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Abstract

Ecological niche m odeling techniques were used to create global, monthly predictions of 

sea surface dim ethylsulfide (DMS) concentrations, and breeding season distribution of 

Leach’s Storm-Petrel (Oceanodroma leucorhoa) and Fork-Tailed Storm-Petrel ((). 

furcata) in the N orth Pacific. This work represents the first attempt to model DMS 

concentrations on a global scale using ecological niche modeling, and the first models of 

Storm-Petrel distribution for the North Pacific. Storm-Petrels have been shown to be 

attracted to DMS, and it is therefore likely that a model o f sea surface DMS 

concentration would help explain and predict Storm-Petrel distribution. We have 

successfully created the m ost accurate models o f sea surface DMS concentrations that 

we are currently aware o f  with global correlation (r) values greater than 0.45. We also 

created Storm-Petrel models with area under the receiver operating characteristic curve 

(AUC) values o f  greater than 0.90. Using just DMS as a predictor variable we were also 

able to create models with AUC values upwards o f 0.84. Future conservation efforts on 

pelagic seabird species may be dependent on models like the ones created here, and it is 

therefore im portant that these methods are improved upon to help seabird management 

on all scales (global, national, regional and local).
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The at-sea distribution o f  seabirds is a question im portant to scientists and 

managers. Studies have been performed correlating at-sea distributions o f seabirds to 

certain environmental factors, but very few examine multivariate models as a predictive 

tool for testing hypotheses [Elith et al., 2006; Raym ond and Woehler, 2003], 

Understanding and quantifying these distributions provides us with the ability to more 

accurately m onitor and manage species, and to forecast anthropogenic or climate impacts.

Storm-Petrels (Oceanodroma) are a Genus o f the family Hydrobatidae, o f the 

Order Procellariiformes, which are tube-nosed, colonial seabirds. It is theorized that this 

group o f  birds uses their large, tubed noses to find food far out at sea where there are 

little to no visual cues for foraging [Nevitt and Haberman, 2003], Dimethylsulfide (DMS) 

is a chemical that is released at the surface o f  the ocean, and is related to hotspots of 

primary productivity. Current models o f global DMS exist, but are in contest with one 

another with respect to overall accuracy [Bell et al., 2006; Belviso et al., 2004]. In order 

to better understand the chemical composition o f the oceanographic environment, a new 

model o f DMS distribution using the best available science is required. The release of 

this chemical into the atmosphere from the ocean could act as an olfactory foraging cue 

for Storm-Petrels when visual clues are lacking in the open ocean. It is possible that a 

distribution model using DMS as a predictor variable will accurately classify Storm- 

Petrel distribution in the N orth Pacific. The proposed models will be developed using a 

type o f regression tree modeling within a Geographical Information System (GIS) 

environment based on empirical data, in which no a priori assumptions are made

General introduction



concerning which variables influence the target variable, allowing us to try a wide variety 

o f predictors. The ultimate objective is the development o f a model that will allow 

accurate predictions o f  DMS distribution that can be used to investigate the role DMS has 

on Storm-Petrel distribution.

Based on previous successful uses o f the above modeling techniques [Craig and 

Huettmann, 2009; Elith et al., 2006; Huettmann and Diamond, 2001; Ohse et al., 2009; 

Yen et al., 2004], we can use algorithms that handle complex environmental interactions, 

enabling us to accurately model the spatial distribution o f  DMS, as well as the 

distribution o f  Storm-Petrels in the North Pacific. This would also allow us to capture the 

relationships between Storm-Petrels and DMS. These models can then be used for 

further analysis in determining effects o f long term (climate change) and short term (oil 

spills, disturbance by ship traffic, e tc ...)  factors which may alter the distribution o f many 

different species.

Storm-Petrels o f the North Pacific

Two species o f  Storm-Petrel breed in the North Pacific: Leach’s Storm-Petrel 

{Oceanodroma leucorhoa) and Fork-Tailed Storm-Petrel (Oceanodroma furcata).

During the breeding season in the North Pacific they occupy deep burrows that can 

extend down to a meter in depth [Boersma and Silva, 2001; Huntington et al., 1996].

Both species are nocturnal and possess relatively poor eyesight which may have selected 

for enhanced developm ent o f  other senses. These enhanced senses are important for inter 

and intra-species interactions. Both species leave their burrows at night to forage at sea 

for several days before returning to their colonies [Boersma et al., 1980; Malakoff, 1999;



Wilbur, 1969], Like other Procellariiforms, Storm-Petrels have large olfactory bulbs, 

possibly because a well-developed chemical (olfactory) sense allows these birds to find 

these foraging areas as well as to find their breeding islands [Grubb, 1979].

The distribution o f Fork-Tailed Storm-Petrels is limited to the Bering Sea, North 

Pacific and Sea o f  Okhotsk with breeding islands on all o f  the surrounding coasts.

W inter and summer distributions o f  Fork-Tailed Storm-Petrels are essentially identical 

with recorded sightings at the ice edge during the boreal winter months [Boersma and  

Silva, 2001; Onley and Scofield, 2007]. Leach’s Storm-Petrel have a more global 

distribution spreading from the Aleutian Islands and Sea o f  Okhotsk, southwards to 

central A merica in the Pacific Ocean, and from N orway to Brazil and W estern Africa in 

the Atlantic Ocean. There is not much information on their winter distribution, though it 

is suggested there may be a southward migration during these months with an increase in 

Leach’s Storm-Petrel sightings near Hawaii and W estern Africa in the boreal winter 

[Huntington et al., 1996; Onley and Scofield, 2007].

Dimethylsulfide

The Oceans are the primary influence on global climate and the mechanisms 

behind this link are poorly understood. DMS is a poorly studied biogenic compound that 

is the dominant source o f sulfur to the atmosphere from the ocean and may act as a bridge 

between biology, oceans and the climate [Andreae et al., 1985; Lovelock et al., 1972]. 

DMS is also known to play a role as an olfactory cue in seabirds [Nevitt and Bonadonna, 

2005] and even possibly in reef fish [DeBose et al., 2008], Currently it is believed that 

seabirds will “smell” DMS to locate foraging areas at sea as DMS is linked to areas o f



high productivity where macro plankton such as Euphausids may be located [Nevitt and  

Bonadonna, 2005]. DMS distribution has large implications for biological conservation 

management and species distribution modeling. We therefore need climatologies o f DMS 

that will account for all the complexities involved in DMS formation.

Ecological niche modeling

Using GIS to build models has become very popular in ecology, and it has been 

shown that spatial variation in species is very important in determining how organisms 

use their environm ent [Cushman, 2010]. Environmental Systems Research Institute’s 

(ESRI) ArcGIS is a widely used software package that can handle many o f the functions 

required to build spatial models. ArcGIS can deal with datasets o f a variety o f different 

formats, and combined with the open access software H aw th’s Tools 

(www.spatialecology.com ), allows for processing o f a large number o f datasets. This sort 

o f functionality means that users can overlay many predictor variables into a set o f 

georeferenced data points, which can then be converted easily for use in machine learning 

software such as TreeNet. ArcGIS also has the added attraction o f being easily 

programmed using the scripting language Python (www.python.org). Python can draw 

upon the statistical power o f  program R (www.r-project.org), and run programmable 

batch files, allowing for all geoprocessing and statistical analyses to be performed in one 

script. Such scripts allow for fast processing, and iterative testing o f program settings in 

order to optimize model output.

http://www.spatialecology.com
http://www.python.org
http://www.r-project.org


Data mining (TreeNet)

Boosted regression trees (also known as Stochastic Gradient Boosting [Friedman , 

2 0 0 2 a]) use an error m inim ization method to call upon an algorithm which creates a 

series o f  regression trees in an iterative fashion. Trees are created by boosting a classifier 

algorithm using a weighted subset o f  the training data. These trees have depths which are 

defined by the num ber o f  terminal nodes with the number o f  splits in the tree equaling the 

number o f term inal nodes minus one [Elith et al., 2008; Friedman, 2001; Friedman, 

2002a], Each split is computed based on the optimization (reduction) o f the tree building 

criterion (that is, the m inim ization o f  the weighted least squares criterion). The error o f 

each tree is estimated using v-fold cross validation, where the algorithm created by the 

tree is applied to the subset o f the training data not used to build the tree. A loss function 

is then fitted to the data, and a new tree is calculated based on the weighting o f the new 

subset [Friedman et al., 2000]. This methodology allows us to avoid over fitting, and 

boosts prediction power significantly [Breiman, 2001; Elith et al., 2006; Friedman, 

2002b]. TreeNet (Salford Systems, San Diego, CA) is a graphical user interface that can 

implement this algorithm in either a UNIX or W indows environment. This program 

allows users to generate command codes in order to create batch files for running 

multiple models. TreeNet is resistant to over-learning, which can be detected by 

examining the divergence (or convergence) between the M ean Squared Error o f the test 

and learning samples. Because o f  TreeNet’s ability to handle “m essy” data and large 

number o f predictor variables, it has become increasingly popular with ecologists in order 

to predict species distributions [Craig and Huettmann, 2009; Elith et al., 2008; Ohse et



al., 2009], I therefore chose to use a TreeNet which does not require a priori 

assumptions about controllers in a system, allowing us to handle the non-linearity o f 

ecological data [Breim an, 2001; Elith et al., 2008].

Study goals

The development o f  a global DMS model that will be available for public use will 

establish a DMS dataset that will allow DMS to be included in a variety o f  spatial 

analyses, up to and including global circulation models. Such a model may also be used 

to help develop species distribution models (e.g. by being linked to prey such as 

Euphausids). The development o f  a distribution model o f  Fork-Tailed and Leach’s 

Storm-Petrel will help in conservation management o f both species. It is hypothesized 

that DMS will play an important role in determining the distribution o f  both Storm-Petrel 

species. The goals o f  this thesis are to: (1) create a series o f monthly DMS models using 

open access datasets, and to make some inferences on controlling factors in DMS 

production, and (2) to create models o f  Fork-Tailed and Leach’s Storm-Petrel distribution 

in the North Pacific, and assess a possible link between Storm-Petrels and DMS.



References

Andreae, M. O., et al. (1985), Dimethyl Sulfide in the M arine Atmosphere, Journal o f  

Geophysical Research-Atmospheres, 90(D1), 2891-2900.

Bell, T. G., et al. (2006), A Comparison o f dimethyl sulphide (DMS) data from the

Atlantic M eridional Transect (AMT) programme with proposed algorithms for 

global surface DMS concentrations, Deep-Sea Research II, 53, 1720-1735.

Belviso, S., et al. (2004), Comparison o f  global climatological maps o f  sea surface 

dimethyl sulfide, Global Biogeochemical Cycles, 18(3).

Boersma, P. D., et al. (1980), The Breeding Biology o f  the Fork-Tailed Storm-Petrel 

(Oceanodroma furcata), The Auk, 91’, 268-282.

Boersma, P. D., and M. C. Silva (2001), Fork-tailed Storm-Petrel (Oceanodroma

furca ta ), in The Birds o f  North America, No. 569, edited by A. P. a. F. Gill, The 

Academy o f Natural Sciences, Philidelphia, PA.

Breiman, L. (2001), Statistical Modeling: The Two Cultures, Statistical Science, 16(3), 

199-231.

