A study or whambumace durdors he bodrote art

A

THRSIS

Wresented to the Faculty of the Uasvarsity of Alaska in Partal rulfillment of the Requirements for the Degree of MASTER OF SCIERCE

GC

```
By

\section*{A STUDY OF NEAR-SURFACE CURRENTS IN ENDICOTT ARM}

\section*{APPROVED:}


APPROVED: DATE
Dean of the College of Mathematics,
Physical Science and Engineering

Vice President for Research and Advanced Study

\section*{ABSTRACT}

Currents in Findicott Am vexe noabuted by parachate drognes and ice drift photogramotiy. The parachute drogues shoved mean outflos speeds between 2 and \(20 \mathrm{~cm} /\) sec. The mern cutflow extended at redaced speeds to below ten meters and may have extended to eill depth at twenty meters.

Fron equations of drag and inertia, a differencial equation vas formet to describe tidal ice drift speeds. The equetion was soived on an Analog computer and the solution shown as ploted. Couplins curves were used to neasure the net tidal speed. Ice drift men ontflow speeds based upon these computations agreed with parachuce dygue mean outflow speeds.

I wish to thank Dr. J. M. Matthews and Professor D. H. Rosenberg for their help and guidance during my graduate progran. Further, I wish to thank Dr. R. F. Cerlson and Dr. N. A. Lindberger for their assistance in solving the tidal ice drift problem and to thank Mr . John Lind for programing this problem on the analog computer. I an indebted to Mr. R. E. Johnson for the editing and to Linda Bebee and Lavonia Wiele for the typing of this manuscript. This work was made possible through funds provided by the office of Naval Research, Contracts NONS 3010 (05) and N00014-67-A-0317-0002 and by the Institute of Marine Seience, University of Alaska.
Page
Abstract. ..... in:
Acknowledgements ..... \(\Delta v\)
Table of Contents ..... v
List of Figures ..... 5:
Chapter I
PHYSICAL OCEANOGRAPHY OF ENDTCOTX ABM
I. 1 Introduction ..... a
1.2 Water liasses. ..... 1
1.3 Currents.
1.4 Tide.5
chapter II
MEHODS OF CURRENT MEASUREMENT
2.1 Instrumentation and Techniques ..... 6
2.1.1 Parachute Drogues ..... 6
2.1.2 Iceberg Photogremmetry ..... 9
2.2 Ice Drift and Currents. ..... 17
2.2.1 Baciground ..... 17
2.2.2 Factors Affecting an Iceberg in m Oscillating Kedium ..... 18
RESULTS Page
3.1 Data. ..... 26
3.2 Plots ..... 26
3.3 Drogue Drift. ..... 26
3.3.1 Drogue Data Dow-miniet from Sumdun Tsiand. ..... 26
3.3.2 Drogue Data Up-Intet from Sumium Island. ..... 27
3.4 Ice Drift Data. ..... 28
3.4.1 10 July 1968 Ice DxIft Data. ..... 28
3.4.2 24 and 25 August 1968 Ice Drife Data ..... 30
3.4.3 6 March 1969 Ice Drife Data. ..... 30
Chapter IV
ANALYSIS of THE DATA
18a. 4.1 Drogue Data ..... 31
4.1.1 Plots of Current Up-Inlet from Sumdun Island ..... 31
4.1.2 Means of Current UpoInlet from Surdum Island ..... 36
4.1.3 Velocity-Depth Profiles ..... 41
4.1.4 Seasonality of the Dita. ..... 41
4.1.5 Data Taken Down-Inlet from Sumdum Island ..... 41
4.2 Ice Drift Measurements ..... 42
4.3 Iceberg Melt as it Affects Meacurements ..... 48
Chapter V
SUMDERY AND CONCLUSIONS
5.1 Sumary of Drogue Drift Measurements ..... 50
5.2 Sumary of Photogrametry ..... 51
5,3 Conclusions ..... 53
5.3.1 The Drogue Study ..... 53
5.3.2 The Ice Drift Study. ..... 54
Appendix A
BATIMMETRY. ..... 57
Appendix B
drocue position and speed data
B. 1 Drogue Position Data. ..... 50
B. 2 Drogue Speed Data ..... 79
Aopendix C
photography measurements and iceberg qositions
C.I Photograph Measurements ..... 90
C. 2 Iceberg Positions ..... 205
Appendix D
COMPUTER PROGRAM FOR ICEBERG POSITION CALCULATIORG ..... 216
Appendix E
DROGUE DRIFT AND ICEBERG DRIFT PLOTS ..... 128
Appendix \(F\)
MISCELLANEOUS
F. 1 Tide staff Rendings Taken th North Dawes. ..... 128
F. 2 Droque Revergals. ..... 129
F. 3 Correction of Drogue 4, March 1967. . . . . . . . . . 130
F. 4 Error Curves. . . . . . . . . . . . . . . . . . . 131

Appendix G
ANALOG SIMULATION OF TIDAL ICEDRIFT
G. 1 The Equation. . . . . . . . . . . . . . . . . . 135
G. 2 Diagram of the Problen and Explanation. . . . . . . . 137
G. 3 Scaling . . . . . . . . . . . . . . . . . . . 139
G. 4 Plotting Set-up . . . . . . . . . . . . . . . . 140
G. 5 Plots . . . . . . . . . . . . . . . . . . . . . 142

\section*{LIST OF FICURES}
Page
Figure 1 Map of Southeastem Alaska shoving Endicott Arm south of Junesu. ..... 2
Figure 2 Map of Endicott Arn showing princtpal features mentioned in thesis ..... 3
Figure 3 Schematic of Parachute Drogue showing float, pole, flags, line and parachuta. ..... 7
Figure 4 Schematic drawing of scene and measurements from camera vantage polnt, including photograph measureaent ..... 11
Figure 5 Distortion of pictere distances caused by nome level camera ..... 14
 camera. (Circles show measured positions:) ..... 16
Figure 7 Photograph of Stranded Iceberg. ..... 15
Figure 8 Tidal current speed end tidal ice dxift speed curves. (Widal current solid line, tidal ice drift dashed line.). ..... 23
Figure 9 Iceberg's drift speed and lag expressed as percent- ages of total current speed and period versur \(k\)-number ..... 25
Figure 10 Typical photograph of inlet ..... 29
Figure 11 Drogue sped versus tine plots for surface and 10 meters; 30 and 31 March 1968. ..... 32
Figure 12 Drogue sped verbus time plots for surface and 10 meters; 10 and 11 June 1968 ..... 33
Figure 13 Drogue speed versus time piot for surface; 8 and 9 July 1968. ..... 34
Figure 14 Drogue speed versus tine plots for surface and 10 meters; 25 and 26 February 1060 ..... 35
Figure 15 Tvelve hour means of surface current's speed ..... 37
Figure 16 Twelve hour means of 10 meter curcent's speed. ..... 38
Figure 17 Six hour means of surface and 10 meter current's speeds for March 1968 and February 1969 ..... 39
Figure 18 Changes in 5 and \(10 \mathrm{~cm} / \mathrm{sec}\) current affected by changes in inlet width. "Sumdum Raasage" indi- cates the pawsage between Sumdum Island and the inlet's southwest shore ..... 40
Figure 19 Near-surface velocity pxofiles for March and June 1968 and February 1969. ..... 40
Figure 20 Typical iceberg speed curves, 10 July 1968 ..... 43
Figure 21 Typical iceberg speed curves, 24 and 25 August 1968. . . 44
Figure 22 Typical iceberg speed curves, 6 March 1969 ..... 45
Figure 23 Mean iceberg speeds for 10 July, 24 and 25 August 1968 and 6 March 1969 ..... 46
Figure Al Bathymetry of Endicott Arm ..... 59
Figure EI Drogue Drift Plot 19 to 21 Noveraber 1956Drogues 1 to 519 Nov. SurfaceDrogue 320 Nov. 20 mDrogue 420 Nov. 10 mDrogue 520 Nov. 20 mDrogue 521 Nov. 20 inDrogue 621 Nov. 40 m. . . . . . . . . . . . . . 117
Figure E2 Drogue Drift Plot 6 March 1967 Drogues 1, 2 and 4 Surface progue 350 m . ..... 118
Figure E3 Drogue Drift Plot 5 May 1967
Drogues 1 to 5 Surface. ..... 119
Figure E4 Drogue Drift Plot 30 and 31 March 1968 Drooues 1 and 2 Surface ..... 120
Figure L 5 Drogue Drift Plot 30 and 31 March 1968
Drogues 3 and 410 m . ..... 121
Figure E6 Drogue Drift P1ot 10 and 11 June 1.968
Drogues 2 mad 4 Surface Drogue 310 m ..... 122
Page
Figure E7 Drogue Drift Plot 8 and 9 July 1968 Drogues 1, 2, 4 and 5 Surface Drogue 310 m ..... 123
Figure E8 Drogue Drift Plot 25 and 26 February 1969 Drogues 1, 2, 3 and 4 Surface Dregue 5 and 610 m Drogues 1 A and 4 A surface ..... 124
Figure E9 Ice brift Plot 10 July 1968
Iceberg Sizes in Figure 23. ..... 125
Figure El0 Ice Drift Plot 24 and 25 Nugust 1968
Circled Numbers 24 August Boxed Numbers 25 August
Icebers Sizes in Figure 23 ..... 126
Figure Ell Ice Drift Plot 6 March 1969
Iceberg Sizes in Figure 23. ..... 127
Figure Fl Error Curve 10 July 1968 ..... 132
Figure F2 Error Curve 24 and 25 Auguet 1963 ..... 133
Figure P3 Error Curve 6 March 1969 ..... 134
Figure G1 (B) Sine function(b) Sine function squared. (colid line) Sinefunction squared with sign function appliadshows positive and negative oscillations assine function. (Dashed Line). . . . . . . . . . 136
Figure G2 Diagran of problem as set-up for oscilloscope. ..... 138
Figure G3 Sine Generator ..... 141
Figure G4 Time Base Generator. ..... 141
Figure G5 Unclipped Plot Current Speed and Iceberg, Ixtift Speed vs. Time \(V_{o}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.1000\) ..... 143
Figure G6 Current Sped and Iccbera Drift Speed vs. Time \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, k=0.0010\) ..... 144
Figure G7 Current Speed and Icebers Drift Speed vs. Tine \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, \quad \mathrm{K}=0.0033\) ..... 3.45
Ftgure G8 Current Speed and Iceberg Drift Speed vs. Time \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, 100.0066\) ..... 146
Figure G9 Current Speed and Iecberg Drift Speed vs. Time \(\mathrm{V}_{\mathrm{o}}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0111\). ..... 147
Figure G10 Current Speed and Iceberg Drift Speed vs. Tine \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, k=0.0222\). ..... 148
Figure Gll Current Speed and Iceberg Drdft Speed vs. Time \(V_{\mathrm{o}}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0444\). ..... 149
Figure G12 Current Speed and Iceberg Drift Speed vs. Tine \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}-0.1000\) ..... 150
Figure Gl3 Current Speed and Iceberg Drift Speed vs. Time \(\mathrm{V}_{0}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0010\). ..... 151
Figure G14 Current Speed and Iceberg Drift Spaed vs. Time \(V_{0}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0033\). ..... 152
Figure Gl5 Current Speed anc Iceberg Drift Speed vs. Tine \(V_{0}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0,0066\). ..... 153
Figure G16 Current Speed and Iceberg Difift Speed vs. Tine \(V_{0}=20 \mathrm{~cm} / \mathrm{cec}, \mathrm{K}=0.0111\). ..... 1.54
Figure \(G l 7\) Current Speed and Iceberg Drift Speed vs. Time \(\mathrm{V}_{\mathrm{o}}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0222\) ..... 155
Figure G18 Current Speed and Iceberg Drift Speed ve. Time \(V_{0}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0444\). ..... 156
Figure 619 Current Specd and Iceberg Difif Speed vs. Tine \(V_{o}=20 \mathrm{~cm} / \mathrm{sec}_{0} \mathrm{x}=0.1000\). ..... 157

\section*{Chapter I}

PHYSTCA OCEANOGRAPMY OF ELDICOTT APM

\subsection*{1.1 Introduction}

This atudy was madertaken to decermine seasonal variations in the surface currents of afford eftuary. The area selected for study was Endicott Asm. It wes chosen bescuse it is a fairly straight inlet with a sill. Measurements were restricted to surface and near-surface currents.

Endicott Arm is a fjord estuary located in Southeastern Alaskis 50 miles south of Junean (figure 1). It forns a two-fjord system with Tracy Arm, sharing a common outlet to Stevens Passage through Holken Eay (figure 2).

The data analyzed in this report were taken aboard the \(R / V\) LCONA and the R/V MAYBESO between November 1966 and March 1969. These research vessels are operated by the Institute of Marine Science, Univer: sity of Alaska. In connection with the curcent data, bathymetric soundings were taken in March 1967 and November 1968. These were plotted and are discussed in Appendix A.

\subsection*{1.2 Water Masses}

Matthews and Rosenberg (1968) have discuseed the plysical oceanography of Endicott Arm: the ctrculation is driven by the input of ice and fresh water from the North Daves and South Dawes glaciers plus water from peripheral stream flow. The resultant accumulation of less dense water forws a seanax siope the ouflow of watar downsope entraina


Figure I Mep of Southenotern Alack Ghowing Endicot form south of innura

sale water from beneath xaising the salinity and volume of the outflow as it moves toward the mouth. To replace lost salt, saline water flows up-inlet under the outflow layer thas causing a two-layer flow. The water nasses in the inlet below 10 meters were grouped by Mathews and Roserberg (1963) into the fall water mass (temperature above \(4^{\circ} \mathrm{C}\) and s.einity balen \(31.4 \%\) and the winter-spring macer mass (temperature generally below \(4^{\circ} \mathrm{C}\), alinity \(31.2^{\circ} / \%\) ). It apmars that Pickard's (1967) ice inlet vater mass represents a transition between the winter-spring water mass and the fall water mass seen in Endicott Arm (Matthews and Rosenberg, 1969).

Wallen and Hood (1968) staced that there are two seasonal maxtame in runooff: the first, after Pickaxd (1961), occurs around June and is
 Octoher when the mextnum precipitation falls in the Junean area. Wallen and Hood (1971) found that in flacial estuaries, such as Endicott Arm, the first maximum to unully denyed until July

\subsection*{1.3 Currents}

Currents in Endicott Arm are caused by two Eactors: fresh water outflow and tidal action. Fresh water supplied by streams and glacier discharge flows down inlet. As it flovs it entrains salt water from the lower inflow layer and Enally flows out finto the larger body of water, Stevens Passage. The curreuts associated with this flow are longitudinally outward.

Superimposed upon this outflow are tidal oscillations. The tide alternately accelerates and retards the surface outflow. Whan the tidal amplitude \(i s\) greater than the surface outflow, the surface curm rents reverse during the maximum flood current.

Currents are modifted by the ghape of the inlet. Where the inlet narrows or shoals sufficiently, the current increases. The passage between the southrest bank of Sumdum Ishand and the shore, "Sumdum Passage," as it is called herein, is an example of narrowing of the inlet. The sill is an example of narrowing and shonling where the currents reach their maximu.

\subsection*{1.4 Tide}
 the shape and stae of the basin. In Southeastern Aianka, near Juncau, the tides have a semi-diumal inaqualty: ie., there are two bigh tides and two low tides of unequal magnitude per lunar day (Tide Tabas, USC\& GS). In an estuary, the tide will have cheracteristics of a progressive or standing wave. In Endicott Arm it will be demonetrated later that the tide is close to a standing wave.

\section*{METHODS OF CURRMT NEASUNEMEIT}

\subsection*{2.1 Instrumentatiga and Techuigues}

The standard method of paxachute drogues vas used primarily to neasure curients (Vollonam, Knauss, and Vine, 1956). Further, a secondaxy system of photographically monitoring the difit of icebergs was used to neasure currents. The icedrift indicated currents were compared with the parachute drogue masured curcats to indicate the usability of face drift as a current neasuring technique.

\subsection*{2.1.1 Parachute Drogues}

The basic design of the parnchute drogues used in this study is shown in Figure 3. The droguc consiste of a submerged parachute attrehed to 3 surface float. This flont is fitted with a mast, identification flags and a stall flashfig light fot night treckinge The parachute has a greater area and drag coefficient than the rest of the drogue; thus the float and flags follow the movenent of the parachute (Vollunan, et al., 1956).

Knauss (1963) worked out the relationship botween drag cocfficiont, araa, and velocity for the drogue. This relationshtp is:
\[
v-v_{d}=\left(v_{s}-v\right) \frac{C_{s} A_{s}}{C_{d} A_{d}} 1 / 2
\]


where \(v\) is the drogue velocity \(y_{g}\) and \(v_{d}\) are the current velocities at surface snd paraninte depth, \(C_{s}\) and \(C_{d}\) are drag coefficients of the float and parachute, and \(A_{s}\) and \(A_{d}\) are the areas of float and parachute.

The parachutes used in these measurements were 28 feet ( 1.5 meters) diameter personnel parachutes with a frontal area of \(57.2 \mathrm{~m}^{2}\). They were attached to the float with a one quarter inch ( 0.62 centimeter) line, which for a 10 meter length hiss an area of about \(0.06 \mathrm{~m}^{2}\). The immersed area of the float and of the pole were about 0.08 and \(0.12 \mathrm{~m}^{2}\), respectively. Hoerner (1965) gives a naxinum drag coefficient for a parachute as \(1.7\left(C_{d}\right)\). The drag coefficient of the rope is 1.5 , for the pole 1.0 and for the float 1.1 (Roshko, 1961). (Reynold's numbers were \(8: 10^{+1}\), \(7 \times 10^{+2}\) and \(8 \times 10^{+3}\), respectively.) Then \(C_{s} A_{s}=0.30\) and \(C_{d} A_{d}-97.3\). The ratio of the dregs is:
\[
\frac{C_{8} A_{s}}{C_{d} A_{d}} \quad 1 / 2=0.0555
\]

Thus, for a ten meter drogue (parachuta at ten meters) moving with a mean velocity of \(1.5 \mathrm{~cm} / \mathrm{sec}\) down-inlet, which the surface velocity is \(5.0 \mathrm{~cm} / \mathrm{sec}\) down-inlet, the error due to parastte drag would be 0.194 \(\mathrm{cm} / \mathrm{sec}\) or about \(13 \%\) of the true 10 meter velocity.

The drogue positions are determined by running the ship alongside the drogue and then determining the ship's position by radar. The ship's position was determined by measuring the ship's heading with the gyro-compass and the range and bearing to a prominent known landmark with the redar. The range was measured to a tolerance of \(\pm 18\)
meters at a distance of 0 to 5.5 kilometers and to \(\pm 185\) meters at a range of 5.5 to 11.0 kilonetets. The becrings were measured to the nearest degree glving a maximan error of less than \(2^{\circ}\). At a distance of 5.5 kilometers which was the longest range nornally employed in positioning the drogues, the error was \(\pm 185\) meters, or about \(3 \%\)

On two occasions during the summer of 1963 the R/V ACONA was unavailable. The parachute drogues were then tracked from the \(\mathrm{R} / \mathrm{V}\) MAYBESO using a sextant to measure two angles between three proninent points. The error in determining pasitions by this method was estimated to be 365 meters, or about \(7 \%\).

\subsection*{2.1.2 Iceberg Photogranmetry}

Photogrametrle methodo have been adepted for use in numerone occanographic applications. Kellex (1963) and Swanson, Kellet and Hickn (1963) reported measuring the tidal curconts in several harbors via aerial photor grammetry. The technique give excellent resolution of current at all pointa where targets were placed. Forrestor (1960) etudied the applicam tion of aerial photogrametry to watex current patterns. Thorndyke and Ewing (1969) give illustrations of the uses of photogranmatry to measure ocean bottom currents.

The large number of icebergs in Endicott Am provided excellent tarm gets for an attempt to deternine nearmarface water movenent using photogranmetric techniques.

Horizontal sequential pictures of icebergs were taken from landbased sites on opposite sides of the inlet during 10 July, 24 and 25

August 1968 and 6 Merch 1969. Forizontal, land-based, sequential photography has an advantage over atcial photography in that the cameras' orientation can be determined from a single picture and that high cloudiness does not inpatis the photomission.

Icebergs proved to be exeeilent targets since they had sufficient height to be identifiable for a distance of four miles. Drawbacks to their use as curxent indicators are that the exact depth and the coefficient of drag of each iceberg is unknown. Furthex, a lnowledge of the current profile and the magnitude of tidal oscillations are needed in order to calibrate the general icebarg motion.

A technique requiring singie photographs was used to measure positions of the icebergs. This technique (figurs 4) required knowledge of the mparent distance of the techerg below the shoreline, the donseme from the center of the picture to the iceberg and to a known landmark as masured in the photograph; the keight of the camera above water level, and the distance from the carore to the oppostre shore in line whe the iceberg. In addition, the cancsa was required to be level and the canera's and landmark's poisition to be determinable on a map.

Using the side of the picture as a arbitrary reference point (the vertical centerline was not easily marked on the filin) the distances to the landmark and to the iceberg were measured. These were subtracted from one half the picture width co give \(D_{1}\) and \(D_{b}\), as seen in Figure 4.

A horizontal angle, as seen from the camera between the landmark and the iceberg (figure 4) was calculated with the following equation:


Figure 4 schematic daving of scenc and masurements from canera vantage point, including phocograph weamurneme
\[
\alpha=\tan ^{-1}\left(D_{b} / f\right)-\tan ^{-1}\left(D_{1} / f\right)
\]
where \(a\) is the horizontal angle, \(D_{b}\) ts the distance from the centerine to the iceberg, \(D_{1}\) is the distance from the centerline to the laninark and \(f\) is the focal length of the camera.

The depression of the shorejine below the horizontal, as measuxed In the photograph, caused by the elcvation of the camera was calculated by .
\[
A_{h}=\frac{f H}{O_{p}}
\]
where \(A_{h}\) is the distance on the photograph representing the depresston of the shoreline below the horizontal, H is the height of the camera above water level und \(O_{p}\) is the horizontol diatance frow the camex to the opposite shore in line with tha icebexg.

The horizontal distance from the camera to the iceberg was calcum Lated by
\[
D_{i}=\operatorname{Hf} /\left(A_{h}+D_{b h}\right)
\]
where \(D_{1}\) is the horizontal distance from the canera to the iceberg, and \(D_{b h}\) is the distance of the Leeberg below the shoreline, measured on the photograph.

