values spanned t o f the other 

comparisons (0.13-0.20) and the tail o f the distribution did not approach zero in all 

replicates; therefore an accurate estimate o f divergence times could not be obtained.

Assuming an exponential growth model, the posterior distribution o f the splitting 

parameter, s, for the South American comparison peaked at 99.5 % (3.1-100% ) as the 

percent o f the South American ancestral population that contributed to A. c. cyanoptera. 

For all other comparisons, the splitting parameter distribution did not contain a single
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peak, but rather a plateau, and the highest likelihood appeared to be associated with a 

range o f values indicating an ambiguous colonization.

HISTORICAL DEM OGRAPHY

In agreement with coalescent analyses, North American populations o f A. c. 

septentrionalium  and A. discors showed evidence o f recent population expansion as 

indicated by a single high frequency haplotype accompanied by numerous rare mtDNA 

haplotypes (Fig. 3.2) and significantly negative Fu’s Fs and Tajim a’s D  values (Fig. 3.6). 

Furthermore, the mismatch distributions for A. c. septentrionalium  and A. discors were 

unimodal and fit the expansion model curve (Ps > 0.68; Fig. 3.6). Recent population 

expansion also was supported by the population growth rate param eter (g ) estimates 

obtained from LAM ARC for mtDNA as 95% confidence limits did not contain zero.

In contrast, the South American subspecies (A. c. cyanoptera  and A. c. orinomus) 

exhibited mtDNA patterns consistent with long-term population stasis and a lack o f clear 

demographic expansion. Neither Tajim a’s D  nor Fu’s Fs were significant for mtDNA 

control region. The mismatch distributions were multimodal in shape but the 

H arpending’s raggedness index was not significant (Ps > 0.66). However LAM ARC’s 

estimate o f  the 95% confidence interval for population growth overlapped zero; the data 

were consistent with a stable population size (Fig. 3.6).
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DISCUSSION

GENETIC STRUCTURE AMONG BLUE-W INGED TEAL AND CINNAMON TEAL 

Blue-winged Teal and Cinnamon Teal exhibit marked male plumage differentiation, 

whereas Cinnamon Teal subspecies exhibit pronounced body size variation and subtle 

plumage differentiation (Snyder and Lumsden 1951, W ilson et al. 2008, 2010). Despite 

this phenotypic discord, previous studies based on more conservative regions o f mtDNA 

found little or no genetic differentiation between these two species (Kessler and Avise 

1984, Johnson and Sorenson 1999, Kerr et al. 2007), suggesting a recent divergence or 

high gene flow. Concordant with these studies, we observed low genetic distances (0.3

0.6%) with no fixed differences between species or among subspecies. However, there 

were strong haplotypic frequency differences in mtDNA (0 5 7 -= 0.41), which is similar to 

differentiation observed among other waterfowl subspecies and populations (McCracken 

et al. 2001, Peters et al. 2005, Sonsthagen et al. 2011). Likewise, we found significant 

differentiation in nuclear introns (albeit lower levels, Ost = 0.04-0.06) that was similar to 

levels found between allopatric populations o f other Anas ducks (Peters et al. 2008). 

Coalescent analyses o f mtDNA and nuclear introns suggested that Blue-winged Teal 

have been diverging from South American Cinnamon Teal for at least 21 000 years and 

from North American Cinnamon Teal for at least 27 000 years (Fig. 3.5); therefore it is 

unlikely that selectively neutral nuclear markers would have had enough time to sort due 

to the longer coalescence time associated with a larger effective size compared to 

mtDNA (Avise 2004, Zink and Barrowclough 2008).
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Despite the lack o f distinct mtDNA phylogroups indicative o f long-term isolation, 

few haplotypes were shared between taxa. Furthermore, shared haplotypes were mostly 

confined to central or centrally connected positions within the network, suggesting Blue

winged Teal and Cinnamon Teal are at an intermediate stage o f divergence. These teal 

species appear to be approaching local fixation o f haplotypes leading to the eventual loss 

o f ancestral haplotypes as taxa move towards reciprocal monophyly (Omland et al. 2006). 

A similar pattern was observed within the nuclear network, as alleles shared between 

continents tended to be at central positions, whereas more derived alleles tended to be 

taxon specific or shared within continents. Limited sharing o f alleles and haplotypes 

between continents suggests long-term genetic isolation between Northern Hemisphere 

and Southern Hemisphere taxa following divergence. Genetic isolation is also supported 

by the transcontinental migration rates peaking at or broadly overlapping zero, which is 

consistent with no gene flow between continents, except into North American A. c. 

septentrionalium  from South American A. c. cyanoptera. The transcontinental gene flow 

might represent an ancient migration into North America, as present day gene flow 

between A. c. cyanoptera  and A. c. septentrionalium  is unlikely due to completely 

segregated distributions (Evarts 2005, Camacho and W ilson 2011). However, large 

numbers o f w intering Blue-winged Teal occur in sympatry with South American 

Cinnamon Teal as far south as Peru (Botero and Rusch 1988). Restricted gene flow 

between the continents could most likely be due to differences in timing o f breeding 

cycle during periods o f sympatry (Rohwer et al. 2002) indicated by the fact the three 

Blue-winged Teal males collected in Peru were not in breeding condition (average left



testis o f non-breeding individuals: 1 1 X 4  mm and breeding individuals: 25 X 11 mm). 

Thus, the occurrence o f mixed (sub)species pairs is probably rare and localized. 

Therefore, sharing o f mtDNA haplotypes and nuclear alleles observed among species and 

subspecies from different hemispheres is more attributable to incomplete lineage sorting 

rather than gene flow.

ORIGIN OF BLUE-W INGED TEAL AND CINNAM ON TEAL 

The geographic origin o f many dabbling duck groups is difficult to determine because of 

their high dispersal ability. However, Johnson and Sorenson (1999) reported a general 

trend o f a Southern Hemisphere origin with multiple colonization events o f the Northern 

Hemisphere. Cinnamon Teal appear to conform to this trend, suggested by the 

asymmetrical gene flow that was found from South American Cinnamon Teal into North 

America. North American taxa are characterized by large effective population sizes that 

underwent a recent population expansion, whereas South American subspecies have 

smaller effective population sizes that did not undergo a recent population expansion.

This contrast in demographic history could be explained by a founder event(s) (South 

America to North America) followed by a population expansion in North America. 

However, recent population expansions are common among Northern Hemisphere birds 

(Zink 1997, Avise 2000) and are often interpreted as a postglacial expansion from Late 

W isconsin refugia (see Lessa et al. 2003). Although the splitting param eter showed an 

ambiguous divergence between continents, population expansions in North America 

combined with asymmetrical gene flow into North America from South America
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supports a South American origin for the Cinnamon Teal and Blue-winged Teal species 

complex.

Geographic isolation between North America and South America appears to have 

been a strong barrier to gene flow for Blue-winged Teal and Cinnamon Teal after the 

initial colonization event. In addition, east-west genetic differentiation is found among 

many widespread temperate migratory birds in North America (Milot et al. 2000, Kimura 

et al. 2002, Ruegg and Smith 2002, Newton 2003, Lovette et al. 2004, Peters et al. 2005) 

and suggests two maj or glacial refugia on either side o f the Rocky Mountains or Great 

Plains during the Pleistocene (Colbeck et al. 2008). Thus, North American Cinnamon 

Teal and Blue-winged Teal might be descendant from a common ancestor that colonized 

North America from South America, and then diverged in allopatry on either side o f the 

Rocky Mountains. Consistent with that hypothesis, the nuclear introns supported a 

greater similarity between pairs within continents than between continents, and the strong 

mtDNA divergence is suggestive o f at least two refugia.

Alternatively, there might have been multiple dispersal events from a South 

American ancestor independently giving rise to Blue-winged Teal and North American 

Cinnamon Teal. M ultiple colonization scenarios into North America have been proposed 

for several groups o f  species (Temple 1972, W eir et al. 2009), and this hypothesis might 

explain the closer mtDNA relationship o f Blue-winged Teal to South America Cinnamon 

Teal (see also Johnson and Sorenson 1999). Furthermore, IM results suggested that A. c. 

septentrionalium  was the most divergent lineage. Additional evidence o f a closer affinity 

between Blue-winged Teal and South American Cinnamon Teal can be found in plumage
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patterns. Although male breeding plumage in Blue-winged Teal is distinctive, the spotted 

body feathers bear a striking resemblance to an “archaeo-adult” spotted breeding 

plumage (first nuptial plumage) seen frequently in young male South American 

Cinnamon Teal (Snyder and Lumsden 1951). This plumage series is absent in North 

American Cinnamon Teal. A closer relationship between Blue-winged Teal and South 

American Cinnamon Teal would suggest two independent colonization events into North 

America: one ~95 000 ybp giving rise to A. c. septentrionalium  in western North America 

and a more recent event -6 5  000 ybp giving rise to Blue-winged Teal in central and 

eastern North America, followed by subsequent gene flow between two independently 

diverged populations. Regardless, additional loci are needed to test the single

colonization versus the dual-colonization hypotheses as confidence intervals for 

divergence times overlapped considerably.

W ITHIN-CONTINENT DIVERGENCE

W ithin North America, at least two areas acted as temperate glacial refugia during the 

Pleistocene and were often separated by the Great Plains or Rocky Mountains (Gorman 

2000, M ilot et al. 2000, Ruegg and Smith 2002, Newton 2003, Shafer et al. 2010). 

Concordance in phylogenetic breaks observed between closely related species identified 

suture zones that congregated around mountain ranges and have been proposed to act as a 

barrier to gene flow during glacial and interglacial periods (Swenson and Howard 2004, 

2005). Cinnamon Teal and Blue-winged Teal exhibited strong mtDNA divergence 

corresponding to an east-west divide. Concordant with the recent westward expansion of
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Blue-winged Teal since the 1930s (W heeler 1965, Connelly 1978), we observed a higher 

migration rate into Cinnamon Teal (~ nine migrants per generation) than into Blue

winged Teal (~ four migrants per generation), although confidence intervals broadly 

overlapped and symmetrical gene flow could not be rejected. Blue-winged Teal often co

occur on ponds with Cinnamon Teal (Connelly and Ball 1984), with mixed populations 

disproportionally represented by Cinnamon Teal (Bellrose 1980). Despite being similar 

ecologically and behaviorally, hybridization is infrequent (Spencer 1953). Males and 

females both possess plumage color and vocalization differences that are used in 

courtship as well as other social behaviors. These differences may serve as mate 

recognition cues on shared wintering grounds where pairing occurs, thus decreasing 

hybridization events.

In South America, the Andes impose not only a physical barrier but also extreme 

environmental selection associated with high elevation, and this likely restricts gene flow 

between resident low- and high-elevation populations (Mila et al. 2009, McCracken et al. 

2009a). Colonization within South America appears to have been from the lowlands to 

the highlands, conforming to the general trend observed in other Andean avifauna 

(Fjeldsa 1985, Vuilleumier 1986, McCracken et al. 2009a). The cold, hypoxic conditions 

prevalent at high elevation likely requires a physiological mechanism to deal with such 

environmental stressors, which have led to both phenotypic and genetic differences in 

high-elevation populations o f Cinnamon Teal as well as other Andean waterfowl 

(Bulgarella et al. 2007, M cCracken et al. 2009a, 2009b, W ilson et al. 2010). Traits 

evolved in response to local adaptation could restrict dispersal from lowland populations
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to the highlands and vice versa (M cCracken et al. 2009a, 2009b). However, traits that are 

beneficial at high elevation (e.g. hemoglobin with high oxygen affinity) are well tolerated 

in the lowlands (Monge and Leon-Velarde 1991, Leon-Velarde et al. 1993, Leon-Velarde 

et al. 1996), and our estimates o f gene flow support asymmetrical gene flow into the 

lowlands from the highlands. We encountered and collected A. c. cyanoptera specimens 

at the northern and southern geographical limits o f  the Altiplano, which is outside the 

typical breeding distribution o f A. c. orinomus, but not elsewhere in the Andes. Such 

sympatry could result in the intermixing o f A  c. cyanoptera  and A  c. orinomus.