Craig, E., and F. Huettmann (2009), Using "Blackbox" Algorithms such as TreeNet and 

Random Forests for Data-M ining and for Finding Meaningful Patterns, 

Relationships, and Outliers in Complex Ecological Data: An Overview, an 

Example Using Golden Eagle Satellite Data and an Outlook for a Promising 

Future, in Intelligent Data Analysis: Developping new M ethodologies Through 

Pattern D iscovery and  Recovery, edited by H.-F. Wang, Idea Group Inc, Hershey, 

PA, USA.

7



Cushman, S. A. (2010), Space and Time in Ecology: Noise or Fundamental Driver?, in 

Spatial Complexity, Informatics, and Wildlife Conservation, edited by S. A. 

Cushman and F. Huettmann, Springer, New York, N ew York.

DeBose, J. L., et al. (2008), Dimethylsulfoniopropionate as a foraging cue for reef fishes, 

Science, 319(5868), 1356-1356.

Elith, J., et al. (2006), Novel methods improve prediction o f species' distributions from 

occurance data, Ecography, 29, 129-151.

Elith, J., et al. (2008), A working guide to boosted regression trees, Journal o f  Animal 

Ecology, 77, 802-813.

Friedman, J., et al. (2000), Additive Logistic Regression: A statistical view o f boosting, 

The Annals o f  Statistics, 28(2), 337-407.

Friedman, J. H. (2001), Greedy Function Approximation: A Gradient Boosting Machine, 

The Annals o f  Statistics, 29(5), 1189-1232.

Friedman, J. H. (2002a), Stochastic gradient boosting, Computational Statistics & Data 

Analysis, 38(4), 367-378.

Friedman, J. H. (2002b), Stochastic gradient boosting, Computational Statistics & Data 

Analysis, 38, 367-378.

Grubb, T. C. (1979), Olfactory guidance o f  Leach’s Storm Petrel to the breeding island, 

The Wilson Bulletin, 91( 1), 143-145.

Huettmann, F., and A. W. Diamond (2001), Seabird colony locations and environmental 

determination o f seabird distribution: a spatially explicit breeding seabird model 

for the N orthw est Atlantic, Ecological M odelling, 141, 261-298.



Huntington, C. E., et al. (1996), Leach's Storm Petrel (Oceanodroma leucorhoa), in The 

Birds o f  North America, No. 233, edited by A. P. a. F. Gill, The Academy o f 

Natural Sciences, Philadelphia, PA.

Lovelock, J. E., et al. (1972), Atmospheric dimethylsulfide and the natural sulfur cycle, 

Nature, 237, 452-453.

Malakoff, D. (1999), Olfaction: Following the Scent o f Avian Olfaction, Science, 

22(5440), 704-705.

Nevitt, G. A., and K. Haberman (2003), Behavioral attraction o f Leach's storm-petrels 

(Oceanodroma leucorhoa) to dimethyl sulfide., The Journal o f  Experimental 

Biology, 206, 1497-1501.

Nevitt, G. A., and F. Bonadonna (2005), Seeing the world through the nose o f a bird: new 

developments in the sensory ecology o f procellariiform seabirds, Marine Ecology- 

Progress Series, 287, 292-295.

Ohse, B., et al. (2009), M odeling the distribution o f white spruce (Picea glauca) for

Alaska with high accuracy: an open access role-model for predicting tree species 

in last remaining wilderness areas, Polar Biology, 32(12), 1717-1729.

Onley, D., and P. Scofield (2007), Albatrosses, Petrels & Shearwaters o f  the World, 

Princeton University Press, Princeton, New Jersey.

Raymond, B., and E. J. W oehler (2003), Predicting Seabirds at sea in the Southern Indian 

Ocean, M arine Ecology Progress Series, 263, 275-285.

Wilbur, H. M. (1969), The Breeding Biology o f Leach's Petrel Oceanodroma leucorhoa, 

The Auk, 86, 433-442.

I

9



Yen, P. P. W., et al. (2004), A large-scale model for the at-sea distribution and abundance 

o f M arbled M urrelets ( Brachyramphus marmoratus) during the breeding season 

in coastal British Colombia, Canada, Ecological M odelling, 171, 395-413.

10



Chapter 1. Predicting monthly surface seawater dim ethylsulfide (DMS) 

concentrations on a global scale using a machine learning algorithm (TreeNet)1 

Abstract: In order to deal with the complexities o f  DMS, a machine learning algorithm 

(TreeNet) was combined with the framework o f ArcGIS to make predictions o f DMS 

concentrations on a global scale. The core o f this method is an automated software code. 

Here we present monthly climatologies o f DMS concentrations based on 15 

environmental predictor variables downloaded from open access data sources, which is 

the first time DMS modeling has been based upon such a comprehensive set o f input data. 

We also present the first use o f  spatial modeling for determining DMS concentrations at 

sea using a m achine learning algorithm. Root M ean Squared Deviation (RMSD) and R 

squared values were used to determine model performance among a series o f random 

subsets o f data extracted from N O A A ’s Pacific M arine Ecological Laboratory (“Kettle”) 

DMS database. R  squared values, broken down by month, ranged from 0.21 to 0.69. 

Comparison with a global mean DMS climatology matched known hotspots. This 

research can act as a benchm ark for other oceanographic models to further improve our 

understanding o f global ocean systems and its predictions. The use o f transparent, open 

access concepts conforms to best practices held highly by national science organizations 

such as the International Council for Science, International Polar Year, National Science 

Foundation and the European Union. The open access concepts, tools and data layers 

shown here may also be used for further hypothesis testing, and objectively quantify

1 Humphries, G.R.W , F. Huettmann, C. Deal and D. Atkinson. 2010. Predicting monthly 
surface seawater dim ethylsulfide (DMS) concentrations on a global scale using a machine 
learning algorithm (TreeNet). Prepared for submission to Global Biogeochemical Cycles.



spatial distribution o f  ocean compounds, allowing for improved global understanding o f 

marine ecosystems and global sustainability.

Keywords: Dimethylsulfide, global, machine learning algorithms, TreeNet, GIS, Open 

access, model automation

1.1 Introduction

DMS is a marine biogenic compound that is the dominant source o f natural sulfur 

to the atmosphere [Andreae et al., 1985; Lovelock et al., 1972], The production o f DMS 

begins in the cells o f  marine phytoplankton as Dimethylsulfoniopropionate (DMSP) 

which is released into the ocean upon cell senescence/grazing and transferred to the 

atmosphere where it forms sulfate aerosols via oxidation [Charlson et al., 1987], Control 

o f the transfer o f  DMS into the atmosphere is a function o f wind speed at the surface o f 

the ocean, turbulence o f  ocean surface layers, gas diffusivity and seawater temperature 

[McGillis, 2000]. Once in the atmosphere, DMS oxidizes via reactions with OH and NO3 

radicals to form sulfur dioxide (SO2), sulfate (SO42') and methanesulfonic acid (MSA), 

which leads to the formation o f non sea salt sulfates (NSS-SO4 ' ) [Bardouki et al., 2003; 

Yin et al., 1990], NSS-SO 4 '2 are aerosols that are found in the marine atmosphere, and 

are hypothesized to be the primary source o f atmospheric sulfur that contribute to cloud 

formation [Andreae and Crutzen, 1997; Charlson et al., 1987]. Acting as cloud 

condensation nuclei, NSS-SO 4 '2 enhance cloud formation and increase cloud albedo, 

which reduces incoming solar radiation. Cloud albedo can theoretically act as a brake on 

positive feedbacks that accelerate warming, such as the “ice-albedo” feedback [Charlson 

et al., 1987]. Full details o f the impact o f DMS on the atmospheric radiation budget are



not yet well understood [Charlson et al., 1987; Watson andLiss, 1998]. The effect o f 

DMS on the radiation budget could link the atmosphere and its operation to those factors 

affecting marine biological productivity and relative abundance o f phytoplankton [Bopp 

et al., 2003; Leek et al., 1990; Malin and Kirst, 1997]. The formation o f cloud condensing 

nuclei is also important when examining the earth’s annual rainfall budget because 

increases or decreases in these aerosols have been shown to have a strong effect on 

precipitation from clouds [Nriagu et al., 1987]. The effect o f human activity on global 

DMS concentrations could in turn alter trends in precipitation [Nriagu et al., 1987; 

Rosenfeld et al., 2008].

1.1.1 Current DM S models

Belviso et al. [2004] assessed a series o f  proposed DMS climatologies [Anderson 

et al., 2001; Aum ont et al., 2002; Belviso et al., 2004; Chu et al., 2003; Kettle et al., 1999; 

Kettle and Andreae, 2000; Simo and Dachs, 2002] and found that current DMS models 

were inaccurate and spatially variable. Aum ont et al. [2002] was found to be best for the 

Atlantic Ocean, whereas Simo and Dachs [2002] and Chu et al. [2003] were better suited 

for the equatorial Pacific. It was found that none o f  the previously mentioned models 

could achieve global r2 values greater than 0.06. M ost o f these models were calculated 

using strictly linear or deterministic techniques, and none have yet examined a truly 

multivariate or spatial approach that could better apply across the globe.



1.1.2 Spatial m odeling with machine learning algorithms

Spatial m odeling has been used widely in marine ecology to examine the 

relationships o f environm ental variables on the distribution o f different species [Elith et 

al., 2006; H uettmann and Diamond, 2001]. This type o f  digital science goes hand in 

hand with traditional in situ  work via ground-truthing and data collection. Using 

presence-only data com bined with novel methods o f modeling such as boosted regression 

trees and M ultivariate Adaptive Regression Splines (MARS), it is possible to improve 

model accuracy over methods such as linear, generalized additive models or general 

linear models [Elith et ah, 2006]. TreeNet by Salford Systems draws upon regression 

trees to create a series o f  predictions using stochastic gradient boosting [Craig and  

Huettmann, 2009; Friedman, 2002]. This method also uses a type o f optimized error 

testing called v-fold cross validation in order to prevent over-fitting o f the model 

[Friedman, 2002], This means that one can use a large number o f  predictor variables to 

describe the patterns and processes in the system without having to make any a priori 

assumptions about potential importance o f predictors [Breiman, 2001; Craig and  

Huettmann, 2009; Hochachka et ah, 2007], This approach is a fresh and powerful way of 

obtaining good DMS predictions that are spatially and temporally explicit, and is a 

method that currently sees little use in oceanography.

1.1.3 Open access data

Open, free access to high quality datasets is essential to assure the repeatability 

o f methodology and also encourages improvement o f  current analysis techniques, 

development o f  theoretical knowledge, and offers some protection against the faulty use
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o f data [Fienberg et al., 1985]. We followed the Open Access policy, promoted by a 

variety o f  different organizations (International Polar Year (IPY), International Council 

for Science (ICSU), and National Science Foundation (NSF)) because the policy is 

becoming a best professional practice and a requirement for publication and funding 

[Ohse et al., 2009].

1.1.4 Study goal

The objective o f  this study is to develop spatial patterns o f  monthly DMS 

concentration for the globe using recently available, online access data sources as applied 

to a novel, non-linear regression tree algorithm found in the software package, TreeNet. 