Using the horizontal angle batween the landmark and the leeberg and the horizontal distance from the canera to the iceberg, the position of the iceberg within the inlet can be measured. Successively-timed photographs allowed the movement of an iceberg to be plotted.

To fochinate hadump the dage number of laberg rositions, the foregotng probedure wes programed for computer processing (Appenden D).

This program included automatic selection of \(0_{p}\) (distance to opposite shore) values thus making it necessary to measure only \(D_{b}, D_{1}\), and \(D_{b h}\). The output was converted, in some cases, to \(X-Y\) positions relative to the inlet's axis.

If the camera lens axis is not horizontal, the photographic distances are correctable. Whon the camera is leveled, the focal distance - a line horizontal from the center of the lens to the film - is the same as the focal length (figure 5a). When the canera is out of level so that the film plane is not vertical, the focal distance and picture distances are lengthaned (figure \(5 b\) ) by the secant of the angle of deviation from the level in line with the lens axis (figure 5c). The depression of the apparent hoxtzon ( \(A_{h}\) ) as seen in the picture and the apparent depresoton of the bere betw the showitne are aiso lenghored by the secant of this angle (figure 5d). Thus is the component of tilt in line with the lens axis is neasured, the picture distances are corrected by multiplytng the cosine of the tilt angle by the picture datances.

Two cameras were used in this experinent. The first, used during 10 July 1968, was a \(125 \times 95\) millimeter format Graflex. The second two, ueed together, were Kalimar, Modil SQ cameras.

The Graflex camera was calibrated by measuring a line along a building, setting the canera at a known distance at right angies from the center of the line, and taking a picture of this line. the focal length was then calculated from
\[
f=\frac{\mathrm{Rd}}{\mathrm{~B}}
\]

\(C\)


FOCAL DISTANCE LENGTHEN SECANT OF ANGLE \(r\).


Figure 5 Distortion of picture distances caused by non-level camera
where \(f\) is the focal lagth, \(R\) is the range from the wall, \(d\) is the distance on the film, ropresented by the bandine, and \(B\) is the baseline distance measured on the wil.

The other two cateras were calibrated by setting up a transit an arbitraxy distance from a buflatig, measuring the angles to markers on the bullding, and photographing the measured points at the same levol from the same point. The focal length was calculated from
\[
f=\frac{a}{2 \tan \alpha}+\frac{b}{2 \tan \beta}
\]

Here \(f\) is focal length, \(\alpha\) and \(\beta\) are approximatoly equal angles on opposite sides of the center of the photograph, and a and \(b\) are the corresponding distances on film (Memal of Photogramnetry, 1952). These two angles had a common center close to the true center of the picture. The focal lengthe of the two cameras were 78.1 and 77.9 millineters by this method.

In sadition, to test for lens distortion distances fron the center of the picture wexe plotted against the measured angles (figure 6). These distances were measurad to 0.1 millimeter and the angles to minutes of arc. A line was fitted to these points
\[
\tan \theta=\mathrm{d} / \mathrm{f}
\]
where \(d\) is the appropriate distance in the photograph and \(\theta\) is the measured angle. Deviations of the points from the line indicate distortion were less than 1 millimeter and appeared random.


Figure 6 Camera calibration curve for 78.1 mm focal length cathera. (Circles show measured positions.)

\subsection*{2.2 Ice Drift and Currents}

\subsection*{2.2.1 Background}

Reed and Campbell (1962) considered ice drift from the point of view of ice floes drifting in the arctic pack ice. They used the parameters of wind, currents and motion of the 1cepack to account for the motion of Ice station Alpha. Using Reed and Campbell's model Ingram, et al. (1969) calculated the wind drift of ice floes in the Gulf of St. Lawrence. When the drift did not agree with calculated drift, the displacement was assumed to be caused by river currents. Similarly Gudiovich and Nikiforov (1967) applied force equations to a single ice floe using experimental coefficients of drag determined by Gudkovich, et al., (1967). They found that the wind-blown ice drift was turbulent and they derived equations for wind driven current, drift with respect to the water and the angle of this drift with respect to the wind.

In an analysis of iceberg drift in the North Atlantic Wolford and Moynehan (Abstract, 1969) found the iceberg under study drifted along contours of dynamic topography before a storm front crossed the area. They found that the iceberg partly followed drogue tracks, and with the onset of winds, a wind to excess of 10 knots affected the iceberg's movement.

In Endicott Arm the icebergs were affected by a mean outflowing current with superimposed tidal currents. These tidal currents were of significant magnitude and had to be accounted for in the analysis. Wind blew during the last photo-period and was also accounted for in the analysis.

\subsection*{2.2.2 Factors Affecting an Iceberg in an Oscillating Medium}

The motion of an iceberg in an oscillating fluid is affected by the mass of the iceberg, its frontal area, its coefficient of drag, and magnitude and period of the oscillation. In this case the magnitude and period of the oscillation are the magnitude and period of the tidal currents. The shape, mass and drag coefficient must all be assumed from the visible part of the iceberg and some general observations of icebergs.

The magnitude of mean outflow and of the tidal currents need to be measured to depths ranging below that of the iceberg depth. Further, since there can be a current shear within the depth of the icebergs, this shear must be delineated to determine its effect on the icebergs. This is done by standard current measuring techniques.

The shape and mass of the iceberg is determined from the height and width of the visible part of the berg. Schvede (1966) establishad heightdepth ratios for various icebergs. The height-depth ratio used in this thesis is \(1: 4\) for flat and round-topped icebergs and \(1: 3\) for pyramidal icebergs. The simplest subsurface shape assumes a rectangular frontal area based on calculations of height and width above water. The only other thing that can be said for subsurface shape is that it should be indicative of stability, i.c., the width should be a great or greater than the depth.

Drag coefficient is a virtual unknown for icebergs. The icebergs observed in Endicott Arm were generally of irregular shape (figure 7) and pitted at the water's surface by melting.


Figure 7. Photograph of Stranded Iceberg.

Gudkovich, at al., (1967) modelad humeoked iee floes and measured drag coefficients of 0.007 to 0.065 . They found that increasing hummocking beyond 50 to \(60 \%\) of the bottom area of the model iceberg caused the drag coefficient to decrease due to the hydrodynamic shadowing effect. They further indicated that \(100 \%\) surface area humock coverage coresponded to uniform plate roughness.

With irregular icebergs Gudkovich, et al's models are not satisfactory, since their models assumed trapezoldal hummocks of uniform height. Streeter (1958) shows drag coefficients of 0.2 to 0.6 for a submerged sphere moving in a fluid at similar Reynold's numbers ( \(R_{e}=U L / V=10^{4}\) to \(10^{6}\) ). Further, for a disk moving through a fluid at these Reynold's numbers Streeter showed a drag coefficient of 1.1. Since the iceberg can have large concave areas, the drag coefficient could be related to that of a parachute where the coefficient is as high as 1.7 , Hoerner (1967). This coefficient appears too high, however, since random choice would only face this area of the iceberg into the direction of motion part of the time. Probably the most reasonable drag coefficient is 1.0 given for Hoerner's blunt-ended barge moving with a similar Froude number ( \(f=\mathrm{U}^{2} / \mathrm{g} 1=10^{-4}\) ). The blunt-ended barge does not allow for roughness but is a blunt body pushing through the water as does the iceberg.

Assuming a drag coefficient of 1.0 and a reasonable subsurface shape for the iceberg, the drift of the iceberg in a tidal medium was programmed for the University of Alaska's EAI 380 Analog/Hybrid Computer.

The drag force on an iceberg moving relative to the water is
\[
F=1 / 2 C_{D} \rho A U^{2}
\]

Where \(F\) is the force, \(C_{D}\) is the drag coefficient, \(\rho\) is the density of the medium, \(A\) is the frontal area of the iceberg, \(U\) is the velocity of the iceberg relative to the water (Streeter, 1958). The inertial driving force is
\[
F=\frac{m d v}{d t}
\]

Where \(m\) is the mass of the iceberg, and \(v\) is the velocity of the iceberg. Equating the two forces
\[
\frac{d v}{d t}=\frac{-C_{D^{\rho A U^{2}}}}{2 m}
\]
(The minus sign indicates the forces are in opposition.) The velocity of the iceberg relative to the water is
\[
u=v-v_{0} \sin \omega t
\]
\(v\) is the velocity of the iceberg, \(v_{0}\) is the amplitude of the tidal current, \(\omega\) is \(2 \pi / T\), where \(T\) is the tidal period, and \(t\) is time. This makes the differential equation
\[
\frac{d v}{d t}=-k\left(v-v_{0} \sin \omega t\right)^{2}
\]
where \(k\) is \(\frac{C_{D} p A .}{2 m}\)

The acceleration, dv/dt, is positive or negative in relation to the iceberg's relative velcoity \(U\). Thus the actual relationship is
\[
\frac{d v}{d t}=-k \operatorname{sgn}\left(v-v_{0} \sin \omega t\right)\left(v-v_{0} \sin \omega t\right)^{2}
\]

Where the \(\operatorname{sgn}\) (or sign) function goes either +1 or -1 as ( \(v-v_{0} \sin t\) ) goes positive or negative. This equation was programed for the analog computer. (See Appendix G for details.)

Two typical traces are shown in figure 8. These traces illustrate two points: first the iceberg speed curve tends to flatten only as the tidal-current speed curve crosses it. Second, the icebarg speed curve is delayed in time and of lower amplitude than the tidal-current speed curve.

The iceberg does not stop accelerating when the tidal current reaches its maximum. When the tidal current is at its maximum velocity the acceleration of the iceberg is
\[
\frac{d v}{d t}= \pm k\left(v-v_{0}\right)^{2}
\]

However, at this point \(v\) does not equal \(v_{0}\) and thus there is an acceleration. As the tidal current speed decreases, it reaches the magnitude of \(v\)
\[
\left(v-v_{0} \sin \omega t\right)^{2}=0
\]

Then there is no acceleration of the berg. As the current's speed becomes less than the iceberg's speed the iceberg is decelerated.

\(T D E D A B E\)
Figure 8. Tidal current speed and tidal ice drift speed curves. (Tidal current solid line, tidal ice drift dashed line.)

The lag and lower amplitude of the iceberg's speed curve, relative to the current speed curve are to be expected. The limiting cases are these: first, when the mass of the iceberg becones very small ( \(k\) becomes unity), the iceberg curve tends closely to the current speed curve in lag and amplitude; second, when the mass increases without limit (k goes to zero) the iceberg curve tends to zero amplitude and one quarter wave length lag.

A plot of the iceberg's lag and amplitude as percentages of the tidal period and tidal amplitude versus the \(k\)-number is presented in Figure 9, using \(v_{0}=10\) and \(20 \mathrm{~cm} / \mathrm{sec}\) and \(T=12\) hours.

The formula used for computing the \(k\)-number of the iceberg is
\[
k=\frac{\rho C_{D} A .}{2 m}
\]

Since \(C_{D}\) is assumed to be 1.0 , \(A\) is the submerged frontal area and the iceberg is assumed to have a density of 0.9 that of water; \(k\) may be rewritten
\[
k=\frac{R A}{1.8 V}
\]

Where \(R\) is the submerged depth divided by the total iceberg height, \(A\) is the total frontal area, and \(V\) is the volume of the berg. If the height-depth ratio is \(1: 4, \mathrm{R}\) is \(4 / 5\). Thus for a cubical 40 meter iceberg with \(\& 1: 4\) height-depth ratio, the \(k\)-number would be 0.011 , the lag would be about \(14 \%\) of the tidal period ( 1.7 hours) and the speed amplitude would be \(68 \%\) of the tidal currant amplitude \((13.5 \mathrm{~cm} / \mathrm{sec}\) if \(v_{0}\) was \(20.0 \mathrm{~cm} / \mathrm{sec}\) ).


Figure 9. Iceberg's drift speed and lag expressed as percentages of total current speed and period

\subsection*{3.1 Data}

The data taken between November 1966 and March 1969 which was used in this thesis are contained in Appendix B. The drogue positioning data are expressed in terms of the ship's heading, and direction and distance to known landmarks.

The data on ice drift given in Appendix \(A\) are expressed both as distances measured on the photograph as well as calculated bearings and distances from a known landmark to the iceberg, relative to the camera.

\subsection*{3.2 Plots}

The plots of current drift are figures E1 to E8, and the plots of ice drift are figures E9 to Ell. All plots are compiled with an insert showing tidal height vs. time.

\subsection*{3.3 Drogue Drift}

The drogue drift data group into two sections: the data taken during 1966 and 1967 by Matthews and Rosenberg between Sumdum Island and the mouth of Endicott Arm (see figure 2) and the data taken by Gleason, Mat thews and Rosenberg during 1968 and 1969 up-inlet from Sumdum Island.

\subsection*{3.3.1 Drogue Data Down-Inlet from Sumdum Island}

The drogue data taken down-inlet from Sumdum Island were taken over short periods of time to determine the circulation near the mouth of Endicott Arm. These data were taken during November 1966, March and May

1967 (figures El to E3). The first two periods show the mean outflow velocities of currents leaving the mouth of the inlet. In addition, the 20 and 21 November drogues show currents on the northeast side of the inlet's sill (figure E1). On 5 May 1967 drogues planted on the southwest side of the inlet indicated the cross channel current speeds (figure E3).

\subsection*{3.3.2 Drogue Data Up-Inlet from Sumdum Island}

The drogue data taken up-inlet from Sumdum Island ware measured in March 1968 at 0,10 and 20 meter depths, in June 1968 at 0 and 10 meter depths, in July at 0 and 10 meters, and in February 1969 at 0 and 10 meters. (The drogues were tracked for over 20 hours in each case.) These data are contained in figures E4 to E8. They were used to determine mean outflow currents, the increase in maan outflow downinlet and the near surface velocity profile. These are discussed in the following chapter.

The March 1968 and Fabruary 1969 drague data were taken aboard the \(R / V\) ACONA (figures E4, E5 and E8) using radar for positioning. This allowed drogue tracking to be carried on continuously. The June and July 1968 drogue data were measured by sextant aboard the \(\mathrm{R} / \mathrm{V}\) MAYBESO. Sextant positioning and the limitations of the vessel required anchoring at night. This is the reason for the 12 hour gap In these data (figures E6 and E7).

Descriptively these data fit into two groups: low mean outflow currents consisting of the March 1968 and June 1968 data and high mean outflow currents consisting of the July 1968 and February 1969 data.

Low mean outflow currents ranged between 1.0 and \(9.0 \mathrm{~cm} / \mathrm{sec}\) at the surface, were reversed by the flooding tidal current and were increased by the ebbing tidal current. The typical pattern (figure E4) is downinlet during high, ebb and low tide stages and up-inlet drift when the tidal current exceeds the mean outflow current.

The high run-off currents were generally between 9.0 and \(20.1 \mathrm{~cm} /\) sec, and showed no reversal of direction at flood tide (figures E7 and E8). - In both July 1968 and February 1969 the ten meter drogues showed similar patterns of flow with slower speeds. (The ten meter drogue used in July 1968 was retreived with a fouled parachute making its speed data suspect.)

\subsection*{3.4 Ice Drift Data}

Photography of ice drift was taken on three different cruises: 10 July, 24 and 25 August 1968 and 6 March 1969. The data taken in August were the most extensive but were not checked by drogue data. The ice drift data of July 1968 and March 1969 were taken on the same cruise as the drogue data.

\subsection*{3.4.1 10 July 1968 Ice Drift Data}

The July ice drift data were taken with a \(95 \times 125\) milimeter format Graflex camera using a 127 millimeter lens. This camera gave large clear pictures and made the taks of interpretation relatively easy. A typical picture is shown in figure 10. From these pictures five icebergs were tracked. These are shown in figure E9.


Figure 10 Typical photograph of inlet.

\subsection*{3.4.2 24 and 25 August 1968 Ice Drift Data}

On 24 and 25 August photographs of ice drift were taken from both sides of the inlet (positions \(b\) and \(c\), figure ElO). The individual icebergs proved unrecognizable from one side to the other. For this reason and becauce position \(c\) had limited visibility the photography from position b was used.

From the photographs eight icebergs were tracked. Numbers 3 throutgh 8 showed movement and were plotted (the cireled number in figure El0). Numbers 5 through 8 reversed direction at about 1700 and dirfted up-inlet apparently against an ebbing tidal current.

From the photographs taken on 25 August the icebergs tracked (marked with boxed numbers) showed steady outflow from 0835 to 1400 against what should have been a flooding tidal current.
3.4.3 6 March 1969 Ice Drift Data

On 6 March 1969 photography was taken from position d for about four hours (figure E1l). Six icebergs were tracked which showed predictable trends. There was a ten knot ( \(5.1 \mathrm{~m} / \mathrm{sec}\) ) intermittent wind blowing down-inlet. The effect was to increase velocities by \(1 \mathrm{~cm} / \mathrm{sec}\) at about \(30^{\circ}\) to the right (Gudkovich and Nikiforov, 1967).

\section*{CHAPTER IV}

\section*{ANALYSIS OF THE DATA}

\subsection*{4.1 Drogue Data}

As stated previously, the drogue data wore grouped into those taken up-inlet from Sumdum Island in 1968 and 1969 and the data taken down-inlet from Sumdum in 1966 and 1967.

\subsection*{4.1.1 Plots of Current Up-Inlet from Sumdum Island}

Plots of current versus time for the data taken up-inlet from Sumdum Island are shown in figures 11 and \(140^{\text {: These plots show tidal }}\) oscillations superimposed on an outflow current. (The positive speed axis indicates outflow.) Tidal current maxima and tidal high and low stages are labeled on the time axis.

The agreement between the predicted and actual tidal current maxima was not clear due to the braod peaks and troughs in the curves. (The peaks and troughs appear sharper in the June and July 1968 data because there are fewer data points.) The times of maximum flood current were calculated (Appendix F) ignoring the effect of large eddies, by assuming the current maximum occurs balf-way between the reversals in direction of the drogue drift (figures E4 to E6). Using these assumptions the maximum surface flood current was found to be 3 hours 40 minutes after low tide and the maximum ten metar flood current 3 hours 40 minutes to 5 hours after low tide. The surface tidal amplitudes ranged from about \(4 \mathrm{~cm} / \mathrm{sec}\) in February 1969 to about \(20 \mathrm{~cm} / \mathrm{sec}\) in June 1968, and the ten meter amplitudes ranged similarly from \(4 \mathrm{~cm} / \mathrm{sec}\) in February 1969 to over \(10 \mathrm{~cm} / \mathrm{sec}\) in June 1968.



Figure 11. Drogue speed versus time plots for surface and 10 meters; 30 and 31. March 1968.


TIME


TIME
Figure 12. Drogue speed versus time plots for surface and 10 meters; 10 and 11 June 1968.


TIME
Figure 13. Drogue speed versus time plot for surface; 8 and 9 July 1968.
 0
0
0
E
0


25 FEBRUARY 1969

26 FEBRUARY 1969

TIME
Figure 14. Drogue speed versus time plots for surface and 10 meters; 25 and 26 February 1969.

From these data and a short tidal stage record (Appendix F) which Indicates the tide in North Dawes was within one half hour of Juneau's predicted tide it was concluded that the tide in Endicott Arm is close to a standing wave. (A standing wave has current maxima at half tide stages: 1.e., the maxima of current are halfway between high and low tide. Kinsman, 1965a.)

\subsection*{4.1.2 Means of Current Up-Inlet from Sumdum Island}

Twelve hour means of the current data measured up-inlet from Sumdum Island are shown in figures 15 and 16 . The bars in the figures show the mean of the data taken between the time intervals enclosed. The positive speed axis indicates down-inlet drift of the drogues. Figure 17 shows oix-hour means taken from maxtmmeb to marinum ficod current and vice versa. The plots show an increase in mean current down-inlet. The plots are annotated Sumdum Passage where the drogues had to pass between Sumdum Island and the southwest side of the inlet. In this area current speeds increased due to the narrowing of the passage.

Figure 18 illustrates the effect on "ideal" currents as affected strictly by changes in the width of the passage. This ideal current removes the effect of entrainment (Bowden; 1967) and shows gradually decreasing current speeds down-inlet except in Sumdum Passage. This plot suggests that the increase in current speed seen in figure 17 was caused by entrainment.





Figure 16. Twelve hour means of 10 meter current's speed. 26 FEB. 1969


Figure 17 Six hour means of surface and 10 metar current'


s speeds for March 1968 and February 1969

Figure 18. Changes in 5 and \(10 \mathrm{~cm} / \mathrm{sec}\) current affected by changes in inlet width. "Sumdum Passage" indicates the passage between Sumdum Island and the inlet's southwest shore.


Figure 19. Near-surface velocity profiles for March and June 1968 and February 1969.

Drogues planted on 21 November 1966 (figure El) at twenty and forty meters drifted from the mouth of the inlet at high tide. The twenty meter drogue left the inlet at \(28.6 \mathrm{~cm} / \mathrm{sec}\) and the forty meter drogue at \(9.5 \mathrm{~cm} / \mathrm{sec}\). Assuming that the 20 meter drogue represented the current speed of the total volume of water leaving the inlet at high tide, the volume outflow from the inlet at this time was \(5.3 \times 10^{3} \mathrm{~m} / \mathrm{sec}\).

Similarly on 6 March 1967 a surface drogue left the inlet on the ebb tilde (figure E2) at \(70 \mathrm{~cm} / \mathrm{sec}\). This exit speed was converted to an exit speed at high tide of \(43 \mathrm{~cm} / \mathrm{sec}\) by means outlined in Appendix F. Assuming that the surface drogue's corrected speed represented the volume outflow at high tide, this outflow would have been \(8.0 \times 10^{3} \mathrm{~m} / \mathrm{sec}\).

\subsection*{4.2 Ice Drift Measurements}

The ice drift measured from the photography showed tracks similar to those of the drogues (figures E9 to E11). The photograph-to-photograph movements, however, did not show tidal trends in the velocity-time plots (figures 20 to 22). The level of error (figure F1 to F3) proved as great as the iceberg's movement between photographs.

