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A B S T R A C T

The study examined adaptation in the seagrass genus Phyllospadix  to 

rocky substrates, habitats not generally exploited by seagrasses. One hypothesis 

tested whether the genus exhibits anatomical features distinguishing it from other 

seagrasses. A corollary predicted that individual P hyllospadix  species show 

additional specialization, based on observations that three species are distinctly 

zoned where they occur together.

A second hypothesis tested a model of carbon assimilation that predicts that 

submerged aquatic plants growing on hard substrates, such as Phyllospadix species 

and most marine algae, experience less transport resistances to inorganic carbon uptake 

than rooted and rhizoidal plants. As a consequence, it was predicted that Phyllospadix 

species would show enzymatic discrimination against carbon-13 similar to marine algae and 

dissimilar to other seagrasses.

Carbon isotopic variability in Phyllospadix serrulatus and P hyllospad ix  

torreyi was compared with that of the algae Egregia menziesii and Halosaccion  

amerlcanum growing at the same location. Carbon isotopic variability in eelgrass. 

Zostera marina, was also examined to provide a basis of comparison to sediment rooted 

seagrasses.
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Comparison with Z. marina was useful in defining anatomical features in 

Phyllospadix that are adaptations to rocky littoral environments. These features include 

greater hypodermal fiber and roothair development, thickened rhizomes, and smaller 

lacunae. Comparison among Phyllospadix spp. for microhabitat adaptations was less 

fruitful.

Phyllospadix spp. show carbon isotopic discriminatory patterns distinct from Z. 

marina and marine algae. Although marine algae and Phyllospadix spp. overlapped 

isotopically, only the seagrasses became isotopically lighter with increasing intertidal 

height, probably through atmospheric carbon dioxide incorporation. Carbon isotope ratios 

in submerged seagrasses did not appear to be affected by water motion, as predicted by 

boundary layer considerations. An observed correlation between leaf thickness and leaf 

isotopic ratios also indicated complications to simple models of carbon assimilation in 

submerged aquatic plants.
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Chapter 1: Introduction

Phyllospadix  is a seagrass genus of five species restricted to exposed rocky 

littoral and sublittoral environments in the northern Pacific. The five species are anomalies 

among the approximately fifty seagrasses because they grow on hard substrates. Den 

Hartog (1970) reported that both a tropical Indo-Pacific species, Thalassodendron  

ciliatum  (Forsk.) den Hartog, and an Austral temperate species, A m ph ibo lis  

antarctica (Labill.) Sonder et Aschers., will also sometimes grow on rocks, coral reefs, or 

hard packed clays. However, Phyllospadix is the only flowering plant genus that grows 

predominately on hard substrates in the ocean. This propensity to grow not only where 

there is no sediment, but also on exposed shoreline, (Ricketts, et al., 1985) and in 

competition with macroalgae (Turner, 1985) suggests that the plant is ecologically distinct 

from other seagrasses. This implies a divergence from evolutionary and ecological 

patterns of succession, nutrient cycling, and community stability that have been used to 

distinguish soft substrate communities dominated by seagrasses from those dominated by 

marine algae (McRoy and Lloyd, 1981). Also implicit is a prediction that Phyllospadix 

must have adapted in ways analogous to how macroalgae adapt to hard rocky habitats.

These adaptions could have an anatomical, physiological, ecological, or other 

biological form, but previous studies of Phyllospadix  do not provide immediate 

examples. There are only a few studies specifically centered on Phyllospadix (Dudley, 

1894; Gibbs, 1902; Miki, 1933; Drysdale and Barbour, 1975; Barbour and Radosevich, 

1979; Phillips, 1979; McMillan and Phillips, 1981; Turner, 1983a, 1983b, 1985; Turner
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and Lucas, 1985). Much of this work either does not address the habitat divergence of 

Phyllospadix from sediment rooted seagrasses or indicates that analogous ecological 

processes are present irrespective of substrate. For instance, Turner (1985) concluded 

that P. scouleri Hook, has a high persistence stability and responds slowly to 

disturbance. This is similar to successional models of climax seagrass communities 

growing in soft sediment (McRoy and Lloyd, 1981). In addition, while recruitment of P. 

scouleri seedlings is physically facilitated by several rocky intertidal algae (Gibbs, 1902; 

Turner, 1983), the rhizoidal marine green alga Caulerpa cuppressoides (West) C. 

Agardh nutritionally facilitates recruitment by Caribbean sediment based seagrasses 

(Williams, 1981), so comparable systems are operating in both hard and soft substrates.

I tested two predictions about Phyllospadix made by Phillips (1979) and Raven

(1981) concerning niche differentiation and carbon assimilation, respectively. The niche 

differentiation prediction was the basis for an anatomical study of the differences among 

Phyllospadix  species and in contrast to the sediment rooted seagrass Zostera  

marina L. The carbon assimilation prediction was the basis for a study of stable carbon 

isotopic variability within Phyllospadix. For comparison I also studied carbon isotopic 

variability in two marine algae growing alongside Phyllospadix spp. and in eelgrass, 

Zostera marina L. Both portions of the study had as a goal testing the hypothesis that 

Phyllospadix has adapted to life in rocky marine environments in ways analogous to 

marine macroalgae and divergent from other seagrasses.
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Phillips' Prediction

Phillips (1979) observed that the three northeastern Pacific species, P. scouleri, 

P. serruiaturs Rupr. ex Aschers., and P. torreyi S. Watson, are distinctly zoned 

where they grow at the same location. He predicted that adaptations in the genus would 

permit each species to succeed in the habitat that it dominates. For example, it could be 

expected that leaves and other plant organs of P. serrulatus might be less robust than 

those of P. torreyi and P. scouleri because P. serrulatus grows highest intertidally 

when all three species co-occur. Between the genera Phyllospadix  and Zostera, 

differences could be related to the different substrates or degrees of exposure the plants 

are adapted to. Anatomical comparisons within northeastern Pacific Phyllospadix and in 

contrast to Z. marina form the basis for Chapter 2.

Raven's Prediction

Raven (1981), in a discussion of nutritional strategies of submerged plants, 

categorized Phyllospadix as a haptophyte, a plant not penetrating into the substrate. 

Raven categorized haptophytes as plants that must obtain all of their nutrients from the 

bulk water phase, as opposed to the sediments or pore waters within sediments. In 

addition to Phyllospadix, this definition of haptophytes includes most benthic algae, all 

aquatic lichens, most aquatic mosses and liverworts, coelenterates and lamellibranchs with 

symbiotic microalgae, and the freshwater angiosperms in the Podostemaceae. He 

differentiated these plants from rhizophytes, plants that do penetrate the substrate and 

can obtain some of the nutrients from the sediment. In categorizing Phyllospadix as a 

haptophyte, Raven also made a prediction that the plant acquired nutrients in ways similar



to most marine algae. He suggested that a plant 513C value1, a standard means of 

expressing carbon isotope ratios, could be used to measure the extent of "carbon 

transport resistances". He predicted that diffusion limitations through unstirred boundary 

layers and during active transport of bicarbonate at the plasmalemma or chloroplast 

envelope could influence carbon isotope ratios of aquatic plants.

Raven (1981) suggested that acquisition of carbon (C), nitrogen (N), and phosphorus 

(P) would be fundamentally different in haptophytes and rhizophytes. He predicted that 

there would be greater uptake resistances for C assimilation in rhizophytes because these 

plants can obtain N and P from the sediments. Thus the relative scarcity of N and P with 

respect to C would be diminished in aquatic rhizophytes and transport resistances during 

carboxylation were predicted to be higher and more apparent. Raven used carbon isotope 

discrimination data to evaluate these transport resistances and observed that rhizophytes 

often were heavier isotopically (exhibit less negative 513C values) than haptophytes.

4
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Published S13C values for Phyllospadix spp. tend to verify Raven's hypothesis. As a 

genus, Phyllospadix was reported to have the most negative mean 513C value of all 12 

genera of seagrasses (McMillan, et al., 1980). Within the genus, species mean 513C

values ranged from -12.4 to -16.8. By comparison, rhizophytic seagrass mean 513C values 

were as heavy as -4.9, -5.0, and -5.8 [Syringodium isoetifolium  (Aschers.) Dancy, 

Syringodium  filiforme Kutz., and Enhalus acoroides (L.f.) Royle, respectively]. 

Even the closely related rhizophytic eelgrass, Z. marina (species mean: -9,9), was 

heavier than all Phyllospadix  species. Nevertheless at least a couple of other 

explanations are possible for the relatively light S13C range of Phyllospadix. Raven 

(1970; 1981) and Smith and Walker (1980) predicted that 813C values would be more 

negative in aquatic plants growing in fast-flowing water with small boundary layers around 

leaves. In these situations, inorganic carbon diffusion would be enhanced and carbon 

isotope discrimination would be closer to that expected solely from enzymatic 

discrimination. (The initial carboxylating enzyme in the Calvin cycle, ribulose-1,5 

bisphosphate carboxylase, discriminates against 13C, so all photosynthetic carbon is 

slightly depleted in 13C relative to the universal average of 98.9% 12C: 1.1% 13C. For a 

more extensive treatment, see Smith and Epstein, 1971; Bender, 1971; and O'Leary, 

1981.)

Phyllospadix spp. can grow in exposed and high flow regimes and therefore might 

be expected to be isotopically light. Furthermore, Amphibolis, a seagrass genus that 

requires substantial water flow (den Hartog, 1970) was reported to have the second 

lightest mean 513C value (-14.2) among seagrass genera (McMillan, et al., 1980).

5



Phyllospadix spp. zonation observed by Phillips (1979) presents a possibility, however, 

of isolating isotopic effects due to water motion. Even submerged plants within an 

individual species are subjected to highly variable water motion, depending on whether

they grow in tidal pools or surge zones. Thus it seemed useful to compare 813C values 

between Phyllospadix spp. growing in high flow regimes, for instance, surge zones, 

versus those plants growing in tidal pools that are very still at low tide.

