THE ECOLOGY OF THE INSHORE

MARINE ZOOPLANKTON OF THE CHUKCHI
SEA NEAR POINT BARROW, ALASKA

RECOMMENDED:

APPROVED:

Vice President for Research

THE ECOLOGR OF THE INSEONS

MARINE ZOORTAN:TOM OF THE CUUCGIT

SEA NEAR TOLNT BAREON, ALASEA

A

IHESIS

Presented to the Fazulty of tion University of Alaska in partial fulfillment of the Recuiremonts for the Degree of
MASIER OF SCIGNCE
$E y$
Borglas Ray Reubun, B.S, vcearngraply, zociogu
Fairbanks, Alacke
May, 1074

The temporal variability in abundance, composition, and production of an arctic-marine inshore zooplankton community was investigated near Point Barrow, Alaska from May through August, 1972. Significant temporal differences ($\underline{P}<0.05$) in population abundance over the summer were noted for 29 of 30 species. Changes in community composition resulted from the summer intrusion of Bering Sea water into the study area; southern copepods were observed during July and August. This intrusion imposes a temperature regime favorable for the rapid development and high production of meroplankton, particularly barnacle Larvae. The meroplankters were largely responsible for creating a more diverse and productive community than that occurring in the epipelagic zone of the central arctic. Extensive recruitment of meroplankton was correlated with periods of high phytoplankton standing stock.

Commity dry weight ranged from 4 to $41 \mathrm{mg} / \mathrm{m}^{3}$, with the maximum occurring under the ice in late June one week after the phytoplankton bloom.
Page
LIST OF FIGURES vi
LIST OF TABLES vii
ACKNOWLEDGEMENTS viii
CHAPTER 1. INTRODUCTIOR 1
1.1 Historical Arctic Plankton Investigations 3
1.2 Laboratory Studies of Zooplankton Feeding Biology 7
1.3 Purpose of the Irvestigation 8
CHAPTER 2. MATERTALS AND METHODS 11
2.1 Field Investigations 11
2.1.1 Equipment 11
2.1.2 Station Locations 12
2.1.3 Zooplankton Sampling Design 16
2.1.4 Enviromental Observations 18
2.2 Laboratory Analyses 19
2.2.1 Identification and Enumeration 20
2.2.2 Size of Organisms 21
2.2.3 Dry Weight 22
2.3 Statistical Procedures 24
2.3.1 Data Transformation 24
2.3.2 One-Way Analysis of Variance 25
2.3.3 Estimation of Confidence Limits 26
2.3.4 Correlation Analysis 26
2.4 Trophic Studies 26
2.4.i Experimental organisms 27
2.4.2 Algal Culture and Cell Counting Techniques 27
2.4.3 Experimental Feeding Frocedures 29
chaten zo resule 32
3.1 I'ne Nearstore Hydrograning 32
3.2 The Zooplankton Community 35
3.2.1 Statisticel Studies 35
3.2.J.1 Lavels of Variability 35
3.2.1.2 Tests of Fypotheses 40
3.2.1.3 Correlation Analysis 46
Page
3.2.2 Temporal Distribution and Life History Patterns 51
3.2.2.1 Eydruzoa 51
3.2.2.2 Scyphozoa 60
3.2.2.3 Ctenophora 61
3.2.2.4 Ptercpoda 63
3.2.2.5 Polychaeta 64
3.2.2.6 Amphipoda 65
3.2.2.7 Cirripedia 67
3.2.2.8 Coperod? 68
3.2.2.9 Decapoda 81
3.2.2.10 Euphausiacea 82
3.2.2.11 Mysidacea 85
3.2.2.12 Ostracoda 86
3.2.2.13 Echinodermata 87
3.2.2.14 Chaetognatha 87
3.2.2.15 Appendicularia 90
3.2.2.16 Pisces 91
3.2.3 Standing Stock 92
3.2.4 Trophic Relationships 100
CHAPTER 4. DISCUSSION AND CONCLUSIONS 105
4.1 The Ecology of the Insinre Zoonjankton 107
4.1.1 Distributicnal Patterns 107
4.1.2 Life Histories and Reproductive Suecess 113
4.1.3 Significance of the Meroplankcon 119
4.1.4 Energetics and Secondary Procuction 121
4.2 Sources of Error 125
4.2.1 Field Sampling and Data Analysis 125
4.2.2 Laboratory Studies 123
4.3 Future Plankton Research 129
CHAPTER 5. SMMARY 132
LITERATURE CITED 137
Appradt 1 Field Deta 148
APPENDIX 2 Laboratcry Trophic Data and Equations 164
APPENDIX 3 Correlation Matrix 167

LIST OF FIGURES

Page

1. Map of the northern Alaskan coastline near Point Barrow. Accompanying insert shows the study area in relation to the state14
2. Temporal distributions of the state of the sea surface, coincident with (a) surface water temperature, and (b) the average water column salinity, averaged for each of 14 sampling weeks, sumer 197234
3. Qualitative distribution of the constituents representing the Barrow zooplankton community from May 25 to August 28, 197237
4. Quantitative distribution of Aglantha digitale from May 25 to August 28, 1972, with associated bell height-frequency histograms. Vertical bars indicate the 95% confidence limits of the weekly means56
5. Quantitative distribution of nauplii and cyprid larvae of the genus Balanus from May 25 to August 28, 1972. Vertical bars as in Figure 4 70
6. Quantitative distribution of (a) Calanas giacialis and conepod nauplii, and (b) Pseubocalamia miruties, from May 25 to August 28, 1972. Vertical bars as above75
7. Length-frequency relationships for the composite summer population of Thysanoéssa raschit, indicating nauplii, calyptopid, and juvenile stages 84
8. Quantitative distribution of Sagitto eleguns apetial from May 25 to August 28, 1972, with concomitant changes in length-frequancy relationships. Vertical lars as above . . óg
9. Weekly distribution of (a) integrated chlorophyll a, and (b) zuoplenkton comunity formaiin dry weight from May 25 to August 28, 1972. Vertical bars as above 94
10. Qualitative and quantitative fractionation of average zooplankton community dry weight for 13 weekly periods from May 25 to August 28, 197298

LIST OF TABLES

Page

1. Relative sampling effort at various station locations near Point Barrow, summer 1972. Listed as total number of samples collected 15
2. Upper percentage confidence limits, $\mathrm{P}=0.05$, for observa- tions at the subsampling, daily replication, and within-week sampling levels for selected categories of zooplankton 38
3. Statistical evaluation of the effects of time on the variability of weekly mean population abundance for selected categories of zooplankton from May 25 to August 28, 1972 41
4. Statistical evaluation of the effects of sampling location on the mean abundance of major zooplankton categories collected on August 19, 1972 44
5. Statistical evaluation of the effects of time of day on the population abundances of selccted zooplankton categories sampled at one location, August 28/29, 1972 45
6. Statistical evaluation of the correlation of 27 categories of zooplankton and community dry weight with surface water temperature, average water column salinity, and ch1orophyll a from May 25 to August 28, 1972 47
7. Major groups of associated zcoplankton Lased on category
to category correlation 49
8. Weekly mean abundances for all categories of zooplankton as numbers per $100 \mathrm{~m}^{3}$ from May 25 to August 28 , 1972 52
9. Average individual. dry weights for selected developmental stages of wojor zooplankton categories 95
10. Laboratory estimates of filtration and ingestion rates, respiration and excretion, assimilation and gross growth efficiency for zooplankton fed radioactive labelled phytoplankton 101

ACKNONLEDGEMENTS

My deep appreciation is extended to my advisor and friend, Dr. Robert T. Cooney, for his valuable counsel on the many aspects of this study and for his constant encouragement and coments during the preparation of the manuscript. I would also like to thank the other members of my advisory comittee, Drs. Rita A. Horner, Howard M. Feder, and Richard C. Allison for their suggestions and critical review of the thesis. I am especially indebted to Dr. Horner for making this study possible, introducing me to arctic research, and for allowing me full access to her personal data.