Instead of speed versus time plots, mean speed versus time plots were constructed (figure 23). These plots use the total drift per time of photography as the mean speed. In figure 22, with the exception of 24 August 1968, the iceberg's mean speeds tended to group around certain values: in July, \(23 \mathrm{~cm} / \mathrm{sec}\); on 25 August, \(8 \mathrm{~cm} / \mathrm{sec}\); and on 6 March, 8 \(\mathrm{cm} / \mathrm{sec}\). On 24 August the icebergs reversed direction near ebb tide, showing speeds up to +19 and \(-17 \mathrm{~cm} / \mathrm{sec}\). (These speeds are considered


Figure 20. Typical iceberg apeed curves, 10 July 1968.



Figure 21. Typical iceberg speed curves, 24 and 25 August 1968.


Figure 22. Typical iceberg spead curves, 6 March 1969.


Figure 23. Mean iceberg speeds for 10 July, 24 and 25 August 1968 and 6 March 1969.
dubious but the direction change was clearly evident in the photographe, )
Comparing figures 23 and 3 and assuming the tidal oscillation is superimposed on a mean outflow gives some indication of the true mean outflow currents.

On 10 July 1968 , assuming a \(20 \mathrm{~cm} / \mathrm{sec}\) tidal amplitude during photography, the iceberg's tidal oscillation speed should have varied from -10 to \(+10 \mathrm{~cm} / \mathrm{sec}\) (figure \(8,20 \mathrm{~cm} / \mathrm{sec}\) plot). This means the tidal com ponenf of the iceberg's speed was zero over the interval of photography. The icebergs with similar k-numbers as that of the plot had mean speeds of 17 and \(25 \mathrm{~cm} / \mathrm{sec}\). This suggests a mean outlfor of about \(20 \mathrm{~cm} / \mathrm{sec}\) reaching to twenty meters. This value is within the mean speeds measured by the surface drogues of the previous two days. This mean further suggests that the ten meter mean outflow speed was the same as at the surface.

The ice drift of 24 August is not explicable by the tide ice drift curyeg. The reversal of the icebergs in the center of the inlet occured near maximum ebb current (figure E10). The iceberg's mean tidal drift should have been down inlet at about \(2 \mathrm{~cm} / \mathrm{sec}\) which should have reinforced the mean outflow ewremt, The ereversal of these icebergs may have been caused by aub-surface currente but there is no independent data to check this possiblity. .

During the photography period of 25 August the tidal oscillation speed of the icebergs varied from +4 to \(-4.5 \mathrm{~cm} / \mathrm{sec}\). Taking the mean area under the two curves gives a mean tidal current of about \(-1 \mathrm{~cm} / \mathrm{sec}\) assuming the tidal current amplitude was about \(10 \mathrm{~cm} / \mathrm{sec}\). (The area-
under-the-curve mean was used because the time interval extended beyond the negative maximum of the iceberg speed curve.) The mean ice drift speed during the time was about \(8 \mathrm{~cm} / \mathrm{sec}\), giving a mean outflow current apeed of about \(9 \mathrm{~cm} / \mathrm{sec}\).

On 6 March 1969 icebergs 5 and 6 (figure 23, text and figure Ell) with k-numbers similar to the figure 8 iceberg were used. (A ten cm/sec tidal current amplitude was assumed.) Iceberg 5 covered a tidal oscilLation from about +4 to \(-4 \mathrm{~cm} / \mathrm{sec}\) giving zero tidal correction, Iceberg 6 covered a tidal oscillation from 0 to \(-4 \mathrm{~cm} / \mathrm{sec}\) giving a tidal correction of \(+2 \mathrm{~cm} / \mathrm{sec}\). The wind was blowing interfittentig at about 10 knots ( \(5 \mathrm{~m} / \mathrm{gec}\) ). Since the wind was intermittent, one falf of Gudkovich and Nikiforov's (1967) correction was applied ( 1 (as/sec). From these corrections and mean outflow current measured by icebergs 5 and 6 was 3 and \(11 \mathrm{~cm} / \mathrm{sec}\) respectively (figure 23). (Since iceberg 4 had a high mean speed, it was checked. Its tidal correction was taken from plots in Appendix \(G\) and found to be \(-3 \mathrm{~cm} / \mathrm{sec}\). Applying this and the wind correction gives a mean outflow velocity of \(17 \mathrm{~cm} / \mathrm{sec}\).) The mean surface outflow current from the 25 and 26 February data was 7 to \(17 \mathrm{~cm} / \mathrm{sec}\), and the mean ten meter outflow current was 5 to \(11 \mathrm{~cm} / \mathrm{sec}\) (figure 16). Apparently the icebergs (except number 4) drifted at a speed near the mean ten meter outflow current speed.

\subsection*{4.3 Iceberg Melt as it Affects Measurements}

The icebergs were measured about two thirds of the way down the inlet. Assuming a inear melt rate the icebergs measured here could have
been three times as large at the glacier. Also assuming that the icebergs melt completely in the inlet make a 40 meter wide iceberg measured by photography 120 meters wide at the glacier. Further, if this iceberg drifted down-inlet at \(5 \mathrm{~cm} / \mathrm{sec}\), its complete melting would give a melt rate of \(9.2 \mathrm{~m} /\) day for 13 days. Since the longest interval one iceberg was tracked was 5 hours, the iceberg should have melted 1.9 meters in width. This would be hard to detect and rotation of rectangular icebergs would confuse such measurements.

In the same five hours the iceberg's coupling with the tidal current would have changed also. This change, in the case of the 40 meter iceberg would be from 0.0111 to 0.0117 in \(k\)-number. This represents a \(6 \%\) change in amplitude and about \(2 \%\) change in lag (figure 9).

\section*{CHAPTER V}

\section*{SUMMARY AND CONCLUSIONS}

\subsection*{5.1 Summary of Drogue Drift Measurements}

Drogue drift measurements were made on 30 and 31 March 1968; 10 and 11 June 1968; 8 and 9 July 1968; and 25 and 26 February 1969. All the surface and 10 meter drogues showed tidal oscillations with superimposed mean outflow.

The maxima of current proved close to the predicted maxima but the broad peaks and troughs precluded accurate timing except by reversal times of the drogues. The mean outflow was measured by use of 12 -hour means of the data. Six-hour means, between current maxima, showed an increase in mean outflow down-inlet. Since the inlet widens towards the mouth, this increase was related to entrainment.

Velocity-depth profiles were derived from the six- and twelve-hour means of cufrent. The March 1968 and February 1969 profiles and similar slopes of about \(0.4 \mathrm{~cm} / \mathrm{sec} / \mathrm{m}\) between the surface and ten meters.

The 1968 data show a seasonal summertime increase in mean current speed. The March and 10 June drogues showed low mean outflow speeds. The 11 June data showed a sudden increase in speed on a flooding tide which was related to the onset of the summer run-off period. The July data showed high mean outflow currents which were considered normal for this time of year (Wallen and Hood, 1971).

The February 1969 data did not fit this pattern but instead showed high mean outflow speeds similar to those of July 1968. This may have
been an unusual occurrence for this time of year but that is not know. The drogue data taken down-inlet from Sumdum Island indicated there is little flow over the shallows northeast of the mouth of the inlet. The current measured through the mouth of the inlet in November 1966 of \(28.6 \mathrm{~cm} / \mathrm{sec}\) indicated at total outflow volume at high tide of 5.3 \(x 10^{3} \mathrm{~m}^{3} / \mathrm{sec}\). The current measured on 6 March 1967 and corrected to high tide suggested an outflow of \(8.0 \times 10^{3} \mathrm{~m}^{3} / \mathrm{sec}\).
5.2 Summary of Photogrammetry

Photogrammetric interpretation of currents from ice drift proved a complex procedure. First, the standard considerations of photogrammetry had to be made including site selection and camera-pointing. Second, the current regime with depth needed measuring independently of the ice drift. Third, measurements on the photographs were made of the movement of the icebergs, their width, height and general shape. Fourth, calculations were made of the coupling between the iceberg and the water. Finally, the total drift with time was used to minimize measurment errors.

The cameras used were callbrated and two were measured for distortion errors. The cameras used were a Graflex and two Kalimar, SQ cameras. Site selection required the photographer to be as high as convenient where the view was unobstructed. Cameras were pointed generally down-inlet so one iceberg could be tracked as long as possible. This, however, proved a nuisance since of ten the iceberg was moving nearly away from the camera, the direction in which the error was greatest.

Currents were measured by parachute drogues, as previously discussed, and these measurements were used as an independent check on the iceberg photogrammetry. This points up the fact that icedrift photogrammetry was used to gather auxiliary data. This technique measures the current only in the mean and is not practical for measuring tidal currents.

Measurements of the photographs consisted of measuring distances from the side of the photograph to the iceberg and the known landmark, and.measuring the distance of the iceberg below the shoreline. These distances were converted to distance from the camera and angle at the camera, between the landmark and the 1ceberg. In addition, the width and height-above-water of the iceberg were measured to determine its true size. From the positions of the iceberg with time the photograph-to-photograph and total drift speeds of the icebergs were determined.

From the equations of drag and inertia, a differential equation was formed to describe the iceberg's motion in the tidal current. This differential equation was simulated on the University of Alaska's analog computer. The coefficients of drag, frontal area, volume and density were lumped into one coefficient, \(k\). For the solution of the differential equation, \(k\) was varied with the tidal amplitude at 10 and \(20 \mathrm{~cm} / \mathrm{sec}\). Since the 1cebergs were affected by both tidal and mean outflow currents, the position-to-position movements were checked. Unfortunately, the error in measurement was often as large as the iceberg's movement negating trend measurements. The times of photography generally covered both positive and negative tidal movement, so net drift with time was used. This net drift was corrected by the iceberg coupling curves to
fndicate mean outflow currents. These indicated currents were checked against the existing drogue data. The agreement was good which indicates the ice drift photogrametry techaique is probably a reliable method of gathering auxiliary current data.

\subsection*{5.3 Conclusions}

\subsection*{5.3.1 The Drogue Study}

The tide staff record shows that low tide at North Dawes inlet of Endicott Arm is within one-half hour of low tide at the mouth. Further, the current drogue data indicate the tidal wave is close to a standing wave in Endicott Arm.

The drogue drift patterns, showing a general outflow with small or no reversals at maximum flood current, show the mean outflow is of similar magnitude to the tidal currents. The mean outflow showed an expected summer increase in July 1968, but the February 1969 data showed unusually high mean outflow currents.

The current profiles indicated a roughly similar 0-10 meter slope. This slope suggests there may be an increase in depth of the mean outflow layer with an increase in the mean outflow current. This suggests a concurrent depression of the mean inflow layer. McAlister, Rattray, and Barnes (1959), observed the opposite effect in Silver Bay during 1956. They observed a surface current of about \(10 \mathrm{~cm} / \mathrm{sec}\) and a mean outflow layer of about 30 meters in March and a surface current of about \(18 \mathrm{~cm} / \mathrm{sec}\) with the main outflow layer depth of about 5 meters from the surface and a second between about 35 and 90 meters in July. The data
do not suggest a reason for this difference.

\subsection*{5.3.2 The Ice Drift Study}

As stated previously the ice drift study proved complex. It was evident from the error curves that the cameras were pointed too much down-inlet. The height-of-camera to range-of-iceberg ratio of \(1: 50\) combined with the fact that the icebergs moved primarily away from the cameras made the photograph-to-photograph velocities of the icebergs uselegs.

A further difficulty was the \(108 s\) of the horizon. The photographs were taken on black and white film which caused the quiet water to blend with the mountain behind. This difficulty could have been readily corrected by the use of color film.

The cameras used did not produce film adapted to automated processing. The best camera for this work would have been a 35 millimeter camera where the film would have been left in strips after development. Thirty-five millimeter film is easily and accurately measured on systems such as the OSCAR.

The technigue did prove workable for gathering supplementary current data. As with all remote sensing, the interpretation requires independent measurements to test and calibrate the remote measurements. However, if the current profile with depth and the tidal amplitude and frequency are known, photogrametric fcedrift measurements will provide workable supplementary current data.

\section*{REFERENCES CITED}

Bowden, K. F., 1967. Circulation and Diffusion, Estuaries, AAAS \#83, G.H. Lauff, Ed., 15-36.

Forrester, W. D., 1960. Plotting Water Current Patterns by Photogrammetry, Photo Engr. 26, 726-736.

Gudkovich, Z. M., G. I. Melkonyan and E. G. Nikiforov, 1967. Aerodynamic Investigations of Ice Flow Models, Hydrometeorology of the Polar Regions, G. Ya. Vangengeim and A. F. Laktionov, 1963, NSF by Israel Prog. Sci. Trans., Jerusalem, 237-259.

Gudkowich, Z. M. and E. G. Nikiforov, 1967. Steady-State Drift of a Single Ice Floe, Hydrometeorology of the Polar Regions, G. Ya. Vangengeim and A. F. Laktionov, Ed., Leningrad, 1263, NSF by Isreal Prog. Sci. Trans., Jerusalem, 214-226.

Hoerner, S. F., 1958. Fluid Dynamic Drag, Published by Author, 148 Bustead Dr., Midland Park, N. J., 07432.

Ingram, R. G., O. M. 1969. Johannessen and E. R. Pounder, Pilot Study of Ice Drift in the Gulf of St. Lawrence, J. Geophys. Res., 74, 5453-5459.

Keller, M., 1963. Tidal Current Studies by Photogrammetric Methods, USC\&GS Tech. Bul. 22, 20 p.

Kinsman, B., 1965. Notes on Tides, Seiches and Long Waves, Unpublished Notes, Dept. Ocean., Johns Hopkins U., 258 p.

Knauss, J. A., 1963. Drogues and Neutral-Buoyant Flots; The Sea, M. N. Hill, Ed., 303-305.

Maunual of Photogrametry, Amer. Soc. of Photogrametry, Box 286, Benf. Franklin Sta., Wash., D.C., 1952.

Matthews, J. B. and D. R. Rosenberg, 1969. Numeric Modeling of a Fjord Estuary, Inst. Mar. Sci., U. of Alaska, Prog. Rept., Mar. 1966 to Jun 1968, 24-40.

McAllister, W. B., M. Rattray, Jr., and C. Barnes, 1959. The Dynamics of a fjord Estuary: Silver Bay, Alaska, Tech. Rept. 62, Dept. of Ocean., U. of Washington, 70 p.

Reed, R. J. and W. J. Campbell, 1962. The Equilibrium Drift of Ice Station Alpha, J. Geophys. Res., 67, 281-297.

Roshko, A., 1961. Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number, J. Fluid Mech. : 10, 345-356.

Schvede, Ye. Ye., 1966. Icebergs in the Northwest Atlantic, Oceanology, 6, 499-504.

Streeter, V. L., 1958. Fluid Mechanics, McGraw Hill, Inc., New York, 705 p.

Swanson, L. W., M. Keller and S. D. Hicks, 1963. Photogrammetric Measurement of Tidal Currents, USC\&GS, Int. Un. of Geod. and Geophys., 13 Gen. Assbly., Berkeley, Cal., Aug 19-31.

Thorndyke, E. M. and M. Ewing, 1969. Photographic Determination of Ocean Bottom Current Velocity, Mar. Tech. Soc. J., 3.

Tide Tables, West Coast of North and South America, U.S. Dept. of Commerce, U.S. Govt. Print. Ofif, Wath. D. G., 20401, 1966-1969.

Volkman, G., J, Knauss and A. Vine, 1956. The Use of Parachete Drogues in the Measurement of Subsurface Ocean Currents, Trans. Am. Geophys. Un. . 37, 573-577.

Wallen, D. D. and D. W. Hood, 1968. Dascriptive Oceanography of the Southeastern Alaskan Waters, Prog. Rept., Inst. Mar. Sci., U. of Alaska, Mar 1966 to June 1968, 1-18.

Wallen, D. D. and D. W. Hood, 1971. Tech. Rept. R 71-1, Inst. Mar. Sci., U. of Alaska.

Walford, T. C. and M. J. Moynehan, 1969. The Influence of Directly Measured Currents, Geostrophic Currents and Winds on Iceberg Drift, (Abstract) Trans. Am. Geophys. Un., 50, 192.

\section*{APPENDIX A}

\section*{BATHYMETRY}

The only published soundings in Endicott Arm (U.S. Coast and Geodetic Survey Chart 8201) shows little sounding information. In addition it shows the North and South Dawes Glaciers nearly meeting at the point of land between them.

This chart has been brought up to date with soundings taken aboard the Uaiversity of Alaska's ship, R/V ACONA, during March 1967 and November 1968. Figure 1A shows the new bathymetric chart of Endicott Arm. Bathymetry data was gathered with a model Precision Depth Recorder attached to a UQN EDO Fathometer. The sounding tracks are shown as an insert.

Soundings were positioned by radar using prominent landmarks as references. The data taken during the November 1968 cruise were considered the most accurate and the other data were adjusted to them.

The basic configuration of the inlet was obtained from U.S. Geological Survey Topographic Maps (Sumdum C3, C4 and C5). Sounding tracks were plotted on this outline chart and sonic profiles were then adjusted to fit the length of each track. The adjusted sounding profiles were read at 20 fathom ( 37 meter) intervals; the position of each 20 fathom interval was plotted on the chart, and the chart was contoured. Positioning of the soundings is considered accurate to \(\pm 0.1\) nautical miles ( \(\pm 185\) meters). Depth accuracy is considered to be \(\pm 2\) fathoms ( 4 meters).

The bathymetry is characterized by two basins separated by a rise near Point \(N(f i g u r e 1 A)\). The outer basin is wide, irregular and terminated by a sill at the mouth of the inlet. The sill at the mouth is 8 to 12 fathoms ( 14 to 22 meters) in the deepest area. The inner basin, separated from the outer by an 80 fathom ( 293 meter) deep rise, is a U-shaped valley typical of fjords. The deepest point (195 fathoms - 714 meters) in the inlet is found in this basin. Bathymetry near the head of the inlet is unknown due to lack of data.

\section*{APPENDIX B \\ dROGUE POSITION AND SPEED DATA}

\section*{B. 1 Drogue Position Data}

The drogue position data are listed for observations used in this thesis as time of observation, azimuth and distance from a known landmark. The azimuths are in degrees and the distances are in nautical miles.

19 November 1966
Surface Drogues

Positions based on NW End of Sumdum Island


20 November 1966
Positions Based on Wood Spit Light
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Drogue & \#3 20 & m & Drogue & 11410 & m & Drogue & & \\
\hline Ttur & Az. & Dist. & Time & Az. & DLst. & Time & Az. & Dist. \\
\hline 1020 & 26 & 1.5 & 1155 & 20 & 1.18 & 1235 & 18 & 1.11 \\
\hline 1050 & 30 & 1.37 & 1400 & 13 & 1.1 & 1420 & 38 & 0.99 \\
\hline 1125 & 30 & 1.3 & 1531 & 23 & 1.24 & 1550 & 38 & 1.09 \\
\hline 1410 & 08 & 1.1 & 1604 & 14 & 1.23 & 1624 & 36 & 1.52 \\
\hline 1538 & 21 & 1.4 & 1700 & 118 & 0.68 & 1730 & 52 & 1.3 \\
\hline & & & 1725 & 30 & 1.32 & & & \\
\hline
\end{tabular}

21 November 1966
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Drogue \#3 20 m
Drogue set 20 Nov.}} & \multicolumn{3}{|l|}{Drogue \$4 10 m} & \multicolumn{3}{|l|}{Drogue \#5 20 m} \\
\hline & & & \multicolumn{3}{|l|}{Drogue set 20 Nov.} & Drog & set & Nov. \\
\hline \multicolumn{3}{|l|}{Posit. on SE and} & \multicolumn{3}{|l|}{Posit. on Wood} & \multicolumn{3}{|l|}{Posit. on Wood} \\
\hline Harbor & Islan & & Spit & ght & & Spit & ght & \\
\hline Tame & Az. & Dist. & Time & Az. & Dist. & Time & Az. & Dist. \\
\hline 0835 & 183 & 1.7 & 1040 & 105 & 0.90 & 0945 & 182 & 0.62 \\
\hline 1005 & 193 & 1.7 & (agro & & & & & \\
\hline
\end{tabular}


All Positions based on Wood Spit Light
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Drogue & \multicolumn{2}{|l|}{\#1 Surf} & Drogue & \multicolumn{2}{|l|}{\#2 Surf} & \multirow[t]{2}{*}{Drogue Time} & \multicolumn{2}{|l|}{\#3 50} \\
\hline Time & Az . & Dist. & Time & Az . & Dist. & & Az. & Dist. \\
\hline 1330 & 70 & 0.93 & 0900 & 62 & 1.95 & 1015 & 82 & 1.55 \\
\hline 1445 & 60 & 0.95 & 1028 & 55 & 2.00 & 1120 & 98 & 1.50 \\
\hline 1510 & 64 & 0.91 & 1130 & 52 & 2.19 & 1305 & 94 & 1.40 \\
\hline 1630 & 31 & 0.96 & 1200 & 51 & 2.14 & 1330 & 90 & 1.30 \\
\hline & & & 1255 & 56 & 1.83 & 1400 & 82 & 1.59 \\
\hline & & & 1320 & 50 & 2.00 & & & \\
\hline & & & 1415 & 48 & 2.00 & & & \\
\hline
\end{tabular}

Drogue 非 Surf
Time Az. Dist.