Another possible explanation for more negative 813C values in Phyllospadix spp. is

exposure to atmospheric carbon dioxide. Atmospheric carbon dioxide is 7 ° /o o  to 10%o

lighter isotopically than oceanic bicarbonate, depending upon temperature (Thode, et al, 

1965; Deuser and Degins, 1967; Wendt, 1968; Mook, et al., 1974). Many aquatic plants 

can use bicarbonate (Raven, 1970; Steeman Nielsen, 1975; Beer, et al., 1977; Beer and 

Waisel, 1979; Millhouse and Strother, 1986). Most seagrasses are sublittoral (den Hartog, 

1970), but at least one species of Phyllospadix, P. serrulatus, is well adapted to air 

exposure and grows at the highest levels in the intertidal (Phillips, 1979). This species

showed the most negative mean S13C value (-15.4) of the three northeast Pacific species 

(McMillan, et al., 1980). Significantly, 813C values for several species of Zostera that can 

occur intertidally are also isotopically light. McMillan, et al. (1980) reported mean 813C 

values of -15.8 (North American Z. japonicus Makino), -16.8 (Asian Z. japonicus), 

-11.6 (Z. noltli Hornem.), and -15.8 (Z. capensis Setchell). This raises the possibility 

that P. serrulatus and other intertidal seagrasses may be isotopically light because they 

can assimilate bicarbonate when submerged and atmospheric carbon dioxide when 

emerged. The most obvious means of isolating this factor would be to analyze isotopic

6



variability over a gradient of tidal heights. An assumption has to be made that intertidal 

plants at different tidal heights, excluding those continually submerged in tidal pools, are 

subjected to the same flow velocities when submerged at high tide.

Raven's (1981) categorization of Phyllospadix  spp. as an isotopically light 

haptophyte is thus complicated by potential factors of water motion and atmospheric 

exposure. Nevertheless these factors could be studied by testing for isotope variability 

with tidal elevation and with variable water motion. Examining isotope variability in marine 

algae over the same gradient allows testing of Raven's (1981) prediction that 

Phyllospadix spp. shows algal-like carbon isotope fractionation. Comparison of carbon 

isotope variability patterns between Z. marina and Phyllospadix spp. should reveal 

the extent that haptophytic Phyllospadix  spp. differ from rhizophytic Z. marina in 

carbon isotope assimilation. These comparisons are covered in Chapter 3. This chapter is 

a study of carbon isotope variability in P. serrulatus and P. torreyi as well as two 

marine algae, Egregia menziesii (Turn.) Aresch. and Halosaccion americanum I.K. 

Lee. Also included is a study of isotopic variability in Z. marina, including the appraisal of 

an assumption that is implicit in Raven's treatment of submerged plant carbon isotope 

ratios.

Raven's comparison of rhizophyte versus haptophyte 813C values was based solely 

on leaves. Very little information is available on fractionation within plant organs other than 

leaves (O'Leary, 1981). Since seagrass rhizone biomass can be as great as twice leaf 

biomass (Sand-Jensen, 1975) differential fractionation in rhizome tissue could affect 

interpretations of how C is fractionated within the plant. Z. marina is better suited to 

examination of these two assumptions than Phyllospadix spp. because the congested

7



and invasive nature of Phyllospadix roots and rhizomes make separation of plant organs 

difficult.

Summary

The hypothesis that Phyllospadix spp. have developed specific adaptions to life in 

rocky shore habitats is examined by standpoints of anatomy and carbon isotope 

fractionation. Hypotheses involving the influence of isotopic discrimination factors 

external to Raven's suggestion of haptophytism are also tested to isolate those 

influences. These factors are leaf thickness, air exposure, and water motion. Comparative 

carbon isotope variability studies are also undertaken with marine algae and Z. marina to 

assess the extent to which carbon isotopic variability in Phyllospadix spp. is analogous 

or divergent to these other marine plants.

8



Chapter 2: Anatomical Adaptions to Rocky Substrates by 

Phyllospadix spp. 

Introduction

Phyllospadix is the only flowering plant genus that grows predominately on hard 

substrates in the ocean (Chapter 1). This propensity to grow where there is no sediment, 

on exposed shoreline, (Ricketts, et al., 1985) and in competition with macroalgae (Turner, 

1985) has led to a prediction (Phillips, 1979) concerning the mechanisms of adaption.

Phillips (1979) observed that the three northeastern Pacific species, P. scouleri 

Hook.; P. serrulatus Rupr. ex Aschers., and P. torreyi S. Watson, are distinctly zoned 

where they grow at the same location. He predicted that adaptive properties among the 

species would permit each to succeed in the zone that it dominates. Turner and Lucas 

(1985) tested for such differences in successional processes among the three species, 

but concluded that modes and final stages of succession were similar in all three species.

Based on anatomical and morphological evidence, Littler and Littler (1980) have 

predicted general relationships between form and function in marine algae. If this 

prediction can be extended to seagrasses growing at the same location, it follows that 

anatomical and morphological distinctions among co-occurring species should be related 

to the zones each dominates. Between Phyllospadix and the genus Zostera, which is 

rooted in soft sediments, differences could be related to the different substrates or 

degrees of exposure the plants are adapted to. Thus two separate, but related questions 

were addressed in this study: Are there anatomical differences between the genera

9



Phyllospadix and Zostera that can be related to the habitat of Phyllospadix? 

And if so, are there anatomical differences among species of Phyllospadix growing at 

the same location that can be related to the individual zones where a particular species is 

dominant? In addition to these comparisons among leaf, rhizome, and root anatomies, 

intra-specific changes in leaf anatomy over intertidal gradients were also assessed.

The anatomy of leaves, rhizomes, and roots of Phyllospadix spp. have been 

described on a number of occasions (Sauvageau, 1890; Chrysler, 1907; Miki, 1933; 

Tomlinson, 1980; 1982). In most cases, no attempt was made to relate descriptive 

observations to the ecologically distinct environments that the genus occupies. As with 

most aquatic vascular plants (Arber, 1920; Sculthorpe, 1967), Phyllospadix spp. are 

characterized by a reduction or elimination of lignified xylem elements, cuticle, stomata, 

and simplification of internal anatomy.

Materials and Methods

Leaves, roots, and rhizomes of P. serrulatus and P. torreyi were collected at 

North Cove, Cape Arago, Oregon (43°20'N; 124°22'W) on 28-29 August 1984 along an 

intertidal transect extending from -0.40 m to +0.94 m, mean lower low water (MLLW). 

Linear distance between samples was 4 m. P. scouleri were also collected from the 

South Cove of Cape Arago, where it grows in scattered tidal pools. P. serrulatus at 

Sandy Beach, Sitka, Alaska (57°03'N; 135°14'W) between approximately -0.88 m to +0.88 

m MLLW were sampled on 11-12 August 1983. Tidal heights were estimated by 

interpolating tide tables (U.S. Department of Commerce, 1983; 1984) for several days of 

observations of water levels.

10



All plant samples were fixed in 5% glutaraldehyde, 0.1 M cacodylate buffer with 3% 

sucrose for 24 hours, then rinsed three times over an hour and stored in a 0.1 M cacodylate 

buffer with 22% sucrose at 2CC. Samples were sectioned and then dehydrated using a 

progressively stronger ethanol series follwed by processing in a Bomar critical point dryer. 

After mounting, samples were sputter coated with gold-palladium and examined using a 

JEOL Model JSM-35 Scanning Electron Microscope. This is the standard method used 

for marine specimens at the Electron Microscope Facility, University of Alaska - Fairbanks, 

M. Borchert, per. comm.).

In general, three leaves were collected at each sampling point along the intertidal 

gradients at Cape Arago and Sitka. The oldest leaf on a shoot at each sampled tidal height 

was sectioned 1 cm from the meristem to provide consistent samples. Leaf thicknesses 

were determined for all leaves collected and outer epidermal cell wall thicknesses were 

determined for most of these leaves.

Results

Morohometric determinations

P. torreyi and P. serrulatus leaf thicknesses tended to decrease as tidal height 

increased (Figures 1 and 2). Both parametric (Pearson product-moment coefficient) and 

non-parametric tests (Spearman's rho and Kendall's tau) indicated a significant relationship 

(Table 1). Epidermal cell wall thicknesses also showed a significant tendency to decline 

with increasing tidal height, but only at Cape Arago (Figure 3 and Table 1). At Sitka, no 

significant relationship was observed (Figure 4 and Table 1).

P. serrulatus mean leaf thicknesses showed a wider range at Sitka (0.0836 to

11
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Tidal Height (m)

Figure 2.
Leaf thicknesses (mean ± SD) of P h y llo s p a d ix  
s e r ru la tu s  in relation to tidal height at 
Sitka, Alaska (1983).
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s e r ru /a tu s  at Cape Arago, Oregon (1984).
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Figure 4.

Outer epidermal cell wall thicknesses (mean ± SD) 
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height at Sitka, Alaska (1983).
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Table 1. Correlation analyses
_  . p (non-
T 6 S t  r  p param e tric ) ^ S i te

P. torreyi leaf 
thickness vs. elevation -0.639 0.0005<

p<0.005 p<0.001 15 Cape
Arago

P. serrulatus leaf 
thickness vs. elevation -0.509 0.0005<

p<0.005
p<0.001 30 Cape

Arago

P. serrulatus leaf 
thickness vs. elevation -0.45 0.0005<

p<0.005
0.025<p
<0.01 39 Sitka

P. torreyi cell vail 
thickness vs. elevation

-0.61 0.025<p
<0.01

0.005<p
<0.001 12 Cape

Arago

P. serrulatus cell 
v a il thickness vs. elev. -0.55 0.0005<

p<0.005
p<0.001 32 Cape

Arago

P. serrulatus cell 
vail thickness vs. elev. 0.089 p>0.25 p>0.25 30 Sitka

0.2635 mm) than at Cape Arago (0.0896 to 0.1577 mm); (Figures 1B and 2). P. torreyi, 

which occupies the lower intertidal and subtidal zone at Cape Arago, but is not present at 

Sitka, showed a mean leaf thickness range of 0.2094 to 0.8467 mm, nearly an order of 

magnitude thicker than P. serrulatus plants growing immediately higher intertidally 

(Figure 1). The mean epidermal wall thickness of P. torreyi at Cape Arago ranged from 

1.36 to 2.72 (I (Figure 4).



Leaf sections of P. torreyi were characterized by thicker epidermal walls than P. 

serrulatus (Figures 3, 4). (P. scouleri epidermal wall width was 4.55|i; n=1). P. 

scouleri and P. torreyi are distinguished by the presence of three vascular bundles in 

leaf cross-section (Figures 5, 6). Leaves of P. torreyi are considerably thicker and 

narrower than either of the other two species and the species is most readily recognized in 

the field. P. serrulatus has the widest leaves and is characterized by either 5 or 7 

vascular bundles (Figure 7).

