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ABSTRACT

Despite a rapid trend towards more realistic Nutrient-Phytoplankton-Zooplankton (NPZ) 

models, in which /ooplankton are presented with multiple nutritional resources, 

investigations into the fundamental dynamics o f these newer models have been limited. The 

objective o f this dissertation was to explore the dynamical behavior of such NPZ models 

parameterized for the coastal Gulf o f Alaska. With alternative stationary forcing regimes and 

zooplankton grazing functions, the dynamics o f one-dimensional NPZ models were 

investigated for a range o f specific predation rates (h) and predation exponents (q), which 

together define the form o f the predation (model closure) function. Oscillations in state 

v ariables are shown to be an intrinsic property of the NPZ models, not dependent on variable 

seasonal forcing for their existence. Increasing mixed layer diffusivity or reducing mixed 

layer depth increased model excitability; it is hypothesized that this is due to the resultant 

increase in flux o f utilizable nutrient. Model behavior was also strongly influenced by the 

form o f both the grazing and predation functions. For all o f the grazing functions 

implemented, Hopf bifurcations, where the form of the solution transitioned between steady 

equilibrium and periodic limit cycles, persisted across the q-h parameter space. Regardless of 

the values o f h and q, with some forms o f the grazing function steady equilibrium solutions 

that simultaneously comprised non-zero concentrations for all model components could not 

be found. The inclusion o f sinking detritus in the model had important implications for the 

composition and excitability o f model solutions, generally increasing the region o f q-h space 

for which oscillatory solutions were found. Therefore, in order to correctly simulate the 

depth-explicit concentrations of model components, or to have an accurate understanding of 

the potential excitability o f the system, inclusion o f this component is valuable. This 

dissertation highlights the importance o f understanding the potential impact that choice o f 

functional response may have on the intrinsic oscillatory nature o f a model prior to 

interpreting results from coupled bio-physical simulations. As we come to rely more on 

ecosystem models as a tool to interpret marine ecosystem functionality it will be important to 

improve our understanding o f the non-linear behavior inherent in these models.
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PREFACE

Here the organization o f this dissertation is described as a convenience for the reader, and 

to point out the relationship between the material to be included in manuscripts for 

publication, and the general background material. This dissertation includes the text o f a 

manuscript (Chapter 4) that has been submitted to Journal o f  Plankton Research. The 

other chapters are material that would either be inappropriate for inclusion in a journal 

article, but nevertheless, provides insight into the work conducted as part o f this 

dissertation (Chapters 1-3, 6), or the basis for a second manuscript (Chapter5). Due to the 

format o f  this dissertation there may be some redundancy in material, such as equations 

and references, but an effort has been made to keep this to a minimum.

Chapter 1 outlines the general motivation for this dissertation. A background on NPZ 

models is provided along with a discussion on the importance of understanding the non

linear dynamics inherent in these models. The contribution o f ecosystem modeling as a 

supplement to the traditional observational studies is discussed, as is the importance o f 

the G ulf o f Alaska ecosystem and the variability in productivity that has been observed 

on a decadal timescale. Finally, the objectives o f this dissertation and the specific 

hypothesis addressed are presented.

Chapter 2 is concerned with the details of NPZ model development. It includes an outline 

o f how the models used in this dissertation were developed from a simpler model whose 

dynamics have been previously investigated. The modeling approach is detailed, and the 

biological equations that comprise the six-component model are presented along with a 

discussion concerning the incorporation o f stationary, depth-explicit physical forcing. In 

this chapter the reliability o f the six-component model is examined through a comparison 

o f time-series solutions to equivalent results produced by and existing three component 

model.
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In Chapter 3 an attempt to use the traditional eigenvalue analysis approach to determine 

the behavior o f the six-component NPZ model is outlined. This approach is illustrated to 

be non applicable for complex depth-explicit diffusive models such as the ones under 

investigation in this dissertation. The realizations presented in this chapter led to an 

alternative approach for investigating the non-liner dynamics o f the model. This is the 

subject o f Chapter 4.

In Chapter 4, the dynamics o f a six-component NPZ model in which zooplankton can 

graze on a mixed prey field are explored. Five alternative functional forms were 

implemented to describe zooplankton grazing, and the form for predation on 

mesozooplankton was prescribed by a product o f a specific predation rate (h) and the 

mesozooplankton concentration raised to a power (q) which was varied between one and 

two. This work has been submitted as a manuscript to the Journal o f Plankton Research.

Although a sub-surface chlorophyll maximum is known to persist in the coastal G ulf o f 

Alaska during the summer months, no sub-surface chlorophyll maximum was observed 

for any o f the simulations with the six-component model. To address this discrepancy, in 

Chapter 5, a detritus component is added to the model and behavior o f the seven- 

component model is investigated for sinking and non-sinking detritus The impact o f 

alternative stationary physical regimes is also examined.

Chapter 6 provides a summary and discussion o f key results that emerged from this 

dissertation, and their implications for ecosystem modeling. Areas where our 

understanding falls short have been highlighted and suggested as possible paths for future 

work in this field.
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Chapter 1 . General Introduction

1.1 The role of modeling in ecosystem studies.

A full understanding of marine ecosystem dynamics requires knowledge o f the influence 

o f physical forcing on the temporal and spatial distribution and abundance o f plankton, 

and of the interaction between the different trophic levels. Study o f the temporal and 

spatial distribution and abundance o f plankton in the marine environment has 

traditionally required the collection o f numerous samples, usually with the aid of 

horizontal and vertical net tows at designated locations (stations) o f interest. While 

essential to our understanding, observational methods do have drawbacks. Data collection 

is generally heavily dependent on ship or laboratory time, and restricted with respect to 

the time frame and the geographic area covered or the number o f species under 

consideration. In light o f the drawbacks o f observational studies, computer simulation 

models are becoming increasingly prevalent tools in marine ecosystem studies. Models 

can be used to gain understanding o f how a system works or to make predictions o f the 

future state o f the ecosystem. Models can enable synchronous ‘coverage’ o f an ecosystem 

o f interest, and are a relatively cost-effective research tool. Models can also be used to 

perform “experiments” in ways it is impossible to do in a real ecosystem. Physical 

forcing, initial conditions or model parameters can be varied and the effects on the 

biological system examined. Additionally, models can also be used to focus, direct or 

help design field studies by clarifying areas, parameters or processes o f particular 

importance or that are critical to ecosystem function. While such computer simulation 

models are not a substitute for the traditional observational approach, they do provide a 

valuable way o f studying the details o f the links between physical forcing, nutrient 

availability, and zooplankton abundance. The ability to explore the impact o f the 

influence o f physical forcing on phytoplankton and zooplankton communities provides 

valuable insights into marine ecosystem functionality, and contributes towards our 

understanding of observed spatial and temporal variations in ecosystem productivity.
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1.2 Ecosystem variability in the Gulf of Alaska

The G ulf o f Alaska (GOA) shelf is a very productive region and amongst the world's 

largest fisheries with annual catches exceeding 300g/1000 m 3 (Brodeur and Ware, 1992; 

Ware and McFarland, 1989). Five salmon species spawn and are harvested in Alaskan 

waters; together they provide an important source o f revenue to the state o f Alaska. 

Recently, fisheries managers and biologists are finding that escapement estimates alone 

are insufficient for determining the observed recruitment in salmon fishery stocks (Kruse, 

1998; Brodeur et al., 2000). On a decadal time scale the total abundance o f salmon in the 

North Pacific has undergone one complete cycle since the 1920's: high in the 1930’s; low 

in the 1960's, and high again since the 1980’s (Beamish and Bouillon, 1995) 

Reconstructions o f salmon abundance from lake core sediments have revealed that 

similar cycles in salmon abundance have occurred over the past 300 years (Finney et al.,

2000). It is hypothesized that ocean survival o f salmon is determined primarily by 

survival o f juvenile salmon in coastal regions. Survival appears to be related to changes 

in circulation and hydrography that result from the climate forcing associated with the 

Pacific Decadal Oscillation, a recurring pattern o f pan-Pacific atmosphere-ocean 

variability (Francis and Hare, 1994; US GLOBEC, 1996; Hare et al., 1999).

The exact mechanism for the climatic control on salmon is not known although large 

shifts in salmon productivity are associated with changes in productivity o f the juveniles’ 

zooplankton prey, which is driven by changes in circulation and hydrography o f the G ulf 

o f Alaska (Beamish and Bouillon 1995). Throughout spring and summer juvenile pink 

salmon predominantly prey on small and large copepods (Cooney et al., 1981, Sturdevant 

et al., 1996, Landingham, et a l, 1998). By late summer more o f the prey tend to come 

from larger crustaceans, especially hyperiid amphipods and euphausiids (Purcell and 

Sturdevant, 2001; Boldt and Halderson, 2004), although larvaceans at times also 

dominate juvenile salmon diets (Purcell and Strudevant, 2001).
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Juvenile pink salmon utilize the Alaska Coastal Current (ACC) as a migratory corridor 

for moving from nearshore nursery areas located in productive coastal estuaries or fjords, 

into open shelf or deep oceanic feeding areas in the North Pacific Ocean (Williams and 

Weingartner, 1999). The ACC dominates the GOA shelf circumscribing the inner shelf o f 

the GOA from British Columbia in the east to the Bering sea in the west (Stabeno et al., 

2004). The current is primarily driven by the combination o f a large but widely 

distributed source o f fresh water from the surrounding mountains, and downwelling 

favorable winds. While the flow is continuous, its properties are influenced by large 

variations in coastal geometry, seasonally changing winds, and coastal discharge 

(W illiams and Weingartner, 1999). During the winter, precipitation in southern Alaska is 

stored as snow in snowfields and glaciers. Therefore, the current is at a maximum during 

summer due to the influence o f melt water on freshwater runoff (Stabeno et al., 2004). 

Mean winds in this region cause an onshore surface Ekman transport over the slope and 

shelf, resulting in coastal convergence and downwelling for much o f the year 

(September-May); in the summer the winds are weakly upwelling (Royer, 1998).

One o f the core hypothesis o f the Northeast Pacific Global Ocean Ecosystem Dynamics 

(GLOBEC) research group is that “Ocean survival o f salmon is primarily determined by 

survival o f the juveniles in coastal regions, and is affected by interannual and 

interdecadal changes in physical forcing and by changes in food web dynamics” . In an 

attempt to address this hypothesis, the GLOBEC Long Term Observation Program 

(LTOP), has made a series o f multi-year observations on the physical, chemical and 

biological properties in the coastal G ulf o f Alaska ecosystem. Observational efforts have 

been focused on the Seward transect line (Figure 1-1). Suites o f biological process rates; 

phytoplankton growth rates, and zooplankton growth, grazing and reproductive rates, 

have also been determined for the key species in the coastal G ulf o f Alaska through the 

work conducted as part o f the GLOBEC Process program.
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Figure 1-1 The cGOA, showing the location o f the Seward transect line. 
GAK 1 is the most inshore station on the transect line.

1.3 The GOA GLOBEC Ecosystem Model

Observations provide much needed information on the dynamics o f  both the 

phytoplankton and zooplankton, as well as on the interaction between these two trophic 

levels. However, the ability to accurately model the effects o f physical forcing on the 

primary and secondary production on the Alaska continental shelf will be critical in 

gaining an understanding o f year class strength o f salmonids under different physical 

forcing regimes that may arise with natural climatic variation. Ecosystem modeling is 

thus an essential component o f the GLOBEC program.

The full GLOBEC NPZ model for the coastal G ulf o f  Alaska (cGOA) consists o f eleven 

compartments: iron, nitrate, ammonium, small phytoplankton, large phytoplankton, large



and small microzooplankton, small coastal copepods, large oceanic copepods, 

euphausiids and detritus. The biology model is embedded within a three-dimensional 

physical circulation model. This model is being used to explore the mechanisms by which 

interannual/interdecadal variability o f  physical fields affects zooplankton species and the 

feeding of juvenile salmon in the cGOA (Hinckley et a l, in progress). The eleven 

biology components were selected to enable representation o f both the coastal and 

oceanic regimes observed in the G ulf o f Alaska. The food w ebs in these two regions are 

fundamentally different, in that the oceanic ecosystem is based on small phytoplankton, 

whose community structure is generally dominated by autotrophic flagellates, and to a 

lesser extent small pennate diatoms and cyanobacteria (Boyd and Harrison, 1999; Strom 

et al., 2001), while the coastal ecosystem is dominated by blooms o f large phytoplankton 

including dinoflagellates and larger diatoms (Boyd and Harrison, 1999; Strom et a l,

2001). The two phytoplankton size classes exhibit different response to nutrients, iron 

and light. Both phytoplankton size classes can uptake nitrate and ammonium, although 

their use and response to each o f these nutrient sources differs (Dugdale and Goering, 

1967; Eppley and Peterson, 1979). Inclusion o f nitrate, ammonium, and iron in the 

model therefore enabled correct representation o f primary production throughout the G ulf 

o f Alaska; additionally the proportion o f new versus recycled production, and the effect 

o f the two nitrogen sources on the food web can be examined. Due to different foraging 

strategies these two phytoplankton size classes are preyed upon by different sizes of 

zooplankton. In the GLOBEC model both small and large microzooplankton were 

considered. The small microzooplankton component is assumed to represent mainly 

heterotrophic nanoflagellates, ciliates and medium dinoflagellates, and can eat only the 

small phytoplankton. The large microzooplankton component is assumed to represent 

large heterotrophic dinoflagellates that are only able to graze on the large phytoplankton. 

The three mesozooplankton components were also selected to reflect their differing roles 

in the coastal and oceanic food webs. The coastal copepod component was assumed to 

represent Pseudocalanus, spp which reproduce in response to the spring phytoplankton 

bloom. Both large oceanic copepods, representative o f the dominant Neocalanus, spp.
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(Dagg, 1993), and euphausiids were included in the model due to their importance as a 

food source for juvenile salmon (Sturdevant et al., 1996, Landingham, et a l,  1998; 

Purcell and Sturdevant, 2001; Boldt and Halderson, 2004).

During development o f the cGOA GLOBEC model it became apparent that an 

understanding of the inherent dynamics o f a biology model o f this complexity has been 

essentially ignored. This realization provided the motivation behind the work presented in 

this dissertation. Previous investigations into dynamics o f NPZ models have focused on 

models comprising only a single phytoplankton and zooplankton species. To extend on 

this work in a logical fashion I have investigated the dynamics o f a six and a seven-

component model that have a complexity between the simple three-component models

previously investigated and the full eleven-component GLOBEC model. I retained the 

assumption o f two nitrogen sources, and two phytoplankton size classes, however, for 

simplicity I only considered one microzooplankton component and one mesozooplankton 

component. Detritus was not included in the original six-component model but was 

subsequently added to produce the seven-component model.

1.4 Introduction to NPZ models

There have been many approaches to marine ecosystem modeling, for example

conceptual compartmental models (e.g. Roff et a l ,  1990) and chemostat models (e.g. 

Frost and Franzen, 1992). Dynamic models, however, have proved to be the most 

common and successful approach to ecosystem understanding. Dynamic Nutrient- 

Phytoplankton-Zooplankton (NPZ) models are composed o f  mathematical equations that 

describe the changes over time o f quantities representing the systems state variables 

(Haefner, 1996). Since the historical works o f Riley (1946) and Steele (1974) the use o f 

Nutrient-Phytoplankton-Zooplankton (NPZ) computer simulation models as tools to 

understand temporal and spatial dynamics o f marine ecosystem dynamics has become 

common practice.
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Although NPZ models used in most ecosystem studies today are often quite complex, the 

original NPZ models were very simple, comprising only a few state variables (i.e., one 

phytoplankton, one zooplankton, and one nutrient) and simple functional forms to 

describe the biological processes. The gross groupings embodied in these simple models 

required many assumptions and oversimplifications. For example, the ‘zooplankton’ 

group was assumed representative o f all zooplankton species and age classes. This 

simplicity was due not only to the limited knowledge o f the ecosystem at the time o f their 

development, but also due to the limitations o f the computational power available at that 

time (Gentleman, 2002). Additionally, the simplicity o f these earlier models has roots in 

good modeling practice. To fully understand the dynamics o f an ecosystem, or even o f a 

single interaction within an ecosystem, the goal should be to capture the key features o f 

the ecosystem with a model that is as simple as possible (Haeffner, 1996). Despite the 

many gross generalizations in these early simple models, they still proved to be useful 

research tools for testing understanding o f marine ecosystem functionality. Both the ever- 

expanding knowledge o f the marine ecosystem and the ever-increasing availability o f 

computational power prompted a rapid trend towards the development o f complex high- 

resolution three-dimensional coupled NPZ-physical models that can perform realistic 

simulations o f a marine ecosystem. These more complex models, which attempt to reflect 

current understanding o f the marine ecosystem, have been used in attempts to address 

more complex questions concerning ecosystem dynamics. Such coupled models are now 

frequently an integral part o f research programs geared to understand ecosystem 

dynamics, for example JGOFS (Loukos et al. 1997), GLOBEC (Franks and Chen, 2001), 

and PICES (Aita et al. 2003).

The differential equations that comprise an NPZ model describe the change in 

concentration of each of the state variables over time. For example, phytoplankton 

concentration changes over time as a result o f phytoplankton growth, natural mortality, 

grazing by zooplankton, and advective and diffusive processes. The differential equation 

for phytoplankton in a simple NPZ mode! can be written in words as:
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Each box on the right hand side o f the equation represents a process that contributes to 

the rate of change o f phytoplankton over time. Each o f these process rates has to be 

described by a mathematical formulation or ‘function’ that describes its contribution to 

the change in phytoplankton over time. The biological processes are generally dependent 

on the concentration o f one or more o f the state variables, but may also be dependent on 

environmental factors, for example, temperature.

While the functional form o f some o f the biological processes is generally well 

understood and agreed upon, this is not the case for many o f the processes that are 

included in an NPZ model. The limitation on phytoplankton growth due to nutrient 

availability is perhaps the best understood process, due to its ease o f measurement within 

a laboratory environment. It is currently widely accepted this biological process is best 

represented by the hyperbolic function first introduced by Monod (1942), for example:

■VNutrient limitation = —;—  Eq. 1.1
k P  +  /V

where N  is the nutrient concentration and kp is the half saturation constant. A graphic 

representation o f this function is shown below (Figure 1-2).
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Figure 1-2 Schematic to illustrate the Monod nutrient uptake function.

Initially as the concentration o f nutrient (N) increases, the phytoplankton uptake rate 

increases linearly. The steepness o f this line depends on the phytoplankton’s half

saturation constant, (kp). At some N  the increase in uptake rate slows and a maximum rate 

is approached. Any subsequent increase in N  does not result in an increase in uptake rate 

- the phytoplankton has become saturated with respect to the nutrient.

Unlike nutrient limitation, there is no such agreement on the best functional form to 

describe the rate of zooplankton grazing on phytoplankton despite much observational 

effort. A ‘M ichaelis-M enten’ type formulation was traditionally a common choice (Ivlev, 

1961; Frost, 1987). This hyperbolic function is equivalent to the Monod equation for 

nutrient uptake, with the grazing rate (G) first increasing linearly with phytoplankton 

concentration (P) before becoming saturated. Several more complex grazing formulations 

have also been developed and are commonly used in NPZ models. The most common 

alternatives provide phytoplankton with a refuge from zooplankton grazing pressure 

when their concentrations are low. These formulations arose as a result o f both 

observational studies and the desire o f the modeler to prevent extinction o f phytoplankton 

due to zooplankton grazing. The most notable o f these modified grazing functions are the 

‘threshold’ function (Steele, 1974; Mullin and Fuglister, 1975; Wroblewski 1977), which 

incorporates a critical prey concentration below which grazing ceases, and the sigmoidal 

function, in which the grazing rate is reduced at low prey concentrations (Evans and 

Parslow, 1985; Steele and Henderson, 1992; Denman and Pena, 1999). It is probable that
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no one equation is correct for all scenarios and the modeler will have to ascertain which 

is most appropriate for the situation of interest. This could depend on the key 

zooplankton species or stage o f interest and the nature o f the available prey. Examples o f 

alternative functions that have been used to describe zooplankton grazing on a single prey 

field are illustrated below (Figure 1-3).

M ichaelis-M enten T hreshold S igm oid

Vnax ' ̂  '
P

kz + P m̂ax ' ̂  '
p - e

kz + P - d
*max ’ ^  ’ , 7

Figure 1-3 Illustration o f three common single resource grazing functions.
P  and Z are the concentrations of phytoplankton and zooplankton respectively, 
0  is the threshold concentration below which zooplankton cease to graze, kz is 
the half saturation constant for grazing and imux is the maximum grazing rate. 
The shaded area represent regions where the grazing rate is reduced, thus 
providing a refuge for the prey.

By determining the appropriate functional form to describe each biological process a 

differential equation can be constructed to describe the time rate o f change o f each o f the 

models state variables. The marine environment, however, is not a static medium in 

which biological processes are conducted unhindered. Rather it is a three dimensional 

medium that varies on a temporal scale from seconds to years and a spatial scale from 

nanometers to ocean basins. To understand the influence o f environment factors, such as 

diffusion (mixing) and light, on the purely biological dynamics, it is necessary to



determine the important scales o f these physical processes and to include their influence 

in the model.

Considering the influence o f vertical diffusivity on biological interactions, the differential 

equation to describe the change in phytoplankton concentration with time could have the 

following form:

dP
dt

N
k P + N

P
-  m * P + Kv ■ -

dP
dz

Eq. 1.2

V  Y
m a x im u m  

p h o to s y . i t ! , c t ic  r a te  Mll, i f a t io l l
n u i r ie m

l im i t a t i o n

m a x im u m  r e s o u r c e

s r a / n i g r a l c  l im i t a t i o n

n a tu r a l

iH H lalitx

Where P, N  and Z are the concentrations o f phytoplankton, nutrient and zooplankton, 

respectively, Pmax is the maximum photosynthetic rate, kex, is the light extinction 

coefficient, kp is the half saturation uptake constant for nutrient, kz is the half saturation 

constant for grazing, imax is the maximum grazing rate, m  is phytoplankton natural 

mortality rate, Kv is the vertical diffusion coefficient and z is depth.

1.5 The importance of NPZ models non-linear dynamics

W ithout a good understanding o f how these models behave when subjected to steady 

forcing, the time dependent behavior o f coupled biological-physical ecosystem models 

could mistakenly be attributed to variable physical forcing rather than as an inherent 

property of the m odel’s biology. Over the past few decades, the application o f non-linear 

systems dynamics has provided a basis for understanding the behavior o f NPZ models 

(Oaten and Murdoch, 1975; Edwards and Brindley, 1996; Edwards et al., 2000). 

Incorporating moderate levels o f vertical diffusion into a purely biological NPZ model 

has been shown to impart model stability (Edwards et al., 2000), an important 

consideration for the realm of coupled bio-physical models. The formulations for both 

zooplankton grazing (Franks et al., 1986) and predation on zooplankton (Steele and
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Henderson, 1992; Edwards and Yool, 2000) have also been found to influence the 

fundamental dynamics o f simple NPZ model, determining whether a model’s time- 

dependent behavior will approach steady state or exhibit oscillatory behavior, such as 

periodic limit cycles. To date, the influence o f most terms in the NPZ model on model 

dynamics has not been rigorously considered. In the case o f nutrient uptake and natural 

mortality, there is general agreement on the most appropriate functional form for these 

processes, and thus less variability in the modeling literature. Conversely, there is much 

contention on which formulations most appropriately simulate zooplankton grazing and 

undefined predation (the model closure term). Despite a rapid trend towards more 

realistic NPZ models, in which zooplankton grazers are presented with multiple 

nutritional resources, investigations into the fundamental dynamics o f these newer 

models have been limited (Armstrong, 1994; Ryabchenko et al., 1997; Yool, 1998). 

Without a good understanding o f the fundamental behavior o f  the more complex NPZ 

models now commonly employed in ecosystem studies, time-dependent behavior 

simulated with coupled biological-physical models, as in periodic or chaotic solutions, 

could be interpreted as due to variable physical forcing rather than as an inherent property 

o f an ecosystem model. It is important that we extend our understanding o f NPZ system 

dynamics to these more complex models and develop an appreciation o f how our choice 

o f formulations for simulating biological processes can affect their behavior.

The two most common forms o f solutions observed in ecosystem models are steady 

equilibrium or periodic limit cycle. A steady equilibrium is one in which, following 

initial transient behavior, the time rate o f change o f each model component goes to zero 

(Figure 1-4 a and b), whereas a solution entering a periodic limit cycle oscillates 

indefinitely between a maximum and minimum value (Figure 1-4 c and d). Other more 

complex model solutions in which model trajectories have multiple periods or are chaotic 

have also been observed (Hastings and Powell, 1991, Popova et a l,  1997). Oscillations in 

nature appear rare, although this is possibly as a result o f insufficient sampling on a 

temporal scale, Oscillations have, however, been observed at Ocean Weather Station I in 

the north-east Atlantic Ocean (W illiams, 1988) and in several freshwater plankton
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populations (McCauley and Murdoch, 1987). Predator-prey interactions and high nutrient 

supply, due to strong upwelling and high pycnocline nutrient concentrations, have been 

shown to play an important role in oscillatory behavior (Popova et al., 1997), as has the 

thickness o f the mixed layer and the annual entrainment velocity (Ryabchenko et al., 

1997).

time time

time

Figure 1-4 Examples o f time series solutions that approach an equilibrium.
Two alternative approaches to steady equilibrium (a) monotonic and (b) spiral 
sink, and two alternative approaches to periodic limit cycle solutions (c and d).

Previous investigations into model stability have not addressed survivorship o f model 

components, i.e., whether model components have non-zero concentrations at 

equilibrium. This is unlikely to be an issue since those studies consider only a single 

phytoplankton and zooplankton component. However, like the majority o f models used in
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modern ecosystem modeling studies, the model under investigation in this dissertation 

comprises multiple grazers and multiple prey types. It will thus be critical to know if 

certain model structures or parameterizations promote or inhibit the simultaneous 

survival o f model components.

1.6 Objectives

The objective o f this dissertation w as to explore the dynamical behavior o f intermediately 

complex NPZ models while simultaneously investigating the survivorship o f model 

components. The models were parameterized for the coastal G ulf o f Alaska and 

contained multiple grazers which could feed on multiple prey types.

Specifically, the hypotheses tested were:

1. The dynamics and survivorship o f  an NPZ model in which zooplankton grazers feed 

on multiple prey types is uninfluenced by the functional form for grazing.

2. The dynamics and survivorship o f a NPZ model in which zooplankton grazers feed 

on multiple prey types is uninfluenced by the form o f the predation function (the 

model closure term).