\(1005 \quad 114 \quad 1.25\)
\(1020 \quad 92 \quad 0.90\)
\(1123 \quad 83 \quad 0.85\)
\(1150 \quad 77 \quad 0.81\)
\(1215 \quad 61 \quad 0.68\)
\(1250 \quad 70 \quad 0.66\)
\(1310 \quad 580.64\)
\(1336 \quad 49 \quad 0.73\)
\(1405 \quad 32 \quad 0.70\)
\(1500 \quad 330 \quad 0.57\)
\(1555297 \quad 2.22\)

5 May 1967
Surface Drogues
All Positions based on NW End Sumdum Island
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Drogue & \#1 & & Drogue & \#2 & & Drogue & \#3 & \\
\hline Time & Az. & Dist. & Time & Az. & Dist. & Time & Az. & Dist. \\
\hline 1200 & 233 & 1.70 & 1215 & 247 & 1.90 & 1230 & 249 & 1.77 \\
\hline 1250 & 240 & 1.81 & 1325 & 251 & 1.89 & 1330 & 254 & 1.78 \\
\hline 1445 & 245 & 2.21 & 1437 & 260 & 2.31 & 1430 & 262 & 2.02 \\
\hline 1545 & 246 & 2.47 & 1530 & 263 & 2.83 & 1525 & 266 & 2.60 \\
\hline & & & & & & 1555 & 299 & 2.71 \\
\hline
\end{tabular}

5 May 1967
\begin{tabular}{llllll} 
Drogue & \(\# 4\) & & \multicolumn{3}{c}{ Drogue } \\
Time & \\
Time & Az. & Dist. & Time & Az. & Dist. \\
1150 & 248 & 1.88 & 1145 & 262 & 1.10 \\
1235 & 256 & 1.75 & 1246 & 267 & 1.58 \\
1330 & 262 & 1.92 & 1333 & 274 & 2.00 \\
1420 & 267 & 2.40 & 1500 & 277 & 2.06
\end{tabular}

\section*{\(30 \& 31\) March 1968}

All Positions Based on SE end Sumdum Island except where indicated
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Drogue & \multicolumn{2}{|l|}{\#1 Surf.} & \multicolumn{3}{|l|}{Drogue \({ }^{\text {\% }} 2\) Surf.} & \multirow[t]{2}{*}{Drogue Time} & \multicolumn{2}{|l|}{\#3 10 m} \\
\hline Time & Az. & Dist. & Tame & Az. & Dist. & & Az. & Dist. \\
\hline 1239 & 130 & 2.49 & 1245 & 128 & 2.62 & 1237 & 128 & 2.51 \\
\hline 1335 & 133 & 2.69 & 1350 & 128 & 2.67 & 1350 & 128 & 2.65 \\
\hline 1431 & 136 & 2.70 & 1443 & 132 & 2.71 & 1439 & 127 & 2.61 \\
\hline 1536 & 137 & 2.72 & 1533 & 132 & 2.72 & 1542 & 126 & 2.70 \\
\hline 1617 & 136 & 2.67 & 1614 & 133 & 2.70 & . 1602 & 126 & 2.71 \\
\hline 1641 & 137 & 2.64 & 1638 & 133 & 2.66 & 1633 & 125 & 2.71 \\
\hline 1714 & 137 & 1.54 & 1712 & 134 & 2.54 & 1707 & 124 & 2.67 \\
\hline 1752 & 138 & 2.44 & 1750 & 134 & 2.41 & 1744 & 124 & 2.65 \\
\hline 1805 & 136 & 2.40 & 1807 & 133 & 2.37 & 1812 & 124 & 2.63 \\
\hline 1833 & 137 & 2.31 & 1835 & 138 & 2.35 & 1840 & 124 & 2.59 \\
\hline 1858 & 139 & 2.45 & 1900 & 138 & 2.17 & 1904 & 125 & 2.56 \\
\hline 1943 & - & - & 1924 & 144 & 2.05 & 1951 & 124 & 2.44 \\
\hline 2011 & -- & - & 2003 & 144 & 1.85 & 2017 & 124 & 2.37 \\
\hline 2035 & 142 & 1.78 & 2034 & 145 & 1.75 & 2043 & 125 & 2.32 \\
\hline 2125 & 148 & 1.67 & 2125 & 148 & 1.57 & 2137 & 124 & 2.22 \\
\hline 2233 & 144 & 1.58 & 2237 & 149 & 1.51 & 2239 & 127 & 2.08 \\
\hline 2337 & 143 & 1.58 & 2335 & 148 & 1.52 & 2345 & 127 & 1.98 \\
\hline 0036 & 141 & 1.76 & 0033 & 147 & 1.65 & 0043 & 127 & 1.96 \\
\hline 0137 & 144 & 1.97 & 0133 & 149 & 1.78 & 0145 & 130 & 2.06 \\
\hline 0247 & 145 & 1.97 & 0239 & 155 & 1.71 & 0255 & 128 & 2.09 \\
\hline 0345 & 148 & 1.84 & 0339 & 163 & 1.43 & 0359 & 124 & 2.08 \\
\hline 0450 & 153 & 1.73 & 0442 & 172 & 1.12 & 0503 & 123 & 1.98 \\
\hline 0602 & 160 & 1.51 & 0554 & 182 & 0.80 & 0614 & 119 & 1.90 \\
\hline 0657 & 169 & 1.32 & 0651 & 124 & 0.52 & 0706 & 116 & 1.78 \\
\hline Posit. & on W & & Posit. & on Wo & od & 0813 & 115 & 1.66 \\
\hline Spit L1 & ight & & Spit & ight & & 0907 & 118 & 1.55 \\
\hline 0802 & 126 & 5.72 & 0753 & 131 & 5.14 & 1034 & 114 & 1.41 \\
\hline 0919 & 131 & 5.50 & 0925 & 135 & 4.81 & 1132 & 112 & 1.38 \\
\hline 1047 & 130 & 5.40 & 1053 & 133 & 4.61 & 1238 & 109 & 1.44 \\
\hline 1146 & 131 & 5.32 & 1151 & 131 & 4.49 & 1351 & 112 & 1.56 \\
\hline 1255 & 131 & 5.19 & 1302 & 132 & 4.49 & 1459 & 114 & 1.59 \\
\hline 1408 & 133 & 5.00 & 1413 & 133 & 4.43 & 1613 & 114 & 1.56 \\
\hline 1521 & 132 & 4.60 & 1525 & 134 & 3.97 & 1740 & 107 & 1.51 \\
\hline 1633 & 135 & 4.10 & 1636 & 138 & 3.69 & & & \\
\hline 1849 & 139 & 3.45 & 1854 & 140 & 3.01 & & & \\
\hline
\end{tabular}
\(30 \& 31\) March 1968
111 Positions Based on SE end Sumdum Island
\begin{tabular}{|c|c|c|c|c|c|}
\hline Drogue & & m & Drogue & \#5 & \\
\hline Time & Az. & Dist. & Time & Az. & Dist. \\
\hline 1242 & 129 & 2.53 & 1249 & 128 & 2.60 \\
\hline 1349 & 131 & 2.69 & 1353 & 129 & 2.75 \\
\hline 1437 & 130 & 2.79 & 1447 & 129 & 2.94 \\
\hline 1531 & 130 & 2.85 & 1539 & 127 & 3.00 \\
\hline 1604 & 128 & 2.88 & 1620 & 128 & 3.02 \\
\hline 1631 & 128 & 2.92 & 1645 & 128 & 3.00 \\
\hline 1704 & 128 & 2.92 & 1717 & 129 & 3.00 \\
\hline 1740 & 129 & 2.92 & 1755 & 125 & 3.03 \\
\hline 1814 & 127 & 2.89 & 1803 & 127 & 3.02 \\
\hline 1842 & 128 & 2.86 & 1830 & 126 & 3.03 \\
\hline 1907 & 129 & 2.81 & 1854 & 129 & 3.00 \\
\hline 1954 & 133 & 2.69 & 1930 & 128 & 2.86 \\
\hline 2020 & 132 & 2.64 & 2001 & 128 & 2.93 \\
\hline 2101 & 131 & 2.59 & 2030 & 129 & 2.87 \\
\hline 2143 & 132 & 2.52 & 2115 & 128 & 2.82 \\
\hline 2245 & 132 & 2.44 & 2220 & 129 & 2.78 \\
\hline 2352 & 133 & 2.44 & 2331 & 126 & 2.81 \\
\hline 0050 & 133 & 2.49 & 0023 & 128 & 2.93 \\
\hline 0220 & 132 & 2.68 & 0127 & 126 & 3.05 \\
\hline 0303 & 131 & 2.70 & 0231 & 125 & 3.02 \\
\hline 0406 & 130 & 2.72 & 0332 & 127 & 3.03 \\
\hline & & & 0428 & 127 & 3.03 \\
\hline 0620 & 126 & 2.59 & 0549 & 126 & 3.01 \\
\hline 0712 & 126 & 2.52 & 0644 & 125 & 3.01 \\
\hline 0819 & 127 & 2.35 & 0747 & 127 & 2.95 \\
\hline 0902 & 130 & 2.31 & 0937 & 129 & 2.93 \\
\hline 1025 & 130 & 2.10 & 1101 & 129 & 2.85 \\
\hline 1126 & 130 & 2.01 & 1204 & 129 & 2.83 \\
\hline 1230 & 130 & 1.96 & 1312 & 129 & 2.67 \\
\hline 1344 & 129 & 2.10 & 1427 & 129 & 3.05 \\
\hline 1453 & 130 & 2.19 & 1534 & 129 & 3.09 \\
\hline 1607 & 129 & 2.21 & 1643 & 129 & 3.03 \\
\hline 1725 & 126 & 2.21 & - 1926 & 130 & 3.04 \\
\hline
\end{tabular}

\section*{10 \& 11 June 1968 \\ Sextant Readings}

Sextant readings were taken as angles between two or more sets of two points. These are read as successive angles between known landmarks (Eigures E6 and E7). Drogue \(\# 1\) at 1420 was \(41^{\circ}\) between \#5 and Cabin Point; \(15^{\circ}\) between Cabin Point and Sumdum Island, etc.
Time Mark 1 Mark 2 Mark \(3 \quad\) Mark \(4 \quad\) Mark \(5 \quad\) Mark 6

Drogue \#1
\begin{tabular}{lllllll}
1420 & Cabin Pt. & Sumdum & Waterfall & \#1 \\
& & \(41^{\circ}\) & \(15^{\circ}\) & \(43^{\circ}\) & & \\
1535 & \(\# 6\) & \(\# 5\) & 44 & Sumdum & Waterfall & \#x \\
& & \(71^{\circ}\) & \(72^{\circ}\) & \(21^{\circ}\) & &
\end{tabular}

Drogue \#2
1350 Released 300 yards at \(140^{\circ}\) (magnetic) from \#3
\begin{tabular}{lllll}
1550 & Sumdum & Waterfall & \#X & \#5 \\
& \(29^{\circ}\) & \(49^{\circ}\) & \(100^{\circ}\)
\end{tabular}
1657 Sumdum \begin{tabular}{lll} 
W4 & Waterfall & Creek 3
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{1758} & \multirow[t]{2}{*}{\$5} & 14 & Sundum & Waterfall & \#X & \\
\hline & & \(72^{\circ} 43^{\prime}\) & 84* & \(71^{\circ} 86^{\prime}\) & \(82^{\circ} 46^{\prime}\) & - \\
\hline \multirow[t]{2}{*}{1900} & \multirow[t]{2}{*}{Sumdum} & Waterfall & \#X & \#4 & Sumdum & \\
\hline & & \(86^{\circ} 05^{\prime}\) & \(74^{\circ} 21^{\prime}\) & \(74^{\circ} 36^{\prime}\) & \(125^{\circ} 58^{\prime}\) & \\
\hline \multirow[t]{2}{*}{2052} & \multirow[t]{2}{*}{\#5} & \#4: & Sumdum & Waterfall & \$1. & \#5 \\
\hline & & \(78^{\circ} 00^{\prime}\) & \(73^{\circ} 01^{\prime}\) & \(66^{\circ} 57^{\prime}\) & \(97^{\circ} 37^{\prime}\) & \(55^{\circ} 13^{\prime}\) \\
\hline \multirow[t]{2}{*}{2157} & \multirow[t]{2}{*}{\$5} & \$4 & Waterfall & \#1 & \#5 & \\
\hline & & \(115^{\circ} 49^{\prime}\) & & \(103^{\circ} 26^{\prime}\) & \(55^{\circ} 05^{\prime}\) & \\
\hline
\end{tabular}

11 June 1968
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Time & Mark 1 & Mark 2 & Mark 3 & Mark 4 & Mark 5 & Mark 6 \\
\hline \multirow[t]{2}{*}{0908} & \#5 & \#4 & Sumdum & Waterfall & Creek 3 & \#4 \\
\hline & & \(23^{\circ} 23^{\prime}\) & \(133^{\circ} 12^{\prime}\) & \(103^{\circ} 02^{\prime}\) & \(40^{\circ} 22^{\prime \prime}\) & \(82^{\circ} 16^{\prime}\) \\
\hline \multirow[t]{2}{*}{1025} & Sumdum & Waterfall & \#1 & \#4 & & \\
\hline & & \(105^{\circ} 55^{\prime}\) & \(64^{\circ} 16^{\prime}\) & \(45^{\circ} 22^{\prime}\) & & \\
\hline \multirow[t]{2}{*}{1123} & Sumdum & Waterfall & \#4 & & & \\
\hline & & \(109{ }^{\circ} 23^{\prime}\) & \(102^{\circ} 22^{\prime}\) & & & \\
\hline \multirow[t]{2}{*}{1259} & Sumdum & \#2 & Waterfall & \# 4 & & \\
\hline & & \(33^{\circ} 12^{\prime}\) & \(84^{\circ} 29^{\prime}\) & \(75^{\circ} 29^{\prime}\) & & \\
\hline \multirow[t]{2}{*}{1320} & Sumdum & \#2 & Waterfall & \#4 & & \\
\hline & & \(33^{\circ} 59^{\prime}\) & \(82^{\circ} 03^{\prime}\) & \(78^{\circ} 41^{\prime}\) & & \\
\hline \multirow[t]{3}{*}{1527} & Sumdum & \#2 & Waterfall & \#3 & Sumdum & \\
\hline & & \(92^{\circ} 52\) & \(41^{\circ} 00^{\prime}\) & & \(24^{\circ} 22^{\prime}\) & \\
\hline & & & 10 June 1968 & , & & \\
\hline \multicolumn{7}{|c|}{Drogue \#3} \\
\hline \multirow[t]{2}{*}{1410} & \#5 & \#4 & Sumdum & Waterfall & \#6 & \#5 \\
\hline & & \(46^{\circ}\) & \(17^{\circ}\) & & \(215^{\circ}\) & \(103^{\circ}\) \\
\hline \multirow[t]{2}{*}{1545} & \#5 & \#4 & Waterfall & \#x & & \\
\hline & & \(103^{\circ}\) & \(71^{\circ}\) & \(68^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{1648} & \#4 & Waterfall & Creek 3 & & & . \\
\hline & & \(77^{*}\) & \(34^{\circ}\) & \multicolumn{3}{|l|}{Lie on a circle assumed in line with previous} \\
\hline \multirow[t]{2}{*}{1745} & \#4 & Sumdum & Waterfall & \# X & & \\
\hline & & \(31^{\circ} 05^{\prime}\) & \(62^{\circ} 00^{\prime}\) & \(84^{\circ} 27^{\prime}\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Time & Mark 1 & Mark 2 & Mark 3 & Mark 4 & Mark 5 & Mark 6 \\
\hline \multirow[t]{2}{*}{1851} & \#5 & \#4 & Sumdum & Waterfall & \# x & \#5 \\
\hline & & \(70^{\circ} 57^{\prime}\) & \(100^{\circ} 04^{\prime}\) & \(73^{\circ} 40^{\prime}\) & \(76^{\circ} 39^{\prime}\) & \(\left(39^{\circ} 44^{\prime}\right)\) \\
\hline \multirow[t]{2}{*}{2035} & \$5 & \#4 & Sumdum & Waterfall & \#1 & | 4 \\
\hline & & \(37^{\circ} 45^{\prime}\) & & \(79^{\circ} 35^{\prime}\) & \(83^{\circ} 11^{\prime}\) & \(70^{\circ} 53^{\prime}\) \\
\hline \multirow[t]{3}{*}{2205} & \#5 & \#4 & Waterfall & 112 & \$5 & \\
\hline & & 101 \({ }^{\circ} 4^{\prime}\) & & \(89^{\circ} 04^{\prime}\) & \(29^{\circ} 33^{\prime}\) & \\
\hline & & & 1 June 1968 & & & \\
\hline \multirow[t]{2}{*}{0853} & \#5 & \(\$ 4\) & Sumdum & Waterfall & \# & \\
\hline & & \(43^{\circ} 28^{\prime}\) & \(121^{\circ} 59^{\prime}\) & \(79^{\circ} 47^{\prime}\) & \(76^{\circ} 00^{\prime}\) & \% \\
\hline \multirow[t]{2}{*}{1043} & \$5 & \#4 & Sumdum & Waterfall & \% & \\
\hline & & \(104^{\circ} 27^{\prime}\) & \(50^{\circ} 40^{\prime}\) & \(62^{\circ} 57^{\prime}\) & \(88^{\circ} 37^{\prime}\) & \\
\hline \multirow[t]{2}{*}{1146} & |5 & \#4. & Sumdum & Waterfall & & \\
\hline & & \(100^{\circ} 25^{\prime}\) & \(33^{\circ} 39^{\prime}\) & \(53^{\circ} 34^{\prime}\) & & \\
\hline \multirow[t]{2}{*}{1227} & \#5 & \#4 & Sumdum & Waterfall & & \\
\hline & & \(90^{\circ} 41^{\prime \prime}\) & \(28^{\circ} 15^{\prime}\) & \(49^{\circ} 35^{\prime}\) & & \\
\hline \multirow[t]{2}{*}{1411} & \#5 & 114 & Sumdum & Waterfall & \#6 & \#5 \\
\hline & & \(75^{\circ} 08^{\prime}\) & \(29^{\circ} 54^{\prime}\) & \(47^{\circ} 00^{\prime}\) & & \(155^{\circ} 50^{\prime}\) \\
\hline \multirow[t]{2}{*}{1450} & \#5 & 4 & Sumdum & Waterfall & & \\
\hline & & \(77^{\circ} 49^{\prime}\) & \(31^{\circ} 37^{\prime}\) & \(48^{\circ} 15^{\prime}\) & & \\
\hline
\end{tabular}

\author{
10 and 11 June 1968 \\ Drogue \(\# 4\) Sextant Readings
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Time & Mark 1 & Mark 2 & Mark 3 & Mark 4 & Mark 5 & Mark 6 \\
\hline \multirow[t]{2}{*}{1530} & \#6 & \#5 & 4 & Sumdum & Waterfall & \\
\hline & & \(86^{\circ}\) & & \(23^{\circ}\) & \(42^{\circ}\) & \\
\hline \multirow[t]{2}{*}{1640} & \#5 & \#4 & Sumdum & & & \\
\hline & & \(66^{\circ}\) & \(27^{\circ}\) & & & \\
\hline \multirow[t]{2}{*}{1731} & \# & Sumdum & Waterfall & 14 & \#2 & \\
\hline & & \(30^{\circ} 40^{\prime}\) & \(49^{\circ} 49^{\prime}\) & & \(38^{\circ} 49^{\prime}\) & \\
\hline \multirow[t]{2}{*}{1837} & \#5 & \$4 & Sumdum & Waterfall & \#x & \\
\hline & & \(100^{\circ} 43^{\prime}\) & \(44^{\circ} 40^{\prime}\) & \(59^{\circ} 12^{\prime \prime}\) & \(91^{\circ} 22^{\prime}\) & \\
\hline \multirow[t]{2}{*}{2025} & \#5 & \#4 & Waterfall & Creek 3 & \#1 & \#5 \\
\hline & & \(85^{\circ} 37\) ' & & \(44^{\circ} 03^{\prime}\) & & \(48^{\circ} 29^{\prime}\) \\
\hline \multirow[t]{2}{*}{2108} & \#5 & \$4 & Sumdum & Waterfall & \#1 & \#5 \\
\hline & & \(98^{\circ} 10^{\prime}\) & 45 \({ }^{\circ} 56^{\prime}\) & \(58^{\circ} 44^{\prime}\) & \(105^{\circ} 26^{\prime}\) & \(\left(53^{\circ} 19^{\prime}\right)\) \\
\hline \multirow[t]{2}{*}{2157} & \#5 & \#4 & Waterfall & \#1 & \#5 & \\
\hline & & \(115^{\circ} 49^{\prime}\) & & \(103^{\circ} 36^{\prime}\) & \(55^{\circ} 05^{\prime}\) & \\
\hline
\end{tabular}

11 June 1968
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0920 & \#5 & \#4 & \#1 & Waterfall & Sumdum \\
\hline & & \(13^{\circ} 39^{\prime}\) & \(36^{\circ} 58^{\prime}\) & \(67^{\circ} 29^{\prime}\) & \(95^{\circ} 34^{\prime}\) \\
\hline 1013 & Sumdum & Waterfall & /1 & \#4 & \\
\hline & - & \(98^{\circ} 02^{\prime}\) & \(64^{\circ} 33^{\prime}\) & \(30^{\circ} 27^{\prime}\) & \\
\hline 1100 & Sumdum & Naterfall & Creek 3 & 14 & \\
\hline & & \(100^{\circ} 30^{\prime}\) & \(31^{\circ} 57^{\prime}\) & \(61^{\circ} 08^{\prime}\) & \\
\hline 1247 & Sundum & Waterfall & Creek 3 & 14 & \\
\hline & & 107 \({ }^{\circ} 15^{\prime}\) & \(29^{\circ} 37^{\prime}\) & \(61^{\circ} 54^{\prime}\) & \\
\hline 1338 & Sumdum & Waterfall & 14 & \#2 & Waterfall \\
\hline & & \(114^{\circ} 23^{\prime}\) & \(72^{\circ} 08^{\prime}\) & & \(\left(72^{\circ} 08^{\prime}\right)\) \\
\hline
\end{tabular}

\section*{8 and 9 July 1968 \\ Sextant Readings}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TIme & Mark I & Mark 2 & Mark 3 & Mark 4 & Mark 5 & Mark 6 \\
\hline & rogue \$1 & & & & & \\
\hline
\end{tabular}
1421 \#10 \begin{tabular}{lll} 
& \(\# 1\) & Waterfall 2 \\
& & \(116^{\circ} 12^{\prime}\)
\end{tabular}
\begin{tabular}{llll}
1553 \#5 & Sumdum & \#10 & Waterfall 2 \\
& \(22^{\circ} 49^{\prime}\) & \(59^{\circ} 35^{\prime}\) & \(111^{\circ} 55^{\prime}\)
\end{tabular}
\begin{tabular}{clllll}
1655 & \(\# 6\) & \(\# 5\) & Sumdum & \(\# 10\) & \(\# 1\) \\
\(:\) & & \(60^{\circ} 37^{\prime}\) & \(26^{\circ} 56^{\prime}\) & \(102^{\circ} 25^{\prime}\) & \(48^{\circ} 42^{\prime}\)
\end{tabular}

1834 Sumdum Waterfall 1 \#10 Waterfall 2 \#6
\(36^{\circ} 52^{\prime} \quad 97^{\circ} 24^{\prime} \quad 37^{\circ} 06^{\prime} \quad 41^{\circ} 39^{\prime}\)
1948.

Water-
fall 1 10 .