Other anatomical structures

P. serrulatus has a thin cuticle (Figure 8). Hypodermal fibers were present in all 

species, grouped below the leaf surface, around vascular bundles, and particularly 

concentrated on the lateral edges of the leaf (Figures 9,10). Numbers of fibers per bundle 

and frequency of appearance appeared to be relatively constant in all three species at all 

tidal heights. Roots and rhizomes of all three Phyllospadix spp. showed extensive root- 

hair development (Figure 11). For comparison, root cross-sections of Z  marina did not 

show this extensive development (Figure 12). Outer epidermal walls of roots and 

rhizomes of the three Phyllospadix species were all thicker than Z  marina. Rhizomes 

and roots of P. torreyi and P. scoyieri are more firmly attached to the substrate than 

P. serrulatus (per. obs ).

Perforated plates at the base of lacunae were observed in one cross-section of P. 

serrulatus (Figures 13 and 14). Lacunal air spaces in this genus are not as extensive as 

in Z  marina.
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Figure 5. P. s c o u le r i , leaf cross-section.
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Figure 10. P. s e rru fa tu s , hypodermal fibers, 
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Figure 1 \ . P. serru/atus  root and roothairs
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Figure 12. Z. m arin a  root and roothairs





Figure 13. P. s e rru /a tu s , perforated lacunal 
diaphragms.





Figure 14. P. s e r ru /a tu s , perforated lacunal 
diaphragms.
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Discussion

Comparison with the closely related species Z. marina was most useful in defining 

those characteristics that give Phyllospadix spp. the ability to live in rocky, exposed 

environments. These characteristics include thickened leaf and rhizome epidermal tissue, 

reduction in lacunae, greater roothair development and more extensive development of 

hypodermal fibers. Leaf thicknesses vary according to tidal elevation, although epidermal 

wall thicknesses only varied in this way at one of two locations.

Examination of roots of P. serrulatus (Figure 11) indicated that compared with Z  

marina (Figure 12), the plant shows differences which may be related to life in exposed 

rocky environments. Rhizome epidermal tissue is thickened and this may mechanically 

strengthen the plant. The plant also typically shows greater roothair development than in 

Z. marina. This could be the physical mechanism by which sediment is collected about 

the roots of the plant (Gibbs, 1902; Phillips, 1979).

The observation of extensive roothair development suggests that the plant may be 

able to obtain a significant portion of inorganic nutrients through its roots. If this is the 

case, it would contradict an assertion that the genus obtains inorganic nutrients from the 

bulk water phase (Raven, 1981). The observation of small amounts of sediment trapped 

within the roothairs also suggests that this nutrient assimilation categorization (Raven,

1981) is inappropriate.

One anatomical feature of Phyllospadix spp. that particularly appears related to 

water motion in the rocky intertidal is the presence of numerous non-lignified hypodermal



leaf fibers (Figures 9 and 10). Phyllospadix spp. share these fibers with Posidonia 

oceanica (L.) Delile (Sauvageau, 1889), a seagrass with an apparently obligate need to 

live in areas of high relative water motion (Molinier and Picard, 1952). The species of 

Zostera are regarded as the closest relatives phylogenetically to Phyllospadix species 

(Tomlinson, 1982). These species are also characterized by these hypodermal fibers 

(Tomlinson, 1982), although in reduced numbers compared to Phyllospadix (Miki, 

1933; Tomlinson, 1982). Sauvageau (1890) considered these numerous hypodermal 

fibers to one of the major distinguishing features of the genus Phyllospadix. Colombo, 

et al. (1983) observed fewer hypodermal fibers in Posidonia oceanica leaves found at 

depth of up to 30 m as opposed to shoots growing near the surface and attributed this to 

greater hydrodynamic forces nearer the surface. In this study of Phyllospadix spp., the 

number of bundles and the spacing of bundles within the leaf did not vary irrespective of 

species or tidal height.

Miki (1933), in a size comparison of lacunae between the two genera, characterized 

Phyllospadix spp. lacunae as being smaller than Zostera spp. lacunae. Sauvageau 

(1891) also observed extensive lacunae in Z. marina (Figure 15). Since lacunae in 

aquatic plants have been implicated in gas exchange during photosynthesis (Hartman and 

Brown, 1967), the smaller lacunae in Phyllospadix are consistent with a plant living in a 

more oxic environment. The freshwater Podostemaceae, which lack lacunae entirely, also 

are restricted to high flow regimes (Sculthorpe, 1967).

The character of the perforated lacunal plates (Figures 13 and 14) may be influenced 

by the environment in which Phyllospadix spp. grow because there have been few 

reports of perforation plates within submerged plant leaves (Tomlinson, 1980;
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Figure 15. Leaf cross-section of Z. marina, showing 
enlarged lacunal spaces, (from Sauvageau, 1891)
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1982). These few records of perforated plates within submerged plant protoxylem or 

lacunae are limited to the nodal vascular complex in the stem, close to where all the leaves 

in this study were sectioned. The perforation plates in this study were only observed in 

one cross-section.

The presence of a thin cuticle in P. scouleri has been reported by Tomlinson 

(1982), who also observed that the outer epidermal wall was "quite thick." P. scouleri 

showed the greatest epidermal wall thickness of the three species examined in this study. 

At Cape Arago, P. scouleri grows submerged in tidal pools in the middle intertidal zone, 

but it is not particularly common. The discovery of a cuticle on leaves of P. serrulatus is 

not particularly suprising in light of the presence of a cuticle on P. scouleri. Tomlinson

(1982) attributed the presence of aquatic plant cuticles to the "specialized exchange 

function of submerged photosynthetic epidermal cells, especially in salt water."

Morphometric variation in epidermal wall thickness showed a consistent pattern at 

Cape Arago, becoming increasingly thin at the higher tidal elevations, suggesting a 

physiological relationship to wall thickness. This pattern was not observed at Sitka, 

however. Inasmuch as thinner epidermal walls could be expected on thinner leaves, some 

counteracting factor may be present at Sitka that causes thicker epidermal walls on upper 

intertidal plants. Differences between the two sites include colder water and air 

temperatures at Sitka, as well as greater precipitation. These factors might cause 

thickening of epidermal walls on plants growing at the higher intertidal levels.

The Sitka and Cape Arago sites also differ fundamentally in that there is no intra-genus 

competition at Sitka as there is at Cape Arago. P. serrulatus at Sitka grows over a wider



tidal elevation range than at Cape Arago, replacing P. torreyi in the lower intertidal and 

subtidal (Figures 1, 2). The range of P. torreyi extends as far north as Vancouver Island 

(Phillips, 1979), and it may be limited at that point by colder water. By contrast, P. 

serrulatus is the most northern species in the genus, ranging from Unimak Island, Alaska 

(54°41 'N, 163°11 'W) north and east to Prince William Sound (60°N, 147°W) and then south 

to southern Oregon (Appendix 8). This suggests that where both species occur, P. 

torreyi may out-compete P. serrulatus in the subtidal and lower intertidal. P. 

serrulatus nevertheless grows higher intertidally and dominates upper zones at Cape 

Arago (Phillips, 1979; Turner and Lucas, 1985; pers. obs.). Rhizomes of P. serrulatus 

have only 2 roots per node versus 6 to 10 per node in P. torreyi and P. scouleri (den 

Hartog, 1970; Phillips, 1979). One consequence of this is that P. serrulatus is not as 

firmly attached to the substrate as the other two species (pers. obs.). Thus while P. 

serrulatus can live at lower tidal levels (e.g. Sitka), it may be out-competed when P. 

torreyi co-occurs if it is more vulnerable to disturbance. The degree of rhizome 

attachment suggests that P. serrulatus cannot live competitively in as exposed an 

environment as P. torreyi and P. scouleri. While not contradicting the findings of 

Turner and Lucas (1985) for the Cape Arago site they used, this distributional pattern 

suggests that competition during succession may be different for the three species in 

places of greater exposure.

P. serrulatus leaf thicknesses at Cape Arago were less than those at Sitka (Figures 

1B and 2). Sitka P. serrulatus leaves at the same tidal heights where P. torreyi grows 

at Cape Arago (below -0.2 m) approached the robustness of P. torreyi at Cape Arago 

(Figures 1A and 2). This supports the suggestion that P. serrulatus can grow well at the
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lower tidal elevations except when in competition with P. torreyi.

Leaf thicknesses of P. serrulatus at both locations varied consistently, becoming 

thinner with increasing tidal height. This probably represents an adaptation in higher 

intertidal plants to stresses of exposure and greater temperature variation. Robustness of 

P. serrulatus at the upper tidal levels, particularly at Cape Arago, also could be affected 

by air temperatures. Cape Arago was reported to be the southern limit for the species 

(Phillips, 1979), although it was observed in this study growing mixed with P. torreyi as 

far south as Cape Blanco, Oregon (42°50'N, 124°33'W, Appendix 8).

The leaf thickness pattern observed here differs from that found in a Posidonia 

oceanica community in the Mediterranean (Colombo, et al., 1983). In that study, leaves 

were thickest 1 m below the sea surface and became increasingly thinner with greater 

depth. One difference between Posidonia oceanica and P. serrulatus is the former 

cannot withstand emersion (Molinier and Picard, 1952). Among the northeast Pacific 

species of Phyllospadix, P. serrulatus appears best adapted to life in the intertidal 

(Phillips, 1979; Turner and Lucas, 1985). Posidonia oceanica was observed to have 

thinner leaves in increasingly light limited waters, with the thinnest leaves observed at 30 m 

depth. Thinnest leaves observed in this study were at the highest intertidal levels, 

indicating that exposure stresses rather than light limitations were the predominant 

influence.

Although Phillips (1979) articulated a need for investigation of adaptive properties of 

niche differentiation among the three North American Phyllospadix species, this 

interspecific anatomical comparison has not revealed features unique to one or another 

species. Turner and Lucas (1985) came to an analogous conclusion in analyzing
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succession processes that the three species dominate: "these seagrasses appear to play 

similar roles in their communities." Nevertheless, the scarcity of P. scouleri at Cape 

Arago, where all three species co-occur, suggest that it may be out-competed by the other 

two. Furthermore, the distributional patterns of P. serrulatus and P. torreyi suggest 

that P. torreyi may out-compete P. serrulatus in the lower intertidal and subtidal when 

both occur. Previous observations that P. serrulatus is well adapted to air exposure 

(Phillips, 1979; Turner and Lucas, 1985) are corroborated here and in Chapter 3.
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Chapter 3: Stable Carbon Isotope Ratio Variations in 

Marine Macrophytes Along Intertidal Gradients 

Introduction

For thirty years it has been known that submerged aquatic plants, both freshwater 

and marine, are enriched in the heavy carbon isotope 13C when compared with most other 

plants (Wickman, 1952; Craig, 1953; Smith and Epstein, 1971; McMillan, et al., 1980;

DeNiro and Epstein, 1981). Relatively high 13C : 12C ratios (or less negative 513C values) 

have been explained in terrestrial plants through discovery of alternate photosynthetic 

mechanisms such as C-4 (Hatch-Slack) metabolism or crassulacean acid metabolism 

(Bender, 1971; Smith and Epstein, 1971), but there is evidence for these alternate carbon 

metabolism sequences in only a few aquatic plants (Beer, et al., 1980; Holaday and 

Bowes, 1980; Keeley, 1981). As a result, the explanation for comparatively high 13C : 12C 

ratios in submerged aquatic plants is commonly attributed to diffusion limitations in plants 

taking up carbon dioxide or bicarbonate in water (Raven, 1970; 1981; Andrews and Abel, 

1979; Smith and Walker, 1980; O'Leary, 1981; Edwards and Walker, 1983).