3. The dynamics and survivorship o f an NPZ model in which zooplankton grazers feed 

on multiple prey types is not influenced by varying the stationary vertical diffusivity 

profile.

4. The addition o f a detritus component to an NPZ model does not influence model 

dynamics, survivorship, or the m odel’s ability to simulate a sub-surface chlorophyll 

maximum.
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Chapter 2 . Development of an NPZ model with 
multiple prey types

This chapter provides an overview o f the development o f the NPZ model whose 

dynamical behavior was investigated in this dissertation. The development o f the 

biological equations that comprise the NPZ model, and the approach taken to incorporate 

physical forcing into the model are described. An outline o f the approach taken to model 

analysis and the development o f the computer coding is also presented. Finally, as a test 

o f the model code, the functionality o f the six-component NPZ model developed here is 

compared to the functionality o f the three-component NPZ model that provided the basis 

for model development.

2.1 Development of the biological equations

Many o f the NPZ models employed in ecosystem studies today are rather complex and 

often three-dimensional. Generally, the time dependent behavior o f several state variables 

is represented by a system o f non-linear differential equations which comprise 

mathematical formulations that describe each biological process o f interest. These 

modem models often have multiple phytoplankton and zooplankton size classes. 

Analyses o f the non-linear dynamics o f these complex NPZ models are lacking. Such 

understanding should be stepwise, building in a logical fashion on those used in previous 

studies o f this nature. Without studies on precursor models it is difficult to disentangle 

the influence o f each o f the additional components (and their associated functions) on the 

observed model dynamics. Following good modeling practice, the NPZ model that was 

developed was kept as simple as possible while allowing for testing o f the first two 

hypothesis, i.e., that the non linear dynamics and survivorship o f NPZ models, in which 

zooplankton can graze on multiple prey types, are uninfluenced by the choice o f grazing 

and mortality functions.
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Over the past few decades, the application o f non-linear systems dynamics has provided a 

basis for understanding the behavior o f NPZ models (May, 1972; Oaten and Murdoch, 

1975; Edwards and Brindley, 1996; Edwards et al., 2000). The NPZ models investigated 

in these past studies generally comprised only a single phytoplankton and zooplankton 

size class, and with few exceptions, biological interactions were assumed to take place 

within a homogeneous mixed layer. Edwards et al. (2000) has investigated the non-linear 

dynamics o f a three component NPZ model subject to vertical diffusion. This is one of 

the only studies of NPZ non-linear dynamics that is spatially explicit. This three- 

component NPZ model was originally developed by Franks et al. (1986), and considered 

the exchange o f nitrogen between phytoplankton (P), zooplankton (Z), and nutrient (TV) 

pools. The mathematical functions that described each biological process in the model 

were all o f the simplest forms commonly used. This three-component model was used as 

a starting point for development o f a one-dimensional (vertical) model that had multiple 

phytoplankton and zooplankton size classes. The system o f three differential equations 

that comprise the Franks (1986) model is as follows:

dP Vm •N -P  
dt kP + N

e -  Rm • Z( 1 -  e AP) -  mP Eq. 2.1

—  = ( l - r )  R „ - Z - Q - e - ^ - g Z  
at Eq. 2.2

dN _ Vm -N P 
dt kp + TV

e kex,z -  Y ■ Rm ■ Z • (\ -  e KP ) + mP + gZ Eq. 2.3

Where P, N  and Z are the concentrations of phytoplankton, nutrient and zooplankton, Vm 

is the maximum uptake rate o f nutrients by the phytoplankton, kp is the half-saturation 

uptake constant, kext is the light extinction coefficient, Rm is the maximum grazing rate, A
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is the Ivlev saturation constant for grazing, m and g  are the mortality o f phytoplankton 

and zooplankton respectively, y  is the unassimilated grazing fraction, and z is depth.

As was often the case historically, the ‘Z ’ component in the Franks model was originally 

parameterized to represent mesozooplankton. Edwards et al. (2000) re-parameterized the 

model such that the zooplankton component represented microzooplankton, although the 

parameterization chosen was questionable due to the unrealistically high grazing rate 

used. Even so, despite examining model dynamics with this alternative parameterization 

for the zooplankton, only one zooplankton component was considered at a time.

Our understanding o f the planktonic food web has grown substantially since the 

development o f the original three-component NPZ models. In order to adequately 

replicate observations, models must incorporate the expanded complexity o f marine food 

web dynamics. For example, in the coastal G ulf o f Alaska both small and large 

phytoplankton are known to exist and constitute an important part o f the marine food web 

(Strom et al., 2001). Representation o f the two size classes is important due to their 

potentially different reactions to the marine environment and their different positions in 

the marine food web. The phytoplankton are now known to utilize both new (nitrate) and 

regenerated (ammonium) forms o f inorganic nitrogen (Dugdale and Goering, 1967; 

Eppley and Peterson, 1979). However, the response o f the two phytoplankton size classes 

to the two nutrient pools can be very different. For example, small phytoplankton have a 

general preference for ammonium (Legendre and Rassoulzadegan, 1995) and are 

generally more proficient at utilizing low levels o f nutrients than the large phytoplankton 

(Evans and Parslow, 1985). In cold water environments, such as the coastal G ulf o f 

Alaska, large phytoplankton preferentially take up nitrate even when ammonium is 

present (Lomas and Glibert, 1999). Despite the historical bias towards mesozooplankton, 

microzooplankton, with their ability to feed on these small phytoplankton size fractions, 

are now thought to be the primary grazers (Dagg, 1993) controlling the chlorophyll 

standing stock in many regions (Landry and Hassett, 1982; Gifford, 1988; Strom and
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Welschmeyer, 1991; Dagg, 1995). In reality, both microzooplankton and

mesozooplankton are able to graze on a mixed prey field comprising a range o f size

classes. Thus, to fully capture food web interactions it is important to have multiple size

classes o f both phytoplankton and zooplankton present simultaneously in the model, and 

zooplankton grazers capable o f feeding on more than one size class.

To reflect this improved understanding o f the marine ecosystem an intermediately 

complex six-component NPZ model was developed by adding a second phytoplankton 

and zooplankton component and splitting the nutrient component into nitrate and 

ammonium. The three original equations were thus replaced with six equations that 

represent the time rate o f change o f the nitrate (TV/) and ammonium (TV?), small 

phytoplankton (Pi), large phytoplankton (P2), microzooplankton (Z7), and

mesozooplankton (Z?). Within the model the ‘small’ and ‘large’ phytoplankton groups are 

considered to respectively represent the aggregate o f phytoplankton <8(xm in size, and the 

aggregate o f phytoplankton >8 |im  in size. This size division was chosen to mimic that 

selected by Strom et al. (2001), who have conducted the majority of the work on 

phytoplankton processes in the coastal G ulf o f Alaska. The ‘microzooplankton’ 

component was considered to represent mainly heterotrophic dinoflagellates and ciliates, 

while the ‘mesozooplankton’ component was considered to represent mainly coastal 

copepods common in the coastal G ulf o f Alaska. Following Franks et al. (1986), detritus 

was not initially explicitly represented as a state variable. It could be argued that this 

approach could increase model excitability (and, thus, the likelihood o f oscillatory limit 

cycle behavior), however, previous studies o f model dynamics (Edwards and Brindley, 

1996; Edwards and Brindley, 1999; Edwards et al., 2000; Edwards and Bees, 2001; 

Edwards and Yool, 2000), upon which this investigation builds, did not include detritus 

or specifically model the regeneration loop. Additionally, a study on an NPZ model 

which did include a detritus component (Edwards, 2001) found that did not significantly 

influence the model’s dynamical behavior is zooplankton were unable to graze upon it. In
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later studies (Chapter 5), detritus was added as a seventh model component permitting 

specific representation o f the regeneration loop.

In the absence o f advection and diffusion, the time dependent dynamics o f the six model 

components were described by the follow ing set o f six non-linear differential equations:

F /V, = = ~ U U - U n  + R Eq. 2.4

F y i — — — — —U 7 j — U22 M\  + M 2 + Mg  + H  
'  2 dt

+ (I -  Y\ ) ' (Gi 1 + ^ 12) + (1 ~ Yi)  ’ (^21 + G 22 + Gz z ) ~  R

dP
Fr, = - ^ -  = U i i + U 2 i - M , - G u - G 2, E q 2 6

Eq. 2.5

dP2 _
Fp, -  - U n + U 2 2 - M 2 - G {2- G 22 Eq. 2.7

F z x =  —̂ - = Y ] ( G ] ] + G ]2) - G z z - M z  Eq. 2.1

dZ 2
F z t = —^ j - = Y 2 - ( G 2 \ + G 2 2 + g z z ) - h  Eq. 2.9

W here y  and y2 respectively represent microzooplankton and mesozooplankton grazing 

efficiency, and U, M, G, H, and R respectively represent transformation rates o f nitrogen 

due to nutrient uptake, mortality, grazing, predation, and the nitrification o f ammonium to 

nitrate. These biological process rates, which are defined in subsequent equations, 

describe the interaction between the six model components (Figure 2-1).
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Figure 2-1 Interactions in the six-component NPZ model -repeated from Chapter 4.

Nitrate (N/),  ammonium (N2), small phytoplankton (Pi),  large phytoplankton 

CP?), microzooplankton (Z/), and mesozooplankton (Z2). The arrows indicate 

the direction o f material flow.
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Phytoplankton nutrient uptake (U), mortality o f phytoplankton (Mx) and 

microzooplankton (M7) and the nitrification o f ammonium to nitrate (R) were described 

as follows:

C /,v
p  p  N { - e ¥ 2 P Y up take o f  Ar, Eq. 2 .10

'  m a x .V * 7 A r

U  = P P  r - 1*^ N l Px uptake o f N 2 Eq. 2.11
I X  1 X  m ax  X  ,  .  ,

2 X  2

R  = r - i V,  ntirjficatitm ) ^  Eq. 2.12

M x  -  m x  'P x  natural mortality o f Px Eq. 2.13

A /z  = natural mortality o f Z, Eq. 2.14

where X  can be 1 or 2 to represent small and large phytoplankton respectively.

A full discussion o f the formulations used to represent each o f the biological processes, 

including definition o f the subscripts, is included in Chapter 4 and so not repeated here; 

param eter values are given in Table 4-2. Here only the similarities and differences 

between the original three-component model (Franks et al., 1986) and the more complex 

six-component model are discussed. The Monod formulation for nutrient uptake used in 

the original three-component model (Franks et al., 1986) was applied in the six- 

component model to simulate the uptake o f ammonium (Eq. 2.11). However, to simulate 

phytoplankton uptake o f nitrate an additional ‘ammonium inhibition function’ was added 

to the equation (Eq. 2.10), because in the presence o f ammonium, the uptake o f nitrate is 

reduced (Wroblewski, 1977). An additional term (R) was required to describe the 

nitrification o f ammonium to nitrate, which was assumed to occur at a simple linear rate 

(Eq. 2.12). As discussed above, the two phytoplankton size fractions were considered 

able to respond differently to the two nutrient sources. This was reflected in their half 

saturation nutrient uptake constants and discussed in detail in Chapter 4. Following
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Franks et al. (1986), the natural mortality o f phytoplankton, and microzooplankton, were 

described with simple linear functions (Eq. 2.13 and Eq. 2.14).

The mesozooplankton component was assumed to experience losses (H) due to natural 

mortality and to predation by undefined predators. This was effectively the model closure 

term and throughout this dissertation is referred to as ‘predation’. In the original three- 

component model a single simple linear function, i.e., Eq. 2.15, was used to represent 

these losses. In the modeling literature the predation term is also commonly represented 

by a quadratic formulation (Eq. 2.16).

H  -  h - Z 2 = LINEAR  Eq. 2.15

H  -  h -Z ; = QUADRA TIC Eq. 2.16

The generic form o f the mortality function can be expressed as:

H = h - Z *  Eq. 2.17

The linear form is representative o f a predator that exhibits a constant response to 

zooplankton prey numbers, this could be thought o f as a simple filter feeding strategy. 

The quadratic formulation assumes that the zooplankton predators have a biomass 

proportional to their prey; it is thought to represent a predator that exhibits an ambush 

feeding strategy, attracted to large concentrations o f zooplankton and less inclined to feed 

at low concentrations. Other formulations, i.e., hyperbolic (Frost, 1987; Fasham, 1993) 

and sigmoidal (Malchow, 1994), are also occasionally used. The wide variety o f 

formulations used to represent predation reflects that predation is a notoriously difficult 

biological process to measure, and much uncertainty exists with regards to the most 

appropriate formulation. The differences between the linear and quadratic predation 

functions are illustrated below (Figure 2-2).
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Figure 2-2 Graphic representation o f the linear and quadratic predation functions.
The population mortality rate (a) and the specific mortality rate (b) with the 
linear (dashed line) and the quadratic (solid line) formulations.

It has been proposed (Edwards and Bees, 2001) that, because “the predator’s effective 

reaction distance varies with the turbulent energy dissipation rate, the proportion o f 

predators adopting either the ‘linear’ or ‘quadratic’ strategy will vary in a continuous 

fashion depending on the environmental and physical conditions” . Therefore, while in 

Chapter 3 only a ‘linear’ or ‘quadratic’ formulation is implemented in the model, 

subsequently (Chapters 4 and 5) the dynamics o f the model are explored with a non

integer predation exponent that varied from linear to quadratic (1< q < 2).

In the original three-component model, grazing (G) was described using the Ivlev grazing 

formulation (Eq. 2.18) which has a saturating response (initially linear before leveling off 

at a specified maximum rate), very similar to the well known M ichalis-M enten function 

(Figure 1-3).

W ^ O - e - ^ 2) Eq. 2.18
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In the six-component NPZ model, a zooplankton grazer was able to feed on multiple prey 

types. It was therefore necessary to uses a multiple resource grazing function to simulate 

zooplankton grazing. Several alternative functional forms have arisen which extend the 

single resource grazing functions to simulate zooplankton grazing on a mixed prey field 

(Ambler, 1986; Fasham et a l, 1990; Ryabchenko et al., 1997; Chifflet et a l, 2001; 

Denman and Pena, 2002). In Chapters 3 and 4 five alternative grazing functions 

(functions I-V) are implemented in the six-component model and the impact that each 

had on the resulting model dynamics is investigated. In Chapter 5, the focus is on the two 

most different functions (functions 1 and V). A detailed explanation of each o f the 

grazing functions is presented in Chapter 4, therefore not repeated here.

2.2 Adding physical forcing to the model

The time and depth dependent population dynamics due purely to the biological 

interactions were described by Eq. 2-4 -  Eq.2-9, written in shorthand as:

^  Z) = Fc S c  C2 (AzX C3(t,z), C4(t,z), C5(t,z), C6(t,z))  Eq. 2.19

where Q  represents the model state variables, i.e.,

C j = P , ,  C2 =P2, C3 = Z h C4 = Z 2 , C5 = N h C6 = /V2 ,

and FC) represents the biological source/sink term.
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In the ocean the biological dynamics, which are dependent upon space (x,y,z) as well as 

time (/), are also subjected to both advection and diffusion. Therefore, the total

derivative, i.e., the rate of change o f within the moving fluid, with respect to both 

time and space, is given by:

dC^t.z)
dt

dCl

dt
3 C!----
dx

dC, DC,_f- y ----------+  H ------- 1

3v dz
E  f  Kh

d 1Ci 3AC_
d x2 dv~

+ A \
32C, Eq. 2.20

TOTAL
DliRIVATlVl ' !

(L A (iR A N( iIA N )

LOCAL 
Tl 'R M  

< h l ’L A K IAN)

 V'----
A i ) v i - : c n \ ’i:

TL RM S
BIOLCKilCAL 
OYN A M R ’S

d i m t ; s i v i {
Tl RMS

The local term is the local rate o f change with time and the advective terms are the 

advective rates of change due to motion, where u,v and w  are the velocity component in 

the x,y  and z directions, and Kh and Kv are the kinematic eddy diffusivities in the 

horizontal (x, v) and the vertical (z) directions.

The primary concern throughout this dissertation was to adequately represent the effects 

o f vertical mixing on the dynamics o f  the model, therefore, diffusivity in the horizontal 

directions (/OfO) were neglected and the velocity field was set to zero ( u = o ). This is the 

same approach as that taken by Edwards et al. (2000). The system o f equations reduce to:

d C .- ( t , z )  dC: d dC:
— ; = V -  =F‘ + ■ r ^ v ~ r ‘) Eq. 2.21dt dt dz dz

Thus, only a single additional term is required in each of the biological equations:



In the investigation by Edwards et al. (2000) Kv was held constant throughout the water 

column, which was 100 meters in depth. The magnitude o f diffusion (/Cv=10 M0~2 m2 s"1) 

was found to have an impact on model dynamics (Edwards et al. 2000). In reality, 

perhaps with the exception o f strong winter storms, the upper 100 meters o f the water 

column will not have a constant vertical diffusion profile. In the coastal G ulf o f Alaska, 

as in most marine environments, the upper portion o f the water column is mixed by the 

action o f  the wind and is homogeneous with respect to physical properties such as 

density, temperature, salinity and nutrient concentration. Within this ‘mixed layer’ 

diffusivity (A"v) would be relatively high, below the wind mixed layer, diffusivity would 

be quite small. To reflect this difference in diffusivity within and below the mixed layer 

in the model a mixed layer diffusivity (Kvm) o f 10~3 m 2 s"! and a background diffusivity 

(Kvh) o f 10's m 2 s '1 were implemented. To avoid having an unrealistic, abrupt change in 

diffusion a tank function (Eq. 2.23) was implemented to define the diffusivity profile 

(Figure 2-3).

Kv(z) = Kvh
Kvb -  Kvm 

tanh(OjQo) ~  tanh(C>,)

Kvh -  Kvm 
tanh(<J>]0Q) -  tanh(Oj)

■ tanh - * 0 0 '
(O Eq. 2.23

Here, z is depth, and o  and (0 are shape parameters that define the position and thickness 

o f the pycnocline, respectively. Further explanation o f this function and parameter values 

and definitions are given in Chapter 4.
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Figure 2-3. Illustration o f the depth-explicit diffusivity profile.
Note the smooth transition between the mixed layer diffusivity (Kvm) and the 
background diffusivity (Kvb) below.
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2.3 Model Analysis

The computer code to describe this six-component model was written in MATLAB. 

MAT LAB was chosen due to its user friendliness and good graphical representation of 

model output. To simultaneously solve the system o f six non-linear differential equations 

that comprise the model the ordinary differential equation solver ‘O D E45’ provided with 

the standard MATLAB toolbox was implemented. This is an initial value problem that 

requires input of a column vector specifying the initial conditions at the initial time (to), 

and a vector o f time values over which the solver was required to integrate. By

determining the time rate o f change for each state variable over the time frame specified, 

the ODE solver effectively calculates their time series solutions. To determine if  the time 

series solutions o f the six non-linear equations, as calculated by the ODE solver, were 

approaching a steady solution, i.e.,

( dN. d N , dP, dP1 dZ , d Z , 'j
 L = -----2-  = — L = ^  = — L = — ^ = 0 Eq. 2.24

V dt dt dt dt dt dt )

the MATLAB optimization function ‘fsolve’, which attempts to find the root (zero) o f a

system o f nonlinear equations was employed. To save time and increase the chances of

finding the global rather than a local minimum, the vertical concentration profiles from 

the last day (tfmai) o f the time series solution generated by ODE45 were used as an initial 

guess to the solution.

Following Edwards et al. (2000), model solutions were deemed to have a steady 

equilibrium if the time derivative term (fval) calculated by fsolve were smaller than 10"4 

|aM N day"1. Any solution which could not be classified as steady was manually 

examined, at the 25 meter depth which was well within the mixed layer, to determine if  

behavior was periodic (limit cycles). If a m odel’s classification was unclear, the ODE 

solver was used to extend the time series’ solution; then the vertical concentration
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profiles for each o f the state variables at the new tfmai were used as input to fsolve. 

Initially, stability o f equilibrium solutions was determined by calculating the eigenvalues 

of the solution, although it was later determined that this method was not very helpful 

with regards to furthering our understanding on the models non-linear dynamics (Chapter 

3). Further details on the method o f analysis can be found in subsequent chapters. A flow 

diagram of pseudocode for this method can be seen below (Figure 2-4).

Figure 2-4 Flow diagram of approach followed to and seek equilibrium solutions.
fval is the time derivative term, and R|A,| is the real portion o f the eigenvalue.

|N»- •
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2.4 Testing the NPZ model code

Before using the computer code written to describe the behavior o f the six-component 

model to perform analysis o f the model dynamics, it was necessary to ensure that it was 

functioning correctly. The code’s performance was tested by attempting to reproduce 

published results for the three component model (Edwards et al., 2000). An adequate 

match o f model output was required to be confident o f the model’s functionality prior to 

using the code to test dynamics o f the more complex model.

Method

The six-component model had to be parameterized (Table 2-1) with values equivalent to 

those used in the three-component model parameterized for mesozooplankton and with 

non-zero diffusion (Edwards et al., 2000). The parameter values corresponding to small 

phytoplankton, microzooplankton and ammonium were set so that these model 

components experienced no change in concentration with time. Initial conditions 

equivalent to those used in the three component model were implemented (Pj=0, P2= 1, 

Zj=0, Z - 1, 7V?=0, A'j -8), microzooplankton, small phytoplankton and ammonium had 

initial concentrations o f zero. All inputs to the ammonium component (due to mortality 

etc.) were assumed to be instantaneously remineralized to nitrate ( r= 100).

For the model comparison grazing function I was implemented in the model. This grazing 

function has roots in the single resource ‘M ichaelis-M enten’ grazing equation described 

in Chapter 1. This grazing function was selected due to its similarity in form to the Ivlev 

function used in the original three-component model, i.e., an initial linear increase before 

approaching saturation. Grazing function I (Table 4-3) extends the prey field available to 

a zooplankton grazer to contain the sum of multiple prey items. However, assuming that 

small phytoplankton and microzooplankton have zero concentrations and that
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mesozooplankton are able to eat all o f the available large phytoplankton (e22= l), the 

functional form for mesozooplankton grazing on large phytoplankton simplifies to:

i Z , — ^ ----- Fq 2 25
m a x  7 „  1

kn  + 2̂

Using this notation, the Ivlev grazing function used by Edwards et al. (2000) is expressed 

as:

/maxZ2(\ - e ~ AP>) Eq. 2.26

where imax- 0.5, A---(). 2, 7 . - 1, and P?=0-1

Intuitively, it would appear that equivalent parameter values implemented in grazing 

function I would provide the best match to the Ivlev function, i.e., imux~0.5. However, the 

Ivlev function did not reach saturation, even at the maximum scaled prey concentration of 

1, and a higher imux was required in function I to get a best fit to the Ivlev curve (Figure

2-5). The Ivlev constant A=0.2 determines the steepness o f the initial increase in grazing 

rate with prey concentration. The half-saturation constant (kn )  in grazing function I 

performs the same role. A half-saturation constant o f 6 jlM N combined with an imax o f

0.7 day'1 was required in order for grazing function I to have a satisfactory fit to the Ivlev 

curve (Figure 2-5d).
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p p

p p

Figure 2-5 Matching grazing function I to the Ivlev formulation for grazing.
The Ivlev curve (dashed line) with imax~ 0.5, A=0.2 and the grazing curves 
produced by grazing function I when (a) /*C32=4|iM N, imax= 0.5day_1, (b) ^32=4 
|lM N, imax-0.6day'', (c) kn=5 (iM N, imax- 0.65day_l, and (d) A'32-6 |iM N, 
imax =0.7day_1. G and P are the non-dimensional grazing rate and 
phytoplankton concentration respectively.
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Table 2-1 Parameter values used to test functionality of model code

Param eter Sym bol V alues U nits

x - i  \ :

maximum growth rate o f  Px P
m ax X

0 2 day 1

Px half-saturation constant for
* . a -

0 .1 |aM N

Px half-saturation constant for N2 k
I X

0 0 |iM  N

inhibition parameter for Ul by N, V 0 [|iM  NT

nitrification rate r 100 day 1

light extinction coefficient k e , , 0.06

Y—l Y=2

m-1

m aximum ingestion rate
^ i n a x )

0 0.7 day '

assimilation efficiency o fZ ) Yy
0 0.7 -

half-saturation coefficient for k ^ y 0 3 N

Z Y grazing

Y
1 2

Z Y capture efficiency for Px e Y.x
X  1

2
0 0 

0 1 -

Z 2 capture efficiency for Z , e zz
0

X=1 X=2

natural m ortality rate o f  P x m  y 0 0.2 day ''

natural m ortality rate o f  Z { m z 0 day 1

specific predation rate h 0.2 (g C m '3) 

day 1

predation exponent q 1 -

m*-

L
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Results and Discussion

Using A'v,„=A'v/)=10":’ m 2 s’1, the six-component model code produced a time series 

solution (Figure 2-6) which bore a striking resemblance to the time series solution for the 

three-component model (Figure 2-7) presented by Edwards et al. (2000). There are slight 

differences between the two figures which are due to the slight difference in grazing 

function and because the solutions o f the three-component model are presented for 5.5 

m, 25.5 m etc., whereas solutions for the six-component model were calculated for every 

whole meter (5 m, 25 m etc.). In spite o f these slight differences, which are due to 

differences in coding, it can be concluded that the six-component model was functioning 

satisfactorily.
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Figure 2-6 Time-series solution for six-component NPZ model.
Model was parameterized following Table 2-1 and Kvm=Kvh= 10'5 m 2 s '1. The 
lines represent phytoplankton (dashed), zooplankton (dash-dot) and nutrient 
(solid).
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Figure 2-7 Time-series solution for three-component NPZ model.
Reproduced from Figure 6 in Edwards et al. (2000). Model was parameterized 
for macrozooplankton and A>=10"5 m 2 s"1. The lines represent phytoplankton 
(dashed), zooplankton (dash-dot) and nutrient (solid).
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Chapter 3 . Linear stability analysis of an NPZ 
model with multiple prey types

3.1 Introduction

The objective o f this experiment was to test hypothesis 1 and 2 by determining if  the 

stability o f an NPZ model, in which zooplankton could graze on multiple prey types, was 

impacted by the formulation chosen for the grazing or predation functions.

Hypothesis 1: The dynamics o f an NPZ model in which multiple grazers could feed on 

multiple prey types is uninfluenced by the functional form for grazing.

Hypothesis 2: The dynamics o f a NPZ model in which multiple grazers could feed on 

multiple prey types is uninfluenced by the form o f the predation function 

(the model closure term).