A very special thanks goes to Mr. George M. Mueller, Curator of the University of Alaska Museum, Aquatic Division, whose friendiness, professional counsel, and permission to use all availatie museum facilities and systematic literature were major factors in making this project successful. I am also appreciate of SCUBA divers Mr. Grant E. Matheke and Mr. Robert Clasby for their assistance in under-ice field samping cperations. Miss Shirley Wilson of the Drafting Deparment of the Institute of Marine Science prepared the figuras used in this thesis. The IMS secretaries typed tine manuscrint.

Lastly, I acknowledge the staft of the Maval Arctic Research Laboratory for their frjently cooperation and for supplying the necessary logistic support for a successful summer field season.

This study was jointiy supported under the Office of Naval Research Grant No. N 0001/-67-A-0317-003 and the Rat inal Sea Grane Progran Grant No. $04-3-158-41$.

Zooplankton organisms play a central role in the economy of the sea through their conversion of phytoplankton energy into protein and lipld stores suitable for the neods of meabers of higher trophic levels in the oceanic plankton food web. Shoaling fishes, some species of seals, and whales, are either directly or indirectly dependent upon this scurce of focd for their survival. Accordingly, emphasis has been historically directed towards accumulating data on zooplankton with the inteni of examining ecological interactions of this energy pool with commercially exploitable pelagic species in the world ocean. The approach taken toward evaluating these interrelationships has been divided among fieis and laboratory investigations. Baseline data collected in the field is essential for establishing biomass, reproductive periodicity, and the specific composition of the comnunity in question. However, $a n$ understanding of the basic energy requirements and physiological processes of the zooplankton consumer organism should also supplement field data in the estimation of secondary production and the efficiency of energy transfer through the food web via the primary consumer level. Such studies of bioenergetics are necessarily concucted in the laboraturv under controlled conditions.

Zooplankton field studies in the world ocean date from the mid-1800's and were characteristically descriptive in nature up through the early part of the 20 th century; laboratcry investigations concerned with the biology of the animal plankton have a more recent history.

Field research in arctic polar regions has long been difficult becatse of restricted access to many areas and deterents imposed by a harsh climate. These handicaps have been partially overcone through use of air transportation to previously inaccessible ice platforms and ice floes but plankton research in the Arctic Ocean is still conducted almost exclusiveiy on a seasonal basis.

The Arctic Ocean represents a unique marine environment, characterfzed by its annular ice cover, vertical stability of the water column, and low annual biological productivity. Exceptions to this stable environment are found in the neritic areas of peripheral seas of the arctic, which are ice-free and vertically mixed during short portions of the summer and capable of producing rather high plankton standing stocks. Such a condition exists in the environment investigated by this study, a location where the livelihood of a portion of a large Eskimo community is indirectly dependent upon the high production of zooplankton organisms, manifested in the form of larger stocks of fishes, sea1s, and whales.

Laboratory research on the feeding binogy and energy requirements of grazing zooplankton has historically been conducted in temperate latitudes. Relatively little is bnom of the izoenergetics and physiology of arctic and subarctic species, with the exception of Conover's work on Calanus hyperboreus in the Gulf of Maine (1962, 1966).

1.1 Historical Aretic Plankton Investigations

Early studies of the plankton of the Arctic Ocean were condacted either from drifting icebound vessels or seasonally along the ice-free coastlines of the continent. 'fwo expeditions were noteworthy for their contributions to arctic plankton research up to the early 20 th century. The pioneering physical and biological oceanographic investigations of the Eurasian basin and perimeter were undertaken from 1893-1896 by the Norwegian North Polar Expedition under the leadership of Fridtjof Nansen. The identifications of the collections of marine planktonic Crustacea from this voyage by G. O. Sars (1900) set a precedent for subsequent investigations into the diversity and general zoogeograpiical patterns of arctic zooplankton. The collections of the Canadiar Arctic Expedition of 1913-1916 resulted in the preliminary descriprion of the planktonic fauna along the arctic coastline of the Northwest Territories and Alaska and a good portion of the western Alaskan coastline. Major groups of plankton reported from the expedition included the hydromedusse and ctenophores (Bige1or, 1920), amphipods (Shoemaker, 1920), copppods (Willey, 1920), and the schizopod crustaceans (Schmitt, 1919). The results trom these pioncering descriptive surveys indicated that the primary constituents of the zooplankton of the Arctic Ocean were crustaceans, most particularly the Copepoda.

For the past four decades, major contributions by the ussk, United States, and Canada have broadened our urderstanding of boreal. and aritic zooplankton ecology. The first extensive, systematic studies of the ralanoid copepor fauna in the Rering and cluotehi seas
were initiated by the Soviet State Hydrological Institute in 1932. The advent of the Sadko expedition and the drift of the icebound vessel Sedov from 1937-1939 further extended Russian research on plankton biology into the Eurasian basin of the high arctic. The analysis of the Seảov collections by Bogorov (1945) corroborated Sars' earlier conclusion that many copepod species found in the central arctic were Atlantic in origin.

The use of air transportation to ice floes and ice islands by the Soviets in the late 1930's added a new dimension to conventional sampling platforms in the arctic. Early Soviet investigations from ice stations North Pole I in 1937, and most notably, North Pole II from 1950-1951, permitted the first long term and deep water collection of the zooplankton in the central arctic. A number of vertically divided hauls down to 3000 m depth were taken from NP II and provided material for the description of 19 additional copepod species not previously recorded. It was concluded that most of these species were endenic to the deeper waters of the basin (Brodskii and Nikitin, 1955).

The cruise of the U.S. Coast Guard Cutier Che ian in 1934 represented the initial major American effort toward the coilection and study of marine zooplankton in the Bering and Chukchi seas (Johnson, 1934). This and later United States surveys in the vicinity by Johnson (1953) as well as Soviet investigations (Stepanova, 1937) provided much information on the composition and reproductive biology of the native species. The results from these studies also demonstrated the existence of a northord transfort of encemic kering Sea plankton
through the Bering Strait and delineated their zones of expatriation in the Chukchi Sea. Subsequent to these investigations, the icebrcaker U.S.S. Burton Istand made an extensive survey of the zooplankton at 106 stations throughout the Beaufort and Chukchi seas during the summers of 1950 and 1951. Johnson (1956) reported on the copepod constituents of the Burton Islarid collections and discussed zoogeographical distributions of selected species in relation to the hydrography of the Beaufort and Chukchi areas. Hand and Kan (1961) provided a description of the hydromedusae and their breeding ranges and also included a discussion of the influence of the hydrography on species distribution.

Anerican oceanographic investigations expanded into the central arctic with the establishment of Station "Bravo" on Fletcher's Ice Island (T-3) during the International Geophysical Year, 1952. The objectives for the research effort at this permanent station were not biological, but rather primarily to collect meteorological data: support geophysical research in the arctic, and establish a base for subsequent biological research. Initial American investigations Into the plankton of the high arctic began with the occupation of IGY drift station "Alpha" during 1957-1958. Ur to this time, a faatixe common to most previous plankton research in peripheral seas and the polar basin was an emphasis on systematics and the definition of general zoogeographical fatterns. Research or "Alpha" provided Continuous and deep water samples doun to 2000 m depth from June, 1957 to February, $\mathbf{1 9 5 8}$, and expanzed upon previcus research by enphasizing
zooplankton biomass and primary productivity (English, 1961) in addition to systematics (Johnson, 1963).

