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Abstract

The Arctic Ocean is warming up and an increasing freshwater inflow is triggering major changes in ocean
layers. This model study aims at creating a baseline, and analyzing the effect of freshwater content
changes, subsequent freshwater sealing as well as related parameters in the Arctic Ocean on migration and
life history of zooplankton such as copepods and euphausiids. Copepods and euphausiids make for a major
part of the zooplankton biomass in the Arctic Ocean, and are an important part of the food chain. Analyses
are carried out using an ecosystem-based, spatial modeling approach with machine learning algorithms
(Salford Systems TreeNet®, Random Forests® and R implementations). The underlying data consists of over
100 predictors including a globally unique data set of physical oceanography. Raw data that was used in this
project is available as metadata from the Core Science Metadata Clearinghouse (former National Biological
Information Infrastructure) and available at http://mercury.ornl.gov/clearinghouse/ and on servers from
the University of Alaska Fairbanks. The Canadian Earth System Model 2 (CanESM2) was utilized to model
the effect of changing climate on zooplankton for the next 100 years and for a low emission (RCP26) and a
high emission scenario (RCP85). The results consist of spatially explicit (where every point in the layer is geo
referenced) and predicted layers for Geographic Information Systems (GIS) that show predicted plankton
presence/random absence as well as the relative index of depth and life stage distribution where the
zooplankton is most likely to occur. The models show a clear trend towards an increasing relative index of
depth where zooplankton is most likely to be found for the year 2100. Moreover, a trend towards a
diminishing ecological niche for adult life stages of zooplankton was observed. These changes add stress to
the life of zooplankton, especially regarding the diel vertical migration of mostly adult life stages. If
zooplankton has to migrate a longer way, this will most likely increase energy expenditure and predation
risk which ultimately decreases fitness. When accounting for other man-made impacts on the ocean such
as ocean acidification and increasing shipping in the Arctic and taking the big picture into account, the
outlook and conditions for zooplankton in 2100 are negative.
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1. Introduction

The Arctic Ocean and the Earth as a whole are subject to climate change, associated with increased
atmospheric and oceanic temperatures, loss of summer sea ice resulting in increasing arctic shipping, and
which are well described and forecasted (Spiridonov et al. 2012). However, the controversy remains
whether freshwater is adding to stratification and therefore sealing off the Arctic Ocean and its ecological
processes, leading to a substantial reduction of plankton productivity for instance.

The study area for this research is the Arctic Ocean within the definition of the Arctic Circle at 66°33’N
(Arctic Circle 2012, Hannemann et al. 2010). The Arctic Ocean is the smallest of the world’s five oceans with
a size of around 14 million square kilometers (Welsh et al. 1986); it makes for about 1.5 times the size of
the Unite States. Despite being the smallest ocean, the Arctic Ocean received major attention in the past
and will presumably receive further attention during years to come. Attention in the past was perhaps
mostly due to sovereignty issues between the former Union of Soviet Socialists Republics (USSR) and the
United States attributed to the Cold War, and nuclear submarine cruises within. Industrial oil and natural
resource development started relatively late in the 70s. Nowadays, the Arctic Ocean is in the focus again
because of environmental changes and upcoming economic opportunities due to climate change and
resource scarcity elsewhere. They may include navigation possibilities making Arctic seaways more
profitable due to melting sea ice, but also include traditional questions and issues like the sustainable
exploitation of natural resources such as oil and gas, as well as fish, pollution (contamination through
disasters on oil platforms, noise pollution, air pollution) and foremost ocean acidification as well as many
others. However, those questions are still seen in the light of national sovereignty and strategies (e.g.,
Berkman and Young 2009, Young 1996; 2012). The difference to the past is simply that those questions are
not bound directly to a war anymore. The struggle about resources and the rights to extract them however
is as fierce as could be, and might turn out elsewhere and with a delay. Unfortunately, the one side that
looses the most in this struggle is not some “Grand Nation” that has to deal with a slight increase in the oil
price, but eventually it is nature that suffers from an enormous amount of negative impacts. A decaying
environment will also affect the human economy that relies on that ecosystem and carrying capacity
overall. Such views were expressed already, e.g. Huettmann (2012) for the three poles (Arctic, Antarctic
and Himalayas), but are widely discussed in conservation and sustainability literature (e.g., Naess and
Rothenberg 1990).
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1.1 The Arctic Ocean

The Arctic Ocean consists of a deep Ocean Basin, and the extensive shelves from the Barents, Kara, Laptev,
East Siberian, Chukchi and Beaufort Seas as well as the White Sea, the Lincoln Sea and less prominent shelf
regions off the Canadian Arctic Archipelago and northern Greenland (Jakobsson 2002) (Fig. 1).

Topographic map of the Arctic

(Source: CAFFs Arctic Biodiversity Trends 2010: selected indicators of change)

Figure 1: The Arctic Ocean and its constituent seas. Note also the Arctic Conservation Area as delineated by the Arctic
Conservation of Flora and Fauna (from CAFF 2010).

Due to the remoteness of the Arctic, the sun, a circulating globe and an Earth axis tilt of about 23.5
degrees, the polar climate is persistently cold and with relatively narrow annual temperature ranges.
Winters are characterized by continuous darkness, cold and stable weather conditions as well as clear skies.
Summers are characterized by continuous daylight, damp and foggy weather, and weak cyclones with rain
or snow (Hannemann et al. 2010, Serreze and Barry 2005, CIA 2009).

The Arctic Ocean shows some of the most extreme conditions known on Earth. There is considerable
variation in the length of sunlight and also in the ice cover over the year. Summer is characterized by three
months of continuous illumination and winter by continuous darkness of about three months (Thurman
1997). The average depth of the Arctic Ocean is 1,050 meters. The deepest part of the Arctic Ocean is found
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north of the Chuckchi Sea (5,441m). The Arctic Ocean is also characterized by the highest percentage of
continental shelf of any ocean. 50% of the Arctic Ocean floors are continental shelf and therefore shallow
with the remaining 50% within the central basin that is divided by the three submarine ridges. The Alpha
Ridge, the Nansen-Gakkel Ridge and the Lomonosov Ridge (CIA 2009).

The surface of the Arctic Ocean is covered by a drifting and perennial polar icepack. The icepack is about
three meters thick but varies by region and conditions. During the winter months, this sea ice covers most
of the Arctic Ocean surface. In summer however, higher temperatures of air and water causes the icepack
to shrink by about 50% of its winter extent. This seasonal variation accounts for a lot of the complex
processes happening in the Arctic Ocean such as primary production and stratification of ocean layers.

Natural resources in the Arctic Ocean are neither simple nor cheap to extract due to the extreme
environment conditions that affect the work in this environment. Natural resources that are currently
extracted from the region are sand and gravel aggregates, placer deposits, polymetallic nodules, oil and
gas, fish, marine mammals (seals and whales) (CIA 2009). On the other hand, Euskirchen et al. (in press)
estimate the annual cumulated present value cost to society due to climate change in the Arctic to range
from $7.5 trillion to $91.3 trillion in the time from 2010 to 2100. The range in the values reflects
uncertainties in climate change. Other estimates vary between a 5% and 20% loss of Gross Domestic
Product (GDP) per year depending on the scenario (Stern 2007). This loss in GDP will not be recoverable.
Climate change costs society an unimaginable high amount of money.

1.1.1 Ocean layers, circulation of water masses and the freshwater system in the Arctic Ocean

The open ocean is well stratified with surface layers much fresher than deeper ones, giving the ocean its
basic structure, circulation pattern and regulating productivity in the ocean (Behrenfeld et al. 2006, Levitus
et al. 2000). Vertical stratification in the water column is forming as a consequence of water masses with
different temperatures and subsequent densities. Density is strongly influenced by temperature and
salinity. Warmer and fresher water is less dense.

Cold and fresh surface water is separated from intermediate (150—-800m) Atlantic Water (AW) of the Arctic
Ocean by a halocline. In the halocline, salinities increase to ~34.8psu and at ~200-300m (Schauer et al.
1997; 2002).

Water with a low salinity from the Pacific Ocean flows into the Arctic Ocean via the Bering Strait
(MacDonald and Bewers 1996). This colder water forms a sub-surface layer beneath the arctic water at the
surface. Surface water occupies the upper ~50 m of the Arctic Ocean and form the PML (Polar Mixed Layer
or Mixed Layer) (Fig. 2). The polar halocline (a layer of cold water with a steep salinity gradient) forms
below the PML and limits the exchange between surface and deep ocean water masses.
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Figure 2: Ocean stratification in the Arctic Ocean (modified from MacDonald and Bewers 1996).

Therefore, the polar halocline acts as an insulating layer between surface water masses and sea-ice from
warm deep water and thus is vital for the existence of perennial sea ice cover. Traditionally, the interior of
the Arctic Ocean is covered with perennial pack ice, while a seasonal (first-year) ice-cover is formed on the
marginal seas from October to June. The spatial extent of this sea ice cover varies between 14-15 million
kmZ2in March and about 6-7 million km? in September.

The transition layer between halocline and temperature
maximum in the Atlantic layer is referred to as the
thermocline and with a strong increase in salinity (Rudels et
al. 1991). The 0°C isotherm then separates the polar
halocline from deeper and colder Atlantic waters. An
important element of water structure is the frontal
boundary between water masses of Atlantic and Pacific
(McLaughlin et al. 1996) and it is roughly aligned with the
Transpolar Drift.

AW from the North Atlantic is carried through the Arctic
Ocean interior by the pan-Arctic boundary current and
transport occurs in the form of near-slope cyclonic
boundary currents (Aagaard 1989) (Fig. 3, red arrows).
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Figure 3: Circulation of surface water (in blue) and Two major inflows supply the polar basins with AW: the
intermediate Atlantic Water (AW, in red) in the Fram Strait branch water (FSBW) and the Barents Sea

Arctic Ocean (from the Woods Hole Oceanographic branch water (BSBW) (Rudels et al. 1994).
Institution: www.whoi.edu)

The surface circulation pattern in the Arctic Ocean is dominated by the clockwise Beaufort Gyre (in the
Canadian Basin) and the Transpolar Drift. The trans-polar drift (also transpolar current) is a very important
feature in the Arctic Ocean which is characterized by near-freezing surface waters that are driven by wind
and ice drift. This current transports water from the Siberian Arctic towards the Fram Strait (Fig. 3). Cold
surface waters with low salinity are transported out of the Arctic Ocean and towards North Atlantic Ocean
via the East Greenland Current and through the Canadian Archipelago. On the other hand, warm water,
high in salinity from the Atlantic flows into the Arctic Ocean via the Fram Strait and the Barents Sea.
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Zooplankton distribution is largely driven by the currents since they determine where nutrient rich waters
are. Therefore, circulation patterns can explain a lot of the observed zooplankton distribution and potential
changes.

The Arctic Ocean is a significant reservoir of fresh water (Aagaard and Carmack 1989). Freshwater is
delivered to the marine Arctic by atmospheric transport through precipitation and by ocean currents, and
to the coastal regions through river inflows (Zimov 1997, Prange and Gerdes 1999). This freshwater has
major influence on stratification and water column stability as well as on ice formation (IASC and McGinley
2010, Morison 2012). Without freshwater input, there would be less freezing, less ice cover, and less brine
rejection (Aagaard and Carmack 1989, Carmack 2000).

Mixing, especially in the surface layer of the Arctic Ocean can be driven by wind and storms, convection.
Storms have been shown to create turbulent mixing between water layers. This mixing is crucial for the
productivity of an ecosystem (IASC and Duffy 2010). It brings nutrients, that tend to sink to the bottom of
the ocean back to the surface and on the other hand makes sure, that oxygen from the surface is mixed
into deeper waters. In summer, when substantial warming occurs, waters stratify, trapping phytoplankton
in warm surface waters and resulting in a spring bloom in the nutrient rich water. This well documented
spring bloom provides then vast amounts of food for many marine animals including and foremost
zooplankton that feasts on this availability of phytoplankton (Siegel et al. 2002, Townsend et al. 1992,
Sarmiento et al. 2004). While stratification of the water column in general is important and natural,
prolonged or strengthened stratification can have negative impacts on zooplankton biomass. For instance
an increase in the temperature of coastal waters can lead to a strengthening of the thermocline, which
then becomes a stronger boundary. Therefore it is more difficult for deeper, nutrient rich water to reach
the surface and mix with surface oxygen which is true as well for the related biotic life. This poses a
reduction in upwelling as well as mixing and can result in local or widespread biomass loss. It can change
species composition. This mentioned development was already observed between 1951 and 1993 in
Southern California where zooplankton biomass then decreased significantly (Roemmich and McGowan
1995). Such an event would most likely also have serious impacts on higher parts of the food chain (e.g.,
see Ainley et al. 1996) for impacts on seabirds).

1.1.2 Climate change in the Arctic Ocean

This brief overview, about the changes in climate that we are dealing with in the Arctic Ocean, is important
for understanding the situation of plankton in the Arctic and to be able to put the project in context with
the wider picture. This summary however shows how serious the climatological situation in the Arctic really
is, and what anthropogenic climate change does to one of the areas on Earth, most sensitive to climate
change and disturbances.

A quote by Polyakov et al. (2008) states: “Recent observations show dramatic changes of the Arctic
atmosphere—ice—ocean system”. This statement is symptomatic for the situation we are dealing with here
and for this thesis. Research concluded that Arctic and sub-Arctic regions have undergone substantial
changes (Dickson et al. 2002; ACIA 2005, Overland et al. 2004, Curry and Mauritzen 2005, Polyakov et al.
2007, Millennium Ecosystem Assessment (www.maweb.org)).

For example, the amount of freshwater input into the Arctic Ocean, e.g. from glaciers has been increasing
for the past decades and the trend is predicted to be continuing (IASC and Draggan 2010). River discharge
alone is predicted to increase by 5% to 25% depending on the model looked at (IASC and Draggan 2010).
Many of the recent flooding events may be linked to this changing situation as well. An increasing inflow of
cold, fresh water to the Arctic Ocean from rivers as well as melt water and precipitation has the potential
for significant impacts on the thermohaline circulation and therefore affecting global climate (IASC and
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Draggan 2010). This increase is also visible in the data used in our model predictions and as discussed in
chapter 2.4.

On the other hand, the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of
239 +/- 270 km? per decade over the twentieth century. In contrast, long-term (1920-2003) freshwater
content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 +/- 50
km?3 per decade (Polyakov et al. 2008). Polyakov et al. 2008 suggests that ice production and sustained
draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the
salinification of the upper Arctic Ocean over recent decades. The situation changed dramatically in the
2000s when extreme freshening of the central Arctic Ocean occurred (Polyakov, personal communication).

Moreover, research showed that the sea ice extent was reduced and thinned by climate change. Arctic sea
ice has undergone substantial changes (Walsh and Chapman 2001; Meier et al. 2007). Sea ice extent has
been decreasing since the last decades by around 5 to 10% and with a record decrease in the seasonal sea
ice cover in summer 2007 (Fig. 4) (Comiso et al. 2008, Stroeve et al. 2008). A virtual entire retreat of
summer sea ice is predicted by 2050 (Wang and Overland 2009).
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Figure 4: Ice area anomalies and water temperature anomalies since 1900 (from Polyakov et al. 2010).

It has been shown that warm Atlantic water added to the preconditioning that resulted in the extreme
decrease in the sea ice extent. The warm water and higher surface temperatures thinned and weakened
the ice cap. The major driver however for the record decrease of sea-ice extent in 2007 was anomalous
wind that pushed the ice from the Siberian sector to the Canadian sector of the Arctic Ocean (Polyakov
personal communication, Polyakov et al. 2010, IASC and Draggan 2010). Climate change is leading to a
lengthening of the ice free season and the lengthening is projected to be continuing over the future. Model
projections show a decrease of summer sea ice by 50% till 2100 which would make shipping on the
Northern Sea Route possible for an additional two to four months. Future predictions also show that snow
cover is projected to decrease further and permafrost thawing is continuing (IASC and Draggan 2010).

The general snow cover has been shrinking substantially since the 1970s (IASC and Draggan 2010) and
especially in the northern hemisphere (IPCC AR4 SYR 2007). The temperature of permafrost has been
increasing since the last decades by a maximum of 2° to 3° C and therefore is thawing (IASC and Draggan
2010).

Adding to the freshwater inflow into the Arctic Ocean are glaciers, that have been losing mass substantially
and which is running of as melt water (IASC and Draggan 2010). Parts of Greenland’s coastal regions have
been lost this way. Glacier melting during the last decade resulted in a sea level rise of 0.15mm to 0.43
mm/year (IASC and Draggan 2010).

An effect of this melting ice and snow is sea-level rise, a well documented phenomenon and threat to many
people especially those living in coastal regions and islands (IPCC AR4 SYR 2007).
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Ocean acidification from increasing atmospheric greenhouse gases is threatening life in the ocean (Gattuso
et al. 2011, Hutchins et al. 2007, Orr et al. 2005) and especially the effect on corals and other calciferous life
forms is the subject of concern. Research shows however already substantial negative effect on other
marine life, such as mussels (Knight 2011).

Another current topic that receives major attention is the role of enhanced high-latitude warming, called
polar amplification (PA), in long-term surface air temperature (SAT) variations and modern arctic warming
(Bekryaev et al. 2010). Latest research with an extensive new dataset of Arctic SATs showed a high-latitude
warming rate of 1.368°C for 1875-2008, and with an exceptionally strong warming rate in the recent
decade (Bekryaev et al. 2010).

Changes in the environmental conditions of the Arctic Oceans are affecting important processes such as
primary production and have wider implications on species regarding species range shifts, invasive species
and diseases.

Climate change is affecting a broad range of biological systems (Dockerty et al. 2003, IASC and McGinley
2010).

1.2 The marine environment and food webs

Here, an overview of the marine environment and food webs is given, since the studied zooplankton
species are part of this environment and migrating between the different zones described in the following.
Moreover, the zooplankton is a very important part of the food chain and should be mentioned here.