However there is no direct evidence o f A. c. cyanoptera  breeding at high elevations 

(>3500 m) and no records o f A. c. orinomus in the lowlands.

IM ASSUM PTIONS

Isolation-with-migration makes a number o f assumptions (Hey and Nielsen 2004, Hey 

2005), and many o f these are violated to some extent in most systems (see Hey 2005, 

Peters et al. 2008), including within the Cinnamon Teal and Blue-winged Teal complex. 

Violating these assumptions could potentially affect inferences o f population history 

parameters (Becquet and Przeworkski 2009). For example, IM assumes that the two 

populations being compared are panmictic and not exchanging genes with other 

populations. In particular, gene flow from a third species can cause divergence times to 

be overestimated and can result in spurious inferences o f asymmetrical gene flow 

(Strasburg and Rieseberg 2010). These biases might be particularly important when 

conducting pairwise comparisons between North and South American taxa, because the
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comparisons do not account for gene flow within continents. An alternative approach 

would be to use a four-population model in IMa2; however, that approach requires a 

priori information about the order o f divergence events, which is not known for these 

taxa. In addition, more independent loci will be required to estimate parameters under 

this more complex model. Despite these limitations, IM is generally fairly robust to 

small to moderate violations o f those assumptions, and therefore, broad aspects o f our 

pairwise comparisons are likely informative.

CONCLUSIONS

Cinnamon Teal and Blue-winged Teal are closely related species that exhibit pronounced 

plumage differences, and Cinnamon Teal are comprised o f morphologically distinct 

subspecies. We found strong haplotypic frequency differentiation and little haplotype 

sharing between species and among Cinnamon Teal subspecies. North American and 

South American Cinnamon Teal studied here have limited contact while Blue-winged 

Teal winter in sympatry with South American Cinnamon Teal during for part o f the year. 

This limited overlap in breeding and/or overwintering distributions along with timing of 

breeding has likely restricted gene flow between continents following divergence. 

Although divergence times were broadly overlapping, this result would be expected in 

species complexes that have diverged rapidly which is likely the case here. Where 

Cinnamon Teal and Blue-winged Teal are parapatric or partially sympatric within 

continents, environmental selection associated with high altitude (South America) and
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sexual selection (North America) might have played a major role in the diversification of 

this group.
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A  A. discors

FIGURE 3.1. Sampling localities and geographic ranges (breeding and wintering) for Cinnamon Teal (stripes: Anas 
cyanoptera) and Blue-winged Teal (grey: Anas discors) (Ridgely et al. 2003).

00



FIGURE 3.2. Unrooted allelic networks for mtDNA control region and two nuclear introns, ODC1 and E N O l. Circles are 
proportional to the frequency o f  each allele observed. Small white circles indicate putative ancestral alleles not sampled.



discors 
Blue-winged Teal

FIGURE 3.3. STRUCTURE 2.2 analysis showing posterior probability o f assignment o f individuals to each (K  = 2) genetic 
cluster. White bar represents the estimated probability o f  assignment to cluster one, and black bar is the estimated probability 
o f assignment to cluster two. o
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FIGURE 3.4. Posterior distributions o f  effective population size, 0 ,  and immigration 
rates, m, calculated using IM (scaled to the neutral mutation rate, p). Peak estimates for 
each param eter are given and the 95% highest posterior distribution is shown in 
parentheses. Letters correspond to Cinnamon Teal subspecies (C = A. c. cyanoptera, S = 
A. c. septentrionalium, 0  = A .c . orinomus), Blue-winged Teal (D), or ancestral 
population for each paired com parison (A).
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FIGURE 3.5. Posterior distribution o f  time since divergence (t) calculated in IM.
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South America North America

FIGURE 3.6. Results o f mismatch distribution and population demographic parameters 
for North American and South American subspecies o f Cinnamon Teal {Anas 
cyanoptera) and Blue-winged Teal (A. discors). Bars represent the frequency o f pairwise 
differences. The line with triangle depicts the theoretical distribution under sudden 
expansion model, whereas the line with square depicts the distribution under a spatial 
expansion model. Significant P -values for F u’s Fs (F, P  < 0.02), Tajim a’s D  (D , P < 
0.05), and population growth param eter (g) that did not overlap with zero are in bold text.



Table 3.1. Number o f haplotypes/alleles per population, observed (H0) and expected (He) heterozygosity, 
allelic richness (r) , and nucleotide diversity (71) for the mtDNA control region, ODC1, and EN O l.

mtDNA ODC1 ENOl

Population n
No.

haplotypes
1r 71

No.
alleles

Ho/He
(%)

r 71
No.

alleles
Ho/He

(%)
r 71

A. discors 76 38 35.0 0.003 19 73.7/72.9 16.2 0.006 28 96.1/91.0 24.2 0.013

A. c.
70 34 32.1 0.004 14 65.2/70.6 17 4 0.005 28 88.6/90.4 75 1 0.013septentrionalium  

A. c. cyanoptera 52 16 16.0 0.003 7 80.8/79.4 7.0 0.008 9 76.9/85.6 9.0 0.013
A. c. orinomus 50 13 13.0 0.002 7 74.0/81.2 7.0 0.008 7 74.0/78.4 7.0 0.008

'Allelic richness based on smallest sample among subspecies and within subspecies.
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Table 3.2. Pairwise for mtDNA control region, ODC1, and EN O l among three 
Cinnamon Teal subspecies and Blue-winged Teal. Significant comparisons are marked 
with an asterisk.

mtDNA ODC1 EN O l
discors
-  septentrionalium 0.51* 0.02* 0.00
-  cyanoptera 0.25* 0.08* 0.04*
— orinomus 0.40* 0.03* 0.12*

septentrionalium
-  cyanoptera 0.43* 0.06* 0.06*
-  orinomus 0.47* 0.04* 0.12*
cyanoptera
-  orinomus 0.07* 0.01 0.09*

'Best-fit nucleotide substitution models for mtDNA (HKY+I+G), ODC1 (K80+I+G), and 
EN O l (TVM+I).
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Appendix 3.1. Localities o f Anas cyanoptera and A  discors specimens. KGM, JT, and 
REW specimens are cataloged at University o f Alaska Museum.

A. c. septentrionalium
USA: Utah, W eber Co., 41° 14’ 59.7” N, 112° 07’ 55.8" W, 1,275 m 
REW 075
USA: Utah, Salt Lake Co., 40° 50’ 50.7" N, 112° 01’ 50.9" W, 1,275 m 
REW 077, REW 078, REW 079
USA: Oregon, Columbia Co., 45° 45’ 18.1" N, 122° 50’ 51.4" W, 1 m
REW  797, REW  398, REW  399, REW 400, REW 401, REW 402, REW 403, REW 404,
REW 406
USA: California, Imperial Co., 33° 11’ 24.0" N, 115° 35’ 18.5" W ,-68 m 
REW 411, REW 412, REW 414, REW 416, REW  418, REW 419, REW 421 
USA: California, Imperial Co., 33° 11’ 39.0" N, 115° 34’ 46.2" W, -73 m 
REW 415, REW  420
USA: California, Kerns Co., 34° 47’ 43.5” N, 118° 07’ 11.3" W, 693 m
REW 422, REW 423, REW 424, REW 425, REW 426, REW 427, REW 428, REW 429,
REW 430, REW 431, REW 432, REW 433, REW 434, REW 435, REW 436, REW 437
USA: Utah, Salt Lake Co., 40° 50' 45.1" N, 112° 01 '41.7" W, 1,275 m
REW 438, REW 439, REW  440, REW 441, REW 442, REW 443, REW 444, REW 445,
REW 446, REW 447, REW  448, REW 449, REW  450, REW 451, REW 452, REW 453,
REW 454, REW 455, REW  456
USA: Colorado, M offat Co., 40° 59' 10.7" N, 108° 59’ 10.5" W, 1,609 m 
REW  457, REW  458
USA: Oregon, Harney Co., 48° 43’ 53.7" N, 118° 50' 25.3" W, 1,260 m
REW 459, REW 460, REW  461, REW 462, REW  463, REW  464, REW 465, REW 466,
REW  467
A. c. cyanoptera
ARGENTINA: Neuquen, Rio Collon Cura, 40° 12’ 45" S, 70° 38' 58" W, 625 m '
KGM 268
ARGENTINA: Cordoba, Laguna La Felipa, 33° 04' 17” S, 63° 31' 33" W, 184 m 1 
KGM 310, KGM 313, KGM 311, KGM 312
ARGENTINA: Cordoba, S. Canals, 33° 36' 23" S, 62° 53' 16" W, 112 m'
KGM 322
ARGENTINA: Jujuy, S. Purmamarca, 23° 49' 13" S, 65° 28' 34” W, 2,141 m 
KGM 442
PERU: Dpto. Lima, S Huacho, 11° 10' 12.9" S, 77° 35' 31.4" W, 15 m 
REW 081, REW 082
PERU: Dpto. Junin, Jauja, Laguna de Paca, 11° 44' 14.5" S, 75° 29' 32.7" W, 3,506 m 
REW 118, REW 122
PERU: Dpto. Ancash, Laguna Conococha, 10° 07’ 10.8" S, 11° 17' 00.7" W, 4,039 m 
REW 164
PERU: Dpto. Lambayeque, ca. Puerto Eten, 06° 54' 51.9" S, 19° 52’ 22.4" W, 13 m 
REW 193, REW 194, REW 195, REW 196
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Appendix 3.1 continued.

PERU: Dpto. Lambayeque, Playa Monsefu, 06° 54' 03.7" S, 79° 53' 42.4" W, 12 m 
REW  198, REW  199
PERU: Dpto. La Libertad, M agdalena de Cao, 07° 51' 54.3" S, 79° 20’ 51.2" W, 23 m 
REW 200
PERU: Dpto. Ancash, Chimbote, 09° 07' 26.0" S, 78° 33' 11.3" W, 15 m 
REW  203, REW 204, REW  205
PERU: Dpto. Ancash, Puerto Huarmey, 10° 05' 52.0" S, 78° 09' 10.3" W, 14 m 
REW  206
PERU: Dpto. Lima, Albufera de Medio Mundo, 10° 55' 25.9" S, 77° 40' 10.8" W, 14 m 
REW  207
PERU: Dpto. Ica, Pisco, 13° 41' 46.8" S, 76° 13' 07.3" W, 7 m 
REW  235
PERU: Dpto. Ica, Pisco, 13° 40' 47.2" S, 16° 12' 56.6" W, 9 m 
REW  236
PERU: Dpto. Tacna, Ite, 17° 52' 47.2" S, 71° 01' 05.9" W, 10 m
REW  298, REW  299, REW  300, REW 301, REW  302, REW  303, REW 304
PERU : Dpto. Arequipa, Punta de Bombon-Islay, 17° 11' 31.9" S, 710 46' 19.4" W, 8 m
REW  305, REW  306
PERU: Dpto. Lima, 2 km N. La Laguna, 12° 33' 13.0" S, 16° 42' 42.1" W, 9 m 
REW  315, REW  316, REW  317
ARGENTINA: Chubut, Laguna Terraplen, 42° 59' 50.7" S, 71° 30' 55.1" W, 630 m 
KGM 712, KGM 713
ARGENTINA: Santa Cruz, Estancia La Angostura, 48° 38' 33.9" S, 70° 38' 37.3" W, 
460 m
KGM 766, KGM 767
ARGENTINA: Santa Cruz, ca. Punta Loyola, 51° 37' 35.7" S, 69° 00' 59.4" W, -3 m 
KGM 797, KGM 798
ARGENTINA: Santa Cruz, ca. Punta Loyola, 51° 36' 54.9" S, 68° 59' 26.6" W, 0 m 
KGM 799
ARGENTINA: Chubut, S. Lago Colhue Huapi, 45° 38' 49.6" S, 68° 56' 45.1" W, 256 m 
KGM 808
ARGENTINA: Catamarca, Antofogasta de la Sierra, Laguna La Alumbrera, 26° 06' 
46.4" S 61° 25' 26.7" W, 3,338 m 
KGM 1110
ARGENTINA: Catamarca, Embalse Las Cortaderas, 21° 33' 21.2" S, 68° 08' 41.9",
3,369 m 
KGM 1142
ARGENTINA: Buenos Aires, 34° 52' 27" S, 61° 23' 19.2", 86 m 
JT 011
ARGENTINA: Buenos Aires, 34° 53’ 15" S, 61° 21' 51", 86 m 
JT 046, JT 047
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Appendix 3.1 continued.