The occupation of T-3 by the United States for studies of zooplankton biology began in 1958, six years following the establishment of Station "Bravo" on the fice island. The results of these investigations are well reported in the literature, concerned mainly with seasonal variation in biomass, plankton associations with water masses in the central arctic, and seasunal vertical distributions of organisms (Grainger, 1965; Mohr and Geiger, 1968; Hughes, 1968; Hopkins, 1969; Scutt, 1969). Supplemental data from the ARLIS series I-IV, in particular AMLIS II from 1964-1965, provided additional information on seasmal changes in zooplankton biomass in the Eurasian basin north of Green1and (Hinoda, 1967). Fletcher's Ice Island is the only ice station presently occupled by the United States in the central polar basin.

Knowledge of annual cycles of biomass, population dynamics, and production of the zooplankton commities in neritic areas of the arctic comes principally from research in the Canadian eastern arctic by Grainger (1959, 1952); east Greenland by Digby (1953, 1954) ; and in the Barents Sea, as reported by Zenkevitch (1963). Extensive studies have not been conducted aloag the Alaskan arctic coast. Early investigations in the marine environment near Barrow, Alaska adjacent to the Naval Arctic Research Laboratory by MacGinitie (1955) were concerned primarily with the benthos and included only a limited discussion of the aacroplankton, this being generally descriptive in
nature with some data on reproductive periods and the relative abundances of selected species in the plankton. Johnson (1958) provided data on the qualitative and quantitative composition of the inshore zooplankton conmunity adjacent to NARJ for a one month period during the summer of 1957.

1.2 Laboratcry Studics of Zooplankton Feeding Biology

Since the beginning of this century, much attention has been paid to the feeding biology of grazing zooplankton, most particularly to the copepods of the genus Calanus. Early investigations were largely qualitative and included gross examination of gut contents (Dakin, 1908; Esterly, 1916; Lebour, 1922; Marsha11, 1924). Later experimerts emphasized measuremerts of filtration rates to determine whether utilization of filtered particulate matter was sufficient to meet the minimal metabolic requirements of the species (Fuller and Clarke, 1936; Harvey, 1937; Gauld, 1951). Recent work has been directed toward measuring growth iates and the effect of food type, developmental stage of the organism, and temperature on growth (Mullin, i963; Mullin and Brooks, 1967, 1970); tie relative grazing rates of nauplii and copepodid stages of copepods has also received attention in the literature recentiy (Paffenhöfer, 1971).

The research of licirshall and Orr on the calanold copepod Calanus finmarchicus spanned four decades and introduced a high degree of sophistication to feeding studies and proposed the examination of new problems and metiods. Marshall and Orr (19.25a) were smong the firgt. to use radioactive tracers $\left(3^{22} p\right)$ to study the upiake and assimilation
of algae by zocplankton. Whet the development of the use of ${ }^{1 / 4} \mathrm{C}$ by Steemann Nielsen (1952) for the measurement of primary production, a new method was evolved that could be similarly applied to basic research on the consumer level for the measurenent of assimilation and ingestion (Marshall and Orr, 1955b).

Lasker (1960) applied ${ }^{14} \mathrm{C}$ techniques to a study of the feeding biology of the Pacific euphausiid, Euphausia pacifica, and emphasized assimilation and the daily ration necessary for metabolic majntenance. Lasker also endeavored to estimate secondary production, a subject presently being evaluated (for a review see Muilin, 1969).

The methods developed by Sorokin (1969) allowed for the measurement of the total energy balance of aquatic grazers using radicactive carbon, providing direct measurements of growth, respiration, reproduction, excretion, and egestion through use of ${ }^{14} \mathrm{C}$.

1.3 Purpose of the Investization

Quantitative studies of the dynamics of a nearshore zooplankton conmunity along the arctic coast of Alaska are nonexistent. In contrast, the taxonomy and seasonal standing stock of the phytoplankton community in the coastal waters of the Chukehi Sea near Point Barrow have been investigated for eight years (Homer, 1969, personal communication). A logical extension of this research was a study of the animal plankton and its interaction witin the phytoplankton community. Such an investigation on the inshore zooplankton commanity near NARI was initiated in 1972 for a three morth period concurrent with
investigations on the phytoplankton in the same area by horner. viy research expands upon previous taxonomic work along the Alaskan coastline and provides more eculogical data. The following objectives were cited for this study: (1) to quantitatively describe the pattern of temporal variability in species abundance, composition, and standiag stock of the inshore zooplankton commity in the Point Barrow vicinity during the study period of May 25 through August 29, 1972; (2) to examine relationships between the variability of this commuity and changes observed in the state of the local hydrography and phytoplankton comaunity; (3) to describe the life histories, associations, and recruitment periods of major zooplankton species; and (4) to investigate trophic interrelationships of the plankton in the 1aboratory.

A study of the plankton in the Chukchi Sea near Point Barrow was of special interest because of the dynamic state of the hydrography during the summer period and its expected influence on the dynamics of the pelagic commity. The coastal oceanic environment of northern Alaska annually experiences two distinctly different hydrographic phases: (1) an open water period from July to Seftemer, characterized by extensive mixing of the water column with assocjated nutrient enrichment and relatively high productivity in the ware surface waters, and (2) on ice cover period from October to June, charactericed by uniformly stable hydrographic conditions, low temperaturas, reduced light transmission, and low productivity. These fluctuating conditions are unique and in opposition to the relacively urform
oceanographic state and stable plankton community persisting year round throughout the central basin and much of the periphery of the Arctic Ocean.

It was hoped that my research would provide a more complete understanding of the dynanics of the nearshore summer plankton community in the seasonally variable narine environment near Point Barrow, Alaska.

2.1 Field Investigations

The objectives of the field investigation were to describe the pattern of temporal variability fin abundance and composition of the summer zooplankton community, to exarine the reiationship of this variability to the local hydrography, and to study life histories, associations, and periods of recruitment for dominant species. A calendar week was chosen as the time unit for comparisons and $*$ statistical testing of variability in species abundance during the summer season.

2.1.1. Equipment

The selection of diameter and mesh size of a zooplankton sampling net reflected both a previous knowledge of the minimum size range of dominant zooplankters in the commurity as well as consideration of which size fraction of the animal community was to be quantitatively examined.

The nets chosen for the majority of the work were of conical dosigm with a $0.75-\mathrm{m}$ diameter opening, tapering approximately. 300 cm to a removable polyvinyl chloride collecting cup of $9-\mathrm{cm}$ diameter. The netting was Nitex ${ }^{1}$ high-capacity, monofilament nylon cioth with a mesh aperture of 0.308 mm ; a short $8-\mathrm{cm}$ nylon collar proceeded the filtration cone for attachment to a galvanized steel ring. A 3:1 open area ratio

[^0]was realized as recommended by UNESCO (1968). In addition, a small number of qualjtative samples were oltained during the sanpling period with a Nitex $25-\mathrm{cm}$ diameter, 0.046 mm -meshed net. One series of zooplankton samples was taken in February, 1972, with a Nitex $0.50 \sim \mathrm{~m}$ diameter, conical net of mesh aperture 0.571 nm borrowed from the Institute of Marine Science, University of Alaska.

2.1.2 Station Locaíions

The sampling area included the 17 km (ten mile) stretch of coastline from Point Barrow to Barrow Village (Fig. 1). Collections of plankton in February and from liay 25 to June 28 were obtained from a single ice station located approximately 1 km north of the NARL airport. Open water sampling was similarly carried out in the vicinity of NARL, roughly 1 to 2 km seaward of the coast in water depths of ten meters or less. Horizontal surface tows were taken 4 km from shore on July 22 and August 3, 4, and 5 at the 30 m depth contour for comparative purposes with the shallower nearshore comanity. A single sample from a vertical tow was also collected on August 4 at this depth.