Following the approach used by Edwards et al. (2000), the linear stability o f the depth 

dependent six-component model (Eq. 2.4-2.9) was sought. This approach requires that

Eq. 2.4-2.9 have a steady state equilibrium solutions where - ^ -  = 0. In the absence of
dt

diffusive coupling, Eq. 2.1-2.3 remain depth dependent because o f the light levels given

—k z
b y e  exl . However, Franks et al. (1986) were able to analytically calculate the steady 

solution for the three component model (Eq. 2.1-2.3) and Edwards et al. (2000) were able 

to examine the stability at the steady state for each depth in his model. No analytical 

solution could be found when there was diffusive coupling (A'v^O), however, the model 

was robust enough to numerically solve the diffusive steady-state on which the stability 

analysis was performed.
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In the work presented in this chapter, a similar approach is outlined Eq. 2.4-2.9. Attempts 

at using the approach failed in many cases, because the model did not have a steady 

solution from which a linear stability analysis could be performed. Nonetheless, this work 

is included here because it provides a sequence between Edw ards’ stability analysis on 

2.1-2.3, and the work on dynamic behavior o f equations that is presented subsequently 

(Chapters 4 and 5).

The stability characteristics o f the NPZ model, in the local neighborhood o f the 

equilibrium where the time dependency terms on the LHS o f Eq. 2.4-2.9 are zero, can be 

evaluated using the eigenvalue approach. By calculating the eigenvalues, a parameter that 

characterizes the overall dynamics o f the system (Haefner 1996), it is possible to 

determine the stability o f a set o f linear equations. For example, for a linear model that 

comprises a set o f n state variables:

Ci =[C] C2...Cn] Eq. 3.1

d
whose time tendency term —  is given as a linear function o f the n state variables:

a t

dC i
— L = AC, Eq. 3.2

dt

where A  may be a function o f time, but not o f Q  .

Then the equilibrium steady state

dCj
= 0 Eq. 3.3

dt

is given by

AC* =0 Eq. 3.4

*
where C,- represents the equilibrium solution.

We then ask if  this solution tends to return to the equilibrium state if  perturbed. 

If the perturbed population is expressed as:
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Eq. 3.5

Eq.3.2 can be written as

d(C* + C-)
A(C* + C /)

dt Eq. 3.6

and since

sfc

-J -= A C : =0 
dt Eq. 3.7

we get

dC
— ^=AC, Eq. 3.8

which is similar to Eq. 3-2 except that C, is replaced with the perturbed solution C

To solve the set o f differential equations in Eq. 3-8 it is assumed that the answer is the 

form:

stable or unstable depends on the sign o f the real part o f the eigenvalues ( \ ) .  The

dynamics of the system are dominated by the largest real eigenvalue (a). If all 

eigenvalues o f a system have negative real parts (R|A,|<0) the steady-state (equilibrium) 

solution is classified as stable. This means that following a perturbation the system will 

return to the steady state solution. Conversely, the existence o f one or more eigenvalues 

with a positive real part (R|A,|>0) indicates that small perturbations from the steady state 

solution will grow without bound away from the equilibrium (Edwards et al., 2000), and

Eq. 3.9

where the behavior o f the system is dependent on the sign o f its eigenvalues A . 

In general, A may be complex, i.e.,

X - a  + i f i Eq. 3.10

where f3 is the imaginary part o f X and describes the oscillatory part o f Q  and Ot is the 

real portion o f A and describes the secular trend. The classification o f the model as
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for that reason the model is classified as unstable. If the imaginary portion o f the 

eigenvalue is zero (P~0) then the approach towards or away from equilibrium is 

monotonic (Figure 3 -la). However, if  the eigenvalues comprise an imaginary portion 

(ffrO) then the dynamical behavior will be oscillatory in nature (Figure 3 -lb  and c). If 

a <0 and (3^0 following the perturbation oscillations are damped and the solution is stable 

(Figure 3 -lb). If a=() and [3^0 following the perturbation the solution enters undamped 

oscillations, this is known as neutral stability (Figure 3-lc). If oc>0 and (3^0 following the 

perturbation oscillations will grow exponentially and the solution is said to be unstable. 

Due to the closed system nature o f the model under investigation here this type o f 

behavior was not possible.

a < 0  a > 0  a < 0

P=0 M  |^0

Figure 3-1 Some possible responses o f a two component model to perturbations.
(a) a<0, (3=0, (b) a> 0  and fteO and (c) a< 0  and (3^0. P  and Z represent 
phytoplankton and zooplankton concentration respectively.

Due to the complexities o f natural systems it is quite unusual to find linear equations in 

biology. Indeed, the six differential equations that comprise the NPZ models are non

linear. It is therefore necessary to convert this system o f equations to linear equations in 

order to perform stability analysis. It is important to realize that the linearization o f the 

equations effectively transforms the problem from studying dynamics of the state
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variables (model components) to studying the dynamics o f deviations from the 

equilibrium. Therefore, the eigenvalue can only reveal information regarding the system 

behavior in the neighborhood o f an equilibrium if it exists.

3.2 Method

To determine the stability o f the six-component NPZ model a standard procedure for 

model linearization and eigenvalue determination, used previously on simple NPZ 

models, was followed (May, 1973; Edwards et al., 2000). The biological system under 

investigation here comprised six non-linear differential equations at each o f  the 100 depth 

levels in the model, therefore, a total o f six-hundred eigenvalues were examined for each 

model simulation.

3.2.1 Calculating the equilibrium solution

Simple NPZ models with zero diffusivity can be solved analytically to find the steady 

state (equilibrium) solution. Edwards (2000) followed this approach in his analysis o f the 

three component model. He then used the zero diffusivity solution as a starting ‘guess’ at 

the solution with non-zero diffusivity, which he sought using a MATLAB function, 

fsolve, which is a multi-dimensional equation solver. Due to the spatially explicit 

diffusive coupling o f each layer within the model, and the additional complexity o f the 

model equations, it was not practical (or possible) to solve the system o f equations 

analytically, in order to find the steady state solution. Instead, the steady solution o f the 

non-linear system o f six equations, if  it exists, was approached iteratively by time- 

stepping the model for 100 days using the MATLAB ode45 solver, an automatic step-size 

Runge-Kutta-Fehlberg integration method. The resulting solutions were employed as the 

initial starting guess for the MATLAB numerical solver fsolve.
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3.2.2 Determination o f  Eigenvalues

Having found a steady state equilibrium solution, the eigenvalues o f the system can be 

calculated and thus the local stability of the model determined. To proceed, the 

equilibrium population C'*(z) = [/f (z), A*(r),z*(-i.Zilr'i.A'^z),tv?(->J was perturbed by a small 

amount C '(z ,t) , which is assumed to be initially very small. The perturbed population is 

then expressed as:

C , ( z ,0  =  C *(Z )  +  C '( z , t )  Eq. 3 .1 1

C o n c e n t r a t i o n  D e p t h  s p e c i f ic  P e r t u r b a t i o n  a b o u l

;H ,m v  d e p th  e q u i l i b r iu m  e q u i l i b r iu m  c o n c e n t r a t i o n

a n d  t im e  c o n c e n t r a t i o n  - d e p e n d s  o n  d e p th  a n d  tim e

Therefore, the system o f equations that include the affects o f biological interactions and 

the action o f diffusion on the six model components can be expressed as:

(C,* + c;h
dt C‘ ' ' dz dz

Eq. 3.12

Where Fc_ is the net source/sink term for each state variable C,

I had to approximate the function with a first-order Taylor series because Fa  is non

linear, thus the Taylor series expansion o f F c . around about the equilibrium point C* is 

given by:

** ' * ' ui* c
FCj(Cj +Cj) = F  c, + X c /  — + HIGHER OREDR TERMS Eq. 3.13

■ dC  j
^----------- :_________ s v ._________  ^

N O N - L I N E A J k

Where
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F C, = Fc. ( Cj ) Eq. 3.14

Since the perturbations are assumed to be small the terms o f second order or higher were 

ignored. Eq. 3.12 can then be written as:

d(Ci +C,) *
dt

F c ,  + I C
■ dF C d

 -  +—
dC, dz

Kv
d (c ;+ c ')

Eq. 3.15

then let
dF c, 

dC:
:aij where the elements constitute the ix j  Jacobian, or community

matrix, which is a measure o f the per capita population growth rate in the immediate

neighborhood o f the equilibrium point. Each element «// describes the effect o f species j

upon species i near the equilibrium, and depends both on the details o f the original 

equations and on the values o f the equilibrium populations.

dC j
At equilibrium, by definition, C, = 0 and = 0

therefore

F Ci + dz
Kv

dCj
=  0

and

Eq. 3.16

dC; s T r  3 — Oj ; • /  C ;  
dt " ^  ' dz

Kv-
dC'j
dz Eq. 3.17

Introducing C' - C je ^  Eq. 3.17 becomes:
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ac, At

dl •IX At , d ,e +-
dz

Kv-
dC;e 

dz

At

Eq. 3.18

Which simplifies to

AC; ' I Kv-
dC:

This can be written out more fully in matrix form as:

dt-,,

~<>P\ f)z" aft f)Z] az2 a/v, aw.

Pi ?)P{
})Fi\ + a 2 
aft + '"a-2

rJ/’X

az.

c)F,,

a*,

a/>, 

a a’2 "
Pi 3FZ, ()F/ A 2 

— 4 - + K v—  
fjz2

p2

dP2 a z2 aw, })N2
z 2 „ a2- — -  + ATt-----

az2 ^'
a f z 2

,v, r)Pt aft az, rW, a a;. A',
As

~ W

rjft\ 1
a ft

dFXi

az. az. a.v. + ’’ az2 aA’,

As

a f t v . 3fty, dFx , ^  „ a2
c)Pt a ft az, az. f)yV]

■ T A'-
a a ’, r)z-

The 6x6 finite difference Jacobian matrix can be computed at steady state 

( F] ,P2 , Z, ,Z 2 , As ,N 4 ), therefore the above equation can be solved to determine the

eigenvalues (X) o f the system. For each steady solution a set o f 600 eigenvalues, 

corresponding to the six state equation and 100 depth levels in the model, can be 

determined. The biological interactions at each depth level cannot be considered 

independent dynamical systems because vertical diffusion effectively coupled the layers 

within the model. It was, therefore, impossible to associate any given eigenvalue with any 

given depth level. This meant that if  even one of the six-hundred eigenvalues has a 

positive real portion, the associated model possesses dynamic instabilities. Thus, the 

modulus of the largest real eigenvalue (K.|A,*|>0) determines the systems stability.
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3.2.3 Model setup

I used initial conditions (Figure 3-2) that were based on observational results from the 

Long Term Observational Program (W eingartner et al., 2002) and the Plankton Process 

Program (Strom et a l, 2001), the two components o f the GLOBEC coastal G ulf of 

Alaska program. By letting N2 = \5-(P  1+P2+Z1+Z2+N i) jiM N the total nitrogen (TV?) in 

the system was constant with depth. These values were considered reasonable 

representations o f conditions in the coastal G ulf o f Alaska during spring.

Nutrients ( JLtM N)

n

Plankton m gCrrfJ

Figure 3-2 Profile o f Initial Conditions used to determine model stability.
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In order to non-dimensionalize the model, parameters were scaled according to the 

transformations presented in Table 3-1 with the suit o f param eter values used is presented 

in Table 3-2. These values are very similar, although not identical to those used 

subsequently in Chapter 4. A detailed explanation o f why these values were selected is 

provided in Chapter 4 so not repeated here.

Table 3-1 Transformations used to make model non-dimensional. 
Primes denote the non-dimensional quantities.

Symbol Transformation

C - C / N t

P 'max X P IPmax X rnax 2
k'ix — klx / N T

2̂X = kjx ̂ ^ j

v' — y/-\’T
/r r / P  „' * max 2

./
m̂ux) = / / Pmax >' ' max 2

r'y = 7 y /P max 2
Ky - k i y / X r

e YX = e YX
e7.7. — e77
0 ' — 0 ! N t

mx = mX 1 ^„ax2
m? - m7.l Pm M 2

h ' = h ' /Pm* x2

Kv' =
fz Z ■ kc,,



Table 3-2. Parameter values used in the NPZ model.
X  and Y can be 1 or 2 to represent the two classes o f phytoplankton and 
zooplankton, respectively.

Symbol Definition P aram eter V alues U nits

Phytoplankton growth parameters

p  maximum growth rate
max A'

X
1 2 

1 1 day -1

b half-saturation constant for N i /tl.Y .75 .5 |iM  N

k half-saturation constant for N t
2 X .5 .75 HM N

W Ammonium inhibition parameter X 1.5 [[lM NJ

V Nitrification of TV, to 0.05 d a y '1

k Light extinction coefficient 0.00 1m

Zooplankton ingestion parameters

i maximum iniiestion rate'rna x Y

Y
1 2 

1.4 1.0 day  1

y  assimilation efficiency 0.4 0.3 -

b light extinction coefficient3 y &
1.2 .7 ng<-' r 1

Q feeding threshold concentration 0.05 n g c r 1

Mortality Parameters

mX natural mortality rate P K

X
1 2 

0.2 0.3 day-1

mz  natural mortality rate Z y 0.75

h  specific predation rate 0.01 o r 0.1 d a y 1

<7 predation exponent 1 o r 2

Diffusion Parameters

Kvm mixed layer vertical diffusivity 10"' 2 -1 m  s

Kvh background vertical diffusivity 10'5 2 -1 m  s

0 ) z  - 4 0 _
Shape parameters for diffusion profile

C0 5 _
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3.2.4 Analysis

The stability o f the model was examined when using the five alternative functional forms 

for zooplankton grazing (grazing functions I-V) for the case o f both linear (<?=1) and 

quadratic predation (q-2); the specific predation rate was also varied ( h - 0.1 or 0.0 1). 

Two alternative parameter sets (A and B ) were implemented to represent zooplankton 

capture efficiency for each prey type (e). Set ‘A ’ represents an ecosystem in which, due to 

size restrictions, micro-zooplankton capture small phytoplankton with a greater efficiency 

(e ,,= 1 .0) than large phytoplankton ( e l2=0.7) and mesozooplankton capture 

microzooplankton ( e z z=\.0), large phytoplankton (e 22=0.7) and small phytoplankton 

(^ ,= 0 .2 )  with a decreasing order o f efficiency Set lB ' represents an alternative 

ecosystem in which microzooplankton can feed on the two size classes o f phytoplankton 

with equal efficiency ( eu = e l2 = \.0), but mesozooplankton’s ‘capture efficiency’ for large 

phytoplankton ( e 22=0.4) is reduced. A synopsis o f each model run is provided in Table 

3-3.

3.3 Results

The trivial (and uninteresting) solution for the model is considered to be a system 

containing only nitrate, with zero concentrations o f the other five model components 

(N],N2P\,P2,Z\,Z2,)~(l,0,0,0,0,0). This is because there is a rapid return o f  the system to 

nitrate if  the light dependent photosynthetic process that drives the model is halted. It was 

not common to have all six model components simultaneously comprising the model 

solution. In fact, solutions comprising all model components were only found when 

grazing function V was implemented. In the majority o f the remaining model simulations 

large phytoplankton was reduced to negligible concentrations as was one o f the 

zooplankton components. Generally, the choice o f predation function (linear or quadratic) 

determined which zooplankton size group thrived. With functions 1, 11 and III simulations 

in which predation was linear (g= l) and the specific predation rate was high (0. 1 )
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mesozooplankton were quickly reduced to concentrations several orders o f magnitude 

less than the microzooplankton. With this parameterization, the constant specific 

predation rate exerted on the mesozooplankton, regardless o f rarity, kept their 

concentrations low. The reduction o f the mesozooplankton population effectively 

relieved the microzooplankton o f  any grazing pressure. Limited now only by prey 

availability microzooplankton were able to flourish and became the only significant 

source o f grazing pressure on the phytoplankton. Thus, the dynamics o f the six- 

component model were effectively controlled by the behavior o f only five components; 

small and large phytoplankton, microzooplankton, nitrate and ammonium. Decreasing the 

specific predation rate or using a quadratic predation function (q=2) effectively reduced 

the specific predation rate experienced by the mesozooplankton. The resulting balance 

between biological process rates meant that mesozooplankton were able to achieve net 

population growth but grazing pressure on the microzooplankton by the mesozooplankton 

meant that the microzooplankton population was reduced to negligible concentrations.

Eigenvalues were determined only for those solutions that were found to be steady and 

non-trivial, i.e.,, those solutions obtained when implementing grazing functions IV and 

V. The absence o f a steady solution when grazing functions I, II and III were 

implemented meant that linear stability analysis could not be used to reveal information 

of the non-steady solutions. For each steady equilibrium solution, the largest real, 

stability determining eigenvalue was very small in magnitude. Some o f the eigenvalues 

were slightly positive, while others were slightly negative. In practice, due to the small 

magnitude o f the eigenvalues (both positive and negative), the time that it would take a 

perturbed solution to explode or return to the equilibrium solution is insignificant 

(thousands o f years) with respect to time scales o f concern for the biological populations,

i.e., months and years. Over the timescales o f concern, model solutions can be considered 

to possess neutral stability. This means that following a perturbation, populations of each 

model component will not return to the equilibrium solution, nor will they move further 

away than the initial perturbation. Examining the complete set o f real eigenvalues (Figure
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3-3) for simulation 20, although the largest real eigenvalue is positive (2.32x1 O'4) all 

remaining eigenvalues were negative and many were large in magnitude, indicating a 

series o f decaying modes with very large amplitude. A similar profile o f eigenvalues 

occurred for each o f the other models that reached a steady equilibrium.

-0 .2 -0.1 0 0.1 0.2 -300 -200 -100 0 0 0.5 1
Imaginary^,) Real(-‘.) Positive R eal(l) x 10 3

Figure 3-3 Example o f a suite o f eigenvalues for six-component model.
(a) imaginary portion o f eigenvalues, (b) real portion o f eigenvalues, (c) 
positive real eigenvalues. Eigenvalues shown were obtained for simulation 20. 
i.e., grazing function V, parameter set ‘B ’, /?=0.01, g=2simulations. The index 
serves to order the six-hundred eigenvalues based on the size o f R(A,).
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Table 3-3 Maximum real and imaginary eigenvalues for each model simulation.
Note, it was only possible to perform eigenvalue analysis for those models 
which possessed a steady equilibrium solution. The maximum time derivative 
term for each model component was required to be smaller than lxlO "4 for a 
model solution to be designated as a steady equilibrium. Steady equilibrium 
solutions are indicated by a *.

Run Parameter <y h Grazing Max. time derivative max(A) Trivial components
1 1 0.1568 - P2 , z 2
2

0.1
11 0.002 - P2, Z2

3 III 0.0113 _ P2 , z .
4 IV 5 .24x10 '6* -1 .30x10  14 P2 , z 2
5 I V 3.23x10*-’ -1 ,4 4 x l0 ‘14 z 2
6 I 0 .0039 - P2 , z ,
7

0.01
II 0.045 - p2

8 III 0.0034 - P2 , z .
9 IV 4.71 x lO '6* -2.20x1 O'14 p2
10 B V 2 .74x10 '5* -1.21 x 10 '14 none
11 I 0.0054 - P2,Z ,
12

0.1
II 0 .367 - P2.Z,

13 III 2.84x1 O’4 - P2 , z .
14 IV 5.03x1 O'6* 4 .5 5 x l0 '15 p.
15 V 2 .6 0 x 1 0 '5’ 8 .09x10 '5 none
16 I 0 .1044 - P2, z .
17

0.01
II 0.012 - P2,Z ,

18 III 1.88x10"* - P2,Z |
19 IV 9 .34x10 '6* 1.19x10 4 p.
20 V 2.60x1 O'5* 2.32x1 O'4 none
21 I 0.0189 - P2 , z 2
22 II 0 .002 - P,. Z,
23 0.1 III 0.0403 - p2, z 2
24 IV 5.70x1 O'6* -1 .18x10  14 P2, z 2

25 1 V 3 .3 1 x l0 ‘5* 7 .5 8 x l0 '15 z 2
26 I 0.0049 - P2 , z .
27

0.01
II 0 .0177 - P2

28 III 0.0181 - P2,Z,
29 IV 6.4 lx l  O'6* -1 .5 2 x l0 '14 p.

30 A V 2 .87x10 '5* 8 .36x10 '15 none
31 I 0.0046 - P2 , z .
32

0.1
II 0 .0359 - P2 , z .

33 III 2.71x1 O'4 - P2 , z ,
34 IV 8 .73x10‘6' -7 .2 4 x l0 '15 P,

35 9 V 2.76x1 O'5* 7 .83x10 '5 none
36 I 0 .0344 - P2 , z ,
37

0.01
II 0 .0116 - P2 , z .

38 III 2.25x1 O'4 - P2, Zl
39 IV 8.69x1 O'6’ 1.18x10 '4 p.

40 V 2 .7 5 x 1 0 " 2.33x1 O'4 none
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3.4 Discussion

The work presented in this chapter co.istitutes a preliminary investigation into the impact 

o f varying the zooplankton grazing and higher predation (model closure) formulations on 

the dynamical behavior o f a six-component NPZ model developed for the coastal G ulf o f 

Alaska. The model had two phytoplankton components, two zooplankton components 

and two nutrient components. Stationary physical forcing, representative o f the coastal 

G ulf o f  Alaska in spring, was used to force the model.

This work builds on several previous works which have shown that the choice o f  

functional form for grazing (Oaten and Murdoch, 1975; Armstrong, 1976; Franks, et al.

1986) and the form for higher predation on zooplankton (Steele and Henderson, 1992; 

Edwards and Brindley, 1999; Edwards and Yool, 2000; Edwards and Bees, 2001) can 

have a large impact on the non-linear dynamics o f simple three component NPZ models. 

Here it was shown that the choice o f formulation for undefined predation and 

zooplankton grazing also impacts the non-linear model dynamics and structural stability 

of a more complex six-component ecosystem model in which zooplankton can graze on 

multiple prey types. More importantly, however, the traditional eigenvalue approach to 

examine model dynamics is shown to be inappropriate for intermediately complex NPZ 

models that cannot be solved analytically. Stability analysis o f simpler models (Edwards 

et al. 2000; May, 1973) relied on finding equilibrium solutions analytically. Solutions 

found in this manner could potentially be stable, unstable or neutrally stable, as would be 

revealed by the eigenvalue analysis. Due to the additional complexity in the six- 

component model, solutions could not be found analytically, requiring use o f an 

alternative approach to finding the equilibrium solutions 

by time-stepping the model with stationary forcing. Herein the problem lies: if  the time 

series solution approached a steady equilibrium it was likely to be stable -  or at least not 

unstable - otherwise the solution would not remain at the equilibrium. Conversely, if  a 

model trajectory was oscillatory in nature, although it could be oscillating about an
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unstable node (equilibrium point), this cannot be determined through our approach 

because 1 no steady solution existed from which to determine the eigenvalues. Thus, only 

those models that had a steady equilibrium solution could have their eigenvalues and 

their stability determined. No conclusion could be drawn with respect to the stability o f 

the non-steady (oscillatory) model solutions.

This experiment revealed the interesting point that it was difficult to find solutions that 

were steady and comprised all model components. The form o f the grazing function, the 

value o f the specific predation rate (h) and the form o f the predation function (as 

determined by <7=1 or q=2 ) all had an influence on the composition o f model solutions. 

Interestingly, a model with linear predation was found to have very similar dynamics to a 

model with quadratic predation but with a higher specific predation rate. This indicates 

that it will be necessary to look over a broad range o f values for h and q, with each o f the 

five grazing functions, in order to get a clear picture o f model behavior with respect to 

the existence o f the six-model components.

The two alternative parameter sets implemented to simulate zooplankton capture 

efficiency did not have any impact on the model dynamics or on the model structure, with 

respect to the existence o f model components. It is likely that comparison o f more diverse 

parameter sets for zooplankton capture efficiency will yield a different result. However, 

to focus the exploration on model behavior over a finer resolution o f q-h parameter space, 

in subsequent experiment only capture efficiency parameter set A is considered.

3.5 Experiment Redesign

The results from this experiment led me to re-design the experiment in order to better 

address hypothesis 1 and 2. Below is an outline o f the revisions made to the method used 

in this experiment; the complete outline of methods for this experiment is presented in 

Chapter 4 and so is not repeated here. Initial results presented above suggest that the non
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linear dynamics o f the model were heavily dependent on both h and q. Therefore, in 

subsequent experiments model dynamics were explored over a finer resolution q-h 

parameter space. For example, in Chapter 4 model behavior is investigated for eleven 

values o f the predation exponent (< /= l.l,l.2 ,1 .3 ... 2.0) and nineteen values o f the specific 

predation exponent (A=0.05-2.24). The resolution o f h varied, becoming finer as h 

declined, because during the experiment it became apparent that in this region of 

parameter space a higher resolution o f h was required in order to adequately capture 

patterns o f dynamical behavior; the oscillatory region bounded by the Hopf bifurcations 

was very narrow in this region and would be missed by a coarse resolution investigation. 

For each parameter set the dynamics of the NPZ model were compared when the five 

alternative functional forms for zooplankton grazing were implemented. A total o f 1045 

individual model runs comprised this experiment.

Rather than attempting to determine the stability o f the system through eigenvalues 

analysis, which was only possible when a steady equilibrium solution can be found, the 

focus was shifted to classifying the form o f the nature of the solution with respect to its 

time series behavior when subjected to stationary forcing. For example, model solutions 

can be classified as, steady equilibrium, periodic limit cycles, chaotic etc. From the above 

experiment, it became apparent that with each model run there was an initial period of 

transitory behavior before the equilibrium solution (be it steady or oscillatory) is reached. 

This suggests that it would be prudent to time-step the models for longer than the 100 

days used above. This would ensure that a solution would have the opportunity to come 

within adequate proximity to a steady equilibrium. Insufficient time stepping o f the 

model could mean that the optimization function (fsolve) would be provided with an 

inadequate initial guess o f a potentially steady solution and subsequently could fail to 

find the root (zero) o f a system o f nonlinear equations that did exist. In the new 

experiment, each model was initially run for 300 time steps (days), and the resulting 

solution provided as a starting guess to a numerical solver o f  the steady state solution 

(equations 1-6 with the left hand sides set to zero). Following Edwards et al. (Edwards et
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al., 2000), for a model to be classified as steady, the associated time derivative terms 

were required to be smaller than 10'4 |iM N;day. Models that failed to converge to a 

steady solution were run for a further 700 days, and the time series solution on the one- 

thousandth day was provided to the numerical solver. These solutions were then 

reclassified. Any solution which could not be classified as steady was manually examined 

at the 25 meter depth, which was considered to be well within the mixed layer, to 

determine if behavior was periodic (limit cycles) or something more complex. This 

process o f time stepping solutions for 1,000 days followed by examination o f the solution 

trajectory was repeated until it could be determined that the solutions were indeed limit 

cycles and not anything more complex.