\#1
Waterfall 2 \#6
\#5
\(99^{\circ} 37^{\prime}\)
\(25^{\circ} 13^{\prime}\)
\(6^{\circ} 39^{\prime}\)
\(33^{\circ} 51^{\prime}\)
\(87^{\circ} 58^{\prime}\)

9 July 1968


8 and 9 July 1968
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Time & Mark 1 & \[
\frac{\text { Mark } 2}{8 \text { July }}
\] & Mark 3 & Mark 4 & Mark 5 & Mark 6 \\
\hline \multirow[t]{2}{*}{1418} & \$10 & \#1 & Waterfall & 2 & & \\
\hline & & \(109^{\circ} 33^{\prime}\) & \(39^{\circ} 41^{\prime}\) & & & \\
\hline \multirow[t]{2}{*}{1602} & \#5 & Sumdum & \#10 & Waterfall 2 & & \\
\hline & & \(21^{\circ} 29^{\prime}\) & \(61^{\circ} 57^{\prime}\) & \(108^{\circ} 44^{\prime}\) & & \\
\hline \multirow[t]{2}{*}{1702} & \#6 & \#5 & Sumdum & \#10 & Waterfall & \\
\hline & & \(68^{\circ} 27^{\prime}\) & \(25^{\circ} 42^{\prime}\) & \(103^{\circ} 59^{\prime}\) & \(63^{\circ} 26^{\prime}\) & \\
\hline \multirow[t]{2}{*}{1834} & Sumdum & Waterfall 1 & \#10 & Waterfall 2 & \#6 & \\
\hline & \(\cdots\) & \(36^{\circ} 52^{\prime}\) & \(97^{\circ} 24^{\prime}\) & \(37^{\circ} 06^{\prime}\) & \(41^{\circ} 39^{\prime}\) & \\
\hline \multirow[t]{3}{*}{1955} & \#10 & Waterfall 2 & \#6 & \#5 & Sumdum & \\
\hline & & \(32^{\circ} 28^{\prime}\) & \(40^{\circ} 41^{\prime}\) & \(83^{\circ} 57^{\prime}\) & \(146^{\circ} 22^{\prime}\) & \\
\hline & & 9 & July 1968 & & & \\
\hline \multirow[t]{2}{*}{1124} & Sumdum & \#2 & Waterfall & 1 Waterfall 2 & \#4 & \\
\hline & & \(50^{\circ} 39^{\prime}\) & \(3^{\circ} 21^{\prime}\) & \(54^{\circ} 07^{\prime}\) & \(5^{\circ} 40^{\prime}\) & \\
\hline \multirow[t]{2}{*}{1450} & \#2 & Waterfall 1 & 非 & & & \\
\hline & & \(45^{\circ} 50{ }^{\prime}\) & \(48{ }^{\circ} 4\) & & \(500 \mathrm{ft}\). of & hore \\
\hline \multirow[t]{2}{*}{1900} & Sumdum & \#2 & Waterfall & 1 \#6 & & \\
\hline & & \(52^{\circ} 19^{\prime \prime}\) & \(55^{\circ} 21^{\prime}\) & \(57^{\circ} 31^{\prime}\) & & \\
\hline
\end{tabular}


\section*{10 July 1968}

1115 Wood Spit
\begin{tabular}{lr} 
W. End & E. End \\
Sumdum & Sumdum
\end{tabular}

\section*{25 and 26 February 1969}

Drogues 1 and 2 (Surface)

Drogue "1
Time
Azimuth
Distance
Azimuths relative to Tide Gauge
1617
1739
\(113^{\circ}\)
1.05
0.95
0.93
0.93
0.91
0.81
0.52
\(20^{\circ}\)
0.40
\(347^{\circ}\)
0.55

Azimuth based on east end of Sumdum
\begin{tabular}{lllllr}
0254 & \(142^{\circ}\) & 2.05 & 0706 & \(216^{\circ}\) & 0.63 \\
0407 & \(148^{\circ}\) & 1.78 & Azimuth based on Wood Spit \\
0526 & \(156^{\circ}\) & 1.46 & 0921 & \(122^{\circ}\) & 3.61 \\
0620 & \(161^{\circ}\) & 1.27 & 1026 & \(122^{\circ}\) & 3.25 \\
0657 & \(169^{\circ}\) & 1.16 & 1127 & \(123^{\circ}\) & 2.99 \\
0912 & \(201^{\circ}\) & 0.89 & 1225 & \(123^{\circ}\) & 2.64 \\
1017 & \(228^{\circ}\) & 1.11 & 1322 & \(123^{\circ}\) & 2.40 \\
1121 & \(242^{\circ}\) & 1.37 & 1430 & \(118^{\circ}\) & 1.90
\end{tabular}
\begin{tabular}{lcc} 
& Drogue \(\# 1\) \\
Time & Azimuth & Distance \\
Azimuth based on Wood Spit \\
1221 & \(126^{\circ}\) & 3.30 \\
1318 & \(127^{\circ}\) & 2.79 \\
1421 & \(127^{\circ}\) & 2.60
\end{tabular}

25 and 26 February


26 February 1969
\begin{tabular}{lccccc} 
& \multicolumn{2}{c}{ Drogue la Surface } & & \multicolumn{2}{c}{ Drogue 2a Surface } \\
Time & Azimuth & Distance & Time & Azimuth & Distance \\
Azimuth based on east end of Sumdum & Azimuth based on east end of Sumdum \\
1602 & \(139^{\circ}\) & 2.75 & 1610 & \(132^{\circ}\) & 2.65 \\
1703 & \(137^{\circ}\) & 2.76 & 1707 & \(131^{\circ}\) & 2.47 \\
1801 & \(136^{\circ}\) & 2.75 & 1806 & \(135^{\circ}\) & 2.28 \\
1905 & \(135^{\circ}\) & 2.76 & 1911 & \(146^{\circ}\) & 2.08 \\
2005 & \(135^{\circ}\) & 2.76 & 2014 & \(145^{\circ}\) & 1.93 \\
2104 & \(135^{\circ}\) & 2.76 & 2113 & \(146^{\circ}\) & 1.78 \\
2202 & \(136^{\circ}\) & 2.79 & 2218 & \(147^{\circ}\) & 1.65
\end{tabular}

Drogue 3a Surface
Time Azimuth Distance
Azimuth based on east end of Sumdum
\begin{tabular}{lll}
1620 & \(127^{\circ}\) & 2.64 \\
1710 & \(126^{\circ}\) & 2.40 \\
1809 & \(125^{\circ}\) & 2.11 \\
1915 & \(127^{\circ}\) & 1.79 \\
2019 & \(127^{\circ}\) & 1.50 \\
2119 & \(129^{\circ}\) & 1.27 \\
2229 & \(132^{\circ}\) & 1.13
\end{tabular}

Drogue 4a Surface
Time Azimuth Distance
Azimuth based on east end of Sumdum
\(1628 \quad 119^{\circ}\)
2.34

1214
1813
1920
2025
2126
\(117^{\circ}\)
1.94

2241
\(117^{*}\)
1.70

25 and 26 February 1969

Drogue 5 ( 10 m.\()\)


\section*{B. 2 Drogue Speed Data}

The drogue speed data ware calculated from the position data. They are listed as time and speed to that time in \(\mathrm{cm} / \mathrm{sec}\). The speed data for 19 November 1966 was not listed for the positions were dubious and speeds excessively high.

The speeds from 19 November 1966 to 5 May 1967 were calculated as position to position velocities while those for 1968 and 1969 were listed as longitudinal velocities based on a \(128^{\circ}\) Azimuth.

\section*{Current Speeds}

20 Novamber 1966
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Drogue 3} & \multicolumn{2}{|c|}{Drogue 4} \\
\hline Time & Speed cm/sec & Time & Speed \(\mathrm{cm} / \mathrm{sec}\) \\
\hline 1050 & 16.4 & 1400 & 4.2 \\
\hline 1125 & 6.2 & 1531 & 8.5 \\
\hline 1410 & 34.2 & 1604 & 18.7 \\
\hline 1538 & 17.4 & 1722 & 14.3 \\
\hline 1612 & 31.1 & & \\
\hline 1715 & 6.2 & & \\
\hline Drogue 5 & & & \\
\hline Time & Speed \(\mathrm{cm} / \mathrm{sec}\) & & \\
\hline 1420 & 11.0 & & \\
\hline 1550 & 2.7 & & \\
\hline 1624 & 40.3 & & \\
\hline 1730 & 21.0 & & \\
\hline
\end{tabular}

21 November 1966
Drogue 3
Drogue 6
\begin{tabular}{|c|c|c|c|}
\hline Time & Speed \(\mathrm{cm} / \mathrm{sec}\) & Time & Speed \(\mathrm{cm} / \mathrm{sec}\) \\
\hline 1005 & 6.9 & 1110 & 2.0 \\
\hline \multicolumn{2}{|l|}{Drogue 3 Reset} & 1150 & 26.9 \\
\hline 1330 & 38.6 & 1325 & 19.1 \\
\hline Drogue 5 & & 1430 & 11.7 \\
\hline 0945 & 9.1 & & \\
\hline 1040 & 33.1 & & \\
\hline 1205 & 31.9 & & \\
\hline 1400 & 72.9 & & \\
\hline
\end{tabular}

Drogue 1 Surface
Time Veloc. Kn. Vol. cm/sec
\begin{tabular}{ll}
1445 & 0.13 \\
1510 & 0.16 \\
1630 & 0.27
\end{tabular}
6.5
8.2
13.5

Drogue 2 Surface
\(1028^{\circ} 0.14 \quad 7.2\)
\(1130 \quad 0.22 \quad 11.3\)
\(1200 \quad 0.14 \quad 7.2\)
\(1255 \quad 0.38 \quad 19.6\)
\(1320 \quad 0.64 \quad 33.0\)
\(1350 \quad 0.18 \quad 9.3\)
\(1415 \quad 0.28 \quad 14.7\)

\section*{Drogue 4 Surface}

Time Veloc. Kn. Vol. \(\mathrm{cm} / \mathrm{sec}\) 1020 2.00? 103?
1123. \(0.16 \quad 8.5\)
\(1150 \quad 0.25 \quad 12.9\)
\(12150.48 \quad 24.4\)

1250
1310
1336
1405
0.34
17.5
\(1500 \quad 0.72 \quad 37.0\)
1555
1.94
99.7

Drogue 350 m .
\begin{tabular}{rrr}
1120 & 0.35 & 17.6 \\
1145 & 0.17 & 9.0 \\
1205 & 0.30 & 15.6 \\
1305 & 0.11 & 5.6 \\
1330 & 0.36 & 18.4 \\
1400 & 0.70 & 36.0
\end{tabular}

5 May 1967
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Drogue 1} & Drogue 4 \\
\hline Time & \(\mathrm{Ve} 1(\mathrm{~cm} / \mathrm{sec})\) & Time & Vel ( \(\mathrm{cm} / \mathrm{sec}\) ) \\
\hline 1250 & 13.6 & 1235 & 30.2 \\
\hline 1445 & 24.5 & 1330 & 14.0 \\
\hline \multirow[t]{2}{*}{1545} & 12.9 & 1420 & 32.2 \\
\hline & Drogue 2 & & Drogue 5 \\
\hline Time & Vel ( \(\mathrm{cm} / \mathrm{sec}\) ) & Time & Vel ( \(\mathrm{cm} / \mathrm{sec}\) ) \\
\hline 1325 & 8.4 & 1240 & 27.4 \\
\hline 1437 & 21.3 & 1333' & 26.8 \\
\hline \multirow[t]{2}{*}{1530} & 28.2 & 1500 & 37.0 \\
\hline & Drogue 3 & & \\
\hline Time & Vel ( \(\mathrm{cm} / \mathrm{sec}\) ) & & \\
\hline 1330 & 8.2 & & \\
\hline 1430 & 19.0 & & \\
\hline 1525 & 34.1 & & \\
\hline 1555 & 43.2 & & \\
\hline
\end{tabular}

Longitudinal Velocities ( \(\mathrm{cm} / \mathrm{sec}\) )
30 and 31 March 1968
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Drogue 1 Surf} & \multicolumn{2}{|l|}{Drogue 2 Surf} & \multicolumn{2}{|l|}{Drogue 3 ( 10 m )} & \multicolumn{2}{|l|}{Drogue 4 ( 10 m.\()\)} \\
\hline Time & Vel. & Time & Ve1. & Time & Vel. & Time & Vel. \\
\hline 1335 & 10.4 & 1350 & -2.6 & 1350 & -2.6 & 1349 & -7.2 \\
\hline 1431 & 0.5 & 1443 & -2.6 & 1439 & 1.5 & 1437 & -6.7 \\
\hline 1536 & -1.0 & 1533 & -0.5 & 1542 & \(-4.6\) & 1531 & -3.6 \\
\hline 1617. & 3.7 & 1614 & 1.5 & 1602 & -1.5 & 1604 & -4.6 \\
\hline 1641 & 3.8 & 1638 & 5.1 & 1633 & 0 & 1631 & -4.6 \\
\hline 1704 & 13.4 & 1712 & 10.8 & 1707 & 4.6 & 1704 & +0.0 \\
\hline 1752 & 7.1 & 1750 & 10.8 & 1744 & 1.5 & 1740 & +0.0 \\
\hline 1805 & 7.1 & 1807 & 7.2 & 1812 & 2.1 & 1814 & 2.5 \\
\hline 1833 & 10.3 & 1835 & 2.1 & 1840 & 4.6 & 1842 & 3.1 \\
\hline 1858 & 14.8 & 1900 & 22.1 & 1904 & 2.6 & 1907 & 6.2 \\
\hline 1943 & -- & 1924 & 15.4 & 1951 & 8.8 & 1954 & 9.3 \\
\hline 2011 & -- & 2003 & 15.9 & 2017 & 7.2 & 2020 & 4.6 \\
\hline 2035 & -- & 2034 & 9.8 & 2043 & 6.2 & 2101 & 3.1 \\
\hline 2135 & 8.7 & 2125 & 10.8 & 2137 & 6.2 & 2143 & 5.7 \\
\hline 2233 & 2.7 & 2231 & 2.6 & 2239 & 7.2 & 2245 & 4.1 \\
\hline 2337 & -0.5 & 2335 & -0.5 & 2345 & 4.1 & 2352 & 0.0 \\
\hline 0036 & 8.9 & 0033 & -6.7 & 0043 & 1.0 & 0050 & 2.0 \\
\hline 0137 & -9.1 & 0133 & -6.7 & 0145 & -5.1 & 0220 & 6.7 \\
\hline 0247 & 0.4 & 0239 & 3.1 & 0255 & -1.5 & 0303 & 1.5 \\
\hline 0345 & 6.0 & 0339 & 14.4 & 0359 & 1.0 & 0406 & 1.5 \\
\hline 0450 & 7.6 & 0442 & 14.9 & 0503 & 4.6 & 0620 & 3.1 \\
\hline
\end{tabular}

\section*{Longitudinal Velocities (cm/scc)}

30 and 31. March (continued)
\begin{tabular}{lrccccccc} 
Drogue 1 Surf & Drogue 2 Surf & Drogue \(3(10 \mathrm{~m})\) & Drogue & \(4(10 \mathrm{~m})\) \\
Time & Vel. & Time & Vel. & Time & Vel. & Time & Vel. \\
0602 & 12.4 & 0504 & 12.9 & 0614 & 4.1 & 0712 & 4.1 \\
0657 & 15.4 & 0651 & 14.9 & 0706 & 8.3 & 0819 & 7.7 \\
0802 & 4.6 & 0753 & 15.4 & 0813 & 5.7 & 0902 & 3.1 \\
0919 & 10.3 & 0925 & 16.5 & 0907 & 5.1 & 1025. & 7.7 \\
1047 & 3.6 & 1053 & 7.2 & 1034 & 17.5 & 1126 & 4.6 \\
1146 & 4.6 & 1151 & 6.2 & 1132 & 2.6 & 1230 & 1.0 \\
1255 & 5.1 & 1302 & 0.0 & 1238 & 2.1 & 1344 & 5.7 \\
1408 & 8.2 & 1413 & 6.7 & 1351 & 5.7 & 1453 & 4.1 \\
1521 & 16.5 & 1525 & 15.4 & 1459 & 2.1 & 1607 & 1.0 \\
1633 & 22.1 & 1636 & 12.4 & 1613 & 1.0 & 1725 & 0.0 \\
1849 & 15.4 & 1854 & 15.4 & 1740 & 4.1 & & \\
\hline
\end{tabular}

Longitudinal Velocities
10 and 11 July 1968
\begin{tabular}{|c|c|c|c|c|c|}
\hline Drogue 2 & Surf & \multicolumn{2}{|l|}{Drogue 3 ( 10 m )} & \multicolumn{2}{|l|}{Drogue 4 Surf} \\
\hline Time & Ve1. & Time & Vel. & Time & Vel. \\
\hline 1550 & 8.8 & 1410 & 2.6 & 1640 & 5.1 \\
\hline 1657 & 17.0 & 1545 & 12.5 & 1731 & 14.9 \\
\hline 1758 & 23.2 & 1648 & 8.2 & 1857 & 13.9 \\
\hline 1900 & 15.9 & 1745 & 14.9 & 2025 & 5.1 \\
\hline 2052 & -12.4 & 1851 & 22.6 & 2108 & -11.3 \\
\hline 2157 & -20.6 & 2035 & 7.2 & 2157 & -10.3 \\
\hline 0908 & 5.7 & 2205 & -12.8 & 0920 & 5.7 \\
\hline 1025 & 6.6 & 0755 & 1.0 & 1013 & 5.7 \\
\hline 1123 & 5.1 & 0852 & 7.2 & 1100 & 6.7 \\
\hline 1259 & 8.7 & 1043 & -14.9 & 1247 & 7.2 \\
\hline 1330 & 11.8 & 1146 & -16.0 & 1338 & 16.5 \\
\hline \multirow[t]{3}{*}{1527} & 27.8 & 1227 & -14.4 & & \\
\hline & & 1411 & -3.1 & & \\
\hline & & 1457 & 4.1 & & \\
\hline
\end{tabular}

\section*{Longitudinal Velocities}

\section*{8 and 9 July 1968}


\section*{Surface Longitudinal Velocities}

25 and 26 February 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Drogue 1} & \multicolumn{2}{|l|}{Drogue 2} & \multicolumn{2}{|l|}{Drogue 3} & \multicolumn{2}{|l|}{Drogue 4} \\
\hline Time & Vel \(\mathrm{cm} / \mathrm{sec}\) & Time & Vel \(\mathrm{cm} / \mathrm{sec}\) & Time & Vel \(\mathrm{cm} / \mathrm{sec}\) & Time & Vel \(\mathrm{cm} / \mathrm{sec}\) \\
\hline 1739 & 3.6 & 1726 & 12.4 & 1722 & 5.6 & 1833 & 16.5 \\
\hline 1848 & 2.5 & 1957 & 11.0 & 1840 & 8.6 & 1927 & -5.0 \\
\hline 1943 & 3.2 & 2046 & 11.1 & 2000 & 13.7 & 2025 & 9.1 \\
\hline 2036 . & 2.9 & 2203 & 11.9 & 2052 & 13.7 & 2134. & 8.9 \\
\hline 2141 & 9.0 & 2318 & 14.4 & 2159 & 14.4 & 2255 & 11.4 \\
\hline 2306 & 13.2 & 0029 & 12.2 & 2323 & 14.1 & 0005 & 14.6 \\
\hline 0017 & 14.4 & 0141 & 17.1 & 0033 & 16.3 & 0121 & 13.6 \\
\hline 0133 & 12.5 & 0605 & 12.4 & 0144 & 15.6 & 0242 & 18.0 \\
\hline 0254 & 12.2 & 0706 & 12.2 & 0306 & 22.6 & 0415 & 14.2 \\
\hline 0407 & 12.9 & 0921 & 14.0 & 0425 & 13.6 & 0533 & 15.3 \\
\hline 0526 & 14.4 & 1026 & 16.9 & 0545 & 9.4 & 0725 & 7.3 \\
\hline 0620 & 14.3 & 1127 & 12.7 & 0712 & 11.3 & 0933 & 8.7 \\
\hline 0657 & 14.8 & 1225 & 18.7 & 0925 & 17.2 & 1042 & 14.9 \\
\hline 0912 & 14.4 & 1322 & 11.2 & 1034 & 9.9 & 1145 & 25.8 \\
\hline 1017 & 19.5 & 1430 & 25.0 & 1131 & 16.8 & 1241 & 17.2 \\
\hline 1121 & 17.5 & & & 1228 & 20.6 & 1335 & 22.8 \\
\hline 1221 & 17.0 & & & 1325 & 13.7 & 1449 & 18.5 \\
\hline 1318 & 23.4 & & & 1437 & 14.9 & & \\
\hline 1412 & 13.2 & & & & & & \\
\hline
\end{tabular}

\section*{Surface and Longitudinal Velocities} 25 and 26 Februaty 1969
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Drogue 1a} & \multicolumn{2}{|l|}{Drogue 2a} & \multicolumn{2}{|l|}{Drogue 3a} & \multicolumn{2}{|l|}{Drogue 4a} \\
\hline Time & Vel cm/sec & Time & Vel \(\mathrm{cm} / \mathrm{sec}\) & Time & Vel \(\mathrm{cm} / \mathrm{sec}\) & Time & Vel \(\mathrm{cm} / \mathrm{sec}\) \\
\hline 1703 & \(-1.0\) & 1707 & 9.3 & 1710 & 11.3 & 1714 & 10.3 \\
\hline 1701 & -0.5 & 1806 & 11.3 & 1809 & 15.4 & 1813 & 6.2 \\
\hline 1905 & -1.0 & 1911 & 12.3 & 1915 & 14.4 & 1920 & 8.7 \\
\hline 2005 & 0.0 & 2014 & 7.2 & 2019 & 15.4 & 2025 & 9.8 \\
\hline 2104 & 0.0 & 2113 & 8.2 & 2119 & 11.3 & 2126 & 9.3 \\
\hline 2202 & 3.1 & 2218 & 4.6 & 2229 & 5.5 & 2241 & 9.8 \\
\hline
\end{tabular}


\title{
Appendix C \\ Iceberg Position Data
}
C. 1 Photographic Distances

The iceberg position data is listed as photographic distances and real distances. The photographic distances are the distances from the center of the photograph to the landmark and to the iceberg ( \(D_{1}\) and \(D_{b}\) respectively). Further, the distance of the iceberg below the horizon is tabulated. These distances permit calculation of the position of the iceberg as described in the thesis.