The marine ecosystem can be subdivided into several marine environments (Fig. 5). The most common
distinction is to divide between the pelagic environment (“open sea”) and the benthic environment (“sea
bottom”) (Lalli and Parsons 1997). The pelagic environment includes the surface waters and extends to the
deepest waters. The benthic environment is comprised by the sea floor including shores, lithoral zones,
coral reefs and deep seabeds. Another division is made between the oceanic (open ocean) from the neritic
(near shore) environment. This definition relies on the distance from land and depth again. The neritic zone
extends in general over the shelf areas which vary from area to area but commonly extends to around
200m depth. Several subdivisions exist that can be distinguished according to depth and bottom
topography (Thurman 1997, Lalli and Parsons 1997) and where zooplankton potentially migrates between.
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Figure 5: Schematic drawing of the different marine environments (from Lalli and Parsons 1997).
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In order to understand the distribution of life forms in those different zones one has to account for one of
the most important sources of energy, which is the Sun. The availability of light represents an important
factor and drives life in the upper parts of the ocean and relevant for our project since phytoplankton, the
major source of food for zooplankton is highly dependent on the light and therefore phytoplankton is
dependent on being able to be at the euphotic surface zones. Three zones with different light intensities
are commonly distinguished (Thurman 1997). The euphotic zone is defined as the zone where the light
intensity is high enough to maintain photosynthesis. The width of this zone depends on the clarity of the
water but is seldom deeper than 100 meters. Second comes the disphotic zone which is characterized by
small but still measurable amounts of light. The zone extends to a depth of about 1000 meters. The third
zone is called aphotic, characterized by the absence of light, and extends to the ocean floor. Relevant for
our project here are mostly the euphotic and disphotic zone as habitat for zooplankton (and
phytoplankton).

Photic zones are characterized by biological processes that incorporate carbon and other constituents from
the water into tissue and bones. As mentioned, an important process in phytoplankton. The Ocean is in
general a sink for carbon since dead organic matter tends to sink to the bottom of the ocean where it
accumulates vast amounts of carbon. With mixing and upwelling however some of this carbon is mixed
again into higher levels in the water column. This process is referred to as the biological pump and one of
the most important processes in the ocean and global carbon cycle (Grant Gross 1995, Grant Gross and
Gross 1996, Longhurst and Harrison 1988, Longhurst and Harrison 1989, Thurman 1997). The process has
wider effects on productivity of the ocean and beyond. Zooplankton also participates in this cycle since
some species feed on detritus, the dead organic matter sinking to the ocean floor. By feeding on the
detritus, zooplankton takes up carbon that would otherwise sink to the ocean floor but then is added again
to the cycle and potentially incorporated back into other higher trophic organisms.

1.2.1 Plankton overview

Plankton, from Greek “planktos” (passively wandering or drifting) inhabits together with nekton the pelagic
environment. In comparison to the passively wandering plankton, nekton is capable of swimming actively
against the current (Grant Gross and Gross 1996, Thurman 1997). Pelagic organisms can be categorized
according to their size. The size of mesozooplankon on which this project focuses here ranges in general
from 0.2 to 20 mm (Lalli and Parsons 1997). Plankton is divided into phytoplankton, bacterioplankton and
zooplankton. Phytoplanton is autotrophic (“self-feeding”) and makes for the largest biomass community in
the marine environment. They live in the euphotic zone where they use light for photosynthesis to
synthesize glucose or other sugars as mentioned. Where an organic compound such as glucose is
synthesized from carbon dioxide we refer to primary production which is the basis for most oceanic and
freshwater food webs. Primary production in the Arctic Ocean is generally considered relatively low and
estimates are an average production of 11g to 15 g C m™ year™ (Gosselin et al. 1997, Sakshaug 2003). Apart
from light, phytoplankton is dependent on nutrients like nitrate, phosphor, silicic acid (Grant Gross 1995,
Nihoul 1998, Thurman 1997). Other types of plankton exist but are not of relevance for this study.

Zooplankton, which is in the focus of my research, is heterotroph. This means that they need organic
substrates as energy source. Zooplankton can be described depending on the food sources they use or the
time they reside in the pelagic environment. Holoplankton (permanent plankton) spends all life cycles in
the water column whereas meroplankton is just a temporary resident of the water column. Meroplankton
for instance includes fish larvae or larvae stages of clams and snails (Johnson and Allen 2005, Thurman
1997, Lalli and Parsons 1997). Zooplankton can swim and pursue prey actively but most zooplankton fall
into the category of suspension feeders. Suspension feeders filter the surrounding water for food particles
using tiny hair. Zooplankton feed on phytoplankton, bacterioplankton, other zooplankton (sometimes even
cannibalistic), detritus (or marine snow) and nektonic organisms. Their distribution depends heavily on food
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and nutrient availability (Lalli and Parsons 1993) as well as on current movement. Moreover, zooplankton
distribution is limited by temperature and salinity gradients. Zooplankton distribution is heavily driven by
the mixing of the water column (upwelling and downwelling) since it determines nutrient availability (Lalli
and Parsons 1993). Reproduction of zooplankton is generally limited by a small temperature range (Grant
Gross and Gross 1996). Another important role of zooplankton is their role in the food web. At the second
position, right behind phytoplankton and bacterioplankton, zooplankton feeds on vast amounts of
phytoplankton and is preyed upon by a variety of marine organisms such as seabirds, fish and whales (Fig.
6). They are an important part of the food web and play an important role in the process referred to as the
biological pump (Grant Gross and Gross 1996).
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Figure 6: Food web in the Arctic (from UNEP/Grid-Arendal, www.grida.no)

1.2.2 The process of collecting zooplankton samples

Prior to the beginning of this thesis | was on a zooplankton sampling trip. Here | want to describe briefly the
sampling techniques that are being used to obtain such data and for the last 100 years. Sampling
techniques are being updated continuously, however this is the general way and how the data used in our
models was obtained.

The first plankton was collected scientifically from the high arctic polar basin in 1893 by Fridtjof Nansen and
later described by Sars. Most of the early research in the high arctic was carried out by Russians and
Americans before other countries like Germany, Japan or China became interested in this extreme part of
the world (Dawson 1978).

The way of collecting zooplankton changed with time and the technical possibilities that were developed. In
general some kind of net has to be used. Be it as a simple as a net that is towed behind a ship, a MultiNet
plankton sampler that consist of multiple nets that are released in different depths and controlled by
computer (Fig.7 and 8), or one of the new and expensive LOKI (Lightframe Onsight Keyspecies Investigation)
devices that are towed behind a ship controlled via a computer and use digital underwater cameras to
make pictures of plankton that are later on processed via computer algorithms to automatically determine
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species. A major issue with sampling zooplankton is the detection probability of zooplankton and the
vertical stratification of samples (Lalli and Parsons 1997). Moreover, in order to catch different zooplankton
species one needs according mesh size of the nets.

Figure 7: A MultiNet plankton sampler onboard the R/V Tiglax in the Gulf of Alaska.

Figure 8: Handling of zooplankton samples that were then further preserved in a 10% formalin solution.

1.2.3 Vertical migration of zooplankton and the impact of freshwater sealing

Vertical migration of zooplankton is basically divided into ontogenetic, seasonal and diurnal (diel)
migration. Diel vertical migration normally involves a descent within the water columns of oceans and lakes
during the day and an ascent to near surface waters at night (Hays et al. 1994). There are several theories
to how and why this migration pattern developed. There are the predator-evasion hypothesis, the changes
in light intensity hypothesis, the light-protection hypothesis and the food-availability hypothesis. The most
accepted hypothesis however is the predator-evasion hypothesis (Dagg et al. 1997). It describes the
movement of zooplankton that migrates into deeper waters during night to avoid predation and migrates
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back to the surface during night to feed on phytoplankton themselves and when predation risk is minimal
(Fig. 9). Zooplankton can travel up to 200m per hour during this migration (Wiebe et al. 1990). This diel
vertical migration is very well studied and performed by many species.

Other forms of migration are ontogenetic migration that describes the migration of zooplankton according
to their life stages. This means they spend their life stages in different depths of the ocean (Kobari and
Ikeda 2001).

The third form of migration is seasonal migration. This means that zooplankton stays at certain depths,
depending on which season it is (Visser and Jonasdottir 1999).

Backscatter (dB)

Depth

Day

Figure 9: A backscatter image from an Acoustic Doppler Current Profiler (ADCP), a sonar like device used to visualize particle
migration in the ocean. Here used to visualize the diel vertical migration of zooplankton. The color depicts backscatter amplitude
and the line is the sun elevation angle (from Daniele Bianchi, personal communication).

This project focuses on diel vertical migration. The issue of enhanced freshwater inflow into the Arctic
Ocean potentially affects this migration pattern, since physical conditions of ocean layers are changing and
subsequent freshwater sealing is occurring. Zooplankton however has to migrate from deeper waters back
into surface zones to feed on phytoplankton. This freshwater inflow into the Arctic Ocean is known to have
the potential to affect diel vertical migration of zooplankton.

1.2.4 The studied zooplankton species

For this project four species of zooplankton were studied. Three types of copepods (Calanus hyperboreus,
Metridia longa, Metridia pacifica) and one krill species (Thysanoessa raschii). C. hyperboreus and M.longa
are distributed in high abundance throughout the entire Arctic Ocean (Ashjian et al. 2003, Kosobokova and
Hirche 2000, Mumm 1993). M. pacifica is predominantly living in the Pacific but is also drifting with
currents into the Chuckchi Sea (Batchelder 1985, Brodskii 1950). T. raschii is the most widespread arctic krill
and associated with shelf zones (http://www.arcodiv.org/, accessed on 4/5/2012).

Three major criteria were most important for the selection of a species. First criterion was the availability
of data for a species. Second criterion was the significance as an Arctic species, and third criterion was the
performance of vertical migration. All of the selected species except for C. hyperboreus undergo a strong
vertical migration. The reason for choosing C. hyperboreus however was to have a control group and to find
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out potential changes in the predictions between the species undergoing strong vertical migration and C.
hyperboreus. Moreover, T. raschii as well as M. pacifica occur only in the outer boundaries of the Arctic
Ocean. They were selected to assess a potential range shift due to climate change.

Copepods

The majority of studied species in the project are copepods. Therefore, an overview is given here on this
important group of plankton. Copepods are a group of lower crustaceans. They present the major part of
the mesozooplankton in the oceans (Verity and Smetacek 1996). Within the marine zooplankton they
account for 90-97% of all biomass (Bradford-Grieve et al. 1999). Marine copepods are known to be pelagic,
benthopelagic or hyperbenthic, benthic, or coexisting with other animals (Bradford-Grieve et al. 1999). In
the Arctic Ocean, the biomass of marine zooplankton is dominated by copepods of the order calanoida
(Ashjian et al. 2003, Mumm et al. 1998). Calanus species dominate the biomass in the Arctic Ocean
followed by M.longa (Ashjian et al. 2003, Hirche and Mumm 1992, Mumm 1993). Copepods play a central
role in pelagic food webs, and thus are very important for marine ecosystems (Grant Gross and Gross
1996). They are the link between phytoplankton and consumers on a higher trophic level, such as bowhead
whales (Balaena mysticetus), arctic cod (Boreogadus saida) and planktivorous seabirds such as little auks
(Alle alle) and least auklets (Aethia pusilla) (Conover et al. 1990, Karnovsky et al. 2003, Kwasniewski et al.
2003, Pittman and Huettmann 2006). Zooplankton undergoes a development in a specific life cycle, starting
with the nauplii larvae stage before they moult into the copepodite stage. After several copepodite stages
they reach adulthood. Overall the life cycle includes 12 life stages after hatching. Adults can measure from
0.3 to 2cm in length. Copepods are found from the surface to the bottom of the ocean but have a preferred
depth range in which they are distributed. There is little known how long species in the Arctic live however
3-4 years are the current understanding.

Euphausiids

One of the studied species, Thysanoessa raschii is an euphausiid. Therefore euphausiids are described here
in more detail. Euphausiids belong to the crustaceans as well. Similar to copepods, the euphausiidae (krill)
are very important part of the food chain (Agersted et al. 2011) and prey for many animals including
seabirds ( Huettmann et al. 2011, Schreiber and Burger 2002). After the copepod group, they range mostly
second or third place, however they are not common in the arctic’s central basin. They perform a diel
vertical migration and are often distributed in big swarms, making their appearance patchy. Similar to
copepods, euphyausiids moult into different stages when growing, casting off their exoscelleton. They
undergo three larvae stages (nauplius, calyptopis and furcilia) and normally there are 13 different life
stages in euphausiids. Euphausiids are found from the surface to the bottom of the ocean but have a
preferred depth range in which they are distributed. The generation length of euphausiids in the arctic is
about 3-5 years (http://www.arcodiv.org/, accessed on 4/5/2012), but little is known and more research
has to be carried out in that direction. In comparison to copepods, krill is much bigger (as adults, 1-15 cm
(http://www.arcodiv.org/, accessed on 4/5/2012). Commercially they play only a minor role (Nicol and
Foster 2003) with some experimental fishing off British Columbia, Canada and the Gulf of St. Lawrence.

The taxonomy presented here for the following species follows the Integrated Taxonomic Information
System (ITIS).

Calanus hyperboreus (Krgyer, 1838), Taxonomic serial number (TSN): 85266

Taxonomy:

Animalia (Kingdom)
Arthropoda (Phylum)
Crustacea (Subphylum)
Maxillopoda (Class)
Copepoda (Subclass)
Neocopepoda (Infraclass)
Gymnoplea (Superorder)
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Calanoida (Order)
Calanidae (Family)
Calanus (Genus)

Distribution and Habitat

C. hyperboreus (Fig. 10) is a polar species of the open ocean and is associated with cold waters of subzero
temperatures (Brodskii 1950). C. hyperboreus can be found in abundance in the Arctic Ocean and also
reproduces there (Ashjian et al. 2003). C. hyperboreus can also be found in the North Atlantic (Brodskii
1950, Conover 1988). It inhabits the Barents Sea and the Canadian Arctic (Conover and Huntley 1991,
Thibault et al. 1999). Deep-water areas such as the Greenland Sea and the Nansen Basin are inhabited as
well. The distribution range ends however at the northern part of the Chuckchi Sea. C. hyperboreus is
following a pattern of seasonal ontogenetic migration (Hirche 1997). C. hyperboreus is herbivorous and has
a generation length of about 3 years (in the central Arctic Ocean) (Dawson 1978, Hirche 1997, Hirche and
Mumm 1992).

Calanus h
Hoperof/UAFT

Figure 10: C. hyperboreus. Photo credit: Prof. Russel Hopcroft, University of Alaska Fairbanks.

Metridia longa (Lubbock, 1854), Taxonomic serial number (TSN): 85746

Classification:

Animalia (Kingdom)
Arthropoda (Phylum)
Crustacea (Subphylum)
Maxillopoda (Class)
Copepoda (Subclass)
Neocopepoda (Infraclass)
Gymnoplea (Superorder)
Calanoida (Order)
Metridinidae (Family)
Metridia (Genus)

Distribution and Habitat

M.longa is an oceanic bathypelagic species of moderate depths (Brodskii 1950) and lives omnivorous
(Hirche and Mumm 1992). M. longa performs a strong diel vertical migration (Hopcroft et al. 2005).
M.longa (Fig. 11) can be found in the Arctic Ocean and its epicontinental Seas, Greenland, the Norwegian
Seas and in the North Atlantic. It was also reported near the Alaska Coast and as far East as the Chuckchi
Sea.
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Metridia longa
Hoporoft/UAF/NOAA/COML.

Figure 11: M. longa. Photo credit: Prof. Russel Hopcroft, University of Alaska Fairbanks.

Metridia pacifica (Brodskii, 1950), Taxonomic serial number (TSN): 85748

Taxonomy:

Animalia (Kingdom)
Arthropoda (Phylum)
Crustacea (Subphylum)
Maxillopoda (Class)
Copepoda (Subclass)
Neocopepoda (Infraclass)
Gymnoplea (Superorder)
Calanoida (Order)
Metridinidae (Family)
Metridia (Genus)

Distribution and Habitat

M. pacifica (Fig. 12) is an oceanic bathypelagic species similar to M. longa (Brodskii 1950). M. pacifica
performs a strong diel vertical migration and is preyed on by planktophagous fish (Batchelder 1985,
Brodskii 1950). M. pacifica is a common, medium-sized grazing copepod distributed over the entire
subarctic Pacific and its marginal seas (Minoda 1971, Batchelder 1985, Hirakawa and Imamura 1993, Liu
and Hopcroft 2006). This species prefers warm waters near the surface.

Metridia pacifica
Hoperoft/UAF/CoML

Figure 12: M. pacifica. Photo credit: Prof. Russel Hopcroft, University of Alaska Fairbanks.
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Thysanoessa raschii (Sars, 1864), Taxonomic serial number (TSN): 660852

Animalia (Kingdom)
Arthropoda (Phylum)
Crustacea (Subphylum)
Malacostraca (Class)
Eumalacostraca (Subclass)
Eucarida (Superorder)
Euphausiacea (Order)
Euphausiidae (Family)
Thysanoessa (Genus)

Distribution and Habitat

T. raschii (Fig. 13) is the most widespread arctic krill (http://www.arcodiv.org/, accessed on 4/5/2012). T.
raschii inhabits panarctic and subarctic coastal waters (above 200m) and can be abundant in coastal
embayments. T. raschii is associated with areas where Atlantic or pacific water flow into the Arctic Ocean. It
is not common in the Central Basin but is associated with near-shelf areas(http://www.arcodiv.org/,
accessed on 4/5/2012. There is not much known about the life expectancy most likely is 2-3 years.

Thysanoessa raschii

Hoperoft/UAFCoML

Figure 13: T. raschii. Photo credit: Prof. Russel Hopcroft, University of Alaska Fairbanks.

1.3 Future climate - An overview about future climate scenarios

The Intergovernmental Panel on Climate Change (IPCC, www.ipcc.ch) is the overarching institution,
established by the United Nations Environment Programme (UNEP) and the World Meteorological
Organization (WMO), dealing with the changing climate and establishing guidelines as well as to create a
platform to enhance communication between scientists and policy makers. The major part of the work
however, is the establishment of scientific guidelines describing the best knowledge on past, present and
future climate. The IPCC is probably best known for the publication of the so called assessment reports that
summarize findings of the various specialized working groups.