A few changes were made to the parameter values and initial conditions used in the 

above experiment. Most notably, because the large phytoplankton group was frequently 

reduced to negligible concentrations the maximum photosynthetic rate for phytoplankton 

(Pmax) was increased to 2 day '1. The full suite o f parameter values and justification for 

using them is presented in Chapter 4 so not repeated here. Due to the additional 

complexity that a full exploration of q-h parameter space will add to the experiment, to 

simplify things somewhat initial conditions that had a constant vertical profile were used 

in place o f the non-homogeneous initial conditions used previously.

Subsequent to the above experiment, it became apparent that the scaling used for h 

require modification in the case o f  q>\. This is because in order for the predation term 

( H = h z ‘i ) to have constant units (d a y 1) as q changes, the units o f h must change 

accordingly. For example, when <7=1 the specific predation rate is constant and not 

dependent on the size o f the zooplankton population units o f /? are therefore day '1. 

However if  q=2 the rate o f predation is dependent upon the size o f the zooplankton 

population and units o f h are (gCm '3) 1 day '1. The units o f h w ill vary in a continuum as q 

increases from 1 to 2 . In general terms, /F^gCm '3)1  ̂ day '1. Therefore, in order to non- 

dimensionalize this parameter a scaling factor that is also dependent on q is required, i.e.,
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h ~  h- / P" n T '  max 2

Scaling of all other parameters was the same as presented in Table 3-1.

A similar correction had to be made when converting the parameter h into units on 

nitrogen, the currency in the model. When q= 1, h is constant and not dependent on the 

amount of carbon so no conversion is required. However, when q -2 , h is specified as a 

rate per quantity o f carbon, per day and so must be multiplied by a conversion factor (r|) 

to convert to units o f nitrogen (jiM N)‘! day"1. Assuming the Redfield ratio o f 106 C:16 

N r) is given by:

12g C  1000/ \Q6mo 1C 12 106
r>~ I m 3 \6m olN  ~ 1000 16 Eq. 3.19

Therefore, in general:

{g C m ~ ')x~LI ■ ■ TJ = {m m o lN n f * d~ x -  ( f iM  N ) '^  d ~ [ Eq. 3.20

The modified experiment formed the basis o f a manuscript which was submitted in its 

original form to Journal o f Plankton Research on May 24th 2004. Comments were 

received from two anonymous reviewers on July 17th 2004. The manuscript was modified 

to address reviewers concerns and the resubmitted on September 28th 2004. The 

resubmitted version o f the manuscript constitutes Chapter 4.
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Chapter 4 . Non-linear dynamics of a pelagic 
ecosystem model with multiple 
predator and prey types1

4.1 Abstract

Using numerical techniques we explored the dynamics o f a one-dimensional, six- 

component Nutrient-Phytoplankton-Zooplankton model in which zooplankton grazed on 

a mixed prey field. Five alternative functional forms were implemented to describe 

zooplankton grazing, and the form for predation on mesozooplankton was prescribed by a 

product o f a specific predation rate (h) and the mesozooplankton concentration raised to a 

power (q) which we varied between one and two. With all five grazing functions, Hopf 

bifurcations, where the form o f the solution transitioned between steady equilibrium and 

periodic limit cycles, persisted across the q-h parameter space. Regardless o f the values 

o f h and q, with some forms o f the grazing function we were unable to find steady 

equilibrium solutions that simultaneously comprised non-zero concentrations for all six 

model components. Extensions o f Michaelis-Menten-based single resource grazing 

formulations to multiple resources resulted in periodic solutions for a large portion o f the 

q-h space. Conversely, extensions o f the sigmoidal grazing formulation to multiple 

resources resulted in steady solutions for a large portion o f q-h parameter space.

4.2 Introduction

Since the historical works o f Riley (Riley, 1946) and Steele (Steele, 1974), the use of 

Nutrient-Phytoplankton-Zooplankton (NPZ) models as tools to understand temporal and 

spatial dynamics o f marine ecosystems has become common practice. Despite the many 

gross generalizations these models embody, they provide useful research tools to test 

understanding of marine ecosystem functionality. Reflecting our increased understanding

1 G ibson , G .A ., M usgrave, D .L ., and H inckley , S. N on-L inear D ynam ics o f  a Pelag ic  E cosystem  M odel 
w ith M ultip le  P redator and P rey T ypes. S ubm itted  to Journal o f  Plankton Research.
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of the marine ecosystem, and in an effort to simulate observed dynamics left unexplained 

by simple three-component NPZ models, there has been a trend toward developing more 

sophisticated NPZ models with an increasing number o f components and associated 

interactions. The ever-increasing availability o f computational power has enabled the 

development o f high-resolution, three-dimensional, coupled NPZ physical models that 

can perform realistic simulations o f a marine ecosystem. Such coupled models are now 

frequently an integral part o f research programs geared to understand ecosystem 

dynamics, for example, the Global Ocean Ecosystem Dynamics Experiment (Franks and 

Chen, 2001), the Joint Global Ocean Flux Study (Loukos et al., 1997), and the North 

Pacific Marine Organization (Aita et a l, 2003).

Our conceptual view of the minimum complexity required to replicate observations 

constantly shifts, reflecting the continual refinement o f our understanding o f marine 

ecosystems. The early, simple, zero- or one-dimensional, three-component NPZ models 

reflected the understanding o f the ecosystem at the time and were generally considered to 

represent nitrate, microphytoplankton, and herbivorous mesozooplankton. Phytoplankton 

are now known to utilize both new (nitrate) and regenerated (ammonium) forms o f 

inorganic nitrogen (Dugdale and Goering, 1967; Eppley and Peterson, 1979). Pico- and 

nanophytoplankton have been found to frequently contribute a large percentage o f the 

total primary production (Johnson and Sieburth, 1979, 1982; Strom et a l, 2001). 

Microzooplankton, with their ability to feed on these small, phytoplankton size fractions, 

are now thought to be the primary grazers (Dagg, 1993) controlling the chlorophyll 

standing stock in many regions (Landry and Hassett, 1982; Gifford, 1988; Strom and 

Welschmeyer, 1991; Dagg, 1995).

Although the numerous variations o f complex ecosystem models presented in the 

literature frequently share the same roots, they often differ substantially in the 

formulation of biological processes. It is widely accepted that phytoplankton nutrient 

uptake is best represented by the hyperbolic function first introduced by Monod (Monod, 

1942). Conversely, there is not yet such a general agreement on which functional forms
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are most appropriate for simulating grazing, defined here as zooplankton grazing on 

phytoplankton and smaller zooplankton, or ‘predation’, defined as mesozooplankton 

mortality due to consumption by undefined higher trophic levels. Predation is often 

simulated using either a linear formulation, that represents a predator whose biomass 

does not fluctuate (Evans and Parslow, 1985; Fasham et a l, 1990), or a quadratic 

formulation, that represents a predator whose biomass is proportional to that o f the 

zooplankton (Fasham, 1995; Edwards, 2001). Hyperbolic (Frost, 1987; Fasham et a l, 

1993) and sigmoidal formulations (Malchow, 1994) have also been used to simulate 

predation, although not as commonly, perhaps due to the additional parameters and 

associated assumptions these formulations require. Historically, the formulation for 

zooplankton grazing has also taken several different forms. The hyperbolic formulation 

(Ivlev, 1961; Frost, 1987) was once a common choice. However, in an effort to prevent 

complete prey elimination due to zooplankton grazing, formulations were developed to 

provide rare prey with a refuge from grazing pressure. The most notable o f  the prey 

refuge functions are the ‘threshold’ function (Steele, 1974; Mullin and Fuglister, 1975; 

Wroblewski, 1977), which incorporates a critical prey concentration below which grazing 

ceases, and the sigmoidal function, in which the grazing rate is reduced at low prey 

concentrations (Evans and Parslow, 1985; Steele and Henderson, 1992; Denman and 

Pena, 1999). There is evidence that at least some species o f zooplankton exhibit behavior 

consistent with this concept (Frost, 1972, 1975; Strom, 1991; Gismervik and Andersen, 

1997). Such observations are, however, usually made on individual species that are fed 

known prey types, and do not necessarily reflect the behavior o f the zooplankton 

community at large. Nevertheless, the addition o f a grazing refuge to a grazing function is 

popular with the modeling community because it often overcomes the problem o f prey 

elimination. With the advent o f multiple prey NPZ models it is becoming increasingly 

common to see extensions o f the single resource grazing functions in order to simulate 

zooplankton grazing on a mixed prey field (Ambler, 1986; Fasham et a l, 1990; 

Ryabchenko et a l,  1997; Chifflet et a l,  2001; Denman and Pena, 2002). A 

comprehensive review o f the grazing functional response for zooplankton grazing on
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single and multiple nutritional resources (prey items) is provided by Gentleman et al. 

(Gentleman et al., 2003).

Despite a rapid trend towards more realistic NPZ models, in which zooplankton are 

presented with multiple nutritional resources, investigations into the fundamental 

dynamics o f these newer models have been limited (Armstrong, 1994; Ryabchenko et a l, 

1997; Yool, 1998). Over the past few decades, the application of non-linear systems 

dynamics has provided a basis for understanding the behavior o f NPZ models (May, 

1973; Oaten and Murdoch, 1975; Edwards and Brindley, 1996; Edwards et a l, 2000). 

The formulations for both zooplankton grazing (Franks et a l, 1986) and predation on 

zooplankton (Steele and Henderson, 1992; Edwards and Yool, 2000) have been found to 

influence the fundamental dynamics o f simple NPZ model, determining whether a 

m odel’s time-dependent behavior will approach steady state or exhibit oscillatory 

behavior, such as periodic limit cycles. Furthermore, incorporating moderate levels o f 

vertical diffusion into a purely biological NPZ model has been shown to impart model 

stability (Edwards et a l, 2000), an important consideration for the realm o f coupled 

biophysical models. Without a good understanding o f the fundamental behavior o f the 

more complex NPZ models now commonly employed in ecosystem studies, time- 

dependent behavior simulated with coupled biological-physical models, as in periodic or 

chaotic solutions, could be interpreted as due to variable physical forcing rather than as 

an inherent property o f an ecosystem model. It is important that we extend our 

understanding o f NPZ system dynamics to these more complex models and develop an 

appreciation o f how choices o f formulations for simulating biological processes can 

affect their behavior.

Here we explore the fundamental non-linear dynamics o f an intermediately complex NPZ 

model in which zooplankton grazers can feed on multiple prey types. Time series 

solutions are examined and their behavior classified with respect to their non-linear 

dynamics and structural stability as steady, limit cycle (periodic), or chaotic. Our analysis 

is based on a six-component model, subjected to stationary physical forcing (vertical light
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and mixing profiles). One o f our long-term interests is to include our NPZ model into a 

simulation with realistic three-dimensional physics in the coastal G ulf o f Alaska. 

Therefore, where possible, we have used biological and physical parameter values that 

are realistic for that region. We compare model behavior with alternative functional 

forms for zooplankton grazing over a realistic range of specific predation rates (h -  0-2.4 

[gCm -3]1 d a y 1) and predation exponents (1 £ 4 1 2 ) .

4.3 Method

4.3.1 Model Structure

To investigate the influence on model dynamics o f alternative grazing and mortality 

functions when zooplankton are able to graze on a mixed prey field, we developed a six- 

component model (Figure 4-1) that simulated the exchange o f nitrogen (jxM N) between 

two classes o f phytoplankton, small (< 8|im , Pi) and large (> 8|im , Pi); two classes o f 

zooplankton, microzooplankton (Z/) and mesozooplankton (Zj); and two types of 

dissolved inorganic nitrogen, nitrate (Ni) and ammonium (N?). Both size classes o f 

zooplankton were allowed to graze on multiple prey types. This model was developed 

from the three-component NPZ model whose stability has previously been investigated 

(Edwards et a l, 2000). We selected this model due to the simplicity o f its functional 

forms. We increased model complexity by adding a second phytoplankton and 

zooplankton component and splitting the nutrient component into nitrate and ammonium. 

The one-dimensional model was spatially explicit in the vertical, with a resolution o f  one 

meter and an extent o f one hundred meters (z,=[lm , 2m, 3m, ... 100m). The model was a 

closed system with no net inputs or outputs; therefore, the total nitrogen content, summed 

over all depths, was constant at all times (N-\-P\+P2+Z\ +Z2+/V1+Ni). We feel that this is 

not an unrealistic assumption to make considering the vertical extent o f the model. 

Potential losses from the system {i.e., mortality, predation, and egestion) were treated as 

inputs to the ammonium pool; no detrital pool was explicitly modeled. Initial
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concentrations for all model components were taken to be vertically homogeneous at 2 

|ig  Chl-a L~' for both phytoplankton groups, 15jig C L”1 for both zooplankton groups, 10 

|iM  N for nitrate, and ljiM  N for ammonium. Based on observational results from the 

GLOBEC coastal G ulf o f Alaska program (Strom et al., 2001; Weingartner et al., 2002), 

these values were considered reasonable representations o f conditions in the coastal G ulf 

o f Alaska during spring (May). To enable material flow between the phytoplankton, 

zooplankton, and nutrient components we used a common currency o f nitrogen and 

assumed a C:N ratio o f 106:16 (Redfield et al., 1963) and a C:Chl-a ratio o f 55:1 (Frost,

1987). This gave initial phytoplankton and zooplankton concentrations o f 1.386 [iM N 

and 0.189 (iM N respectively.

Figure 4-1 Interactions within the six-component NPZ model.
Nitrate (N\), ammonium (Ni), small phytoplankton (Pi), large phytoplankton 
(P2), microzooplankton (Z\) and mesozooplankton (Z2). Arrows indicate the 
direction o f material flow. Biological processes, i.e., grazing (G), nutrient 
uptake (U), mortality (M ), predation (H ), and nitrification (R) associated with 
each arrow are indicated. See Table 4-2 for explanation o f suffixes. Note that 
for simplicity, zooplankton assimilation efficiencies have been omitted.
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4.3.2 Formulation

The purely biological dynamics are shown below in Eq. 4.1 -  4.6. As discussed later, 

these biological dynamics are also subjected to vertical mixing within the model (Eq. 

4.7). During computation the biological equations were transformed to non-dimensional 

forms. To non-dimensionalize, the parameters were rescaled (Table 4-1) and the new 

(primed) values were substituted in place o f the original parameters in Table 4-2. For the 

reader’s convenience, we have re-dimensionalized all results and presented them in this 

form.

Table 4-1 Transformations used to non-dimensionalize the model.

Symbol Transformation

C = C / N t

P'max \ = P IPmax A' m ax  2

k\x = k\X /  NT
^ix - kix / j

V - y/-NT
rr — r 1P  nmax n

./
^ m a x  >' — i / Pm ax  Y ' max 2

Yy = TylP m ax 2

K r — k , r / N t

eYX — erx
ezz - e?z
0 ' — 0 !  N t

m x = mx !  P m ax  2

my = mz/P m,x 2

h' - k ■ / Pmdx2

Kv' ^ ■ k ; J P mM2
/z. — z  • K ,
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Nutrient Equations

Nitrate (N i) and ammonium (N2) dynamics were described by

4 \ 1
- !  = -( /, x-U \2  + R 
at

Eq. 4.1

dt Eq. 4.2
+ (1 — Y2 ) ' (O21 + (j22 “1“ G ) — R

Where fi and fj represent zooplankton grazing efficiency for microzooplankton and 

mesozooplankton, respectively. In these and the following equations, U, M, G, H, and R 

represent transformation rates of nitrogen due to nutrient uptake, mortality, grazing, 

predation, and the nitrification o f ammonium to nitrate, respectively. Details o f the 

formulations for the transformation rates and definitions o f the subscripts are presented in 

Table III, and parameter values associated with the formulations are given in Table II. 

Uptake of both o f nitrate and ammonium was modeled using a Monod (Monod, 1942) 

formulation, the classic saturation response with increased concentration o f resource. The 

inhibition o f nitrate uptake due to the presence o f ammonium was simulated using the 

exponential function introduced by Wroblewski (W roblewski, 1977). Following similar 

studies o f this nature (Edwards et al., 2000; Edwards and Brindley, 1999) no detrital 

component was explicitly modeled. This may have little consequence since Edwards 

(Edwards, 2001) found that if  zooplankton were unable to graze on detritus, the addition 

o f a detrital component to the model made little difference to the observed dynamics. 

Losses from the phytoplankton and zooplankton model components were assumed to be 

instantaneously remineralized back to ammonium. Nitrification then occurs at a specific 

constant rate (r). Parameter values (Table 4-21) most representative o f the coastal G ulf o f 

Alaska ecosystem were selected; however, knowledge o f param eter values in this region 

is limited. Where possible, observational values were used, but in their absence, values 

were selected that fell within the range presented in the marine ecosystem modeling 

literature.



74

Table 4-2 Parameter values used in the NPZ model.
X  and Fean be 1 or 2 to represent the two classes of phytoplankton and zooplankton, 
respectively.

P aram eter Symbol
X=1

V alues
X=2

U nits

m axim um  grow th  rate o f  Px P
max A’

2 2 day 1

Py half-saturation  constan t for A^ *1.Y
.75 .5 N

Px half-sa tu ra tion  constan t for A ', kix .5 1 N

inhib ition  param eter for U ] by N-, V 1.462 [jjM N]

n itrifica tion  rate r 0.05 d a y '1

light ex tinction  coeffic ien t K,-, 0.07

Y=1 Y=2

m 1

m axim um  ingestion  rate

assim ila tion  effic iency  o f  Z y 
Z Y ha lf-saturation  g razing  coeffic ien t

Z Y cap ture  effic iency  for Px 

Z , capture effic iency  for Z,

^max }'
1.2 .1 d a y '1

Yy
0.4 0.3 -

k 3y 30 60

Y
1 2

[ ig C  L

e YX
^  1 1 .2 -

2 .7 .7 -

-zz

V ariable Z, capture effic iency  for Px £ )x

V ariab le  Z 2 cap ture  effic iency  for Z, £ zz

1 2
e YX ' P x  ____________e rx ' P.x_____________

^  l-')’Y Py // ' Z ! + Y  rv P,
X=1,2

feed ing  th resho ld  concentration  

natural m orta lity  rate o f  Px

G

• V /  ^ ' Y .erxpx
X=1.2

0.05

X=1 X=2

m - 0.2 0.1

natural m orta lity  rate  o f  Z t m z 0.08

specific  p redation  rate h 0.05-2 .4

predation  exponent q 1 - 2

Hg c  L

day  1 

d a y '1

(gC m '3)1''' day '
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Table 4-3 Biological processes used in the six-component NPZ m o d e l.
Parameter definitions and values are given in Table 4-2. X  and Y  can be 1 or 2 to represent the two classes o f phytoplankton 
and zooplankton, respectively.

Process 

Px up take o f  TV,

Px up take  o f  N 2

natural m orta lity  o f  P

natural m orta lity  o f  Z\ 
higher p reda tion  on  Z ,

y V 2  r e g e n e r a te  > ^

Z oop lank ton  G razing

G razing  C apture
function  effic iency

I

II

III

IV

V

Constant

Constant

Variable

Constant

Constant

Symbol

Ulx

U2X

M x
M z

H

R

C

Form ulation

Y.eix px

X '" .V
A'=1.2

X .v

2 > i  X p x
X  = 1 .2

Y.e)XFX

Y,e\XPX j
T elXPXA’-1.2

P  • P1 X 1 m a x  .v  ^

N r e -ws-

k l x + N ,

P ■ P1 X 1 m a x  .V

N-

k 2x + N 2

mx ■ Px 
mz 7-\ 
h ■ Z \

r - N . 

See below

( G n , ) Z , grazing on Z, ( G zz ) L iterature E xam ple

e\x px
X‘'2.\PX+eZZ Z1
-1.2 eZZZ\ M urdoch  (1973)

Z eIXPX
'max'-'

*32 ¥ Vf, XPX + ezz ■ /, X‘'2xpx + ezz zi 
.v-1,2 ' -v -i.:

F rost (1987)

elXPX , z ^
’Lc2xpx + ez z z \ ■
=1.2 !, ‘--a ■ z, L ancelo t et al. (2000)

T ‘',XPX 0 .V = 1.2 A-.-, + „ Z*’2.vA +<'ZZ Z,
He2XP.\ + eZZ Z, -0 ,Y=1.2 -V-1.2

C’hifflet et al. (2001)

e\x p V
Z f2 V̂.Y + f7zZl -Y-1.2 y//Z Fasham  et al. (1990)

* T f \x px
\' = l.i

'max'-2 J > YPv + fzzZ E .̂Y^Y+fz/Z, 
Y-1.2 ' -Y-1.2 Strom  and L oukos (1998)

'1 XF\-
'Le2XPx + eZZZ 1>"-Y-1.2 ' ’ZZ / D enm an and Pena (2002)

L̂eixpx - 1 - y/’v ‘ ’Z/ Z : Y.e2\,PX + eZZZi 
,Y=1.2 ' -Y-1.2

<> xpi
I>2.Y-Pf + cZZZf -Y-1.2 (ZzZf

R yabchenko  et al. (1997)

I«LY^iA'-; 2
W Z2 k

i ' '' /Z-7 'Z,(,2xpx + ezzz\

—J
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Phytoplankton Equations 

Phytoplankton dynamics were described by:

—̂ -  = U u + U 2 \ - M \ - G u - G 2] Eq. 4.3

d P l J / n + [ / „ - M , - G n - G^  z , z  Eq. 4.4

The phytoplankton size division (/, /<8 |im </, :>) was chosen to mimic that selected by 

Strom et al. (Strom et al., 2001), who have conducted the majority o f the limited work on 

phytoplankton and microzooplankton processes in the coastal G ulf o f Alaska. Reflecting 

observations in this ecosystem (Strom et al., 2001) no significant difference between the 

maximum growth rate o f the two phytoplankton size groups was assumed. A Pmax o f 2 

day '1 was assigned to both size classes, which seems appropriate given the ranges (0.54- 

2.21 day '1) found for the total chlorophyll size fraction in this region during spring 

(Strom et al., 2001). Daily average phytoplankton growth was assumed to be 

simultaneously limited by the availability o f nutrients and Photosynthetically Active 

Radiation (PAR). The attenuation o f PAR below the sea surface was simulated using the 

exponential decay function ( e~z'k"' ) after Edwards et al. (Edwards et al., 2000). A light 

extinction coefficient ( k nt = 0.07 m '1) was chosen which gave an e-folding depth ( 1/A:,,,)

o f 14.3 meters and put the midpoint of the euphotic zone (2.3/ kexl) at 33m (Figure 4-2).

As discussed above, the dependence o f phytoplankton growth on nitrate and ammonium 

availability was simulated with the saturating Monod function and the ammonium 

inhibition function (Wroblewski, 1977). Following Wroblewski (W roblewski, 1977), and 

most ecosystem models since, we assigned the inhibition param eter (\|/) a value o f 1.462 

[p.M N ]'1. Reflected in their half-saturation constants, the two phytoplankton size 

fractions were assumed to have different preferences for the two nitrogen pools. Small
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phytoplankton, generally more proficient at utilizing low levels o f nutrients (Evans and 

Parslow, 1985), had a smaller half-saturation uptake for ammonium than large 

phytoplankton. Small phytoplankton’s half saturation uptake for nitrate was considered 

larger than for ammonium, reflecting a general preference for ammonium (Legendre and 

Rassoulzadegan, 1995). Large phytoplankton had a smaller half-saturation uptake for 

nitrate than ammonium because in cold water this size class preferentially takes up nitrate 

even when ammonium is present (Lomas and Glibert, 1999).

Fraction of I

di f fusi on m 2/s x lO '3

Figure 4-2 Vertical diffusion and light extinction profiles used in the model.
The solid line represents the diffusion profile and the dotted line represents the 
light profile. The important depths associated with these stationary forcing 
functions are the e-folding depth (1 / knl ) for the light extinction, the midpoint 
o f the euphotic zone ( 2.3/*(.v, ), the top o f the pycnocline at approximately 30 
meters, and the bottom of the pycnocline at approximately 50 meters.
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Both phytoplankton size fractions suffered losses due to natural mortality and 

zooplankton grazing. Mortality o f each phytoplankton size class was taken to be a 

constant fraction o f the standing stock and was assumed to be higher for the smaller cells. 

Both size fractions could potentially be grazed by either of the zooplankton size fractions. 

The form o f the grazing function varied and is discussed further below.

Zooplankton Equations.

The dynamics o f the two zooplankton components w ere described by 

dZ\
—-^- = Y\ (.G{X+ G {2) - G z z - M z  Eq. 4.5

- ^ - - r 2 ( G 2 l + G 2 2 + G Zz ) - H  E q 4 6

The mesozooplankton fraction (Z 2) was considered to represent mainly coastal copepods 

common in the coastal G ulf o f Alaska, while the microzooplankton fraction (Z ,) was 

considered to consist o f mainly heterotrophic dinoflagellates and ciliates. The diet o f 

copepods is known to be very diverse (Kleppel, 1993) and members o f this group can 

potentially feed on microzooplankton (Gifford and Dagg, 1988; Jonsson and Tiselius, 

1990), large phytoplankton such as diatoms (Corkett and McLaren, 1978; Dagg and 

Walser, 1987; Dagg, 1995) and even nanoplankton (Kleppel, 1993; Kleppel et al., 1996). 

Microzooplankton are also able to consume a wide range o f particle sizes. Observational 

studies in the coastal G ulf o f Alaska (Strom et al., 2001) have found that 

microzooplankton were ju st as effective at feeding on large plankton (>8]im) as they 

were at feeding on small plankton (<8^im). To reflect our understanding o f this 

ecosystem, mesozooplankton were assumed capable o f grazing on both small and large 

phytoplankton and microzooplankton. Microzooplankton were assumed able to graze on
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both phytoplankton size fractions. Capture efficiency parameters were chosen to 

represent an ecosystem in which, due to size restrictions, microzooplankton could capture 

small phytoplankton with a greater efficiency than large phytoplankton, and 

mesozooplankton could capture microzooplankton, large phytoplankton and small 

phytoplankton with a decreasing order o f efficiency. Microzooplankton were assigned a 

maximum grazing rate o f 1.2 day"1, which was the maximum found for this size class in 

the coastal G ulf o f Alaska in May (Strom et al., 2001). This was higher than the 

maximum grazing rate (0.7 d a y 1) assigned to the mesozooplankton. The 

microzooplankton were also able to respond more rapidly (smaller half-saturation 

constant) to increases in phytoplankton biomass than the mesozooplankton, whose 

growth was assumed to be not as tightly coupled to the phytoplankton.