\section*{Photo Distances}

10 July 1968

\section*{Iceberg 1}

Iceberg 2
\(D_{b}\) and \(D_{1}\) calculated from center of photograph
\begin{tabular}{rllllll} 
Time & \(D_{1}\) & \(D_{b}\) & \(D_{b h}\) & \(D_{1}\) & \(D_{b}\) & \(D_{b h}\) \\
1525 & 29.8 & -13.5 & 2.45 & 29.8 & -27.5 & 1.34 \\
1535 & 29.8 & -12.44 & 2.30 & 29.8 & -25.36 & 1.27 \\
1545 & 29.8 & -10.09 & 2.25 & 29.8 & -22.76 & 1.08 \\
1555 & 29.8 & -8.34 & 1.96 & 29.8 & -20.98 & 0.90 \\
1605 & 29.8 & -5.49 & 1.76 & 29.8 & -18.88 & 0.75 \\
1615 & 29.8 & -3.74 & 1.73 & 29.8 & -17.43 & 0.79 \\
1625 & 29.8 & -2.37 & 1.70 & 29.8 & -15.71 & 0.83 \\
1635 & 29.8 & -0.71 & 1.61 & 29.8 & -14.33 & 0.67 \\
1645 & 29.8 & 1.22 & 1.56 & 29.8 & -13.22 & 0.64 \\
1655 & 29.8 & 2.94 & 1.44 & 29.8 & -12.42 & 0.48 \\
1705 & 29.8 & 4.04 & 1.39 & 29.8 & -11.85 & 0.44 \\
1715 & 29.8 & 5.03 & 1.33 & 29.8 & -10.93 & 0.37 \\
1725 & 29.8 & 5.88 & 1.28 & 29.8 & -10.20 & 0.28
\end{tabular}

Photo Distances
10 July 1968
\(D_{b}\) and \(D_{1}\) calculated from center of photograph
Iceberg 3
Icaberg 4
\begin{tabular}{lllllll} 
Time & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{\mathrm{b}}\) & \(\mathrm{D}_{\mathrm{bh}}\) & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{\mathrm{b}}\) & \(\mathrm{D}_{\mathrm{bh}}\) \\
1525 & 29.8 & -20.4 & 0.93 & 29.8 & -25.1 & 1.59 \\
1535 & 29.8 & -19.03 & 0.87 & 29.8 & -22.73 & 1.53 \\
1545 & 29.8 & -18.03 & 0.85 & 29.8 & -19.94 & 1.40 \\
1555 & 29.8 & -16.53 & 0.80 & 29.8 & -17.89 & 1.26 \\
1605 & 29.8 & -15.55 & 0.70 & 29.8 & -15.07 & 1.18 \\
1615 & 29.8 & -14.44 & 0.60 & 29.8 & -13.57 & 1.15 \\
1625 & 29.8 & -13.42 & 0.65 & 29.8 & -11.89 & 1.10 \\
1635 & 29.8 & -12.12 & 0.60 & 29.8 & -9.98 & 0.95 \\
1645 & 29.8 & -10.66 & 0.55 & 29.8 & -8.10 & 0.80 \\
1655 & 29.8 & -9.21 & 0.45 & 29.8 & -6.45 & 0.70 \\
1705 & 29.8 & -8.01 & 0.57 & 29.8 & -5.07 & 0.67 \\
1715 & 29.8 & -6.55 & 0.52 & 29.8 & -4.03 & 0.67 \\
1725 & 29.8 & -5.40 & 0.55 & 29.8 & -3.38 & 0.62
\end{tabular}

\section*{Photo Distances}

10 July 1968
\(D_{b}\) and \(D_{1}\) calculated from center of photograph

Iceberg 5
Iceberg 6
\begin{tabular}{lllllll} 
Time & \(D_{1}\) & \(D_{b}\) & \(D_{b h}\) & \(D_{1}\) & \(D_{b}\) & \(D_{b h}\) \\
1525 & 29.8 & -9.8 & 9.32 & 29.8 & -9.6 & 14.7 \\
1535 & 29.8 & -1.98 & 8.24 & 29.8 & 4.93 & 12.40 \\
1545 & & & 29.8 & 15.23 & 11.00 \\
1555 & 29.8 & 8.22 & 6.82 & 29.8 & 19.25 & 10.00 \\
1605 & 29.8 & 14.66 & 5.92 & 29.8 & 25.77 & 8.93 \\
1615 & 29.8 & 19.85 & 5.41 & 29.8 & 30.81 & 8.38 \\
1625 & 29.8 & 22.65 & 5.18 & 29.8 & 36.41. & 7.53 \\
1635 & 29.8 & 25.70 & 5.02 & 29.8 & 41.65 & 6.84 \\
1645 & 29.8 & 30.33 & 4.82 & 29.8 & 46.65 & 6.33 \\
1655 & 29.8 & 34.00 & 4.47 & 29.8 & 51.90 & 5.68 \\
1705 & 29.8 & 34.86 & 4.22 & 29.8 & 54.85 & 5.34 \\
1715 & 29.8 & 35.46 & 4.00 & 29.8 & 56.90 & 4.99 \\
1725 & \(\therefore\). & & & 29.8 & 56.75 & 4.66
\end{tabular}

\section*{Photo Distances}

24 August 1968

\section*{Measured from side of photographs}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Iceberg 3} & \multicolumn{3}{|l|}{Iceberg 4} \\
\hline Time & Side to Landmark & \begin{tabular}{l}
Side \\
to \\
ICe- \\
berg
\end{tabular} & \(\mathrm{D}_{\text {bh }}\) & Side to Landmark & \[
\begin{aligned}
& \text { Side } \\
& \text { to } \\
& \text { Ice- } \\
& \text { berg }
\end{aligned}
\] & \(\mathrm{D}_{\mathrm{bh}}\) \\
\hline 1633. & 18.3 & 43.0 & 0.1 & 18.3 & 36.3 & 0.2 \\
\hline 1645 & 18.4 & 43.3 & 0.1 & 18.4 & 38.0 & 0.1 \\
\hline 1700 & 18.7 & 43.8 & 0.1 & 18.7 & 38.7 & 0.2 \\
\hline 1715 & 18.5 & 44.1 & 0.05 & 18.5 & 39.0 & 0.2 \\
\hline 1730 & 18.6 & 44.8 & 0.1 & 18.6 & 39.1 & 0.2 \\
\hline 1745 & 19.0 & 46.1 & 0.1 & 19.0 & 40.1 & 0.15 \\
\hline 1800 & 18.9 & 46.4 & 0.05 & 18.9 & 40.7 & 0.2 \\
\hline 1815 & 19.0 & 46.7 & 0.1 & 19.0 & 40.8 & 0.2 \\
\hline 1832 & 19.0 & 46.3 & 0.1 & 19.0 & 38.7 & 0.2 \\
\hline 1845 & 18.6 & 46.2 & 0.1 & 18.6 & 38.2 & 0.1 \\
\hline 1900 & 18.5 & 45.5 & 0.1 & 18.5 & 37.6 & 0.1 \\
\hline 1916 & 18.7 & 45.4 & 0.1 & 18.7 & 37.9 & 0.1 \\
\hline 1937 & 18.6 & 44.6 & 0.1 & 18.6 & 37.5 & 0.1 \\
\hline 1945 & 18.5 & -- & - & 18.5 & 37.1 & 0.1 \\
\hline 2000 & 18.4 & 44.5 & 0.1 & 18.4 & 37.1 & 0.05 \\
\hline
\end{tabular}

Photo Distances
24 August 1968

Measured from side of photographs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Iceberg 5} & \multicolumn{2}{|l|}{Iceberg 6} & \\
\hline Time & side to Lañdmark & \begin{tabular}{l}
Side \\
to \\
Ice- \\
berg
\end{tabular} & \(\mathrm{D}_{\mathrm{bh}}\) & side to Landmark & \[
\begin{aligned}
& \text { Side } \\
& \text { to } \\
& \text { Ice- } \\
& \text { berg }
\end{aligned}
\] & \(D_{\text {bh }}\) \\
\hline 1633 * & 18.3 & 33.2 & 2.5 & 18.3 & 19.4 & 0.8 \\
\hline 1645 & 18.4 & 30.4 & 2.2 & 18.4 & 19.2 & 0.8 \\
\hline 1700 & 18.7 & 28.1 & 2.0 & 18.7 & 19.9 & 0.8 \\
\hline 1715 & 18.5 & 25.7 & 1.7 & 18.5 & 19.9 & 0.7 \\
\hline 1730 & 18.6 & 24.7 & 1.7 & 18.6 & 20.4 & 0.8 \\
\hline 1745 & 19.0 & 25.5 & 1.7 & 19.0 & 21.1 & 0.8 \\
\hline 1800 & 18.9 & 26.2 & 1.8 & 18.9 & 20.9 & 0.8 \\
\hline 1815 & 19.0 & 27.3 & 1.9 & 19.0 & 20.1 & 0.8 \\
\hline 1832 & 19.0 & 27.9 & 2.0 & 19.0 & 20.9 & 0.8 \\
\hline 1845 & 18.6 & 28.2 & 2.3 & 18.6 & 20.5 & 1.0 \\
\hline 1900 & 18.5 & 29.1 & 2.6 & 18.5 & 20.2 & 1.0 \\
\hline 1916 & 18.7 & 30.3 & 2.9 & 18.7 & 20.2 & 1.0 \\
\hline 1937 & 18.6 & 31.7 & 3.0 & 18.6 & 20.2 & 1.0 \\
\hline 1945 & 18.5 & 32.3 & 3.2 & 18.5 & 20.1 & 1.0 \\
\hline 2000 & 18.4 & 33.2 & 3.4 & 18.4 & 20.1 & 1.0 \\
\hline
\end{tabular}

\section*{Photo Distances}

24 August 1968

Measured from side of photographs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Iceberg 7} & \multicolumn{2}{|l|}{Iceberg 8} & \\
\hline Time & \begin{tabular}{l}
Side \\
to \\
Landmark
\end{tabular} & \begin{tabular}{l}
Side \\
to Iceberg
\end{tabular} & \(\mathrm{D}_{\text {bh }}\) & \begin{tabular}{l}
Side \\
to \\
Land- \\
mark
\end{tabular} & \begin{tabular}{l}
Side \\
to \\
Icem \\
berg
\end{tabular} & \(\mathrm{D}_{\text {bh }}\) \\
\hline 1633 * & 18.3 & 26.3 & 0.4 & 18.3 & 18.6 & 0.7 \\
\hline 1645 & 18.4 & 26.2 & 0.4 & 18.4 & 18.7 & 0.7 \\
\hline 1700 & 18.7 & 26.9 & 0.4 & 18.7 & 19.5 & 0.7 \\
\hline 1715 & 18.5 & 27.4 & 0.4 & 18.5 & 19.8 & 0.6 \\
\hline 1730 & 18.6 & 27.8 & 0.3 & 18.6 & 20.2 & 0.7 \\
\hline 1745 & 19.0 & 28.9 & 0.3 & 19.0 & 20.2 & 0.75 \\
\hline 1800 & 18.9 & 29.3 & 0.3 & 18.9 & 20.1 & 0.8 \\
\hline 1815 & 19.0 & 29.6 & 0.4 & 19.0 & 19.7 & 0.8 \\
\hline 1832 & 19.0 & 29.6 & 0.4 & 19.0 & 19.1 & 0.8 \\
\hline 1845 & 18.6 & 30.6 & 0.4 & 18.6 & 18.4 & 0.9 \\
\hline 1900 & & & & 18.5 & 18.2 & 0.9 \\
\hline 1916 & & & & 18.7 & 19.0 & 0.9 \\
\hline 1937 & & & & 18.6 & 19.2 & 0.9 \\
\hline 1945 & & 2. & & 18.5 & 19.2 & 0.9 \\
\hline 2000 & & & & 18.4 & 19.2 & 0.85 \\
\hline
\end{tabular}

Photo Distances
25 August 1968

Measured from side of photographs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Iceberg 1} & \multicolumn{3}{|l|}{Iceberg 2} \\
\hline Time & Side to Landmark & side to Iceberg & \(\mathrm{D}_{\mathrm{bh}}\) & Side to Landmark & Side to Iceberg & \(D_{b h}\) \\
\hline 0835 & 18.8 & & & 18.8 & 22.9 & 0.05 \\
\hline 0845 & 18.8 & & & 18.8 & 22.7 & 0.05 \\
\hline 0900 & 18.7 & & & 18.7 & 22.7 & 0.05 \\
\hline 0915 & 18.6 & & & 18.6 & 22.7 & 0.05 \\
\hline 0930 & 18.7 & & & 18.7 & 22.6 & 0.05 \\
\hline 0945 & 18.7 & 32.9 & 0.45 & 18.7 & 22.5 & 0.05 \\
\hline 1000 & 18.7 & 31.3 & 0.50 & 18.7 & 22.6 & 0.10 \\
\hline 1015 & 18.7 & 29.7 & 0.40 & 18.7 & 22.7 & 0.10 \\
\hline 1030 & 18.7 & 28.4 & 0.30 & 18.7 & 22.7 & 0.10 \\
\hline 1045 & 18.7 & 27.5 & 0.30 & 18.7 & 22.7 & 0.10 \\
\hline 1100 & 18.6 & 26.7 & 0.30 & 18.6 & 22.6 & 0.10 \\
\hline 1115 & 18.7 & 25.8 & 0.30 & 18.7 & 22.7 & 0.10 \\
\hline 1130 & 18.6 & 24.9 & 0.30 & 18.6 & 22.6 & 0.10 \\
\hline 1145 & 18.6 & 24.0 & 0.30 & 18.6 & 22.5 & 0.10 \\
\hline 1202 & 18.4 & 23.1 & 0.35 & 18.4 & 22.4 & 0.10 \\
\hline 1215 & 18.0 & 21.9 & 0.35 & 18.0 & 22.0 & 0.10 \\
\hline 1230 & 18.0 & 20.9 & 0.30 & 18.0 & 21.9 & 0.10 \\
\hline 1246 & 17.9 & 18.8 & 0.30 & 17.9 & 21.8 & 0.10 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
1300 & 17.5 & 18.2 & 0.30 & 17.5 & 22.0 & 0.10 \\
1315 & 18.4 & 17.7 & 0.40 & 18.4 & 22.2 & 0.10 \\
1330 & 18.3 & 15.8 & 0.40 & 18.3 & 22.0 & 0.10 \\
1345 & 18.2 & 13.8 & 0.35 & 18.2 & 22.0 & 0.10 \\
1400 & 18.3 & 12.2 & 0.40 & 18.3 & 22.1 & 0.10
\end{tabular}

Photo Distances .
25 August 1968

\section*{Measured from side of photographs}

Iceberg 3
\begin{tabular}{lll} 
Side & Side & \\
to & to & \\
Land- & Ice- & \\
mark & berg & \(\mathrm{D}_{\mathrm{bh}}\)
\end{tabular}
\(0835 \quad 18.8 \quad 33.0\)
\begin{tabular}{llll}
0845 & 18.8 & 32.0 & 0.20 \\
0900 & 18.7 & 30.6 & 0.15 \\
0915 & 18.6 & 29.8 & 0.15 \\
0930 & 18.7 & 29.0 & 0.15
\end{tabular}
\(0945 \quad 18.7 \quad 28.3 \quad 0.10\)
\begin{tabular}{llll}
1000 & 18.7 & 28.0 & 0.10
\end{tabular}
\(\begin{array}{llll}1015 & 18.7 & 27.4 & 0.10\end{array}\)
\(\begin{array}{llll}1030 & 18.7 & 27.0 & 0.10\end{array}\)
\(1045 \quad 18.7 \quad 26.8 \quad 0.10\)
\begin{tabular}{llll}
1115 & 18.7 & 25.7 & 0.10 \\
1130 & 18.6 & 25.2 & 0.05 \\
1145 & 18.6 & 24.4 & 0.05 \\
1202 & 18.4 & 23.5 & 0.05 \\
1215 & 18.0 & 22.7 & 0.05 \\
1230 & 18.0 & 22.6 & 0.05 \\
1246 & 17.9 & 22.7 & 0.05
\end{tabular}

Iceberg 4
\begin{tabular}{lll} 
Side & Side & \\
to & to & \\
Land- & Ice- & \\
mark & berg & \(\mathrm{D}_{\mathrm{bh}}\)
\end{tabular}
\(18.8 \quad 40.4\)
1.00
\(18.8 \quad 39.1\)
0.95
\(18.7 \quad 37.4 \quad 0.90\)
\(18.6 \quad 35.8\)
0.85
18.7
34.0
0.85
\(18.7 \quad 32.2\)
0.85
\(18.7 \quad 31.2\)
0.90
\(18.7 \quad 30.5 \quad 0.80\)
\(18.7 \quad 30.0 \quad 0.80\)
\(18.7 \quad 29.3 \quad 0.80\)
\(18.6 \quad 28.6 \quad 0.80\)
\(18.7 \quad 28.2\)
0.80
\(18.6 \quad 27.7 \quad 0.80\)
\(18.6 \quad 27.1\)
0.70
18.4
26.5
0.65
18.025 .8
0.65
18.0
25.1
0.65
\(17.9 \quad 24.1\)
0.65
\begin{tabular}{lllllll}
1300 & 17.5 & 22.2 & 0.05 & 17.5 & 23.1 & 0.60 \\
1315 & 18.4 & 23.2 & 0.05 & 18.4 & 23.5 & 0.55 \\
1330 & 18.3 & 23.2 & 0.05 & 18.3 & 22.7 & 0.50 \\
1345 & 18.2 & 23.2 & 0.05 & 18.2 & 22.1 & 0.50 \\
1400 & 18.3 & 23.2 & 0.05 & 18.3 & 21.2 & 0.50
\end{tabular}

Photo Distances
25 August 1968

Measured from side of photographs

Iceberg 5
\begin{tabular}{cccc} 
& \begin{tabular}{c} 
Side \\
to \\
Land- \\
mark
\end{tabular} & \begin{tabular}{c} 
Side \\
to \\
Ice- \\
berg
\end{tabular} & \(D_{\text {bh }}\) \\
0835 & 18.8 & 19.4 & 0.30 \\
0845 & 18.8 & 19.0 & 0.25 \\
0900 & 18.7 & 18.3 & 0.20 \\
0915 & 18.6 & 17.8 & 0.20 \\
0930 & 18.7 & 17.3 & 0.20
\end{tabular}

\section*{Photo Distances}

6 March 1969
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Iceberg 1} & & \multicolumn{2}{|r|}{Iceberg 2} & \\
\hline Time & \[
\begin{aligned}
& \text { Stde } \\
& \text { to } \\
& \text { Land- } \\
& \text { mark }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Side } \\
& \text { to } \\
& \text { Ice- } \\
& \text { barg }
\end{aligned}
\] & \(\mathrm{D}_{\text {bh }}\) & Side to Landmark & \begin{tabular}{l}
Side \\
to \\
Iceberg
\end{tabular} & \(\mathrm{D}_{\mathrm{bh}}\) \\
\hline 0945 & 13.1 & 2.5 & 4.3 & 13.1 & 13.5 & 18.5 \\
\hline \(1000^{*}\) & 11.3 & 5.7 & 3.4 & 11.3 & 14.0 & 9.8 \\
\hline 1015 & 12.3 & 8.7 & 4.5 & 12.3 & 21.5 & 7.8 \\
\hline 1030 & 14.0 & & & 14.0 & 26.1 & 7.0 \\
\hline 1045 & 11.7 & & & 11.7 & 29.7 & 6.1 \\
\hline 1100 & 11.5 & & & 11.5 & 33.1 & 5.4 \\
\hline 1115 & 15.3 & & & 15.3 & & \\
\hline 1130 & 15.3 & & & 15.3 & & \\
\hline
\end{tabular}

\section*{Iceberg 3}
\begin{tabular}{cccc}
1015 & 12.3 & 13.1 & 3.6 \\
1030 & 14.0 & 26.1 & 3.0 \\
1045 & 11.7 & 30.6 & 2.7 \\
1100 & 11.5 & 32.1 & 2.6 \\
1115 & 15.3 & 36.8 & 2.4
\end{tabular}

\section*{Photo Distances}

6 March 1969
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Iceberg 4} & \multicolumn{4}{|c|}{Iceberg 5} \\
\hline Time & \[
\begin{aligned}
& \text { Side } \\
& \text { to } \\
& \text { Land- } \\
& \text { mark }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Side } \\
& \text { to } \\
& \text { Ice- } \\
& \text { berg }
\end{aligned}
\] & \(\mathrm{D}_{\mathrm{bh}}\) & Side to Landmark & \begin{tabular}{l}
Side \\
to \\
Ice- \\
berg
\end{tabular} & \(\mathrm{D}_{\mathrm{bh}}\) \\
\hline 0945 & 13.1 & & & 13.1 & 19.2 & 0.30 \\
\hline \(1000{ }^{\text {* }}\) & 11.3 & & & 11.3 & 17.3 & 0.30 \\
\hline 1015 & 12.3 & & & 12.3 & 18.4 & 0.29 \\
\hline 1030 & 14.0 & & & 14.0 & 20.2 & 0.25 \\
\hline 1045 & 11.7 & & & 11.7 & 17.9 & 0.25 \\
\hline 1100 & 11.5 & 13.6 & 0.6 & 11.5 & 17.3 & 0.24 \\
\hline 1115 & 15.3 & 19.4 & 0.6 & 15.3 & 20.7 & 0.24 \\
\hline 1130 & 15.3 & 22.1 & 0.6 & 15.3 & 20.5 & 0.23 \\
\hline 1145 & 15.4 & 24.4 & 0.55 & 15.4 & 20.3 & 0.23 \\
\hline 1200 & 13.8 & 24.8 & 0.5 & 13.8 & 18.8 & 0.22 \\
\hline 1215 & 13.1 & 26.2 & 0.45 & 13.1 & 17.8 & 0.22 \\
\hline 1230 & 13.0 & 28.1 & 0.4 & 13.0 & 17.7 & 0.21 \\
\hline 1245 & 13.0 & 29.3 & 0.4 & 13.0 & 17.5 & 0.20 \\
\hline 1300 & 12.4 & 30.0 & 0.35 & 12.4 & 16.9 & 0.20 \\
\hline
\end{tabular}

\section*{Photo Distances}
\[
6 \text { March } 1969
\]
\begin{tabular}{cccc} 
& \multicolumn{2}{c}{ Iceberg 6 } \\
Side \\
to \\
Lime & \begin{tabular}{c} 
Lide \\
mark \\
to
\end{tabular} & \begin{tabular}{c} 
Ice \\
berg
\end{tabular} & \(D_{\text {bh }}\) \\
1130 & 15.3 & 15.6 & 0.75 \\
1145 & 15.4 & 17.1 & 0.78 \\
1200 & 13.8 & 17.0 & 0.69 \\
1215 & 13.1 & 17.8 & 0.68 \\
1230 & 13.0 & 20.0 & 0.64 \\
1245 & 13.0 & 21.9 & 0.62 \\
1300 & 12.4 & 23.1 & 0.62
\end{tabular}

\section*{C. 2 Iceberg Positions}

The iceberg positions, calculated from the picture distances, are presented as angle at the camera from the landmark to the iceberg and distances from the camera to the iceberg. The angles are in degrees and minutes, the distances in nautical miles.