This study employs TreeNet to develop spatial patterns o f DMS by relating observational 

DMS data to environm ental predictor layers. The DMS data were obtained from the open 

access, online dataset available at the Pacific Marine Environmental Laboratory (PMEL) 

database [Kettle et al., 1999]. Environmental predictor data sets (e.g. solar radiation 

dose) were selected for inclusion on the basis o f current understanding o f  DMS 

formation/destruction processes. Uniform spatial overlays were developed from all input 

data sets (fields) (Table 1). These data fields were used to create monthly climatologies 

o f  DMS on a global scale based on the trained TreeNet algorithm. The output from 

TreeNet allowed us to make inferences on the controlling factors o f  DMS 

production/destruction and their interactions with DMS. The analysis tested the 

hypotheses that each variable plays a significant role in predicting DMS concentrations.



1.2 Methods

DMS measurements were obtained from the PM EL DMS database [Kettle et al., 

1999]. This database consists o f  approximately 40,500 mixed layer DMS measurements 

taken around the globe from 1972 to the present. Random subsets were extracted to form 

the training data by which the models were constructed. Data were filtered by month and 

projected to W orld Geodetic System (WGS) 1984.

Many observations in the DMS database were taken at the same location at 

different depths (down to a maximum o f 20 meters). Only the records for the shallowest 

depths were used when multiple records were available at one location. DMS values 

greater than 1 OOnM were also filtered out to account for extremely unusual values of 

DMS measured during algal blooms [Simo and Dachs, 2002]. Appendix B shows the 

filtered number o f measurements for each month, as well as the number o f  data points 

used for training the algorithm and assessing the final outputs for each series o f model 

runs.

Random subsets consisting o f 20, 60, 70 and 90% (Models 1, 2, 3 and 4 

respectively) o f  the total available data were removed from the PM EL database, which 

left the remaining 80, 40, 30 and 10% o f the data for external assessment o f the models. 

The random subsets were removed using the subset function with no replacement (to 

avoid pseudo-replication), a function in the R language. Using the freely available 

H aw th’s Tools for ArcGIS 9.x (http://www.spatialecology.com/htools/), spatial overlays 

o f the datasets were perform ed by extracting the values o f each environmental predictor
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layer to the same shape file containing the data subset. This resulted in the creation o f a 

comma separated values file with DMS as a response variable, and all the various 

environmental layers as predictors. All data, including the DMS measurements, were 

continuous variables. Input data did not require statistical transformations because the 

non-parametric nature o f  TreeNet does not require pre-conditioning.

A list o f  the environmental predictors used to construct the model and their spatial 

resolutions are listed in Appendix A.

1.2.2 TreeNet algorithm

The com plexity o f  the ocean DMS cycle means that it is important to use an 

approach which does not require a priori assumptions about controllers in the system 

(boosted regression trees;[Breiman, 2001]). A regression algorithm creates a series o f 

error-minimized regression trees in an iterative fashion to explain the variance in a 

dataset. This methodology avoids over fitting o f  data, boosts prediction power 

significantly, and can handle “m essy” or missing data (via data imputation) [Craig and  

Huettmann, 2009; Elith et al., 2006; Friedman, 2002]. TreeNet by Salford Systems uses 

the boosted regression tree algorithm, and allows users to generate command codes in 

order to create batch files for running multiple models. TreeNet can also easily allow 

users to select different options and settings to perform objective tests on data sets.

Testing was performed to determine which settings yielded the best results by 

altering param eters such as the number o f trees and the number o f terminal nodes.

Testing focused on the m onths o f January, M arch and July which represented a low, 

medium and high num ber o f  data points. The number o f  terminal nodes was varied
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between 4 and 10 while keeping the number o f  trees constant at 500. The least squares 

error plots (created by cross validation testing) were examined, showing that in all cases, 

500 trees were not enough to reach the minimum possible error in predictions. The same 

tests were perform ed with the number o f trees set at 1000. W e found that 10 terminal 

nodes and 1000 trees, using the Huber-M  loss function [Huber, 1964] provided minimum 

prediction error in all cases.

1.2.3 Scoring and output maps

To create output maps o f the models, a regular grid o f empty data points was 

created over the surface o f  the ocean in ArcGIS 9.3 on a scale o f  1 ° x 1 °, to match the 

scale o f the predictors that were used. Values for the environmental predictor variables 

were then calculated at the empty point locations via a spatial overlay in H awth’s Tools. 

We applied these data to the TreeNet algorithm that was trained in the previous steps 

(“scoring”), creating a regular grid o f DMS predictions. Using the inverse distance 

weighted (IDW ) interpolation tool in ArcGIS 9.3, the regular grid o f  predictions was 

smoothed across the surface o f the ocean, creating output maps that could then be 

assessed using independent point measurements from the subset o f data not used in the 

training process. In a similar manner a map o f global average DMS concentrations was 

created. All o f  the maps were created with metadata in agreement with Federal 

Geographic Data Comm ittee (FGDC) standards and are available for public access from 

the author.
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Model assessm ent was performed by way o f  a “hold out test”, independent from 

the testing that is perform ed in the TreeNet software package. A spatial overlay o f each 

model output was performed with the random subset o f data not used to build the model, 

giving columns o f  predicted vs. observed values. To determine model performance, Root

■y
M ean Squared Deviation (RM SD) and R values were calculated. RM SD is a metric that 

is used to show how well the model predicts the observed values based on a 1 :1  slope 

drawn from the origin. RM SD is found to be one o f the most effective methods for 

conducting an aggregate comparison o f  observed to predicted values on a continuous 

scale [Pineiro et al., 2008] over an entire domain o f interest.

1.3 Results

1.3.1 Ranking models

M odels were ranked using RMSD scores. Subsets o f model #4 contained the 

lowest single run RM SD for all months (except June and September) ranging from 1.24 

in October to 19.999 in May. Subsets o f model #3 contained the lowest single run RMSD 

values for June and September and were 15.44 and 2.353 respectively (Table 1.1). R 

squared values ranged from 0.2146 to 0.6935.

Average RM SD values for each month decreased slightly as we increased the size 

o f  the subset used to build the model (except for June and July) (Table 1.2). The highest 

RMSD values were found in May and June. Average RM SD remained relatively robust 

between m odels 1 through 4, which indicated that accuracy does not improve greatly by 

adding more m easurem ents to build the model (Figure 1.1).
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1.3.2 Predictor variable importance

The relative contributions o f the various predictor variables for models with the 

lowest RM SD values, as determined by TreeNet, are listed in Table 1.3. Solar radiation 

dose (SRD) provided the highest contribution o f any predictor variable with an average 

relative importance across months o f 71.92. This was followed by phosphates and 

salinity (70.10 and 62.15 respectively). Euclidean distances to shore, standard deviation 

o f  sea surface tem perature and mixed layer depth had a relatively minor contribution 

throughout all m odels (40.32, 44.25, and 47.45 respectively).

The partial dependence plots o f  SRD indicated that concentrations o f DMS varied 

directly with SRD values (i.e. high SRD means high DMS). This data trend was also 

apparent with phosphates. The partial dependence plots o f salinity did not follow an 

obvious pattern though certain months (i.e. February, March, July, October and 

November) suggest a range o f  salinities that were associated with high DMS 

concentrations (Figure 1.2)

1.3.3 Maps

M onthly maps predicted low concentrations o f  DMS in the open ocean gyres in 

all months. High concentrations o f DMS in January were mostly located in the southern 

latitudes, with the highest values around the Antarctic. In February, relative high 

concentrations o f  DMS were found further north to mid-southern latitudes, which then 

decreased into M arch and April. May, June and July months showed an overall global 

increase in DMS concentrations, with hot spots o f  high DMS concentrations (>14 nM) in 

the northern latitudes, particularly in the Bering Sea, Labrador Sea, and Greenland Sea.
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August, September and October showed decreases in global DMS concentrations with 

patchy hot spots ranging from 4 - 6  nM. In November and December, the model output 

predicted global increases in DMS which peaked with concentrations o f about 1 2 - 1 6  

nM (Figure 1.3).

An annual mean climatology o f DMS shows areas with high concentrations (> 

7nM) o f DMS in equatorial upwelling regions, the Bering Sea, Grand Banks, west coast 

o f Africa, west coast o f Peru, G ulf o f Alaska, Greenland Sea, the Falkland Islands, and 

the Southern Ocean. Open ocean gyres show average annual concentrations o f DMS 

between 1.43 to approxim ately 2.5 nM  (Figure 1.4).

The latitude time plot o f  sea surface DMS concentrations as created using the 

National Center for Atmospheric Research command language (NCL) (Figure 1.5) shows 

averaged concentrations o f DMS for each month, by latitude. Average DMS 

concentrations are highest in the summer time in the northern and southern latitudes (5 -  

7 nM), whereas the mid-range latitudes never increased above 4nM. This seems to show 

a lag o f  DMS production after the spring phytoplankton bloom where DMS 

concentrations increase after the peak productivity begins to decline.

1.4 Discussion

This study has developed for the first time, a spatial model o f  DMS on a global 

scale using m achine learning algorithms. Our goals were to create a series o f 

environmental layers that could be used openly and freely by the general public, to make 

inferences on im portant controlling processes in DMS production based on output from 

TreeNet, and to quantify how well the model results match observations.



1.4.1 Towards a Spatial Ecology o f DMS

W ithin the GIS framework, there are many considerations that must be made 

when perform ing a spatial analysis. One o f the first and m ost important issues is that of 

scale [Huettmann and Diamond, 2006]. The choice o f  scale is based on several factors 

including com putational power available, input data available and the complexity o f the 

system one wishes to examine. DMS is a globally relevant compound, playing roles in 

cloud formation [Ayers and Cainey, 2007; Charlson et al., 1987; Johnson and Bell, 2008] 

and animal attraction [Cunningham et al., 2008; DeBose et al., 2008; Nevitt and  

Bonadonna, 2005]. This fact, combined with open access to global climatologies o f 

predictor variables, and the access to fast and publicly available computing methods, led 

to the decision to model DMS distribution at a global scale. Another important issue to 

discuss is the choice o f  grain size (resolution). Resolution is important in determining the 

outcome o f  many spatial models in some ways, due to the possibility o f autocorrelation. 

That is, if  resolution is too coarse, pseudo-replication o f data can occur in the process o f 

the overlays, leading to results with no relevant ecological meaning. If  the resolution is 

too fine, it is likely that point measurement errors (due to projection or GPS error) will 

cause an association with false environmental variables [Guisan et al., 2007], The ideal 

situation is for environm ental layers o f  infinitely fine resolution and point data with 

perfect GPS locations, but this is a situation unlikely when dealing with real data. It is 

also important to note that climatologies o f  infinitely fine resolution in space and time are 

not yet available, and the common resolution used in ocean climatologies tends to be 

approximately 1° by 1°, and therefore limits the predictions o f the DMS model.
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Though this model does not allow per se for mechanistic descriptions o f how 

DMS is controlled in the ocean surface, it does allow us to test and examine (via partial 

dependence plots) possible inferences o f the “oceanographic niche” (the specific 

oceanographic conditions in which DMS is produced). In deterministic models, it is 

often that variables are chosen a priori with a focus on the m ost parsimonious model, 

whereas with m achine learning algorithms (such as TreeNet), the opposite approach is 

taken, where an algorithm  is used to determine the relationships between predictors and 

response variables [Craig and  Huettmann, 2009; Elith et a l ,  2008], The mechanisms o f 

DMS formation are still uncertain [Steinke et al., 2006; Vallina and Simo, 2007], and in 

fact, as suggested by these results, are not necessarily consistent (i.e. they change from 

month to month). Therefore it is advantageous to use methods that do not require prior 

assumptions to make predictions on DMS concentrations.