A. c. orinomus
ARGENTINA: Salta, NE La Caldera, 24° 33' 01” S, 65° 22’ 15" W, 1,468 m 
KGM 441
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16° 11' 45" S, 68° 37’ 28" W, 3,808 m 
KGM 485, KGM 486, KGM 487
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16° 20’ 13" S, 68° 41’ 20" W, 3,854 m 
KGM 499
BOLIVIA: Dpto. Oruro, Lago Uru Uru, 18° 02’ 03" S, 67° 08’ 46" W, 3,735 m 
KGM 527, KGM 528, KGM 529, KGM 530, KGM 531, KGM 532, KGM 533, KGM 
534, KGM 535
BOLIVIA: Dpto. La Paz, Lago Titicaca, 16° 25' 28" S, 68° 51' 43" W, 3,850 m 
KGM 557
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21' 03" S, 68° 37' 40" W, 3,839 m 
KGM 559, KGM 560
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21' 02" S, 68° 37' 48" W, 3,840 m 
KGM 561, KGM 562
BOLIVIA: Dpto. La Paz, Lago Titicaca, Cohani, 16° 21' 07" S, 68° 38' 06" W, 3,845 m 
KGM 563, KGM 564, KGM 565, KGM 566
PERU: Dpto. Junin, Jauja, Laguna de Paca, 11° 44' 14.5" S, 75° 29’ 32.7" W, 3,506 m 
REW  125, REW 126
PERU: Dpto. Cusco, Laguna Chacan, 13° 26' 02.6" S, 72° 07' 49.6" W, 3,533 m 
REW  238, REW  239, REW  240, REW 241, REW 242 
PERU: Dpto. Cusco, ca. Chinchero, 13° 25' 49.3" S, 72° 03' 41.7" W, 3,789 m 
REW 248
PERU: Dpto. Cusco, Urubamba Valley, 13° 25' 22.9" S, 72° 02' 38.2" W, 3,743 m 
REW  253, REW  254
PERU: Dpto. Cusco, ca. Laguna Pomacanchi, 14° 06' 51.9" S, 71° 27' 56.6" W, 3,781 m 
REW 255, REW 256, REW 257, REW 258, REW 259
PERU: Dpto. Puno, Lago Titicaca, Jaru Jaru, 15° 59' 05.6" S, 69° 36' 24.3" W, 3,824 m 
REW  268, REW 269
PERU: Dpto. Puno, Lago Titicaca, ca. Puno, 15° 52' 01.2" S, 69° 56' 21.3" W, 3,830 m 
REW 271
PERU: Dpto. Puno, Lago Umayo, Sillvstani, 15° 42' 45.8" S, 70° 09' 00.0" W, 3,853 m 
REW 272
PERU: Dpto. Puno, Deustva, 15° 33' 50.0" S, 70° 14' 33.1" W, 3,871 m 
REW 284, REW 285, REW 286
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Appendix 3.1 continued.

A. discors
USA: South Dakota, Day Co.
REW 001, REW 002, REW 003, REW  004, REW 005, REW 006, REW 007, REW 008,
REW 009, REW 010, REW Oi l ,  REW 013, REW 014, REW 015
USA: South Dakota, Kingsbury Co.
REW  021, REW  022, REW  023, REW  028, REW  029, REW  032, REW  033, REW 034,
REW 035, REW 036, REW 037
USA: North Dakota, Kidder Co.
REW 038, REW 039, REW 040, REW  041, REW 042, REW 043, REW 044, REW 045,
REW 046, REW 047, REW 048, REW  049, REW 050, REW 052, REW 053, REW 054,
REW 056, REW  061, REW 062, REW 063, REW 065, REW  066, REW 067, REW 068
USA: Oregon, Columbia Co., 45° 45' 18.1" N, 122° 50' 51.4" W, 1 m
REW 405
PERU: Dpto. Junin, Jauja, Laguna de Paca, 11° 44’ 14.5" S, 75° 29' 32.7" W, 3,506 m 
REW  121, REW  124
PERU: Dpto. Ancash, Laguna Conococha, 10° 07' 10.8" S, 11° 17' 00.7" W, 4,039 m
REW  163
GUYANA
ANSP 8442
COLOMBIA
F(23), M (16)l-M (16)4 , M (19)l-M (19)3, M (24)l-M (24)8 , M (9)l-M (9)6_____________

'These elevation values are interpolated from the U.S. Geological Survey’s G TO P030 
(http://eros.usgs.gov); all other elevations were measured with a GPS receiver.

http://eros.usgs.gov


Appendix 3.2. Geographic areas, sampling sites, number o f  each mtDNA control region haplotype observed, and total sample 
size per area included in the present study.

Geographic area Sampling site________  Haplotypes observed (count)_______________________________________ n_

Peru coastal regions
A. c. cyanoptera
12 (4), 14 (15), 40 (3), 41 (1), 43 (1), 61 (3), 62 (2) 29

Peru Andes (highland) 14(2), 40 (1 ) 3
Argentina Catamarca (highland) 8 (2) 2
Argentina Jujuy (highland) 42 (1 ) 1
Argentina Patagonia 3(1), 8 (1), 9 (1), 14 (1), 23 (1), 57 (2), 59 (1), 62 (1) 9
Argentina Cordoba and Buenos Aires 14(3), 20 (1 ), 40 (2), 43 (1), 60 (1 ) 8

Peru Altiplano & puna region
A. c. orinomus
2 (1), 4 (2), 7 (1), 8 (1), 14 (12), 15 (1), 22 (1), 54 (2), 58 (2) 23

Bolivia Altiplano 1 (2), 2 (3), 5 (2), 6 (1), 13 (1), 14 (13), 22 (1), 54 (1), 58 (2) 26
Argentina Salta 14(1) 1

Utah Salt Lake Co.
A. c. septentrionalium
19 (1), 56 (1), 63 (1), 65 (1), 67 (1), 69 (2), 70(7), 71 (1), 75 (1), 25

Colorado Moffat Co.
76(1), 78 (1), 79(1), 83 (1), 86(1), 87(4) 
77(1), 94 (1 ) 2

Oregon Columbia Co. and Harney Co. 32 (1), 55 (2), 65 (1), 66 (1), 69 (1), 70 (1), 72 (1), 73 (1), 77 (4), 78

California Imperial Co. and Kerns Co.
(1), 81 (1), 89(1), 90(1), 91 (1)
19(1), 44 (1), 55 (1), 64 (1), 67 (2), 68 (1), 70 (6), 74 (1), 77 (3), 80

18

(1), 82 (1), 83 (1), 85 (1), 87 (3), 88 (1) 25



Appendix 3.2 continued.

North Dakota

South Dakota

Oregon
Colombia

Kidder Co.

Day Co. and Kingsbury Co.

Columbia Co.
Barranquilla

Guyana
Peru Andes (highland)

A. discors
10(2), 15 (1), 18 (1), 19 (2), 24(1), 25 (8), 28 (1), 29 (1), 34(1), 24
43 (1), 44 (1 ), 46(1), 47 (1 ), 51 (1), 55 (1)
10 (2), 11 (1), 17 (2), 24 (1), 25 (5), 30 (1), 31 (1), 32 (1), 37 (1), 25
38 (1), 39 (1), 43 (1), 44 (1), 45 (1), 49 (1), 50 (2), 52 (1), 53 (1)
25 (1 ) 1
15 (3), 16 (2), 19 (1), 20 (1), 21 (1), 24 (1), 25 (3), 26 (1), 27 (1), 22
28 (1), 31 (1), 33 (1), 36 (1), 43 (1), 44 (1), 48 (1), 65 (1)
35 (1) 1
25 (1), 44 (1 ), 46 (1 )_______________________________________________3_
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CHAPTER 4

PLUMAGE AND BODY SIZE DIFFERENTIATION IN BLUE-W INGED TEAL AND

CINNAM ON TEA L1

ABSTRACT

Blue-winged Teal (Anas discors) and Cinnamon Teal (A. cyanoptera 

septentrionalium) are two closely related dabbling duck species that are ecologically 

equivalent, inhabiting different breeding areas in North America. Cinnamon Teal are 

primarily restricted to regions west o f the Great Plains, whereas Blue-winged Teal occur 

primarily in the central and eastern part o f the continent, having only recently expanded 

their range westward within the last 75 years. M ales o f the two species exhibit striking 

plumage differences that make them easy to distinguish, but females are difficult to 

differentiate by either plumage or body size. Here we reassess previously recognized 

body size differences and quantify new differences in plumage color using avian color 

discrimination modeling. Like previous studies, significant differences were found for 

bill morphology; mean bill length was 7-10% longer in Cinnamon Teal. Based on visual 

modeling and plumage reflectance data, plumage color differences between species were 

found for most female feather patches, with breast coloration (AS  = 3 .41 ) representing a

’W ilson, R. E., M. D. Eaton, and K. G. McCracken. Plumage and body size 

differentiation in Blue-winged Teal and Cinnamon Teal. Submitted to Wilson Journal o f 

Ornithology.



potentially important and previously unrecognized inter-specific signal. Male breeding 

plumages are extremely different between the species as illustrated by cheek coloration 

(AS  = 11.4), but novel color differences were also detected between species in the wing 

speculum (AS = 3.24) that are indistinguishable to human vision. Although color 

reflectance data yielded higher accuracy than morphometries for identifying females, 

body size measurements (in addition to plumage) also proved to be reliable in correctly 

classifying males o f each species. The use o f color reflectance data presents a potentially 

useful identification and management tool for avian species that are otherwise difficult to 

distinguish.
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INTRODUCTION

Blue-winged Teal (Anas discors) and Cinnamon Teal (A. cyanoptera 

septentrionalium) are common North American waterfowl species that are closely 

related, behaviorally, ecologically, and genetically (McKinney 1970, Connelly and Ball 

1984, Johnson and Sorenson 1999). Blue-winged Teal breed primarily in the north- 

central United States and prairie provinces o f Canada, whereas the Cinnamon Teal’s 

breeding range occurs west o f the Great Plains and into central Mexico (Gammonley 

1996, Rohwer et al. 2002, Evarts 2005). W ithin the last 75 years, Blue-winged Teal have 

expanded their breeding range west o f the Great Plains, where they were not known to 

occur prior to 1860 (W heeler 1965, Connelley Jr. 1978). Both species can now be 

observed on the same ponds at many locations throughout western North America, and 

hybridization is known to occur in areas o f  sympatry (Harris and W heeler 1965, Bolen 

1978, Lokemoen and Sharp 1981). Despite this until recent allopatric breeding 

distribution, Cinnamon Teal and Blue-winged Teal are known to co-occur on wintering 

areas. Like most migratory waterfowl these two species form pair bonds on the wintering 

grounds; therefore female choice is based solely on morphology and/or behavior of males 

(M cKinney 1992).

Blue-winged and Cinnamon teal exhibit pronounced variation in male breeding 

coloration, but reportedly show little variation in body size, or in plumage among non

breeding males, females, and juveniles. Cinnamon Teal males are reddish brown 

throughout, and Blue-winged Teal males have a characteristic steel blue neck and head 

with a white facial crescent. Some differences regarding the overall tone o f female



coloration have been suggested with Cinnamon Teal females described as more reddish 

brown (W allace and Ogilvie 1977), however such a subtle distinction would likely 

require observing the two species side by side. Palmer (1976) furthermore noted that 

female plumages are quite variable among individuals within each species, thus 

suggesting overall color tone may not be a reliable indicator o f species identification. As 

in plumage characters, females o f these two species can be difficult to tell apart based 

solely on body size measurements. Previous reports have suggested that culmen length 

and other bill length measures are potential discriminating characters, as it has been noted 

that Cinnamon Teal bills are slightly longer and o f a more spatula shape than Blue

winged Teal with no overlap in measurements (Spencer 1953, Stark 1979). However, 

Johnsgard (1975) reported that there is overlap in bill measurements, and, thus, bill 

characteristics may not be adequate to correctly identify species.