The latest official document summarizing climate change from the IPCC is the forth assessment report, IPCC
AR4 SYR (2007) with the fifth assessment report currently being worked on. In the fourth assessment
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report, so called SRES (Special Report on Emissions Scenarios) scenarios were chosen to describe low,
medium and high emission scenarios. They were developed and published by the IPCC (2000). The
scenarios have in common that they each describe a certain global surface temperature warming. They are
based on assumptions from the Kyoto protocol and therefore are outdated. The low emission scenario is
known as B1, the medium emission scenario as A1B and the high emission scenario as A2 (Fig. 14).
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Figure 14: The different emission scenarios in the fourth assessment report of the IPCC AR4 SYR (2007).

Three main scenarios have been developed since the IPCC started its work and they all deal with different
values for growth in different sectors like population, income, energy intensity and CO, emissions (Fig. 15).
The earliest scenarios were called SA90-Scenarios (IPCC 1990). The second generation was called 1592-
Scenarios (IPCC 1995). The third generation of scenarios and currently still in use are the SRES-Scenarios
(IPCC 2000).

Aspect SA90-Scenarios (IPCC, 1990a) 1592-Scenarios (IPCC, 1992a) SRES-Scenarios (IPCC, 2000a)
Number of scenarios 4, incl. 6, incl. 40, with 6 illustrative scenarios
1 non-intervention 5 non-intervention® all non-intervention

Structure of scenario spectrum
(based on projected CO2

equivalent emissions from
1990 to the year 2100) ;,..:é‘:

Projections of key variables Range of projections (growth rate 1990-2100 in percent per year)
(units)
Population (cap.) 0.7 0.2-1.1 0.3-1.0
Income (US$ 1990) 15 1-23 1.3-2.7
GDP (US$ 1990) 2.2 123 2.2-3.0
Energy intensity (JUS$ 1990) -1to -1.6 -0.8to —12 -08 to —2.2
Carbon intensity (gC/J) 0.1to-12 -0.2 to 0.7 0.0to -1.9
CO,-Emissions (gC) 1.3to -0.6 1.6 to —0.25 1.5to -0.3

Figure 15: The diversity of IPCC scenarios over time (from Girod et al. 2009).

However, there has been substantial criticism on the SRES-Scenarios pointing out major flaws in definitions
and applicability (e.g., Girod et al. 2009).

Since then models have been updated and more complex processes have been added. Moss et al. 2010
pointed out the need for new scenarios. The IPCC then requested input from the scientific community on
the development of new models. The new scenarios that were developed are called Representative
Concentration Pathways or short RCP and are based on radiative forcing. The new low emission scenario
leads to a radiative forcing of 2.6 W/m?, the medium scenario to 4.5 W/m? and the high emission scenario
to 8.5 W/m? (Fig. 16, van Vuuren et al. 2011.)
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Figure 16: The new Representative Concentration Pathways scenarios or short RCP currently written up in the 5™ assessment
report of the IPCC (modified from Van Vuuren et al. 2011).

The World Climate Research Programm (WCRP) and the Program for model Diagnosis and Intercomparison
(PCMDI) are working hand in hand with the IPCC and were the major drivers for the development of the
new scenarios. The new scenarios were assembled in the so called Coupled Model Intercomparison Project
Phase 5 (CMIP5) (http://cmip-pcmdi.linl.gov/cmip5/) and are currently under review. This part must not be
mistaken with the actual model output. The WCRP, PCMDI and the CMIP5 developed the framework and
the guidelines for the model. The actual model output that predicts future climate however comes from
the various institutions that are situated in the leading climate research countries. Such institutions and
models are for instance the Canadian Earth System Model 2 (CanESM2) developed by the Canadian Centre
for Climate Modelling and Analysis or the Max Planck Institute Earth System Model (MPI ESM) developed
by the Max-Planck-Institute in Germany. Such models represent the state of the art in climate research and
are currently used to develop the fifth assessment report by the IPCC.

2. Methods

Here, a Geographical Information System (GIS) and machine learning algorithms were used to predict
presence/random absence, relative index of depth and life stage distribution maps of selected zooplankton
species. Natural ocean layers were predicted that are important as boundaries for the zooplankton species
and migration in the Arctic Ocean. Predicted ocean layers were also used as predictor variables for the
predictions of the mentioned zooplankton parameters. A best-pooled scenario was developed which is the
state of the art and based on a multitude of 107 GIS data layers. Moreover, future scenarios were predicted
based on future climate data from the Canadian Earth System Model 2 and for the low emission scenario
RCP26 and high emission scenario RCP85 for the two time steps 2010 and 2100. Based on those five
different models the predicted change in the presence/random absence, relative index of depth and life
stage distribution of zooplankton was evaluated.

The predicted presence/random absence models were based on observed presence data. No confirmed
absence data was available and absence data was applied randomly in GIS. Therefore, the predicted layers
were named predicted presence/random absence. The predicted relative index of depth layers were based
on sampled depths from plankton tows. However, if processed in a machine learning algorithm like
TreeNet, the output data is a relative index of the input data. Therefore, the layers were named as
predicted relative index of depth.
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The predicted life stage distribution layers are based on observed life stages as determined by the scientists
responsible for the analysis of the data sets. The different copepodite life stages were summarized to one
group copepodites.

In the following the data sets used for our predictions are described.

2.1 GIS data layers

The data that was used in the predictions was divided into four groups.

Group 1, ocean layer data set

Group 1 was a unique dataset on physical oceanography that consisted of pooled data from the early 20th
century to the 21st century. The dataset was collected from different platforms such as drift stations and
ship based measurements. The dataset had an amazing coverage and was compiled by Prof. Igor Polyakov
from the International Arctic Research Center and kindly provided to us (Fig. 17). A subset of the data set
where only measurements obtained in August were used was created as well as a GIS map of the data.

Physical Oceanography data for the Arctic Ocean

ko

Arctic Circle
e Sample point of data

Landmass 4] 380 760 1 SiG Miles

Figure 17: The complete data set that was provided by Prof. Igor Polyakov.

Group 2, zooplankton data set

Group 2 was an extensive dataset on zooplankton. The data was collected entirely from the open access
platform OBIS (http://www.iobis.org/) on the internet. A subset from this data was created showing only
zooplankton points for August (Fig. 18)
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Summary of plankton sample points for the best-pooled model. The following species are represented.
Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanessa raschii.
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Figure 18: Summary map of the zooplankton sample points. Sample points of different species are overlapping, making only one
point visible where points of two different species are though.

Group 3, best-pooled (model) data

Group 3 was the most extensive dataset on environmental variables and other factors for the Arctic Ocean
that | know of. 103 environmental predictors were collected describing the state of the art in the Arctic
Ocean. In addition four ocean layers were predicted using those 103 predictors and added to the predictor
pool for further model development. Environmental data that was used included for example bathymetry,
freshwater inflow, sea ice cover, salinity and sea surface temperature (SST) as well as temperature in
different depths (Fig. 19). For a complete list of predictors in this data set please consult the appendix,
chapter 6.1 (Table 6).

Figure 19: Digital elevation model (DEM) of the Arctic Ocean and adjacent landmass. Here used as bathymetric layer. Red color
delineates deep ocean and blue delineates higher altitude. Note the big blue area in the lower half of the graph delineating
Greenland. The inserted circle is the Arctic Circle at 66°33’N.
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Group 4 Future climate data from the Canadian Earth System Model 2

Group 4 was the future climate data from the CanESM2. Data for chlorophyll concentration, nitrate
concentration, sea surface salinity, sea surface temperature and runoff were acquired and for the time
steps 2010 and 2100 as well as for the two scenarios: Low emission (RCP26) and high emission (RCP85).
This data will be visualized later in this chapter. Therefore | do not provide a graph here.

2.2 The modeling method: machine learning

The modeling method utilized here in this project is a type of data mining via machine learning algorithms.
Data mining and machine learning have been used by insurance companies as well as in companies like
Google, where large quantities of data have to be analyzed following a pattern, for some time. They have
been mostly neglected in ecology until recent years though. Nowadays data mining and machine learning
algorithms are applied to a variety of research questions (e.g., Kononenko and Kukar 2007 and Huettmann
et al. 2011 for seabird distributions).

The modeling platform that was used is called the Salford Predictive Miner, a product of Salford Systems
(http://www.salford-systems.com/). There are several applications combined in this software that can be
used and that are based on different algorithms.

For this project the TreeNet application was used to model categorical data as well as continuous data.
TreeNet and other machine learning algorithms and software are described very well in the literature and
with a multitude of research articles and case studies (e.g., Cutler et al. 2007, Elith et al. 2008, Hochachka et
al. 2007, Craig and Huettmann 2009, Breiman 2001, Humpbhries et al. 2010, Friedman 1999; 2002, Oppel
and Huettmann 2010).

The TreeNet algorithm is similar to a long series expansion. A characteristic of those expansions and also
TreeNet™ is, that they get more accurate the longer the expansion continues (official Salford Systems
TreeNet™ manual). The interesting part and where TreeNet™ has its name from is represented in the
formula below. In the expansion below each T (T;...Ty) is a small regression tree.

F(X )= Fo+ BT (X )+ BT, (X )+ o + By Ty (X))

(from the Salford Systems TreeNet™ manual (Salford Systems 2003))

The longer the expansion continues, the more of the variance in the dataset is mathematically explained
and therefore produces a better model.

2.3 Workflow

For the first time, ocean layers in the Arctic Ocean were predicted based on a unique and extensive dataset
of physical oceanography. The models referred to here are statistical models according to the description of
TreeNet in chapter 2.2. A model is trained on a data set and for a number of observed events. Then the
model is predicted to the research area and provides a full coverage of the predicted events, exceeding the
number of observed events, e.g. events in the future.

Moreover, presence/random absence models were developed that indicate where the studied zooplankton
species is most likely to be present in the Arctic Ocean. Apart from that, the first spatially explicit models
known to science were developed that describe the depth in which the studied zooplankton species are
most likely to be at, as well as their distribution of life stages.
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This was not only done for one present day scenario. Five different scenarios were modeled and for future
climate data. First, ocean layers were model-predicted using the most up to date data from various open
access sources, earlier referred to as group 3 of the collected data (see appendix, table 6.1 for a complete
list of the data), in a best-pooled model attempt. Further referred to as the best-pooled model.

103 predictors were collected to model-predict the ocean layers H1, H2, H3 and Wx for the best-pooled
model (Fig. 20).

LTS L — —H2 >Wx

= 0°C Isotherm (bottom halocline) -H3 >

Figure 20: The four ocean layers that were modeled.

It was decided to model this set of ocean layers after discussions and input of expert knowledge by
Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks.
Those ocean layers were predicted because they are the boundaries and layers that the plankton has to
cross for diel vertical migration and a change in those would most likely affect the migration.

Four variables were assigned to the ocean layers. H1, H2, H3 and Wx. H1 is the lower boundary of the
mixed layer depth. In this layer atmospheric disturbance causes mixing of the water, giving the mixed layer
its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in
salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows
saltier and therefore denser as well as warmer Atlantic water. Wx summarizes the overall width of the
described water column.

In the following the development of the first ocean layer models is described in more detail and with some
focus on the TreeNet procedure.

TreeNet is capable of handling many predictors but only predicting one response variable. Therefore, in the
first case, the response variable was the depth of the H1 ocean layer and with all 103 variables of the
environmental data set being predictor variables. In order to be able to input the data into the modeling
program Salford predictive miner, the data had to be in a certain format. Therefore the points of known
and observed depth from the H1 ocean layer were intersected with the 103 environmental layers in ArcGIS,
assigning a value of each environmental variable to each point in the H1 ocean layer. The result was an
excel table containing the latitude and longitude of each data point of the H1 ocean layer data set and the
associated environmental values. Based on this table, the Salford predictive miner built a model that
explained the ecological niche of the modeled variable. At this point, a trained TreeNet model was
developed. This model was then applied to the complete study area and resulted in a predicted layer of the
response variable H1 and for the entire study area (Fig. 21).
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Figure 21: Workflow of the model development and application on the research area.

After the four ocean layers H1, H2, H3 and Wx were predicted in this way and for the pan-arctic research
area, they were added as predictors into the next models. By using the above procedure and adding the
four new predictor layers to the 103 predictors that were used before, it was possible to model the new
presence/random absence, most likely depth and life stage layers for the zooplankton species: C.
hyperboreus, M.longa, M. pacifica and T. raschii, with the new extended data set of 107 predictors (Fig.
22).

Models derived from this best-pooled dataset of 107 predictors represent the state of the art as well as
best known model and practice, therefore referred to as the best-pooled model. Since this type of
modeling and in its completeness was carried out for the first time known, a major goal was to develop the
workflow and the multitude of steps involved in the modeling.

Second, the ocean layers, presence/random absence, most likely depth of zooplankton and life stages were
model-predicted for future climate scenarios, using the newest and most up-to-date future data available
(Fig. 22). This data was produced according to guidelines from the CMIP5.

For this project it was decided to utilize the Canadian Earth System Model 2 (CanESM2) developed by the
Canadian Centre for Climate Modelling and Analysis: http://www.ec.gc.ca/. Reasons to choose the
CanESM2 were availability and access to data. There has not been much evaluation of the new CMIP5
derived models. However, the purpose of this thesis is to create a baseline and to show a possible and
general trend in zooplankton response to climate change. The different climate models may differ in details
and from region to region. The overall trend however, displayed by the various model is the same and
shows a decrease in chlorophyll concentration, an increase in sea surface temperature and a decrease in
sea surface salinity. Future research in this area may choose to use the then best performing and evaluated
model available.
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Prediction of Ocean Layers

Predictor data set 1

Response data set 1

1. Best pooled data set (n=103)

2. Future data set, CAESM2, rcp 26

(n=11) Ocean layer data set

3. Future dataset, CaESM2, rcp 85
(n=11) l

TREE | NET

Predicted pan-arctic ocean layers

Best pooled data set Future data set, Future data set,
e_s pooled data se CaESM, RCP 26 (n= CaESM, RCP 85 (n=
(n=103) 11) i

H3 H3 H3
Wx Wx Wx

Prediction of zooplankton parameters

. Response data set 2
> Predictor data set 2

Zooplankton data sets
for presence/random absence,
depth and life stages

. 2.RCP26 (n=15) e — 1. Best pooled
]—« zooplankton (4 species)
3.RCP26 (n=11)
2. Future zooplankton

. 4. RCP85 (n=15) 7 (3 species)

5.RCP85 (n=11) ~

. 1. Best pooled data set (n=107)

Predicted pan-arctic models

e presence/random absence
« relative index of depth
« life stages

J

Figure 22: Flowchart describing the model development. The best-pooled predictor data set was used to predict the ocean layers
H1, H2, H3 and Wx based on the ocean layer data set leading to the predicted ocean layers for the best-pooled model. According
to the same process, the future predictor data sets CanESM2 RCP26 and RCP85 were used to predict the future ocean layers
based on the ocean layer data set. Models were trained and applied back onto the study area using the Salfords data miner
application “TreeNet”. In the next step, the ocean layers were included into the predictor data sets to develop predicted pan-
arctic models of presence/random absence, depth and life stages of the zooplankton species. However, models were developed
including and excluding those ocean layers and to determine a possible effect by those layers. The overall outcomes were 5
scenarios predicting the presence/random absence, relative index of depth and life stage distribution for the studied species.
One best-pooled model scenario where ocean layers were included and for four species (C. hyperboreus, M. longa, M. pacifica
and T. raschii) as well as 2 low emission future climate scenarios (one including the ocean layers and one excluding the ocean
layers) and 2 high emission future climate scenarios (one including the ocean layers and one excluding the ocean layers) and
carried out for 3 species (C. hyperboreus, M. longa and M. pacifica). The 4 future scenarios were predicted for 2010 and 2100.
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According to the new CMIP5 guidelines, a low scenario (RCP26) and a high emission scenario (RCP85) were
used in the model predictions. After downloading the future data from the homepage of the Canadian
Climate Modeling Center, the data was extracted from the netCDF (Network Common Data Form) files they
were provided in. The netCDF format is a widely used format for climatological data but unfortunately not
very user friendly. Here, Michael Lindgren from the Scenarios Network for Alaska and Arctic Planning
(SNAP) at the University of Alaska helped with the project by writing a code to extract the data from the
netCDF files and to generate GeoTIFF files for further use in ArcGIS (see the appendix, chapter 6.2 for the R-
code). Programming was carried out in R.

After adjusting the data layers by reprojecting them into the North Pole Stereographic Projection and
cutting the future climate layers with worldwide coverage down to the region of the Arctic Circle, the ocean
layers were predicted, similar to the best-pooled model and following the same workflow (Fig. 22). The
future ocean layers were predicted based on a data set of 11 predictor variables including the future
climate layers from the CanESm2 model. The predicted ocean layers were then added to the original set of
predictor variables and the extended data set of 15 predictors used to predict the presence/random
absence, most likely depth in which zooplankton is present as well as the distribution of life stages for the
zooplankton species in the future (Fig. 22).

At this point, work was carried out for three species C. hyperboreus, M.longa, M. pacifica because
the available data points for T. raschii were outside the coverage of the CanESM2 data layers.

The above description explained the development of the future climate scenarios in general. The procedure
was however carried out for several sub scenarios. It was decided to model predict the presence/random
absence, most likely depth of zooplankton as well as the life stage distribution once including the ocean
layers and once excluding the ocean layers (Fig. 23) to see a potential effect of those layers. Moreover, the
scenarios were modeled out using future data of the low emission scenario (RCP26) and also using the
same parameters but based on future data of the high emission scenario (RCP85). All four scenarios were
built on the CanESM2 data for 2010 and then projected onto the data for the year 2100 (Fig. 23)

RCP26

+ stratification © ©

RCP26
- stratification

RCP85 2010 2100
+ stratification Model Model
RCP85 2010 2100
- stratification Model Model

Figure 23: The four different scenarios: low emission scenario including ocean layers, low emission scenario excluding ocean
layers, high emission scenario including ocean layers as well as high emission scenario excluding ocean layers. All four scenarios
were built on the CanESM2 data for 2010 and then also projected onto the data for the year 2100.