The results show that SRD, phosphates and salinity play important roles in 

determining concentrations o f DMS. SRD was found to be positively correlated to DMS 

concentrations because high ultra-violet radiation inhibits DMS consumption and induces 

oxidative stress (DMS release) in phytoplankton [Vallina and Simo, 2007]. The partial 

dependence plots o f  SRD show that in general when SRD values are low, DMS 

concentrations are also low, thereby supporting the hypothesized link between SRD and 

DMS. Phosphates have been found to be linked to Synechococcus blooms, where good 

correlation existed between DM SP concentrations and number o f  cells [Wilson et al., 

1998]. Our results support this as well as our partial dependence plots for phosphate that
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show that low DMS concentrations and low phosphate concentrations are correlated.

Low salinity shock was suggested to affect DMS concentrations by increasing algal DMS 

contribution, and decreasing bacterial DMSP consumption [Niki et a l ,  2007]. Our partial 

dependence plots for salinity seem to suggest a range o f  salinity in which DMS 

concentrations are highest. One notable feature is that neither average chlorophyll a or 

mixed layer depth were considered important predictor variables overall, contrary to a 

model suggested by Simo and Dachs [2002], The SeaWIFS satellite can detect color 

changes in the surface o f the ocean, which allows for an approxim ation o f chlorophyll a 

concentrations. This satellite cannot distinguish chlorophyll a concentrations when 

turbidity in the ocean also produces color. This could possibly explain why chlorophyll a 

is not a strong predictor o f  DMS concentrations. SeaWIFS also has a limited range o f 

coverage at any one time o f  the year. Though we dealt with this via TreeNet’s ability to 

handle m issing data via imputation, it is possible that the model has not accurately 

captured the relationship o f chlorophyll a to DMS.

1.4.3 M odel optim ization

Performance o f  the output model is strongly affected by the settings used. 

Therefore for optimal model performance it is advantageous to run through all the 

different settings until the best model is determined. A full battery o f  tests on model 

settings were not perform ed in this case due to the high accuracy achieved. It would be o f 

use in the future, with high performance computing capabilities, to fully automate 

batteries o f tests in an effort to determine “the best” model settings.
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Running models w ith different subsets o f the data allowed us to determine the 

stability o f  the model by examining how model performance (RMSD) changed. This also 

highlights the minimum requirements for DMS observations at sea, feeding directly into 

possible future science or monitoring missions. It is also important to examine how 

RMSD changes when using random subsets o f the different models to examine variability 

that may occur due to outliers in the evaluation data where in some cases evaluation data 

may contain more outliers than others. Figure 2 showed that average RM SD did not 

change substantially between different model runs. This was an exercise in the ability of 

TreeNet to remain robust even when the amount o f  data used to build a model was varied. 

This also spoke to the relative robustness o f the natural relationships that define DMS 

production (i.e. the “oceanographic niche” o f DMS).

The average RM SD within months seemed to remain relatively stable between all 

model runs, but it varied from month to month in general ranging from 1 .39 in October to

28.01 in May. This sort o f  variation in RMSD was most likely due to the impact of 

unusually high measurements. The month o f  May contained a large number o f high 

concentrations on the order o f ~ 80 -  100 nM. W hen running a TreeNet model, iterative 

trees are boosted, that is, error is minimized between each tree by applying a loss function 

which down-weights outliers. This weighting causes the model to predict at a scale that 

eliminates such outliers. W hen performing a spatial overlay for the final model 

assessment, unusually high concentrations o f DMS from the held out subset are still 

included, and are therefore overlaid on areas that were down-weighted by TreeNet.

25



The best single runs were found to be in model 4 in 10 o f  12 cases, which, when 

compared to the stability o f the mean RMSD values, indicates more variability in model 

4. This variability is m ost likely due to the smaller subset o f data (10%) used to evaluate 

this model. W ith such a small subset o f data being taken randomly at every run, it is 

likely that the variability between each subset is high, leading to variability in the 

assessments. The best model runs most probably occur in this model because 90% of the 

data are being used to train TreeNet.

It is also o f  interest to examine r2 values for best model runs to compare to other 

models that have been evaluated in the past. The r2 values for our models range from 

0.21 to 0.69. Currently, all climatologies o f DMS concentration relative to the Kettle 

database have r values less than 0.06. These comparisons were made to annual, global 

climatologies which can be difficult to assess when using discrete samples taken from 

monthly measurements. Comparing discrete measurements to annual climatologies may 

not accurately capture model performance as there is much seasonal variability in DMS 

that is not captured by such an analysis. To better examine overall accuracy, it is 

beneficial to exam ine m onthly model performance to capture the seasonal variability in 

the data.

1.4.4 Seasonal variability

M onthly m odels were output in this case to examine monthly changes in DMS 

concentrations, and to examine if  strong relationships between certain environmental 

predictor variables and DMS existed and remained through all months. This could allow
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for a more thorough exam ination o f mechanisms that control DMS concentrations on a 

global scale.

January shows high concentrations o f DMS in the southern hemisphere with the 

highest concentrations existing along the Antarctic coast. Antarctic sea ice contains large 

and variable concentrations o f  DMSP. It is thought that the release o f  DMSP from the sea 

ice in the summer months (in this case, the austral summer), account for elevated 

concentrations in the ocean [Curran et al., 1998; DiTullio et al., 1998; Trevena and  

Jones, 2006]. It is interesting to note that though sea ice was not an environmental layer 

included in this model, high DMS concentrations were picked up in the Antarctic, where 

sea ice algae that contain high intracellular DMSP concentrations are found [DiTullio et 

al., 1998]. The model for February has high DMS concentrations further north than in 

January, associated with the movement o f solar activity (i.e. SRD), thought to be one 

controlling factor in DMS production [Vallina and Simo, 2007]. March and April months 

have overall lower DMS concentrations than any o f  the surrounding months, which may 

be associated with the summer paradox that was described in the Sargasso Sea, where 

higher concentrations o f  DMS are noted in the summertime, after the spring 

phytoplankton bloom  [Toole et al., 2003]. This could indicate that during the bloom 

seasons (Spring, Fall), DMS production is slowed on a global scale, perhaps through 

some chemical or physical forcing based on photolysis rates or perhaps due to 

sequestration o f  DM SP in phytoplankton in the spring. It is possible that due to a lag in 

the dynamics o f phytoplankton and the organisms that prey upon them, DMS 

concentrations do not begin to peak until after the blooms, when DMSP has been released



into the oceans and then converted into DMS. This explanation seems to be supported 

by elevated concentrations o f  DMS in May, June and July in the output. May, June and 

July are also characterized by high concentrations o f DMS in northern high-latitudes 

which persist through August. September, October and Novem ber once again show low 

DMS concentrations again possibly corresponding to the spring/fall bloom, followed by 

increases in DMS concentrations in December.

The latitude time series plot (Figure 1.5) shows monthly, global (by latitude) 

averages o f  DMS concentrations. This plot matches the northern hemisphere o f other 

similar figures that have been created to illustrate seasonal variability in DMS [Anderson 

et al., 2001; Belviso et al., 2004; Kettle andAndreae, 2000; Simo andD achs, 2002], In all 

cases, there is an increase in DMS concentrations in the northern hemisphere during the 

boreal summer months relative to spring (>10 nM). Our model shows an increase in 

DMS during the austral summer months relative to the austral spring, which is only 

mirrored by the DMS database [Kettle and Andreae, 2000]. This indicates that our model 

matches the database better than other DMS climatologies.

Two aspects o f  the latitude time series plot that are not reflected in other models 

are high concentrations o f  DMS in both hemispheres during their respective winter 

months. The m echanism s behind such peaks in DMS concentration require further 

investigation. It is possible that these patterns are due to blooms during the autumn 

months, where DMS production lags until the following season when phytoplankton 

begin to senesce.
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Concentrations o f  DMS in both polar regions are high (> 7nM) when examining 

the global annual climatology (Figure 4). Sea ice algae contain high concentrations of 

DMSP [DiTullio et al., 1998] and even though sea ice was not included as a predictor 

variable, our model still reflects higher concentrations o f  DMS in polar regions.

1.4.5 Considerations

One o f  the major limitations o f this study concerns the spatial distribution o f the 

data from the “Kettle” database. In any type o f  data sampling, it is best to draw a random 

training sample from a parent distribution that is spatially uniform across the entire area 

o f  interest, but as DMS measurements in the Kettle database are from ships o f  

opportunity, this analysis suffers from an irregular spatial distribution o f measurements. 

Boreal summer months (May, June, and July) are heavily sampled in the northern seas 

(North Sea, Bering Sea, e tc ...)  due to increased accessibility and better weather 

conditions. A similar pattern is found in the Austral summer (December, Jan, Feb), 

where the southern seas (Ross Sea, Weddell Sea, e tc ...)  are highly sampled. Sample 

distribution drives the predictions o f the model because the model is being trained based 

on param eters that are found only in those sampling areas that favor particular times of 

year. In other words, if  the systems that control DMS are different from one region to 

another, we are over-generalizing due to the spatial bias in the data. The model also 

suffers from any errors that might be associated w ith the predictor variables, and any 

errors associated with DMS concentration measurements.

Due to the difficulty and cost o f  getting DMS measurements at sea and processing 

samples, and lack o f  awareness and coordination, it is unlikely that a perfect sampling



distribution will ever be achieved in the near future, and any studies or models will suffer 

from this bias. Consequently, the models over-generalize when predictions are made at 

global scales. Using a minim um  number o f sample points based on studies like ours, it 

may be possible to increase the effectiveness o f expensive at-sea cruises. Faster and more 

accurate methods o f  m easuring DMS concentration in water are being developed. 

Currently, a low-cost chemical ionization mass spectrometer has been produced for use in 

continuous m easurements o f  DMS in seawater [Saltzman et al., 2009]. Using such 

technologies placed aboard a plethora o f  different ships will increase sampling 

distributions, and in time, DMS predictions generated by models such as this will 

continue to improve.

It is also o f  im portance to note that only 15 environmental predictor variables 

were used in this model to determine spatial distribution o f  DMS. It is likely that not all 

the factors involved in DMS formation were captured. Two main avenues for model 

improvement are: inclusion o f more predictor variables and development o f a three­

dimensional modeling approach to more explicitly account for the depth aspect. Other 

model refinements could come via improvements in predictor variables (e.g. via satellite 

improvement). It would be o f further benefit to perform a battery o f tests by altering 

settings and rem oving certain predictor variables iteratively to determine the best settings 

for a model o f  this type.

1.5 Conclusions

DMS in many ways acts as a bridge between biology, oceanography and 

climatology. DMS, as released from phytoplankton, may act as a foraging cue for many



seabirds [.Bonadonna et al., 2006; Cunningham et al., 2008; Nevitt and Bonadonna,

2005], may attract reef fishes [DeBose et al., 2008], and in fact, can trigger search 

behavior in copepods [Steinke et al., 2006]. DMS may also play a role in cloud 

formation, and therefore a role in global climate control [Charlson et al., 1987]. The 

effect o f DMS on the atmosphere may have implications in current climate scenarios 

where DMS has not been previously included.