Here, we reassess body size variation between Blue-winged Teal and Cinnamon 

Teal and report novel plumage coloration based on spectral reflectance data. Objective 

measurements o f color using reflectance spectrophotometry are necessary, given that 

birds see plumage colors differently than humans (Cuthill et al. 2000, Vorobyev 2003, 

Bennett and Thery 2007, Hart and Hunt 2007), including sensitivity to ultraviolet 

reflectance, which is a prevalent aspect o f avian plumage (Eaton and Lanyon 2003). 

Furthermore, human visual assessment and interpretations o f feather coloration might be 

inadequate, given that models o f avian color discrimination suggest human vision often 

does not see plumage color differences potentially visually discemable to birds 

(Vorobyev et al. 1998, Eaton 2005, Hastad et al. 2005, Benites et al. 2007). Hence, we



tested for plumage color differences between Blue-winged Teal and North American 

Cinnamon Teal from the visual perspective o f the birds, for six color patches on males 

and eight color patches on females. Our main goal with respect to body size data was to 

rigorously reassess morphometric variation among these two species, using large 

numbers o f freshly collected and measured specimens to avoid biases due to specimen 

shrinkage (W inker 1993, 1996; Wilson and M cCracken 2008). Overall, our results 

represent a more through quantification o f plumage and morphological differences 

between Blue-winged Teal and Cinnamon Teal, and offer diagnosable characters for 

species identification.

M ETHODS

M orphometries.—Body measurements were taken from adult Cinnamon Teal (10 

females, 50 males) from California, Colorado, Oregon, and Utah, and adult Blue-winged 

Teal (13 females, 34 males) from North Dakota, Oregon, and South Dakota, U.S.A. 

(2002-2003). W e took nine body-size measurements (±0.1 mm) from each bird: wing 

chord length (carpal jo in t to longest primary feather unflattened, ±1 mm), tail length 

(base o f the uropygial gland on back to tip o f the center tail feather, ±1 mm), exposed 

culmen length, bill length at nares (anterior edge o f nares to tip o f nail), tarsus bone 

length (tarsometatarsus), bill height (height o f  upper mandible at anterior edge o f  nares), 

bill width (width o f upper mandible at anterior edge o f  nares), and body mass (g). 

M easurements were taken the same day individuals were collected prior to preparation as 

museum specimens. Body mass was not used for comparisons as individuals were in



different reproductive states, which influenced body mass differences (e.g., female Blue

winged Teal were in the laying stage but female Cinnamon Teal were not).

Statistical analyses were performed with Statistica 9.1 Software (StatSoft 2010). 

All traits were tested for normality with Kolmogorov-Smimov tests and were normally 

distributed (Ps > 0.05). A multivariate analysis o f variance (MANOVA) was performed 

to evaluate overall differences between species. Analysis o f variance (ANOVA) and 

pairwise comparisons for each individual measurement were performed using a general 

linear model with Bonferroni correction for multiple comparisons. We tested the 

diagnosability o f species using the method o f Patten and Unitt (2002), which focuses on 

the extent o f overlap rather than detecting mean differences. Diagnosability of species 

was tested for each measurement separately at the 75% level to determine if at least 75% 

o f the distribution o f one species lies outside the distribution o f the other species. An 

index value (D,y) > 0 indicates that species i is diagnosable from species j .  Reciprocal 

tests were perform ed to determine whether species / is diagnosable from subspecies j  and 

subspecies j  is diagnosable from species i.

W e also performed a forward step-wise general discriminant analysis to evaluate 

w hether the Cinnamon Teal and Blue-winged Teal could be accurately identified using a 

subset o f morphometric variables. The reliability o f the discriminant analysis was 

assessed using a cross-validation procedure. Cross-validation samples give a less biased 

error rate in classification, because it does not include observations that are used to create 

the classification function. The cross-validation sample consisted o f ten individuals from 

each species for males, and two females due to the lower sample size.
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Colorimetric Plumage M easurements.—To evaluate potential plumage color 

differences between Blue-winged Teal (8 females, 10 males) and Cinnamon Teal (12 

females, 12 males), we collected reflectance data using an Ocean Optics S2000 fiber 

optic spectrophotometer following methods described in W ilson et al. (2008). Plumage 

color data were not collected concurrent with collection o f morphometric data from 

freshly collected specimens. At the time plumage data were collected, round study skins 

were not available for most o f these particular individuals, and thus, plumage 

measurements were taken from round study skins housed at the University o f Alaska 

M useum (12 Cinnamon Teal males), Smithsonian M useum o f Natural History (10 Blue

winged Teal males), and the Field M useum o f Natural History (all female specimens). In 

addition, we were able to measure, and include data from, 43 Blue-winged Teal and 17 

Cinnamon Teal males for all wing-patch measurements (representing some o f the same 

individuals used for morphometric data collection).

Plumage spectral properties o f museum skins may change over time due to fading 

(Endler and Thery 1996, Hausmann et al. 2003) thus potentially not representing 

accurately the color o f living birds. However, it has been shown that specimens collected 

within the last 50 years change little in color (Armenta et al. 2008), and even studies 

including very old specimens do not report effects o f specimen age on plumage color 

(Benites et al. 2010, Seddon et al. 2010). While the collection dates for most o f the male 

specimens were from 2001 or 2002, specimen age did range from 1896 to 2002. Hence, 

we performed all analyses using all individuals and using only the most recent 

individuals (< 50 years) and we obtained the same qualitative results for both datasets,



indicating that year o f collection did not bias our results. In addition, linear regression of 

the reflectance variables against the year o f specimen collection showed no significant 

relationship (all P >  0.05); therefore the results shown are from all individuals.

M easurements were taken from male specimens at six different feather patches: 

cheek, crown, blue wing patch, white greater wing coverts, speculum, and tertials; and 

from female specimens at eight feather patches: cheek, crown, blue wing patch, white 

greater wing coverts, speculum, tertials, breast, and flanks. All homologous male and all 

homologous female feather patches measured appear identical, or very similar in 

coloration (e.g., breast coloration o f females), between Cinnamon Teal and Blue-winged 

Teal to human vision, except for male cheek (cinnamon color in Cinnamon Teal vs. 

bluish grey in Blue-winged Teal). This latter plumage patch was included to serve as a 

representative value o f color difference within avian perceptual color space, 

corresponding to a clear difference in human visual assessment o f color, by which to 

compare other avian color space values (see below).

We subsequently calculated color difference (AS) between Blue-winged Teal and 

Cinnamon Teal for each plumage patch within each sex using the Vorobyev-Osorio 

(1998) color discrimination model, with detailed methods described by Eaton (2005) and 

Wilson et al. (2008). Briefly, the model calculates a linear distance (AS) between two 

colors (e.g., reflectance measurements from the same patch o f a female Cinnamon Teal 

and a female Blue-winged Teal) in avian perceptual color space, defined by the spectral 

sensitivity functions o f the four different single-cone cell photoreceptors (see Vorobyev 

et al. 1998). The units o f AS  are jnd  (just noticeable differences), where 1.0 jnd  is, by
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definition, the threshold value for discrimination o f colors (Vorobyev et al. 1998). Thus, 

AS  values < 1.0 jnd  indicate two colors are visually indistinguishable, whereas values >

1.0 jnd  indicate the magnitude o f discrimination above the threshold (Vorobyev et al. 

1998, Vorobyev 2003, Siddiqi et al. 2004). Generally, at jnd = 1.0 for threshold, two 

colors are barely distinguishable under ideal conditions, and as jnd  becomes larger two 

colors are more easily discem able under worsening viewing conditions (Siddiqi et al. 

2004).

Statistical analysis o f  spectral data .— Average coloration for each feather patch 

within species and sexes was used in the color discrimination model, and thus differences 

interpreted by the model might not be biologically functional if  the variance in coloration 

o f two homologous feather patches overlaps to the point that it is not a reliable visual 

indicator o f taxonomy. To test the reliability o f color indicators, MANOVAs and 

ANOVAs with Bonferroni correction for multiple comparisons were performed for each 

feather patch within each sex to evaluate overall differences in color between species and 

differences in the visual signal o f each avian cone-cell type for color from each plumage 

patch. To assess the reliability o f plumage coloration in species identification between 

species and to determine which feather patches best discriminate species, we used a 

forward stepwise general discriminant analysis with cross-validation sample o f two males 

and two females to assess reliability, as in the morphometric analysis.

RESULTS

M orphometries.—Overall morphology differed between species (W ilks’ X= 0.38, 

^ ( 8, 96) = 19.83, P  < 0.0001) and between sexes (W ilks’ "K- 0.52, F (8,96) = 11.18, P  <
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0.0001). There was no significant interaction between species and sex (W ilks’ fc= 0.91, F 

(8,96) — 1.15 P = 0.338). M ean differences between species were restricted to three bill 

measurements (culmen length, length at nares, and bill width) for both males and 

females, with Cinnamon Teal approximately 7-10 % larger on average (Table 4.1).

Using the diagosability index (Ay), Blue-winged Teal and Cinnamon Teal were not 

diagnosable from each other as all index values were less than zero for both males and 

females, indicated by considerable overlap in ranges (Table 4.1, Fig. 4.1).

The final discriminant function included three variables (culmen, tail length, wing 

chord) for males and only one variable (bill width) for females (Table 4.2). Overall, male 

Cinnamon Teal and Blue-winged Teal were correctly assigned in 94.0% and 100.0% of 

cases, respectively. Female classification was lower, with Cinnamon Teal and Blue

winged Teal classified correctly in 70.0% and 92.3% o f cases, respectively. All cross

validation samples were correctly assigned for both males and females.

Color divergence .— As expected, color difference in avian perceptual color space 

between Cinnamon Teal and Blue-winged Teal was greatest for cheek color o f males (AS 

=11.15), which corresponds to an easily distinguishable difference in coloration to human 

vision. Unexpectedly, there were also color differences most likely large enough to be 

visually discem able to birds (AS = ~ 3) for several plumage patches that are visually 

identical to the human eye: male speculum, female breast, and female cheek (Tables 4.3

4.4). All other patches were very near, or less than, the threshold for discrimination as 

different colors in avian perceptual color space, with the exception o f female flank which 

had A S = 1.99. W e observed statistical differences between Cinnamon Teal and Blue



winged Teal for at least one photoreceptor signal (i.e., quantum catches, Q 1 - Q 4 ;  Tables 

4.3—4.4) for coloration taken from each o f the following plumage patches: all male 

patches, except tertial; and for females, crown, breast, speculum, and tertial.

Final discriminant analysis showed that speculum (Q1 and Q2) best discriminated 

species for male wings, and crown (Q4), speculum (Q3 and Q4), and cheek (Q1 and Q2) 

best discriminated species for females (Table 4.2). W hen only female wing reflectance 

measurements were used, speculum (Q3 and Q4) showed the best predictability. Males 

were correctly classified in 76.5% and 81.4% o f cases for Cinnamon Teal and Blue

winged Teal, respectively. All Blue-winged Teal males used in the cross-validation 

sample (n = 5) were correctly classified, while only 66.7% (2 out o f 3) o f Cinnamon Teal 

were. For females, all individuals for both models (full body and wing only), including 

the cross-validation sample (n = 2), were correctly classified based on color variables 

across plumage patches.

DISCUSSION

Blue-winged Teal and Cinnamon Teal are very similar in both morphology and plumage 

characters making species identification difficult, especially among female individuals.

As with other studies (Spencer 1953, Stark 1979), we confirm inter-specific mean 

differences in bill morphology. However, there was overlap in each measurement, which 

is not surprising as on average differences only correspond to a 3 mm (length) and 1 mm 

(width) difference and habitat use and feeding strategies are virtually identical (Connelly 

and Ball 1984). Although being morphologically similar in size, Blue-winged Teal and 

Cinnamon Teal males show strikingly divergent plumage, not only in overall body
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coloration, but also in head and neck coloration. This was clearly reflected in our color 

discrimination analyses, with male cheek reflectance measurements yielding a large 

distance in avian perceptual color space between the two species (AS  = 11.4). This, of 

course, corresponds with a difference in coloration that humans easily perceive as distinct 

(see plate 20 in Kear 2005). In addition to the large male plumage divergences, from the 

visual perspective o f a duck we found that several female plumage patches showed color 

differences between species, although to a lesser degree than male color differences.