A single series of evenly spaced samples was taken along a coastal tratisect from Foint Barrow to Barrow Village on August 19. Three pairs of duplicate samples ware collected within two hours for determining whether statistiaally significant spatial variability in the zooplankton community existed along the coastline at this time. One diel series of hauls was taken on August 28 to determine whether day-night differences iv abudance existed for major zooplankters. A listing of samping efinut ab various station locations is included (Table 1).

Figure 1. Map of the northern Alaskan coastine near Point Barrow. Accompanying insert shows the study area in relation to the state

Table 1. Relative sampling effort at various station locations near Point Earrow, summer 1972. Listed as total number of samples collected
to 2 km seaward
94
NARL
6

2.1.3 Zooplankton Sarpling Desian

The field effort was divided between under-ice and open water sampling. A schedule of two to four sampling days per week was maintained with few exceptiuns thrcughout a period from May 25 to August 29, 1972. During this time, 107 samples were collected, the majority between 0900 and 1550 hours.

Shorefast ice was present in the nearshore environment near NAFL through June 27. A permanent $1 \times 2 \mathrm{~m}$ ice hole and wanigan hut were maintained for net sampling and diving purposes approximately 1 km from shore until ice conditions became treacherous. Water depth at this station was 6 m .

Under-ice sampling was accomplished using SCUBA divers or a puliey system. Divers would pull nets out manually to a prearranged distance (usually 17 to 23 m) from the hole where a release was made at mid-depth for retrieval. This operation was duplicated at each sampling date. Care was taken by the divers to avoid filtering water as the net was carried to the release point. The retrieval speed of the net was approximately $0.7 \mathrm{~m} / \mathrm{sec}$. The volume of water filtered by this method ranged frow 7 to $1 i \mathrm{~m}^{3}$, under the assumption of 100% filtration efficiency.

Retrieved nets were rinsed twice and the sample contents placed in 250 or 500 ml (8 or $16 \mathrm{oz}$.) jars and returned th the laboratory for preservation in 10% sodium acetate-buffered formalin.

The sampling procedure described above vas very domanding of the divers, and an under-ice pulley system was installed on June 20 to
relieve the problem. A hole was drilled through the ice 18 in from the ice hole and a small block susperded beacath the ice. Nylon line was run through the pulley and the ends tied off on ice pitons at the diving hole. This method proved to be extremely convenient and excellent replicate hauls could be obtained with little effort.

Ice conditions during breakup prevented sampling from June 29 to July 7. Following this period, a $5-\mathrm{m}$ (16 ft.) aluminum skiff became available for zooplankton sampling.

Consistent towing procedures were followed while operating the skiff. A horizontal tow of about 300 m was chosen, providing a total filtered volume of $130 \mathrm{~m}^{3}$. It was thought that this distance would be sufficient to provide an adequate sample and would also integrate any small scale patchiness that might exist in the plankton community. Tow distance (300 m), speed ($1 \mathrm{~m} / \mathrm{sec}$), and methods of rinsing nets were standardized to reduce sampling error. . Skiff speed was estimated and adjusted accordingly by measuring the time for a floating object to travel the 5 m distance from the bow to the stern while the net was fishing.

A nylon line of $0.65-\mathrm{cm}$ thickress ($1 / 4$ in.) was attached to the net at the mildle of the ring crossbar and the net was placed in the water while the skiff was in neutral gear and allowed to sink two or three meters below the suirface. Fishing depth was monitored during each tow by measuring the wire angle and the length of line extended. Duplicate hauls were taken on each sampling date and sample contents treated as previously dezcribed.

Towing velocity was selected as a compromise between an effor: to maximize filtration efficiency and reduce the problen of net avoidance characteristic of certain micronekton at low towing speeds (UNESCO, 1968). Horizontal rather than the more mechanicaliy difficult oblique hauls were used for the opan water desien because vertical salinity profiles during this period incicated the water column to be homogeneously mixed to the bottom. It was assumed 1ittle or no vertical zooplankton stratification existed in the area under these conditions.

2.1.4 Environmental observations

Water samples were taken concurrently with zooplankton collections for the detemination of salinity, nutrient concentrations, and chlorophy11 a content (See UNESCO, 1966). Samples were consistentiy collected at the surface during ice cover and also at 1,3 , and 5 m as melting progressed. Open water collections were generally made at $0,1,3$, and 5 m. A 6-1iter PVC Van Dorn bottie (1956) or modifiec Scett-Iichards water sampler were used for all collections. Botries were lowered to the desired depth and tripped with a brass messenger. A suall aliquot of each water sample was removed and placed in a 250
 personal commuication). In addition, samples of the larger phytoplankton were collected periodically during the summer with a Nitex net of mesh arerture 0.046 mm . Surfare water temperature to the nearese

[^1]dates. The disappearance of a white $30-\mathrm{cm}$ diameter Secchi disk was noted to increments of 0.5 m .

Phytoplankton primary productivity experiments employing radioactive bicarbonate were also conducted regularly throughout the summer in the inshore waters cff NARL (Horner, peromal commaication).

The general current direction, pack ice movement, wind velocity and direction, and the level of incident radiation were observed regularly in the Barrow area.

2.2 Laboratory Analyses.

Zooplankton samples were returned to NARL for identification, counting, length measurements, and dry weight analysis. An occasional examination of gut contents was included for selected species. The analysis of material was completed at the lniversity of Alaska Muscum, Aquatic Division. Samples collected in February were only qualitatively examined. Specific identifications were made using the following texts:

Shirley and Leung, 1970	Hydrozoa
Bigelow, 1920	
Naumov, 1969	
Pettibone, 1954	Polychaeta
Barnard, 1969	Amphipoda
Tencati, 1970	
Sars, 1900	Copepoda
Brodskii, 1967	
Rose, 1933	
Tanaka, 1956	
Vidal, 1971	
Fulion, 1968	

[^2]Dawson, 1971
Wimpenny, 1966
Walters, 1955

Chaetognatha
Larvacea
Pisces

2.2.1 Identification and Enveration

Each zooplankton sample vas poured into a $50 \times 75-\mathrm{cm}$ white photographic tray, diluted with water, and evenly distributed and sorted under an overhead light. Larger zooplankton were removed prior to subsampling and individually identified and counted, sized, and placed in vials for future reference. Groups of this type include larger hydromedusae, scyphozoan medusae, pteropods, poiychaetes, amphipods, euphausiids, juvenile shrimp, mysids, chaetognaths, and larval and juvenile fishes. Small, rarer specimens were treated similarly.

The remaining, relatively homogeneous sample was placed in a calibrated 1000 ml wide-mouth graduated beaker and diluted to 400 ml in preparation for subsampling. The water height associated with this volume was ideal in minimizing the potential for vertical gradients in plankton concentrations due to settling during the subsampling process.

Subsamples were removed using Hensen-Stempel Pipets ${ }^{2}$ equipned with interchangeable sampling spools of $1,2,5$, or 10 ml . Zocplanikters were stirred in a random fashion with precautions taken to avoid introducing localized eddies or pockets of high concentration. Duplicate aliquots were removed in twenty-three cases to determine the error associated with subsampling techniques.

2 Wilco Scientifac Supply Co., Saginaw, Michizan.

Subsamples were flaced in 60×15 or $100 \times 15-\operatorname{man}$ Pyrex petri dishes and the organisms identified, counted, and measured under a variable power (0.7 to 6.0 Y) , stereoscopic microscope; a minimum of 100 specimens were examined. The relative abundances of various developmental stages of copcpod species were detemined by direct counting or roughly estimated as fractions of the total count for the species. Copepod nauplii were not differentiated by stage, but grouped together and counted. Size-frequency relationships for the other zooplankton groups were more easily determined, where direct measurements alone were usually adequate to distinguish life history stages. Chaetognaths were grouped and quantified in size ranges of greater than $30 \mathrm{~mm}, 20$ to $30 \mathrm{mn}, 13$ tc 20 mm , and less than 13 mm to reduce the labor involved in measuring each specimen individually. Size grouping procedures were also followed for some species of hydromedusae and occasionally for the euphausiids. Barnacle nauplii larvae were grouped into sizes of greater than 0.308 mm and less than 0.308 mm for counting.