These models have all been created using an open-access framework, allowing for 

full transparency, a concept currently adopted by organizations such as IPY, ICSU and 

NSF. Though TreeNet and ArcGIS do not offer freeware versions, there are various other 

alternatives that may be used to perform similar, adequate models. TreeNet versions are 

available for free trials, and ArcGIS follows OpenGIS Consortium formats. In addition, 

GRASS GIS is a free GIS program that can be run through program  R, and packages such 

as gbm and random Forests in R offer algorithms that can deal with datasets as complex as 

the set used in our study.

The models created here seem to perform better than any current DMS 

climatology, and can form the basis for new environmental layers that can be considered 

in other oceanographic or climatic studies (e.g. global climate models). The creation of 

metadata and free access o f  these models allows for full transparency o f science, and ease 

o f import into GIS software and modeling programs. Such methodologies and concepts 

will help to build collaborations across a variety o f  fields, and give us a better 

understanding o f  global systems and how they interlink.
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Figure 1.1: Plots o f  solar radiation dose, phosphates and salinity for all months. The x 

axis represents the unit value for each variable, and the y axis represents the partial 

dependence o f each variable on sea surface DMS concentrations
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Figure 1.2: A verage Root M ean Squared Deviation (RM SD) o f all months for Models 1 

through 4 (subsets o f  20, 60, 70 and 90% respectively)
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Figure 1.3: Monthly predictions o f  Dimethyisulfide concentrations (nM) created in 

ArcM ap 9.3, Geographic Coordinate System W GS_1984, from TreeNet predictions 

based on public DMS and predictor data. Areas in white around coasts are areas o f  no 

data due to poor resolution o f  underlying datasets. Data are available from the author in 

ESRI grid format.
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Figure 1.4: Global annual surface concentration o f  DMS as created via an averaging o f  

the best single run DMS models for each month. White regions around coastlines are 

areas o f  no data due to the coarseness o f  base predictor layers. Data are available from 

the author in ESRI grid format.
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Figure 1.5: Latitude time series plot o f  predicted sea surface concentration o f  DMS (nM)



Table 1.1: H ighest ranking RM SD and corresponding R values for each month. Models 

3 and 4 refer to training subsets o f  70 and 90% respectively. Letters a -  e refer to one of 

5 random permutations o f  each subset

44

Tables

Month RMSD R2 Model run

January 4.05 0.31 Model 4e

February 1.41 0.69 Model 4e

March 1.30 0.65 Model 4a

April 1.94 0.62 Model 4a

May 19.99 0.22 Model 4b

June 15.44 0.38 Model 3d

July 5.69 0.26 Model 4a

August 3.36 0.26 Model 4c

September 2.35 0.39 Model 3c

October 1.24 0.61 Model 4e

November 2.02 0.45 Model 4c

December 5.38 0.36 Model 4d



45

Table 1.2: Average RM SD o f 5 randomly drawn subset runs o f models 1 -  4

Month Model 1 Model 2 Model 3 Model 4

January 12.35 9.88 11.52 11.06

February 5.95 5.67 6.26 5.02

March 2.59 2.35 2.50 2.32

April 3.28 3.24 3.06 3.04

May 28.01 26.83 27.57 26.86

June 17.68 16.55 16.91 18.21

July 6.49 6.39 7.02 7.24

August 5.01 4.66 4.38 4.07

September 3.39 3.34 3.07 3.12

October 1.63 1.44 1.52 1.40

November 6.62 5.30 4.67 4.04

December 13.87 13.33 12.88 12.55
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Table 1.3: Relative importance o f  variables for models w ith lowest RMSD

Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Solar Radiation Dose 100 100 100 61 69 46 56 100 25 65 100 41

Phosphates 97 36 73 100 77 46 100 63 38 88 68 55

Salinity 52 56 91 57 59 24 94 58 100 50 56 49

Dissolve Oxygen 46 40 57 86 44 41 97 71 31 95 70 29

Apparent 0 2 Utilization 58 37 91 66 86 49 36 82 46 57 54 26

Avg Sea Surface Temp 88 34 79 73 71 36 42 71 27 67 56 35

Avg Chlorophyll a 33 44 53 98 100 53 62 67 34 34 38 36

Stdev Chlorophyll a 45 29 59 74 75 53 46 66 39 66 42 36

Silicates 65 35 59 44 55 36 48 45 24 70 46 100

Bathymetry 44 21 55 82 99 55 47 61 17 41 36 31

Human Impact 40 25 61 60 86 49 46 39 25 100 32 27

Nitrates 52 39 43 64 41 100 52 61 29 46 36 25

Mixed Layer Depth 55 28 53 56 53 43 46 48 27 99 33 27

Stdev Sea Surface Temp 42 32 39 32 77 46 69 65 26 38 31 34

Distance to Shore 57 23 38 46 30 19 31 80 20 53 46 43



Chapter 2. Predicted Distribution of Storm-Petrels (Oceanodroma) in the North 

Pacific using Geographic Information Systems (GIS), TreeNet and dimethylsulfide 

(DMS) concentrations 1

Abstract: Globally, scientists and managers still lack distribution models o f Storm- 

Petrels despite the availability o f large seabird databases (e.g. North Pacific Pelagic 

Seabird Database). We addressed this gap by using predictive modeling with machine 

learning software (TreeNet), and GIS to model storm-petrel distribution. Using a variety 

o f environmental predictor variables that included detailed, newly available climatologies 

o f  sea surface DMS concentrations, we were able to construct species distribution maps 

for Fork-Tailed Storm-Petrel (Oceanodroma furca ta ) and Leach’s Storm-Petrel (O. 

leucorhoa). W e assessed accuracy o f  the models with area under the receiver operating 

characteristic (ROC) curve (AUC) values as well as a comparison o f predicted 

distributions to presence-absence data from two opportunistic pelagic surveys performed 

in summer, 2008. M odels including all predictor variables gave AUC values between 0.8 

and 0.94, and including only DMS as a predictor gave models with AUC values between 

0.75 and 0.84. Exam ination o f the partial dependence plots led to the reinforcement o f a 

possible large-scale Storm-Petrel -  DMS link. Using DMS as a predictor variable for 

modeling still requires further research through additional ground truthing and model
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testing. The models presented here can be used as a scientific basis for management, and 

allow for a reduced im pact in important wildlife areas.

Keywords: Leach’s Storm-Petrel, Fork-Tailed Storm-Petrel, Dimethylsulfide, machine 

learning algorithms, GIS, Open access, North Pacific, Bering Sea, seabird, predictive, 

TreeNet, modeling

2.1 Introduction

Ecological niche m odeling has become a popular way o f  determining species 

distributions in terrestrial environments, and is important to conservation. The goal of 

ecological niche m odeling is to predict species occurrence based on georeferenced 

“presence” and “absence” points that correlate to some environmental features. One of 

the major advantages o f  this type o f modeling is that it enables the fast creation o f large- 

scale models (e.g. global or regional). Traditionally, generalized linear models (GLMs) 

and generalized additive models (GAMs) have been used to analyze and predict species 

distributions, but more recently, a variety o f  more sophisticated algorithms have been 

developed and applied (Elith et al. 2006, Elith et al. 2008, Craig & Huettmann 2009). 

M any o f  these algorithm s such as boosted regression trees or Random Forests “learn” the 

relationship between a target and many different predictor variables GLMs or GAMs 

require a priori assum ptions o f  a data model (Breiman 2001, Elith et al. 2006, Elith et al.

2008). W hen we take a statistical approach with no a priori assumptions regarding what 

may control the distribution o f  these species at sea, the modeling process gains a greater 

degree o f  flexibility. That is, we can perform a multi-hypothesis test on a variety o f 

predictor variables which define the region o f interest, and can from there make
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conclusions on the distribution o f these species. This method also allows us to make 

inferences on the relationship between Storm-Petrel distribution and the various predictor 

variables used.

The at-sea distribution o f pelagic seabirds is a difficult issue to address due to 

many unknowns with respect to the state o f the open oceans, and the habits o f these 

species at sea. Historical records o f Storm-Petrels in the Bering Sea date back to 1779 

during James C ook’s expeditions which documented Fork-Tailed Storm-Petrels being 

taken from the ice edge in the Bering Sea, with no confirmed Leach’s Storm-Petrel 

specimens (Stresemann 1948). During the mid 1900s, both species had been recorded at 

sea in high numbers east o f the Kuril Islands to the N ear Islands (Kuroda 1955). During 

the 1960s, recorded sightings o f Fork-Tailed (Oceanodroma furca ta ) and Leach’s Storm- 

Petrel (O. leucorhoa) at sea were limited to the central Pacific, Aleutian Islands, and the 

west coast o f N orth A merica (Crossin 1974). The NPPSD (Drew & Piatt 2005) contains 

survey data from  the 1970s to the early 2000s, and shows Fork-Tailed Storm-Petrel 

mostly distributed in the Bering Sea, the G ulf o f Alaska and south along the western 

North American coast, w ith some sightings o ff the coast o f Japan. The NPPSD shows 

Leach’s Storm-Petrel extending south of, or around, the A leutian islands, through the 

G ulf o f  Alaska, down the western coast o f  North America, and o ff the coast o f Japan. 

W inter distribution o f Fork-Tailed Storm-Petrel is essentially thought to be limited to its 

summer distribution in the N orth Pacific with recorded sightings on the ice edge during 

the winter time in the Bering Sea (Onley & Scofield 2007). Leach’s Storm-Petrel are 

thought to move further south during the winter months, with the majority o f sightings
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occurring around Hawaii and in the Eastern Pacific (Huntington et al. 1996, Onley & 

Scofield 2007).

Fork -  Tailed Storm-Petrel nest sympatrically with Leach’s Storm-Petrel during 

the breeding season in the N orth Pacific. Birds use deep burrows that can extend down to 

a meter in depth (H untington et al. 1996, Boersma & Silva 2001). As they are both 

nocturnal, w ith relatively poor eyesight, the development o f  other senses is important for 

inter and intra-species interactions. Both species leave their burrow s at night to forage at 

sea for several days before returning to their colonies (W ilbur 1969, Boersma et al. 1980, 

M alakoff 1999). Like other procellariiforms, these birds have large olfactory bulbs, 

possibly because a well-developed chemical (olfactory) sense allows these birds to find 

these foraging areas as well as to find their breeding islands (Grubb 1979).

DMS is a biogenic gas that is one o f the dominant sources o f sulfur to the 

atmosphere from the ocean (Lovelock et al. 1972, Andreae et al. 1985). DMS is 

produced in the cells o f marine phytoplankton, and is released into the ocean upon cell 

senescence or grazing. DMS is then transferred to the atmosphere where it begins to 

form sulfate aerosols via oxidation and becomes climatically active (Charlson et al.

1987). DMS is linked to areas o f  high productivity where m acroplankton (e.g. 