Osmond, et al. (1981) and Raven, et al. (1982) tested this attribution of diffusion 

limitation by examining stable carbon isotope ratios of plants growing in different water flow

regimes, while monitoring dissolved inorganic 513C source values. The hypothesis was 

that plants growing in fast-flowing streams are associated with smaller boundary diffusion 

barriers. As a result, these plants should be isotopically lighter (exhibit more negative S13C
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values) than plants growing in still water. The more negative 513C values expected would 

be consistent with the known isotopic discriminating behavior of ribulose-1,5 

bisphosphate carboxylase (Smith and Epstein, 1971; Bender, 1971; O'Leary, 1981), the 

first carboxylating enzyme in Calvin cycle photosynthesis. This discrimination was 

hypothesized to be masked in aquatic plants because of diffusion boundary layers 

affecting the transport of inorganic carbon to the plant (Raven, 1981; Chapter 1). The 

findings of Osmond, et al. (1981) and Raven et al. (1982) tended to validate this 

hypothesis, although both studies acknowledged the problem of variability in dissolved 

inorganic 813C values present in different freshwater bodies sampled. Plants sampled 

were also members of diverse taxonomic groups, including red algae (Lemanea 

m a m illo s a ), green algae (Cladaphora glom erata), mosses (F o n t in a lis  

antipyretica), and several vascular plants (Potamogeton spp., Ranunculus spp., 

among others). This taxonomic diversity complicates interspecific comparisons because 

physiological factors unique to an individual species could also affect isotopic fractionation

In this study, stable carbon isotope ratio variations were examined in two species of 

seagrasses within a single genus growing along intertidal elevation gradients. Variability in 

isotope ratios was also examined in two macroalgae growing along the same intertidal 

gradients to examine fractionation effects due to individual species differences rather than 

water motion.

The algal - seagrass isotope comparison also permitted evaluation of a general 

model discussed by Raven (1981). The seagrass genus sampled, Phyllospadix, is



unusual among seagrasses in that it grows upon rocks and lives in an environment 

relatively exposed to waves and swells. Raven categorized the genus as "haptophytic" 

together with most benthic algae. Raven suggested that carbon transport resistances 

would be less apparent in haptophytes and as a consequence they would be in general 

isotopically lighter. Included in the categorization of Phyllospadix as a haptophyte was a 

suggestion that its carbon fractionation should bear a stronger resemblance to haptophytic 

algal patterns than rhizophytic patterns predicted for other seagrasses. To provide a basis 

for comparing carbon isotope variability between haptophytic and rhizophytic seagrasses, 

a separate study was undertaken of the sediment-rooted seagrass Zostera marina L.

Isotopic comparisons between marine plants are not complicated by spatial and 

temporal variations in dissolved inorganic carbon isotope variability because ratios are 

relatively constant throughout the marine environment (Broecker, 1982; Galimov, 1985). 

Also, while differences in water motion often bear a non-causative relationship to pH in 

freshwater, this is not the case in the ocean where water brought on shore by waves is 

drawn from a large homogenous source and this water is replaced during each high tide. 

Intertidal gradients allow for comparison between plants growing in still water versus fast 

flowing water because of the quiet conditions present in upper intertidal pools during each 

low tide.

Additional potential sources of isotopic variability were physical factors and 

physiological or anatomical changes in the plants over these intertidal gradients. It was 

expected that submerged tidal pool plants would be somewhat different in physiology and 

robustness than plants of the same species growing in the lower intertidal. Two additional 

isotopic variability comparisons were made to help isolate these potential sources.
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Representative leaf thicknesses were measured in Phyllospadix torreyi S. 

Watson at one elevation to see if there was any relationship between individual leaf 

thickness and individual 513C value. Leaf, cell, or thallus size has been predicted to affect 

the size of diffusional boundary layers (Smith and Walker, 1980; Raven, 1981; MacFarlane 

and Raven, 1985). Representative leaf and epidermal cell wall thicknesses of both P. 

torreyi and P. serrulatus Rupr. ex Aschers. were measured along intertidal gradients 

(Chapter 2) to provide a basis for interpreting any leaf thickness fractionation effect 

observed.

Plants emersed, rather than submerged in intertidal pools, also were compared 

isotopically. The isotopic consequence of emersion was examined because atmospheric

carbon dioxide is 7°/°° to 10°/°° lighter isotopically than oceanic bicarbonate (Thode, et al., 

1965; Deuser and Degens, 1967; Wendt, 1968; Mook, et al., 1974). Some aquatic plants, 

including seagrasses, can utilize bicarbonate (Raven, 1970; Steeman-Nielsen, 1975; Beer 

et al., 1977; Beer and Waisel, 1979; Millhouse and Strother, 1986). Marine plants utilizing 

dissolved or atmospheric carbon dioxide could be isotopically lighter solely for that reason. 

This effect was separated from water flow effects by comparing plants submerged in upper 

intertidal pools with adjacent emerged plants growing at the same tidal elevations.

Another form of isotopic variation that has been recently observed in marine 

macrophytes is seasonal in nature (Stephenson, et al., 1984; Fry and Sherr, 1984; 

Simenstad and Wissmar, 1985). It was therefore necessary to compare plants collected at 

different times of the year to insure that any isotopic distinctiveness was not due to 

seasonal variability.
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Three hypotheses were examined to account for observed variability of carbon 

isotope ratios: 1) Variations observed were related to relative water motion around the 

plants; 2) Variations observed were related to tidal elevation and consequently proportions 

of exposure to atmospheric carbon dioxide; 3) Variation in leaf ratios was related to the 

thickness of those leaves. Raven's (1981) suggestion that Phyllospadix is haptophytic 

was evaluated by comparing carbon isotopic variability among two species in the genus 

with that of a rhizophytic seagrass and marine algae co-occuring with Phyllospadix spp. 

Materials and Methods

Leaves of P. serrulatus were collected at Sandy Beach, Sitka, Alaska (57°03'N, 

135°14'W) on 9 and 10 August 1983 along an intertidal transect extending from -0.88 m to 

+0.88 m, mean lower low water (MLLW). Leaves of the seagrasses P. serrulatus and P. 

torreyi and thallus tissue of the algae Egregia menziesii (Turn.) Aresch. and 

Halosaccion americanum l.K. Lee were collected at North Cove, Cape Arago, Oregon 

(43°20'N, 124°22'W) on 25 to 27 August 1984. This intertidal transect extended from 

-0.40 m to +0.94 m (MLLW). Algal and seagrass samples were collected along this same 

Cape Arago transect on 1 to 3 June 1985. The seagrass sampling protocol used on this 

occasion was slightly different. Instead of using unsorted leaves of all ages, at each 

sampled elevation, 3 of the youngest leaves from 3 separate shoots were collected. 

Additionally 3 of the oldest leaves from these same 3 shoots were collected and analyzed 

separately. Two additional transects parallel to this first transect were also sampled at that 

time, but leaves of all ages were sampled. Tidal ranges for all transects at Cape Arago were 

essentially identical. Tidal elevations were estimated at Sitka and Cape Arago from tide
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table interpolations using base data for Sitka and Humboldt Bay, California (U.S. 

Department of Commerce, 1983; 1984; 1985). Relative elevations within the transects are 

precise to 01 m, although absolute elevations relative to base stations are less accurate.

Eelgrass (Z. marina) shoots and adhering sediments were collected along a 

transect in Izembek Lagoon, Alaska (55°16'N; 163°07'W) that was approximately the same 

transect described by Short (1983). Samples were collected 21 June to 28 July 1982. 

The transect traversed an ecological cross-section of eelgrass beds, ranging from plants 

perceived to be early successional and limited by sediment nutrients in the upper end to 

late successional plants limited by light in the lower end (Dennison, 1979; Short, 1983; 

Roth, 1986). Of the 36 stations, 35 were subtidal, although water depths at low tide were 

typically less than 1 m. Each sample, consisting of numerous shoots, was divided into 

leaves, roots, and rhizomes. Plant parts were washed thoroughly in seawater and 

freeze-dried. All of the Sitka and Cape Arago seagrass and marine algal samples were air 

dried in the field and within a week were further dried at 60°C for 24 hours.

Sub-samples of 5 mg of well homogenized plant tissue for each sample were 

combined with 700 mg Cuprox™ copper wire and isolated in a vacuum within 6 mm Pyrex™ 

glass tubing. Samples were combusted at 585°C for 2 hours. The liberated carbon 

dioxide was isolated using liquid nitrogen and cryrogenically cooled alcohol, then 

transferred via a new sealed glass tube to the mass spectrometer. Mass spectrometry was 

performed using a VG Instruments Sira-9™ for the Cape Arago and Izembek Lagoon 

samples and AEI MS 20™ for Sitka samples at the Institute of Marine Science, University of 

Alaska, Fairbanks. This method is a modification of that used by Dunton (1985).

Samples collected were free of epiphytes. For E. menzlesil, samples constituted
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roughly equal proportions ol blades, collapsed pneumatocysts, and stipe. For H. 

americanum, samples consisted of collapsed, shredded sacs.

On 4 June 1985, 9 leaves of P. torreyi from -1.6 m at Cape Arago were collected 

for subsequent isotopic analysis. Each leaf was later examined individually using scanning 

electron microscopy (SEM) for leaf and epidermal cell wall layer thicknesses. Preservation 

and SEM procedures are described in Chapter 2. Leaf thicknesses measured were 

averages taken from at least 2 photographs of each leaf. Leaves were sectioned within 1 

cm of the point of initiation and thicknesses measured were at this point. Isotopic values 

were measured on a homogenate of the rest of the leaf. One of the 9 leaves was not 

homogenated, but rather divided into 5 additional sub-samples, providing isotopic ratios 

on 5 segments within the leaf.