Five different functional forms for zooplankton grazing on multiple prey types were 

implemented, all o f which had previously been used in ecosystem modeling studies. The 

formulations for each grazing function are presented in Table III. Schematics to illustrate 

the essential differences between each o f these functions are presented in Figure 4-3. 

Grazing functions I, II and III are extensions o f the ‘Michaelis-M enten’ and ‘Threshold’ 

single resource functional responses curves to multiple nutritional resources (prey items). 

Functions IV and V are two alternative extensions o f the single resource sigmoidal 

function to multiple prey types. Function 1 never provides rare prey with a reprise from 

grazing. Functions II and IV provide prey with a reprise from zooplankton grazing 

pressure only if  the combined concentration o f all prey resources is sufficiently small. 

Functions III and V permit scarce prey with a reprise from grazing pressure even if 

concentrations o f alternative prey items are high. With function V, this prey refuge 

persists even when only one prey type remains. With function III, once the prey field has 

been reduced to a single nutritional resource, the functional form for grazing is similar to 

function I.
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Figure 4-3 Schematic o f the key differences between the five grazing functions.
Grazing by Z/ on P2 when P j=0 and when Pj= 1 with grazing function I (a and 
b), function II (c and d), function III (e and f), function IV (g and h), and 
function V (i and j).

Grazing functions I and II used in this research have been categorized as ‘Class 1 

multiple functional responses’ by Gentleman et al. (Gentleman et a l,  2003) because they 

assume passive selection and no switching. Grazing function III is also an extension of
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the ‘M ichaelis-M enten’ curve; however, this function incorporates ‘capture efficiencies’ 

(or preferences) that vary with prey ratios. This function is categorized as a ‘Class 3 

(proportion based) multiple functional response’ (Gentleman et al., 2003) because the 

capture efficiencies are density dependent, varying with the densities o f other resources. 

Function V is a ‘Class 2 (Sigmoidal I) multiple functional response’ (Gentleman et al., 

2003). Grazing function IV has not been classified under this scheme, however its 

nutritional intake behavior is similar to grazing function II.

In addition to grazing pressure by mesozooplankton, microzooplankton experienced 

natural mortality at a constant specific rate. In reality, mesozooplankton also suffer losses 

due to natural mortality and predation by higher trophic levels. However, due to the 

uncertainty associated with both o f  these terms, we combined them into a single term 

(H=h Z2q), which is referred to throughout as ‘predation’. H  is effectively the model 

closure term. Common choices for the predation exponent are <7=1 (Evans and Parslow, 

1985; Fasham et al., 1990) or q- 2 (Denman and Gargett, 1995; Fasham, 1995). The 

former parameterization represents a predator that exhibits a constant response to 

zooplankton prey numbers (linear closure), this could be thought o f as a simple filter 

feeding strategy. The later parameterization (quadratic closure) is thought to represent a 

predator that exhibits an ambush feeding strategy, being attracted to large concentration 

o f zooplankton and less inclined to feed at low concentrations. It is thought, however 

(Edwards and Bees, 2001), that because a predators’ effective reaction distance varies 

with the turbulent energy dissipation rate, the proportion o f predators adopting each 

strategy will vary in a continuous fashion depending on the environmental and physical 

conditions. Non-steady model solutions are not necessarily eliminated with the use o f 

quadratic closure, as was once thought (Steel and Henderson, 1992). Rather much o f an 

NPZ model’s dynamical behavior is generic, occurring for any exponent o f closure 

between one and two (Edwards and Bees, 2001). In light o f this finding, we chose to 

explore the dynamics o f our model with a non-integer predation exponent that was varied 

from linear to quadratic (1 2) while the specific predation rate (h) was varied over a

biologically realistic range (0.05-2.4 [gCrrf’]1"</ day '1).
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Diffusion

Within the model, the purely biological dynamics (equations 1-6) were subjected to 

vertical mixing. This physical forcing was represented by the addition o f a term (equation

7) to each o f the six biological equations.

_a_

dz

(  dC  ]  
K v — l-

V dz J Eq. 4.7

where z  is depth, Kv is the vertical diffusion coefficient, and C, represents each o f the 

model components P\, P?, Z/, Z?, A'/, and AA>-

It is known that the magnitude o f diffusion can modify the non-linear dynamics o f an 

NPZ model (Edwards et a l,  2000). Therefore, to best understand the NPZ model 

dynamics without the complications o f temporally varying physical forcing, model 

behavior was explored in the presence o f stationary but spatially varying levels o f 

diffusion. The vertical diffusion profile was described by

A'v(z) = Kvh -
r  Kvb - K v m ' A. v/j A vm

■ tanh
-® ( z )

vtanh(O 100) - t a n h ( O ,) y y tan h (0  ] oo) -  tanh(<E> t ) j v ¥  J
Eq. 4.8

Although simplified, this approach provided a somewhat realistic structure, with a 

smooth transition between the higher coefficient o f diffusion (A>m= lx l0 '3 m 2 s '1) in the 

surface mixed layer and the smaller background value (Kvh lx K f m2 s ')  below (Figure

4-2). The shape parameters, 0 (z )  = z - 4 0  (where z= [l,2 ,3 ,...100]) and ^  = 5 , which 

respectively define the position and thickness o f the pycnocline, were used to give a 

mixed layer o f about 40 meters and a pycnocline about 20 meters thick, appropriate 

conditions for the coastal G ulf o f Alaska in spring (Luick et a l ,  1987). No flux boundary 

conditions were enforced at the upper and lower boundaries, i.e.,

At : 1 )  and 100m
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dP\ dP1 az, d z ,  „  37V, „  dN2 n
K v------= K v— — = K v— -  = K v— — = K v  = K v  = 0 Fa 4 9

dz dz dz dz dz dz q '

4.3.3 Analysis

The dynamics o f our NPZ model were compared when five alternative functional forms 

for zooplankton grazing (G) were implemented, and the predation exponent (q) and the 

specific predation rate (/?) in the predation term (//) were systematically varied over a 

biologically realistic range. For each model simulation, we attempted to find the steady 

solutions o f the non-linear system o f six equations iteratively. Each model was initially 

run for 300 time steps (days), and the resulting solution provided as a starting guess to a 

numerical solver o f the steady state solution (equations 4 .1-4 .6  with the left hand sides 

set to zero). Following Edwards et al. (Edwards et al., 2000), for a model to be classified 

as steady, the associated time derivative terms were required to be smaller than 10"4 . 

Models that failed to converge to a steady solution were run for a further 700 days, and 

the time series solution on the one-thousandth day was provided to the numerical solver. 

These solutions were then reclassified. Any solution which could not be classified as 

steady was manually examined, at the 25 meter depth, to determine if behavior was 

periodic (limit cycles) or something more complex. This process o f time stepping 

solutions for 1,000 days followed by examination o f the solution trajectory was repeated 

until we were confident that the solutions were indeed limit cycles and not anything more 

complex. The last 500 days o f all non-steady solutions were used to determine the period 

o f oscillations. In order that the model makes biological sense, concentrations o f all 

model components were restricted to positive finite or zero values.

4.4 Results

Model behavior was dependent on the total predation experienced by the 

mesozooplankton (H=h Z 21), rather than just on the predation exponent (q) or the specific 

predation rate (/?) (Figure 4-4). The relationship between the predation rate and the two 

predation parameters was dependent on the concentration o f Zj. As the concentration of
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Z 2 increased, H  became more dependent on h than q. Relatively high predation on 

mesozooplankton resulted when the predation exponent (q) was close to one (linear 

predation) or when the specific predation rate (h) was large. Conversely, relatively low 

predation resulted when the predation exponent approached two (quadratic predation) or 

the specific predation rate was small.

1

1

1

1

Figure 4-4 Predation on mesozooplankton (H=h Z29) over h and q parameter space.
Non-dimensional mesozooplankton concentration (Z^) was set to 0.1. Note 
that as the concentration o f Z? is increased H  will become more dependent on 
h than q.

With some o f the grazing functions (I, 11, and IV) it was not common to have all six 

model components existing simultaneously; solutions often comprised negligible 

concentrations (scaled concentrations < 10'6) o f at least one model component (Figure 4- 

5). The structural composition o f model solutions was largely dependent on the choice o f 

grazing function. For all grazing functions, when predation on mesozooplankton was 

high, the mesozooplankton component had negligible concentrations, and 

microzooplankton became the dominant grazer in the system. When implementing 

grazing functions 1, II, and IV, the maximum concentrations o f each plankton component 

were similar throughout q and h parameter space. In each case, there was a clear 

boundary between two predominant forms. When predation on mesozooplankton was
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medium to high, solutions predominantly comprised large phytoplankton, 

microzooplankton, nitrate, and ammonium. When the predation on mesozooplankton was 

low, solutions were dominated by small phytoplankton, mesozooplankton, nitrate, and 

ammonium. It was rare for both phytoplankton size classes to simultaneously have non- 

negligible concentrations. As such, there was only a narrow' region, corresponding to 

intermediate predation, where all six model components could simultaneously coexist. 

With function III, both large and small phytoplankton thrived simultaneously throughout 

the parameter space examined, and microzooplankton concentrations were negligible 

only in a small region o f parameter space when predation on mesozooplankton was very 

low. When grazing function V was implemented, model solutions comprised both small 

and large phytoplankton and microzooplankton, in non-negligible concentrations for all 

param eter space examined.

Irrespective o f which o f the grazing functions were implemented, steady state solutions 

could not be found for some regions o f the q-h parameter space examined (Figure 4 -6a- 

e). With each grazing function, as q and h were varied there was at least one clear Hopf 

bifurcation, where the qualitative form o f the solution shifted between attraction to a 

steady equilibrium (see Figure 4-7a-d for example) and a periodic limit cycle (see Figure 

4-7e-h for example). With grazing functions 1, II, and III, steady solutions could not be 

found for the majority o f the param eter space (Figure 4-6a c). With each o f these model 

variants, when the total predation on mesozooplankton (H) was medium to high, model 

trajectories were oscillatory. As predation became relatively small, there was a Hopf 

bifurcation with a transition to steady solutions. In the case o f grazing function III, at 

very low predation a second bifurcation returned solutions to an oscillatory regime 

(Figure 4-6c). With grazing functions IV and V, model solutions reached a steady state 

for much o f the parameter space examined (Figure 4-6d and e). In both cases, there were, 

however, still two clear Hopf bifurcations as q and h were varied. With these two model 

variants, we found model solutions to be steady at high predation, to undergo a 

bifurcation to oscillatory behavior in the region o f intermediate predation, and to undergo 

a second bifurcation back to a steady regime at low' predation.
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Figure 4-5 Maximum non-dimensional concentration o f the four plankton components.
If  solutions were steady, maximum plankton concentrations over all depths at equilibrium were used. If  solutions 
were oscillatory, maximum plankton concentrations over all depths, over the last 200 days o f  a simulation were 
used. Cmax represents the maximum concentration o f each o f the plankton components (Pi, P 2, Zu Z2). For the five 
grazing functions as indicated; (a-e) P\max, (f-j) Pimax, (k-o) Z \max, (p-t) Z 2max. The region o f q-h parameter space for 
which all model components had non-negligible concentrations simultaneously is also indicated (u-y). Note that Nj 
and N 2 had non-negligible concentrations throughout q-h parameter space with every simulation.
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Figure 4-6 Classification o f model solutions over q and h parameter space.
Regions o f q-h space where model solutions were at steady equilibrium (shaded black) and were limit cycles 
(white) for each o f the five grazing functions (a) function I, (b) function II, (c) function III, (d) function IV, (e) 
function V. Regions o f q-h space where model solutions reached a steady equilibrium and all six model components 
were simultaneously non-negligible are also shown (shaded black) (f) function I, (g) function II, (h) function III, (i) 
function IV, (j) function V.



Figure 4-7 Examples o f steady and non-steady solutions.
Illustrated with three dimensional (Nj, P i ,Z?) phase space diagrams and corresponding time series solution for Z2.
(a) steady solution when grazing function=IIT, q - 2, h -A ,  (b) steady solution when grazing function=V, q - 2, h -A ,
(c) limit cycle solution when grazing function=III, q -2 , h - \ A ,  (d) limit cycle solution when grazing fimction=V, 
q -2 , h= \A . Note that in the case o f limit cycle solutions the transient behavior is not shown.
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Model trajectories that did not reach a steady equilibrium solution described closed limit 

cycles wherein the population numbers underwent well-defined cyclic changes in time. 

Most oscillatory solutions had settled into a limit cycle trajectory at 25 meters depth after 

1,000 days. When grazing function V w'as implemented however, several solutions close 

to the Hopf bifurcation continued to describe spiral sinks at this time, wherein the 

trajectories oscillated around a fixed point while progressively decreasing in amplitude of 

each o f the six model components. These model solutions had to be time stepped for a 

further 1 ,000- 10,000 days before a steady solution could be found with the numerical 

solver. No examples of chaotic model solutions were found throughout the parameter 

space examined for any o f  the grazing functions implemented.

The period o f oscillatory solutions was practically constant throughout the m odel’s 

vertical extent, varying from that at 25 meters by less than 0.3% at most depths. Below 

the depth where plankton approach negligible concentrations, more variability in the 

period was observed. No notable change in period could be discerned with respect to the 

position o f the mixed layer, despite the two orders difference in the magnitude o f the 

diffusion coefficient. The oscillation period did show variation with q and h, but was 

largely dependent on the form o f the grazing function (Figure 4-8). A wide range in 

periods was seen with function 1 (37-97 days), function II (31-86 days), and function III 

(29-159 days). Similar overall trends in period w'ere apparent when functions I and II 

were implemented. In both cases, despite the wide ranges in oscillation period, there was 

a large region of parameter space (corresponding to regions o f high predation) aw ay from 

the Hopf bifurcation, where the period was relatively constant, approximately 65 and 39 

days for functions I and II respectively (Figure 4-8 a and b). In both cases the oscillation 

period generally exhibited a small decrease as the bifurcation was approached (increase 

in q or a decrease in h). Immediately prior to the bifurcation, however, the period 

increased rapidly, approaching infinity in the region o f steady solutions. When grazing 

function III was implemented, in addition to the large difference in the oscillation period 

on either side o f the Hopf bifurcation, no region o f constant period w as found (Figure
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4-8 c). Rather, there was a notable decline in period approaching either o f the Hopf 

bifurcations. The oscillation period was lower in the region o f medium to high predation 

compared to the region o f ‘low ’ predation. The period o f oscillation covered only a 

narrow range (30^10) days with function IV (Figure 4-8d), while with function V, the 

period, at approximately 16 days, was short and practically constant with variations in h 

and q (Figure 4-8e).

Figure 4-8 Variation in period o f oscillation over q and h param eter space.
When implementing the five alternate grazing functions, (a) function I, (b) 
function II, (c) function III, (d) function IV, and (e) function V. The 
oscillation periods shown were calculated from the final 500 days o f time 
series data at 25 meters; however, these values are representative o f the 
period throughout the mixed layer. For clarity, the scale o f the axis in each 
plot varies and the x and y axis in (c) have been permuted. Note that in the 
region o f steady solutions the period o f  solution goes to infinity, and not zero 
as shown.
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The non-linear dynamics o f model solutions correlated well to their structural 

composition. With grazing functions 1 and II, equilibrium solutions that comprised only 

small phytoplankton, mesozooplankton, nitrate, and ammonia w'ere generally steady, 

while equilibrium solutions that predominantly comprised large phytoplankton and 

microzooplankton, nitrate, and ammonium were oscillatory. The narrow regions o f 

parameter space that did comprise all model components in non-negligible concentrations 

(Figure 4-5u and v) were non-steady (Figure 4 -6f and g). Models with grazing function

IV had steady equilibrium solutions at both high and low H. In the region o f low H  

(upper left portion o f q-h space), solutions were dominated by small phytoplankton, 

mesozooplankton, nitrate, and ammonia (Figure 4-5). In the region o f high H  (lower right 

portion o f q-h space), large phytoplankton, microzooplankton, nitrate, and ammonium 

dominated the solutions. Solutions that comprised all six state variables in non-negligible 

concentrations were, again, rare (Figure 4-5x) and oscillatory (Figure 4-6d). Steady 

equilibrium solutions comprising all six model components in non-negligible 

concentrations were found only when implementing functions III and V (Figure 4-6h and 

j). The region o f steady, permanent coexistence w as much broader with grazing function

V than with grazing function III.

In most, if  not all, marine environments, multiple size classes o f phytoplankton and 

zooplankton exist simultaneously, for at least a portion o f the seasonal cycle. In some 

regions o f the w orld’s ocean, due to the influence o f the prevailing physical dynamics, it 

becomes acceptable to characterize the ecosystem as comprising one dominant 

phytoplankton size class and one dominant zooplankton size class. For example, 

upwelling systems are generally dominated by large phytoplankton and 

mesozooplankton. However, we believe that a successful model should be capable o f 

simulating an ecosystem in which multiple size classes can prevail, and it should be the 

prescribed forcing to which the ecosystem model is subjected that determines the final 

composition o f the model solution. In general, although individual species do disappear 

over a seasonal cycle, we do not expect the aggregate to disappear. Additionally, for the 

sake o f modeling convenience, the elimination o f a trophic level is generally considered
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highly undesirable. As we were only able find solutions which comprised all model 

components for a narrow region o f parameter space when implementing grazing 

functions 1, 11, and IV, we did not consider these model variants further in this 

investigation. We focus on comparing and contrasting solutions obtained when 

implementing grazing functions HI and V because these model variants are capable o f 

producing solutions comprising all model components for the majority o f parameter 

space examined.

All steady equilibrium solutions obtained when implementing grazing functions III and V 

had vertical profiles that shared many features (see Figure 4-9 for examples). In each case 

nitrate concentration was low in the surface mixed layer but increased with depth to 

dominate the system below the bottom of the mixed layer. Conversely, the concentration 

o f all plankton components decreased with depth from maximum values at the surface. 

Ammonium always exhibited a sub-surface maximum close to the midpoint o f the 

euphotic zone (2.3/kcxt). Although small and large phytoplankton and microzooplankton 

did not persist much below the bottom of the mixed layer, mesozooplankton, when 

present at steady state, persisted well below this.

Despite these general commonalities, the vertical profiles as q and h space was traversed 

differed quite markedly with the two grazing functions. Rather than presenting the full 

vertical profile for each steady solution, the change in concentration o f each model 

component with q and h at 10 meters depth was used to illustrate changes to the complete 

vertical profile with these parameters. Changes to the concentration o f model components 

at this depth were representative o f the trends exhibited at all depths. With both grazing 

functions III and V, when mesozooplankton concentrations were negligible (q close to 1), 

variations in h had little influence on model solutions. With grazing function III, there 

was only a small region o f parameter space where the model produced steady equilibrium 

solutions (Figure 4-10). There was nowhere within this region that the vertical profiles 

could be considered to remain constant with h. With this grazing function, there were no 

steady solutions when predation was linear (<7= 1), but as q was increased and the Hopf
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bifurcation traversed, the vertical concentration profiles for each steady solution varied 

smoothly but markedly as h varied. Within this steady region, increasing h resulted in an 

increase followed by a decrease in P>, an overall increase in Pj and Z/, a decrease in Z2, 

and a slight decrease followed by a slight increase in TV/ and N2. With grazing function V, 

there were two regions o f parameter space, on either side o f the Hopf bifurcation, where 

the model had steady solutions. Within the first region (high total predation), 

concentrations o f each model component varied very little with q or h, even approaching 

the first Hopf bifurcation (Figure 4-11). As mentioned previously, this was in large part 

due to the low concentrations o f mesozooplankton in this region. Throughout this region 

the vertical profile closely resembled those shown in Figures 4-9a and b. Both 

phytoplankton size fractions had similar vertical profiles, although the concentration of 

P2 exceeded that o f Pi at every depth. Concentrations o f Z/ were approximately twice 

that o f the phytoplankton at every depth. Z2 had negligible concentrations throughout the 

water column. Following the second H opf bifurcation, moving into the region of low 

predation, model components reached alternative steady states. Within this second region 

o f steady solutions, the vertical profiles o f each model component changed smoothly but 

rapidly with q and h. Moving away from the bifurcation (increasing q, decreasing h), 

there was an overall decrease in P2, Z/, Ni, and N?, and an overall increase in Pi and Z2 at 

each depth within the mixed layer.

The non-steady solutions obtained with both grazing functions III and V also provided an 

insight into the fundamental dynamics of the two model variants. With function V, the 

maximum and minimum concentrations o f each model component reached during a limit 

cycle varied smoothly and continuously with h and q as the H opf bifurcation was 

traversed (Figure 4-11). With function III, in the region o f medium to low predation, 

away from the H opf bifurcation, the maximum concentrations o f  each o f the model 

components reached during the limit cycles remained relatively constant as h was 

increased (Figure 4-10). The amplitude o f limit cycles obtained with function 111 tended 

to be much greater than those obtained with function V. In the former case (function III), 

the concentrations o f model components tended to oscillate between a maximum
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(approaching 1 in the case o f nitrate) and negligible concentrations. In the latter case 

(function V), the maximum concentration attained by any o f the model components was 

smaller than the equivalent model with grazing function III, and the minimum values 

were always non-negligible. This difference in oscillation amplitude can also clearly be 

seen in the phase space plots o f limit cycle solutions (Figure 4-7c and d).
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Figure 4-9 Equilibrium profiles o f scaled concentration for the six model components.
When implementing grazing function V with (a) h—.06, q - 1 , (b) h~.06, <7= 1 .5 , 
(c) h=.06, <7=2 , and when implementing grazing function III with (d) h-.06 , 
<7= 1 .5, (e) h~. 1, <7= 1.5 and (f) h - . \ ,  q=2. Note that the nitrate (/V/) profile is 
plotted on a different scale for clarity.
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Sensitivity to parameter values and  initial conditions

Past studies have shown that model dynamics can be sensitive to both parameterization 

and initial conditions (Popova et al., 1997; Edwards and Yool, 2000). In the G ulf o f 

Alaska, the maximum photosynthetic growth PmM was found to be equivalent for both 

phytoplankton size fractions (Strom et al., 2001). With an alternate size division, or in 

other ecosystems, this may not be the case. To see how the model dynamics presented 

above would be impacted by a change in this parameter, we held the initial conditions 

and all other parameter values constant, but reduced the maximum photosynthetic growth 

for large phytoplankton (Pmax2) to 1 day '1, half that for the small phytoplankton. We 

explored the model dynamics over a course resolution q-h parameter space for the 

structurally most dissimilar grazing functions, 1 and V. Patterns o f dynamical model 

behavior were found to be similar to those presented above. Model solutions generally 

came to oscillatory limit cycle solutions with grazing function I and steady equilibrium 

solutions with function V. The locations o f the Hopf bifurcations, in both cases, were 

similar to those found with the original model parameterization. With grazing function V, 

the structural composition of model solutions was also similar to that arising with the 

original parameterization. With grazing function 1 and the alternative parameterization of 

Pmax model solutions comprised small phytoplankton throughout q-h space, while large 

phytoplankton had negligible concentrations.

To test the sensitivity o f our model to initial conditions we doubled the initial nitrate 

concentration from 10 |lM to 20 |lM . All other initial concentrations and parameter 

values were as for the original model. Again, with grazing functions I and V, the patterns 

of model behavior were little changed to those presented for the original model. The 

notable difference was the presence o f  a second Hopf bifurcation at low total predation 

(.H) when implementing grazing function I. With both grazing functions I and V, the 

structural composition o f model solutions, with respect to survivorship o f model 

components, was little different to that presented for the original initial conditions.
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4.5 Discussion

This investigation explored the equilibrium dynamics of a depth-explicit, one

dimensional, six-component NPZ model in which zooplankton could graze on multiple 

nutritional resources. The model was parameterized for the coastal G ulf o f Alaska 

ecosystem, and was subjected to stationary physical forcing. We systematically varied the 

specific predation rate (/?=0.05-2.4 [g C m '3]1'9 d a y 1), the form o f the predation function 

(1 < ^ < 2), and the form o f the grazing function.

Classic stability analysis has been used to investigate the dynamical behavior o f simple 

NPZ models (Franks et a l, 1986; Edwards and Brindley. 1999; Edwards et al., 2000), 

and more complex models that retain the assumption of a homogeneous mixed layer 

(Ryabchenko et a l,  1997; Armstrong, 1999). Such studies have provided the foundation 

for understanding NPZ model dynamics. However, it is essential that we extend this 

knowledge to the more complex NPZ models now commonly used in ecosystem studies. 

It is not possible to find an analytical solution to our intermediately complex, spatially 

explicit model. Therefore, the classic approach to stability analysis, determination o f the 

eigenvalues o f the Jacobian (community) matrix, was o f limited use for classifying model 

behavior. Despite this obstacle, it is important to gain an appreciation o f the dynamics o f 

such complex systems. Therefore, we examined model trajectories in time and space, 

numerically seeking and classifying the equilibrium solutions. This analysis provides a 

useful insight into behavior o f models where zooplankton grazers, subjected to a depth- 

explicit mixing profile, can feed on a mixed prey field.

The total predation experienced by the mesozooplankton and the form o f the

grazing function played an important role in governing the non-linear dynamics o f this 

intermediately complex ecosystem model. In agreement with past investigations using 

simpler NPZ models (Edwards and Bees, 2001), we found that limit cycles can be found 

for all predation exponents and are not exclusively a result o f  using a linear (q ~ i)  form of 

predation. With each o f the five grazing functions, we found Hopf bifurcations spanning
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the q and h parameter space, where the form o f the solution transitioned between steady 

equilibrium and periodic limit cycles. A three-component, one-predator, one-prey model 

with a sigmoidal grazing function has been shown to have two Hopf bifurcations that 

span q and h space bounding a region o f limit cycle behavior (Edwards and Bees, 2001). 

We have shown that sigmoidal grazing functions extended to multiple nutritional 

resources (functions IV and V) give rise to similar patterns o f bifurcations in our more 

complex model (Figure 4-6 d and e). Additionally, we have shown that Hopf bifurcations 

also exist when implementing alternative extensions o f the Michaelis-Menten grazing 

function to multiple nutritional resources (functions I, II, and III). With these functional 

forms, however, limit cycle behavior was found to be the more prevalent form for model 

solutions. Only in a narrow' region o f parameter space did these grazing functions give 

rise to steady equilibrium solutions. This pattern o f behavior, with a region o f stable 

steady states surrounded by two regions o f oscillations, is interesting because it is 

opposite to that found previously (Edwards and Bees, 2001). It is interesting to note that 

while we found Fasham’s switching grazing model (grazing function III) to only rarely 

produce models that were dynamically stable, Armstrong (Armstrong, 1999) found that a 

model with ‘distributed grazing’ being modeled at a community level for a single 

zooplankton species was dynamically stable under a wide range of conditions.