Euphausids) m ay be located (Andreae & Raemdonck 1983). Currently, it is believed that 

Procellariids will “sm ell” DMS to locate foraging areas at sea (N evitt et al. 1995, Nevitt 

& Bonadonna 2005). DMS has been shown to be a foraging cue for African penguins 

(Spheniscus demersus) (Cunningham et al. 2008), reef fishes (DeBose et al. 2008), and 

copepods (Steinke et al. 2006). Fork-Tailed Storm-Petrel and Leach’s Storm-Petrel feed
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on Euphausids (krill) and other planktonic organisms, so it is possible that Storm-Petrels 

may use DMS as an olfactory cue to find active foraging areas (Nevitt et al. 1995, Nevitt 

1999)

In this study, we used ecological niche modeling with the program TreeNet 

combined with GIS in order to determine the at-sea distribution o f Storm-petrels 

(iOceanodroma) in the North Pacific. We hypothesized that we could develop accurate 

models o f  Fork-Tailed and Leach’s Storm-Petrel using ecological niche modeling 

techniques, and that this would be facilitated by correlating Storm-Petrels and DMS 

concentrations.

2.2 Methods

2.2.1 Training data

Training data were accessed from the NPPSD and consisted o f  2803 presence and 

19144 absence records for Leach’s Storm-Petrel, and 6044 presence and 15354 absence 

records for Fork-Tailed Storm-Petrel. We only used data from large ship surveys in order 

to remain as consistent as possible with data collection methods. Data from the months 

o f May through August were used in the analysis to coincide with the breeding season 

when Storm-Petrels are numerous in the North Pacific. Training data could only be 

obtained for 1974 through 2002 in version 1 o f  the NPPSD, and were then projected in 

the WGS 1984 geoid. We organized presence only points by species (Leach’s Storm- 

Petrel and Fork-Tailed Storm-Petrel). The presence points were then paired with 

randomly generated pseudo-absence points (VanDerW al et al. 2009), and then with



confirmed absences points (Guisan & Zimmermann 2000) (from the NPPSD). This 

created four categories o f  training data that would be used to build the models.

2.2.2 Environm ental layers

Currently, there are several global models o f  DMS that exist with r values less 

than 0.25 (Belviso et al. 2004). For this reason, a new monthly climatology o f DMS was 

developed using spatial modeling techniques in chapter 1 o f  this thesis. The 

climatologies for May, June, July, and August (r = 0.46, 0.61, 0.51, 0.51 respectively) 

were averaged to create a summer climatology for use in prediction. DMS is thought to 

play an im portant role in many ecological processes (Nevitt & Bonadonna 2005, 

Bonadonna et al. 2006, Steinke et al. 2006, Stefels et al. 2007, Cunningham et al. 2008, 

DeBose et al. 2008), and it is therefore assumed that this predictor would be useful in 

spatial modeling situations, helping to further our understanding o f species distributions, 

and their interactions with the environment.

All environm ental layers were projected into WGS 1984, averaged for the months 

o f May through August and clipped to the study area (36 to 66 degrees latitude in the 

North Pacific). A list o f  sources for the environmental data layers used in the modeling 

process is available in A ppendix B.

2.2.3 M odel construction and assessment

TreeNet is a program that uses boosted regression trees to derive the relationships 

between a series o f  predictor variables and a target (response) variable. This algorithm 

does not require any a priori assumptions about the relationships in the data, and 

therefore allows for great flexibility in model creation (Breiman 2001). Another
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advantage o f  this tool is that over-fitting is avoided due to cross validation o f the data, 

which also boosts prediction power (Friedman 2002, Elith et al. 2006).

The six sets o f  training data were modeled with all o f  the environmental variables, 

all o f the environmental variables minus DMS, and then DMS alone. This design was 

established to facilitate a targeted assessment o f the potential role o f DMS as a predictor 

o f Storm-Petrel distribution. This was first done by using the informed default settings in 

TreeNet, which is found to be useful in getting fast, accurate results (Craig & Huettmann

2009). M odel settings were then tuned by iteratively increasing the number o f trees 

grown, the num ber o f  terminal nodes and the learn-rate. The best models were those with 

the largest AUC values (Fielding & Bell 1997). Model performance was evaluated by 

examining the AUC plots generated in TreeNet. These plots are calculated from a subset 

o f  the data which is a preferred way to examine the accuracy o f models generated by 

machine learning algorithm s (Bradley 1997, Hegel et al. 2009).

For an external assessment using data independent o f  the NPPSD, two 

opportunistic surveys were performed in summer, 2008 (July and August). One survey 

was performed aboard the T/S Oshoro-M aru in the N orth-Eastern Bering Sea. The 

second survey was perform ed aboard the M/V Tiglax between Homer, Alaska and Adak 

Island, Alaska. All data were collected using distance sampling methods (Thomas et al. 

2002) and processed (including metadata) in ArcGIS. These data are available for 

download from the author.
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Data processing was performed using ESRI’s ArcGIS version 9.3, and Microsoft 

Excel 2007. The spatial analyst toolset and an open access tool set (Hawth’s Tools) were 

used to perform spatial overlays. Python 2.5 was also used in some o f the process to 

automate conversion from raw data to final maps. M etadata were created in ArcCatalog 

9.3 using Federal Geospatial Data Committee (FGDC) standards 

(http ://www. fgdc. gov/ standards).

2.3 Results

2.3.1 M odel ranks

The optimal settings for models using only DMS as a predictor were 1000 trees, 

200 terminal nodes with a leam-rate o f  0.0001. These settings were also optimal for 2 of 

the 12 remaining models. Default settings with 1000 trees were found to be the optimal 

settings for the other 10 models created.

AUC was highest in model lb  for Leach’s Storm-Petrel using all predictors but 

DMS, and also Fork-Tailed Storm-Petrel using all predictor variables. AUC was lowest in 

model la  using only DMS as a predictor for both species. AUC scores were similar 

(<0.069) when pseudo versus confirmed absence points were used. AUC was not 

substantially different between models with all predictor variables and models using only 

DMS as a predictor, but dropped dramatically when DMS was not included. Altering 

default TreeNet settings did not substantially change AUC values, except for models 

using DMS only as a predictor where AUC increased to between 0.78 and 0.87 (Table 

2 .1).
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Percent o f  correctly classified presences (PCCP) was highest for Leach’s Storm- 

Petrel in model 2a when using all predictors but DMS. For Fork-Tailed Storm-Petrel, 

PCCP was highest for model lb  when using all predictor variables. For all models PCCP 

was similar, when using either all predictor variables or all predictor variables except 

DMS. Using DMS only, PCCP is low (43 to 59 %) for Fork-Tailed Storm-Petrel in 

model 1, and higher for model 2 (76 -  80%). For Leach’s Storm-Petrel, using DMS only, 

PCCP is highest in model 2a (Table 2.2).

2.3.2 Partial dependence plots

The partial dependence plots o f  presence o f  Fork-Tailed Storm-Petrel, and 

Leach’s Storm-Petrel on DMS are relatively similar (Figure 2.1). For DMS 

concentrations ranging from 0 to ~10 nM the plots are variable, showing no discernable 

pattern. After approxim ately lOnM, the partial dependence plots begin to show increases 

(Figure 2.1b, Figure 2 .Id) or a slow decline (Figure 2.1a, Figure 2.1c). In all cases, there 

is a sudden increase in the partial dependence plots after approxim ately 9 - 1 0  nM DMS 

representing a possible threshold value.

2.3.3 Distribution maps

Distribution maps for Fork-tailed and Leach’s storm-petrels were produced at a 

resolution o f  10km x 10km with an extent o f  36 to 66 degrees latitude and 140 to -122 

degrees longitude (Figure 2.2). The models show Fork-Tailed Storm-Petrel distribution 

extending m uch further north than that o f Leach’s Storm-Petrel. High relative index of 

occurrence (RIO) values for both species occurred along the Kuril islands, Aleutian 

archipelago, G ulf o f  A laska and west coast o f  Canada (0.60 to 0.99 for both species).



The Sea o f  Okhotsk and most o f the Bering Sea had lower RIO values for Leach’s Storm- 

Petrel than Fork-Tailed Storm-Petrel (0.10 to 0.40 for Leach’s Storm-Petrel, 0.30 to 0.60 

for Fork-Tailed Storm-Petrel), while Leach’s Storm-Petrel had higher RIO values 

between 36 and 45 degrees latitude.

2.3.4 Ground-truthing

Leach’s Storm-Petrel sightings during the summer o f 2008 were limited to only 

the M/V Tiglax, south o f  the Alaska Peninsula and occurred in areas where the model 

predicts high (> 0.80) RIO for this species. Surveys aboard the T/S Oshoro-maru were 

north o f  the A leutians in the Bering Sea over the Bering shelf, in areas where the model 

predicts low (<0.10) RIO. No Leach’s Storm-Petrel sightings were recorded west o f -164 

degrees longitude, in disagreement with high RIO values found in the model (Figure 

2.3A). This may be due to the fact that the ship was travelling relatively close to colonies 

where Storm-Petrels are not found during the day.

Fork-Tailed Storm-Petrel sightings occurred aboard both vessels and in regions 

where models predicted high (>0.80) RIO values. Leach’s and Fork-Tailed Storm-Petrel 

sightings south o f  the Alaska Peninsula overlapped greatly, occurring in the same transect 

lines. No Fork-Tailed Storm-Petrel sightings were recorded north o f  56 degrees latitude, 

coinciding with areas that were predicted to have low  RIO with the exception o f 3 

transects between 56 and 58 degrees latitude where high RIO was predicted (Figure 

2.3B).

W hen we compare the RIO values o f the predicted map to the confirmed presence 

or absence o f both species we see that confirmed presences are associated with high
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RIOs. For Leach’s Storm-Petrel, we show that high RIO values (-0 .80) are associated 

with confirmed presences, where low RIO values (~ 0.20) are associated with confirmed 

absences. We also show a similar trend for RIO values for Fork-Tailed Storm-Petrel with 

confirmed presences and confirmed absences being associated with RIO values o f -0 .60 

and -0 .45  respectively. There is heavy overlap between presence and absence o f Fork­

Tailed Storm-Petrel, and no overlap between presence and absence o f  Leach’s Storm- 

Petrel RIO values (Figure 2.4).

2.4 Discussion

In this study, we were able to create accurate distribution models for both Leach’s 

and Fork-Tailed Storm-Petrels in the North Pacific; furthermore, we were able to confirm 

a possible link between Storm-Petrels and DMS. By working in the framework o f GIS, 

we were also able to create distribution maps o f RIO for both species o f Storm-Petrel that 

are available from the author.

2.4.1 Spatial considerations

In the field o f  landscape ecology, one o f the top priorities for study is that o f scale, 

for the reason that many species-environment associations can change based on the scale 

chosen (Schneider & Piatt 1986, Huettmann & Diamond 2006). The scale refers to the 

grain size and extent o f  the data being used in the analysis. For this study, we chose the 

extent to be between 36 degrees and 66 degrees North latitude, comprising the northern 

halves o f the N orth Pacific Transition Zone Province and the Kuroshio Current Province, 

where 36 degrees lie between the Subtropical and Subarctic fronts, and 66 degrees is the 

Arctic circle (Longhurst 1998). The NPPSD was further clipped from this study extent
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due to the coarse nature o f some o f the data layers (i.e. DMS and Salinity), which led the 

final models to have an extent stretching only to 63 degrees north. Because the data were 

clipped to this extent, there is some possibility that biases might exist by excluding these 

presence or absence points by limiting predictor variables such as distance to shore. O f 

the 8021 presence points for Fork-Tailed Storm-Petrel, 6055 data points occurred within 

the extent o f  the analysis. M ost o f  the records not included in the analysis were in Prince 

W illiam Sound, Cook Inlet and in the Shelikof Strait. W ith approximately 75% o f the 

data still included in the analysis, it is likely the sample was still representative with no 

records from the Aleutians, or around Southeast A laska being excluded. O f the 3138 

presence points for Leach’s Storm-Petrel, only 5 records were not included in the 

analysis. Biases in the data may occur as well due to biased sampling (sampling one area 

multiple times, and not sampling some areas at all), or due to resolution o f the presented 

data.