2.4 A comparison between the climate in 2010 and 2100 for two future climate scenarios
from the Canadian Earth System Model 2 (CanESM2)

Here, the changes in the raw data from 2010 to 2100 are going to be described and from the low emission
scenario (RCP26) to the high emission scenario (RCP85). The changes are visualized in spatially explicit GIS
maps including frequency distributions and a set of summary statistics that make it easy to grasp the
change.
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3. Results

The results of this project are quite extensive and displayed in various maps and sections. For ease of
comprehension, the results are however summarized in a few important key tables at the end of this
chapter that display also the changes between the scenarios very good. The different maps however give
the reader an understanding of the spatial context and how to relate the tables to the maps.

Note that the legends for the various GIS maps are the same where possible and with the same intervals
between displayed classes to make comparison easier. This is not always possible however.

The results chapter follows a general set up according to the five modeled scenarios.

First, the results of the best-pooled model are displayed. Second, the results of the low emission scenario
(RCP26) including ocean layers are displayed. Third, the results of the low emission scenario (RCP26)
excluding ocean layers are displayed. Fourth, the results of the high emission scenario (RCP85) including
ocean layers are displayed. Last but not least, the results of the high emission scenario (RCP85) excluding
ocean layers are displayed.

Each results section according to the scenario starts with the predicted ocean layers (where applicable),
and then followed by the overlays of the modeled zooplankton parameters. First | show the overlay of the
presence/random absence layer with the predicted relative index of depth and second | show the overlay
of the presence/random absence layer and the predicted life stages. This scheme is repeated for each
species.

The box like patterns in the predictions comes from the way TreeNet selects data and from the resolution

of the data used. Since TreeNet fits data in a mathematically best way to the model, it may select wider
areas for this and thereby creating the box like patterns.
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3.1 The best-pooled model

3.1.1 Predicted ocean layers

The mean predicted relative depth of layer H1 was -24.54m with a maximum depth of -67.02m (Fig. 44)
The mean predicted relative depth of layer H2 was -89.27m with a maximum depth of -171.28m (Fig. 45)
The mean predicted relative depth of layer H3 was -150.17m with a maximum depth of -331.32m (Fig. 46)
The mean predicted relative depth of layer Wx was -135.77m with a maximum depth of -319.20m (Fig. 47)
Note: Layers do not necessarily exist over shallow shelf areas.

In the following figures, the color scale ranges from green areas, where the predicted ocean layer is
shallower, to red areas, where the ocean layer is deeper.
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3.2 Low emission (RCP26) future predictions, including ocean Layers

3.2.1 Predicted ocean layers

The predicted ocean layer H1in 2010

The mean predicted relative index of depth of layer H1 in 2010 was -25.23m with a maximum depth of -
50.63m (Fig. 56).

The predicted ocean layer H1 in 2100

The mean predicted relative index of depth of layer H1 in 2100 was -21.15m with a maximum depth of -
44.32m (Fig. 57).

The predicted ocean layer H2 in 2010

The mean predicted relative index of depth of layer H2 in 2010 was -74.45m with a maximum depth of -
148.78m (Fig. 58).

The predicted ocean layer H2 in 2100

The mean predicted relative index of depth of layer H2 in 2100 was -80.09m with a maximum depth of -
176.61m (Fig. 59).

Note: Layers do not necessarily exist over shallow shelf areas.

In the following figures, the color scale ranges from green areas, where the predicted ocean layer is
shallower, to red areas, where the ocean layer is deeper.
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The predicted ocean layer H3 in 2010

The mean predicted relative index of depth of layer H3 in 2010 was -120.66m with a maximum depth of -
274.30m (Fig. 60). (Note: This layer does not exist over shallow shelf areas).

The predicted ocean layer H3 in 2100

The mean predicted relative index of depth of layer H3 in 2100 was -129.35m with a maximum depth of -
340.01m (Fig. 61). (Note: This layer does not exist over shallow shelf areas).

The predicted ocean layer Wx in 2010

The mean predicted relative index of depth of layer Wx in 2010 was -110.49m with a maximum depth of -
249.38m (Fig. 62). (Note: This layer does not exist over shallow shelf areas).

The predicted ocean layer Wxin 2100

The mean predicted relative index of depth of layer Wx in 2100 was -121.97m with a maximum depth of -
324.97m (Fig. 63). (Note: This layer does not exist over shallow shelf areas).

Note: Layers do not necessarily exist over shallow shelf areas.

In the following figures, the color scale ranges from green areas, where the predicted ocean layer is
shallower, to red areas, where the ocean layer is deeper.
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3.2.2 Calanus hyperboreus predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 84.77% of the points were predicted random
absence and 15.23% presence (Fig. 64). The mean predicted relative index of depth for C. hyperboreus in
2010 was 111.84m with a maximum depth of 942.19m and a minimum depth of -70.74m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 73.69% of the points were predicted random
absence and 26.31% presence (Fig. 65). The mean predicted relative index of depth for C. hyperboreus in
2100 was 127.13m with a maximum depth of 1190.70m and a minimum depth of -71.21m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 84.77% of the points were predicted random
absence and 15.23% presence (Fig. 66). The predicted life stage layer shows 51.94% of the points were
predicted adult and 48.06% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 73.69% of the points were predicted random
absence and 26.31% presence (Fig. 67). The predicted life stage layer shows 48.77% of the points were
predicted adult and 51.23% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.2.3 Metridia longa predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 82.61% of the points were predicted random
absence and 17.39% presence (Fig. 68). The mean predicted relative index of depth for M. longa in 2010
was 124.13m with a maximum depth of 556.05m and a minimum depth of -5.73m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 76.01% of the points were predicted random
absence and 23.99% presence (Fig. 69). The mean predicted relative index of depth for M. longa in 2100
was 134.57m with a maximum depth of 696.37m and a minimum depth of -4.76m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 82.61% of the points were predicted random
absence and 17.39% presence (Fig. 70). The predicted life stage layer shows 64.19% of the points were
predicted adult, 17.50% copepodite and 18.31% nauplii.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 76.01% of the points were predicted random
absence and 23.99% presence (Fig. 71). The predicted life stage layer shows 63% of the points were
predicted adult, 20.49% copepodite and 16.5% nauplii.

Explanation for the following figures:

General: General: Black color in the presence/random absence layer delineates random absence. Random
absence however does not indicate absolute absence but separates predicted presence (hot spot) from
other, less suitable areas. Predicted presence is transparent in order to make the underlying layer visible
(depth or life stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.2.4 Metridia pacifica predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 92.21% of the points were predicted random
absence and 7.79% presence (Fig. 72). The mean predicted relative index of depth for M. pacifica in 2010
was 26.25m with a maximum depth of 28.18m and a minimum depth of 22.14m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 93.27% of the points were predicted random
absence and 6.73% presence (Fig. 73). The mean predicted relative index of depth for M. pacifica in 2100
was 25.75m with a maximum depth of 28.12m and a minimum depth of 22.14m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 92.21% of the points were predicted random
absence and 7.79% presence (Fig. 74). The predicted life stage layer shows 98.62% of the points were
predicted adult and 1.38% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 93.27% of the points were predicted random
absence and 6.73% presence (Fig. 75). The predicted life stage layer shows 98.62% of the points were
predicted adult and 1.38% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.3 Low emission (RCP26) future predictions, excluding ocean layers

3.3.1 Calanus hyperboreus predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 88.48% of the points were predicted random
absence and 11.52% presence (Fig. 76). The mean predicted relative index of depth for C. hyperboreus in
2010 was 130.91m with a maximum depth of 949.02m and a minimum depth of -44.21m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 81.54% of the points were predicted random
absence and 18.46% presence (Fig. 77). The mean predicted relative index of depth for C. hyperboreus in
2100 was 135.54m with a maximum depth of 861.02m and a minimum depth of -15.37m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 88.48% of the points were predicted random
absence and 11.52% presence (Fig. 78). The predicted life stage layer shows 61.30% of the points were
predicted adult and 38.7% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 81.54% of the points were predicted random
absence and 18.46% presence (Fig. 79). The predicted life stage layer shows 56.93% of the points were
predicted adult and 43.07% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.3.2 Metridia longa predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 88.55% of the points were predicted random
absence and 11.45% presence (Fig. 80). The mean predicted relative index of depth for M. longa in 2010
was 127.36m with a maximum depth of 845.72m and a minimum depth of -49.28m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 87.20% of the points were predicted random
absence and 12.80% presence (Fig. 81). The mean predicted relative index of depth for M. longa in 2100
was 130.09m with a maximum depth of 600.13m and a minimum depth of -26.53m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 88.55% of the points were predicted random
absence and 11.45% presence (Fig. 82). The predicted life stage layer shows 42.42% of the points were
predicted adult, 36.35% copepodite and 21.23% nauplii.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 87.20% of the points were predicted random
absence and 12.80% presence (Fig. 83). The predicted life stage layer shows 36.01% of the points were
predicted adult, 42.39% copepodite and 21.6% nauplii.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.3.3 Metridia pacifica predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 94.80% of the points were predicted random
absence and 5.2% presence (Fig. 84). The mean predicted relative index of depth for M. pacifica in 2010
was 31.06m with a maximum depth of 33.27m and a minimum depth of 24.68m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 95.90% of the points were predicted random
absence and 4.1% presence (Fig. 85). The mean predicted relative index of depth for M. pacifica in 2010
was 31m with a maximum depth of 33.27m and a minimum depth of 24.68m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 94.8% of the points were predicted random
absence and 5.2% presence (Fig. 86). The predicted life stage layer shows 99.09% of the points were
predicted adult and 0.91% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 95.9% of the points were predicted random
absence and 4.1% presence (Fig. 87). The predicted life stage layer shows 99.1% of the points were
predicted adult and 0.9% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.4 High emission (RCP85) future predictions, including ocean layers

3.4.1 Predicted ocean layers

The predicted ocean layer H1 in 2010

The mean predicted relative index of depth of layer H1 in 2010 was -23.99m with a maximum depth of -
63.08m (Fig. 88).

The predicted ocean layer H1 in 2100

The mean predicted relative index of depth of layer H1 in 2100 was -22.57m with a maximum depth of -
45.42m (Fig. 89).

The predicted ocean layer H2 in 2010

The mean predicted relative index of depth of layer H2 in 2010 was -86.28m with a maximum depth of -
179.58m (Fig. 90).

The predicted ocean layer H2 in 2100

The mean predicted relative index of depth of layer H2 in 2100 was -89.44m with a maximum depth of -
157.10m (Fig. 91).

Note: Layers do not necessarily exist over shallow shelf areas.

In the following figures, the color scale ranges from green areas, where the predicted ocean layer is
shallower, to red areas, where the ocean layer is deeper.
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The predicted ocean layer H3 in 2010

The mean predicted relative index of depth of layer H3 in 2010 was -142.55m with a maximum depth of -
346.25m (Fig. 92).

The predicted ocean layer H3 in 2100

The mean predicted relative index of depth of layer H3 in 2100 was -144.36m with a maximum depth of -
286.98m (Fig. 93).

The predicted ocean layer Wx in 2010

The mean predicted relative index of depth of layer Wx in 2010 was -124.20m with a maximum depth of -
302.19m (Fig. 94).

The predicted ocean layer Wxin 2100

The mean predicted relative index of depth of layer Wx in 2100 was -125.57m with a maximum depth of -
245.68m (Fig. 95).

Note: Layers do not necessarily exist over shallow shelf areas.

In the following figures, the color scale ranges from green areas, where the predicted ocean layer is
shallower, to red areas, where the ocean layer is deeper.
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3.4.2 Calanus hyperboreus predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 88.27% of the points were predicted random
absence and 11.73% presence (Fig. 96). The mean predicted relative index of depth for C. hyperboreus in
2010 was 111.84m with a maximum depth of 942.19m and a minimum depth of -70.74m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 82.15% of the points were predicted random
absence and 17.85% presence (Fig. 97). The mean predicted relative index of depth for C. hyperboreus in
2100 was 227.09m with a maximum depth of 973.80m and a minimum depth of -43.53m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 88.27% of the points were predicted random
absence and 11.73% presence (Fig. 98). The predicted life stage layer shows 59.82% of the points were
predicted adult and 40.18% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 82.15% of the points were predicted random
absence and 17.85% presence (Fig. 99). The predicted life stage layer shows 44.22% of the points were
predicted adult and 55.78% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.4.3 Metridia longa predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 68.63% of the points were predicted random
absence and 31.37% presence (Fig. 100). The mean predicted relative index of depth for M. longa in 2010
was 124.13m with a maximum depth of 556.05m and a minimum depth of -5.73m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 67.52% of the points were predicted random
absence and 32.48% presence (Fig. 101). The mean predicted relative index of depth for M. longa in 2100
was 147.13m with a maximum depth of 512.75m and a minimum depth of -7.85m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 68.63% of the points were predicted random
absence and 31.37% presence (Fig. 102). The predicted life stage layer shows 53.24% of the points were
predicted adult, 25.15% copepodite and 21.6%1 nauplii.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 67.52% of the points were predicted random
absence and 32.48% presence (Fig. 103). The predicted life stage layer shows 35.63% of the points were
predicted adult, 45.53% copepodite and 21.17% nauplii.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.4.4 Metridia pacifica predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 96.39% of the points were predicted random
absence and 3.61% presence (Fig. 104). The mean predicted relative index of depth for M. pacifica in 2010
was 26.25m with a maximum depth of 28.12m and a minimum depth of 22.14m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 98.19% of the points were predicted random
absence and 1.81% presence (Fig. 105). The mean predicted relative index of depth for M. pacifica in 2100
was 21.39m with a maximum depth of 22.77m and a minimum depth of 17.49m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 96.39% of the points were predicted random
absence and 3.61% presence (Fig. 106). The predicted life stage layer shows 99.53% of the points were
predicted adult and 0.47% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 98.19% of the points were predicted random
absence and 1.81% presence (Fig. 107). The predicted life stage layer shows 99.54% of the points were
predicted adult and 0.46% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.

78



"§8dDY ‘0a1f1ond ‘|l 104 00TT Ul sa3els
31| papipasd yum aduasqe wopuel/aduasaad jo AejaanQ :£0T a4nSi4

Piuios Ao Aq paeasd

009's 00Z'L 008 00V 00Z O
SIjWO) | S ——

sypodadon o
ey«

eoyoed W 10}
Beis o)) paloipald

slqissod uonoipasd oN

eayoed
4o 80UBSGE WOpUE! PaLoIPald

ssewpue

apuI0 o1y

puabo

§8dOY :01eUIS ‘ZINSIUED :|9POIN 001 ISnBny ul eayroed eipLyap
10} sabeys a1 pajoipaid ay) pue aduasqe Wopueladuasald pajoipald ayy jo Aepano

"S8dJY ‘0aif1opd A 4104 00T Ul Yrdap jo xapul
aAne[a. paipasd yum aduasqe wopuel/aduasasd jo AelsanQ :SOT 24n3i4

ms_ss
ZL0zZIvLIY -k
PIUYOS ZIMON Aq PateaiD

009’ 00Z'L 008 00 00Z O

sisjowoly
se-ee [N
ee-vie [N
1e- 16z
ez-rie[ ]
2z-vse [
sz-vez [N
ez-viz [
iz-ve [N
o -2 [

eayoed 10} yidep Jo
X9pUI BAE[R) PRIOIPaLd

B

aiqissod uolpeid oN

Boyoed W
40 20UBSqR WOPUE! PAIPalY

ssewpue]
opu0 oIy

puaba

§8dOY :0UBUSIS ‘ZINSTUED :I9PO "001Z ISNBNY ul eayoed eipLiayy 104
yidap jo xapui aAljejal pajoipasd ay) pue ge wopue. 4d pajoipaad ay) jo Aesano

6L

*§8dDY ‘vaif1opd |l 104 OTOZ Ul s3els
9}1] pa1d1Ipasd yum ssuasqe wopued/aduasaasd o AejaanQ 90T 24n314

14 :uoision

ZL0ZIvLIY soleq

PiIOS O A Pateald
009', 00Z'L 008 00V O0Z O
Siajauo]) E—— ———

oludesBoaIss 9lod UON waIShS AeUPIOD y
e 1S 9l0d WON ‘Wars/S NeupIocD sypodadon e

]
pos
L5

|qissod uonoipaid oN

eoyoed
WO 10 sauasqe WopUEl paIpald

ssewpue

puabar

S8dOY :0LBUIIS ‘ZNSIUED ISPOI "010Z ISNBNYy Ul esyroed epLiap
10} sabejs ay1| pajoIpald ay) pue aouasqe wopuel/asuasaid pajoipaid ayj o ketano

*S8dJY ‘paif1o0d A 10§ 0TOT U! Yadap jo xapul
aAeja. pailpasd yum aduasge wopuel/aduasaid jo AeldanQ 0T 94nSi4
Z10ZIvLiv :3ea
Pruysg oW :Aq paread

sispewolp]

se-vee [l
ee-vic [
re-ves [ |
ez-ve [ ]
2z-vsz [
sz-vez [
ez-1z [l
iz-ve [N
o -2 [N

eoyoed 10 yidep jo
¥opuI aNElR) PaloIpald

ouydeiboasss voroaloid
udesBosias afog UNON WaISAS a1eupIod

s|qissod uogoipaid oN

eoyoed
1o 0uasqe wopues papIpaid

ssewpue

apI0 oIy

puabar

§8dDY :0LBUSDS ‘ZINSIUEBD :|3POIN "0L0Z ISNBNY U1 eayroed elpiiap 104

yydap jo xapui aAne| 1paid ay} pue wopuels/eouasaid pajoipasd ay) jo AeltanQ




3.5 High emission (RCP85) future predictions, excluding ocean layers

3.5.1 Calanus hyperboreus predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 82.63% of the points were predicted random
absence and 17.37% presence (Fig. 108). The mean predicted relative index of depth for C. hyperboreus in
2010 was 140.71m with a maximum depth of 869.73m and a minimum depth of -71.83m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 74.11% of the points were predicted random
absence and 25.89% presence (Fig. 109). The mean predicted relative index of depth for C. hyperboreus in
2100 was 284.40m with a maximum depth of 947.78m and a minimum depth of -57.26m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 82.63% of the points were predicted random
absence and 17.37% presence (Fig. 110). The predicted life stage layer shows 52.42% of the points were
predicted adult and 47.58% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 74.11% of the points were predicted random
absence and 25.89% presence (Fig. 111). The predicted life stage layer shows 39.41% of the points were
predicted adult and 60.59% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.5.2 Metridia longa predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 70.48% of the points were predicted random
absence and 29.52% presence (Fig. 112). The mean predicted relative index of depth for M. longa in 2010
was 139.75m with a maximum depth of 657.84m and a minimum depth of -26.79m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 76.11% of the points were predicted random
absence and 23.89% presence (Fig. 113). The mean predicted relative index of depth for M. longa in 2100
was 192.59m with a maximum depth of 599.95m and a minimum depth of -23.56m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 70.48% of the points were predicted random
absence and 29.52% presence (Fig. 114). The predicted life stage layer shows 61.88% of the points were
predicted adult, 21.48% copepodite and 16.64 nauplii.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 76.11% of the points were predicted random
absence and 23.89% presence (Fig. 115). The predicted life stage layer shows 54.47% of the points were
predicted adult, 45.53% copepodite and 13.11 nauplii.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.5.3 Metridia pacifica predictions

Overlay of presence/random absence and predicted relative index of depth in 2010

The predicted presence/random absence layer showed that 95.47% of the points were predicted random
absence and 4.53% presence (Fig. 116). The mean predicted relative index of depth for M. pacifica in 2010
was 22.30m with a maximum depth of 24.39m and a minimum depth of 17.12m.