This is often the case between closely related avian species where a major component of 

variation often results from differences in sexual ornaments used for mate recognition 

with little variation among juvenile and female plumages (W est-Eberhard 1983, Price 

2008).

Biological plum age differences between species.—  Plumage is an integral part of 

signaling behavior o f waterfowl, and color patches have evolved to increase the 

effectiveness o f displays in social situations such as pair formation (McKinney 1992, 

Price 2008). As with many closely related dabbling duck species, Cinnamon Teal and 

Blue-winged Teal males perform the same display repertoire and the accompanying vocal 

and plumage signals are often used for mate recognition (Johnsgard 1963, McKinney 

1970). In both species, the speculum is used in a common courtship display (lateral 

dabbling), along with other distinguishing plumage traits such as cheek and flank 

feathers. Although wing coloration o f the two species is indistinguishable to human 

vision, the inter-specific color difference (AS = 3.24) o f the speculum likely represents a 

novel species-specific plumage signal in males. Furthermore, the color divergence



between species in the green speculum was absent in females (AS < 1), suggesting that 

sexual selection might play a role in evolution o f speculum color divergence in male 

Blue-winged Teal and Cinnamon Teal.

Previous descriptions o f female Blue-winged Teal and Cinnamon Teal reported 

overall body and head coloration differences, although these lacked rigorous 

quantification (Spencer 1953, W allace and Ogilive 1977, Bellrose 1980). From an avian 

visual perspective, we quantified inter-specific differences in cheek, breast, and flank 

plumage coloration that should be visually distinguishable to the birds, given their 

respective linear distances in avian perceptual color space between homologous feather 

patches (i.e., AS, Table 4.4). These objective plumage color differences support previous 

subjective descriptions o f female coloration. Statistically, only color variables 

representing the breast plumage were different between females o f the two species, with 

intra-specific variation being too large for cheek and flank color (Table 4.4). These 

ambiguous results between statistical analyses o f color and color discrimination model 

analyses might reflect the confusing historical descriptions o f plumage variability among 

and within these teal species (Palmer 1976). Potentially, these female differences in 

coloration (e.g., breast plumage) could serve as recognition cues for potential mates (e.g., 

species recognition), and thus, might reinforce divergence through decreasing 

hybridization events, assuming hybrids have lower fitness due to such factors such as 

susceptibility to parasitism (M ason and Clark 1990) or disadvantages in securing a mate 

(M orton 1998, Sorenson et al. 2010). Ideally, behavioral choice experiments are needed 

to confirm female plumage signals as biologically functional species identifiers.
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Identification o f  species.— Aside from male breeding plumage, Blue-winged Teal and 

Cinnamon Teal have historically been difficult to differentiate, and this confusion in part 

has likely played a role in lack o f accurate population and harvest estimates especially for 

Cinnamon Teal as counts o f these two species are combined during aerial surveys, 

banding records, and waterfowl parts surveys (Gammonley 1996, Rohwer et al. 2002, 

Raftovich et al. 2010). In addition, identification o f females based on an accompanying 

male can be misleading (Phillips 1975) as these two species do hybridize albeit 

infrequently (Spencer 1953).

Differences between species have been reported as potential discriminating 

variables, particularly in bill measurements. However, there is no consensus across 

reports indicating that a single measurement or plumage feature can accurately 

differentiate these two species. In agreement with Johnsgard (1975), but in contrast with 

Stark (1979), we found considerable overlap in bill measurements as well as other 

measurements, indicated by the lack o f diagnosability, e.g., less than 75% o f individuals 

from Blue-winged Teal lie outside the range o f Cinnamon Teal and vice versa. Using a 

multivariate discriminate function (wing chord, tail, and culmen length), males could be 

correctly identified with high accuracy (96.4%). Even though this model is based on 

adult males, this model can be applicable to immature males o f eight weeks or older 

when full growth is essentially obtained (Stark 1979). Females were particularly 

problematic to identify. The low power for female assignment could be attributable to 

low sample size. However, variation in Blue-winged Teal measurements typically 

overlapped the means o f Cinnamon Teal measurements. Therefore, it is unlikely that a



larger sample size would substantially increase accuracy o f the assignments. Also 

differences between species in bill measurements were extremely small (< 3mm) 

therefore any error in measuring, even 1 mm, could cause a misidentification.

Plumage features such as overall color tone, facial pattern, and presence o f eye 

stripe have also been proposed as possible discriminating characteristics. However most 

o f the descriptions are subjective such as more “reddish brown” or “streakier” which 

would require comparing both species side by side. Using plumage reflectance data to 

quantify color differences allows for the potential to accurately identify individuals 

without reference specimens and takes away observer subjectivity in such factors as what 

constitutes more “reddish brown”. Plumage coloration did show higher accuracy in 

identification between females than did morphometries. The typical reddish brown was 

evident in all Cinnamon Teal females, but female coloration in Blue-winged Teal was 

variable, as indicated by others (e.g., Palmer 1976). However, the discriminate function 

based on reflectance data from cheek, crown, and speculum correctly assigned all females 

to species (Table 4.2). In addition, males could be assigned with high accuracy based on 

wing coloration (although not 100% as in females). W hereas identification requiring 

precise bill measurements where any error in measurement could result in 

misidentification, plumage reflectance data have the potential to provide additional 

confirmation on species identification or accurately identify problematic individuals.

Thus, the use o f plumage reflectance information may serve as a useful new tool for 

wildlife managers, in combination with morphometries, to more accurately identify 

species o f unknown individuals.
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Fem ales M ales Fem ales M ales

Figure 4.1. Variation in bill measurements between Blue-winged Teal (BWTE; 13 
females and 34 males) and Cinnamon Teal (CITE; 10 females and 50 males) males and 
females. Results are means (line) within 95% confidence limits (box). Vertical lines 
represent minimum and maximum values to illustrate the amount o f overlap in ranges.



Table 4.1. Body size (mm) and body mass (g) measurements for Cinnamon Teal and Blue-winged Teal.

A. c. septentrionaliuma A. discorsa

Sex Mean SE Range Mean SE Range % Dimorphism*5 P-valuec
Males
Mass 361.8 3.33 310-420 386.1 4.69 330-460
Wing chord 188.8 0.87 168-201 187.6 0.70 180-199 0.53 1.00
Tarsus 31.01 0.15 28.1-33.4 30.50 0.16 29.1-32.5 1.67 1.00
Tail 80.47 0.58 66.0-87.0 73.51 1.03 62.9-84.6 9.47 < 0.001
Nare 35.00 0.17 32.4-37.1 32.30 0.30 29.6-37.4 8.36 <0.001
Culmen 45.63 0.20 42.5-47.9 41.31 0.22 37.7-44.7 10.46 <0.001
Bill height 13.39 0.08 12.3-15.1 13.74 0.18 12.1-15.9 -2.55 0.40
Bill width 16.76 0.07 15.7-17.8 15.74 0.13 13.7-17.2 6.48 < 0.001
Females
Mass 363.5 14.20 315-430 410.4 9.63 335-465
Wing chord 180.7 1.60 171-187 177.2 1.38 171-186 1.96 0.76
Tarsus 30.69 0.55 29.2-34.9 30.05 0.17 29.1-31.2 2.07 1.00
Tail 76.30 2.02 67.0-86.0 72.90 1.32 66.9-81.4 4.46 0.69
Nare 32.74 0.48 30.5-35.1 30.37 0.38 27.9-32.5 7.24 <0.001
Culmen 43.10 0.61 40.1-46.0 39.65 0.62 37.1-44.3 8.01 <0.001
Bill height 12.59 0.23 11.1-13.8 12.88 0.25 12.1-14.5 -2.28 1.00
Bill width 16.13 0.25 15.0-17.4 14.95 0.13 14.1-15.7 7.34 <0.001

aSample sizes: A. c. septentrionalium  (50 male, 10 female), A. discors (34 male, 13 female). 
bDimorphism calculated based on mean for A. c. septentrionalium  divided by A. discors. 
cBonferroni corrected P  values (Padjusted < 0.05).



Table 4.2. Step-wise discriminant function coefficients for identification o f  male and female Cinnamon Teal and Blue-winged 
Teal using morphometric and plumage reflectance data.

Male Female
Morphometries

A. c. septentrionalium A. discors A. . septentrionalium A. discors
Intercept -1102.00 -991.86 Intercept -275.87 -236.43
Culmen 22.62 20.06 Bill width 34.10 31.57
Tail 3.04 2.50
Wing chord 4.89 5.12
% Correctly 
Classified

94.0 100.0 % Correctly 
Classified

Plumage

70.0 92.3

Wing only Full body/wing only
Intercept -11.65 -13.95 Intercept -37.15/-17.34 -21.74/-6.05
Q2 speculum 0.05 0.03 Q4 crown -0.02 0.04
Q3 speculum 0.01 0.03 Q3 speculum 

Q4 speculum 
Q1 cheek 
Q2 cheek

-1.25/-0.48 
0.94/0.39 

-0.21 , 
0.24

0.66/-0.06
-0.44/0.08

0.04
-0.04

% Correctly 
Classified

76.5 81.5 % Correctly 
Classified

100.0 100.0



175

Table 4.3. Average receptor quantum catches (Qi) o f each o f the four single cone cell 
types, and color discriminability (AS) using the Vorobyev-Osorio color discrimination 
model for each feather patch on male Cinnamon Teal and Blue-winged Teal. AS  > 1 .0  
just noticeable difference indicates distinguishable differences in color to the avian visual 
system under ideal viewing conditions.

A, discors A. c. septentrionalium
Feather M ean (SE) M ean (SE) P° AS

Blue wing patch

Q lb 2495.55 (64.5) 2134.0(101.0) 0.004 0.49

Q2 1607.11 (39.0) 1393.2 (63.7) 0.005

Q3 1199.37 (27.2) 1055.7 (47.1) 0.008

Q4 1372.99 (29.3) 1230.2 (56.1) 0.017

Speculum border

Q l 3837.96 (86.7) 4232.0 (226.0) 0.050 0.61

Q2 2825.89 (68.4) 3123.0(141.0) 0.038

Q3 2340.03 (60.0) 2603.0 (105.0) 0.027

Q4 2973.70 (78.0) 3320.0 (126.0) 0.022

Speculum

Q l 534.14 (16.7) 491.0 (23.6) 0.16 3.24

Q2 340.22 (10.5) 330.7 (18.4) 0.69

Q3 631.23 (19.8) 515.4 (27.9) 0.002

Q4 529.31 (22.0) 470.4 (23.7) 0.13

Crown

Q l 278.41 (26.9) 408.5 (28.5) 0.007 0.09

Q2 213.92 (19.9) 314.8 (24.7) 0.009

Q 3 208.45 (18.9) 307.1 (26.9) 0.014

Q4 328.82 (30.1) 481.6 (47.7) 0.025

Cheek

Q l 674.26 (40.1) 381.5 (30.9) <0.001 11.4

Q2 517.07 (27.1) 321.6 (26.1) <0.001

Q 3 467.07 (22.8) 388.9 (29.0) 0.04

Q4 671.93 (31.8) 854.2 (50.7) 0.005
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Table 4.3 continued.

Feather
A. discors 
Mean (SE)

A. c. septentrionalium  
Mean (SE) P° AS

Blue tertial

Q l 2163.49 (68.3) 2144.0(107.0) 0.88 0.49

Q2 1433.62 (43.2) 1375.9 (70.3) 0.48

Q3 1022.91 (31.8) 971.0(45.1) 0.35

Q4 1094.26 (27.4) 1049.4 (48.1) 0.42

aBonferroni adjusted P-value.
bQ l is receptor quantum catch o f the violet sensitive cone (VS), Q2 the short-wave 
sensitive cone (SWS), Q3 the middle-wave sensitive cone (MWS), and Q4 the long-wave 
sensitive cone (LWS).
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Table 4.4. Average receptor quantum catches (Qi) o f each o f the four single cone cell 
types, and color discriminability (AS) using the Vorobyev-Osorio color discrimination 
model for each feather patch on female Cinnamon Teal and Blue-winged Teal. AS  > 1 .0  
ju st noticeable difference indicates distinguishable differences in color to the avian visual 
system under ideal viewing conditions.