The 513C values reported are relative to the Peedee Belemnite standard (PDB; 

Craig, 1953) although 2 internal standards were employed to calibrate the mass 

spectrometers to PDB. A correction was made for the contribution of 170  to the mass 45 

beam as given by Craig (1957). Instrumental error determined in consecutive analyses of a

single CO2 sample averaged less than +0.05°/°o. Average replicate sample standard

deviation for seagrass samples from Sitka on the AEI Mass Spectrometer, including all

instrumental errors and errors of preparation, was ±0.15%o (n=52). Average replicate

sample standard deviations for seagrass and marine algal samples from Cape Arago on the 

VG Mass Spectrometer, including all instrumental errors and errors of preparation were

±0.21 %o (n=45) and ±0.24°/oo (n=42), respectively. Spot checks of eelgrass samples from

Izembek Lagoon indicated a similar range of error.
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Several statistical procedures were used to analyze isotopic patterns observed. A 

microcomputer statistical package (Statview, Brainpower, Inc., Calabasas, Calif.) was used 

for each statistical procedure. Data from samples collected at Cape Arago at 2 different 

times of year using slightly different sampling protocols were analyzed to see if sampling 

variability could explain any of the isotopic variability observed. A Friedman Test, which 

tests for differences in 3 or more linked sample sets, was used to test the null hypothesis 

that samples collected at different times of the year and/or using different sampling 

protocols were drawn from the same population. A Wilcoxon signed-rank test, which tests 

for differences between 2 linked samples, was used to test the null hypothesis that 

isotopic values observed in young leaves were not significantly different from older leaves 

from the same plants.

A Mann-Whitney test, which tests for differences between independent samples, 

was used to test the null hypothesis that 813C values of marginal subtidal seagrasses were 

not significantly different from tidal pool plants. A Mann-Whitney test was also used to test 

if 813C values of all submerged plants were significantly different than values of all plants 

that were emersed during low tides. Pearson product-moment correlation analyses, as 

well as Spearman's rho, were used to assess the influence of atmospheric exposure and 

leaf thickness upon isotopic ratios.

Results

Sample Treatment

Isotopic values observed at Sitka (Figure 1) are based on a single sampling period 

using unsorted leaves of all ages, so there is no seasonal variability in the data.
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Figure 1.

Stable carbon isotope ratios of P h y /Io s p a d ix  
s e r ru la tu s  (single observations) in relation  
to tidal height at Sitka, Alaska.



A Friedman Test indicated that samples collected along 1 of the transects at Cape 

Arago at 2 different times of year (June, 1985 and August, 1984) and using 2 different 

sampling protocols (old and young leaves versus unsorted) were drawn from the same 

population (0.3<p<0.5). A Wilcoxon signed-rank test showed further that there was no 

significant difference between isotopic values of 3 older leaves and 3 younger leaves from 

the same plants (p=0.2; n=12). As a result, seagrass isotopic data collected at Cape Arago 

were grouped together for age of leaf and sampling times (Figure 2).

A Wilcoxon signed-rank test indicated that there was no significant difference 

between isotopic values in marine algae collected in August, 1984 and June, 1985 

(p>0.5; n=14). As a result, data for marine algae collected at Cape Arago for both times 

were also grouped together (Figure 3).

Isotopic variability - General

813C variability for P. serrulatus at Cape Arago was as great as 7 % 0 for 

homogenized leaves collected less than 20 m apart. 813C variability extremes for P. 

torreyi collected 8 m apart were 3%°. Ranges for E. menziesii and H. americanum 

were 6°/°o collected 16 m apart and 3°/°o collected 1 m apart, respectively.

Variability due to Water Motion

At the Cape Arago site, a Mann-Whitney test indicated no significant differences 

between P. torreyi growing in marginal subtidal surge zones (below -0.2 m) and P. 

torreyi growing submerged in upper tidal pools, where average water motion was lower 

(p>0.10; n=19; Figure 2). P. serrulatus growing in tidal pools at Sitka also were not 

significantly different from plants growing at the lowest tidal elevations (Mann-Whitney
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Figure 3.

Stable carbon isotope ratios (mean ± SD) for  
two algae in relation to tidal height at Cape 
Arago, Oregon (1984 and 1985 data, n=60).
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p=0.27; n=6; Figure 1).

Variability due to Atmospheric Exposure (Tidal Height)

P. serrulatus growing in submerged tidal pools at Cape Arago were significantly 

heavier than other P. serrulatus plants (Mann-Whitney, p<0.001; n=57). It appeared 

that this was related to atmospheric exposure rather than water motion because almost all 

P. serrulatus exposed to air, even for short periods, were isotopically lighter than any 

growing submerged in tidal pools, even at the same elevations (Figure 2). A similar effect 

was observed at Sitka, where only P. serrulatus is present (Figure 1). For P. torreyi 

growing at Cape Arago, and for P. serrulatus growing at Sitka, there were signficant 

correlations between tidal elevation and 813C values, with both species becoming 

isotopically lighter with increasing elevation (Table 1). At Cape Arago, for P. serrulatus, 

no relationship was observed between 813C and tidal elevation (Figure 2; Appendix 2) 

although the species does not grow subtidally at Cape Arago as it does at Sitka.

For E. menziesli at Cape Arago, no significant relationship (p>0.05) was

observed between S13C and tidal elevation (Figure 3; Appendix 5). Variances among 

samples, even at the same elevations, were the largest of any of the species sampled. H. 

amerlcanum 813C became lighter with increasing elevation (Figure 3; Table 1) although 

the average change was small (about 1% o )  and the standard deviations about the mean 

were relatively large. When only data from June, 1985 was used, correlations were slightly 

more significant (Table 1).
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Table 1. Correlation Analyses (0.05>p) of Isotopic Values 
of Seagrass and Algae in Relation to Tidal Height

Text r P Spear­
man's rho

P n Site

P. torreyi &13C 
vs. elevation -0.714

0.01>p>
0.001 -0.700 0.01>p>

0.005 15 Cape
Arago

P. serrulatus
&13C vs. elevation

-0.573 0.025>p>
0.01 -0.615 0.025>p>

0.01 12 Sitka

H. am eri can um
&13C vs. elevation -0.420 0.05>P>

0.01
-0.337 0.05>p>

0.025 25 Cape
Arago

H. americanvm
&13C vs. elevation, 6-85 -0.638 0.01>p>

0.001
-0.589 0.005>p>

0.001 20
Cape

Arago

VarlatUitv due to Leaf Thickness

In a direct comparison at one intertidal height of leaf thicknesses versus 513C values 

for those individual leaves, a correlation was found, with thicker leaves of P. torreyi 

tending to be isotopically heavier (Figure 4; Table 2). Epidermal cell wall thicknesses were

not well correlated with 513C values (p>0.05; Appendix 4).

Table 2. Correlation Analysis of Leaf Thickness in 
Relation to Isotopic Value

Spear-
Text r P man's rho P n Site

P. torreyi &,3C
vs. leaf thickness 0.639 0.05>p>

0.01 0.667 0.05>p>
0.01 9 Cape

Arago
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Figure 4.

Stable carbon isotope ratios of 
leaves of Phy I /  o s p ad fx  t o r r e y i  
in relation to leaf thickness 
(single observations).



One isotopic value reported in Figure 4 (-11,4%o) is an integrated, weight averaged 

composite or the isotopic values observed for each of 5 leaf segments. A pattern of 

isotopic lightening from base to tip was observed in this leaf ranging from -10.1%° to

-12 .8°/oo (Figure 5). Because of the preliminary nature of this one leaf segmentation, no 

statistical analyses were performed.

Variability of Isotopic Ratios in Z. marina

Leaf 513C values of Z. marina from Izembek Lagoon ranged from -7.0%° to -9.5°/°° 

(Figure 6). Rhizome 513C values ranged from -7.5°/°° to -10.1%o (Figure 7). Root 513C 

values ranged from -7.4°/°° to -10.9%° (Figure 8). In all 3 plant organs, the most negative 

513C values were from the intertidal station (Table 3).

Table 3.

&13C Values for Eelgrass 
from Izembek Lagoon, Alaska.

intertidal

mean 
subtidal 

±SD

A one-way analysis of variance indicated that subtidal leaves, roots, and rhizomes 

were significantly different isotopically. (Table 4).
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Leaf Root R hizome

-  9 . 5 4  ( n = 1 ) - 1 0 . 8 8  ( n = l ) -  1 0.1 2 <n= 1)

- 8 . 1 8  ( n = 3 1 ) - 8 . 5 9  ( n = 3 3 ) - 8 . 9 0  ( n=32)
± 0 .4 8 ±0.66 ± 0 .6 2
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Figure 5.

Stable carbon isotope ratios of leaf segments 
from P fiy tlospacffx  t o r r e y i  
(Cape Arago, Oregon, 4 June 1 985).
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Figure 6.
Stable carbon isotope ratios of Zostera  
m arina  leaves (single observations)  
from Izembek Lagoon, Alaska.
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Figure 7.
Stable carbon isotope ratios of Zostera  
m arina  rhizomes (single observations) 
from Izembek Lagoon, Alaska.
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Figure 8.
Stable carbon isotope ratios of Z o stera  
m arina  roots (single observations)  
from Izembek Lagoon, Alaska.



Table 4.
One Way ANOVA for 3 Groups: Leaves, Roots, 
and Rhizomes from Izembek Lagoon, Alaska. 

Analysis of variance
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Source DF: Sum Squares: Mean Square: F-test:

Between qroups 2 8.11 4.055 11.489

Yihin qroups 93 32.823 .353 p i  .0001

Total 95 40.933

Model II estimate of between component variance = .116

For rhizomes and leaves, the nuil hypothesis that there was no signficant difference 

between leaves and rhizomes was rejected using a Wilcoxon signed-rank test (p<0.005. 

n=31). A null hypothesis relating to the difference between roots and rhizomes was also 

rejected using a Wilcoxon signed-rank test (0.005<p<0.01; n=31). As could be expected 

from these results, leaves and roots were also found to be significantly different (p<0.005; 

n=30). Examination of leaf - root, rhizome - root, and leaf - root correlations consistently 

showed strong, direct relationships (p<0.005) indicating that where one plant component 

varied, other plant components varied in similar magnitudes and directions (Figure 9).