The period o f the limit cycle solutions depended predominantly on the form o f the 

grazing function. When either variants o f the sigmoidal grazing function were 

implemented (functions IV and V), the period o f oscillation remained relatively constant 

over q and h space. The period o f limit cycles produced by a three-component NPZ 

model with sigmoidal grazing has also been found to be about constant at 34-35 days 

(Steele and Henderson, 1992; Edwards and Brindley, 1996). This is well within the range 

o f 30 to 40 days that we found when implementing grazing function IV. This 

investigation brings to light the fact that alternative forms o f the grazing function can 

result in very different oscillation periods, and regions o f near constant period may not 

exist. The existence o f chaos in NPZ models has been well documented (Popova et al., 

1997; Edwards and Bees, 2001). For a one-predator, two-prey ecosystem, with a grazing
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function equivalent to function V, model solutions have been shown to exhibit chaotic 

behavior when forced externally with an annual physical cycle (Popova et al., 1997). 

With the stationary physical forcing (light level and mixing curve) used in this 

investigation, we did not find any examples o f chaotic solutions for any o f the grazing 

functions tested. Implementation o f seasonally varying physical forcing, or a finer 

resolution exploration o f q-h parameter space, could reveal a different result.

Permanent coexistence o f model components at equilibrium was strongly influenced by 

the choice o f grazing function. It was rare for all predators and prey to exist 

simultaneously when implementing I, II, and IV. This is in line with the conclusions by 

Armstrong (Armstrong, 1994), that such concave down functions tend to promote prey 

elimination. Although functions II and IV do have regions that will reduce or prevent 

entirely the elimination o f rare prey, these reprises from zooplankton grazing do not come 

into effect until the total prey concentration has been reduced below a critical level. With 

all three o f these grazing functions, the system typically purges itself until only one 

predator and one prey remain. Generally, if mesozooplankton were able to thrive (low 

total predation), microzooplankton and large phytoplankton were eliminated through 

competitive exclusion (mesozooplankton had higher affinity for these prey items), 

whereas if  mesozooplankton succumbed to predation, microzooplankton became the 

dominant grazer and small phytoplankton were eliminated through competitive exclusion 

(microzooplankton had a higher affinity for this phytoplankton size class). The non-linear 

dynamics o f the remaining four-component system was determined by the efficiency o f 

the remaining grazer to capture the remaining prey. If the grazer was able to eat a large 

proportion o f the prey {i.e., microzooplankton grazing on large phytoplankton), the 

resulting solution tended to be periodic. Conversely, if  the grazer could eat only a small 

proportion o f the prey {i.e., mesozooplankton grazing on small phytoplankton), a steady 

equilibrium was generally reached. With all three o f these grazing functions, all six 

model components were able to coexist only in a narrow region defined by an 

intermediate level o f total predation (H) on the mesozooplankton. Grazing functions III 

and V allow ‘prey switching’, with zooplankton eating a disproportional amount o f the
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abundant prey. When multiple nutritional resources were present, both o f these functional 

response curves have regions where rare prey experience a reprise from grazing, even if 

the concentration o f other available prey sources is relatively high. This ability o f the 

zooplankton grazers to ‘switch’ prey enhances the likelihood that all plankton 

components will survive simultaneously (Hutson, 1984; Strom and Loukos, 1998) and so 

reduces the likelihood o f prey elimination through competitive exclusion.

Our investigation focused on grazing functions III and IV because they produced 

solutions that comprised all model components and were steady, for at least some o f the 

q-h parameter space examined. Balancing the best form o f a grazing function from a 

modeler’s point o f view and from an observationalist’s point o f view can present a 

challenge. An observationalist may seek a form that appears to best describe the grazer 

under investigation. However, usually only one, or a few, species are considered at a 

time. Conversely, due to the necessary aggregation that modelers perform when seeking 

to describe an ecosystem, such a functional form may not be appropriate. Often, trophic 

levels rather than individual species are considered, and so certain functional forms may 

not make sense from a biological point of view . Additionally, the elimination o f model 

components or the production o f oscillatory model solutions are generally considered 

undesirable traits, and a grazing function that promotes such behavior would be less 

favored, although we stress that this may be due purely to modeling convenience. It could 

be argued that potentially, oscillatory solutions are just as realistic as steady solutions. 

Short-term oscillations in plankton have been observed for a few marine and freshwater 

ecosystems (Edwards, 2000; Ryabchenko et al., 1997). However, due to inadequate 

sampling resolution we do not have a clear understanding o f whether components o f the 

coastal G ulf o f Alaska ecosystem exhibit unforced oscillations in biomass. As with most 

observational studies, observational data in this region are not o f a sufficiently high 

temporal resolution that they would capture short-term oscillations in ecosystem 

components such as those described above. Model solutions exhibiting unforced 

oscillations are, however, often considered undesirable because it makes it more difficult 

to discern any longer term periodicity (seasonal signal, annual, etc.).
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There is much discussion in the literature with regard to the realism o f different forms of 

grazing function. For example, there are many instances o f switching reported (Kiorboe 

et al., 1996; Gismervik and Andersen, 1997; Martin-Cereceda et al., 2003), however, 

although microzooplankton have been shown to exhibit selective feeding, they do not 

necessarily alter their feeding behavior in response to a changing prey field, so stable 

prey trajectories are not necessarily observed under experimental conditions (Strom and 

Loukos, 1998). It is important to carefully consider the inherent assumptions behind a 

grazing function, particularly with functions that describe grazing on multiple nutritional 

resources, as they are not always obvious at first glance (Gentleman et al., 2003). In fact, 

some of the most popular grazing functions, which include active selection of abundant 

prey (Class 3 multiple functional responses), are advised against because they have been 

found to produce wide regions o f anomalous dynamics such as a decrease in total 

nutritional intake with an increase in resource density (Gentleman et al., 2003). Function 

III investigated here falls within this class, although with our model parameterization we 

did not see any anomalous behavior.

Model dynamics are known to be sensitive to both parameterization and initial conditions 

(Popova et al., 1997; Edwards and Yool, 2000). Here we investigated the influence o f 

varying the predation parameters in some detail for a specified set o f initial conditions. 

However, it is important to consider that variation in other parameters or a change to the 

initial conditions may result in dynamics different to those presented here. Our 

preliminary investigation into the influence o f varying the maximum photosynthetic 

growth rate (Pmax) for large phytoplankton revealed that the structure o f the model 

solutions {i.e., the coexistence o f model components) was impacted by variation in this 

param eter but the location o f H opf bifurcations across q-h space went virtually 

unchanged. Additionally, we have shown that similar patterns o f dynamics persisted even 

when doubling the initial nitrate concentration. From these results it is difficult to draw 

any conclusions regarding the m odel’s sensitivity to variations in other parameter values, 

or to initial conditions very different to those used here. It has been shown, however, that 

a three-component, one-predator, one-prey model with sigmoidal grazing has Hopf
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curves that remain fairly similar as many o f the other model parameters are varied 

(Edwards and Brindley, 1999). This suggests, but remains for further study, that varying 

additional model parameters within our six-component model would result in a similar 

pattern o f dynamical behavior.

In an effort to keep our model as simple as possible while allow ing zooplankton to graze 

on multiple nutritional resources, we used the simplest form o f many o f the biological 

process functions that were not directly under investigation here. Inclusion or exclusion 

o f model processes other than those under investigation here could also potentially 

enhance the dynamical behavior o f the model. For example, within our model the rapid 

regeneration of organic material to a nutrient source that the phytoplankton can utilize 

ensures a continual nutrient supply; this could potentially enhance the excitability o f the 

model (Popova et a l ,  1997). We have shown, however, that despite our simplification o f 

the nutrient regeneration loop our model is far more likely to exhibit limit cycle behavior 

with some grazing functions than with others. Self-shading o f the phytoplankton was 

another biological process that was not included in our model but could potentially 

influence model dynamics. We did find, however, that both functions IV and V, multi

resource versions o f the sigmoidal grazing function, produced a pattern of steady/limit 

cycle behavior across q-h parameter space which was very similar to that found for a 

three-component NPZ model that did include self-shading for the phytoplankton 

(Edwards and Bees, 2001). This suggests the dynamics presented here result primarily 

from the predator-prey interactions dictated by the alternate grazing functions, rather than 

from enhanced excitability due to our omission o f self-shading.

It is important to note that the dynamics presented here were obtained when the model 

was subject to stationary physical forcing. Variations in physical forcing can have a large 

impact on model dynamics (Ryabchenko et a l, 1997; Edwards et a l, 2000) and it is 

possible that the dynamical behavior observed with stationary forcing could be damped 

out or enhanced with a seasonally varying forcing regime or with a model with more than 

one spatial dimension. It has been shown that strong upwelling or a high pycnocline,
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which result in a high nutrient supply, can play an important role in oscillatory behavior 

(Popova et al., 1997) and could potentially enhance the excitability o f the model (and 

thus produce more limit cycles or even chaotic behavior). Within our model, nitrate is 

mixed into the upper mixed layer only through the action o f diffusion. Hence, we have 

shown that even in the absence o f strong upwelling, oscillatory dynamical behavior can 

be very prevalent with some grazing functions.

Biological dynamics in the ocean are highly transient, and capturing such transient 

biological behavior with an NPZ model that has a stationary physical forcing is 

inherently difficult. However, the focus o f this study was to try to understand the 

dynamics o f alternative forms o f an NPZ model, parameterized with realistic values, in 

order to guide future modeling efforts, rather than replicate observational data. Our 

findings contribute towards the more general understanding o f non-linear dynamics and 

structural stability o f complex NPZ models in which multiple grazers can select from 

multiple prey types. We have provided an insight into the impact that the choice o f 

commonly used multiple resource grazing functions and mortality functions can have on 

model dynamics. We are reluctant to suggest that any grazing or mortality function 

should be chosen over alternatives at this stage. However, if  a modeler is selecting for or 

against a type o f behavior (steady/oscillatory) our findings could provide a useful 

resource. For example, if  the desire is to achieve a structurally stable model comprising 

all model components that does not exhibit unforced periodic oscillations, then using 

grazing function V to simulate zooplankton grazing appears most appropriate. Models in 

which this grazing function was implemented were also the most robust, i.e., the form of 

the equilibrium solutions did not change significantly over a realistic range o f parameter 

values. However, even this model structure has the ability to produce non-steady 

solutions for some forms of the predation function. With this grazing function models 

were more likely to be steady as the predation function tended towards the linear form, 

although mesozooplankton were often eliminated in this region o f param eter space. With 

both o f these biological process functions, as with any others used in the development o f
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an NPZ model, the modeler will have to ascertain if the assumptions inherent in the 

formulation are appropriate for the plankton community o f  interest. Our findings have 

important implications for modeling efforts in environments where multiple prey and 

predator classes persist simultaneously. It is hoped that this analysis will be o f value 

during model construction o f such ecosystems, and for interpreting results from 

biophysical model simulations in which the physical forcing is varied over a seasonal 

cycle.
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Chapter 5 . The role of detritus in NPZ model 
dynamics

5.1 Introduction

In the coastal G ulf o f Alaska, as in many regions o f the w orld’s ocean, plankton biomass 

exhibits a defined seasonal cycle that closely relates to the prevailing physical forcing in 

the environment. In winter, strong downwelling and vertical mixing in the coastal G ulf of 

Alaska weaken stratification, deepen the upper mixed layer, and entrain high 

concentrations o f nutrients into surface waters (W eingartner et a l., 2002; Stabeno et al., 

2004). The deep mixing o f phytoplankton, combined with a low solar angle, a short 

photo-period, and persistent cloud cover, limit primary productivity (Stabeno et al., 2004) 

and thus chlorophyll-a concentrations in winter are relatively low (Childers et al., in 

press). During late spring and early summer (March-May), the lengthening days, high 

solar angle and stratification o f the upper water column, enable primary producers to take 

advantage o f the high nutrient concentrations in the surface waters (Stabeno et a l ,  2004; 

Childers et al., in press) and a pronounced increase in chlorophyll across the shelf can be 

observed due to the spring phytoplankton bloom (Strom et al., 2001; Childers et al., in 

press). In the summer (July-August) high riverine discharge and seasonal heating lead to 

the development o f an intense pycnocline at 25 meters (Stabeno et a l ,  2004). The 

strongly stratified euphotic zone is depleted o f nutrients during summer due to 

phytoplankton consumption and weak mixing (Childers et a l ,  in press). This results in 

the development o f a strong sub-surface chlorophyll maximum during the summer at 20- 

30 meters depth (See Figure 5-1 for example) within or ju s t above the pycnocline where 

nutrient concentrations are higher but photosynthetically available radiation is still 

sufficient for growth (Childers et a l ,  in press).

The six-component NPZ model comprising small and large phytoplankton, 

microzooplankton, mesozooplankton, nitrate and ammonium, parameterized for the
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coastal G ulf of Alaska (cGOA) was able to simulate a surface bloom of plankton with 

higher concentrations in the surface mixed layer, decreasing smoothly to negligible 

concentrations below. However, desnite implementing an array o f functional forms for 

zooplankton grazing and mortality, the sub-surface chlorophyll maximum could not be 

simulated with the existing model structure and physical forcing. The depth-explicit 

forcing in this model was stationary in time and considered to be representative o f the 

cGOA in spring. Capturing transient biological behavior, such as a sub-surface 

chlorophyll maximum, is an inherent difficulty when the model framework comprises 

stationary physical forcing. Simulation o f such transient biological features could require 

seasonally varying forcing; however, the model’s inability to simulate such features could 

also be indicative of inadequate representation o f the ecosystem or associated biological 

processes.

In the six-component model, described in Chapter 4, losses from the phytoplankton and 

zooplankton due to mortality, sloppy feeding, etc., were assumed to be instantaneously 

remineralized back to a utilizable pool of nutrient at a constant rate. This rapid 

regeneration of organic material to a nutrient source that the phytoplankton can utilize 

ensured a continual nutrient supply in the upper mixed layer, and thus could be a factor 

behind the lack o f development o f the sub-surface chlorophyll maximum. In reality, 

following a phytoplankton bloom the nutrients are depleted in the surface waters due to 

the flux o f rapidly sinking organic material out o f the mixed layer. Generally, the 

bacterial degradation o f this organic material occurs below the pycnocline, which means 

that the regenerated nutrients are not available to support further growth o f plankton in 

the surface waters. It is likely that in order to adequately simulate the observed key 

features of the seasonal cycle in the cGOA, in addition to a net export o f nutrient from the 

surface mixed layer, the six-component NPZ model will require physical forcing that is 

representative o f conditions observed during the summer, i.e., a shallower mixed layer 

depth and smaller mixed layer diffusion.
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Figure 5-1 Profiles o f  Chl-a concentration at GAK1 in the cGOA during 2001.
GAK1 is the most inshore station on the Sewards transect line (Figure 1-1). (a-g) small size fraction (nominal pore 
size 0.7-5|im ) and (h-n) large size fraction (nominal pore size >20|J.m). Data was kindly provided by T. Whitledge 
per. Com).
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Many o f the models used in ecosystem studies today incorporate more explicit 

representation o f the regeneration loop, although the degree o f detail incorporated can 

vary widely. More complex models include both Particulate Organic Matter (POM) and 

Dissolved Organic Matter (DOM) as separate state variables (Kishi, 2000) and some even 

specifically represent bacteria (Lancelot et a l, 2000). Other models have a single 

‘detrital’ component which is assumed to comprise both POM and DOM (Loukos et a l, 

1997; Denman and Pena, 2002).

By reducing the amount o f readily available nutrient, the addition o f detritus to a model 

could potentially act as a “brake” on the system and therefore influence model dynamics 

by dampening out oscillations. Detritus is effectively a nutrient store that can be exported 

from the mixed layer, via sinking, prior to remineralization to a utilizable form of 

nutrient. Thus, inclusion o f detritus in an NPZ model will slow the return o f organic 

matter to inorganic nutrients, and reduce the total nutrient available in the system. It has 

been shown that a high nutrient supply (caused by high entrainment into the mixed layer 

o f high pycnocline nutrient concentrations) can enhance the susceptibility to oscillatory 

behavior (Popova et a l,  1997). This suggests that the assumption o f instantaneous 

remineralization could be important because the continual supply o f nutrient to the 

plankton may enhance oscillatory behavior. Edwards (2001) has shown that the addition 

o f detritus to a three component NPZ model had little consequence for the model 

dynamics provided zooplankton were unable to graze on the detritus, however, the model 

investigated had only a single resource sigmoidal grazing function and a homogeneous 

mixed layer. The addition o f detritus to a more complex, depth-explicit, NPZ model in 

which zooplankton can graze on multiple prey could have a very different influence on 

the model dynamics.

Changes to the physical structure o f the model are also known to influence NPZ model 

dynamics. For example, it has been shown that incorporating moderate levels o f vertical 

diffusion into a non-diffusive NPZ model imparts model stability (Edwards et a l. 2000).
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However, high values of entrainment o f pycnocline waters with high levels o f nutrient 

concentrations, have also been found to play an important role in causing oscillatory 

behavior (Popova et al., 1997), as have abrupt changes in the thickness o f the upper 

mixed layer, such as those commonly observed in Spring or Fall, (Rybchenko et al,. 

1997). The influence o f the m odel’s physical structure on the dynamics o f the biological 

components is thus an important consideration for the realm o f coupled bio-physical 

models. It is important that we understand not only how a change in physical structure 

can influence model solutions, w ith respect to replicating key features o f the seasonal 

cycle (e.g., the sub-surface chlorophyll maximum), but also to understand how such 

modifications could influence the non-linear dynamics o f the model.

The primary objectives o f this research were to investigate if  the addition o f a detritus 

component and alternative physical forcing regimes to a six-component NPZ model 

significantly influenced the stability and the composition (survivorship) o f model 

solutions, and to determine if  these model modifications could yield a sub-surface 

chlorophyll maximum. The dynamics o f a seven-component NPZ model that included 

detritus was explored using a systematic variation of q-h parameter space, the two 

parameters that govern predation on mesozooplankton (H ). Forcing was stationary, but 

the influence o f two alternative mixed-layer diffusion coefficients (Kv„~ 1 xlO '3 m 2 s'1 and 

lx l0 ‘4 m 2 s '1) and two mixed layer depths (20 and 40 meters) were investigated. With 

each forcing scenario, model dynamics were compared with and without sinking o f the 

detritus component. The previous investigation (Chapter 4) demonstrated that with 

alternative functional forms for grazing, the model may exhibit very different behavior in 

terms o f structure and dynamics o f equilibrium solutions. Therefore, the investigation 

was conducted with both grazing function I and function V, as these exhibited 

characteristics that capture the behavior o f the other three grazing functions. This series 

o f experiments effectively tests hypothesis 3 and 4 as outlined in Chapter 1.
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5.2 Method

5.2.1 Model Structure

The model investigated here builds upon the six-component NPZ model whose dynamics 

were investigated previously (Chapter 4). Here, detritus is added to the model as a 

seventh state variable. The new seven-component model (Figure 5-2) thus simulates the 

exchange of nitrogen (|iM  N) between small phytoplankton (< 8(im, P/), large 

phytoplankton (> 8|im , P2), microzooplankton (Z/), mesozooplankton (Z2), nitrate (Ni), 

ammonium (N2) and detritus (Dt). Below 1 outline the new system o f equations, drawing 

attention to the new functions required to incorporate detritus into the model. The curious 

reader can refer to the description o f the original model (Chapter 4) for a fuller 

explanation o f the mathematical formulations selected to describe the time rate o f change 

o f the original six components.

The one-dimensional model was spatially explicit in the vertical, with a resolution o f one 

meter and an extent o f one hundred meters (z,=[-lm , -2m, -3m, ... -100m]). The original 

six-component model was a closed system with no net inputs or outputs; therefore, the 

total nitrogen content was constant at all times (Nj=P\+P2+Z\ +Z2+N\ +N2). This was also 

true o f the seven-component model when detritus had a sinking velocity o f zero 

(Nj=P\+P2+Z\+Z2+N\+N2+Dt =constant). In this instance no flux boundary conditions 

were enforced at the upper and lower boundaries (z=0 and z = 100m), i.e.,

. dP, dP-, dZ, dZ7 dN, dN? dDt n
K v ------= K v — — = K v ----- = K v  — K v  — K v  = K v  = 0 Eq. 5.1

dz dz dz dz dz dz dz

However, when detritus had a non-zero sinking velocity, to partially balance the loss o f 

nitrogen from the system over the year, the no-flux boundary condition at the 100 meter 

depth level was relaxed. It was assumed that the nitrate concentration below the 100 

depth level (Nit,) was 10(J,M N, concentrations o f all other model components below' this 

layer were assumed to be zero, i.e., N2irDti, Zu, Z2h P ih P2,r 0  uM N.
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Figure 5-2 Interactions in the seven-component NPZ model.
Nitrate (yV/), ammonium (N 2), detritus (Dt), small phytoplankton (Pi), large 
phytoplankton (P2), microzooplankton (Zi) and mesozooplankton (Z2). Arrows 
indicate the direction o f material flow. Biological processes, i.e., grazing (G), 
nutrient uptake ( U), mortality (M), predation (H) and nitrification (R) associated 
with each arrow are indicated. See Table 5-1 for explanation o f subscripts. Note 
that for simplicity, zooplankton assimilation efficiencies have been omitted.

5.2.2 Formulation o f  the Biological Equations

The equations to describe the temporal rate o f change o f each o f the seven model 

components are presented below; the formulations used to describe each biological 

process are presented in Table 5-1.
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^ -  = - u u - u n + R
dt Eq. 5.2

dt Eq. 5.3

—j -  -U\ i +U2 \ ~M\ -G\ i -G;
at 2 1 '2 Eq. 5.4

dt Eq. 5.5

~  • (Gn + G|2) -  Gz/ -  My
dt

Eq. 5.6

—7~  — 72 '(^21  + ^22  + G ZZ ) ~  Hdt Eq. 5.7

dt Eq. 5.8
+  (1 —  ^9  —  O!o ) '  ( G 2] +  G n  +  G 22 )  +  S  — D

It has previously been shown that the form o f the grazing function can make a large 

difference to the structure o f model solutions and to the models dynamic behavior 

(Chapter 4). Therefore, the investigation outlined here was conducted with both function 

I and function V (Table 5-1). These alternative formulations for grazing are considered to 

exhibit “end-member” characteristics o f the five grazing functions previously 

investigated, i.e., the behaviors o f functions II-IV were intermediate between 1 and V.

Rather than assuming instantaneous remineralization of organic material to ammonium, 

as was previously the case, particulate organic matter losses from the phytoplankton and 

zooplankton are now considered inputs to the detritus component. This is one o f the 

simpler, but common, approaches to incorporating detritus into an NPZ model (Loukos et 

al., 1997; Denman and Pena, 2000, Leonard et al., 1999). Although in reality, bacteria are 

able to uptake and excrete ammonium (Legendre and Rassoulzadegan, 1995), the model 

assumed that this was a one-way process with bacterial degradation (D ) converting the 

detritus to ammonium at a linear rate. The detrital degradation rate (d) was taken to be



0.05 day'1 which falls well within the range (0.03-0.1 d a y 1) o f values used for this 

parameter in other modeling studies (Denman and Pena, 2000; Frost, 1993; Loukos et al., 

1997). A fraction (a ) o f the organic material lost from the zooplankton is considered to 

be dissolved and as such is treated as a direct input to ammonium rather than to detritus. 

Ammonium was assumed to undergo nitrification (R) back to nitrate at a constant linear 

rate.
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The sinking o f detritus (5) is also a biological process new to this model and was 

described by:

S = W , ^ T  Eq. 5.9
a z

Where Ws is the detrital sinking rate. Ws is known to be a very sensitive parameter 

(Sarmiento et al., 1993), but within existing modeling studies is commonly given a value 

between 0 and 10 m day"1 (Loukos et al., 1997; Fasham, 1990; Denman and Pena 1999). 

The dynamics o f the seven component model will be investigated using these extremes 

(i.e., Ws=0 and 10 m day"1).

The purely biological dynamics described above were subjected to vertical mixing. This 

physical forcing was represented by the addition o f a single term (Eq. 4.7) to each o f the 

biological equations. In this equation C, represents each o f the seven model components 

Pi, P?, Zi, Zi, N h N 2 and Dt. The stationary, but spatially varying vertical diffusion 

profile (Kv) was described by Eq. 4.8. Model dynamics were investigated with a constant 

mixed layer depth (MLD) at 40 meters, representative o f  spring conditions, and a 

constant mixed layer depth at 20 meters representative o f summer conditions. Two 

different levels o f diffusion were implemented in the surface mixed layer, Kvm= 1 x 10" ' m 2 

s"1 and Â vm= lx l0"4m 2 s '1, while below the mixed layer the background diffusion was held 

constant at /C v^lx lO  ' m 2 s '1. The shape parameters <D(z) and (0 respectively defined the 

position and the thickness of the pycnocline.
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Figure 5-3 Vertical diffusion profiles used to force the seven-component NPZ model.
The solid and dashed black lines represents the diffusion profile when Kvm 
=:lxlOr3m2s'1 and the mixed layer depth is set to 20 and 40 meters respectively. 
The solid and dashed blue lines represents the diffusion profile when Kvm= 
lx l  O'4 m2 s’1 and the mixed layer depth is set to 20 and 40 meters respectively.



121
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Table 5-2 Parameter values used in the seven-component NPZ model.

X  and Y can be 1 or 2 to represent the tw o classes of phytoplankton and zooplankton, 
respectively.