Tatal numbers of each species in the sample were determined by multiplying counts in the subsample by the inverse of the aliquant fraction removed. Division by the volume filtered provided the estimate of the number of individuals per cubic meter of water sampled.

2.2.2 Size of Organisms

Size measurements were made on ali zonglankton in an effort to establish life history stages.

Measurements on ali species were made using a calibrated, transparent, millimeter rule. Specimens were placed directly on the ruler and measurements made under the stereomicroscope. Copepods, ostracods, barnacle larvae, and larvaceans were measured to the nearest 0.1 man ; other zooplankton groups were sized to the nearest millimeter. Methods of measurement were consistent with presently acceptable standards. Copepods were sized fron the tip of the cephalosome to the end of the caudal rami, euphausiids and mysids from the anterior tip of the carapace to the end of the telson; bell height was determineu for hydromedusae and the head length for larvaceans. The diameter of scyphozoans was determined. Chateognaths were measured along the pivotal or centrał axis. Bent organisms were straightead prior to measurement.

2.2.3 Dry Weight

Dry weight analyses were performed on 107 preserved zooplankton samples to examine temporal variability in bionass. The procedure involved dividing the samples into halves using a modified sand splitter (Cooney, 1971). Rarer organisms removed in prior sorting operations for purposes of organizing a museum reference collection were not processed. Large scyphozcan medusae and juvenile fishes were also not considered in dry weight measurements.

Each sample was divided into two parts and after rinsing the splitting apparatus, one half was returned to the original sample jar, preserved in 100% formalin, and stored in the Universty of

Alaska Museum, Marine Collections. The remaining half-sample was flushed in running tap water for 5 minutes, drained, and poured into a tared, aluminum foil tray. Sampies were dried to constant weight at $56^{\circ} \mathrm{C}$ for 18 to 24 hours (Lovegrove, 1966). Newly removed samples were cooled in a desiccator for 10 minutes and then weighed to the nearest milligram on the Mettler ${ }^{3}$ F160N balance.

In addition tc total zooplankton biomass, the average indiviciual dry weights were determined for selected develnpmental stages of the copepods, Calanus glacialis, Faeudocalanus minutus, Acartia sp.; the chaetognath, Sagitta elegans arctica; the pteropod, Limacina helicina; the hydromedusa, Aglantha digitale; and the cirriped, Balonus nauplii and cyprid larvae. Fifty indivicuals of each developmental stage of the Copepoda were selected for weighing. The same number of individuals of the Chaetognatha were chosen in each of the size ranges previously described; a variable number of pteropods and hydromedusae, generally from 15 to 30 , were weighed and average values obtained. Five ml aliquots of a sample known to consist predoninantly of barnacle larvae were removed for weighing. Organisms were placed in tared, aiuminura foil travs of the type used in total dry weight analysis, dried, and weighed on a Mettler Type B6 pan balance to 0.1 mg accuracy. This method provided a fractionation of total dry weight for any given sample into the relative percentages of biomass contributed by the major species.

[^3]
2.3 Statistical Procedures

Statistical analyses were performed to evaluate the variability associated with several leveis of sampling and to test differences between means. Three levels of sampling variability were examined: subsampling, field or replication error, and within-week error. Data transformation, one-way analysis of variance, coníidence limit estimation, and correlation analysis were techniques employed in the treatment of data. Notation and description of terms follow Snedecor and Cochran (1967).

2.3.1 Data Transformation

Counts of all species were recorded as number of inaividuals per $100 \mathrm{~m}^{3}$ of water filtered. These data were then transformed irito logarithms for one-way analysis of variance (English, 1961). The following transformation was used:

$$
x_{i}=\log _{10}\left(x_{o}+1\right)
$$

where X_{i} is the transformed variable; and X_{o} is the original observation. The addition of 1 to the arisinai vaiable alleviatss the problem of taking the logaithin of 0 winen organisuls are absent in hauls (Taylor, 1953).

Means, sums of squares, and nean squares were obtained using a BMD OlV progam for one way analysis of variance (Dixon, 1965). Computations more tả̉a by an in:i jóv computer. The geometric means
of original bservations were obtaned by taking the antilogarithm minus 1 of the transformed rans.

A fixed model of a oneray analysis of variance was used to exame the statistical sicniffornce of varisbiltity in mean abudance for all zooplankton species for the sworer pericd. Variability associated with subsampling techniques, within-day or ficld metnods, and within-week sampling, represented the levels of sampling examined. A weckly interval of 7 days was chosen as the tine unit for the statistical analysis of sumer population trends for all species. A geometric mean for weekly periods was obtained by averaging the daily means within the week; the dafly observations within weeks then formed the basis for testing dififerences between weekly periods.

The following fixed rodel vas used for the analysis of variance:

$$
x_{i j}=\mu+\alpha_{i}+e_{i j}
$$

where $X_{i j}$ is the transformed observation of avarage numbers of specimens per 100 : ${ }^{3} / \mathrm{day}, \mu$ in the overall mean; α_{i} is the time affect in weeks, $i=1,2,3, \ldots 13$, and $f_{i j}$ is the cror tern, $j=1,2,3, \ldots \ldots$. Assumptions inpicit to the nodcl are: (1) the smmation of the treatment éffects equal zero $\left(\Sigma \alpha_{i}=0\right)$; and (2) the error tems are nomally distributed about a :azn of 0 with standard deviation $\left.\partial e_{i j}=\because(0, \delta)\right)$.

2.3.3 Estimation of Confidence Limits

Confidence limits were calculated about subampling, dajily, and weekly means to define significant differences in abundances of organisms for the summer. The following equation was used as the model:

$$
\mathrm{CL}=\overrightarrow{\mathrm{X}}_{\text {geo }} \div \operatorname{antilog}\left(t \sqrt{\frac{\text { MEE }}{\mathrm{n}}}\right)
$$

where $\vec{X}_{\text {geo }}$ is the weekly geometric mean; t is Student's t at $P=0.05$ and the degrees of freedom associated with the mean square; MSE is the within-week mean square error; and n is the number of observations contributing to the weekly mean.

2.3.4 Correlation Analysis

It was desirable as part of the present study tc exanine species associations in the zooplankton in relationship to ccriain major parameters influencing the variability in abundance of organisms with time as well as factors responsible for changes in community composition. To aid in this interpretation, a BID ORR program for stepwise multiple regression was chosen for the analysis (Dixnn, 1965). A correlation matrix was generated for 31 parameters, including 28 zcoplankton categories and temperature, salinity, and ch1orophyll a.

2.4 Trophic Studies

As a supplement to field research, the present study included laboratory investigations of the feeding biology and erergy budeet of selected zoopiankton species fed ${ }^{1 /} \mathrm{C}$-iabciled phijtoplankton.

Estimates of filtration and ingestion rates, assimilation efficiency and the relative apportionment of assimilated energy into growth, respiration, and excretion were obtained under varying biological and physical conditions in the laboratory. Energetics were examined on both the community and individual species level of organization.

2.4.1 Experirentät, Ongcinisma

Zooplankters used for the laboratory studies were generally chosen for their numerical dominance in the plankton. These included adult females or stage V copepodids of the copepods Calanus glacialis, Pseudocalanis minutus, Acartia spp., and Calanus hyperboreus; a random sample of the zoopianktoix community of August 28 was used in one experiment, consisting of Bulanus nauplii and cyprid larvae, echinoderm and polychaete larvae, some juvenile C. glacialis and adult Acaritia, and hydromedusae. Investigations also included the study of the physiology of a Bering Sea expatriate species, Calanus plunchrus stage V.