A. discors A. c. septentrionalium
Feather M ean (SE) M ean (SE) P° AS

Crown
Q lb 447.9 (45.4) 324.4 (22.8) 0.016 1.05
Q2 356.6 (38.6) 259.0(17.8) 0.020
Q3 348.7 (37.9) 259.7 (17.7) 0.029
Q4 543.8 (58.1) 422.8 (28.7) 0.054

Cheek
Q l 1188.0 (123.0) 908.7 (78.9) 0.059 2.92
Q2 1053.0(105.0) 892.8 (69.1) 0.20
Q3 1023.7 (97.5) 941.1 (67.5) 0.48
Q4 1511.0(136.0) 1465.0 (101.0) 0.79

Breast
Q i 1292.0 (119.0) 853.8 (45.8) <0.001 3.41
Q2 1143.2 (90.8) 834.9 (43.2) 0.003
Q3 1135.6 (78.9) 911.9(45.5) 0.017
Q4 1715.0(105.0) 1488.5 (70.6) 0.078

Flank
Q l 470.0 (41.0) 439.4 (32.4) 0.56 1.99
Q2 412.3 (38.0) 410.7(29.1) 0.97
Q3 439.6 (38.1) 462.6 (31.2) 0.65
Q4 734.6 (57.7) 806.3 (50.4) 0.37

Blue wing patch
Q l 1735.0 (135.0) 1481.8 (55.0) 0.064 1.26
Q2 1169.7 (84.0) 1033.9 (35.4) 0.11
Q3 920.0 (57.0) 835.8 (25.0) 0.15
Q4 1102.8 (58.3) 1042.0 (28.0) 0.31

Speculum border
Q l 2169.0 (310.0) 2276.0 (282.0) 0.81 1.04
Q2 1614.0(219.0) 1787.0 (222.0) 0.60
Q 3 1383.0 (178.0) 1563.0 (188.0) 0.52
Q4 1822.0 (223.0) 2083.0 (239.0) 0.46
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Table 4.4 continued.

Feather
A. discors 
M ean (SE)

A. c. septentrionalium  
Mean (SE) P" AS

Speculum

Q l 278.6 (25.2) 402.9 (36.9) 0.023 0.92
Q2 225.5 (19.3) 325.1 (28.9) 0.020
Q3 219.5 (17.3) 315.4 (25.9) 0.013
Q4 313.7(26.0) 477.2 (36.6) 0.004

Blue tertial
Q l 194.4(16.9) 282.4 (27.1) 0.026 0.54
Q2 162.3 (13.0) 233.3 (21.0) 0.021
Q3 168.0(12.5) 240.4(19.6) 0.013
Q4 261.9(19.3) 388.3 (29.8) 0.005

aBonferroni adjusted P-value.
bQ l is receptor quantum catch o f the violet sensitive cone (VS), Q2 the short-wave 
sensitive cone (SWS), Q3 the middle-wave sensitive cone (MWS), and Q4 the long-wave 
sensitive cone (LWS).
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COLOR DIVERGENCE AMONG CINNAM ON TEAL (ANAS CYANOPTERA) 

SUBSPECIES FROM NORTH AMERICA AND SOUTH AM ERICA1

'W ilson, R. E., M. Eaton, and K. G. McCracken. Color divergence among Cinnamon 

Teal (Anas cyanoptera) subspecies from North America and South America. Ornitologia 

Neotropical 19:307-314.



INTRODUCTION

Plumage is an integral part o f signaling behavior o f waterfowl, especially during 

courtship and pair formation. There is a vast array o f display repertoires among dabbling 

ducks (genus Anas) with many species performing the same displays. While many 

closely related species perform displays in similar form, the accompanying vocal and 

plumage signals differentiate species (McKinney 1970). Modifications in display 

frequencies have been proposed to evolve in association with slight plumage or 

morphological differences (Johnsgard 1960, M cKinney 1961, McKinney 1965). In 

addition, color patches have evolved to increase the effectiveness o f the displays in social 

situations such as pair-formation, hostile or territorial encounters, maintaining contact 

with mate, and flock activities (M cKinney 1970, Price 2008).

Cinnamon Teal (Anas cyanoptera) is composed o f five subspecies (A. c. borreroi, 

A. c. cyanoptera, A. c. orinomus, A. c. septentrionalium, and A. c. tropica', Snyder & 

Lumsden 1951), and each performs a variety o f movements during social courtship that 

are accompanied by postures using different plum age areas. The color o f the “cinnamon” 

feathers in males is known to be variable among and within subspecies (Snyder & 

Lumsden 1951), however color o f  other plumage patches among subspecies appear 

identical to human visual assessment (Delacour 1956, Blake 1977, Johnsgard 1978,

Evarts 2005). During Cinnamon Teal displays, such as tum -back-of-head and lateral 

dabbling, differences in color o f feather patches could potentially provide information 

about subspecies identification or male quality, because plumage is known to be 

important in avian signaling and mate choice (e.g., Cooke & McNally 1975, Klint 1980,

180



Holmberg et al. 1989, W eidmann 1990, Sorenson & Derrickson 1994, Omland 1996a, 

1996b; Bridge & Eaton 2005).

However, all birds studied to date see plumage colors differently than humans 

(Cuthill et al. 2000, Bennett & Thery 2007, Hart & Hunt 2007), and recent analyses of 

plumage colors quantified through spectrophotometry suggest birds might detect plumage 

color differences not detectable through human vision (Eaton 2005, Benites et al. 2007). 

Thus, human visual assessment o f feather coloration is inadequate for proper study and 

interpretation o f  many biological questions. To overcome this problem, herein, we test 

for color differences from the visual perspective o f the birds, using a model o f avian color 

discrimination (Vorobyev & Osorio 1998). For several plumage patches that appear 

identical in coloration to humans, including those used during courtship displays, we 

quantify both male and female plumage color differences (i.e., divergence) among the 

three most widespread and abundant Cinnamon Teal subspecies (A. c. cyanoptera, A. c. 

orinomus, and A. c. septentrionalium). The other subspecies are not common, and 

museum collections lack very recently collected specimens needed for comparisons in 

this study.

METHODS

Study species. In general, the male breeding plumage consists o f a reddish brown to 

bright reddish chestnut color. The abdomen color ranges from brownish to black, and the 

crown is typically black. The wings have blue upper-wing coverts (wing patch) and a 

metallic green speculum that is duller on females and these areas are separated by white 

greater wing coverts. Although the coloration o f males within and among subspecies is
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variable, there are some general trends that have been used in conjunction with 

morphological measurements to distinguish subspecies (Snyder & Lumsden 1951). Male 

A. c. septentrionalium  tends to have more cinnamon red color than the other subspecies 

and lacks the spots on the breast, flanks, and belly that can be found on A. c. cyanoptera 

(Blake 1977). A. c. cyanoptera  is usually a rich chestnut color. A. c. tropica and ,4. c. 

borreroi generally have a darker overall chestnut color with a higher frequency of 

spotting. The chestnut color o f A. c. orinomus is typically lighter than A. c. cyanoptera. 

Female coloration range from mottled tan brown to red brown and tone is also quite 

variable ranging from pale to moderately dark (Gammonley 1996). A. c. tropica and A  c. 

borreroi are generally darker than the other subspecies. A. c. orinomus females tend to 

have darker streaking and are more reddish than A. c. cyanoptera. A. c. septentrionalium  

females are extremely variable in both color and tone (Blake 1977, Gammonley 1996). 

Spectral analysis o f  plum age colors. In 2004, we measured 17 adult A  c. orinomus (7 

females, 10 males), 29 A. c. cyanoptera (8 females, 21 males), and 15 A. c. 

septentrionalium  (3 female, 12 males) collected from Argentina (2001, 2003), Peru 

(2002), and western United States (2002-2003). To avoid any potential bias introduced 

from color degradation from older specimens, we only used very recently collected 

specimens. Voucher specimens are archived at the University o f Alaska Museum 

(Fairbanks, Alaska). All individuals were determined to be in complete breeding 

plumage and there was no evidence o f color fading. Feather patch locations measured 

were chosen based on their overall visibility during social displays (McKinney 1970) and 

conspicuousness when compared to surrounding feathers. Streaked or barred regions of



the plumage were not used because those patches are smaller than the ~4 mm measuring 

area, and thus reliable measurements could not be made. M easurements were taken of 

seven different feather locations for males: crown, cheek, breast, blue wing patch, white 

greater wing coverts, green speculum, and blue tertial feathers. Due to the streakiness of 

female plumage, only two readings (blue wing patch and green speculum) were taken, 

both from the wing.

Spectral reflectance data were collected with an Ocean Optics S-2000 

spectrometer (Dunedin, FL, USA) equipped with an R200-7-UV/VIS reflectance probe 

(fiber diameter = 200 microns) and a PX-2 pulsed xenon light source. Data collected 

were calibrated against a Spectralon white reflectance standard with the following 

settings: msec = 100, average = 10. These settings determined the pulse rate o f the light 

source, and the number o f scans averaged per spectrum saved, respectively. The 

reflectance probe was housed in a black rubber tube, which blocked ambient light, 

maintained the distance from the probe to the feather surface constant (approximately 2 

mm), and achieved a 90-degree measurement angle relative to the feather surface. The 

spectrometer was recalibrated after all measurements were taken for each individual 

specimen. Raw reflectance data were averaged to yield percent light reflected every 10 

nm between 300 and 700 nm, using the SAS statistical software package (SAS Institute, 

Cary, NC, USA).

Avian visual system modeling. We evaluated color divergence among three o f the A. 

cyanoptera  subspecies for each feather patch using the Vorobyev-Osorio (1998) color 

discrimination model. The model calculates a distance in avian color space (AS), defined
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by the quantum catches o f each receptor type in the avian retina. Thus, Qi represented 

the receptor quantum catch o f the violet sensitive cone (VS), Q 2 the short-wave sensitive 

cone (SWS), Q3 the middle-wave sensitive cone (MWS), and Q4 the long-wave sensitive 

cone (LWS). The model assumes only that discrimination o f color within this perceptual 

space is limited by noise originating in the receptors, and no visual signal results when a 

stimulus and background differ only in intensity (Vorobyev et al. 1998). The model is 

supported from behavioral data for several bird species, bees, and humans (Vorobyev et 

al. 1998, Vorobyev et al. 2001, Goldsmith & Butler 2003).

To calculate A S  (color divergence) for each subspecies comparison, we used 

methods described in detail by Eaton (2005), substituting spectral sensitivity and relative 

photoreceptor abundance data from the peacock for those o f the blue tit. Spectral 

sensitivity data do not exist for A. cyanoptera  or other ducks, so we used the peacock data 

as an approximation. These data provide a good estimate for A. cyanoptera, as the visual 

pigm ent characteristics o f other Anseriformes are similar to those o f the peacock, and 

thus photoreceptor sensitivities are highly conserved between these taxa for much o f the 

visual range (Hart 2001). The units o f AS  are jnd  (just noticeable differences), where 1.0 

jnd  is the threshold value for discrimination o f colors. Thus, A S  values < 1.0 jnd indicate 

two colors are visually indistinguishable, whereas values > 1 . 0  jnd  indicate the magnitude 

o f discrimination above threshold (Vorobyev et al. 1998, Vorobyev 2003, Siddiqi et al. 

2004). Thus, A S  values represent the divergence o f color between Cinnamon Teal 

subspecies in relation to anseriform visual capabilities. Generally, at jnd  = 1.0 for 

threshold, two colors are barely distinguishable under ideal conditions, and as jnd



becomes larger two colors are more easily discemable under worsening viewing 

conditions (Siddiqi et al. 2004).