Discussion

Variability of 813C values within the seagrasses studied appear to be most heavily 

influenced by exposure to atmospheric carbon dioxide. Continually submerged plants 

were consistently heavier than those exposed to air, even if exposed for relatively short 

times. Above about -0.2 m (MLLW), at both Sitka and Cape Arago, emersed P. 

serrulatus plants did not continue to become significantly lighter, suggesting the 

influence of isotopically light atmospheric carbon dioxide on these intertidal seagrasses is
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Correlation coefficients among &13C 
values for Z o s te ra  m a rin a  plant 
organs from Izembek Lagoon, Alaska.
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a threshold phenomenon. Additional exposure to air does not lead to increasingly lighter 

plants. It is possible that this threshold effect takes the form of a reduction in 

photosynthesis or respiration in plants growing at the highest tidal levels; perhaps all of the 

plants growing above the -0.2 m level incorporate atmospheric carbon dioxide in roughly 

the same proportion of total photosynthetic activity, but photosynthesis is increasingly 

limited at higher tidal elevations because of desiccation. These data do not address 

directly whether those submerged plants are using dissolved carbon dioxide or 

bicarbonate as the initial substrate, but it does provide isotopic evidence that emerged 

plants are actively incorporating atmospheric carbon dioxide. This indicates that differential 

use of isotopically distinct bicarbonate by submerged plants and carbon dioxide by 

emerged plants may be the basis for the observed fractionation. This finding is somewhat 

unexpected because Barbour and Radosevich (1979) concluded that P. scouleri Hook, 

is photosynthetically inactive at low tide, based on 14C tracer studies. Nevertheless P. 

serrulatus grows higher intertidally than does P. scouleri (Phillips, 1979) and may be 

better adapted to photosynthesizing when emersed.

Leaves, roots, and rhizomes of eelgrass, Zostera marina, from Izembek Lagoon, 

also showed this same pattern of more negative 513C values at the one intertidal station 

(Figures 6, 7, 8), indicating that atmospheric carbon dioxide was the one most important 

factor causing variability in 513C values in the seagrasses studied.

By contrast, algal isotopic variability, while showing the same general range as in the 

seagrasses, could not be tied to atmospheric carbon dioxide exposure. For E.



menziesii. 813C values ranged from -14.3 to -20.0 for all elevations and showed a

maximum S13C variability range at one elevation of 4.9 at -0.15 m. This range of variation is 

similar to what was observed for individual specimens of the brown alga Laminarla 

longicuris, in Nova Scotia (Stephenson, et al., 1984). Variability for H. americanum 

was smaller (813C range was -11.6 to -16.0 for all elevations and a maximum change in 813C 

of 3.4 at +0.94 m), but this may simply be a scale related problem since it is more difficult to 

obtain representative samples in a larger species. There was an indication that H. 

americanum became isotopically lighter with increasing elevation (Table 1), but the

change was small (1%°) and variability at individual locations was too high to resolve any

trends with certainty. The demonstration that this alga uses dissolved inorganic carbon 

stored within its saccate, water filled thallus (Oates, 1986) indicates that isotopic lightening 

due to atmospheric exposure would be difficult to detect.

813C values of submerged Phyllospadix spp. were not significantly different in 

surge zones and still water pools, indicating that boundary layers around these plants did 

not influence isotopic fractionation. It is possible, however, that isotopic effects due to 

boundary layers are present and could be obscured under the following scenario: if pH in 

upper tidal pools decreases in response to invertebrate respiration, isotopically light

dissolved C 02 would be more available to submerged plants. Uptake of this C 02 would

mask the heavier 813C expected because of larger boundary layers. In this scenario, 

submerged lower intertidal and subtidal plants primarily use bicarbonate and upper 

intertidal plants primarily use atmospheric or dissolved C 0 2. The maximum size of the
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hypothesized boundary layer effect is equal to the S13C difference between oceanic 

bicarbonate and dissolved C 02, from 7%° to 10°/°°, depending upon temperature

(Galimov, 1985). Submerged tidal pool plants are not in still water at high tide, so the 513C 

difference due to boundary layer effects, if it is present at all, is no doubt more modest.

The leaf thickness data provides evidence that leaf anatomy may be related to 

inorganic carbon diffusion and as a consequence, stable carbon isotope ratios. 

Preliminary evidence from the segmentation of an individual P. torreyi leaf (Figure 5) 

indicates that within-leaf variability can be 3%°, and that there may be an ontogenetic

pattern to the fractionation. The later formed (and thicker) portions of the leaf are 

isotopically heavier with a progressive lightening in the direction of the thinner tip. Lowdon 

and Dyck (1974) observed a similar pattern in maple leaves and grass on a seasonal basis, 

with leaves becoming isotopically lighter as autumn approached, and suggested increased 

photorespiration with age as a possible cause. Photorespiration has been observed in 

some seagrasses (Hough, 1976). Except for Lowdon and Dyck's observations, and the 

possibility of ontogenetic effects observed in this study, age related isotope effects in 

plants have not been documented (Wickman, 1952; Craig, 1954; Jansen, 1962).

The correlation between leaf thickness and isotopic fractionation in P. torreyi at a 

single elevation is based on a small sample (n=9) and the effect is relatively small, about 

2°/oo. The observed effect, of thicker-leaved plants tending to be isotopically heavier, may 

be only indirectly related to anatomy and could also be a consequence of recirculation of 

photorespired C 02 within larger lacunae.
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Stephenson, et al. (1984) in studying isotopic fractionation in two eelgrass leaves, 

observed variation between younger and older leaves from the same plant of up to 2 %><>, 

but over the course of a year, different aged leaves were not consistently heavier or 

lighter. Simenstad and Wissmar (1985) also found seasonal variations in Z. marina 813C 

values of more than 3°/°°. In this study, the effects of individual leaf variation were 

minimized by performing mass spectrometric analyses on homogenized leaves of a 

number of plants growing at any particular tidal elevation.

The one exception to the use of unsorted homogenized leaves was the collection 

of 3 older leaves from 3 separate P. serrulatus plants for isotopic comparison with 3 

younger leaves from the same plants at each of 12 different elevations (Appendix 2). 813C 

values varied by up to 1°/°°, but no consistent pattern of age related fractionation was 

observed. It is possible that the lack of a pattern between the old and young leaves of the 

same P. serrulatus plants was due to orientation of the leaves in reference to air 

exposure.

At Cape Arago, P. torreyi leaves were roughly an order of magnitude thicker than 

typical P. serrulatus leaves (see Chapter 2). Thus the lack of a similar leaf age (or 

thickness) pattern for P. serrulatus could be due to species differences or it could be 

due to sampling protocol. Only in the case of P. torreyi were individual leaves measured 

both morphometrically and isotopically.

With respect to Raven's (1981) suggestion that Phyllospadix shows haptophytic 

carbon isotope patterns, these data are equivocal. 813C values observed were similar to
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613C values of 2 co-occuring marine algae and heavier than most other seagrasses 

(McMillan, et al., 1980). 813C values for Z. marina did not overlap any of the other 

seagrass or marine algae species. Eelgrass was consistently heavier, supporting Raven's 

prediction that rhizophytes would exhibit less negative 813C values. Nevertheless, 513C 

values for E. menziesii and H. americanum were slightly heavier than has been 

reported for many other species of marine algae (Craig, 1953; Smith and Epstein, 1971;

DeNiro and Epstein, 1981), so the S13C values observed for P. torreyi and P. 

serrulatus may actually be intermediate between most seagrass values and those for 

most algae. All of the seagrass species studied were isotopically lighter if emersed and it 

was concluded that this was due to uptake of isotopically lighter atmospheric carbon 

dioxide. Neither of the marine algae clearly showed this pattern, suggesting that 

differential use of bicarbonate and atmospheric carbon dioxide does not occur in an 

isotopically detectable manner. This conflicts with the conclusion of a recent study 

(Faganeli, et al., 1986) which suggested that carbon isotopic variability in the green alga 

Ulva rigida C. Ag. and the brown alga Fucus virsoides J. Ag. was due to differential 

use of bicarbonate and atmospheric carbon dioxide. Faganeli et al. (1986) did not attempt 

to correlate tidal exposure with isotopic ratios, but simply associated the presence of 

variability with differential use of inorganic carbon sources. Similar ranges of isotopic 

variability in E. menziesii and H. americanum were not associated with intertidal 

exposure, so this explanation of algal carbon isotope variability is not satisfactory.

Evidence that Phyllospadlx spp. trap small grains of sediment through extensive 

roothair development (Gibbs, 1902; den Hartog, 1970; Phillips, 1979; Chapter 2) also
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indicates that the categorization of Phyllospadix as haptophytic is too simplistic. Small 

sediment accumulations within the roothair network may create an environment for organic 

matter accumulation and hence a rhizosphere with higher concentrations of inorganic 

nutrients. It is possible that this network permits the plant to absorb inorganic nutrients 

through its roots.

Mean rhizome S13C values of Z. marina were 0.7°/oo lighter than mean leaf values. 

The analysis of variance and the Wilcoxon signed-rank test both indicated that this 

difference was signficant, so strictly speaking, eelgrass leaf 813C values are not 

representative of the plant as a whole. Such a small difference should have little practical 

effect on applied uses of carbon isotopes, such as in food web tracer studies. However, it 

does indicate the presence of isotope fractionation during carbon metabolism and 

transport within the plant. This might be biochemically driven by enzymatic discrimination or 

it could be a physical effect caused by diffusion limitations as photosynthate is transported

from sources to sinks within the plant. Subtidal S13C values of eelgrass rhizomes, roots and 

leaves varied consistently with each other (Figure 9), confirming that individual samples 

were isotopically distinct. The reasons for this isotopic variability in subtidal Z. marina 

(Figures 6, 7, 8) are not clear. This portion of Izembek Lagoon has little freshwater input 

(per. comm., C. Peter McRoy) and the homogenization of plant samples presumably would 

obscure any plant organ thickness or age effects. It is possible that differential storage of 

isotopically distinct chemical fractions by plants in different parts of the lagoon is 

responsible for the patterns shown on Figures 6, 7, and 8. Examination of isotopic 

variability using a single organic fraction such as cellulose would test this suggestion.
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Chapter 4: Conclusions

The inclusive hypothesis upon which this work is based is that the genus 

Phyllospadix shows adaptations to life in rocky marine habitats that distinguish it from 

other seagrasses. The working hypotheses tested were based on a niche differentiation 

prediction of Phillips (1979) and a carbon assimilation model of Raven (1981).

The niche differentiation hypothesis was based on an observation of Phillips that 

three species in the genus, when they occur together, are distinctly zoned in the littoral 

zone. It was predicted that each species of Phyllospadix dominates its zone through 

specific adaptations. This prediction was approached anatomically (Chapter 2). The three 

North American species of Phyllospadix were examined for differences that might be 

related to different rocky microhabitats in the littoral. Although each species was found to 

be anatomically distinct, no distinguishing features were found that could be related to 

specific littoral zones. These conclusions are analogous to an ecological study of the 

same three species which found that the three species followed similar successional 

sequences (Turner and Lucas, 1985).