2.4.2 Algal Culture and Cell Counting Techniques

A11 phytoplankton species used in the experiments were common to the Barrow area and included a unialgal, solitary Chaetoceros sp., a mixed population of the diatoms Nitzschia ciostemium, N. seriata, Navicula sp., and a green biflagellated "Chlamydomonas-type" alga. Phytoplankton were cultured in 250 ml Erlenmeyer flasks or squat jars, to which were sdied $40 \pm c 50 \mathrm{~m}$ of Millinore-filtered seavater and 20
ml of half streagth Provasoli culture enrichnent medium. Solutions were occasionally enriched with 1 drop of NaSiO_{3}. Algae were incubated in culture chambers at $5^{\circ} \mathrm{C}$ in aither continuous or 12 -hour daily light cycles. Incident radiation in the culture chambers varied from 2800 to 4800 Iux.

Inoculations vere made with radioactive carbon in the ratio of 5 to $10 \mu \mathrm{Ci} \mathrm{NaH}{ }^{14} \mathrm{CO}_{3}$ per 50 to 70 ml culture solution; the culture flasks were then capped and returned to the chamber for further incubation, usually 2 days to 1 week.

Cultures were prepared for experiments by centrifugation in 50 ml tubes, initially at 2000 rpm for 3 minutes and then at 1500 rpm for an additional 2 to 4 minutes. After decanting and resuspending the cells in double Millipore-filtered seawater, centrifugation was repeated at 1200 rpm for 3 minutes. The "hot" cells were then placed in a 2000 m 1 beaker and a stock solution prepared by diluting with activity-free filtared seawater to the desired volume. Aliquots of unialgal stock solutions were removed immediately prior to experimentation for estabishing initial cell density per unit volune.

A model B Coulter Counter was made available for determining cell concentrations per unit volume of unialgal Chaetoceros cuiture at the beginning and end of the experiments. Five or six replicate counts were taken on 0.5 ml aliquots of Chactoceros culture and the average of these counts used as the cell concentration. Aliquots of double Millipore-filtered seawater were used for establishing background counts.

2.4.3 Experimental Feeding Proceảures

The mass balance equation for an individual organism established the premise from which the experimental methodology developed. A general form of the equation is as follows:
ingestion $=$ growth + reproduction + respiration + excretion + feces
(I)
(G)
(PP)
(RS)
(E)
(F)
where $G+R P+R S+E=$ assimilation.
Studies of the energetics of single copepod species involved the use of 250 ml squat jars as feeding containers, to which were added 150 ml of algal cilture from a stock solution and 2 to 4 organisms. Community feeding experiments employed 1000 ml wide-nouth beakers as holding vessels and 450 ml of siock culture. Two or three replicate feeding jars or beakers were used in all cases. In addition, a phytoplankton control jar was used in all experiments to account for any possible respiratory, excretory, or photosynthetic activity by the algae during the experimental duration.

A11 experiments were conducted in sulture chambers or in a Gilson respirometer with a water bath at $i r_{\text {i }} \dot{i} i t u$ temperatures. Feeding jars were gently agitated periodically during tine experiment to keep the algal cells in suspension.

The cellular activity and the activity of the filtrate were determined at the beginning of each experiment by filtering aliquots of algal stock solution through a Millipore HA filter (pore size 0.45 $\mu \mathrm{m})$, and removing 3 ml aliquots of the filirate. These were added to 10 ml of Aquasol for counting.

After an experimental time period of 4 or 24 hours, the organisms were removed from the feeding jars, rinsed, and placed in 2 ml of Protosol ${ }^{4}$ tissue solubilizer and 2 drops of water for a 12 hour dissolution period. Ten ml of Aquascl and 3 ml of water were added to form a thick gel before counting.

Faecal pellets were removed from the feeding jars under a dissecting scope, rinsed, and dissolved in Protosol as described above. Twenty ml aliquots of the cell-filtrate solution were removed from control and feeding jars for establishing cell density of unialgal cultures. The remaining 130 ml of solution were filtered through 0.45 m Millipore filter paper, to separate the cells (particulate labelled matter) from the filtrate (dissolved labelled matter).

Two methods were employed in the analysis of filtrate activity: the phenethylyamine process and direct volume aliquot method. Eoth were used to measure the relative amount of assimilated energy diverted into respiration and excretion. The advantage of the phenethylamine method over the direct aliquot measure is that it is possible to differentiace respiratory and excretory losses with the former; the later method measures the composite total activity of respiration and excretion.

The phenethylanine technique used followed the procedures deveioped by Harrison, Wright, and Morton (i971). The procedure involves capturing liberated ${ }^{14} \mathrm{CO}_{2}$ on phenethylamine-soaked filter paper after acidification with $\mathrm{H}_{2} \mathrm{SO}_{4}$. Excretory (organic carbon) and respiratory

[^4](inorganic carbon) losses were differentiated by using progressively stronger acids. Filters were added to scintillation cocktails as previously described and counted.

As a check against the efficiency of the phenethylanine process, direct aliquots of filtrate (3 nl) were extracted with volumetric pipets and the radioactivity of both methods compared. The phenethylamine process was abandoned after the first experiment because of the time involved and when it appeared that it considerably underestimated respiration and excretion in comparison to the direct aliquot method. This latter method was used in all other experiments.

All radicactive samples were counted on a Nuclear-Chicago Model 6848 liquid scintillation counter for 10 minutes; extremely "hot" samples were counted at a threshold of 1000 K counts. Quenching was corrected for using the channels ratio method and counting efficiency determined. Absolute disintegrations per minute (DPM) were then calculated by the following formula:

$$
\text { DDM }=\frac{\text { CPM channe } A-\text { CPM background }}{\text { Counting Efficiency }}
$$

 ingested activity, and assimilation and gross growth efficiency are included in Appendix II.

CHAPTER 3. RESULTS

3.1 The Hearshore Hydrography

A dynamic hydrograpitic regime during the summer season is evidenced by the onserved temporal distributions of temperature, salinity, and ice cover (Fig. 2). Surface tomperatures increased gradually from a low of $-2^{\circ} \mathrm{C}$ in late May to $1^{\circ} \mathrm{C}$ the week of June 23. During the period July 21 to August 4, a rapid thermal increase to $6^{\circ} \mathrm{C}$ was noted, while the surface water maximum, $8.5^{\circ} \mathrm{C}$, did not occur until the last week of August. The highest salinity values of the summer, 32.6%, were recorded between June 2 and June 8 . A decline in total dissolved salts from 30.4% to 26.6%, occurred from July 7 through July 20 , after which an increase to 30.1% was observed the last week of July. Salinities fluctuated between 29.2% and 30.3% o for the remainder of the summer.

Following breakup in early July, the inshore open water environment was free of ice with few exceptions. Dririt ice usually accompanied a westerly or northwesterly wind and was recorded near shore on the following days: July 19; and August 2, 6, 10 , and 12 . The permanent ice pack was often times observed on the near horizon: but ravely moved in closer than two miles frou shore. Ice conditions hampered the samrling operations oniy during the breakup period.

The nearshore current direction was generally northeasterly toward Point Barroa from late May te late fuly. At this time, a corplete revarsal in direction to the southest ar west ocoured, a

Figure 2. Temporal distributions of the state of the sea surface, coincident with (a) surface water temperature, and (b) the average water column salinity, averaged for each of 14 sampling weeks, sumbier 1972

condition that persisted to early August. After August 4, the current showed no consistant directional tendency.

3.2 The Zooplankton Community

Forty-five categories of zooplankton, including 9 phyla and 28 categories identified to species, comprised the inshore community near Point Barrow, Alaska, during the sumner, 1972.(Fig. 3). All organisms in my collections were previously reported from the area (Willey, 1920; MacGinitie, 1955; Johnson, 1956, 1958; Hand and Kan, 1961).