Statistical analysis o f  spectral data. Average receptor quantum catches for each feather 

patch were used in the color discrimination model, and thus color differences among 

subspecies generated by the model might be misleading if  the variance in coloration 

between subspecies is too large. Thus, a multivariate analysis o f variance (MANOVA) 

was performed to evaluate the overall differences in receptor quantum catch o f each cone 

( Q 1 - Q 4 )  among subspecies for each sex. Analysis o f  variance (ANOVA) and pairwise 

comparisons for the average receptor quantum catch o f each cone for each feather patch 

were performed using a general linear model with Bonferroni-correction for multiple 

comparisons.

RESULTS

Color divergence was greatest for most plumage areas between A. c. septentrionalium  

and either A. c. cyanoptera or A. c. orinomus (Table 5.1). For example, considering the 

crown and speculum o f males, AS  comparing North American to South American 

subspecies was ~2-5 times larger than AS  comparing between South American 

subspecies. The same pattern was observed for both female plumage patches, as well. 

Color divergence between South American subspecies was relatively low for all plumage 

patches for males and females, with the exception o f male cheek color. AS  values for this 

plumage area were relatively large among all three subspecies (Table 5.1).

We observed statistical differences in overall color in males (MANOVA: W ilks’

X = 0.0381, F (56, 26) = 1-92, P  = 0.036) but not in females (MANOVA: W ilks’ X = 0.2225,



7 (̂16,14) = 0.98, P  = 0.52). Significant differences for male plumage in average receptor 

quantum catches in each cone ( Q 1 - Q 4 )  were found only between A. c. septentrionalium  

and the two South American subspecies (Table 5.2). No significant differences were 

observed for quantum catches in any cone among any o f the subspecies for female 

plumage (Table 5.3).

DISCUSSION

There was striking plumage color divergence among Cinnamon Teal subspecies, when 

color differences were analyzed from an avian visual perspective. Some areas o f the 

plumage (e.g., crown and speculum) differed to a degree that should be easily 

distinguishable to the ducks, thus representing novel plumage signals (e.g., AS > 2). 

Additionally, some plumage areas have diverged to a lesser degree, but still above the 

threshold for visual discrimination (e. g., AS values between 1 and 2). These differences 

represent potentially biologically significant differences for birds (Siddiqi et al. 2004, 

Eaton 2005), and thus could function as visual signals to the ducks, although the large 

variances in coloration for many o f these plumage patches raise questions about their 

utility as reliable subspecies visual indicators (Tables 5.2 and 5.3). Nonetheless, the 

variation in color shown herein provides the raw material for selection to operate on 

plumage colors in Cinnamon Teal populations, assuming that coloration is heritable for a 

plumage area.

Signaling systems and color patterns are subject to a variety o f selection pressures 

influenced by many aspects o f life (e.g., mating success and foraging; Burtt, Jr. 1981, 

Endler 1992, Saetre 2000), as well as stochastic processes (e.g., genetic drift). It is
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unclear if  the observed color divergence in Cinnamon Teal is a result o f (1) genetic drift, 

(2) local natural selection acting upon plumage patterns to maximize signal strength in 

the particular environment o f each subspecies, or (3) sexual selection acting to promote 

assortative mating. However, our results reveal plumage color differences that, to date, 

were unknown for Cinnamon Teal, thus providing the contextual basis for testing 

evolutionary hypotheses as future behavioral and genetic data are collected.

Furthermore, use o f avian visual modeling for analyses o f plumage color morphology 

offers a powerful tool for quantifying geographic variation, and even individual variation, 

o f  color patterns among birds.
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Table 5.1. Color discriminability o f (AS) among Cinnamon Teal subspecies (Anas 
cyanoptera orinomus, 1 females, 10 males; A. c. cyanoptera, 8 females, 21 males; and A. 
c. septentrionalium, 3 female, 12 males) using the Vorobyev-Osorio color discrimination 
model. Values > 1.0 just noticeable differences indicate distinguishable differences using 
the avian visual system under ideal viewing conditions.

cyanoptera  vs 
orinomus

Pairwise 
comparisons 

cyanoptera vs 
septentrionalium

orinomus vs 
septentrionalium

Male
Crown 1.07 3.30 2.25
Cheek 1.76 1.32 2.42
Breast 1.30 1.19 0.82
Blue wing patch 0.29 1.03 0.76
W hite wing covert 0.25 0.37 0.59
Speculum 0.61 3.16 3.57
Blue tertial 0.12 0.34 0.39

Female
Blue wing patch 0.59 1.65 2.23
Speculum 1.03 1.56 2.58
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Table 5.2. Average receptor quantum catches o f each o f the four cones for each feather 
patch on male Cinnamon Teal (Anas cyanoptera) subspecies.

Feather A. c. orinomus A. c. cyanoptera A. c. ~P
(n = 1 0 )  (n = 21) septentrionalium

_________________________________________________________ (n = 12)____________
Mean (SE) Mean (SE) M ean (SE)

Crown
Q . 2 371.3 (25.8) 341.5 (13.6)* 408.5 (28.5)* 0.071
q 2 269.0 (22.1) 237.1 (9.7)* 314.8(24.7)* 0.007
Q 3 247.8 (20.6) 215.5 (8.7)* 307.1 (26.9)* 0.001
q 4 365.7 (32.8)A 307.1 (13.7)* 481.6 (47.7) A* 0.001

Breast
Q i 546.0 (47.6) 523.9 (27.6) 563.6 (30.7) 0.684
q 2 398.6 (32.9) 386.7 (21.8) 427.9 (24.6) 0.506
Q 3 398.6 (28.4) 404.3 (22.9) 441.6(26.5) 0.503
q 4 769.2 (40.9) 808.9 (41.4) 826.8 (45.2) 0.721

Cheek
Q i 362.2 (38.2) 306.5 (12.2)* 381.5 (30.9)* 0.057
q 2 282.1 (27.3) 238.9 (10.8)* 321.6 (26.1)* 0.010
Q 3 311.5 (24.3)A 278.7 (13.2)* 388.9 (29.0)A* 0.001
q 4 675.8 (37.3)A 642.3 (27.9)* 854.2 (50.7)A* 0.001

Blue wing patch
Q i 2010.0 (128.0) 2372.0 (136.0) 2071.0 (126.0) 0.138
q 2 1282.4 (70.9) 1494.1 (80.1) 1352.0 (78.6) 0.183
Q 3 956.6 (46.4) 1104.1 (54.9) 1023.1 (56.9) 0.202
q 4 1080.4(50.3) 1246.2 (59.6) 1184.5 (66.3) 0.209

White wing covert
Q . 4377.0 (224.0) 4610.0 (195.0) 4278.0(318.0) 0.579
q 2 3141.0(187.0) 3360.0 (137.0) 3145.0(200.0) 0.544
q 3 2583.0 (161.0) 2775.0 (114.0) 2625.0 (147.0) 0.558
q 4 3261.0 (212.0) 3505.0 (147.0) 3347.0 (176.0) 0.592

Speculum
Q i 400.0 (24.4) 437.0 (26.3) 498.3 (32.0) 0.111
q 2 301.0(15.7) 335.2 (22.0) 348.9 (22.6) 0.414
Q 3 491.9 (36.4) 526.1 (37.8) 514.7(36.2) 0.839
q 4 350.2 (31.3) 387.5 (30.5)* 467.5 (32.3)* 0.081
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Table 5.2 continued.

Feather A. c. orinomus
(n = 1 0 )

A. c. cyanoptera 
(n = 2 1 )

A. c.
septentrionalium
(n = 1 2 )

P ]

Mean (SE) Mean (SE) M ean (SE)
Blue tertial

Q . 1920.3 (83.0) 2024.0 (8 8 .6 ) 2144.0(107.0) 0.372
q 2 1223.8 (48.8) 1302.3 (54.4) 1375.9 (70.3) 0.312
Q 3 859.2 (35.8) 913.3 (33.7) 971.0 (45.1) 0.215
Q 4 912.8 (38.4) 971.0(31.3) 1049.4(48.1) 0.098

'ANOVAs for subspecies effect. Means with same symbol within a row are different as 
determined using Bonferroni corrected P -values (P adjusted < 0 .1 ).
2Qi is receptor quantum catch o f the violet sensitive cone (VS), Q 2 the short-wave 
sensitive cone (SW S), Q 3 the middle-wave sensitive cone (MWS), and Q4 the long-wave 
sensitive cone (LWS).
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Table 5.3. Average receptor quantum catches o f each o f the four cones for each feather 
patch on female Cinnamon Teal (Anas cyanoptera) subspecies.

Feather A. c. orinomus 
(n = 7)

A. c. cyanoptera
(n = 8 )

A. c.
septentrionalium
(n = 3)

P {

Mean (SE) Mean (SE) Mean (SE)
Blue wing patch

Q . 2 1722.0(149.0) 1711.3 (97.3) 1601.3 (61.7) 0.844
q 2 1137.0(80.7) 1146.5 (55.4) 1123.8 (35.8) 0.981
Q 3 899.8 (49.6) 913.8 (37.3) 932.0 (40.3) 0.912
Q 4 1058.1 (48.9) 1102.1 (36.6) 1177.6(81.9) 0.368

Speculum
Q. 370.5 (64.4) 350.3 (47.4) 510.0(165.0) 0.420
q 2 286.5 (45.3) 275.5 (32.9) 412.0 (141.0) 0.331
Q3 268.0 (40.0) 260.5 (28.6) 402.0(141.0) 0.260
q 4 354.0 (55.2) 361.3 (41.9) 592.0 (225.0) 0.190

'ANOVAs for subspecies effect.
2 Qi is receptor quantum catch o f the violet sensitive cone (VS), Q 2 the short-wave 
sensitive cone (SWS), Q 3 the middle-wave sensitive cone (MWS), and Q4 the long-wave 
sensitive cone (LWS).
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CHAPTER 6

SPECIMEN SHRINKAGE IN CINNAMON TEAL1

ABSTRACT

Body size measurements from freshly collected birds and dried museum 

specimens were used to evaluate specimen shrinkage in Cinnamon Teal (Anas 

cyanoptera). Six o f seven body measurements o f female Cinnamon Teal differed 

significantly after specimen drying, whereas five o f seven male body measurements 

differed. The largest amount o f shrinkage was in bill height, bill width, and tarsus length. 

Bill length at nares showed no significant shrinkage, suggesting it is a more conservative 

measurement than exposed culmen and, therefore, a more reliable method for accurately 

measuring bill length. Correction values for body size measurements are reported for 

future waterfowl studies combining measurements o f both live birds and museum 

specimens.

'W ilson, R. E. and K. G. McCracken. 2008. Specimen shrinkage in Cinnamon Teal. 

W ilson Journal o f Ornithology 120:390-392.



INTRODUCTION

Specimen shrinkage during the process o f drying is common. Shrinkage can cause 

analytical problems if  not properly corrected in studies involving live or freshly killed 

birds and museum specimens (e.g., W inker 1996). Correction for shrinkage is needed 

before applying to live birds when developing classification criteria for sex, subspecies, 

or species based on morphological features from museum specimens (Greenwood 1979, 

Jenni and W inkler 1989, W inker 1993). For example, M ueller (1990) reported that a 

shrinkage value o f 1.72% would comprise 34% o f wing length differences between male 

and female Saw-whet Owls (Aegolius acadicus). In addition, the amount o f shrinkage 

varies among body parts and species (W inker 1993).

Shrinkage values from one taxon may have limited use outside that particular 

taxon or similar morphological species because o f the morphological diversity o f birds 

and variety o f preparation techniques (Jenni and W inkler 1989, W inker 1993). Specimen 

shrinkage in waterfowl has yet to be investigated. This paper reports shrinkage values for 

Cinnamon Teal (Anas cyanoptera), which may be used to develop correction values for 

similar sized (-3 5 0 -5 5 0  g) waterfowl.