Overlay of presence/random absence and predicted relative index of depth in 2100

The predicted presence/random absence layer showed that 97.53% of the points were predicted random
absence and 2.47% presence (Fig. 117). The mean predicted relative index of depth for M. pacifica in 2010
was 22.30m with a maximum depth of 24.39m and a minimum depth of 17.12m.

Overlay of presence/random absence and predicted life stages in 2010

The predicted presence/random absence layer showed that 95.47% of the points were predicted random
absence and 4.53% presence (Fig. 118). The predicted life stage layer shows 98.84% of the points were
predicted adult and 1.16% copepodite.

Overlay of presence/random absence and predicted life stages in 2100

The predicted presence/random absence layer showed that 97.53% of the points were predicted random
absence and 2.47% presence (Fig. 119). The predicted life stage layer shows 98.87% of the points were
predicted adult and 1.13% copepodite.

Explanation for the following figures:

General: Black color in the presence/random absence layer delineates random absence. Random absence
however does not indicate absolute absence but separates predicted presence (hot spot) from other, less
suitable areas. Predicted presence is transparent in order to make the underlying layer visible (depth or life
stages).

Specific for predicted relative index of depth: The color scale ranges from green where the relative index of
depth is shallower to red areas where the relative index of depth is deeper.

Specific for predicted life stages: Orange color delineates predicted adult life stages; green color delineates
predicted copepodite life stages.
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3.7 Synthesis of future predictions

Future predictions of the ocean layers show a change in the predicted relative index of depth towards
shallower H1 ocean layers in 2100 in comparison to 2010 (Table 2). The H2, H3 and Wx layers however
show a change towards a deeper predicted relative index of depth (Table 2). This finding is consistent over
the different scenarios.

The predictions for C. hyperboreus and M. longa occurrence are quite similar and showing the same trends
(Table 3 and 4) and as discussed in the following. Predictions for M. pacifica are showing a different trend
(Table 5).

Future predictions for C. hyperboreus and M. longa show a clear trend towards a higher percentage of
predicted presence from 2010 to 2100 (Table 3 and 4). This finding is consistent over the different
scenarios.

Future predictions for C. hyperboreus and M. longa show a clear trend in the change from 2010 to 2100
towards a deeper predicted relative index of depth (Table 3 and 4). This finding is consistent over the
different scenarios.

Future predictions for 2010 and 2100 show a clear trend in the change of predicted life stages for M.
hyperboreus and M. longa (Table 3 and 4). The trend is towards a higher fraction of copepodite life stages
and less adult life stages in 2100. Moreover the nauplli stage of M. longa decreases in most of the
scenarios.

M. pacifica shows no substantial differences between the different scenarios. The range between the

predicted values is very close. The predictions show however a trend towards less predicted presence and a
trend towards a shallower predicted relative index of depth (Table 5).
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4. Discussion

4.1 Data quality

This study presents best available data and algorithms. The results are robust and show clear trends and as
stated in chapter 3.6 and 3.7. Most aspects of this discussion shall focus on the problematic aspects of this
project and to point out the issues relevant for future improvement.

Lyman and Varian (2003) pointed out that in 1999, worldwide between one and two exabytes of
information per year were generated (1 exabyte = 1 billion gigabyte). This study includes all kind of data
generated, from newspapers to magnetic storage devices. However those numbers show the vast amounts
of data that are available and with a high growth rate that is not likely to slow down. A current issue of
global interest is the discussion about open access data and whether it should be anticipated by scientists
to make their publications and data freely available (e.g., Beaudouin-Lafon 2010). This issue overlaps with
the problem of data quality. A substantial amount of the data available in the scientific community is
believed to be of rather bad quality, a statement supported by experience from this project, but also a
known problem to scientists and industry (Data Warehousing Institute at http://www.dw-institute.com/,
accessed on 4/15/2012) and costing vast amounts of money worldwide. Bad quality means here for
instance that data was collected without a clear research design, without goals or simply according to
outdated designs and procedure. Those badly designed protocols or the use of outdated protocols and
ones that are not reviews can lead then to various implications. For instance, nowadays a scientist might
want to model biomass and to assess population trends and declines on a local, regional and global level.
Biomass however was not measured in the early days of marine oceanography, and still inconsistently
these days. For current day research we need to collect data from new variables though. Therefore
research designs and protocols have to be further developed and updated according to the most recent
findings in science. A part of the quality of science is already determined in the way field data is sampled.
Therefore, an up-to-date research design and field protocols should not be underestimated in order to
achieve science-based management of natural resources and best professional practice.

Another problem is data that was collected in the field but not analyzed, or which remain unpublished.
Mostly this happens when there is not enough time and money to analyze the collected samples and/or the
focus of research changes, e.g. more interesting research is carried out. This can reflect poor planning.
Either way, effort and money (mostly money that did not belong to the investigating person itself, but
instead was public tax money or similar) have been invested but no major output, accessible to the public
has been achieved. This is important regarding ecological stewardship. This must be seen as highly
unethical when done on purpose (see examples in Huettmann 2012).

Recent efforts and projects focus on this kind of public data (e.g., Census of Marine Life (COML), trying to
safe and digitalize a lot of the mostly old data. Saving the data from rotting and being forgotten (Carlson
2011).

One cause of this problem is that analyzing the field data takes a lot of time and especially when having to
analyze zooplankton samples. Future research should focus on robust methods to automate taxonomic
analyses as requested by scientists (Janzen 2004), e.g. species recognition though machine learning
algorithms. However, further research is necessary to successfully create those automatic systems (Gaston
and O’Neill 2004, Trifa et al. 2008). Research on this topic is currently under way and devices such as the
LOKI device that are capable of recognizing species using an underwater camera system and species
determination software are in use (Schulz et al. 2008).

Moreover, high quality data is rare (about 5% by experience (Huettmann, personal communication). High
quality means here that parameters that are collected are relevant for modern time analysis, with valid
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taxonomy, transparent in their collection procedure, according to best known practice, and publicly
available and in a good digital format.

In the specific case of this project it should be pointed out, that initially it looked like there was a lot of data
available, e.g. for the species C. hyperboreus . When searched for, the term C. hyperboreus shows over
40,000 entries in the Ocean Biogeographic Infroamtion System (OBIS). If however filtered for August and
including a depth measurement and a life stage description then from experience, about 10% of the entries
are left. Note that the depth and life stage are some of the most basic measurements and not especially
sophisticated. When looking for biomass data in those databases and for C. hyperboreus only a few data
entries turn up and not sufficient for a scientific project. This should be discussed in the light of extremely
expensive research cruises and public money.

Therefore more high quality data is needed that is consistent, following up-to-date research design and
measures important new variables like biomass. It should be agreed upon however in the scientific
community how such a research design should look like and how implemented and for what reasons.

Another problem lies in the format that is used to distribute data. The future data from the Canadian
Government (CanESM2), and most likely all other climate data from other institutions, was provided the
netCDF format. It should be pointed out that netCDF files are approximately 20 years old, and that they are
a very user-unfriendly data format which is almost everywhere outside pure atmospheric research obsolete
by now. It must be possible to have an easy to use overall data format for such things. Why not distribute
that information in ASCII or even ArcGIS formats? An ASCII file could at least be opened by anyone with a
text editor and is a standard file format anywhere in the world of computing and across platforms.

Another critical issue of data quality is metadata. For this research, there was a problem with the way
metadata was provided for the Canadian Earth System Model 2 and in general documentation of future
data models and data produced according to the Intergovernmental Panel on Climate change (IPCC). There
are no metadata files, despite the acknowledged relevance of such files throughout the community. How
can a public institution produce several terabytes of raw data without describing them adequately? The
only information available was in the header of netCDF files and is absolutely insufficient to describe the
file. For such big amounts of data that are predicted for several scenarios and with big public and global
relevance, there has to be a clearly visible link on the main homepage of the institution describing the data.
This does not only make handling easier but adds to transparency and is a good investment.

4.2 Machine learning experience and prediction quality

Experiences with machine learning in this project show that TreeNet was performing “good” and it had no
relevant problems when predicting presence/random absence of zooplankton. For the presence/random
absence predictions, every spatial location had only one presence or random absence entry obviously.

For the depth and life stage predictions however, each spatial location had several entries because in each
plankton tow, the same species can be found at several depths and in several life stages. Having multiple
entries per position leads to some problems in the predictions and results in a blurry prediction (multiple
signals from a unique location); TreeNet has obviously difficulties when the spatial location contains five
points of adult life stage and, let’s say as an extreme example, 5 points of copepodite life stage. However,
data mining is the only valid way we are aware of to get results from this kind of data. Nonetheless,
TreeNet still has difficulties to determine what stage it should assign here from the contaminated sample.
The mentioned example occurred more than once in the data sets of this project. The same problem
occurred when predicting the depth but was less severe there. This might be due to the fact that TreeNet
had to decide between a binary choice when predicting most of the life stage scenarios but when
predicting the depth it was able to work in a continues range of values.
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The two mentioned problems however make for a new development in predicting zooplankton in the Arctic
and worldwide. An attempt to model those parameters has never been undertaken to my knowledge.
Nevertheless, TreeNet was capable of incorporating exactly this variability in the data of depth and life
stages. On the other hand this shows where the limitations still are and that we have to move even further
and have to push back the boundaries in modern modeling techniques.

Overall, the best data mining tool was used to resolve this problem. Still, it must be resolved whether this is
a biological or a sampling problem, and how to improve it further.

Another difficulty that obviously exists and that had to be dealt with here is a too small sample size. Even
the best modeling software has no chance to develop good models when the input data is too sparse. This
adds up to the issue on data quality above.

In this particular case, M. pacifica was modeled despite the fact that it is not (yet) an Arctic species and
therefore only some sample points along the outer boundaries of the Arctic Ocean were available. Not due
to bad data quality, but according to the natural species range sample sizes were low. Especially regarding
climate change modeling this scenario was among the most interesting parts however and with large
implications. Clearly, in this study we wanted to find out if a shift in the species range occurs within the
different scenarios and from 2010 to 2100. The question is now why it was not possible to show this
proposed shift. It could either be because there is simply no species shift happening because the
environmental conditions are (still) not adequate for M. pacifica or because the sample size was bot
adequate and too low, or because of other unknown flaws. Further research could include newly released
data, as well as a wider area around the Arctic Ocean in order to develop a better model of M. pacifica and
to capture the environmental range in suitable habitats. When applied back to the Arctic Ocean, such a
model could show some stronger results However it is also possible that the range of M. pacifica does not
shift on a notable scale and what was seen in the models reflects the current outlook on the next 90 years
regarding distribution of M. pacifica.

The prediction quality varies between the models and scenarios (see chapter 6.3 in the appendix for
performance measures). The future data models however will not be discussed here for their performance
(in the traditional sense of metrics) since it is impossible to assess an incident that might happen in the
future and despite controversial discussions on this topic. The future model predictions of the future
scenarios however were developed to be similar to the best-pooled model in order to calibrate them and to
model the change from this point in time on. The model approach followed best known practices and
performed well when extrapolated spatially in 2010.

The prediction quality of all of the four ocean layers in the best-pooled models was good. Similarly, the
predictions of the models leading to the relative index of depth were good in most cases. Both models were
built on continuous data that TreeNet was able to handle without a problem. The predicted depth model
for M. pacifica was rather bad probably due to the low sample size. The models developed to predict the
presence/random absence were in general very good and showed a good model response curve. The model
performance to predict the life stages varies between the species. The models for M. longa, M. pacifica and
T. raschii were able to find a good model optimum. The model for C. hyperboreus however failed to detect
a real trend, probably due to a high amount of overlapping life stages as discussed before. A substantial
amount of sampling points had multiple entries for both life stages. This made it difficult for TreeNet to find
atrend.

For an assessment of model performance, response curves of the models are provided where applicable
indicating how much variance the model explains. Response curves for the ocean layer models can be
found in the appendix, chapter 6.3.1.1 as well as response curves for zooplankton species in chapter
6.3.1.2.
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Second, the most important predictors and their relative importance are provided, where the most
important variable receives a score of 100. A listing of important predictors for the Ocean layer models are
provided in the appendix, chapter 6.3.2.1 as well as for zooplankton species in chapter 6.3.2.2.

Third, partial dependence plots are provided. Partial dependence plots show the effect of a single predictor
on the predicted response. Partial dependence plots are one kind of Resource Selection Function (Manly et
al. 2002). Moreover, partial dependence plots show the functional non-linear relationships of single
predictors in the context off the pooled set of predictors. Graphs of partial dependence plots for the ocean
layer models are provided in chapter 6.3.3.1 as well as for zooplankton species in chapter 6.3.3.2.

Fourth, tables that indicate the misclassification for the different models are provided in the appendix,
chapter 6.3.4.

Last but not least, Receiver Operating Characteristics (ROC) curves are provided for binary classification
models in the appendix, chapter 6.3.5. The ROC curve is a graphical visualization of the true positive rate
plotted against the false positive rate in a binary system.

4.3 Scenario comparison

In this section the differences between the low emission RCP26 and the high emission RCP85 scenario, and
the information gained when comparing both scenarios shall be discussed. If we assess the raw data and as
presented in the methods chapter 2.4 it is visible that the overall trend does not change much on a pan-
arctic scale. The change in chlorophyll mass concentration is decreasing from 2010 to 2100 and for both
scenarios (RCP26 and RCP85). The median is however changing from 3x107-8 kg m™ in RCP26 to 7x107-7 kg
m~ in RCP85 indicating a higher overall decrease in RCP85 as one would expect. The area of highest
decrease shifts also. In RCP26 the highest decrease is in the area of the Canada Basin but in RCP85 the area
of highest decrease shifts more towards the Nansen Basin.

The change in total runoff is decreasing from 2010 to 2100 and in the RCP26 scenario. The RCP85 scenario
however shows an increase in the median total runoff. The median for the RCP26 scenario is -0.00001737
kg m? s where the median for the RCP85 scenario is 0.00000594 kg m™ s The areas of highest decrease
and increase shifts also. In RCP26 the highest decrease is in the area of the Nansen Basin and Laptev Sea
and with areas of increase in the Canada Basin and the East Siberian Sea. The RCP85 scenario shows a
decrease from 2010 to 2100 in the Beaufort Sea and an increase in the Central Basin as well as Kara Sea,
Nansen Basin, Amundsen Basin as well as Laptev and East Siberian Sea and some shelf regions around
Ellesmere Island.

The change in dissolved nitrate concentration is decreasing from 2010 to 2100 and for both scenarios
(RCP26 and RCP85). The median is however changing from -0.0000022 mol m™ in RCP26 to -0.00000562
mol m*in RCP85 indicating a higher overall decrease in RCP85. The areas of decrease are evenly distributed
over the Arctic Ocean indicating a broad scale decrease in dissolved nitrate concentration.

The change in sea surface salinity shows a decrease from 2010 to 2100 and for both scenarios (RCP26 and
RCP85). The median is however changing from -0.538 psu in RCP26 to -0.682 psu in RCP85 indicating a
higher overall decrease in RCP85. The areas of decrease in the RCP26 scenario stretch from the Beaufort
Sea to the Laptev Sea and to the Kara Sea and to the Nansen Basin and include the Canada Basin as well as
the Central Basin. An increase of salinity was shown along the Russian coast as well as Barents and
Norwegian Sea. The RCP85 scenario shows a shift of decreasing salinity towards Greenland and Baffin Bay
with major areas of decrease still stretching from the Bering Strait all the way down to the Norwegian Sea
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and a band of area where salinity is increasing along the Russian shelf regions but reaching even into the
Nansen and Amundsen Basin.

The change in SST shows an increase from 2010 to 2100 and for both scenarios (RCP26 and RCP85). The
median is however changing from 1.005 K in RCP26 to 0.768 K in RCP85 indicating a higher overall decrease
in RCP26. The areas of increase in the RCP26 scenario stretch from the Bering Strait down to the Norwegian
Sea with the exception of some patches of decreasing sea surface temperature along the Lomonosov Ridge
and Makarov Basin. Sea surface temperature is increasing most in Kara, Barents and Norwegian Sea and
decreasing most in the East Siberian and Laptev Sea. The RCP85 scenario shows basically the same picture
but with a shift of decreasing SST along Northland and the Kara Sea.

Since those are the only input variables into the future scenarios to predict zooplankton parameters and
that are changing over time, these parameters are driving our models. The change in the predicted ocean
layers and the zooplankton presence/random absence, predicted relative index of depth and life stage
distribution can be explained by taking in account the changes in these future climate layers, as described
before.