Lceberg Positions.
10 July 1968
\begin{tabular}{lllll} 
& \multicolumn{1}{c}{ Iceberg 1 } & Iceberg 2 \\
Time & Angle & \begin{tabular}{c} 
Distance \\
Nautical M1.
\end{tabular} & Angle & \begin{tabular}{c} 
Distance \\
Nautical Mi.
\end{tabular} \\
1525 & \(19^{\circ} 26^{\prime}\) & 1.28 & \(25^{\circ} 39^{\prime}\) & 1.67 \\
1535 & \(18^{\circ} 58^{\prime}\) & 1.33 & \(24^{\circ} 42^{\prime}\) & 1.73 \\
1545 & \(17^{\circ} 54^{\prime}\) & 1.36 & \(23^{\circ} 34^{\prime}\) & 1.88 \\
1555 & \(17^{\circ} 06^{\prime}\) & 1.48 & \(22^{\circ} 47^{\prime}\) & 2.05 \\
1605 & \(15^{\circ} 49^{\prime}\) & 1.58 & \(21^{\circ} 51^{\prime}\) & 2.19 \\
1615 & \(15^{\circ} 01^{\prime}\) & 1.59 & \(21^{\circ} 12^{\prime}\) & 2.16 \\
1625 & \(14^{\circ} 24^{\prime}\) & 1.61 & \(20^{\circ} 26^{\prime}\) & 2.13 \\
1635 & \(13^{\circ} 38^{\prime}\) & 1.65 & \(19^{\circ} 49^{\prime}\) & 2.29 \\
1645 & \(12^{\circ} 46^{\prime}\) & 1.68 & \(19^{\circ} 19^{\prime}\) & 2.33 \\
1655 & \(11^{\circ} 59^{\prime}\) & 1.76 & \(18^{\circ} 57^{\prime}\) & 2.51 \\
1705 & \(11^{\circ} 29^{\prime}\) & 1.80 & \(18^{\circ} 42^{\prime}\) & 2.56 \\
1715 & \(11^{\circ} 02^{\prime}\) & 1.85 & \(18^{\circ} 17^{\prime}\) & 2.67 \\
1725 & \(10^{\circ} 38^{\prime}\) & 1.88 & \(17^{\circ} 57^{\prime}\) & 2.80
\end{tabular}
\begin{tabular}{lllll} 
& \multicolumn{1}{c}{ Iceberg 1 } & Iceberg 2 \\
Time & Angle & \begin{tabular}{c} 
Distance \\
Nautical M1.
\end{tabular} & Angle & \begin{tabular}{c} 
Distance \\
Nautical Mi.
\end{tabular} \\
1525 & \(19^{\circ} 26^{\prime}\) & 1.28 & \(25^{\circ} 39^{\prime}\) & 1.67 \\
1535 & \(18^{\circ} 58^{\prime}\) & 1.33 & \(24^{\circ} 42^{\prime}\) & 1.73 \\
1545 & \(17^{\circ} 54^{\prime}\) & 1.36 & \(23^{\circ} 34^{\prime}\) & 1.88 \\
1555 & \(17^{\circ} 06^{\prime}\) & 1.48 & \(22^{\circ} 47^{\prime}\) & 2.05 \\
1605 & \(15^{\circ} 49^{\prime}\) & 1.58 & \(21^{\circ} 51^{\prime}\) & 2.19 \\
1615 & \(15^{\circ} 01^{\prime}\) & 1.59 & \(21^{\circ} 12^{\prime}\) & 2.16 \\
1625 & \(14^{\circ} 24^{\prime}\) & 1.61 & \(20^{\circ} 26^{\prime}\) & 2.13 \\
1635 & \(13^{\circ} 38^{\prime}\) & 1.65 & \(19^{\circ} 49^{\prime}\) & 2.29 \\
1645 & \(12^{\circ} 46^{\prime}\) & 1.68 & \(19^{\circ} 19^{\prime}\) & 2.33 \\
1655 & \(11^{\circ} 59^{\prime}\) & 1.76 & \(18^{\circ} 57^{\prime}\) & 2.51 \\
1705 & \(11^{\circ} 29^{\prime}\) & 1.80 & \(18^{\circ} 42^{\prime}\) & 2.56 \\
1715 & \(11^{\circ} 02^{\prime}\) & 1.85 & \(18^{\circ} 17^{\prime}\) & 2.67 \\
1725 & \(10^{\circ} 38^{\prime}\) & 1.88 & \(17^{\circ} 57^{\prime}\) & 2.80
\end{tabular}

Iceberg 1
Distance

\section*{Iceberg Positions}

10 July 1968

\section*{Iceberg 3}

Distance Time Angle Nautical Mi.
\begin{tabular}{lll}
1525 & \(22^{\circ} 24^{\prime}\) & 2.04 \\
1535 & \(21^{\circ} 48^{\prime}\) & 2.09
\end{tabular}
2.11
2.16
2.26
2.37
2.32
2. 39
2.46
2.59
2.46
2.53
2.50

1715
\(16^{\circ} 15^{\prime}\)
1725
\(15^{\circ} 44^{\prime}\)

Iceberg 4
Distance
Angle
Nautical Mi.
\(24^{\circ} 26^{\prime}\)
1.57
\(23^{\circ} 25^{\prime}\)
1.64
\(22^{\circ} 11^{\prime}\)
1.72
\(21^{\circ} 17^{\prime}\)
1.81
\(20^{\circ} 03^{\prime} \quad 1.87\)
\(19^{\circ} 23^{\prime} \quad 1.90\)
\(18^{\circ} 38^{\prime}\)
1.94
\(17^{\circ} 48^{\prime}\)
2.07
\(16^{\circ} 58^{\prime}\)
2.21
\(16^{\circ} 13^{\prime}\)
2.31
\(15^{\circ} 36^{\prime}\)
2.37
\(15^{\circ} 07^{\prime}\)
2.39
\(14^{\circ} 50^{\prime}\)
2.46

\section*{Iceberg Positions}

10 July 1968

\section*{Iceberg 5}

Distance
\begin{tabular}{llccc} 
Time & Angle & \begin{tabular}{c} 
Distance \\
Nautical Mi.
\end{tabular} & \begin{tabular}{c} 
Angle
\end{tabular} & \begin{tabular}{c} 
Distance \\
Nautical M1.
\end{tabular} \\
1525 & \(17^{\circ} 43^{\prime}\) & 0.48 & \(17^{\circ} 37^{\prime}\) & 0.32 \\
1535 & \(14^{\circ} 12^{\prime}\) & 0.54 & \(11^{\circ} 06^{\prime}\) & 0.38 \\
1545 & & \(6^{\circ} 31^{\prime}\) & 0.42 \\
1555 & \(9^{\circ} 38^{\prime}\) & 0.63 & \(4^{\circ} 45^{\prime}\) & 0.46 \\
1605 & \(6^{\circ} 46^{\prime}\) & 0.72 & \(1^{\circ} 54^{\prime}\) & 0.51 \\
1615 & \(4^{\circ} 29^{\prime}\) & 0.77 & \(0^{\circ} 15^{\prime}\) & 0.54 \\
1625 & \(3^{\circ} 16^{\prime}\) & 0.80 & \(*-2^{\circ} 36^{\prime}\) & 0.62 \\
1635 & \(1^{\circ} 56^{\prime}\) & 0.82 & \(-4^{\circ} 45^{\prime}\) & 0.69 \\
1645 & \({ }^{\prime}-0^{\circ} 03^{\prime}\) & 0.86 & \(-6^{\circ} 45^{\prime}\) & 0.79 \\
1655 & \(-1^{\circ} 36^{\prime}\) & 0.97 & \(-8^{\circ} 48^{\prime}\) & 0.88 \\
1705 & \(-1^{\circ} 57^{\prime}\) & 1.02 & \(-9^{\circ} 56^{\prime}\) & 0.93 \\
1715 & \(-2^{\circ} 12^{\prime}\) & 1.07 & \(-10^{\circ} 42^{\prime}\) & 1.00 \\
1725 & & & \(-10^{\circ} 39^{\prime}\) & 1.06
\end{tabular}
*Negative angles indicate positions to the left of the landmark.

\section*{Iceberg Positions.}

24 August 1968

\section*{Iceberg 3}

X Time Nautical Mi. Nautical Mi.
\begin{tabular}{lll}
1633 & 2.61 & 1.72 \\
1646 & 2.57 & 1.70 \\
1700 & 2.57 & 1.71 \\
1715 & 2.75 & 1.80 \\
1730 & 2.54 & 1.74 \\
1745 & 2.52 & 1.76 \\
1800 & 2.64 & 1.86 \\
1815 & 2.49 & 1.77 \\
1832 & 2.47 & 1.78 \\
1845 & 2.49 & 1.76 \\
1900 & 2.52 & 1.76 \\
1916 & 2.53 & 1.75 \\
1937 & 2.55 & 1.73 \\
1945 & 2.55 & 1.75 \\
2000 & 2.55 & 1.74
\end{tabular}

Iceberg 4
X
Nautical Mi. Nautical Mi.
2.55
1.39
2.76
1.57
2.51
1.44
2.50
1.46
2.50
1.46
2.30
1.37
2.21
1.49
2.34
1.28
2.59
1.40
2.76
2.79
1.57
1.56
2.77
1.56
2.55
1.73
2.80
1.55
2.94
1.63

\section*{Iceberg Positions}

\section*{24 August 1968}

\section*{Iceberg 5}
\begin{tabular}{|c|c|c|c|c|}
\hline Time & \[
\begin{gathered}
\mathrm{X} \\
\text { Nautical Mi. }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{Y} \\
\text { Nautical Mi. }
\end{gathered}
\] & \[
\begin{gathered}
X \\
\text { Nautical Mi. }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{Y} \\
\text { Nautical Mi. }
\end{gathered}
\] \\
\hline 1633 & 0.85 & 0.42 & 2.09 & 0.60 \\
\hline 1646 & 0.96 & 0.43 & 2.24 & 0.65 \\
\hline 1700 & 1.04 & 0.42 & 2.09 & 0.62 \\
\hline 1715 & 1.04 & 0.42 & 2.02 & 0.59 \\
\hline 1730 & 0.85 & 0.32 & 1.96 & 0.57 \\
\hline 1745 & 1.19 & 0.43 & 1.96 & 0.56 \\
\hline 1800 & 1.19 & 0.44 & 1.96 & 0.54 \\
\hline 1815 & 1.14 & 0.43 & 1.85 & 0.50 \\
\hline 1832 & 1.08 & 0.43 & 1.85 & 0.50 \\
\hline 1845 & \(2.82 ?\) & \(1.13 ?\) & 1.85 & 0.51 \\
\hline 1900 & 0.95 & 0.39 & 1.84 & 0.52 \\
\hline 1916 & 0.87 & 0.37 & 1.84 & 0.52 \\
\hline 1937 & 0.78 & 0.35 & 1.90 & 0.54 \\
\hline 1945 & 0.75 & 0.35 & & \\
\hline 2000 & 0.71 & 0.34 & & \\
\hline
\end{tabular}

Iceberg Positions.
24 August 1968

\section*{Iceberg 7}

X Time Nautical Mi. Nautical Mi.
\begin{tabular}{lll}
1633 & 2.42 & 0.94 \\
1646 & 2.63 & 1.01 \\
1700. & 2.48 & 0.97 \\
1715 & 2.37 & 0.95 \\
1730 & 2.57 & 1.04 \\
1745 & 2.95 & 1.23 \\
1800 & 2.67 & 1.13 \\
1815 & 2.45 & 1.04 \\
1832 & 2.45 & 1.04 \\
1845 & 2.36 & 1.06
\end{tabular}

\section*{Iceberg 8}

X Nautical M1. Nautical Mi.
3.09
1.12
1.13
1.14
1.11
1.18
1.20
1.21
1.27
1.21
1.27

\section*{Iceberg Positions}

25 August 1968

Iceberg 1
X
Time Nautical Mi. Nautical Mi.

0845
0900
0915
0930
0945
1000
1015
1030
1045
1100
1115
1130
1145
1202
1215
1230
1246
1300
2.18
2.14
2.38
2.68
2.58
2.63
2.64
2.68
2.68
2.60
0.88
0.87
0.88

0,86
0.82

Iceberg 2
X Nautical Mi. Nautical Mi.
3.59
1.19
3.59
1.18
1.18
1.19
1.18
1.18
1.11
1.12
1.12
1.12
1.12
1.12
1.12
3.39
1.11
3.39
1.12
3.39
1.12
3.39
1.11
3.39
1.11
3.40
1.11

\section*{Iceberg Positions \\ 25 August 1968}

\section*{Iceberg 3}
\(X \quad Y\)
Time Nautical Mi. Nautical Mi.

0835
2.70
1.30

0845
2.74
2.97
1.28
1.32
\(0915 \quad 2.98\)
1.30
1.31
1.35
1.27
1.24
1.26
1.24
1.22
1.20
1.26
1.23
1.21
1.19
1.19
1.20

1300
1315
1330
1345
1400

Iceberg 4

X
Nautical Mi. Nautical Mi.
1.45
0.87
1.49
0.87
1.55
0.86
1.63
0.86
0.83
0.80
1.65
0.75
1.64
0.73
1.91
0.84
0.78
0.77
0.73
0.73
0.76
0.78
0.77
0.76
0.74
0.75
0.77
0.77
0.77
0.74

\section*{Iceberg Positions}

6 March 1969

\section*{Iceberg 1}

Angle
\(-6^{\circ} 19^{\prime}\)
0.20
0.25
0.33

1030
1045
1100

Iceberg 3
\(-0^{\circ} 05^{\prime}\)
0.24

1015
1030
\(10^{\circ} 17^{\prime}\)
0.30

1045
1100
1115
\(17^{\circ} 11^{\prime}\)
0.38

1130
1145
1200
1215
1230
1245
1300

\section*{Icaberg 2}
\begin{tabular}{cc} 
Angle & Distance \\
\(1^{\circ} 17^{\prime}\) & 0.04 \\
\(3^{\circ} 15^{\prime}\) & 0.10 \\
\(5^{\circ} 37^{\prime}\) & 0.12 \\
\(10^{\circ} 09^{\prime}\) & 0.13 \\
\(14^{\circ} 32^{\prime}\) & 0.15 \\
\(16^{\circ} 40^{\prime}\) & 0.17
\end{tabular}

Iceberg 4

\section*{Iceberg Positions.}

6 March 1969

\section*{Iceberg 5}
\begin{tabular}{lllll} 
Time & Angle & Distance & Angle & Distance \\
0945 & \(4^{\circ} 33^{\prime}\) & 1.60 & & \\
1000 & \(4^{\circ} 17^{\prime}\) & 1.72 & & \\
1015 & \(4^{\circ} 23^{\prime}\) & 1.75 & & \\
1030 & \(4^{\circ} 28^{\prime}\) & 1.89 & & \\
1045 & \(4^{\circ} 26^{\prime}\) & 1.96 & & \\
1100 & \(4^{\circ} 09^{\prime}\) & 1.96 & & \\
1115 & \(3^{\circ} 54^{\prime}\) & 1.93 & \(0^{\circ} 13^{\prime}\) & 0.91 \\
1130 & \(3^{\circ} 45^{\prime}\) & 2.05 & \(1^{\circ} 13^{\prime}\) & 0.89 \\
1145 & \(3^{\circ} 32^{\prime}\) & 2.19 & \(2^{\circ} 18^{\prime}\) & 0.97 \\
1200 & \(3^{\circ} 36^{\prime}\) & 2.19 & \(3^{\circ} 23^{\prime}\) & 0.99 \\
1215 & \(3^{\circ} 23^{\prime}\) & 2.24 & \(5^{\circ} 02^{\prime}\) & 1.08 \\
1230 & \(3^{\circ} 22^{\prime}\) & 2.24 & \(6^{\circ} 26^{\prime}\) & 1.12 \\
1245 & \(3^{\circ} 14^{\prime}\) & \(2.19 ?\) & \(7^{\circ} 43^{\prime}\) & 1.13
\end{tabular}
```

 DTMENSION OS (48)
 1 FORMAT (2F5.2,2F5.4,3I5)
 2 FORMAT(3F5.2)
 3 FORMAT (20X,12T5.2)
 4 FORMAT(2F10.2)
 5 FORMAT(F10.2)
 6 ~ F O R M A T ~ (F 1 0 . 5) ~
 7 FORMAT (2X,2IM=,F5.2,2X,2HYE,F5.2)
 READ (1, 1)F,FO, BETA, III,NO, IFORE,SIDE
 DO 10 I=1,NO,12
 10 READ (1,3)OS(I),OS(I+1),OS(I+2),OS(I+3),OS(I+4),OS(I+5),OS(I+6),OS(
II+7),OS(I+8),OS(I+9),OS(I+10),OS(I+11)
READ (1, 2)DL,DB,DDB
70 FO2=FO/2.
DB=10.*DB
DL=10.*DL
C DISTANCE FROM CENTER OF PHOTOGRAPH
DISTB=DB-FO2
DISTL=DL-FO2
C ANGLE BETWEEN BERG AND LANDMARK
ALPHA=ATAN(DISTB/F)-ATAN (DISTL/F)
BEFORE=IFORF
TEST= (-0.01745)*BEFORE
C FINDING OPPOSITE SHORE DISTANCE AND CONV. TO NAUT. MI.
DO 20 Jm, 1,10
IF(ALPHA-IEST)21,30,22
30 I=J
OPPOS=0S (I)
GO TO 40
21 TEST=TEST-0.01745
GO TO 220
22 TEST=TEST+0.01745
220 IF (ABS (ALPHA-TEST)-.01745)30,30,20
20 CONTINUE
C FINDING DEPRESSION OF APPARENT IIORIZON AND DISTANCE TO BERG
40 AHz=1**III/OPPOS
DA=H2>F/(AL+1DDB)
C CALCULATE X AIND Y
X=DA*COS (-EETA-ALPML)
8C=1
IF (SIDE) 60,60,50
50 SC=-1
60 Y = SC*5A%SIII (-1BEIA-ALPHA)
WRITE (3,5)DA
NRITE (3,7)X,Y
READ (1,2)DL,DB,DDB
IF(DL-999.99)70,80,80
80 CALL EXIT
END

```



Figure E2. Drogue Drift Plot 6 March 1967 Drogues 1, 2 and 4 Surface Drogue 350 m.




\section*{SURFACE and 10 METER DROGUE PATTERNS June 10 and II, 1968}


Figure E6 Drogue Drift Plot 10 and 11 June 1968 Drogues 2 and 4 Surface
Drogue 310 m



Figure E8 Drogue Drift Plot 25 and 26 February 1969




Figure Ell Ice Drift Plot 6 March 1969
Iceberg Sizes in Figure 23

\section*{APPENDIX F \\ MISCELLANEOUS}

\section*{F. 1 Tide Staff Readings Taken in North Dawes on 28 March 1968}
\begin{tabular}{lcc} 
Time & \(\frac{\text { Height }}{\prime \prime}\) & \(\frac{\text { Observer }}{\text { Installation }}\) \\
1346 & \(29^{\prime} 1^{\prime \prime}\) & Gleason \\
1455 & \(28^{\prime} 3^{\prime \prime}\) & \(\prime \prime\) \\
1555 & \(25^{\prime} 4^{\prime \prime}\) & \(\prime \prime\) \\
1647 & \(22^{\prime} 3^{\prime \prime}\) & \(\prime \prime\) \\
1758 & \(17^{\prime} 6^{\prime \prime}\) & \(\prime \prime\) \\
1852 & \(14^{\prime} 6^{\prime \prime}\) & \(\prime \prime\) \\
2000 & \(13^{\prime} 3^{\prime \prime}\) & Hahn \\
2100 & \(14^{\prime} 4^{\prime \prime}\) & Rosenbers \\
2155 & \(17^{\prime} 1^{\prime \prime}\) & \(22^{\prime} 2^{\prime \prime}\)
\end{tabular}

\section*{F. 2 Drogue Reversals}
From
To
\begin{tabular}{cc} 
Difference & \begin{tabular}{c} 
Flood \\
Current
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Predicted \\
Flood
\end{tabular}

30 and 31 March 1968 - Surface
\begin{tabular}{llllll} 
Drogue 1 & 2233 & 0242 & \(4^{h} 09^{\text {m }}\) & 0038 & 0026 \\
Drogue 2 & 2335 & 0133 & \(1^{h_{5}} 8^{m}\) & 0034 & 0026
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{30 and 31 March 1968 - Ten Meter} \\
\hline Drogue 3 & 2352 & 0405 & \(4^{h} 133^{m}\) & 0158 & 0026 \\
\hline Drogue 4 & 2345 & 0200 & \(2^{\mathrm{h}} 15^{\mathrm{m}}\) & 0053 & 0026 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{31 March 1968 -- Ten Meters} \\
\hline Drogue 3 & 1230 & 1505 & \(2^{\mathrm{h}} 35^{\mathrm{m}}\) & 1348 & 1220 \\
\hline Drogue 4 & 1132 & 1345 & \(2^{\mathrm{h}} 13^{\mathrm{m}}\) & 1238 & 1220 \\
\hline
\end{tabular}

\section*{F. 3 The Correction of Drogue 4, March 1967 to Outflow at High Tide}

Drogue 4D left the inlet in March 1967 at near maximum ebb current. Its movement was influenced by both tidal outflow and the mean outflow within the inlet. To indicate the volume of mean outflow within the inlet the drogue's outflow speed was corrected to high tide.

From drogue 4 (figure 2, Appendix E) the current speed within the inlet at high tide and the current through the mouth at maximum ebb current was calculated. (These were 11.9 and \(70.3 \mathrm{~cm} / \mathrm{sec}\) respectively.) From drogue 1 the current at ebb tide within the inlet was calculated. (This was \(15.0 \mathrm{~cm} / \mathrm{sec}\).) Since drogue 1 was not on the same streamline as drogue 4 it was corrected to that streamline. This was done by observing that drogue 1 was at \(23 \%\) of the distance from drogue 4 to drogue 2 (which showed little motion). Thus assuming a linear speed-distance relationship drogue 1 represented \(77 \%\) of drogue 4's speed. (Correcting drogue 1 's speed by this factor gave it an ebb current speed of \(19.5 \mathrm{~cm} / \mathrm{sec}\).)