The resolution o f  underlying datasets can also influence the extent o f 

autocorrelation in the data. A utocorrelation occurs when ecological processes may be 

expressed as a function o f  spatial location, or time between samples (e.g. how closely 

samples are correlated to one another) (Cushman 2009). Spatial autocorrelation in a 

species dataset (for example, how closely birds flock together in space), can influence 

apparent relationships between environmental variables, (Huettmann & Diamond 2006). 

Though we did not correct for spatial autocorrelation (e.g. by binning, as per Huettmann 

and Diamond (2006)), TreeNet has the ability to deal with “m essy” data and still produce 

accurate models (Friedm an 2002, Elith et al. 2008, Craig & Huettmann 2009). It is



therefore assumed that our models are still representative. To address potential temporal 

autocorrelation in this study, we used summer averages for all predictor variables with the 

exception o f the human impact layer, bathymetry, and distance to shore because they are 

static. Summer seabird observations from May, June, July, and August were also 

combined, and therefore our models do not take into account the possibility o f monthly 

shifts in distribution. It is possible that this could affect the outcome o f our analysis in 

that monthly (or possibly daily) shifts in predictors like DMS, may affect the location o f 

seabirds.

2.4.2 DMS as a predictor

We ran these models using only DMS specifically to investigate its potential as a 

predictor variable. Above 10 nM  o f DMS, the RIO o f Leach’s and Fork-Tailed Storm- 

Petrel stabilizes or begins to increase. This indicates that even with temporally broad 

scaled models, a relationship between DMS concentrations and Storm-Petrel distribution 

is evident. Accuracies o f  models using just DMS as a predictor variable were also 

boosted to approxim ately 0.80 to 0.87 (based on AUC) with correctly classified presences 

between 76 and 92%.

According to TreeNet, DMS was not an important predictor variable in models 

where all predictor variables were included (Appendix A). The Random Forest algorithm 

is known to depress variable importance o f  correlated variables (Gromping 2009), and 

due to its relatedness to the TreeNet algorithm w ith respect to both building regression 

trees, it is possible TreeNet also exhibits the same trait. The DMS model was created
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using all o f  the same predictor variables as used in this analysis; therefore, there may 

have been some effect in the algorithm pushing DMS to a lower importance.

Other possible sources o f  error could arise from the short lifetime o f DMS (Yang 

& Tsunogai 2005), or because the model being used does not possess a fine-enough 

temporal resolution for patterns to be detected. Moreover, though this DMS model is 

more accurate than any other DMS climatologies, it still requires more fine-tuning.

2.4.3 Ground-truthing

Through AUC values, we can get some perspective on how well the model 

predicts the data, but an independent dataset is usually required for testing true model 

accuracy. We were limited in this study by only having 2 opportunistic surveys for one 

summer. Based on the data collected during these surveys, it was found that the model 

performed well (i.e. no overlap in error bars o f  mean RIO between presence and absence) 

for prediction o f  occurrence o f Leach’s Storm-Petrel. The m ajority o f  the data were 

taken north o f the Aleutian Islands, where our models show Leach’s Storm-Petrel 

distributed south o f  the Aleutians, which also agrees with other accounts (Huntington et 

al. 1996, Onley & Scofield 2007). M ost o f the survey data were taken within the known 

distribution o f  Fork-Tailed Storm-Petrel (Boersma & Silva 2001, Onley & Scofield 

2007). M ean RIO for Fork-Tailed Storm-Petrel presences was higher than absences; 

however we found heavy overlap in the mean RIO values indicating that there were some 

areas o f  high RIO where we did not detect Fork-Tailed Storm-Petrel, and areas o f low 

RIO where we did. It is o f  importance here to note that simply because we were in areas 

o f  high RIO (based on the model), it does not guarantee a Storm-Petrel sighting (e.g. low
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detectability due to w eather or fatigue). As well, in areas with low RIO, it is still possible 

to sight birds. The model may also be suffering in some areas due to temporal or spatial 

errors, which may also be reason for the patterns in mean RIO for Fork-Tailed Storm- 

Petrel.

2.4.4 Im plications for Storm-Petrel management

Currently, both Leach’s and Fork-Tailed Storm-Petrel have a widespread and 

abundant population, numbering in the millions, and are therefore not considered 

threatened species (Huntington et al. 1996, Boersma & Silva 2001). The most significant 

threats to these birds include introduced mammalian predators in breeding colonies 

(Boersma & Groom 1993), ingestion o f plastics (Blight & Burger 1997), and collision 

with man-made structures (Bent 1922, Reed et al. 1985). Fragmentation o f the species 

distributions may also occur due to large-scale climate events. The models presented in 

this study allow for further examination o f how storm-petrels interact with areas o f heavy 

human influence or areas known for high plastic concentrations. I f  we focus on 

applications o f  these models, it may be possible to buffer these species’ populations 

against other, potentially more serious threats (e.g. climate change, shipping, and oil 

spills).

W ilson’s Storm-Petrel (Oceanites oceanicus) are affected negatively by 

environmental conditions, and their populations are related to food (krill) availability 

(Quillfeldt 2001). Food sources (e.g. krill) for Leach’s and Fork-Tailed Storm-Petrel may 

be heavily influenced by local or large-scale climatic events (Hays et al. 2005). Krill and 

copepods have been linked to DMS (Daly & DiTullio 1993, Steinke et al. 2006).
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Because DMS can be linked to climate (Charlson et al. 1987), it follows that we can 

predict future DMS patterns from future climate scenarios (e.g. IPCC). Due to the 

possible Storm-Petrel - prey - DMS link, it may become feasible to model future Storm- 

Petrel distribution based on these DMS patterns.

The presented models o f  Storm-Petrel distribution show a seascape that is fairly 

ubiquitous. In terrestrial environments, it is o f great interest to map and quantify 

movement corridors (landscape connectivity) in order to understand species distributions 

(Cushman et al. 2010). This type o f landscape quantification may also be applied to 

seascapes. Programs like Circuitscape, and Fragstats m ay be used to analyze seascape 

features to show how Storm-Petrels currently use the ocean. Forecasting models can give 

managers and scientists some idea on how Storm-Petrel habitat utilization will change 

with ecological / environmental conditions.

2.4.5 Conclusions and future work

These predictive models are potentially valuable for policy and management 

decisions, we therefore encourage further work to improve them and models like them 

(e.g. ground-truthing). Once more recent data become available, the accuracy o f these 

models could be further evaluated using the Boyce index (Boyce et al. 2002). Further 

efforts must also be undertaken to improve the accuracy o f  the underlying environmental 

models used to predict these distributions. Errors in the current seabird database must 

also be improved to obtain clean training data for model building. Currently, DMS 

predictions may be too coarse spatially and temporally to accurately define how Storm- 

Petrels are using this com pound to locate foraging areas on a small scale. The
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importance o f  individual predictive variables could be further assessed by removing 

predictor variables at random and testing for model improvement. Model improvement 

could be fine-tuned by altering all algorithm settings to determine which models perform 

best. These tests can be automated in the R (www.r-project.org/) or Python 

(www.python.org/) programm ing languages. Addressing autocorrelation in the models 

may also elucidate the relationships between the various predictor variables and the 

distributions o f  these species. The more accurately we can predict current seabird 

distributions, the more accurately we will be able to predict their responses to future 

climate change,

In this study, open access data and tools were used to construct our Storm-Petrel 

models in a GIS framework. In order for similar work to continue, we must advocate 

freely accessed and well described datasets and tools with high quality metadata. Freely 

accessible and certified software will also be critical to making these methods available 

for w idespread use. Though we operated primarily in ArcGIS for spatial analyses, other 

free GIS packages exist (e.g. GRASS GIS, Open GIS consortium, Open Modeler), and 

open-access statistical languages such as R can be used for statistical analysis. As the 

tools to develop predictive models become more accessible, predictive models o f species 

distribution will become more available and widespread in contributing to management 

and conservation decisions
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One Predictor Dependence For 
PRES_A8S«1

Figure 2.1: Partial dependence plots o f  Storm-Petrel distribution on DMS concentration 

(nM) for models using only DMS: a) Leach’s Storm-Petrel model 2a b) Leach’s Storm- 

Petrel model 2b c) Fork-Tailed Storm-Petrel model 2a d) Fork-Tailed Storm-Petrel model 

2b
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Figure 2.2: M aps o f  relative index o f  occurrence (RIO) o f  Leach’s and Fork-Tailed 

Storm-Petrel as produced by TreeNet for the summer breeding season in the North 

Pacific using top ranked models with confirmed absence points
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Figure 2.3: Maps o f  relative index o f  occurrence o f  Leach’s Storm-Petrel (A) and Fork­

Tailed Storm-Petrel (B) w ith confirmed presence and confirmed absence points from 2 

opportunistic surveys performed in summer 2008
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Figure 2.4: M ean relative index o f  occurrence (RIO) from predicted maps o f confirmed

presences and absences for both species o f  Storm-Petrel
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Tables

Table 2.1: Area under the ROC curve (AUC) scores for default TreeNet settings (1), and

altered TreeNet settings (2) using confirmed absences (a) and pseudo absences (b)

________________________________Model_______________________________
A ll predictor variables All predictors but DM S DMS only

Species______ la  lb  2a 2b la  lb  2a 2b la  lb  2a 2b

P rtrd  S St° rm" ° ' 9 3  ° ’9 4  ° ' 9 1  ° ' 9 1  ° ' 9 3  ° ’9 4  ° ' 9 1  ° ' 9 0  0 7 5  0 7 9  0  87  ° ' 8 0

Storm-Petrel ° ‘8 7  ° ’9 4  ° ' 8 7  ° ' 9 2  0 8 7  ° ' 9 4  ° ' 8 6  0 9 2  ° ‘6 3  ° ' 7 0  ° - 8 0  0 8 4
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Table 2.2: Percent correctly classified presences for default TreeNet settings (1), and

altered TreeNet settings (2) using confirmed absences (a) and pseudo absences (b)

Model
All predictor variables All predictors but DMS DMS only

Species la  lb  2a 2b la  lb  2a 2b la  lb  2a 2b
L each ’s Storm-
Petrel 94.2 91 .7  95 .0  91.7 92 .4  91 .0  94 .8  91.7 82.9 84.4  91.8 83.2
Fork-Tailed
Storm-Petrel 84 .6  93.5 83.7 80.7 84.6 93.5 83 .4  80.5 42 .8  59.0  80.4 76.0
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The goals o f my thesis were to:

(1) a. create a series o f  monthly DMS models using open access datasets

b. makes some inferences on controlling factors in DMS production

(2) a. create models o f  Fork-Tailed and Leach’s Storm-Petrel distribution in the

North Pacific

b. assess a possible link between Storm-Petrels and DMS.