4.4 Synthesis of the findings

As stated in chapter 3.6 summarizing the GIS maps, as well as in 3.7 Synthesis of future predictions, clear
trends for the future conditions of zooplankton and ocean layers arise within our model predictions. Those
trends will be discussed in the following.

The observed trends describe a picture where stress is added to the zooplankton and in its different life
stages and their general ecology. The observed clear trends and changes towards a deeper predicted
relative index of depth (Table 3 and 4) indicate that zooplankton has to migrate longer distances in order to
fulfill the daily feeding cycles and to feed on phytoplankton. In the light of diel vertical migration (Hays et al.
1990) and the predator evasion hypothesis (Dagg et al. 1997) mentioned in chapter 1.2.3, this longer way
does not only increase energy expenditure but also might increase the predation risk for zooplankton.
Climate change and factors like increasing radiative forcing and a decrease in the phytoplankton food
source might also have substantial effect on zooplankton and regarding other influences on DMV such as
the light intensity (Nesbitt et al. 1996), light protection (Manuel and O’Dor 1997) food availability (Dagg et
al. 1997).

Overall, | propose that the shift towards a deeper predicted relative index of depth in both scenarios, low
emission (RCP26) as well as high emission (RCP85) scenario, shows the overall impact of anthropogenic
disturbance and climate change and the negative effects on zooplankton that we are eventually facing in
the future.

Moreover a trend to a higher percentage of copepodite life stages in 2100 (Table 3 and 4) was observed
and for both emission scenarios. The substantial decrease in adult life stages could be a response to the
predicted ocean layers that show a shift towards deeper depths. Therefore, the additional stress on
migrating adults favors the copepodite life stage that does not migrate or at least not to the extent that
adult zooplankton does migrate. The change in the life stage distribution makes for an extreme impact on
the population dynamics and population structure of zooplankton in the Arctic Ocean. Most likely this has
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serious effects on the food chain and the whole ecosystem Arctic Ocean, all the way up the food chain with
medium and top predators such as fish, seabirds, seals and polar bears for instance.

The observed increase in area of predicted presence might be a strategy to evade higher stress when
migrating and spreading into a wider area where migration is less stressful (Table 3 and 4). This dispersion
into a wider area should not be misunderstood as an increase in zooplankton since in this project only
suitable habitat is predicted, not biomass or any other measure that could tell us if there is actually more
zooplankton. All that is known is that the ecological niche the zooplankton inhabits is spreading out.
Dramatically decreasing mass of phytoplankton are a major indicator that zooplankton most likely suffers
dramatic negative changes as well.

The observed changes pose a threat to the zooplankton. This is because of anthropogenic change resulting
in higher runoff, freshwater sealing and the various, mentioned negative effects on the Arctic Ocean and as
hypothesized. Zooplankton did not evolve to these changing conditions and most likely needs a substantial
amount of time to adapt to the changes. The question is, if zooplankton has this time. Looking at the
current development in the world (e.g., IPCC AR4 SYR 2007, Millennium Ecosystem Assessment
(www.maweb.org), Huettmann 2012) it seems most unlikely that zooplankton can adapt at a sufficient
pace to climate change and other anthropogenic disturbances. Zooplankton has to be seen as a whole and
in the view of climate change including ocean acidification, invasive species, decreasing ecological services,
in the case of the Arctic an increasing shipping activity and further exploitation of natural resources like gas
and oil which is directly linked to environmental disasters and extreme disturbance of natural
environments.

In this project, based on modeling using latest data and algorithms, there is no evidence for an increase in
zooplankton. Potential factors affecting zooplankton are negative and especially when seen in the global
picture.

Also, the Arctic Ocean is a substantially more diverse environment than what the models in this project are
describing. One has to assume that some species can cope better with changes in their environment than
other species and over all there will be few species able to change and adapt to the changes at a sufficient
pace and to sustain viable populations. These adjustments are all for man-made ecosystems and due to
human impacts; the notion of an untouched arctic wilderness is widely gone. This stress scenario applies
not only to the Arctic and our study species bust must be seen in a global view and for many different kinds
of plankton all over the world.

Moreover | want to point out that the outlook of our model predictions ends in the year 2100. Life on Earth
and zooplankton in the Arctic Ocean however will be around for much longer and therefore it is important
to look at this and similar problems and research questions with exceptional forethought. It may take
humankind only 50 years to damage the environment to a point where it will take hundreds and thousands
of years, if at all, to reverse the changes again and get back to a natural level. Extinction of species and of
metapopulations however, is not resilient and cannot be reversed. Many future generations however will
live with and suffer from our failure. The current ecological and economical developments in the world
make need for future predictions and to see how our doing affects nature in the long term. The pre-
cautionary principle and pro-active actions matter and should become the forefront of our action and be
emphasized. Perhaps someday world economy will settle into a steady state and humankind lives on Earth
according to the carrying capacity? Who knows if future predictions will be necessary then? It seems to be
most necessary to look into the future when the current state is most uncertain. | think we are currently
living in such a state.
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6.2 The R-code used to extract data from the future climate models

See below the programming code in R programming language developed by Michael Lindgren from the Scenarios
Network for Alaska and Arctic Planning (SNAP) office, and modified by Moritz Schmid, to extract data from netCDF
files to a different format. If you are interested, Michael Lindgren would surely be happy to receive an email from you
at: malindgren@alaska.edu.

Code start:

# This code was written by Michael Lindgren (malindgren@alaska.edu) of The Scenarios Network of Alaska and Arctic
Planning at the University of Alaska Fairbanks for the purposes of aiding in the extraction of NetCDF data to a more
easily digestible format for commercial GIS softwares. The code reads in the nc file as a raster brick, which allows for
easy access to the data in a native R format, and extracts each layer from 1:N layers in the NetCDF to a *.tif file. This
does require that the user inputs a few different options to be able to create the proper output filename. This is a bit
tedious but was hardwired in this way for use in many applications. Though in the future it would be nice to write in a
parser to turn the input filename into one that is for each individual file using some basic tenets of file naming. #

# The USER MUST INPUT THE NEEDED INFORMATION INTO THE VARIABLES inside of the # -- - -- - --#

# This code is open access / open source and is able to be shared and re-used as needed. Please contact the author
(Michael Lindgren) with questions or to send some Kudos (always nice to get!) for writing it and making it available #

# The following packages are needed to run this code. If you do not have these packages installed use the R command
install.packages('<name of package>') to install it directly from the command line. (this requires internet connection)
e.g. install.packages('raster') this will install the raster package. You may need to indicate a mirror to download the
data from, just choose the one that is geographically closest to where you are currently working#

install.packages('rgdal') # install the gdal r package

require(rgdal) # this asks R to put the rgdal library into the environments

install.packages('raster’)

require(raster)

install.packages('ncdf')

require(ncdf)

B om cm e e e e e e e e e e e e e e e e e e e e o o e o e

setwd("YOUR PATH") # set the working directory

#this line sets the output directory to wherever you want to write out the rasters
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output.dir <- "YOUR PATH.../" # BE SURE TO LEAVE THE ENDING /' 111!

#path to the .nc file to be extracted to NetCDF

nc.path <- "YOUR PATH"

# this line is all it takes thanks to the raster package to create a stack of rasters from the multidimensional array
NetCDF file#

nc.stack <- brick("YOUR PATH")

# these variables should be set to the 2 or 3 digit variable code used to identify the output data, the model group, the
model name, the RCP, and the realization physics run number [ALL OF WHICH CAN BE DERIVED FROM THE INPUT
FILENAMES YOU GET FROM THE GROUP]#

# ---->this is used to create the output naming convention for the new raster layers and with examples given<----
var <- 'vas'

model.group <- 'cccma’

model.name <- 'CanESM?2'

rcp <- 'rcp85'

realizationPhys <- 'r1ilp1’

level <-'1'

# these two variables should be set to the beginning year in the series and the end year in the series. They are used in
creating the output naming convention#

BeginYear <- 2010

EndYear <- 2100

B om o o e o e e e e el e

# this variable creates a 2-digit scheme for month indicator

months <- C("01","02","03";"04";"05"/"06"/"07"/"08“,"09","10";"11"/"12")

count=0
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for(y in BeginYear:EndYear){

print(paste("working on Year: ", y, sep=""))

for(m in months){

print(paste(" extracting... ", m, sep=""))

count = count + 1 #this is used as an iterator to grab a file based on its position in the

array#

# here we write the selected raster layer to file ** extension can be altered to get
different format outputs depending on those file types supported by the {raster}

package in R#

writeRaster(raster(nc.stack, layer=count), filename=paste

non non non non

,model.name,"_",rcp,"_",

(output.dir,var,"_",model.group,

non non

realizationPhys,"_",m,"_",y,".tif", sep=""))

print(" COMPLETED EXTRACTION! ")
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6.3 Model performances for the best-pooled model

6.3.1 Response curves

6.3.1.1 Ocean layer models

Ocean layer H1

The following graph shows the response curve for the model of the ocean layer H1 (Fig. 120).
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Figure 120: Response curve for the model of ocean layer H1

Ocean layer H2

The following graph shows the response curve for the model of the ocean layer H2 (Fig. 121).
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Figure 121: Response curve for the model of ocean layer H2

Ocean layer H3

The following graph shows the response curve for the model of the ocean layer H3 (Fig. 122).
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Figure 122: Response curve for the model of ocean layer H3
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Ocean layer Wx
The following graph shows the response curve for the model of the ocean layer Wx (Fig. 123).
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Figure 123: Response curve for the model of ocean layer Wx

6.3.1.2 Zooplankton species

Calanus hyperboreus

Presence/random absence model

The following graph shows the response curve for the presence/random absence model of C. hyperboreus
(Fig. 124).
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Figure 124: Response curve for the presence/random absence model of C. hyperboreus.

Predicted relative index of depth model

The following graph shows the response curve for the relative index of depth model of C. hyperboreus (Fig.
125).
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Figure 125: Response curve for the predicted relative index of depth model of C. hyperboreus.
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Predicted life stage model

The following graph shows the response curve for the life stage model of C. hyperboreus (Fig. 126).
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Figure 126: Response curve for the predicted life stage model of C. hyperboreus.

Metridia longa

Presence/random absence model

The following graph shows the response curve for the presence/random absence model of M. longa (Fig.

127).
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Figure 127: Response curve for the presence/random absence model of M. longa.

Predicted relative index of depth model

The following graph shows the response curve for the relative index of depth model of of M. longa (Fig.

128).
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Figure 128: Response curve for the predicted relative index of depth model of M. longa.
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Predicted life stage model

The following graph shows the response curve for the life stage model of M. longa (Fig. 129).
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Figure 129 Response curve for the predicted life stage model of M. longa.

Metridia pacifica

Presence/random absence model

The following graph shows the response curve for the presence/random absence model of M. pacifica (Fig.

130).
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Figure 130: Response curve for the presence/random absence model of M. pacifica.

Predicted relative index of depth model

The following graph shows the response curve for the relative index of depth model of M. pacifica (Fig.

131).
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Figure 131: Response curve for the predicted relative index of depth model of M. pacifica.
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Predicted life stage model

The following graph shows the response curve for the life stage model of M. pacifica (Fig. 132).
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Figure 132: Response curve for the predicted life stage model of M. pacifica.

Thysanoessa raschii

Presence/random absence model

The following graph shows the response curve for the presence/random absence model of T. raschii (Fig.
133).
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Figure 133: Response curve for the presence/random absence model of T. raschii.

Predicted relative index of depth model

The following graph shows the response curve for the relative index of depth model of T. raschii (Fig. 134).
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Figure 134: Response curve for the predicted relative index of depth model of T. raschii.
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Predicted life stage model

The following graph shows the response curve for the life stage model of T. raschii (Fig. 135).
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Figure 135: Response curve for the predicted life stage model of T. raschii.
6.3.2 The ten most important predictors for each model
6.3.2.1 Ocean layer models
The following graph shows the variable importance for the models of the ocean layers H1, H2, H3 and Wx
(Table 7).
Table 7: Variable importance for the three models of the ocean layers.
a) H1 b) H2 c)H3 Wx
Variable Score Variable Score Variable Score Variable Score
BATHSLOP 100 PHOAUG20 100 SALAUG200 100 SALAUG200 100
SSTSUMMER 94.05 SALAUG200 91.45 PHOAUG20 93.74 PHOAUG20 77.34
MIXEDLD 89.03 SIAUG10 86.51 PHOAUG10 70.75 PHOAUG10 68.53
BATHASP 85 PHOAUG10 67.32 SIAUG10 44.94 TAUG1500 37.93
DSETTLE 84.42 TAUG1500 42.77 TAUG1500 43.14 SIAUG10 29.33
ICE85 81.13 DSETTLE 36.57 SALAUG100 33.44 TAUG200 28.94
PHOAUG500 80.86 PHOAUG30 36 TAUG200 30.06 SALAUGO 28.58
BATHY 79.28 SALAUG30 34.84 SALAUG30 28.29 DRUNOFF 27.52
NIAUG 10 77.06 ICE85 34.82 ICE85 27.88 POAUG400 25.82
TAUG20 73.15 PHOAUG50 34.82 PHOAUG50 26.28 BATHSLOP 25.59

6.3.2.2 Zooplankton species

Calanus hyperboreus

The following graph shows the variable importance for the three models (presence/random absence,
relative index of depth and life stage distribution) for C. hyperboreus. (Table 8).
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Table 8: Variable importance for the three models of C. hyperboreus.

a) Predicted presence/random absence b) Predicted relative index of depth  c) Predicted life stages

Variable Score Variable Score Variable Score
DSHELF 100 BATHY 100 SIAUG100 100
DRUNOFF 83.4 AOAUG1000 97.04 SALAUG1000 93.69
RUNOFFANNU 79.62 BATHSLOP 87.78 BATHY 93.35
SIAUG10 78.56 NIAUG300 82.57 PHOAUG500 84.18
TAUG30 77.18 DOAUG30 77.88 BATHASP 83.08
H1 74.29 DRUNOFF 69.4 NIAUG100 74.85
PHOAUG30 74.12 DWETL 67.46 DRUNOFF 71.94
DSETTLE 72.3 NIAUGO 65.68 SSTSUMMER 71.04
PHOAUG10 71.93 DMARINEB 62.06 BATHSLOP 69
BATHSLOP 71.72 BATHASP 53.91 DSHELF 66.87
Metridia longa

The following graph shows the variable importance for the three models (presence/random absence,
relative index of depth and life stage distribution) for M. longa (Table 9).

Table 9: Variable importance for the three models of M. longa.

a) Predicted presence/random absence b) Predicted relative index of depth c) Predicted life stages
Variable Score Variable Score Variable Score
PHOAUG500 100 BATHY 100 SALAUG1500 100
NIAUG500 90.18 BATHSLOP 51.59 AOAUG1500 69

NIAUG100 84.59 DWETL 39.26 NIAUG30 53.09

H1 82.7 DSHELF 38.75 BATHASP 43.85
NIAUG10 74.89 BATHASP 37.71 SSTSUMMER 37.68
NIAUG300 67.97 DRUNOFF 37.36 AOAUG10 36.05
DOAUG10 65.87 NIAUGO 35.42 NIAUG500 33.8
TAUG100 62.01 PHOAUGO 34.53 DSETTLE 32.94
PHOAUG300 61.36 DMARINEB 32.63 NIAUG300 32.46
MIXEDLD 61.27 AOAUG1000 32.21 DOAUG50 32.37

Metridia pacifica

The following graph shows the variable importance for the three models (presence/random absence,
relative index of depth and life stage distribution) for M. pacifica (Table 10).

Table 10: Variable importance for the three models of M. pacifica.

a) Predicted presence/random absence b) Predicted relative index of depth  c) Predicted life stages

Variable Score Variable Score Variable Score
AOAUG10 100 BATHY 100 DSHELF 100
PHOAUG20 84.95 WX 66.95 BATHASP 66.23
P“o“[\)UGw 75.19 BATHSLOP 61.55 SALAUG1000|  51.83
PHOAUG30 74.64 NIAUG100 51.7 AOAUG1500 48.32
DOAUG10 59.65 SALAUG1000 50.89 BATHSLOP 46.46
DOAUGO 55.34 AOAUG1000 46.04 BATHY 40.83
POAUGO 49.07 SALAUG1500 41.27 SIAUG20 37.39
PHOAUG10 48.1 H3 40.77 DRUNOFF 35.21
CHLORO 42.56 SIAUG100 38.57 AOAUG1000 35.13
NIAUG200 41.65 NIAUG300 36.71 wX 29.9

114



Thysanoessa raschii

The following graph shows the variable importance for the three models (presence/random absence,

relative index of depth and life stage distribution) for T. raschii (Table 11).

Table 11: Variable importance for the three models of T. raschii.

a) Predicted presence/random absence

Variable Score

DPROTECT 100
BATHY 86.99
DSHELF 68.62
DRUNOFF 57.39
AOAUG100 39.75
DWETL 31.96
AOAUG300 27.45
BATHSLOP 27.12
DSETTLE 26.77
H1 26.64

b) Predicted relative index of depth

6.3.3 The Partial dependence plots

Variable Score
BATHSLOP 100
AOAUG300 80.33

BATHASP 66.37

BATHY 53.45
AOAUG100 49.02
PHOAUG500 48.06

DSHELF 46.43

AOAUG10 45.97
POAUG300 42.86
AOAUG400 39.81

c) Predicted life stages

Variable Score
AOAUG10 100
DPROTECT 74.07
AOAUG300 71.86
BATHSLOP 51.69
BATHASP 46.94

DSHELF 40.07
AOAUG400 37.08
POAUG300 32.44

BATHY 30.03
AOAUG100 26.95

For all partial dependence plots, a) is the most important predictor and c) the third most important

predictor.

6.3.3.1 Ocean layer models

Ocean layer H1

The following graph shows the partial dependence plots for the 3 most important predictors in the H1

ocean layer model. (Fig. 136)
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Figure 136: Partial dependence plots for the three most important predictors in the H1 ocean layer model.
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Ocean layer H2

The following graph shows the partial dependence plots for the 3 most important predictors in the H2

ocean layer model. (Fig. 137)
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Figure 137: Partial dependence plots for the three most important predictors in the H2 ocean layer model.