Parameter Symbol Values Units

X = I X = 2

maximum growth rate o f P v P
m ax A'

2 2 day"1

Px half-saturation constant for /V, k \x .75 .5 N

Px half-saturation constant for k-2 X .5 1 |xM N
inhibition parameter for U \ by A \ ¥ 1.462 [\iM N]
nitrification rate r 0.05 day '1
detrital degredation rate d 0.05 day-1

detrital sinking rate w \ Oor 10 m day"1
light extinction coefficient K „ 0.07 -im

Y=1 Y=2
maximum ingestion rate m̂;ix Y 1.2 .7 day '1

assimilation efficiency o f Z , r y 0.4 0.3 -

Dissolved fraction o f organic waste a Y 0.5 0.5 -
Z Y half-saturation grazing k^y 30 60 ^ g C L "

Y

1 2

1 1 .2 _
Z , capture efficiency for Px ^YX X

2 .7 .7 -

Z 2 capture efficiency for Z, e 7.7. 1

X=1 X-~2

natural mortality rate o f Px m x 0.2 0.1 day '1

natural mortality rate o f Z, m 7 0.08 day '1

specific predation rate h ~ 0.05-2 (gCm~3)'

predation exponent q 1 - 2 -
Shape parameters for diffusion (0 5 -

profile O (z ) z - M L D -
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5.2.3 Analysis

The dynamics o f the seven-component NPZ model w ere compared when two alternative 

functional forms for zooplankton grazing (G) were implemented (1 and V), and the 

predation exponent (q ) and the specific predation rate (h) in the predation term (H) were 

systematically varied over a biologically realistic range, i.e., l^^and/Ff).05-2 .0gC m ~3]U/ 

day'. The detrital sinking velocity was initially considered to be zero. In order that the 

model made biological sense, concentrations o f all model components were restricted to 

positive finite or zero values. For each model simulation, the steady solutions o f the non

linear system o f seven equations were sought iteratively for thirty-six point grid in q-h 

parameter space; q -[  1, 1.2, 1.4, 1.6, 1.8, 2.0], /?=[0.05, 0.1, 0.5, 1.0, 1.5, 2.0] [gCm"3]1̂  

day"1. Each model was initially run for 300 time steps (days), and the resulting solution 

provided as a starting guess to a numerical solver o f the steady state solution (Eq. 5.2-5 .8 

with the left hand sides set to zero). In the previous chapter, the six-component ecosystem 

model was required to have non-dimensional time derivative terms smaller than lx lO '4 

jlM N day"1 in order for the model to be classified as steady. The seven-component model 

is required to have dimensional time derivative terms smaller than 1x10"’ (iM N day '1 in 

order to be classified as steady. Most steady equilibrium solutions, however, had time 

derivative several orders o f magnitude smaller than this. Models that failed to converge to 

a steady solution were run for a further 600 days and the time series solution on the six 

hundredth day was provided to the numerical solver. These solutions were then 

reclassified. Any solution which could not be classified as steady was considered to be 

oscillatory. Visual inspection showed that the oscillatory solutions had no secular (long

term) decreases in the magnitude o f oscillations.

The NPZ model behavior was subsequently analyzed assuming a detrital sinking velocity 

o f 10 m day'1. The dynamics o f the NPZ model were again compared w'ith two alternative 

functional forms for zooplankton grazing (I and V), for a realistic range o f specific 

predation rates (h = 0.05-2.4 [g C m '3]U/ day"1) and predation exponents (1 < q < 2). 

Because nitrogen, in the form o f detritus, could sink out o f the lower boundary of the
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model, the model could no longer be considered a closed system. As such, it did not 

make sense to seek equilibrium solutions using the numerical solver as was the case o f 

non-sinking detritus. All solutions had to be visually inspected to determine if dynamical 

behavior was monotonic or oscillatory. It is not realistic to visually investigate time series 

solutions for all points in q-h space investigated with the non-sinking detritus model, 

however, it is clear from work in the preceding chapters (Chapters 3 and 4) that 

considering only a single q-h parameterization would not reveal a complete picture o f 

model dynamics. Therefore, time series solutions (300 days) for a eighteen point grid in 

q-h parameter space, i.e., q—[\, 1.2, 1.4, 1.6, 1.8, 2.0], /?=[0.05, 1.0, 2.0], were visually 

inspected for each of the physical forcing regimes considered. Although coarse in 

resolution, this coverage o f param eter space provides a good indicator o f how sinking 

detritus impacted the NPZ model dynamics.

5.3 Results

5.3.1 Structure o f  equilibrium solutions

Adding non-sinking detritus to the original six-component model did not have a notable 

influence on the composition of model solutions with respect to the existence of model 

components. For ease o f comparison, the maximum plankton concentration at 

equilibrium for the six-component NPZ model has been re-plotted at the reduced 

resolution q-h space used for the seven component model (Figure-5-4). As with the six- 

component model, the seven-component model produced solutions that differed markedly 

depending on whether grazing function I or V was implemented (Figure 5-5). In both 

cases, the structure o f model solutions was related to the magnitude o f the predation 

experienced by the mesozooplankton (H - h Z , f ) .  An explanation o f which regions o f q-h 

parameter space correspond to low and high predation is provided in Chapter 4.4. With 

grazing function I there was a clear divide in the q-h parameter space where the 

composition o f model solutions switched betw een two predominant forms (Figure 5-5 a,
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c, e, g). Note that the maximum concentration o f nitrate, ammonium and detritus was 

never negligible, therefore for brevity the maximum concentrations o f these model 

components are not shown. When predation on mesozooplankton was high, solutions 

predominantly comprised large phytoplankton, microzooplankton, nitrate, ammonium, 

and detritus. The region o f parameter space over which small and large phytoplankton 

persisted at equilibrium was slightly expanded with the incorporation o f a detrital 

component [Figures (5-4 and 5-5) a and c]. This contributed to the broader region o f q-h 

space for which all plankton components were found to persist simultaneously at 

equilibrium [Figures (5-4 and 5-5) i]. When the predation on mesozooplankton was low, 

solutions were dominated by small phytoplankton, mesozooplankton, nitrate, ammonium 

and detritus. When grazing function V was implemented, equilibrium solutions 

comprised both small and large phytoplankton and microzooplankton, in non-negligible 

concentrations for all parameter space examined (Figure 5-5 b, d, f). Mesozooplankton 

concentration was negligible when predation (H)  on this component was high (Figure 5-5 

h). This region o f high thus defined the only region o f parameter space that did not 

comprise non-negligible concentrations o f all model components when implementing 

grazing function V (Figure 5-5 j); this is very similar result to that found with the six- 

component model (Figure 5-4 j).

Influence o f physical regime

Changing the diffusion in the surface mixed layer had a variable impact on the structure 

o f model solutions depending on which grazing function was implemented. With grazing 

function I, regardless o f whether the mixed layer depth was 40 or 20 meters, reducing the 

mixed layer diffusion by an order o f magnitude had little impact on the concentrations o f 

microzooplankton and mesozooplankton at equilibrium [Figures (5-5 -  5-8) e and g)]. 

However, a reduction in the vertical mixing resulted in high equilibrium concentrations 

o f small phytoplankton (P i> 1 O'1 (iM N) but negligible concentrations o f large 

phytoplankton (P2< 1 5 |iM N) for the majority o f q-h space [Figures (5-5 -  5-8) a and c)].
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When grazing function V was implemented, the only notable change to the composition 

o f equilibrium solutions resulting from the lower mixed layer diffusion was a slightly 

narrower region o f q-h parameter space over which mesozooplankton had a negligible 

equilibrium concentration, and the reduction o f microzooplankton to negligible 

concentrations, when predation on mesozooplankton was very low [Figures (5-5 -  5-8) f  

and h)].

Holding the mixed layer diffusivity constant, reducing the mixed layer depth from 40 

meters to 20 meters had little impact on the structure o f equilibrium solutions. With 

grazing function I and V and a mixed layer diffusion o f Kvm= 10 3 m 2 s '1, reducing the 

mixed layer depth from 40 to 20 meters did not notably impact the structure o f 

equilibrium solutions [Figures (5-5 and 5-7)]. Similarly, with grazing function V and a 

mixed layer diffusion o f A 'v ^ lO "4 m 2 s"1 reducing the mixed layer depth from 40 to 20 

meters did not notably impact the structure o f  equilibrium solutions [Figures (5-6 and 5-

8) b, d, f, h]. The only notable impact o f a reduction in the mixed layer depth with 

grazing function 1 and Kvm- \ 0 '4 m2 s 'was an increase in the maximum equilibrium 

concentration o f large phytoplankton at intermediate levels o f predation on 

mesozooplankton [Figures (5-6 and 5-8) c].

Although plotted at a coarser resolution, it can be seen that with the original physical 

forcing (Kvm= 10~3 m 2 s"1 and MLD=40 meters) incorporation o f sinking detritus did not 

significantly alter the composition o f solutions throughout q-h parameter space [Figures 

(5-5 -  5-9)]. This was true when implementing either o f the grazing functions. With the 

addition o f sinking detritus the composition o f model solutions were more robust to 

changes in physical forcing [Figures (5-9 - 5-12)]. The only notable change was when the 

mixed layer depth was shallow (20 m) and the mixed layer diffusion low (ATvm=10 4 m2 s '). 

With this forcing regime, when function V was implemented, small phytoplankton and 

microzooplankton no longer persisted throughout q-h parameter space. Rather, small 

phytoplankton only persisted at regions o f low' predation (Figure 5 -12b). Conversely, this
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was the only region o f parameter space where microzooplankton concentration was 

negligible (Figure 5-12f).

Existence o f  sub-surface Chlorophyll Maximum

The existence o f a sub-surface maximum in chlorophyll (P / + P2) was largely dependent 

on the magnitude o f mixed layer diffusion. The depth and strength o f this maximum 

varied with grazing function and detrital sinking velocity. With non-sinking detritus, 

irrespective o f the mixed layer depth (40 or 20 meters) or the grazing function (I or V), 

with the higher mixed layer diffusion (A'ym=10'1 m2 s"1) no sub-surface maximum was 

found throughout the entire region o f q-h parameter space [Figures (5-13 and 5-14) a,c, g,i]. 

The same was also true in the case o f sinking detritus, with the exception o f a single point 

in parameter space (<7=2 , h - 1.2) when the mixed layer depth is 40 meters and grazing 

function 1 was implemented [Figures (5-15 and 5-16) a, c, g, i]. Barring this exception, 

with high diffusion the chlorophyll concentration was maximum at the surface and 

decreased smoothly with depth, approaching negligible concentrations below the mixed 

layer [Figures (5-17 and 5-18) a and c]. Profiles o f chlorophyll are shown only for the 

point <7= 1 .2 and h-0.05, this point was selected for ease o f comparison between model 

experiment because model solutions always had a steady equilibrium there. However, 

these profiles are considered to be representative o f other steady equilibrium profiles over 

q-h space. Figure 5-19 illustrates how the model dynamics vary with q and h. In this 

example, at low predation (top left o f figure) solutions are approaching a steady 

equilibrium and the concentration o f chlorophyll at 20 meters generally exceeds that at 

the surface (1 meter). At high predation (bottom right o f figure), solutions are oscillatory 

but a sub-surface maximum in chlorophyll still persists periodically. It is clear that 

diagnostic plots o f chlorophyll concentration in this oscillatory region o f q-h space are 

not appropriate due to the ephemeral nature o f the sub-surface chlorophyll maximum.
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With high mixed layer diffusivity (10 ‘3 m 2 s '1) the surface chlorophyll concentrations 

tended to be unrealistically high (>10|ig chi f 1) compared to observations (Figure 5-1) for 

large regions o f parameter space. With the smaller mixed layer diffusion (10’4 m 2 s"1), the 

difference between the surface chlorophyll concentration and the sub-surface chlorophyll 

maximum varied throughout q-h space. When the detritus had a zero sinking velocity the 

size o f this difference depended on the grazing function. With function I, the maximum 

difference was 1.5 jig chi f 1 (Figure 5-13 f  and 1), while with function V the maximum 

difference was an order o f magnitude smaller at 0.2 jig chi f 1 (Figure 5-14 f  and 1). With 

both o f these functions, the subsurface maximum was more prevalent when the predation 

on mesozooplankton was low and there were large regions o f q-h space where no sub

surface chlorophyll maximum was observed. When detritus could sink and the mixed 

layer diffusion was low ( 10‘4 m 2 s"1), the sub-surface maximum persisted for a much 

larger region o f q-h space and the difference between the surface chlorophyll 

concentration and the sub-surface chlorophyll maximum was similar with both grazing 

function I (0-0.8) and function V (0.3-0.5) [Figures (5-16 and 5-17) d-f and j-i]. The 

depth o f the sub-surface chlorophyll maximum varied with grazing function and detrital 

sinking velocity. When detritus was unable to sink, the sub-surface maximum was in the 

region o f 5-15 meters depth when implementing function 1 (Figure 5-13 d and j), but 

much shallower (around 5 meters) with function V (Figure 5-14 d and j). When detritus 

were able to sink, the sub-surface chlorophyll maximum was in the region o f 10-20 

meters and was similar with both grazing functions [Figures (5-16 and 5-17) d and j].
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Figure 5-4 Plankton survivorship, MLD=40m, ATvm=10'3 m2 s '1, No detritus.
This figure similar to Figure 4-5 but re-plotted in the lower resolution q-h 
space. Concentrations are non-dimensional. First column is for grazing 
function I, second column is for grazing function V. For steady solutions, the 
maximum scaled plankton concentrations over all depths at equilibrium were 
used. For oscillatory solutions, the maximum plankton concentrations over all 
depths and over the last 200 days o f  a simulation were used, (i & j)  black 
shading indicate regions where all plankton survive simultaneously (£).
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Figure 5-5 Plankton survivorship, MLD=40m, Kvm- 10’3 m 2 s '1, Ws=0 m day"1.
First column is for grazing function I, second column is for grazing function 
V. For steady solutions, the maximum plankton concentrations (|iM  N) over 
all depths at equilibrium were used. For oscillatory solutions, the maximum 
plankton concentrations over all depths and over the last 200 days o f a 
simulation were used, (i & j)  black shading indicate regions where all 
plankton survive simultaneously (£).
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Figure 5-6 Plankton survivorship, MLD=40m, Kvm=\(YA m ’ s '1, Ws=0 m d a y 1.
As for Figure 5-5.



132

W s = 0 ,  M L D —2  O m ,  K v « = 1 0

V

P i

P 2

Z i

<» 1.5

2 2

W  1

1

’ 1.5
r

’ 1.5

1 1 w
.05 1.2 2 

h
.05 1.2 2 

h

|  Cmax > 1 0  J J j  1 0  < Cma x < 1 0  Q ]  1 0  < Cmax  < 1 0  Q ]  Cmax  < 1 0

Figure 5-7 Plankton survivorship, MLD=20m, Kvm~ \(V  m s’1, Ws—0 m day '1.
As for Figure 5-5.
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Figure 5-8 Plankton survivorship, MLD=20m, Kvm- 10"4 m 2 s '1, fV,=0 m day'1.
As for Figure 5-5.
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Figure 5-9 Plankton survivorship, MLD=40m, Kvm= 10'3 m 2 s '1, Ws~  10 m day"1.
First column is for grazing function I, second column is for grazing function 
V. For steady solutions, the maximum plankton concentrations (|iM  N) over 
all depths at equilibrium were used. For oscillatory solutions, the maximum 
plankton concentrations over all depths and over the last 200 days o f  a 
simulation were used.
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Figure 5-10 Plankton survivorship, M LD=40m, Kvm- 10‘4 m 2 s '1, Ws-  1 0 m day '1.
As for Figure 5-9.
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Figure 5-11 Plankton survivorship, MLD=20m, A 'v^ lO '3 m 2 s '1, ^ = 1 0  m day"1.
As for Figure 5-9.
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Figure 5-12 Plankton survivorship, MLD=20m, Kvm- 10'4 m 2 s '1, Ws= 10 m day'
As for Figure 5-9.
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Figure 5-13 Chlorophyll diagnostics with grazing function I and Ws- 0 m day'1.
A chlorophyll maximum at the surface is indicated by a depth max[Chl-a] of 1.
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Figure 5-14 Chlorophyll diagnostics with grazing function V and Ws=0 m day '1.
A chlorophyll maximum at the surface is indicated by a depth max[Chl-a] o f 1.
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Figure 5-15 Chlorophyll diagnostics with grazing function 1 and fVs=10 m day"1.
A chlorophyll maximum at the surface is indicated by a depth max[Chl-a] of 1.
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Figure 5-16 Chlorophyll diagnostics with grazing function V and Ws= 10 m day '1.
A chlorophyll maximum at the surface is indicated by a depth max[Chl-a] o f 1.
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Figure 5-17 Chlorophyll concentration profiles, Ws=0 m day"1.
For function I (solid line) and function V (dotted line). All profiles are shown 
for q - 1.2, h -0 .05.
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Figure 5-18 Chlorophyll concentration profiles, Ws- 10 m day"1.
For function I (solid line) and function V (dotted line). All profiles are shown 
for #=1.2, h=0.05.
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5.3.2 Dynamic model behavior

The addition o f non-sinking detritus to the model did not have a notable influence on the 

locations o f the Hopf bifurcations throughout q-h space relative to the patterns observed 

with the original six-component model. For ease o f comparison, classification o f model 

dynamics for the six-component NPZ model have been re-plotted at the reduced 

resolution q-h space used for the seven component model (Figure 5-20 a and b). With the 

seven-component model, when implementing either o f the grazing functions the location 

o f the Hopf bifurcations (Figure 5-20 c and d) were very similar to that found in the 

previous investigation with the six-component model (Figure 5-20 a and b). With both 

grazing functions I and V, Hopf bifurcations spanned the q-h parameter space, defining 

the boundaries where the qualitative form o f the solution shifted between a steady 

equilibrium and settling into periodic limit cycle behavior. With grazing function I, 

steady solutions could not be found for the majority o f the param eter space (Figure 5-20c); 

model solutions were oscillatory for both medium and high levels o f predation on 

mesozooplankton. These non-steady equilibrium solutions predominantly comprised 

large phytoplankton, microzooplankton, nitrate, ammonia and detritus. As predation 

decreased, there was a Hopf bifurcation with a transition to a region o f steady solutions. 

With grazing function V, two Hopf bifurcations persisted across q-h space (Figure 5-20 d); 

model solutions were steady at high predation, underwent a bifurcation to oscillatory 

behavior in the region o f intermediate predation, and a second bifurcation back to a 

steady regime at low predation. Although the oscillatory region o f parameter space is 

somewhat shifted with respect to that observed with the six-component model (Figure 5- 

20b), it is likely that a higher resolution investigation o f q-h space would reveal that the 

bifurcations are continuous throughout the parameter space.
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Figure 5-20 Classification o f solutions over q-h parameter space, Ws- 0  m day"1.
Regions o f steady equilibrium solutions are black, regions o f oscillatory 
solutions are white, (a & b) show results for the six-component model re
plotted in the lower resolution q-h space.
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Influence o f Physical Regime

The impact o f reducing the mixed layer depth on the dynamical behavior o f model 

solutions depended on which grazing function was implemented and on the magnitude of 

the mixed layer diffusion. With grazing function I and XV/H=10"3 m 2 s '1, reducing the 

mixed layer depth from 40 to 20 meters did not notably impact the location o f the Hopf 

bifurcation that separates the regions o f oscillatory and steady equilibrium solutions 

(Figure 5-20 c and g). Steady solutions were confined to a small region where predation 

on mesozooplankton was low. With grazing function V and Kvm = 10~3 m2 s '1, reducing 

the mixed layer depth from 40 to 20 meters reduced the region o f q-h space for which 

model solutions were found to be steady (Figure 5-20 d and h). With the shallower mixed 

layer (20 meters) the bifurcation pattern was now similar to that observed with grazing 

function I, i.e., equilibrium solutions were steady only when predation on 

mesozooplankton was low; solutions were oscillatory for all other regions o f parameter 

space. This increase in model excitability was not observed with an equivalent reduction 

in mixed layer depth at lower diffusivities (Kvm- \Q A m 2 s '1) in the surface mixed layer 

(Figure 5-20 f  and j); rather solutions wrere now steady for the entire region o f q-h space 

examined, including the previously solitary oscillatory solution. A small increase in 

prevalence o f steady model solutions was also noted with a reduction in the mixed layer 

depth for grazing function I with Kv,,--10"4 m 2 s'1 solution (Figure 5-20 e and i).

With both gazing functions, reducing the mixed layer diffusion by an order o f magnitude 

resulted in a broader region o f  q-h parameter space for which solutions could be 

classified as steady. With this reduced mixing and grazing function I, solutions were now 

only oscillatory at medium levels of predation (Figure 5-20 c, e, g, i). Although clear 

Hopf bifurcations did not exist throughout the parameter space, this may be an artifact o f 

the low resolution investigation. The combination o f reduced diffusion and grazing 

function V resulted in solutions that were steady for the majority o f parameter space 

examined (Figure 5-20 d, f, h, j]. There was, in fact, only a small region o f parameter
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space when the mixed layer depth was 40 meters (corresponding to <7= 1 .8, h=].5) that 

produce an oscillatory solution (Figure 5-20f). The existence o f this single oscillatory 

solution suggests that a very narrow region o f oscillatory solutions may exist in q-h 

space.

When detritus was able to sink, changes to the physical forcing regime had a similar 

impact on model dynamics as observed with non-sinking detritus. Irrespective o f the 

mixed layer depth (20 and 40 meters) or the grazing function (I or V), decreasing the 

mixed layer diffusion resulted in steady equilibrium solutions for a greater region o f the 

q-h space (Figure 5-21). The influence on dynamics o f reducing the mixed layer depth 

was dependent on both the mixed layer depth and the grazing functions. When the mixed 

layer diffusion was high ( 10~3 m 2 s’1) and grazing function I was implemented, the model 

dynamics were not notably influenced by a shift in the mixed layer depth (Figure 5-21 a 

and e). When function V was implemented, however, the same reduction in mixed layer 

depth resulted in oscillatory solutions for a greater region o f  q-h space, such that the 

pattern o f dynamics looked similar to that obtained with function I (Figure 5-21 b and f). 

With both grazing functions and a smaller mixed layer diffusivity (10"4 m 2 s '1), reducing 

the mixed layer depth did not markedly impact the location o f steady/oscillatory regions 

(Figures 5-21 c, d, g, h].

The incorporation o f a non-zero detrital sinking velocity into the NPZ model had a 

variable degree o f impact on model dynamics depending on the grazing function and the 

mixed layer depth. The addition o f a sinking component did, however, always result in 

model solutions that had similar or broader regions of oscillations throughout q-h space. 

For ease o f comparison, the dynamics obtained for the seven-component model with non

sinking detritus have been reproduced (Figure 5-22) using data only from those points in 

q-h space for which model behavior w ith a sinking detrital component was investigated. 

With grazing function V incorporation o f sinking detritus did not have a large impact on 

model dynamics; at low' mixed layer diffusivity model trajectories continued to approach
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equilibrium monotonically for each point in q-h space [Figures (5-21 and 5-22) d and h], 

at high mixed layer diffusivity the region o f oscillatory solutions bounded by the Hopf 

bifurcations appeared slightly broader with sinking detritus [Figures (5-21 and 5-22) b 

and f). With grazing function I and high diffusion, incorporation o f sinking detritus had 

little or no influence on model dynamics; model trajectories remained monotonic at low 

predation and were oscillatory at medium to high levels o f predation [Figures (5-21 and 

5-22) a and e]. With lower diffusivity, the inclusion o f detrital sinking resulted in 

oscillatory model trajectories at high predation (Figure 5-21 c and g), meaning that the q- 

h parameter space w as now divided into two dynamic regimes rather than the three found 

previously (Figure 5-20 e and i).

5.3.3 A variability o f  Utilizable Nutrient

The availability o f utilizable nutrients is known to have an impact on the dynamics o f 

simple NPZ models (Popova et al., 1997; Ryabchenko et al. 1997). Thus, the equilibrium 

nitrate profile is a logical place to look for an explanation o f the observed changes to 

model behavior, resulting from the changes to the m odel’s physical structure. Utilizable 

nitrogen is considered to be those pools o f nitrogen that can be readily assimilated by the 

phytoplankton, i.e., nitrate and ammonium. When detritus did not sink, while ammonium 

(N?) always exhibited a subsurface maximum in the region o f 30 meters, nitrate (A'/) 

concentration always increased monotonically with depth, from low concentrations in the 

mixed layer to relatively high concentrations that dominated the system below the mixed 

layer (i.e., Figure 4.9). Nitrate concentrations were an order o f magnitude greater than 

ammonium concentrations. Therefore, when the detrital component was unable to sink, 

the total utilizable nitrogen available to the phytoplankton always increased with depth.
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Profiles o f utilizable nitrogen (N -N 1+N2) and the flux o f N  are shown only for the point 

<7= 1.2 and h=0.05 [Figures (5-23 through 5-28)], this point was selected for ease of 

comparison between model experiments because model solutions always had a steady 

equilibrium here. Patterns illustrated by these plots are representative o f steady solutions 

throughout q-h space. When detritus had a zero sinking velocity, a reduction in both the 

mixed layer depth and the magnitude o f vertical diffusion in the surface mixed layer 

caused a shoaling and flattening o f the nutricline in steady equilibrium solutions. 

Irrespective o f which o f the two grazing functions was implemented, decreasing the 

mixed layer depth from 40 meters to 20 meters raised the depth o f the nutricline 

[Figures(5-23 and 5-24) e and k]; a larger shift in nutricline position was observed with 

the larger mixed layer diffusion coefficient (Â vm= lx lO ‘J m 2 s '1). Decreasing the mixed 

layer diffusion by an order of magnitude had a greater impact on nutricline position when 

the mixed layer depth was deeper [Figures (5-23 and 5-24) b]; when the mixed layer 

depth was at 20 meters only a slight shift in the position o f the nutricline was observed 

with a reduction in diffusion [Figures (5-23 and 5-23) h]. Similar shifts in position o f  the 

nutricline were observed irrespective o f which grazing function was implemented. 

Therefore, changes in model dynamics therefore cannot be explained purely by a shift in 

the steady state nitrate profile.

Although the equilibrium nitrate profiles cannot explain the observed changes in model 

dynamics with changes to the m odel’s physical structure, changes in the vertical flux o f 

utilizable nitrogen at equilibrium are very revealing. The flux o f utilizable nitrogen is 

given by:

F f r Y  _  r v W i + * 2 )  M M Nh L U X  -  K v   ----------- — --  Eq. 5.10
az m s 1
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This meant that the flux o f utilizable nitrogen (N=Ni+N2) was always positive upwards 

in the case o f non-sinking detritus. When detritus had a non-zero sinking velocity, due to 

the boundary condition (N 2tFlO |iM  N) enforced, the flux o f nitrogen could be positive 

downwards. Throughout q-h space, a decrease in the mixed layer diffusion (Kvm) reduced 

the peak upwards flux o f N  by an order o f magnitude. This was true irrespective o f the 

depth o f the mixed layer (20 or 40 meters) or which grazing function (I or V) was 

implemented [Figures (5-23 and 5-24) c and i]. When A>„;=10‘3 rn2 s '1, decreasing the 

mixed layer depth from 40 to 20 meters reduced the peak flux by approximately 6jiM N 

m '2 s"1 when grazing function I was implemented (Figure 5-23 f), however, when 

function V was implemented an increase in peak flux o f approximately 6(0,M N m '2 s'1 

resulted from the same change in mixed layer depth (Figure 5-24 f). With both grazing 

functions and Kvm- W A m 2 s '1, decreasing the mixed layer depth did not cause a notable 

change to the magnitude o f the peak flux of N  at equilibrium [Figures (5-23 and 5-24) 1], 

It thus appears that the observed changes in model dynamics with alternative diffusivity 

profiles can be explained by the resultant change in the flux o f utilizable nitrogen at 

equilibrium. An increase in flux o f utilizable nitrate enhanced the excitability o f the 

model, giving rise to oscillatory model solutions for a broader region o f q-h parameter 

space. Conversely, a decrease in the upwards flux on utilizable nitrate has the opposite 

effect, enhancing model stability and creating steady equilibrium solutions for a broader 

region o f the parameter space investigated. An increase in N  flux o f only 6 |iM  N m '2 s'1 

was sufficient to shift model dynamics from steady equilibrium to oscillatory limit 

cycles.