METHODS

Cinnamon Teal are widespread throughout the Western Hemisphere and five 

subspecies currently are recognized (Snyder and Lumsden 1951, Delacour 1956, 

American Ornithologists’ Union 1957, Johnsgard 1978, Gammonley 1996). The three 

most w idespread subspecies o f Cinnamon Teal (A. c. cyanoptera, A. c. orinomus, and A. 

c. septentrionalium-, 26 females, 80 males) were collected in Argentina (2003), Peru



(2002), and western United States (2002-2003) as part o f a larger population genetic and 

morphological study. Even though subspecies are distinct in overall body size, there is 

overlap in measurements among subspecies (R. E. Wilson, unpubl. data). Therefore, 

different subspecies were pooled for each sex to ascertain the extent o f shrinkage for each 

measurement.

Seven body measurements were recorded for each bird (± 0.1 mm unless 

otherwise indicated; Baldwin et al. 1931): wing chord length (carpal joint to longest 

primary feather unflattened; ± 1 mm), tail length (± 1 mm), exposed culmen length (edge 

o f forehead feathers to anterior edge o f nail), bill length at nares (anterior edge o f nares to 

anterior edge o f nail), total tarsus length (top o f bent knee to bottom of foot), bill height 

(height o f upper mandible at nares), and bill width (width o f upper mandible at nares). 

M easurements were taken the same day specimens were collected prior to preparation as 

museum specimens (fresh measurements), and subsequently 9 months to 2 years after 

preparation (dry measurements from standard museum round skins) by the same 

individual (R. E. W ilson) with the same set o f calipers. The right wing and tarsus were 

used for fresh and dry measurements o f each specimen. Voucher specimens are archived 

at the University o f Alaska M useum (Fairbanks, Alaska). A paired r-test was used to 

compare differences between fresh and dry measurements. Pearson correlation values 

were used to examine the relationship between body mass and percent shrinkage.

RESULTS

Five o f the seven measurements for males had significant differences after drying 

(Table 6.1). There was no significant change in tail length or bill length at nares, but both
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m easurements showed an increase after drying. All other measurements had > 1 % 

percent decrease with bill height and bill width having the largest shrinkage. Percent 

shrinkage o f total tarsus length (Pearson correlation = 0.255, P  = 0.023) and culmen 

length (Pearson correlation = -0 .356 , P  = 0.001) had a significant relationship with body 

mass.

Six o f the seven body measurements for females had significant differences after 

drying (Table 6.1). Bill length at nares had no significant difference. All measurements 

except tail length decreased after drying with bill width and total tarsus having the 

greatest am ount o f  shrinkage. There were no significant relationships between any o f the 

shrinkage measurements and body mass.

DISCUSSION

Cinnamon Teal had significant changes after specimen preparation for most 

measurements. Specimen preparation may have contributed to differences between 

measurements besides the drying process. The bills o f specimens were tied to keep them 

closed during the drying process in the field. Tying o f bills may have squeezed the bill 

together, slightly decreasing bill width. Tail length increased after drying for House 

Sparrows (Passer domesticus) and was attributed to the retraction o f the intercalamal skin 

(Bjordal 1983).

Bill length is an important descriptor for studying feeding ecology (Borras et al. 

2000) and subspecies classification (e.g., Ridgway 1902, Hall 1996). Therefore, it is 

critical to have a bill measurement that is repeatable and accurate. There are several 

ways to measure bill length, with the three main alternatives being total culmen length,
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exposed culmen length, and length from the nares (Baldwin et al. 1931). Fjeldsa (1980) 

suggested the amount o f shrinkage o f the exposed culmen will vary according to bill 

anatomy and, thus, one universal correction factor would not be applicable to all bird 

species. This has led to the suggestion that bill length from the anterior edge o f the nares 

is the most reliable bill measurement as both end points are easily defined (Winker 1998, 

Borras et al. 2000). This study confirms the recommendation, in particular for waterfowl, 

that bill length should be measured from the nares, especially if  no correction factors are 

available.

The range o f shrinkage values o f -3 .7  to 6.4% for Cinnamon Teal is comparable 

to other studies, which report values ranging from -1 .5  to 4.0% depending on the body 

measurement. Correction values to convert dry measurements ranged from 1.000 to 

1.068 for measurements that decreased and 0.887 (males, not significant) and 0.965 

(females) for tail lengths, which increased (Table 6.1). W inker (1993) suggested 

correction values that ranged from 0.960-0.996 (fresh to dry) which converts to 1.004

1.040 (dry to fresh). No previous data describing specimen shrinkage have been reported 

for waterfowl to our knowledge; the values reported here provide general correction 

factors for future studies o f morphology in similar sized waterfowl.
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Table 6.1. Effects o f  shrinkage on body measurements o f  Cinnamon Teal with correction values from dried specimens to live 
birds.

Sex n
M ean length (mm) 

Fresh SE Dry SE t1 P Shrinkage % SE
Correction

factor

Males
Wing chord 80 194.51 1.57 191.00 1.49 8.44 <0.001 2.12 0.25 1.018

Total tarsus 80 41.92 0.26 40.46 0.23 11.21 <0.001 3.43 0.30 1.036

Tail 80 83.04 0.74 93.66 0.95 -0.91 0.366 -0.83 0.83 0.887

Bill nare 80 35.07 0.20 35.08 0.19 -0.04 0.968 -0.03 0.18 1.000
Bill culmen 80 45.63 0.23 45.10 0.26 4.29 <0.001 1.16 0.27 1.012

Bill height 80 13.72 0.09 12.97 0.10 8.01 <0.001 5.36 0.66 1.058
Bill width 80 16.89 0.08 15.95 0.11 11.98 <0.001 6.44 0.54 1.059

Females
Wing chord 26 189.69 2.88 185.46 2.59 5.25 <0.001 2.17 0.39 1.023

Total tarsus 26 41.56 0.42 39.89 0.42 4.64 <0.001 3.94 0.84 1.042

Tail 26 81.54 1.58 84.49 1.89 -2.35 0.027 -3.73 1.53 0.965

Bill nare 26 32.79 0.28 32.7 0.30 0.71 0.483 0.28 0.38 1.003
Bill culmen 26 43.04 0.38 42.55 0.38 2.54 0.018 1.11 0.44 1.012

Bill height 26 13.06 0.17 12.6 0.20 2.48 0.020 3.45 1.42 1.037

Bill width 26 16.34 0.19 15.3 0.20 5.29 <0.001 6.21 1.15 1.068

'/-value from paired sample Mest.



CONCLUSIONS

Cinnamon Teal (Anas cyanoptera) are distributed along elevational and latitudinal 

gradients, and within these gradients climatic and habitat variables change abruptly, 

resulting in spatial heterogeneity in selection pressures across the species’ range. High 

elevation appears to have played a major role in influencing the spatial variation in 

morphological and molecular divergence within South American Cinnamon Teal; 

patterns o f variation in morphological characteristics correspond to highland and lowland 

subspecies pairs in the Colombian and central high Andes. Larger individuals occupied 

higher elevations in the Andes (A. c. orinomus and A. c. borreroi) and occurred at higher 

latitudes in Patagonia (A. c. cyanoptera), whereas smaller conspecifics resided at lower 

elevations in temperate regions (A. c. cyanoptera, A. c. septentrionalium, and A. c. 

tropica), a pattern consistent with Bergm ann’s Rule.

Spatial variance in morphometries is coupled with striking plumage color 

divergence among three Cinnamon Teal subspecies when color differences were analyzed 

from an avian visual perspective. Some areas o f the plumage (e.g., crown and speculum) 

differed to a degree that should be easily distinguishable to the ducks, thus representing 

novel plumage signals (e.g., AS > 2). These signals may promote assortative mating, 

thus increasing the mating success o f  the most common genotype in a particular 

environm ent (Lenormand 2002) and further reinforcing phenotypic and genetic 

divergence observed within Cinnamon Teal. Additionally, some plumage areas have 

diverged to a lesser degree, but still above the threshold for visual discrimination (e.g.,

AS values between 1 and 2). These differences represent potentially biologically
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significant differences for birds (Siddiqi et al. 2004, Eaton 2005), and thus could function 

as visual signals to the ducks, although the large variances in coloration for many o f these 

plumage patches raise questions about their utility as reliable subspecies visual indicators. 

Nonetheless, the variation in color shown herein provides the raw material for selection 

to operate on plumage colors in Cinnamon Teal populations, assuming that coloration is 

heritable for a plumage area.

Individuals occurring at high elevations in the central high Andes are confronted 

with multiple selection pressures, such as a colder and hypoxic environment, which 

present a physiological challenge to living at elevations above 3,500 m. Little evidence 

o f genetic subdivision was detected between highland (A. c. orinomus) and lowland (A. c. 

cyanoptera) for mitochondrial DNA and five nuclear introns. However, highland 

Cinnamon Teal were shown to have a single amino acid polymorphism at the a-globin 

(A sn/Ser-a9) and to have much larger body size, whereas lowland individuals generally 

lacked this allele and have a smaller body size. This amino acid substitution is located on 

the exterior o f the A helix and is known to undergo an important conformational during 

the transition from the deoxy to the oxy state, and alterations to this site may result in a 

higher oxygen affinity (Perutz 1990, McCracken et al. 2009b). Higher oxygen affinity in 

hemoglobin has been shown repeatedly to be an important evolutionary response to 

hypoxia (M cCracken et al. 2009a,b).

Coalescent analyses revealed strong restricted gene flow for the aA subunit (< 1 

migrant per generation) compared to neutral nuclear markers over evolutionary time, and 

both highland and lowland populations showed a high immigrant ancestry assignment
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based on all nuclear markers (hemoglobin and introns) combined to their native 

elevation. Transplant experiments have demonstrated that lowland bird populations have 

difficulty successfully breeding at high elevation (Monge and Leon-Velarde 1991), 

suggesting that selection pressures imposed by hypoxia are the main cause o f low 

hatchability o f eggs (Visschedijk et al. 1980). At elevations o f 4,000 m or greater there is 

a shift in physiological mechanism regulating gas exchange from conservation o f water 

and CO 2 at low altitudes to mechanisms improving O 2 availability (Carey 1994). Adult 

hemoglobin appears by day six during embryonic development (Leon-Velarde and 

Monge-C 2004), and if  the observed amino acid substitution confers a higher oxygen 

affinity it would ensure a high O 2 content in the blood necessary for embryonic 

development and growth at high elevations. Individuals possessing mismatched 

genotypes were found in Cinnamon Teal and Yellow-billed Pintail (A. georgica; 

M cCracken et al. 2009c), indicating that individuals can disperse into the highlands as 

they can initially acclimate to hypoxia via multiple physiological pathways. However, 

the susceptibility o f the avian embryo to hypoxia most likely limits these individuals 

from breeding in the highlands.

Finally, Cinnamon Teal and Blue-winged Teal (A. discors) are two closely related 

species with shallow genetic divergence. Although being morphologically similar in size, 

Blue-winged Teal and Cinnamon Teal males show strikingly divergent plumage, not only 

in overall body coloration, but also in head and neck coloration. This was clearly 

reflected in color discrimination analyses, with male cheek reflectance measurements 

yielding a large distance in avian perceptual color space between the two species (AS  =



11.4). Females also showed color differences between species in plumage patches, 

although this was restricted to breast plumage and was o f a lesser degree than the 

differences found between males. Shallower plumage divergence observed for females is 

often the case between closely related avian species, wherein a major component of 

variation often results from differences in sexual ornaments used for courtship displays 

with little variation among juvenile and female plumages (West-Eberhard 1983, Price 

1998). In addition, strong haplotype frequency differentiation and little haplotype 

sharing was observed between species and among Cinnamon Teal subspecies. North 

American and South American Cinnamon Teal studied here have limited contact, while 

wintering Blue-winged Teal individuals occur in sympatry with South American 

Cinnamon Teal during for part o f the year. This limited overlap in breeding and/or 

overwintering distributions along with timing o f breeding has likely restricted gene flow 

between continents following divergence. Although divergence times were broadly 

overlapping, this result would be expected in species complexes that have diverged 

rapidly, which is likely the case here. W here the taxa are parapatric or partially 

sympatric within continents, environmental selection pressures associated with high 

elevation (South America) and sexual selection (North America) might have played a 

major role in the diversification o f this group.
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