Ocean layer H3

The following graph shows the partial dependence plots for the 3 most important predictors in the H3

ocean layer model. (Fig. 138)
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Figure 138: Partial dependence plots for the three most important predictors in the H3 ocean layer model.
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Ocean layer Wx

The following graph shows the partial dependence plots for the 3 most important predictors in the Wx
ocean layer model. (Fig. 139)
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Figure 139 Partial dependence plots for the three most important predictors in the Wx ocean layer model.

6.3.3.2 Zooplankton species

Calanus hyperboreus

The following graphs show the partial dependence plots for the 3 most important predictors and for the
three C. hyperboreus models (Fig. 140,141,142).
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Figure 140: Partial dependence plots for the three most important predictors and for the presence/random absence model of C.
hyperboreus.
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Figure 141: Partial dependence plots for the three most important predictors and for the predicted relative index of depth model

of C. hyperboreus.
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Figure 142: Partial dependence plots for the three most important predictors and for the predicted life stage model of C.

hyperboreus.

Metridia longa

The following graphs show the partial dependence plots for the 3 most important predictors and for the
three M. longa models (Fig. 143,144,145).
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Figure 143: Partial dependence plots for the three most important predictors and for the presence/random absence model of M.

longa.
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Predicted relative index of depth model
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Figure 144: Partial dependence plots for the three most important predictors and for the predicted relative index of depth model

of M. longa.
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One Predictor Dependence For STAGES$ = nauplii
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Figure 145: Partial dependence plots for the three most important predictors and for the predicted life stage model of M. longa

(adult, copepodite and nauplii).
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Metridia pacifica

The following graphs show the partial dependence plots for the 3 most important predictors and for the
three M. pacifica models (Fig. 146,147,148).
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Figure 146: Partial dependence plots for the three most important predictors and for the presence/random absence model of M.
pacifica.

Predicted relative index of depth model
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Figure 147 Partial dependence plots for the three most important predictors and for the predicted relative index of depth model
of M. pacifica.
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Figure 148: Partial dependence plots for the three most important predictors and for the predicted life stage model of M.
pacifica.
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Thysanoessa raschii

The following graphs show the partial dependence plots for the 3 most important predictors and for the
three M. pacifica models (Fig. 149,150,151).
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Figure 149: Partial dependence plots for the three most important predictors and for the presence/random absence model of
T.raschii.
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Figure 150: Partial dependence plots for the three most important predictors and for the predicted relative index of depth model
of T.raschii.
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Predicted life stage model
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Figure 151: Partial dependence plots for the three most important predictors and for the predicted life stage model of T.raschii.

6.3.4 Misclassification in data sets

Calanus hyperboreus

The misclassification in the test data for the presence/random absence model (Table 12) as well as the life
stage model (Table 13).

Presence/random absence model

N N Mis- Pct.
Class Cases | Classed Error Cost

0 84 6 7.14 6.00

1 30 3 10.00 3.00

Table 12: Misclassification for test data and for the presence/random absence model of C. hyperboreus.

Predicted life stage model

N N Mis- | Pct.
G Cases |Classed| Error Cost

Adult 145 85 58.62 | 85.00

Copepodite | 328 89 27.13 | 89.00

Table 13: Misclassification for test data and for the predicted life stage model of C. hyperboreus.
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Metridia longa

The misclassification in the test data for the presence/random absence model (Table 14) as well as the life
stage model (Table 15).

Presence/random absence model

N N Mis- Pct.
S Cases | Classed | Error St
0 99 11 11.11 11.00
1 36 7 19.44 7.00

Table 14: Misclassification for test data and for the presence/random absence model of M. longa.

Predicted life stage model

N N Mis- | Pct.
Class Cases |Classed| Error Cost

adult 165 95 57.58 | 95.00

copepodite | 197 69 35.03 | 69.00

nauplii 13 0 0.00 0.00

Table 15: Misclassification for test data and for the predicted life stage model of M. longa.

Metridia pacifica

The misclassification in the test data for the presence/random absence model (Table 16) as well as the life
stage model (Table 17).

Presence/random absence model

N N Mis- Pct.
Class Cases | Classed Error e

0 7 1 14.29 1.00

1 3 0 0.00 0.00

Table 16: Misclassification for test data and for the presence/random absence model of M. pacifica.
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Predicted life stage model

N N Mis-  Pct.
Class Cases Classed| Error et

adult 3 1 33.33 | 1.00

copepodite 2 0 0.00 0.00

Table 17: Misclassification for test data and for the predicted life stage model of M. pacifica.

Thysanoessa raschii

The misclassification in the test data for the presence/random absence model (Table 18) as well as the life
stage model (Table 19).

Presence/random absence model

N N Mis- Pct.
S Cases | Classed| Error et

0 20 3) 15.00 3.00

1 10 1 10.00 1.00

Table 18: Misclassification for test data and for the presence/random absence model of T. raschii.

Predicted life stage model

N NMs- | Pct
U | e | e | B |

adult 4 0 0.00 0.00

juvenile 14 0 0.00 0.00

Table 19: Misclassification for test data and for the predicted life stage model of T. raschii.
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6.3.5 Receiver Operator Characteristics (ROC)

Calanus hyperboreus

The following graphs show the Receiver Operator Characteristics (ROC) for C. hyperboreus and for the
presence/random absence model (Fig. 152) as well as for the life stage model (Fig. 153).
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Figure 152: ROC curves for the presence/random absence model of C. hyperboreus. a) ROC for random absence b) ROC for
presence.
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Figure 153: ROC curve for the predicted life stage model of C. hyperboreus. a) ROC for adult life stage b) ROC for copepodite life
stage.
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Metridia longa

The following graphs show the Receiver Operator Characteristics (ROC) for M. longa and for the
presence/random absence model (Fig. 154) as well as for the life stage model (Fig. 155).
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Figure 154: ROC curve for the presence/random absence model of M. longa. a) ROC for random absence b) ROC for presence.
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Figure 155: ROC curve for the predicted life stage model of M. longa. a) ROC for adult life stage b) ROC for copepodite life stage
c) ROC for nauplii life stage.
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Metridia pacifica

The following graphs show the Receiver Operator Characteristics (ROC) for M. pacifica and for the
presence/random absence model (Fig. 156) as well as for the life stage model (Fig. 157).
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Figure 156: ROC curve for the presence/random absence model of M. pacifica. a) ROC for random absence b) ROC for presence.
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Figure 157: ROC curve for the predicted life stage model of M. pacifica. a) ROC for adult life stage b) ROC for copepodite life
stage.
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Thysanoessa raschii

The following graphs show the Receiver Operator Characteristics (ROC) for T. raschii and for the
presence/random absence model (Fig. 158) as well as for the life stage model (Fig. 159).

Presence/random absence model

1.0 1.0 7/
o 0.8( o 0.87
M ©
T 06 T 06
[72] [%2]
& g & [
o 0.4 o 0.4
E - ROC Integral E L ROC Integral
0.2 0.98000 0.2 0.98000
0.0 —t+—+—+—+—+—+—+—+— 0.0 +—+—t+—+—t+—+—+—+—+—
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 08 1.0
False Pos. Rate False Pos. Rate
a) b)

Figure 158: ROC curve for the presence/random absence model of T. raschii. a) ROC for random absence b) ROC for presence.
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Figure 159: ROC curve for the predicted life stage model of T. raschii. a) ROC for adult life stage b) ROC for copepodite life stage.
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Citation_Information:

Originator: Schmid M, and F. Huettmann

Publication_Date: 20120501

Title:

One hundred seventy environmental GIS data layers for the circumpolar Arctic ocean region
Edition: 1

Series_Information:

Series_Name: 1

Issue_ldentification: 1

Publication_Information:

Publication_Place: University of Alaska-Fairbanks (UAF), USA
Publisher: M. Schmid and F. Huettmann
Other_Citation_Details:

These data are part of a M.Sc. thesis by the first author M. Schmid with the MINC program Uni Goettingen (Germany) and Lincoln (New
Zealand) carried out with the EWHALE lab, Inst. of Arctic Biology, Biology & Wildlife Dept, University of Alaska-Fairbanks (UAF)

Online_Linkage: NA
Geospatial_Data_Presentation_Form: database
Description:

Abstract:

This dataset represents a unique compiled environmental data set for the circumpolar Arctic Ocean region 45N to 90N region. It consists
of 170 layers (most marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are
listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent
value-added products easy to use. The sources of the data are manifold such as World Ocean Atlas 2009 (WOAQ9),

International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of
models available) and data sources such as plankton databases and OBIS. The following plankton species were
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included: Calanus hyperboreus (AphialD104467), Metridia longa (AphialD104632), M. pacifica (AphialD 196784)

and Thysanoessa raschii (AphialD 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters
and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data
was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are
included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs RCP26
and RCP85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice,
protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for
August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth
classes); modeled ocean boundary layers (H1, H2, H3 andWx).This dataset is used for a M.Sc. thesis by the author, and freely available
upon request. For questions and details we suggest contacting the authors.

Purpose:

This set of environmental marine base layers for the Arctic region is part of a M.Sc. thesis by the first author; it provides value-added
summary information in ArcGIS format that may be useful for purposes such as general modelling, regionalization, exploratory analyses
and conservation management.

Time_Period_of_Content:

Time_Period_Information:

Range_of Dates/Times:

Beginning_Date: 195001

Ending_Date: 210012

Currentness_Reference: publication date

Status:

Progress: Complete

Maintenance_and_Update_Frequency: None planned

Spatial_Domain:

Bounding_Coordinates:

West_Bounding_Coordinate: -180.00000

East_Bounding_Coordinate: 180.00000

North_Bounding_Coordinate: 90.00000

South_Bounding_Coordinate: 45.00000

Description_of_Geographic_Extent:

Circumpolar marine region of the Arctic (45 degrees north to 90 degrees north). Note: the traditional boundary box does not capture
these extents well, and due to the Arctic projection and date line crossing.

Keywords:

Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: Arctic
Theme_Keyword: Polar region
Theme_Keyword: GIS base layers
Theme_Keyword: ArcGIS

Theme_Keyword: Geographic Information Systems (GIS)
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Theme_Keyword: grids

Theme_Keyword: North Pole

Theme_Keyword: World Ocean Atlas WOA

Theme_Keyword: Calanus hyperboreus (AphialD104467)

Theme_Keyword: Metridia longa (AphialD 104632)

Theme_Keyword: Metridia pacifica (AphialD 196784)

Theme_Keyword: Thysanoessa raschii (AphialD 110711)

Theme:

Theme_Keyword_Thesaurus: National Park Service Theme Category Thesaurus

Theme:

Theme_Keyword_Thesaurus: ISO 19115 Topic Category

Place:

Place_Keyword_Thesaurus: None

Place_Keyword:
Place_Keyword:
Place_Keyword:
Place_Keyword:
Place_Keyword:
Place_Keyword:
Place_Keyword:

Place_Keyword:

Place:

Arctic

Polar region
Northpole
Bering Sea
Barents Sea
Kara Sea
Arctic Shelf

Arctic Deep Sea

Place_Keyword_Thesaurus: National Park System Unit Name Thesaurus

Place:

Place_Keyword_Thesaurus: National Park System Unit Code Thesaurus

Access_Constraints: none; but always suggested to contact authors for best use.

Use_Constraints:

none; these maps are not to be used for navigational and other purposes. Always suggested to contact authors.

Point_of Contact:

Contact_Information:

Contact_Person_Primary:

Contact_Person: Moritz Schmid and Falk Huettmann

Contact_Organization: EWHALE lab

Contact_Position: M.Sc.
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Contact_Address:

Address_Type: mailing and physical

Address: 419 Irving |

City: Fairbanks

State_or_Province: Alaska

Postal_Code: 99775

Country: Alaska

Contact_Voice_Telephone: +1 907 474 7882
Contact_Electronic_Mail_Address: xxx

Hours_of_Service: Usual business hours
Contact_Instructions: Contact by phone, email or regular mail
Browse_Graphic:

Browse_Graphic_File_Name: JPG
Browse_Graphic_File_Description: Screen shot of the map layer
Browse_Graphic_File_Type: JPEG

Cross_Reference:

Citation_Information:

Originator:

Data are based on existing models or data sets. Refer to the relevant primary publication for further information
Publication_Date: Unknown
Geospatial_Data_Presentation_Form: database

Taxonomy:

Keywords/Taxon:

Taxonomic_Keyword_Thesaurus: None
Taxonomic_Keywords: collection

Taxonomic_Keywords: single species

Taxonomic_Keywords: zooplankton

Taxonomic_Keywords: Calanus hyperboreus (AphialD104467)
Taxonomic_Keywords: Metridia longa (AphialD 104632)
Taxonomic_Keywords: Metridia pacifica (AphialD 196784)
Taxonomic_Keywords: Thysanoessa raschii (AphialD 110711).
Taxonomic_System:

Classification_System/Authority:

Classification_System_Citation:
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Citation_Information:

Originator: Unknown

Publication_Date: Unknown

Title:

Geospatial_Data_Presentation_Form:
Classification_System_Modifications: For zooplankton: ITIS, OBIS, WORMS
Identification_Reference:
Citation_Information:

Originator: For zooplankton: Online plankton species databases
Publication_Date: Unknown

Title:

Geospatial_Data_Presentation_Form: database
Taxonomic_Procedures: see with plankton databases
Taxonomic_Classification:

Taxon_Rank_Name: Superdomain
Taxon_Rank_Value: Biota
Taxonomic_Classification:

Taxon_Rank_Name: Kingdom
Taxon_Rank_Value: Animalia
Taxonomic_Classification:

Taxon_Rank_Name: Phylum
Taxon_Rank_Value: Arthropoda
Taxonomic_Classification:

Taxon_Rank_Name: Class

Taxon_Rank_Value: Malacostraca
Taxonomic_Classification:

Taxon_Rank_Name: Order

Taxon_Rank_Value: Euphausiacea
Taxonomic_Classification:

Taxon_Rank_Name: Family
Taxon_Rank_Value: Euphausiidae
Taxonomic_Classification:

Taxon_Rank_Name: Genus

Taxon_Rank_Value: Thysanoessa
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Taxonomic_Classification:
Taxon_Rank_Name: Species
Taxon_Rank_Value: Thysanoessa raschii
Taxonomic_Classification:
Taxon_Rank_Name: Class
Taxon_Rank_Value: Maxillopoda
Taxonomic_Classification:
Taxon_Rank_Name: Order
Taxon_Rank_Value: Calanoida
Taxonomic_Classification:
Taxon_Rank_Name: Family
Taxon_Rank_Value: Calanidae
Taxonomic_Classification:
Taxon_Rank_Name: Genus
Taxon_Rank_Value: Calanus
Taxonomic_Classification:
Taxon_Rank_Name: Species
Taxon_Rank_Value: Calanus hyperboreus
Taxonomic_Classification:
Taxon_Rank_Name: Family
Taxon_Rank_Value: Metridinidae
Taxonomic_Classification:
Taxon_Rank_Name: Genus
Taxon_Rank_Value: Metridia
Taxonomic_Classification:
Taxon_Rank_Name: Species
Taxon_Rank_Value: Metridia longa
Taxonomic_Classification:
Taxon_Rank_Name: Species
Taxon_Rank_Value: Metridia pacifica
Data_Set_Credit:

This dataset is compiled by M. Schmid, thesis supervisor F.Huettmann. This dataset is a value-added ArcGIS product nd is based on many
data archives and data authors, e.g. WOA, IPCAO, IPCC Canada, Canadian Centre for Climate Modelling and Analysis, OBIS and thesis
data (Imme Rutzen, Grant Humphries and others). They are all thanked.

Security_Information:
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Security_Classification_System: none

Security_Classification: Unclassified

Security_Handling_Description: none

Native_Data_Set_Environment: Windows PC IBM

Analytical_Tool:

Analytical_Tool_Description: ArcGIS 10, Windows 32bit. IBM PC

Tool_Access_Information:

Online_Linkage:

See <http://www.nodc.noaa.gov/OC5/WOA09/pr woa09.html> for World Ocean Atlas
WOA, <http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/> for IPCAO Bathymetry, www.ipcc.ch for IPCC, and www.iobis.org for
plankton layers

Tool_Access_Instructions: See at websites or contact authors

Tool_Computer_and_Operating_System: PC IBM

Data_Quality_Information:
Attribute_Accuracy:
Attribute_Accuracy_Report:
Data are based on existing models or data sets. Refer to the relevant primary publication for accuracy information.
Logical_Consistency_Report:
For each subset schema, data are complete and produced with identical methods. But the projections mighty affect pixel sizes differently
for each of the poles, and due to the location. Also, data products do NOT carry the same pixel sizes. For accuracy we also would like to
refer to the initial and underlying data products and their authors and metadata (if exist and/or provided).
Completeness_Report: Data are complete.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report: As provided by the data input layers and models.
Lineage:
Methodology:
Methodology_Type: Lab
Methodology_Description:

These data layers got compiled and processed in the EWHALE lab by Moritz Schmid. Most layers are based on data archives, some are
based on the works by Imme Rutzen and by Grant Humphries for their M.Sc. thesis.

All works is based on ArcGIS 10.0 as the operational platform.

Exact details of these layers are described in the PROCESS STEPS.

Source_Information:

Source_Citation:
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Citation_Information:

Originator:

See also Conservation of Arctic Flora and Fauna (CAFF): www.caf.is
Publication_Date: Unknown

Title:

Geospatial_Data_Presentation_Form:
Source_Time_Period_of_Content:

Time_Period_Information:

Range_of Dates/Times:

Beginning_Date: Unknown

Ending_Date: Unknown

Source_Currentness_Reference: publication date
Source_Contribution:

See for sources and data archives used: <http://www.nodc.noaa.gov/OC5/WOA09/pr woa09.html> for World Ocean Atlas

WOA, <http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/> for IPCAO Bathymetry, www.ipcc.ch for IPCC, and www.iobis.org for
plankton layers

Process_Step:
Process_Description:

Please contact Moritz Schmid for the thesis and detailed explanations.

Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical
oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are
most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that
describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not
only do this for one present day scenario. We modeled five different scenarios and for future climate data.