Anatomical characteristics for the genus as a whole, particularly numerous 

hypodermal fibers, are adaptations to exposed conditions. Comparison with the closely 

related genus Zostera also showed less extensive lacunal development, which would be 

consistent with plants living in turbulent, more oxic environments. Phyllospadix spp. 

show greater roothair development than Z. marina and these roothairs trap sediment. 

This suggests modifications to the categorization of the plant as a strict haptophyte,
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dependent on the water column for inorganic nutrients (Raven, 1981).

The suggestion of haptophytic nutrient acquisition in the genus (Raven, 1981) was 

the initial point for testing a carbon assimilation model. Raven predicted that rhizophytic 

(substrate penetrating) aquatic plants would exhibit less enzymatic discrimination against 

13C because of greater diffusion resistances to inorganic carbon uptake in plants that 

obtain scarce nutrients from the substrate. He also predicted that submerged aquatic 

plants growing in still water conditions would tend to be isotopically heavier than those in 

fast flowing water because of diffusion limitations associated with boundary layers around 

leaves. This latter prediction was tested in a comparison of submerged surge zone P. 

serrulatus and P. torreyi with plants of those same species growing submerged in 

upper tidal pools. In this case, no evidence was found that tidal pool plants were 

isotopically heavier (Chapter 3).

With respect to the general carbon assimilation model of Raven, Phyllospadix 

spp. were compared to 2 co-occurring haptophytic marine algae to see if the seagrass 

genus showed a similar pattern of carbon isotope variation (Chapter 3). A study also was 

made of isotopic variability in Z. marina to provide a basis of comparison between 

rhizophytic and haptophytic seagrassses (Chapter 3). Phyllospadix spp. had 13C : 12C 

similar to the algae, Egregia menziesii and Halosacccion americanum, but the 

seagrasses alone varied consistently in response to intertidal exposure. Seagrasses 

growing emersed intertidally tended to become isotopically lighter and it was concluded 

that this was due to uptake of isotopically lighter atmospheric carbon dioxide. The marine
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algae, by contrast, did not vary consistently with additional atmospheric exposure 

indicating that differential uptake of isotopically distinct inorganic carbon sources (i.e. 

bicarbonate and atmospheric carbon dioxide) was not present to an extent that could be 

isotopically detected.

Phyllospadix spp. nevertheless were consistently isotopically heavier than Z. 

marina, a closely related rhizophytic seagrass. Isotopic variability patterns bore similarity to 

that observed in Phyllospadix  spp. because Z. marina also became lighter when 

exposed to air.

These patterns suggest, at least in isotopic variability, that Phyllospadix spp. 

exhibit intermediate characteristics between classically defined haptophytes and 

rhizophytes (Raven, 1981). Although the genus clearly has characteristics adapting it to 

growth on rocky marine shores (Chapter 2), and exhibits the lightest mean carbon isotope 

ratios of any seagrass genus (McMillan, et al., 1980), the isotopic lightening observed in 

upper tidal plants was identical to that observed in Z. marina (Chapter 3).

An anatomical relationship with carbon isotopic ratios was also observed in P. 

torreyi. Thicker leaves were correlated with heavier isotopic ratios (Chapter 3). It was 

concluded that this correlation may not be necessarily related to anatomy. Such a 

relationship could have an ontogenetic or other origin and the relationship merits further 

investigation.

The study of isotopic variability in Z. marina indicated that leaves are isotopically 

heavier than rhizomes, which are in turn lighter than roots (Chapter 3). It was concluded 

that this small effect, less than i% o at each step, is probably due to fractionation during
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photosynthate transport, differential storage, or enzymatically driven metabolic processes. 

Carbon isotope ratios of roots, rhizomes, and leaves were well correlated with each other, 

indicating that where individual plant organs varied, other components of those same 

plants varied in the same manner.

Clearly one of the larger questions raised by this work remains the usefulness of 

Raven's aquatic plant model of rhizophytes and haptophytes. Raven (1981) specifically 

predicted similar isotopic fractionation patterns for all haptophytes regardless of taxon. 

Nevertheless the single most important factor in determining carbon isotopic variability in 

both a haptophytic and rhizophytic seagrass, air exposure, does not apparently affect the 

two haptophytic marine algae studied. Although Raven's dual model specifically concerns 

submerged aquatic plants, the differences in response to air exposure suggest that similar 

and dissimilar physiologies in taxonomically related and unrelated plants must play a more 

important role in determining carbon isotopic variability than has been acknowledged. The 

division of submerged aquatic plants into two categories was useful in posing predictions 

of two nutrient assimilation strategies, but the results of this study also indicate that a 

gradient exists between the two extremes.
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Appendix 1. Sample data for P h y f/o s p a d fx  
s e r ru la tu s  collected in Sitka, Alaska, 7 -1 2  
August 1 983.

Numbf of Epidfnul C»11 V j 11s Mxturtd
SO (±)
M««n Epidwmil C»ll V>11 Thiekn«s» (|l)
Numb*r of L»»f Thickn***»* M»«ur»d
SD (±)
M»*n Ltif Thiekn#** (mm)
Tidal H»igh< (m; MtLW)
NumbT of lmtrum»nt«l Rtplie«t»t
S;lC Lnv.»«

♦simpl* vjlun r*port*d irt i 
m*»n of it l»»*t thrt* instrum»M»l 
r#pliejVions pr»pir»d ind »nilyz»d 
s»p»r«t»ly (N*52;»v<j. SD »±0.15).

- 1 4 . 4 0 4 - 8 8 .1308 .0131 3 1.56 14 4
- 1 5 . 2 4 3 - .76 .1641 .0525 3 1.46 .48 3
- 1 4 2 8 3 -.70 .1942 .0016 3 .81 .09 3
-13.81 3 - 6 4 .2635 .0898 2 • • •

- 15 .4 9 5 - 5 8 .2306 .0202 3 1.85 28 3
-14 .02 4 - .52 .1461 .0273 3 1.95 .91 3
- 1 4.54 5 - 3 4 .2000 • 1 • • •

-1 5 . 1 4 4 - 2 4 1 178 .0495 3 1.21 .58 3
- 1 7  18 4 -  12 1697 .0417 3 1.66 1 01 3
-15 .33 3 + .12 1481 .0028 2 • • •

-1 5 .4 6 3 + 43 1489 .0218 3 1.7 .18 3
- 1 6 .0 5 3 + 58 .1034 .0 126 3 1.54 32 3
-1 3 .9 5 3 + .70 .0836 .0104 3 • 54 2
-14 .05 5 + .88 1600 0 139 3 • • •
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Appendix 2. E>13C data for P h y llo s p a d ix  spp. from  
Cape Arago, Oregon

& ,3 C SD (±)

Species

& ,3C mean for all transects

Tidal Height (m; MLLW)

Transect A B * 8 old 
leaves

B youny 
leaves

C

Date 6/85 8 /84 6/85 6/85 6/85
-10.91 -11.15 - 1 2 .7 4 -11.99 -10.68 - 40 -1 1 49 85 P. to r re y i
- 1 1 7 1 -1 1.06 -1 1.92 -1 1.65 -1 191 -  33 -1 1.65 35 P. to r re y i
-13.10 - 1 4.1 7 -13.31 -13.10 -12.47 - 27 -13.23 .61 P. to r re y i
-14.70 -1 7.20 -14 .03 -14.50 - 1 4.1 4 -  21 -14.43 1.30 P. s e rru la tu s
-15.09 -12.40 -14.67 -13.73 -15.18 -  15 -1 4.2 1 1.16 P. s e rru la tu s

• • -14 .73 -14.68 a ♦.15 -14 .70 03 P. s e rru la tu s
- 14.80 -16.04 • -17.96 - 1 4 6 1 ♦ 30 -15.85 1.54 P. s e rru la tu s
-15.50 -13.54 -15 .69 -15.45 -13.35 + 40 -14.95 1.51 P. s e rru la tu s
-17.23 -16.76 -16.03 • -14.33 ♦ .46 -16.10 1.25 P. s e rru la tu s
-14.01 -14.22 - 1 4 6 3 -14.23 -15.32 ♦ 58 -14.49 .51 P. s e rru la tu s
-14.65 -14.80 -14.33 -14.66 -13.53 ♦ 6 4 - 14.49 51 P. s e rru la tu s

• - 1 4  06 • -12.48 - 14 .44 ♦ 70 -13.66 1.04 P. s e rru la tu s
- 1 4 7 6 - 1 4. 1 3 -15 .09 - 15.8 1 -15.13 ♦ 76 -14.98 .61 P. s e rru la tu s

• • - ' 4 0 6 - 1 3  96 a ♦ 82 - 14 .0 4 06 P. s e rru la tu s
-14.39 -14.32 - 1 3 . 4 9 * - 14.34 ♦ 94 - 1 4.1 3 .43 P. s e rru la tu s
-12.23 -1 1 75 -1 1 76 - 1 1 1 9 -1 1 70 + 94 - 1 1 5 1 33 P. to r re u i '

*  sample was  not divided into older and 
younger leaf samples

t submerged plants. Other tide pool values 
reported in Appendix 3.

i sample values are means of at least dupl icates 
prepared and analyzed separately (N=45 avg SD= *0  2 i '
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Appendix 3. &13C values of tidal pool plants

T id a l  Height  
(m; MLLW) £>13C

Phyllospadix 
serrulatus 
Cape Arago,  
1 - 3  June 1 9 85

Phyllospadix serrulatus 
S i t k a ,  9 - 1 0  August 1 9 83

Phyllospadix torreyi 
Cape Arago, 2 5 - 2 7  August  
1 9 8 4  and 1 - 3  June 1 9 8 5

.43 -  12.51

.63 -  12.05

.66 -  12.66

.68 -  10.99

.70 - 1 1 .6 8

.73 -  12.25

.74 -  12.76

.70 -  1 4.18

.88 -  14.28

.45 -  1 1.84

.66 -  1 1.74

.73 -  1 1.89

.94 -  12.23

.94 -  1 1.76

.94 -  11.19

.94 -  1 1.75

.94 -  1 1.70

.94 -  1 1.84
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Appendix 4. &13C values and individual 
leaf thickness data for  PhyfZospacfix  
t o r r e y i  collected 4 June 1985.