3.2.1 Statistical Studies

The results of the statistical studies demonstrated significant differences between weekly mean abundances and in variability associated with sampling levels.

3.2.1.1 Levels of Variability

Estimates of variability from the one-way analysis of variance were used to calculate upper percentage confidence limits about weekly, replication, and subsampiing mean abundances for comparison of variability assocated with these sampling levels. The upper percentage confidence limit increased frow subsampling, to replication, to the within-week level for 28 of 37 categories of zooplenkton examined on: these levels (Table 2). In no case did the subsampling error exceed the replication or within-week variability.

Figure 3. Qualitative distribution of the constituents representing the Barrow zooplankton community from May 25 to August 28, 1972

Table 2. Upper percentage confidence llaits, $p=0.05$, for observations at the subsampling, daily replicat for, and within-week sampling levels for selected categories of zooplankton

Table 2 (continued)

Categories	Percentage Corifidence Limits					
	Subsampling DE		Field Replifation		Within-week	DE ${ }^{3}$
Decapoda						
Crab zoea larvae	188	10	364	26	295	13
shrimp larvae	-	-	467	18	897	19
Euphausiacea						
Thusanoessa raschii	-	$\bar{\square}$	753	14	2,190	6
furcillia larvae	224	10	1,660	6	9,660	3
Ostracoda						
Conchoecia sp.	-	-	222	4	1,259	2
Evadne nordmanni.	-	-	229	13	1,660	5
Podon leukarti	-	-	181	13	944	5
Sagitta elegans arctica	167	16	334	41	284	25
Appendicularia						
Oikopleura sp.	-	-	925	9	7,762	2
Fritillaria borealis	-	-	468	18	69,183	7
Pisces	-	-	451	32	344	17

a Degrees of freedom corrected for cells containing no organisms.

- Organisms wert not subsampled or were too few in number for statistical analysis.

3.2.1.2 Tests of Hypotheses

The observations within one calendar week provided the basis for testing differences between average weekly abundances for all zooplankton categories during the summer. The null hypothesis of no difference between weekly means was tested using the F-statistic and was rejected for 29 of 30 categories ($\underline{P}<0.05$; Table 3).

Two additional hypotheses were tested statistically: (1) the effects of sampling location on the avcrage abundance of inshore zooplankton; and (2) the effects of time of day on the average abundance of zooplankton sampled at one location.

The effect of sampling location on zooplankton numbers was of interest in determining whether significant spatial differences existed in the inshore zooplankton community along the Barrow coast. The data from the coastal transect taken on August 19 were used for the analysis. Three pairs of replicate tows were collected within 2 hours, one set each at Barrow Village, NARL, and Point Barrow. The replicates taken at the usual summer sampling site (NARL) were used as the standard to which the other areas were compared. Average abundances were ceiculated for 9 categories of zooplankton from each set of replicated tows taken at the three areas. Within-week upper and lower confidence limits previously determined for each zooplankton category were applied about the mean abundance of organisms sampled off NARL, the reference location. These limits were then compared with the average abuncencez for categories from Point Barrow and Barrow Viliage. If the mean abundance of the zooplankton category

Table 3. Statistical evaluation of the effects of time on the variability of weekly mean population abundance for selected categories of zooplankton from May 25 to August 28, 1972

	Statistical Significance	
	Time 1	
Zooplankton Category	F^{2}	df
Hydrozoa		
Aglantha digitale	$* *$	12,25
Bougainvillea superciliaris	$* *$	12,25
Leuckartiara sp.	$* *$	12,25
Obelia longissema	$* *$	12,25
Rathkea octopunctata	$*$	12,25

Pteropoda
Clione limacina NS
12,25
Limacina helicina
Polychaeta
**
Amphipoda
Gammaridae
12,25
Hyperidae
**
12,25
Cirripedia
Balanus nauplii larvae
12,25
Balonus cyprid larvae
**
12,25
Copepoda
Acartia spp.
**
Calanus glacialis
Centropages abciominalis
Eumytemora hendmami
Oithona similis
Pseudocalonus minutus
copepod nauplii
**
12,25

* 12,25
** 12,25
:\% 12,25
*

12,25
12,25
**
12,25
Decapoda
shrimp juveniles
**
12,25
Chionoecetes zuea larvae
**
12,25
Paralithodes zoea larvae
**
12,25
Euphausiacea
Thysonoëssa raschii

Table 3 (continued)

Statistical Significance

Time 1

Zooplankton Category	\underline{F}^{2}	df
Ostracoda		
Evadne nordmonni	**	12,25
Podon leukarti	**	12,25
Chaetognatha		
Sagitta elegons arctica	**	12,25
Appendicularia		
Eritillaria borealis	**	12,25
Oikopleura sp.	*	12,25
Pisces	**	12,25
Zooplankton community biomass	*	12,25

12,25

[^5]$2 *=\underline{P}<0.05 ; *_{*}=\underline{P}<0.01 ; N S=$ not significant ($\mathrm{P}>0.05$)
tested fell within the lifilts of the standard interval, no statistically significant spatial difference in abundance was assumed. Means falling outside the limits were considerei significant (P < 0.05).

The results of the analysis indicated the null hypothesis was accepted (i.e., no spatial differences in abundance existed) for 16 of 18 cases (Table 4). Significantly fewer numbers of Balanus nauplii were present at Barrow Village relative to NARL cn August 19. Also, significantly larger numbers of polychacte iazvae existed at Foint Barrow.

The test of the effects of the time of day on population abundance for selected categories of zooplankton was conducted similarly to the previous test. Data from a diurnal series of tows taken on August 28 and 29 were used for the analysis. The standard time of day selected to which the data from other times were compared was 1530 , since the majority of summer sampling had been condunted nearest to this time, Within-week confidence limits were applied about mean abundances for zooplankton categories sampled at 1530 for comparison with mean numbers at 0930, 2330, and 0630.

The results of the test indicated that the nuli hypothesis of no diel variation in abundance ($\underline{P}<0.05$) was acceptec for 31 of 36 cases (Table 5). Significant diel differences existed for Acartia spp. (higher concentrations at 2330 or 0630), Oithona similis (higher concentrations at 0930 and lower concentrations at 0630), and polychaete larvae (higher concentration at 2330).

Table 4. Statistical evaluation of the effects of sampling location on the mean abundance of selected zooplankton categories collected on August 19, 1972

Statistical Significance

Location 1

NARL Point Barrow Barrow Village

Zooplankton Category

Hydrozoa
Aglantha digitale NS NS

| Polychaeta
 pelagic larvae | - | $+*^{3}$ |
| :--- | :--- | :--- | :--- |
| Cirripedia
 Balonius nauplii larvae - NS
 Balanus cyprid larvae - NS | | |

Copepoda
Acartia spp.
NS ${ }^{2}$
NS
Calanis alacialis - NS NS
Oithona similis - NS NS
Pseudocaianus minutus - NS NS
Ostracoda
Podon leukarti
NS
NS

1
$H_{o}: \beta_{i}=0$ (location effect equal zero)
2 NS = not significant ($\mathrm{P}>0.05$)
$3+*=\underline{P}<0.05$ of larger numbers of organisms
4
$-*=\underline{P}<0.05$ of fewer organisms

Table 5. Statistical evaluation of the effects of time of day on the population abundances oi zooplankton categories sampled at one location, August 28/29, 1972

	Statistical Sígrificance			
Category	0930	$\begin{gathered} \text { Time of day } \\ 1530 \end{gathered}$		$\underline{0630}$
Hydrozoa				
Aglantha digitale	NS	-	NS	NS
Polychaeta				
pelagic larvae	NS	-	+*	HS
Cirripedia				
Balanus nauplii larvae	NS	-	NS	NS
Balanus cyprid larvae	NS	-	NS	NS
Copepoda				
Acartia spp.	NS ${ }^{2}$	-	+* ${ }^{3}$	+*
Calanus glacialis	NS	-	NS	NS 4
Oithona similis	+*	-	NS	-* ${ }^{4}$
Pseudocalanus minutus	NS	-	NS	NS
Chaetognatha				
Sagitta elegans arctica	NS	-	NS	NS
Appendicularia				
Fritillaria borealis	NS	-	NS	NS

3.2.1.3 Cormelation analysis

The results of the correlation determined between selected categories of zooplankton, chlorophyll a, surface water temperature, and average salinity in the water column showed a number of species associations among the plankton as well as strong individual affinities to very specific temperature and salinity regimes.