First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled
model data. We decided to model this set of ocean layers after discussions and input of expert knowledge by Professor

Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those ocean layers
because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most
likely affect the migration. | assigned 4 variables to the ocean layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer
depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of
the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the
isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described
water column.

Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as
predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton
species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii,

This process was repeated for future predictions based on the CanESM2 data (see in the data section).

For zooplankton species the following layers were developed and for the future.

C. hyperboreus: Best-pooled model as well as future predictions (RCP26 including ocean layer(also excluding), RCP85
including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage
layers

M. longa: Best-pooled model as well as future predictions (RCP26 including ocean layer(also excluding), RCP 85 including oocean layers
(also excluding) for 2010 and 2100. For parameters: Presence/random absence, most likely depth and life stage layers
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M. pacifica: Best-pooled model as well as future predictions (RCP26 including ocean layer (also excluding), RCP85 including ocean layers
(also excluding) for 2010 and 2100. For parameters: Presence/random absence, most likely depth and life stage layers

T. raschii: Best-pooled model only due to coverage of future climate data. Presence/random absence, most likely depth and life stage
layers

Process_Description: Data are organized by folder and get described that way below:

Data for best-pooled model: Folder: aoaug Apparent Oxygen August by depth (m) 1-11) Aoaugmask10, 20, 30, 50, 100, 200, 300, 400,
500, 1000, 1500 Source: World Ocean Atlas 2009 (WOAOQ9) at the National Oceanographic Data Center (NODC)
<http://www.nodc.noaa.gov/OC5/WOAQ9/woa09data.html> Folder: bathymetry 12) bathyaspect 13) bathymetry 14) bathyslope Source:
Derived from the International Bathymetric Chart of the Arctic Ocean (IBCAO) <http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/>
Folder: distglacier 15) distglacier Source: Proximity layer derived from the Global Land Ice Measurements from Space (GLIMS) Glacier
database at the National Snow and Ice Data Center (NSIDC): <http://glims.colorado.edu/glacierdata/>

Folder: distice 16) disticeaug Source: Sea Ice Data collection at the National Ice Center (NIC)
<http://www.natice.noaa.gov/mission.html?bandwidth=high> Folder: distmarinebound 17) dmarinebound Source: Proximity layer
derived from the VLIZ Maritime BoundariesGeodatabase <http://www.vliz.be/vmdcdata/marbound/>

Folder: distprotected 18) distprotected Source: World Database on Protected Areas (according to the United Nations). Now at:
<http://protectedplanet.net/> Folder: distsettle 19) distsettle Source: Proximity layer derived from the Global Rural-Urban Mapping
Project (GRUMP) at the Socioeconomic Data and Applications Center (SEDAC) <http://sedac.ciesin.columbia.edu/gpw/>

Folder: distshelf 20) distshelf Source: FH metadatapack Folder: distwetland 21) distwetland Source: Proximity layer derived from the
Global Lakes and Wetlands Database Request (GLWD) https://secure.worldwildlife.org/science/data/item1877.html

Folder: doaug Dissolved Oxygen August by depth (m) 22-33) doaug0, 10, 20, 30, 50, 100, 200, 300, 400, 500, 1000, 1500 Source: World
Ocean Atlas 2009 (WOAQ9) at the National Oceanographic Data Center (NODC)
<http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html|> Folder: niaug Nitrate August by depth (m) 34-43) niaug0, 10, 20, 30, 50,
100, 200, 300, 400, 500 Source: World Ocean Atlas 2009 (WOAQ9) at the National Oceanographic Data Center (NODC)
<http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html> Folder:phoaug Phosphate August by depth (m) 44-53) phoaug0, 10, 20, 30,
50, 100, 200, 300, 400, 500 Source: World Ocean Atlas 2009 (WOAOQ9) at the National Oceanographic Data Center (NODC)
<http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html> Folder: poaug Percent Oxygen, August by depth (m) 54-65) poaug0, 10, 20,
30, 50, 100, 200, 300, 400, 500, 1000, 1500 Source: World Ocean Atlas 2009 (WOAOQ9) at the National Oceanographic Data Center
(NODC) <http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html> Folder: runoff 66) distrunoff Source: Derived proximity layer from
R-ArcticNet: A Regional, Electronic, Hydrographic Data Network for the Arctic Region <http://www.r-
arcticnet.sr.unh.edu/v4.0/AllData/index.html> 67) runoffannual Source: Derived layer from the annual runoff <http://www.r-
arcticnet.sr.unh.edu/v4.0/AllData/index.html> 68) runoffaug Source: Derived layer from the runoff in August <http://www.r-
arcticnet.sr.unh.edu/v4.0/AlIData/index.htmlI> Folder: salaug Salitry August by Depth 69-80) salaug0, 10, 20, 30, 50, 100, 200, 300, 400,
500, 1000, 1500 Source: World Ocean Atlas 2009 (WOAO09) at the National Oceanographic Data Center (NODC)
<http://www.nodc.noaa.gov/0OC5/WOA09/woa09data.htmlI> Folder: siaug Silicate August by depth 81-90) siaug0, 10, 20, 30, 50, 100,
200, 300, 400, 500 Source: World Ocean Atlas 2009 (WOAQ9) at the National Oceanographic Data Center (NODC)
<http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html> Folder: sst Sea Surface Temperate summer 91) sstsummer Source:

Falk Huettmann, Polarmacroscopelayers Folder: Ocean layers, predicted 92) H1 93) H2 94) H3 95) Wx Source: Model-predicted layers.
Modeled by M. Schmid and based on data provided by Prof. Igor Polyakov Folder: taug Temperature August by depth (m) 96-107) taugO,
10, 20, 30, 50, 100, 200, 300, 400, 500, 1000, 1500 Source: World Ocean Atlas 2009 (WOAQ9) at the National Oceanographic Data Center
(NODC) <http://www.nodc.noaa.gov/OC5/WOA09/woa09data.html> Data for future predictions: Canadian Earth System Model 2
(CanESM2) future data Superfolder: CanESM2 future data Representative Concentration Pathway 2.6 Folder: RCP26 SCENARIO

Folder: chl Chlorophyll 1-2) chl2010, 2100 Source: Chlorophyll data from the Canadian Earth System Model 2 (CanESM2) at the Canadian
Centre for Climate Modellingand Analysis <http://www.cccma.ec.gc.ca/data/cgecm4/CanESM2/rcp26/mon/index.shtml>

Folder: mrro Run Off 3-4) mrro2010, 2100 Source: Total runoff data from the Canadian Earth System Model 2 (CanESM2) at the Canadian
Centre for Climate Modelling and Analysis <http://www.cccma.ec.gc.ca/data/cgcm4/CanESM2/rcp26/mon/index.shtml> Folder: no3 5-6)
no02010, 2100 Source: Nitrate data from the Canadian Earth System Model 2 (CanESM2) at the Canadian Centre for

Climate Modelling and Analysis <http://www.cccma.ec.gc.ca/data/cgcm4/CanESM2/rcp26/mon/index.shtml> Folder: sos 7-8) s0s2010,
2100 Source: Sea surface salinity data from the Canadian Earth System Model 2 (CanESM2) at the Canadian Centre for

Climate Modelling and Analysis <http://www.cccma.ec.gc.ca/data/cgecm4/CanESM2/rcp26/mon/index.shtml> Folder: tos 9-10) tos2010,
2100 Source: Sea surface temperature data from the Canadian Earth System Model 2 (CanESM2) at the Canadian Centre for

Climate Modelling and Analysis <http://www.cccma.ec.gc.ca/data/cgcm4/CanESM2/rcp26/mon/index.shtml> Folder: Ocean layers
PREDICTED Folder: H1 11-12) H1_2010, 2100 Source: Model-predicted layers. Modeled by M. Schmid and based on data provided by
Prof. Igor Polyakov and RCP26, CanESM2 future data. Folder: H2 13-14) H2_2010, 2100 Source: Model-predicted layers. Modeled by

M. Schmid and based on data provided by Prof. Igor Polyakov and RCP26, CanESM2 future data. Folder: H3 15-16) H3_2010, 2100
Source: Model-predicted layers. Modeled by M. Schmid and based on data provided by Prof. Igor Polyakov and RCP26, CanESM2 future
data. Folder: Wx 17-18) Wx_2010, 2100 Source: Model-predicted layers. Modeled by M. Schmid and based on data provided by Prof.
Igor Polyakov and RCP26, CanESM2 future data. Representative Concentration Pathway 8.5 Folder: RCP85 Folder: chl 1-2) chl2010, 2100
Source: Chlorophyll data from the Canadian Earth System Model 2 (CanESM2) at the Canadian Centre for Climate Modelling and Analysis
<http://www.cccma.ec.gc.ca/data/cgcm4/CanESM2/rcp85/index.shtml> Folder: mrro 3-4) mrro2010, 2100 Source: Total runoff data
from the Canadian Earth System Model 2 (CanESM2) at the Canadian Centre for Climate Modelling and Analysis
<http://www.cccma.ec.gc.ca/data/cgcm4/CanESM2/rcp85/index.shtml> Folder: no3 5-6) no2010, 2100 Source: Nitrate data from the
Canadian Earth System Model 2 (CanESMZ2) at the Canadian Centre for Climate Modelling and Analysis
<http://www.cccma.ec.gc.ca/data/cgcm4/CanESM2/rcp85/index.shtml> Folder: sos 7-8) s0s2010, 2100 Source: Sea surface salinity data
from the Canadian Earth System Model 2 (CanESM2) at the Canadian Centre for Climate Modelling and Analysis
<http://www.cccma.ec.gc.ca/data/cgecm4/CanESM2/rcp85/index.shtml> Folder: tos 9-10) tos2010, 2100 Source: Sea surface
temperature data from the Canadian Earth System Model 2 (CanESM2) at the Canadian Centre for Climate Modelling and Analysis
<http://www.cccma.ec.gc.ca/data/cgecm4/CanESM2/rcp85/index.shtml> Folder: Ocean layers PREDICTED Folder: H1 11-12) H1_2010,
2100 Source: Model-predicted layers. Modeled by M. Schmid and based on data provided by Prof. Igor Polyakov and RCP85, CanESM2
future data. Folder: H2 13-14) H2_2010, 2100 Source: Model-predicted layers. Modeled by M. Schmid and based on data provided by
Prof. Igor Polyakov and RCP85, CanESM2 future data. Folder: H3 15-16) H3_2010, 2100 Source: Model-predicted layers. Modeled by
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M. Schmid and based on data provided by Prof. Igor Polyakov and RCP85, CanESM2 future data. Folder: Wx 17-18) Wx_2010, 2100
Source: Model-predicted layers. Modeled by M.Schmid and based on data provided by Prof. Igor Polyakov and RCP85, CanESM2 future
data. Superfolder: General Folder: ArcticCircle 1) ArcticCircle Source: Extracted from the World GeoReference lines layer at

the ArcGIS Resource Center <http://resources.arcgis.com/> Folder: PolarLand 2) PolarLand Source: Source: Extracted from the World
topographic layer at the ArcGIS Resource Center <http://resources.arcgis.com/>

Superfolder: Zooplankton data; Raw presence points from OBIS (<http://www.iobis.org/>). Folder: C. hyperboreus

Folder: M. longa

Folder: M. pacifica Folder: T. raschii

Predicted layers: Best-pooled model: Presence/random absence, most likely depth and life stage layers

Folder: C. hyperboreus

Folder: M. longa

Folder: M. pacifica

Future predicted models from CanESM2:

Folder: Rcp 26 including ocean layers

Presence/random absence, most likely depth and life stage layers for 2010 and 2100

Folder: C. hyperboreus

Folder: M. longa

Folder: M. pacifica Folder: T. raschii

Folder: Rcp 26 excluding ocean layers

Presence/random absence, most likely depth and life stage layers for 2010 and 2100

Folder: C. hyperboreus

Folder: M. longa

Folder: M. pacifica Folder: T. raschii

Folder: Rcp 85including ocean layers

Presence/random absence, most likely depth and life stage layers for 2010 and 2100

Folder: C. hyperboreus

Folder: M. longa

Folder: M. pacifica Folder: T. raschii

Folder: Rcp 85 excluding ocean layers

Presence/random absence, most likely depth and life stage layers for 2010 and 2100

Folder: C. hyperboreus

Folder: M. longa

Folder: M. pacifica Folder: T. raschii
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Source_Used_Citation_Abbreviation:

see directly in the processing steps; data are organized by folder and described that way.
Process_Date: Unknown
Source_Produced_Citation_Abbreviation: Moritz Schmid,
Source_Produced_Citation_Abbreviation: EWHALE lab
Process_Contact:

Contact_Information:

Contact_Person_Primary:

Contact_Person: Moritz Schmid et al.
Contact_Organization: EWHALE lab

Contact_Position: M.Sc.

Contact_Address:

Address_Type: mailing and physical

Address: EWHALE lab

Address:

Inst of Arctic Biology, Biology & Wildlife Dept. University of Alaska-Fairbanks 99775 USA
City: Fairbanks

State_or_Province: Alaska

Postal_Code: 99775

Country: USA

Contact_Voice_Telephone: +1 907 474 7882
Contact_Electronic_Mail_Address: fhuettmann@alaska.edu
Hours_of_Service: Business hours

Contact_Instructions: Contact by phone, email or regular mail

Spatial_Data_Organization_Information:
Indirect_Spatial_Reference: General definitions of Arctic regions
Direct_Spatial_Reference_Method: Raster
Raster_Object_Information:

Raster_Object_Type: Pixel

Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:

Planar:
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Map_Projection:

Map_Projection_Name: Stereographic
Stereographic:

Longitude_of_Projection_Center: 0
Latitude_of_Projection_Center: 0

False_Easting: 1.0

False_Northing: 1.0

Planar_Coordinate_Information:
Planar_Coordinate_Encoding_Method: coordinate pair
Coordinate_Representation:

Abscissa_Resolution: 1

Ordinate_Resolution: 1

Planar_Distance_Units: meters

Geodetic_Model:

Horizontal_Datum_Name: World Geodetic System of 1984
Ellipsoid_Name: World Geodetic System of 1984
Semi-major_Axis: 6378137
Denominator_of_Flattening_Ratio: 298.25722210088
Vertical_Coordinate_System_Definition:
Depth_System_Definition:

Depth_Datum_Name: Local surface
Depth_Distance_Units: meters

Depth_Encoding_Method: Attribute values

Entity_and_Attribute_Information:
Detailed_Description:
Entity_Type:
Entity_Type_Label: grid files and their tables
Entity_Type_Definition: by authors; the standard ArcGIS ESRI grid file format
Entity_Type_Definition_Source: by authors M. Schmid and F. Huettmann
Overview_Description:
Entity_and_Attribute_Overview:
There are 33 layers, and each carry a different content. The layers are described accordingly.

Entity_and_Attribute_Detail_Citation: na
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Distribution_Information:
Distributor:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Moritz Schmid and Falk Huettmann
Contact_Address:
Address_Type: mailing and physical
Address: See earlier contact information in the metadata
Contact_Voice_Telephone: +1 907 474 7882
Contact_Electronic_Mail_Address: fhuettmann@alaska.edu
Distribution_Liability: No liability is assigned.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: ASCII
Format_Version_Date: 20101231
ASCII_File_Structure:
Record_Delimiter: space
Number_Header_Lines: 6
Description_of _Header_Content:
For Arctic: ncols 3601 nrows 451 xllcenter -180.000000000 ylicenter 45.000000000 cellsize 0.100000 nodata_value -9999
File_Decompression_Technique: No compression applied
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Network_Address:
Network_Resource_Name: ftp, CD rom, or otherwise
Access_lInstructions: open data device upon receival
Online_Computer_and_Operating_System: PC compatible
Fees: None
Ordering_Instructions: Ask via phone, email or letter
Turnaround:

Download is quick, otherwise, whenever time allows, e.g. a week or less
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Resource_Description: 147 digital datasets in ArcGIS ESRI grid format
Custom_Order_Process: Contact authors

Technical_Prerequisites: GIS program like ArcGIS or R who can read ESRI grids

Metadata_Reference_Information:
Metadata_Date: 20120413
Metadata_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Moritz Schmid and Falk Huettmann
Contact_Organization: EWHALE lab
Contact_Position: M.Sc. and supervising prof.
Contact_Address:
Address_Type: mailing and physical
Address: Moritz Schmid and Falk Huettmann
Address: -EWHALE lab-
Address: Inst of Arctic Biology,
Address: Biology & Wildlife Dept.
Address: University of Alaska Fairbank
City: Fairbanks
State_or_Province: Alaska
Postal_Code: 99775
Country: USA
Contact_Voice_Telephone: +1 907 4747882
Contact_Electronic_Mail_Address: fhuettmann@alaska.edu
Metadata_Standard_Name:
FGDC Biological Data Profile of the Content Standard for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001.1-1999
Metadata_Extensions:

Online_Linkage: <http://nrdata.nps.gov/profiles/NPS_Profile.xml>

Profile_Name: NPS NR and GIS Metadata Profile
Metadata_Access_Constraints: NA
Metadata_Use_Constraints: NA

Metadata_Security_Information:
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Metadata_Security_Classification_System: NA
Metadata_Security_Classification: Unclassified

Metadata_Security_Handling_Description: NA

Generated by mp version 2.8.25 on Fri Apr 20 10:21:23 2012
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Declaration of independent work

Hiermit versichere ich gemaR § 9 Abs. 5 der Prifungsordnung fir den integrierten binationalen
Master-Studiengang Internationaler Naturschutz (engl.: International Nature Conservation) vom
16.08.2006, dass ich die vorliegende Arbeit selbststandig verfasst und keine anderen als die
angegebenen Hilfsmittel verwendet habe. Diese Arbeit wurde nicht in der gleichen oder einer
dhnlichen Form bereits einem anderen Prifungsausschuss vorgelegt und wurde bisher noch nicht
veroffentlicht.

Hereby | affirm — according to § 9 section 5 of the examination regulations for the integrated bi-
national Master programme International Nature Conservation (deutsch: Internationaler Naturschutz)
from 16.08.2006 — that | have penned the present thesis autonomously and that | did not use any
other resources than those specified above. This work was not submitted previously in same or similar
form to another examination committee and was not yet published.

Ort/Place, Datum/Date Name/Name
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