Range (| l)

Ce ll V a i l  Th ickness (| i)

Range (| i)

Leaf Thickness (| i)

Leaf &13C

- 1 0 .9 2 * 410 3 1.66 .32
* mean of three instrumental -1 1.41 482 75 1.83 .33

samples; avg. s. d. =±0.22 -1 3 .2 8 348 34 2.16 .72
-1 2 .9 3 * 4 0 3 6 .69 .28

* sample was a weight -1 2 .3 6 478 44 1.59 .82
averaged composite of five 
sub-samples of an individual 
leaf

-1 1.69f 545 3 4 1.39 .29
-1 0 .7 9 531 29 2.26 .1 1
-1 2 .5 7 228 19 1.83 .33
-1 1.09* 562 61 1.56 .63
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Appendix 5. &13C data for  the macroalgae 
H alo sacc io n  am erican u m  and E g re g ia  m e n z ie s i i , 
Cape Arago, Oregon, 2 8 -29  August 1984.

Tida) Height (m; n iLW )

5 ,3C SO (±)
& 13C mean for a ll transects

Transect A B C a*
Date 6/85 6/85 6/85 8 /8 4 Species

-17.77 -17.45 - 1 7  99 - 1 5  72 - 1 7 2 3 1 03 -  40 £ m e m ie s ii
-15.38 -15.10 -15.05 - 1 7  24 - 1 5 8 2 1.02 -  33 £. m e m ie s ii
-14.27 -15 .64 -16.73 -18.99 -16.41 1.99 - 2 7 £ m e m ie s ii
- 1 7  28 • -15.41 - 1 7  79 -16.83 1.25 -  24 e. m e m ie s ii
-16.82 -16.69 -16.70 -14.55 -16.19 1.09 -.21 £ m e n z ie s ii
-19.96 -13.05 - 19.99 -15.06 -18.25 2.29 - 15 £ m e m ie s ii
- I 9  60 -19.70 -19.15 -16.02 -18.43 1.90 ♦ 15 £. m a m ie s ii
-18.92 - 1 7 6 9 - 1 7  71 -15.66 - 1 7  49 1 35 * 30 £. m e m ie s ii

• -18.20 - 14 32 -15.40 -16 .84 1.71 ♦ 40 £. m e m ie s ii
- 1 4.5 1 -14.06 • -15.88 -14.82 9 4 + 46 H. am ericanum
-13.58 - 1 3 6 2 -1 1 6 3 ’ - 1 4 4 9 -12.99 1 29 ♦ 58 H. am ericanum
- 1 3  63 -13.13 - 1 3  28 -13.51 - 1 3  38 22 ♦ 6 4 H. am ariconum

• -12.38 • -13.90 - 1 3  39 72 ‘ 70 H. am ericanum
- 1 4 3 0 -14.53 -12.68 - 1 3  31 - 1 3  71 86 ♦ 76 H. am ericanum
- 1 3  73 - 1 3  57 - 1 4 4 0 • - 1 4 0 0 44 * 82 H. am ericanum
- 1 3  67 - 1 4  08 - 1 4 0 1 • - 1 3  92 22 * 88 H. am ericanum
- 15  97 - 1 4  1 5 • -12.53 - 1 4 2 2 1 72 * 94 H. am ericanum

*  sample values are means of at least two duplicates 
prepared and analyzed separately (N=42; avg. SD=s0.24)

'  sample is mean of two instrumental  repl icates 
( - 1 l 72 and - 1 I 54) prepared and analyzed separately.
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Appendix 6. Leaf thickness data for  
P h y llo s p a d ix  t o r r e y i  and 
P h y llo s p a d ix  s e r ru la tu s , 
Cape Arago, Oregon, 
2 8 -2 9  August 1984

Number of  Leaves Measured

SD (± )

Mean Epidermal W al l  Th ick ness  ( j i )

Number o f  Leaves Measured

SD (± )

Mean Leaf  T h ic k n es s  (m m )

T id a l  He ight  (m )
P. torreyi - .40 .8467 .1 108 3 2.72 1.19 3
P. torreyi - 3 3 .4474 .0484 3 2.43 .21 3
P. torreyi - .27 .3426 .1 174 3 1.92 .32 3
P. serrulatus - .21 .1096 .0078 3 1.19 .30 3
P. serrulatus - .15 .1577 .0410 3 1.34 .36 4
P. serrulatus +.30 .1339 .0222 3 1.14 .32 3
P. serrulatus +.40 .1147 .0125 4 .91 0 3
P. serrulatus +.46 .1488 .0046 3 1.49 .09 3
P. serrulatus + .58 .0896 .0071 5 .83 .36 3
P. serrulatus +.64 .0975 .0025 4 .65 .22 3
P. serrulatus +.70 .0942 .0096 3 .48 .29 3
P. serrulatus +.76 .0979 .0155 2 .76 .34 3
P. torreyi +.94 .2094 .0087 3 1.36 .16 4
P. serrulatus +.94 .0939 .0683 3 .80 .40 3
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Appendix 7. Eelgrass data from  
Izembek Lagoon, Alaska, 21 June -  

28 July 1982.
S 'sc root
tran sect d istance rhizom e

leaf
(m) &,JC

ertldal samples —̂ K -1 0  88 -1 0 .1 2 -9.541
subtidal r-> 
samples

40 -9  89 -9.01 •
60 -8 .5 0 -9 .3 9 -8 .7 9
80 -8 .9 0 -9 .1 8 -8 .8 6

100 -8 .1 6 -8  36 -7  63
120 -8 .6 9 -8 .7 3 -8 .3 8
140 -8 .2 9 -8 .2 8 •
160 -8 .3 8 -9 .3 9 -7 .9 7
180 • -8 .9 2 -8 .4 3
200 -8 .7 7 -9 .3 4 -8 .5 2
220 -9 .0 5 -9 .1 8 •
240 -8  86 -9  49 -8 .0 6
260 -8 .01 -8 .4 6 -7  65
280 -9  21 -8 .8 0 -8 .2 7
300 -9 .0 4 -9 .3 0 -8 .5 8
320 -9 .2 8 -9 .3 7 -8 .5 6
340 -9  96 -9  24 -8  68
360 -8 .5 0 -8 .7 4 -8 .1 5
380 • -9 .3 6 -8 .2 5
400 -9 .0 5 -9 .3 8 -8 .7 7
420 -9  24 -9 .4 8 -3  46
440 -8  93 -9 .5 7 -8  80
460 -9  30 -9 .7 0 -8.31
430 -8 .71 -9  43 -8 .61
500 -8 .9 5 • -8 .5 3
520 -8 .5 2 -9  39 -8  05
540 -3 .4 9 -8  68 -8 .2 4
560 -7.91 -8 .2 6 -7  95
580 -7 .3 8 • -7  53
500 -8 .6 5 -9 .2 4 -8  26
520 -8  28 • •
540 -8 .1 2 -7 .5 3 -6 .9 6
560 -7  6 1 -8 .2 4 -7  25
580 -8.01 -8 .1 7 -7  82
?00 -7 .0 5 -7 .7 9 -7  51oC

M
r

-7  55 -7  46 -7 .8 7



Appendix 8. Seagrass survey sites.

Location
Seagrasses
observed Date

Northeast Harbor. Sanak Island, 5 4 °2 6 ’30"N, 162°35 00"W NONE JUIY 1980 *
Caton Harbor, Sanak Island, 54*24'N , 162*32'W NONE JULY 1980
PauJoff Harbor, Sanak lsland.54*27’45"N. I62*4r30-W Zostera m arina JULY 1980
Salmon Bay, Sanak Island, 54*23‘25'N, I62*36 00’W NONE JULY 1980
Shoal between Sanak Island, Lonq Island, 5 4 *2 4 N , 162*44 ’W Zostera marina JULY 1980
West Anchor Cove. Unimak Island, 54*41 N, I6 3 ° l  1 W Phyllospadix serru latus JULY 1980 *
Tiqalda Bay, Tiqalda Island, 5 4 *0 7 '4 5 'N . 165*00'00"W NONE JULY 1980
Nazen Bay, Atka Island, 52* 12 N 1 7 4 *0 6 W NONE JULY I960
Korovin Bay, Atka Island, 52° 15 N, 1 74*27'W NONE JULY 1980
Bechevin Bay. Atka Island, 52 ‘ 0 3 ’N. 1 7 5 *0 6 ’W NONE JULY 1980
Portage Lagoon, Atka Island, 5 2 *0 3 ’ 10 “N, 1 7 5 *0 2 -3 0 ”W Zo stera  m a r i na JULY 1980
Deep Bay, Atka Island, 5 2 *0 6 -50 'N . 1 7 4 *3 7 0 0 'W NONE JULY 1980
Explorer Bay, Atka Island. 5 2 *0 3 ‘ 1 5"N, 1 7 4 * 3 2 0 0 ’W NONE JULY 1980
Clam Lagoon, Adak Island. 51*56 0 0 ’ N. I76 *34 '30"W Z o stera  m a r i na JULY 1980
Bogoslov Island, 53*56'N , I68*02 'W NONE JULY 1980
Grosvold Bey, Korovin Island, 55®27'N, I6 0 * I2  W Phyllospadix serru latus AUG 1979 *

Voidipoini Point, Alaska Peninsula, 5 5 * 0 2 1 0 'N , 162°24'30"W P serru latus, Z  marina JULY 1982
between Cold end Morzhovoi Bays, Aleske Peninsula, 5 4 *5 6 ‘N, 162*54'W P  serru latus, Z. marina JULY 1982
Fossil Beech, Kodiek Islend, 57*25  N, I5 2 *2 0  W Phyllospadix serru latus JUNE 1982
Kechemek Bay, between Kesitsna and Seldovia Beys, 59*28'N  I51 *35 'W NONE MAR 1982
Henning Bey, Montaque Isle id, 59*58 'N , 1 47 *43 ‘W Phyllospadix serrulatus AUG 1980*
Zeikov Point, Montegue Islend, 60* 19'N 1 46*55'W Phyllospadix serrulatus JUNE 1972*
Kirushkin Islend, Sitke Sound. 5 7 *0 2 ’40"N. 1 35 *23 '00  ”W Phyllospadix scouleri AUG 1983

Wetson Point, Sitka Sound, 57*04 '00"N , I3 5 * 2 r 5 0  -W Phyllospadix serrulatus AUG. 1983

Crane Cove, Baranof Island, 56*50  5 5 "N, 1 3 5 *2 2 '3 0 “W P serru latus, Z. marina AUG. 1979 *

White C liff Island. Davidson Inlet. 5 5 *5 9 ‘30 ’N, 1 33*29  00' W Phyllospadix serrulatus AUG. 1975 *
Cape Blenco, Oregon. 42*50  N. I2 4 *3 3 'W P serru latus, P. to rrey i JUNE 198 5 '

*  observations made bg C P McRoy ’ western range extension 11
and others • southern range extension II s e rru  a us