I hypothesized that by using DMS as a predictor within the framework o f sophisticated 

ecological niche m odeling techniques, accurate presence/absence models o f Leach’s and 

Fork-Tailed Storm-Petrel could be developed.

Dimethylsulfide

DMS models were run using various subsets o f the data allowing me to determine 

the stability o f  the model by examining how model performance (RMSD) changes based 

on the percentage o f  the original data I use to build and evaluate the model. RMSD did 

not change substantially between different model runs which indicated that TreeNet 

remained robust even when the amount o f data used to build the model was varied. This 

may also speak to the robustness o f  the natural relationships that are defining DMS 

production.

Currently all know n climatologies o f sea surface DMS concentration relative to 

the Kettle database have r2 values less than 0.06 (Belviso et al. 2004). These comparisons

General Conclusions



were made to annual, global climatologies which can be difficult to categorize when 

using discrete samples taken from monthly measurements. To better examine model 

performance, it is more beneficial to examine monthly model performance to capture 

seasonal variability to avoid over-generalization. R2 values for my models range from 

0.21 to 0.69. This work was a marked increase in performance over currently assessed 

models, but this may not be a fair comparison as those assessments were only for annual 

climatologies, and not for monthly output.

Accuracy assessm ents o f  data are included in the m etadata for all layers created in 

this thesis and are available freely from the author.

Contrary to m any current models (Belviso et al. 2004, Bell et al. 2006) this model 

did not allow per se for mechanistic descriptions o f how DMS is controlled in the ocean 

surface, it did however, allow us to test predictor variables and make inferences (via 

partial dependence plots) on the oceanographic niche in which DMS is produced. The 

results showed that SRD, phosphates and salinity play important roles in determining 

concentrations o f  DMS. SRD and Phosphates were found to vary with DMS 

concentrations, w hile a range o f  salinity values were found to be related to higher DMS 

concentrations. N either average chlorophyll a or mixed layer depth were considered 

important predictor variables overall, contrary to a model suggested by Simo and Dachs 

(2002). The predictor combination as selected by TreeNet allowed for a high predictive 

accuracy, and allowed for some inference on possible controllers in the DMS system.
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Storm-Petrels

To create Stom-Petrel models, data from the NPPSD were used in a 

presence/absence or presence/pseudo-absence framework. Using ecological niche 

modeling techniques allowed us to accurately capture Storm-Petrel distribution in the 

North Pacific. AUC values for the Storm-Petrel models ranged from 0.63 to 0.94. The 

best models were created when using all predictor variables. I was also able to extend 

predictions o f Storm-Petrel distribution in to the Sea o f Okhotsk where no data exists in 

the NPPSD. The predictions o f  both species o f  Storm-Petrel in this region seemed to 

qualitatively match current known distribution o f Fork-Tailed and Leach’s Storm-Petrel 

(Arthukin & Burkanov 1999, Onley & Scofield 2007). Ground-truthing data performed 

in summer 2008 shows high model agreement. Predicted RIO o f Storm-Petrel 

distribution seemed to match areas o f confirmed presence and absences for both species. 

All o f the survey data and distribution maps are available for download from the author 

with appropriate metadata.

I ran these m odels specifically using only DMS to investigate its potential as a 

predictor variable. Above 9 - 1 0  nM o f DMS, the RIO o f Leach’s and Fork-Tailed 

Storm-Petrel stabilizes or begins to increase. This indicated that even with such broad 

scaled models, we were able to detect a pattern between DMS concentrations and Storm- 

Petrel distribution. Accuracies o f models using ju st DMS as a predictor variable were 

also boosted to approxim ately 0.80 to 0.87 (based on AUC) with correctly classified 

presences between 76 and 92%.
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Final conclusions

Throughout this thesis, I have investigated DMS on a global scale, and its use as a 

predictor in determining Storm-Petrel distribution. In Chapter 1 ,1 found that a suite of 15 

predictor variables could build a relatively accurate model o f  DMS available freely to the 

public. I also found through investigation that solar radiation dose, phosphates and 

salinity were major contributing factors in determining DMS concentrations at the surface 

o f the ocean. In Chapter 2 I developed an accurate model o f Storm-Petrel distribution in 

the North Pacific using a series o f  predictor variables including DMS. I confirmed the 

hypothesis here that DMS would be a good predictor o f Storm-Petrel distribution. This 

however, does not confirm  that Storm-Petrels “smell” DMS, and to fully address such a 

question using these techniques would involve dealing with a finer temporal scale model 

and directed experimentation.

Because these predictive models are potentially valuable for policy and 

management decisions, we encourage further work to improve them and models like 

them. For instance, further ground-truthing o f such models is needed. Once more recent 

data become available, the accuracy o f these models could be further evaluated with a 

method such as the Boyce index (Boyce et al. 2002). Further efforts must also be 

undertaken to improve the accuracy o f the underlying environmental models used to 

predict these distributions. The seabird data must also be improved upon with respect to 

metadata, and data gaps. Currently, DMS predictions may be too coarse spatially and 

temporally to accurately define how  Storm-Petrels are using this compound to locate 

foraging areas on a small scale. The importance o f individual predictive variables could
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be further assessed by removing predictor variables at random and testing for model 

improvement. M odel im provement could be fine-tuned by altering all algorithm settings 

to determine which models perform best. These tests can be automated in programming 

languages such as R (www.r-project.org/) or Python (www.python.org/). Addressing 

autocorrelation in the models may also elucidate the relationships between the various 

predictor variables and the distributions o f these species. The more accurately we can 

predict current seabird distributions, the more accurately we will be able to predict and 

manage their responses to future climate change and other impacts.

http://www.r-project.org/
http://www.python.org/
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Appendix A

Data sources for all variables used for model development in Chapter 1 o f thesis

Appendices

Dataset Source Resolution

D im eth ylsu lfid e P acific  M arine E co log ica l Laboratory (saga .p m el.noaa .gov) Points

Salinity W orld O cean A tlas (w w w .n o d c .n o a a .g o v ) 1°

D isso lv ed  O xygen W orld O cean A tlas (w w w .n o d c .n o a a .g o v ) 1°

Apparent O xygen  U tilization W orld O cean A tlas (w w w .n o d c .n o a a .g o v ) 1°

Nitrates W orld O cean A tlas (w w w .n o d c .n o a a .g o v ) 1°

Phosphates W orld O cean A tlas (w w w .n o d c .n o a a .g o v ) 1°

S ilicates W orld O cean A tlas (w w w .n o d c .n o a a .g o v ) 1°

Sea Surface Tem perature M arine C onservation B io lo g y  Institute (distributed C D ) 1°

Bathym etry M arine C onservation B io lo g y  Institute (distributed C D ) 1°

Solar Radiation D o se C alculated as per V allin a  and S im o (2007). 1°

- irradiance at top o f  atm osphere Provided by Dr. Sergio  M. V allina 1°

- m ixed  layer depth Provided by Dr. Sergio M . V allina 1°

Hum an Im pact
N ational Center for E co log ica l A n a lysis and Syntheis  

(w w w .n ceas.u csb .ed u /G lob alM arin e [H alpern  e t  al. ,  2 0 0 8 ] )
1 km

Euclidean  D istan ce to shore C alculated in arcGIS softw are from  coastlin e  p o ly line 0 .833°

Chlorophyll a (SeaW IF S) N A S A  - O ceancolor project (ocean co lor .g sfc .n asa .gov) 1.1 km

http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nceas.ucsb.edu/GlobalMarine
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Total number o f  data points used to train and assess each model for each month for 

Chapter 1 o f thesis

Appendix B

Model 1 Model 2 Model 3 Model 4

Month Train Assess Train Assess Train Assess Train Assess Total

Jan 271 1026 778 519 908 389 1167 130 1297

Feb 613 2418 1819 1212 2122 909 2728 303 3031

Mar 1385 5063 3869 2579 4514 1934 5803 645 6448

Apr 1257 4484 3445 2296 4019 1722 5167 574 5741

May 768 2944 2227 1485 2598 1114 3341 371 3712

Jun 749 2873 2173 1449 2535 1087 3260 362 3622

Jul 871 3212 2450 1633 2858 1225 3675 408 4083

Aug 430 1491 1153 768 1345 576 1729 192 1921

Sep 452 1655 1264 843 1475 632 1896 211 2107

Oct 708 2375 1850 1233 2158 925 2775 308 3083

Nov 728 2699 2056 1371 2399 1028 3084 343 3427

Dec 402 1572 1184 790 1382 592 1777 197 1974
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Relative importance o f predictor variables for highest ranking models (for both models a 

and b) as ranked by the AUC

Model

Leach’s Storm-Petrel Fork-Tailed Storm-Petrel

Appendix C

All predictors All predictors All predictors but DMS All predictors 

Variable la  lb  la  lb

Bathymetry 100.0 57.6 89.8 45.6

Chlorophyll a 32.3 55.1 79.5 100.0

Distance to shore 72.0 86.5 100.0 49.2

Human Impact 31.5 55.9 66.3 47.9

Mixed Layer Depth 30.2 76.1 58.1 40.2

Dimethylsulfide 35.6 60.2 N/A 37.3

Dissolved 0 2 95.5 83.0 71.9 44.0

Nitrate 34.5 59.3 53.6 37.0

Apparent 0 2  Utilization 43.0 77.0 77.2 58.4

Phosphate 31.2 56.3 73.4 43.3

Salinity 36.1 100.0 66.0 41.8

Silicate 41.2 62.5 56.9 31.5

Sea surface temperature 40.1 67.6 54.8 39.3
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Sources o f  predictor variables for Chapter 2 o f thesis

Appendix D

Dataset Source Resolution

Dimethylsulfide Thesis Chapter 1 r

Salinity World Ocean Atlas (www.nodc.noaa.gov) i°

Dissolved Oxygen World Ocean Atlas (www.nodc.noaa.gov) i°

Apparent Oxygen Utilization World Ocean Atlas (www.nodc.noaa.gov) r

Nitrates World Ocean Atlas (www.nodc.noaa.gov) i°

Phosphates World Ocean Atlas (www.nodc.noaa.gov) i°

Silicates World Ocean Atlas (www.nodc.noaa.gov) i°

Sea Surface Temperature Marine Conservation Biology Institute (distributed CD) i°

Bathymetry Marine Conservation Biology Institute (distributed CD) i°

Mixed layer depth Provided by Dr. Sergio M. Vallina

National Center for Ecological Analysis and Synthesis

i°

Human Impact (www.nceas.ucsb.edu/GlobalMarine) 

(Halpem et al. 2008)

1 km

Euclidean Distance to shore Calculated in ArcGIS software from coastline polyline 0.833°

Chlorophyll a (SeaW IFS) N A SA  - Oceancolor project (oceancolor.gsfc.nasa.gov) 1.1 km

http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nodc.noaa.gov
http://www.nceas.ucsb.edu/GlobalMarine


A utom ation was performed using Python 2.5.4 and program R version 7.0. Using 

approximately 1500 lines o f code, a monthly DMS modeling tool was created which 

allows the user to go from raw DMS data in a comma separated values format to the 

completed model with smoothed maps and appropriate assessments performed. The 

model automation process is shown in Figure 1, and the code is available from the author.
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Appendix E

Model automation for DMS model