The current speed at high tide through the mouth was calculated as follows: the current speed measured at ebb stage (being tidal current plus outflow current) minus the current speed measured at high tide (being only mean outflow current) gave the tidal current at ebb stage. (This was \(7.6 \mathrm{~cm} / \mathrm{sec}\). ) This tidal current was \(39 \%\) of the total ebb curxont within the inlet. The out-of-inlet current speed was reduced by \(39 \%\) giving a high tide outflow current speed of \(43 \mathrm{~cm} / \mathrm{sec}\). This
corresponded to a mean outflow volume of \(8.0 \cdot 10^{3} \mathrm{~m}^{3} / \mathrm{sec}\).

\section*{F. 4 Error Curves}

The error curves are shown in figures \(\mathrm{F}-1\) to \(\mathrm{F}-3\).


Figure F1 Exror Curve 10 July 1968


Figure R2 Error Curve 24 and 25 August 1968


\section*{APPENDIX G}

ANALOG SIMULATION OF TIDAL ICEDRIFT

\section*{G. 1 The Equation}

The equation as stated in section 2.2 .2 is
\[
\frac{d v}{d t}=-k \operatorname{sign}\left(v-v_{0} \sin \omega t\right) \cdot\left(v-v_{0} \sin \omega t\right)^{2}
\]

This is a non-linear first order differential equation. At this point it is worth noting what the sign function is and how it was used herein.

The quantity ( \(v-v_{0} s i n w t\) ) or \(U\) is normally a periodic function and in this case has a tidal period. The quantity \(V\) can bias \(U\) somewhat but cannot change the period. This is true because \(v\) is the intem grated product of dv/dt. This acceleration is caused by the tidal acceleration which is periodic.

When a periodic function is squared it becomes constantly positive with double the period. (The doubled period is caused by the negative oscillations of the function being made positive by squaring (figure G-1). The constantly positive, doubled frequency did not fit with the tidal periodicity of the iceberg's acceleration; this condition was righted by the sign function. (The iceberg's acceleration is proportional to \(U^{2}\) in magnitude but not in direction.)

The sign function merely generates a square wave of +1 and -1 magnitudes in phase with \(U\). When this sign function is applied to \(U^{2}\) it converts it back to a function of tidal frequency and \(U^{2}\) amplitude.


Figure G1 (a) Sine function
(b) Sine function squared. (Solid line) Sine function squared with sign function applied shows positive and negative oscillations as sine function. (Dashed line)
(See dotted lines in figure \(\mathbf{G - 1}(\mathrm{b})\). On the computer the sign function amplifies \(U\), in two stages, by 100 times and limits it to +1 and -1 volt. The result is a square wave in phase with \(U\).

\section*{G. 2 Diagram of the Problem and Explanation}

The diagram of the problem, as set up on the analog computer for oscilloscope, is contained in figure G-2.

U is generated otarting with the sina generator. The generator produces the sine wave which is modified in amplitude by potentiometer \(v_{0}\). This sine function is fed into the amplifier along with the output of the integrator \(-v\). The amplifiers in this machine invert the imput functions and add the inputs when there are two. Thus \(-v\) and \(v_{0} s i n \omega t\) come out \(v=v_{0} \sin \omega t\) or \(U\).

The \(U\) function is fed into both the sign function and the squaring multiplier. The squaring function converts \(U\) into the aforementioned square wave. Since it is two stage (involving two amplifiers) the output is in phase with \(U\). The \(U\) is fed into the squaring function, is squared, and since the function contains an amplifier, the \(U\) is converted to \(-\mathrm{U}^{2}\).

The output of these two components is fed into the \(-X Y\) multiplier. This multiplier merely multiplies the two inputs and changes the sign. The output is sign(U) \(U^{2}\).

The output of the -XY multiplier is fed through the pptentiometer \(k\), through an amplifier and into an integrator. The potentiometer reduces the function by the appropriate constant and the amplifier changes the sign of the function. The output of this amplifier \(1 \mathrm{~s} \mathrm{dv} / \mathrm{dt}\) or -k

sign(U) (U) \({ }^{2}\). This derivative is put into the integrator, integrated, and the resultant \(-v\) (minus since the integrator contains an amplifier) completes the circuit.

Minus \(v\), however, is the inverse of \(v\), the iceberg's tidal speed so this signal was fed through a further amplifier before displaying it on the oscilloscope. With the \(v\), the tidal signal, \(v_{0} s i n \omega t\) was displayed giving the curves which were later plotted.

\section*{G. 3 Scaling}

The problem of making the real variables of \(v_{0}, k\), and time compatible with the machine was the problem of scaling.

The \(v_{0}\) term was kept as it was, 0.2 and 0.1 representing 0.2 and \(0.1 \mathrm{~m} / \mathrm{sec}\), the tidal current speed amplitudes.

The time term was one cycle per 12 hours or \(2.32 \times 10^{-5}\) cycles per second. This time was increased to 11.6 cycles per second by increasing the scaling perameters by \(5 \times 10^{5}\) times. Initially the fast function of the computer was used which allows integration at 500 times normal opeed. In addition, two amplifiers were allowed to amplify by 10 times each and the potentiometer \(k\) was set 10 times high, taking care of the other 1000 times (figure \(\mathrm{G}-2\) ).

Increasing amplification for scaling is permissible since time is a variable in the function as is \(v\). When the derivative \(d v / d \tau\) ( \(\tau\) is machine time) is increased by \(10^{3}\) the derivative is increased so time and velocity are increased. Since velocity is dependent upon time the net effect is to increase the problem's speed without altering its characteristics (EAI 380 Analog/Hybrid Computer Handbook).

The \(10^{3}\) term was introduced by the anplifier, the \(k\) potentiometer and the integrator as previously stated. The real and machine values are given as follows:
\[
\begin{array}{rlrl}
\text { Real Units } & \text { Machine Units } \\
v_{0} & =0.2 \mathrm{~m} / \mathrm{sec} & v_{0} & =0.2 \\
\mathrm{k} & =0.0010 \text { to } 0.1000 & \mathrm{k} & =0.010 \mathrm{to} 1.000 \\
\mathrm{f} & =2.32 \times 10^{-5} \mathrm{cyc} / \mathrm{sec} & \mathrm{f} & =11.6 \mathrm{cyc} / \mathrm{sec}
\end{array}
\]

\section*{G. 4 plotting Set-up}

The \(X-Y\) plotter required a different set up. Plotting required a speed slow enough for the machine to work accurately; \(0.116 \mathrm{cyc} / \mathrm{sec}\) was used. Further it required sine generation within the machine, a time base to drive the plotter and repetition mode on the machine.

Generation of the sine function was a combination of two integrators, an amplifier, and a potentiometer. (See figure G-3. The initial condition, marked as a battery, biases the integrator's capacitor with a positive voltage. When the machine is started the capacitor discharges through the amplifier. The amplifier, in turn Inverts the signal from positive decreasing to negative increasing. This current charges the second integrator's capacitor. When the first integrator has discharged the second integrator has charged and reverses the current flow. The rate of this function is regulated by the potentiometer. (The sine function was calibrated against the slne generator.)

The time base for the plotter was generated by integrating a positive voltage (figure G-4). The positive voltage charges the capacitor


Figure G3 Sine Generator


Figure G4 Time Base Generator
and generates an increasing voltage at the output terminal. The machine must reset, hovever, for when the capacitor is fully charged, the machine indicates overload. (The machine resets the amplifiers to prevent their burning out.)

With the internal sine generator supplying the problem (and providing the sinut curve for the plotter) and the time base integrator providing the tine (or X-motion) for the plotter, the problem may be plotted in repeat mode.

On the ploter the sine function starts at 1 volt and decreases to zero. The \(v\) function starts at zero and goes toward the sine curve. (This was clipped from the standard plots. See figure G5 for an unclipped plot.) The v-curve reverses direction as it crosses the sine curve and continues in the proper relation to the sine curve afterward. There is a siight crror associated with this mode of operation in that \(v\) does not reach its full magnitude before reversing. This means there is roughly \(5 \%\) error in the amplitude of the first peak of the v-curves (on the clipped plot). This error is considerably less than the errors incurred by use of the oscilloscope's \(60 \times 100\) millimeter screen (error of about \(10 \%\) ) and was allowed to stay in the plots.

\section*{G. 5 Plots}

Plots of the tidal current speed ( \(\mathrm{cm} / \mathrm{sec}\) ) and lceberg drift speed ( \(\mathrm{cm} / \mathrm{sec}\) ) versus time (in hours) are figures \(G-6\) to \(G-19\). Figures G-6 to G-12 use a tidal current amplitude of \(10 \mathrm{~cm} / \mathrm{sec}\) and figures \(\mathrm{G}-13\) to \(G-19\) use \(20 \mathrm{~cm} / \mathrm{sec}\) tidal amplitude. The \(k\)-number varies from 0.0010 to 0.1000 .
\[
\begin{aligned}
& V_{0}=20 \\
& K=0.1000
\end{aligned}
\]


Figure G5 Unclipped Plot Current Speed and Iceberg Drift Speed vs. Time \(V_{0}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.1000\)
\[
\begin{aligned}
& Y_{0}=10 \\
& K=0.0010
\end{aligned}
\]


Figure G6 Current Speed and Iceberg Drift Speed vs. Time \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0010\)
\[
\begin{aligned}
& v_{0}=10 \\
& k=0.0033
\end{aligned}
\]


Figure G7 Current Spead and Icaberg Drift Speed \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0033\)
\(V_{0} \cdot 10\)
K-0.0066


Figure G8 Current Speed and Iseberg Drift Speed vs. Time
\(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0066\)
\(V_{0}=10 \mathrm{~cm} / \mathrm{sec}\). \(K=0.0111\)


Figure G9 Current Speed and Iceberg Drift Speed vs. Time \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0111\)
\[
\begin{aligned}
& V_{0} .10 \\
& K=0.0222
\end{aligned}
\]


Figure G10 Current Speed and Iceberg Drift Speed vs. Time \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0222\)


Figure G11 Current Speed and Iceberg Drift Speed vs. Time \(V_{\mathrm{O}}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0444\)
\(v_{0}=10\)
\(K=0.1000\)


Figure G12 Current Speed and Iceberg Drift Speed vs. Time \(V_{0}=10 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.1000\)
```

%=20
k=0.0010

```


Figure G13 Current Speed and Iceberg Drift Speed vs. Time \(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0010\)
\(V_{0}=20\)
\(K=0.0033\)


Figure G14 Current Speed and Iceberg Drift Speed vs. Time \(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0033\)
```

$k=20$
$k=0.0066$

```


Figure G15 Current Speed and Iceberg Drift Speed vs. Time \(\mathrm{V}_{\mathrm{O}}=20 \cdot \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0066\)


Figure Gl6 Current Speed and Iceberg Drift Speed vs. Time
\(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0111\)

\section*{\(H=20\) \\ \(K=0.0222\)}


Figure G17 Current Speed and Iceberg Drift Speed vs. Time \(V_{0}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0222\)
\(v_{0}=20\)
\(k=0.0444\)


Figure G18 Current Speed and Iceberg Drift Speed vs. Time
\(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.0444\)
\[
\begin{aligned}
& v_{0}=20 \\
& k=0.1000
\end{aligned}
\]


Figure G19 Current Speed and Iceberg Drift Speed vs. Time \(V_{0}=20 \mathrm{~cm} / \mathrm{sec}, \mathrm{K}=0.1000\)

\section*{SELECTED BIBLIOGRAPHY}

Aagaard, K. and L. K. Coachman, 1968. The East Greeland Current North of Denmark Strait, Part I, Arctic, 21, 182-200, Part II, Artic, 21, 276-290.

Abbott, M. R., 1960. Salinity Effects in Estuariea, J. Mar. Res., 18, 10ㄴ-111.

Agnew, R., 1961. Estuarine Currents and Tidal Streams, Proc. 7th Conf. Coastal Engr., The Hague, 1960, 2, 510-535.

Arons, A. B. and H. Stommel, 1951. A Mixing Length Theory of Tidal Tlushing, Trans. Am. Geophys. U., 32, 419-621.

Avery, D. E., 1968. An Integrating Current Meter, Deep Sea Res., 15. 235-236.

Beyery-F. Foyn, T. J. Ruud, and E. Totland, 1967. Stratified Current Measured in Oslofford by Means of a New Continuous DepthCurtent Recorder: The Bathyrheograph, J. Da Ceneeth, 31, 5-26.

Bowden, \(K\). \(F_{0,}\) 1963. The Mixing Process in a Tidal Estuary, Int. J. AIr and Water Poll., 7, 343-356.

Bowden, K. F. and L. A. Fairbairn, 1952. A Determination of the Frictional Forces in a Tidal Current, Proc. Roy. Soc., A 214, 317-392.

Bowditch, \(N_{0}\), 1966. American Practical Navigator, U.S. Navy Hydrographic Office, U.S. Govt. Print. Office.

Brown, D. M., 1965. Results of Current Measurements with Drogues, Scripps Inst. Ocean., U. of Cal. 65, 28 p.

Budinger, T. F., 1960. Wind Effect on Icebergs, Int. Ice Patrol., U.S. Coast Guard.

Burt, W. V. and J. Queen, 1957. Tidal Overmixing in Estuaries, Science, 126 (3280), 973-974.

Cameron, W. M., 1951. On Tranverse Forces in a British Columbia Inlet, Trans. Roy. Soc., Canada, 45, 1-8.

Cameron, W. K. and D. W. Pritchard, 1963. Estuaries, The Sea, M. N. Hill, Ed., Interocience, New York, 2, 306-324.

Cameron, G. A., 1968, The Anatomy of an 86 hour Current Velocity Record from a Coastal Plain Estuary, Ocaan Sci. and Engr. of the Atlantic Shelf Symposium; Mar. Tech. Soc., Delaware Valley Sect., 63-69.

Crean, P. B., 1967. Physical Oceanography of Dixon Entrance, B.C., Canada Fish. Res. Bd. No. 126.

Dem' yanov, N. I. and S. I. Stepanov, 1966. Compartison of Data Obtained with Different Types of Current Meters, Oceanology, 6, 289-294.

Duncan, C. P., 1965. Disadvantages of the O1son Drift Card and Description of a Newly Designed Card, J. Mar. Res., 23, 233-236.

Forrester, W. D., 1960. plotting of Water Current Patterns by Photogrammety. Photogram. Engr., 26 (12).

Frassetto, R, 1967. A Neutrally Buoyant, Continuousiy Gelf Renowidng Ocean Current Meter for Use in Compact Deep Moored Systems, Deep Sea Res., 14, 145-158.

Gerard, R. D. Some New Techniques in Rarachute Drogut Rechaology, Lemont Geophys. Obs., Columbla U. Contrib. 851, 1088-1094.

Glenne, B. and T. Simensen, 1963. Tidal Current Chokeing in the Landlocked Fjord of Nordasvatnet, Sarsia 11.

Godin, G., 1967. The Analysis of Current Obearvatione, The Int. Hydro Raview, 44, 149-165.

Gordon, A. L., Dye Observations in the Upper Few Meters of Ocean, Trans. Am. Geophys. U., 50, 182.

Hansen, D. V., 1965. Currents and Mixing in the Columbia River Estuary, Ocean Sci. and Ocean Engr., 1, Trang, of Joint Conf. Mar. Tech. Soc. and Am. Soc. of Limnology and Ocean., 943-955.

Hansen, D. V. and M. Rattray, Jr., 1965. Gravitational Circulation in Straits and Estuaries, J. Mar. Res., 23, 104-122.

Ingram, R. G., O. M. Johannessen and E. R. Pounder, 1969. Pilot Study of Ice Drift in the Gulf of St. Lawrence, J. Geophys. Res., 74, 5453-5459.

Inglis, C. C. and F. H. Allen, 1957. The Regimen of the Thames Estuary as Affected by Curreats, Salinity and River Flow, Proc. Inst. Civil Engr., 7, 827-878.

Johanneecen, O. M., 1968. Some Current Méasurements in Drobak Sound, The Narrow Entrance to the Oslofjord, Hvalrddets Skrifter Scientific Results of Marine Biological Res., Univer. Institutt for Karin Biologi and Statens Institutt for Hvalforakning Nr. 50, Oslo, 38 p.

Keller, M., 1963. Tidal Currant Surveys by Photogrametric Methods, U.S. Coast and Geod. Surv. Tech. Bull. N 22, 20 p.

Kent, R. E. and D. W. Pritchard, 1956. A Method for Determining Longitudinal Velocities in a Coastal Plain Estuary, J. Mar. Res., 15, 81-91.

Khundzhua, G. C., A. G. Vaskanyan, and A. A. Pivovarov, 1967. Methods for Remote Recording of the Velocitiy and Direction of Currents in the Upper Layers of the Sea, Oceanology, 7, 137-141.

Kinsman, B., 1965. Notes on Tides, Seiches and Long Waves, The Johns Hopkins U., Chesapeake Bay Inst., Balt. Md., 258 p.

Kinsman, B., 1965. Kinsman's Notes on Lectures on Estuarine Oceanography Delivered by D. W. Pritchard, 3 Oct. - 14 Dec. 1960, Johns Hopkins U., Chesapeake Bay Inst. of Ocean., Balt. Md., 154 p.

Knauss, J. A., 1963. Drogues and Neutral-Buoyant Floats, The Sea, M. N. Hill, Ed., 2, 303-305.

Korshunov, Yu. S., 1963. Obliqque Wave Photography with a single Aerial Survey Canera from a Plane, Trans, of Marine Hydrophys. Inst., Acad. of Sci., USSR.

Malkue, W. V. R., A Recording Bathypitometer, J. Mar. Res., 12, 51-59.
Manual of Photogrammetry, American Society of Photogrammetry, Box 286, Benj. Franklin Sta., Wach., D.C. 1952.

Matthews, J. B. and D. R. Rosenberg, 1969. Numeric Modelling of a Fjord Estuary, Progress Report of the Off. of Naval Res., Contract No. 3010(05), U. of Alaska, 24-40.

McAllister, W. B., M. Rattray, Jr., and C. A. Barnes, 1968. The Dynamics of a Fjord Estuary: Silver Bay, Alaska, Tech. Rept., Dapt. Ocean., U. of Wash., No. 62, 70 p.

Montgomery, R. B., 1968. Ooeanic Leveling by a Vessel Crossing a Current: J. Mar. Res., 26, 80-81.

Neyman, V. G., 1966. Measurement of Currents from a Drifting Vessel, Oceanology, 6, 132-134.

Niskin, S. J., 1968. A Method and Arrangement for Recording Current Fields and Total Volume Transport in Vertical Profiles from Sea Surface to Any Desired Depth, Mar. Sci. Instrumentation 4, 15-18.

O'Brien, M. P., 1952. Salinity Currents in Estuaries, Trans, Am. Geo. Un., 33, 520-522.

Omanney, C. S. L., G. Holdsworth and O. H. Loken, 1970. Iceberg Production Survey of Arctic Canada, Preprint of Paper Presented to Bering Sea Symposium, U. of Alaska, 10 p.

Pickard, G. L., 1953. Oceanography of British Columbia Mainland Inlets, Prog. Rept. of Pacific Coast Sta., J. Fish Res. Bd., Canada, 907-999.

Pickard, G. L. and K. Rodgers, 1959. Current Measurements in Knight Inlet, Britiah Columbia, J. Fish Res. Bd., Canada, 635-678.

Pritchard, D. W., 1952. Salinity Distribution and Circulation in the Chesapeake Bay Estuarine System, J. Mar. Res., 11, 106-123.

Pritchard, D. W., 1954. A Study of the Salt Balance in a Coastal Plain Estuary, J. Mar. Res., 13, 133-144.

Pritchard, D. W., 1957. Discussion of "On Estimating Streamflow in a Tidal Estuary," by David K. Todd and Leung-Ku Lau, Trans. Am. Geophys. Un., 38, 581-583, Reply, 583-584.

Pritchard, D. W., 1958. The Equations of Mass Continuity and Salt Continuity in Estuarieg, J. Mar. Res., 17, 412-423.

Pritchard, D. W. and W. V. Burt, 1951. An Inexpensive and Rapid Technique for Obtaining Current Profiles in Estuarine Waters, J. Mar. Res., 10, 180-189.

Pritchard, D. W. and R. E. Kent, 1956. A Method for Determining Mean Longitudinal Velocities in a Coastal Plain Estuary, J. Mar. Res., 15, 81-91.

Rattray, M. Jr., 1967. Some Aspects of the Dynamics of Circulation in Fjords, Estuaries, George H. Lauff, Ed., AAAS Pub. 83, 52-62.

Reid, J. L. Jr., 1958. A Comparison of Drogue and GEK Measurements in Deep Water, Limn. and Ocean. 3, 160-165.

Richardson, W. S., A. R. Carr, and H. J. White, 1967. Description of a Freely Dropped Instrument for Measuring Current Velocity, J. Mar. Res., 27, 153-157.

Rosenfield, G. H., 1967. Horizon Camera Orientation, Photo. Engr. 33.
Saelen, O. H., 1967. Some Features of the Hydrography of Norwegian Fjords, Estuaries, George H. Lauff, Ed., AAAS Pub. 83, 63-70.

Shvede, Ye. Ye., 1966. Icebergs of the Northwest Atlantic, OceanolOgy, 6, 499-504.

Stewart, R. W.s 1957. A Note on the Dynamic Balance in Estuarine Circulation, J. Mar. Res. 16 , 34-39.

Stome1, H. and H. G. Farmer, 1953. Control of Salinity in an Estuaxy by a Transition, J. Mar. Res., 12, 13-20.

Swanson, L. W., M. Keller and S. D. Hicks, 1963. Photogrammetric Measurement of Tidal Currents, USC\&GS, presented at Int. Un. of Geod. and Geophys., 13 Gen. Assembly.

Swallow, J. C., 1955. A. Neutral-Buoyancy Float for Measuring Deap Currents, Deep Sea Res.; 3, 74-81.```