With sinking detritus, as with non-sinking detritus, the changes to model dynamics, 

brought about by the changes in the physical forcing regime, appeared to be related to the 

strength o f peak flux o f utilizable nitrate, which generally coincides with the nutricline. 

The region o f q-h space for which model solutions approached oscillatory equilibrium 

dynamics was broader when the change to the physical forcing regime caused an increase 

in the flux o f utilizable nitrate. Decreasing the mixed layer diffusion caused a reduction
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in peak flux by an order o f magnitude [Figures (5-25 and 5-26) c and i] and steady 

equilibrium solutions were observed for a broader region o f q-h space [Figure 5-21 (a, c,

b, d)]. Decreasing the mixed layer depth when the mixed layer diffusion was large (10 '’ 

m 2 s"1) resulted in a smaller peak flux when grazing function I was implemented (Figure 

5-25 f), but a larger flux when function V was implemented (Figure 5-26 f); thus 

potentially explaining the different response observed in the dynamics. With a lower 

mixed layer diffusion (10~4 m 2 s ') an equivalent reduction in mixed layer depth resulted 

in much smaller fluxes o f utilizable nutrient with both grazing functions [Figures (5-25 

and 5-26)1]; however, little change was observed in the pattern o f dynamics (Figure 5-21

c, g, d , h).

Comparing the dynamics o f the model with sinking and non-sinking detritus [Figures(5- 

21 and 5-22)] reveal that changes in the peak flux o f utilizable nitrogen cannot solely 

explain the observed changes in model behavior resulting from changes to model 

structure. When mixed layer diffusion was large (10'3 m 2 s '1) and mixed layer shallow (20 

meters), the addition o f sinking resulted in an increase in the flux o f nitrate [Figures (5-27 

and 5-28) i], and more oscillatory solutions [Figures (5-21 and 5-22) e and f|. However 

with a deeper mixed layer the addition o f sinking also resulted in a larger flux [Figures 

(5-27 and 5-28) c], but did not have much impact on model dynamics [Figures (5-21 and 

5-22) a and b]. Additionally, when the mixed layer diffusion was smaller (10'4 m2 s"1), 

irrespective o f the mixed layer depth, adding sinking detritus resulted in a smaller flux o f 

utilizable nitrogen [Figures (5-27 and 5-28) f  and 1] yet model solutions were more 

oscillatory with function I [compare Figures (5-21 and 5-22) c and g] and unchanged 

with function V [compare Figures (5-21 and 5-22) d and h]. For the case of lower mixed 

layer diffusion the depth of the nutricline was quite depressed relative to the no sinking 

case [Figures (5-27 and 5-28) e and k]. This leads to the speculation that in addition to the 

flux o f nitrogen into the mixed layer, model excitability is in part related to the 

equilibrium nitrogen concentration within the mixed layer.
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5.4 Discussion

It is becoming more common for a detritus component to be included in NPZ marine 

ecosystem models. Such an inclusion allows more explicit representation o f the nutrient 

regeneration loop and allows for the export o f nitrogen from the euphotic zone. The 

detritus component is effectively a nitrogen store that delays the return o f organic matter 

to inorganic nutrients, and reduces the total system nutrient availability through the loss 

o f sinking material. Explicit representation o f the regeneration loop in NPZ models, 

through the inclusion o f detritus, is commonly thought, although not shown, to act as a 

‘brake’ on the model, reducing excitability.

This investigation explored the non-linear dynamics o f a depth-explicit, one-dimensional, 

seven-component NPZ model in which zooplankton could graze on multiple nutritional 

resources. The dynamic behavior o f the NPZ model was investigated for alternative 

detrital sinking rates and alternative diffusivity profiles. The survivorship o f equilibrium 

solutions and the existence o f a sub-surface chlorophyll maximum were also explored. 

Alternative stationary parameterizations for the mixed layer diffusivity (Kvm= 10"’ m 2 s '1 

or 10‘4 m 2 s '1) and the mixed layer depth (20 or 40 meters) were implemented. The model 

was parameterized for the coastal G ulf o f Alaska ecosystem but the specific predation 

rate (/?=0.05-2 [gCm"3]1~‘? day"1), and the form o f the predation function (1 < q <  2) were 

systematically varied. Model behavior was initially explored with zero sinking velocity 

for detritus ( ^ = 0  m day '1), this was subsequently increased to 10 m day"1. Two 

alternative forms for the grazing function (grazing function I and V) were implemented. 

These two functional forms were considered to be the most dissimilar structurally and 

were found previously to give rise to the ‘end m em ber’ behavior (Chapter 4).

At present no general method for analysis o f non-stationary systems o f non-linear 

differential equations exists. It is not possible to find analytical solutions to the 

intermediately complex, spatially explicit NPZ model under investigation here, therefore
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the classic approach to stability analysis, is o f limited use for classifying model behavior. 

To gain insight into the behavior o f this system model solutions were examined in time 

and space, in order to numerically seek and classify solutions. Such an approach provides 

a useful insight into the behavior o f depth-explicit models comprising multiple grazers 

and prey types.

Many o f the past studies on model dynamics consider ecosystem models that comprise 

only a single phytoplankton or zooplankton component and so do not address 

survivorship o f multiple plankton types. However, the findings presented in Chapter 4 

revealed that with some forms o f the grazing function, all model component thrived 

simultaneously only in very small regions o f parameter space. This is an important issue, 

especially with the majority o f modern ecosystem modeling studies using models that 

comprise multiple grazers and multiple prey types, and observational data most often 

shows coexistence. The results presented here re-enforce the conclusions from Chapter 4, 

i.e., that when implementing a Michaelis-Menten grazing function extended to multiple 

nutritional resources (function 1) the model was oscillatory for a broad region o f q-h 

parameter space; commonly steady solutions comprised only small phytoplankton, 

mesozooplankton, nitrate, ammonium and detritus, and were only found when predation 

on zooplankton (H) was low. Conversely, with a sigmoidal grazing function extended to 

multiple nutritional resources (function V), the model approached steady solutions for a 

much broader region o f q-h parameter space, and solutions comprising all model 

components were common. As discussed in Chapter 4, the difference in model structure 

and dynamics when implementing grazing function I and V is related to the inherent 

assumptions underlying the formulations. With function I, prey are provided no refuge 

from grazing pressure no matter how rare, whereas with function V, rare prey experience 

a reprise from grazing irrespective o f the concentrations o f the other available prey types.

The addition o f a detritus component to a previously six-component (P\,P2,Z\,Z2,N},N2) 

model was shown not to have a notable impact on the structure o f model solutions or on
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the dynamic behavior o f the model if  the detritus was unable to sink. However, if  detritus 

has a non-zero sinking velocity, the survivorship in the model solutions was little altered, 

but the vertical profiles of model components were impacted significantly. For example, 

although in some instances it is possible to get a sub-surface chlorophyll maximum 

without sinking detritus, only with the incorporation o f sinking detritus was a sub-surface 

chlorophyll maximum of a reasonably realistic depth and magnitude observed 

consistently throughout the parameter space investigated. The depth o f the sub-surface 

chlorophyll maximum with grazing function I was still a little shallow relative to 

observations (Figure 5-1). Additionally, with the inclusion o f sinking detritus, model 

dynamics tended to be more excitable; exhibiting oscillatory behavior for a broader 

region o f parameter space investigated. It has previously been shown that the addition o f 

a sinking detritus compartment to a simple three-component NPZ model hardly changes 

the nature o f the qualitative dynamics so long as the zooplankton was unable to graze 

upon it (Edwards, 2001). It is likely that this discrepancy arises because the model 

investigated by Edwards (2001) was not depth-explicit, rather it was a simple mixed layer 

model and sinking detritus was modeled as a constant loss rate from the system. Edwards 

(2001) suggested that if  the size o f the detritus pool is not required, then a simpler model 

without detritus could be used to investigate model dynamics. The results presented here 

illustrate that with depth-explicit ecosystem models, such as those commonly used in 

ecosystem studies today, the incorporation o f sinking detritus has a large impact on the 

position o f the nutricline, and thus the flux o f utilizable nitrogen into the mixed layer and 

the resulting model dynamics. Therefore, an understanding o f model dynamics and the 

correct simulation o f  depth-explicit concentrations will require explicit inclusion o f a 

detritus component within the NPZ model. It is important to note that in the model 

investigated here only the detritus component was able to sink; both large and small 

phytoplankton components were considered to be non-sinking. In reality, while small 

phytoplankton may not sink, large phytoplankton could have a significant sinking 

velocity. Additionally, the various constituents o f detritus, i.e., dead plankton and fecal 

pellets could sink at very different rates. The model results presented here provide a good
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first approximation o f the behavior o f a depth-explicit NPZ model that incorporates 

sinking detritus. However, it is important to consider that non-zero sinking rates for the 

phytoplankton or alternative sinking rates for the detritus component could have a large 

impact on model behavior. It is likely that this could have a significant impact on the 

vertical concentration profiles influencing the existence o f structural features such as the 

sub-surface chlorophyll maximum.

The addition o f diffusion to the simple three-component NPZ model has been shown to 

stabilize the water column for certain model parameterization, and does so more strongly 

at higher levels o f mixing (Edwards et al., 2000). The transition from unstable to stable 

model solutions was found to occur at Kv=  4x1 O'7 m2 s’1 which is significantly below 

diffusivities associated with even background levels o f mixing. At stronger levels o f 

mixing (lx lO '2 m V 1) associated with wind mixing all oscillations were eliminated. 

Although the model under investigation here was originally based on this simple model 

the findings presented for the more complex model are in stark contrast. It is likely that 

this discrepancy has roots in the structure of the vertical diffusion profile. Although 

Edwards et al. (2000) used a model that had a depth-explicit vertical structure they 

assumed diffusion was vertically homogenous for the 100 meters considered; his is not a 

realistic assumption for most regions o f  the w orld’s ocean.

The existence o f short term oscillations has been previously addressed for an NPZ model 

in which a zooplankton grazer can feed on multiple prey types (Ryabchenko et al., 1997). 

In this previous investigation a mixed layer model was forced with seasonally varying 

mixed layer thickness. Model oscillations were found to be initiated by abrupt changes o f 

the mixed layer depth in the spring or fall, but the existence o f these oscillations required 

a combination o f a shallow mixed layer, significant mean annual entrainment velocities 

and high nutrient concentration in the seasonal pycnocline (Ryabchenko et al., 1997). In 

agreement with these findings, it was shown here that both the magnitude o f  the mixed 

layer diffusivity and the mixed layer depth could potentially have an impact on dynamics
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of a depth-explicit NPZ model. It appears that degree o f impact o f these physical 

properties depends on the resultant change in flux o f utilizable nitrate to the mixed layer. 

In general, a change in physical forcing that gave rise to an increase in flux (an increase 

in mixed layer diffusivity or a reduction in mixed layer depth) resulted in a more 

excitable model that exhibited oscillations for a broader region o f parameter space. 

However, a comparison o f model dynamics w ith and without sinking detritus indicates 

that an increase in the flux o f utilizable nitrogen to the mixed layer does not universally 

increase the prevalence o f model oscillations. The net export o f nitrogen from the mixed 

layer, resulting from the sinking detritus, depressed the nutricline and consistently 

resulted in a smaller upward flux o f nitrogen back to the mixed layer. However, rather 

than stabilizing the model as we might expect, this reduced availability o f nitrogen either 

had no influence on, or enhanced, model excitability. It is possible that while sometimes 

an increase in availability o f nitrogen can cause oscillations, so too can the lack of 

available nitrogen.

Long term periodic (>1 year), quasi-periodic, and chaotic solutions have also been 

proposed to result from strong upwelling and high availability o f utilizable nitrogen in the 

seasonal pycnocline (Popova et al., 1997). The model used in this previous investigation 

assumed a homogeneous mixed layer and, nitrogen was fluxed into/out o f the mixed layer 

using an ‘entrainm enf function that was dependent on the changing mixed layer depth. 

This is a similar model structure to that used by Ryabchenko et al. (1997). Here, using 

stationary forcing, but a more sophisticated approach to representing vertical diffusion, 

oscillations were found to be intrinsic to the NPZ model, their existence independent o f 

seasonal forcing. Quasi-periodic or chaotic variability was not found in this investigation, 

however, the time dependent solutions considered were significantly shorter than those 

used by Popova et al., (1997) and forcing was stationary in time. It is possible that with 

seasonal forcing some o f these more complex behaviors may be observed.
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Chapter 6 . Discussion and conclusions

6.1 Summary

A full understanding of marine ecosystem dynamics requires knowledge of the influence 

o f physical forcing on the spatiotemporal distribution and abundance o f plankton, and of 

the interaction between the different trophic levels. Economical and logistical barriers 

prevent the ideal large geographic scale, high temporal resolution collection of 

observational data that would help us address many key questions that exist on marine 

ecosystem functionality. In light o f this, Nutrient-Phytoplankton-Zooplankton (NPZ) 

computer simulation models are becoming increasingly prevalent in marine ecosystem 

studies. These models are used to gain insights into how a system works or to make 

predictions o f the future state o f the ecosystem. These models can provide synchronous 

‘coverage’ o f an ecosystem o f interest, and are a relatively inexpensive research tool. 

While such computer simulation models are not a substitute for the traditional 

observational approach, they do provide a valuable way o f exploring the details o f the 

links between physical forcing (wind-mixing, heating, freshening, etc.), the nutrient and 

light fields, and plankton dynamics. As such, they are very useful in application o f the 

‘bottom up’ approach to ecosystem studies.

The observation o f oscillations in concentrations o f NPZ model components {i.e., the 

plankton and the nutrients) is common (May, 1973; Oaten and Murdoch, 1975; Steel and 

Hendersen, 1992; Edwards and Brindley, 1996; Edwards et al., 2000). Such oscillations 

have also been observed, albeit to a lesser extent, in nature. The most notable example 

being the oscillations observed in chlorophyll concentration at OWS ‘India’ (Ryabchenko 

et al., 1997; Yool, 1998). It is possible that more systems exhibit oscillations but that our 

resolution o f data collection is not o f an appropriate scale to capture them. Investigations 

in to the non-linear dynamics o f simple, zero dimensional, models (May 1973; Oaten and 

Murdoch, 1975; Franks, 1986) have shown that oscillations are an intrinsic property o f
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NPZ models, and are thought to result primarily from the predator-prey interactions. The 

investigation into NPZ model dynamics has also been extended to temporally forced 

models (Ryabchenko et al., 1997; Popova et al., 1997). These investigations suggest that 

oscillations observed in nature are related to the availability o f inorganic nitrogen to the 

phytoplankton, and their existence requires high nutrient concentrations in the pycnocline 

and a shoaling mixed layer (Ryabchenko et a l ,  1997). While either o f the above 

explanations could be the cause o f the oscillations observed at OWS ‘India’, it is also 

possible that these observations are related to unmeasured factors such as the advection 

o f successive blooms past the mooring (Yool, 1998). W hether or not such oscillations 

truly exist in nature, it is important to understand the dynamics intrinsic to NPZ models. 

Relatively complex ecosystem models, comprising multiple phytoplankton and 

zooplankton component, are now commonly used in ecosystem studies. However, to 

date, little has been done in the way o f exploring the behavior o f these models when 

subjected to steady, depth-explicit forcing. In the absence o f this knowledge the time 

dependent behavior o f coupled biological-physical ecosystem models could mistakenly 

be attributed to variable physical forcing rather than as an inherent property o f the 

biology model. An improved understanding o f model behavior will also help in the 

search for an explanation for oscillations observed in nature.

The objective o f this dissertation was to explore the dynamical behavior o f intermediately 

complex NPZ models in which multiple grazers could feed on multiple prey types. The 

role o f the functional forms for grazing and predation on the behavior o f a multiple prey 

NPZ subject to depth-explicit but stationary forcing was explored. Initially the model 

investigated comprised six-components. Subsequently, a seventh detritus component was 

added. The model was subjected to stationary physical forcing. Model dynamics and the 

structure o f the model solutions were determined when implementing alternative forms of 

the zooplankton grazing function and systematically vary the specific predation rate 

(h=0.05-2.4 [g C m '3] 1̂  day '1), and the predation exponent (1< q < 2), which determines 

the form o f the model closure term. Additionally, the survivorship o f the various model
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components was investigated. Previous studies on NPZ model stability have not 

addressed survivorship. It is likely that this is because those studies considered a model 

with only a single phytoplankton and zooplankton component and survivorship was not 

an issue. However, it has been shown here, with some forms o f the grazing function all 

model components thrived simultaneously only in very small regions o f parameter space. 

This is an important issue, because the majority o f modern ecosystem modeling studies 

use a model that comprises multiple grazers and multiple prey types.

The models investigated here were parameterized to represent the coastal G ulf o f Alaska, 

a very productive, commercially important marine ecosystem. Many questions exist 

regarding the mechanisms behind the high productivity o f this system, and the observed 

variability in productivity on a decadal time scale. Computer simulation models o f the 

G ulf o f Alaska ecosystem are being developed in order to supplement the traditional 

observational approach to ecosystem understanding. The ability to accurately model the 

details o f the influence o f physical forcing on primary (phytoplankton) and secondary 

(zooplankton) production will provide valuable insight into marine ecosystem 

functionality and contribute towards our understanding o f observed spatial and temporal 

variations in ecosystem productivity. It is hoped that the work presented in this 

dissertation will provide a valuable addition to our understanding o f complex ecosystem 

models parameterized for this region, and also to modelers o f other ecosystems in which 

multiple phytoplankton and zooplankton groups are known to play an important role in 

ecosystem dynamics.

The models investigated here were depth-explicit in the vertical, and each layer was 

coupled by the action o f diffusion. The inclusion o f a realistic diffusion profile represents 

a major advance in studies o f NPZ non-linear dynamics. At present, no general method 

for analysis o f diffusive, depth-explicit NPZ models exists. Here I have demonstrated that 

because it is not possible to solve such complex systems analytically, the traditional 

approach to studying dynamics, i.e., determination o f the eigenvalues o f the Jacobian 

(community) matrix, was o f limited use for classifying model behavior. Model dynamics
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were instead explored by examining model trajectories in time and space, numerically 

seeking and classifying the form o f solutions. Such an analysis provides a useful insight 

into behavior o f the more complex NPZ models commonly used in ecosystem studies.

6.2 Discussion

It was demonstrated that with each o f the grazing functions tested, Hopf bifurcations, 

where the form o f the solution transitioned between steady equilibrium and periodic limit 

cycles, span the q and h parameter space explored. While these transitions in dynamic 

behavior have been previously noted for simple, one-predator one-prey, NPZ models 

(Edwards and Bees, 2001) it has been shown here that with more complex ecosystems, 

where a zooplankton can graze on a mixed prey field, the location o f the bifurcations in 

parameter space is highly dependent on the form o f the grazing function. The period o f 

the oscillatory, limit cycle solutions was also found to depend predominantly on the form 

o f the grazing function. The period o f limit cycles associated with a three-component 

NPZ model is commonly reported to be about constant and o f the order o f 34-35 days 

(Steele and Henderson, 1992; Edwards and Brindley, 1996), however, in such 

investigations only one form (sigmoidal) was used to simulate zooplankton grazing on a 

single prey. This investigation demonstrates that when zooplankton can graze on a mixed 

prey field, alternative forms o f the grazing function can result in very different oscillation 

periods, and regions in q-h space o f near constant period may not exist.

Permanent coexistence o f model components at equilibrium was also found to be strongly 

influenced by the choice o f grazing function. With some forms o f the grazing function it 

was rare for all predators and prey to exist simultaneously, while with others, all 

components coexisted simultaneously for large regions o f the param eter space explored. 

It was proposed that the difference depends on the assumptions inherent in the form of 

the grazing function, i.e., if  and when rare prey types are provided with a refuge from 

grazing. If no prey refuges exists, or if  the refuge applies only when the concentration of 

the total prey is low', regardless how rare any one prey type may be, then the system
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typically purges itself until only one predator and one prey remain. The non-linear 

dynamics o f the remaining components are then determined by the efficiency o f the 

remaining grazer to capture the remaining prey.

The addition o f detritus to an NPZ model was thought o f little consequence for model 

dynamics (Edwards, 2001). In this study, the dynamic behavior and structure o f solutions 

for a six-component model was not notably impacted by adding a detritus component, if 

the detritus were unable to sink. If detritus has a non-zero sinking velocity, such that 

utilizable nitrogen was exported from the upper mixed layer, the structure o f model 

solutions, with regards to survivorship o f model component, was little altered, but a 

downwards shift in the position o f the nutricline and a concomitant reduced upwards flux 

o f utilizable nitrogen was observed. This export o f nitrogen from the mixed layer 

enhanced the probability o f simulating the sub-surface chlorophyll maximum and also 

increased the excitability o f the model. Detritus therefore plays an important role in NPZ 

model dynamics and must be included in the model to correctly simulate the depth- 

explicit concentrations o f model components or to have a understanding o f the potential 

excitability o f the system.

The existence o f short term oscillations for an NPZ model in which a zooplankton grazer 

can feed on multiple prey types has been previously addressed (Ryabchenko et al., 1997). 

The susceptibility to oscillations was attributed to abrupt changes o f  the mixed layer 

depth in the spring or fall, and was dependent on a small mixed layer thickness, 

significant mean annual entrainment velocity and high nutrient concentration in the 

seasonal pycnocline. This past investigation used an upper mixed layer model which was 

forced with seasonally varying upper mixed layer thickness. Both the magnitude o f the 

mixed layer diffusivity and the mixed layer depth (through their impact on flux o f 

utilizable nitrogen to the mixed layer) were shown to impact the dynamics o f  a depth- 

explicit NPZ model. Here, changes to physical forcing that increased the upward nutrient 

flux (i.e., an increase in mixed layer diffusivity or a reduction in mixed layer depth)
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resulted in a more excitable model that exhibited oscillations for a broader region of 

parameter space. However, oscillations were found to be intrinsic even in the physically 

stationary models investigated here; their existence is not dependent on variable seasonal 

forcing. Additionally, by comparing model dynamics with and without sinking detritus, it 

was shown that a reduction in the availability o f utilizable nitrogen to the mixed layer 

does not universally decrease the prevalence o f model oscillations. The net export o f 

nitrogen from the mixed layer, resulting from the sinking detritus, depressed the 

nutricline and consistently resulted in a smaller flux o f nitrogen back to the mixed layer. 

Rather than stabilizing the model as one might expect, this reduced availability o f 

nitrogen either had no influence on, or enhanced, model excitability. This illustrates that 

while sometimes an increase in availability o f nitrogen can cause oscillations, so too can 

the lack o f available nitrogen.

Through this dissertation the dynamical behavior o f intermediately complex NPZ models 

in which multiple grazers could feed on multiple prey types has been shown to be greatly 

impacted by the choices o f functional forms, both for predation and grazing. Balancing 

the ‘best’ form for simulation o f a biological process from a m odeler’s point o f view and 

from an observationalist’s point o f view can present a challenge. For example, an 

observationalist may seek a form for the grazing function that appears to best describe the 

grazer under investigation. However, usually only one, or a few, species are considered at 

a time. Conversely, due to the necessary aggregation that modelers perform when seeking 

to describe an ecosystem, such a functional form may not be appropriate. Often, trophic 

levels rather than individual species are considered, and so certain functional forms may 

not make sense from a biological point o f view. 1 do not wish to advocate that any one 

functional form for grazing or predation is better than the others available, however, the 

elimination o f model components or the production o f oscillatory model solutions are 

generally considered undesirable traits, and a functional form that promotes such 

behavior may be less favored. It is important that prior to attempting interpretation o f 

results from simulations using coupled biological and physical models, users and
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developers o f  ecosystem models should be aware o f the potential impact their choice o f 

function may have on the intrinsic oscillatory nature o f the model.

6.3 Future Work

There is much left for study in this area o f research. Although the models investigated 

here represent major advance in terms of biological complexity and depth-explicit 

forcing, the forcing was temporally stationary. The next logical step in the progression of 

investigations into NPZ non-linear dynamics would be to explore the impact o f seasonal 

forcing on a depth-explicit model in which zooplankton can graze on multiple prey items 

and detritus are able to sink. Expansion of model dimensions in space would also prove 

insightful. It is possible that the incorporation o f two or three dimensional physics into 

the model would act to dampen or enhance the model excitability. Further expansion o f 

the biological complexity could also be an interesting path to follow. Stability studies, 

including this one, generally focus on the impact o f the predation function and/or the 

grazing function. This is because several alternative forms have been presented in the 

literature to simulate these biological processes, and it is not known which is most 

‘correct’. There is less uncertainty associated with the other process functions in the 

model, i.e., the functional form for nutrient uptake, and as a result the impact o f the form 

of these other terms on model dynamics is generally overlooked. Many o f the more 

complex NPZ models used today in ecosystem studies incorporate additional complexity 

whose impact on dynamics has been little considered. For example, the self shading o f 

phytoplankton, the temperature dependent growth o f phytoplankton and zooplankton, and 

the capture efficiency o f a zooplankton for the available prey. As we come to rely more 

on these models as a tool to interpret marine ecosystem functionality it will be important 

to continue to expand our understanding o f the non-linear behavior inherent in these 

models.
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6.4 Closing Remarks

Despite the simplicity of the models investigated here, with regard to the time 

dependency and biological complexity, the results do represents a significant advance o f 

our understanding into NPZ model dynamics. These findings contribute towards the more 

general understanding o f non-linear dynamics and structural stability of complex NPZ 

models in which multiple grazers can select from multiple prey types. I have provided an 

insight into the impact that the choice o f commonly used multiple resource grazing 

functions and mortality functions can have on model dynamics. These findings have 

important implications for modeling efforts in environments where multiple prey and 

predator classes persist simultaneously. It is hoped that this analysis will be o f value 

during construction o f models for such ecosystems, and for interpreting results from 

biophysical model simulations in which the physical forcing is varied over a seasonal 

cycle.
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