The significance of the simple correlation coefficients (r) of 27 zooplankton categories and community dry weight with surface water temperature, average water column salinity, and chlorophy11 a were determined for the 14 -week summer sampling period (Table 6). Sixteea categories showed significant negative or positive correlations ($\underline{P}<0.05$) with temperature and three categories were significantly correlated with salinity. None of the zooplankers tested showed significant correlation with chloropiyll.

The results of the species to species correlation analysis allowed differentiation of the Barrow community into two distinct groupings of asscciated zooplankton (Table 7). Group 1 consisted of Pseudocalanius minutus, Sagitta elegans arctica, crab zoea, hyperid and gammarid amphipods, Leuckartiana sp., and juvenile shrimp. Group 2 included Centropages asdominnizis, Eunitemora herdmanni, Evadne nordmanni, Fodon leukarti, and AgZantha digitale. Several minor subgroups, showing fewer consistant affinities, were also discerned from the results of the analysis. The members within each of the two major grours, in adiation to being signifiこantly correlated to one ancther, ala shared a common significant correiation to temperatme (see Zabie o).

Table 6. Statistical evaluation of the correlation of 27 categories of zooplankton and community dry weight with surface water temperature, average water column salinity, and chlorophyll a from May 25 to August 28, 1972

Statistical Significance

Parameter

Category

Temperature
Hydrozoa

AgZantha digitale	$+*$	NS	NS
Leuckartiara sp.	$-*$	NS	NS
Rathkea octopunctata	NS	NS	NS

Pteropoda
Clione Iimacina +* NS NS
Limacina helicina NS NS NS
Polychaeta larvae NS NS NS
Amphipoda
Gamaridae -* NS NS
Hyperidae -* NS NS
Cirripedia
Balanus naup1ii> $308 \mu \mathrm{~m}$ NS . NS NS
Balanus nauplii < $308 \mu \mathrm{~m}$ NS NS NS
BaZonus cyprids $+* *$-*
Copepoda
Acartia spp. NS ivS NS
Calanus glacialis NS NS NS
Centropages abdominalis $+* *$ Nis NS
Eurytemora herdmonri $+\%$ NS NS
Oithona similis ivs ivo ins
Pseudocalorus minutus NS NS NS
copepod naupiii NS NS
NS
Decapoda
Chionoecetes zoea -*
-** is NS
Paralithodes zoea -** +* NS
Shrimp juveniles -* NS NS
Euphausiacea
Thusannessa raschii NS NS NS

Table 6 (continued)

Category Te	Statistical Significance		
	Temperature	Parameter Salinity	Chlorophy11 a
Ostracoda			
Evadne nordmanni	+*	NS	NS
Fodon leukarti	+*	NS	NS
Chaetognatha			
Sayitta elegans arctica	ca -**	+*	NS
Urochordata			
Fritillaria borealis	+**	NS	NS
Pisces	NS	NS	NS
Zooplarkton dry weight	NS	NS	NS

1

$$
\text { * } \quad=\underline{P}<0.05
$$

2

$$
* *=\underline{P}<0.01
$$

3

```
NS = not signifcant ( P > 0.05)
```

Table 7. Major groups of associated zooplankton based on category to category correlation

Group 1 L	Leuckartiara sp.	Amphipoda	Pseudocalanus minutus	$\begin{aligned} & \text { crab } \\ & \text { zoea } \\ & \hline \end{aligned}$	shrimp larvae	$\begin{array}{ll} \text { p } & \text { Sagitta } \\ \text { e } & \text { elegans } \\ \hline \end{array}$
Leuckartiara	-					
Amphipoda	$0.830{ }^{1}$	-				
Pseudocalanus minutus	0.811	0.765	-			
crab zoea	0.820	0.770	0.910	-		
shrimp larvae	0.625	0.827	0.671	0.797	-	
sagitta eleams	0.635	0.704	0.776	0.840	0.754	-
Group 2	AgZantha cizaitale	Centropages abdominalis	Eurytemora herdinanni	Evadne nordmanni		Podon leukarti
$\begin{aligned} & \text { Aglantha } \\ & \text { digitale } \end{aligned}$	-					
Centropages abdominalis	0.595	-				
Eurytemora hercmanni	0.705	0.787	-			
Evadne nordmanni	$i \quad 0.622$	0.555	- 0.766	-		
Podon Zeukarti	0.625	0.567	0.794	0.995		-

[^6]The constituents of group 1 were in greatest abundance in the colder water period of the summer, their population cycles showing a highly negative correlation to temperature as well as a high correlation to one another.

The zooplankton within group 2 all thrived in the warmer waters during August, in positive significant correlation with temperature and to one another.

Calonus glacialis, copepod nauplii, and Balanus nauplii represented a fairly well defined third group. The correlation coefficient determined between copepod nauplii and C. glacialis was highiy significant at 0.790 .

Many zooplankton categories showed no consistent associations with either group 1 or 2. Included here are the polychaete larvae, Thysanoëssa rascinii, and fish larvae. Limacina helicina and Oitiona similis each correlated with only one parameter. Rathkea octopunctata was the only organism exhibiting no significant correlation to any physical parameter or biological category.

Zooplankton biomass correlated poorly with chlorophyll a concentration $(r=0.084)$. Figure 9 indicates that the initial summer zooplankton biomass peak at Barrow lagged behind the chloronkyll maximum by approximately two weeks.

Both Pseudocalanitis minutus and Sagitta elegans arctica were ciosely correlated to total zooplankton biomass during the summer.

3.2.2 Terporal Distribution and Life Histom Patterns

Variability in abundance for all categories of zooplankton was examined during a 14 -week sampling period with attention paid to periods of maximal abundance, reproductive periodicity and recruitment, and life histories where possible. Weekly mean abundances for all zooplankton categories are depicted in Table 3 . Where mention is made in the text of specific increases or decreases in the concentration of a given category with time, these comments refer only to those trends shown to be statistically significant ($\underline{P}<0.05$). Major taxa are presented in systematic order with all zooplankton categories listed alphabetically within these taxe.

3.2.2.1 Hydrczoa

The Hydrozoa were second only to the Copepoda in the number of species contributed to the Barrow zomplankton comunity; six species, seven genera, and two unidentified medusae were collected. The taxa included two holoplanktonic species, Aegiropsis Zaurentii and Aglantha digitale, while the renaining categories were meroplanktonic, or temporary members ni tie plenfon commaity.

Aglantra aigitale was the only hydrozcan taken in all of the samples; other categories persisted under a wide variety of environmental conditions: (1) exclusively under the ice, (2) in open water only, or (3) intomittantly distributed between the ice phase and open water phase of summer.

Table 8. Weekly mean abundances for all categories of zooplankton as numbers $/ 100 \mathrm{~m}^{3}$, from May 25 to August 28,1972

	* (4)	(2)	(2)	(2)	(4)		(4)	(4)	(2)	(1)	(4)	(4)	(3)	(2)
CATEGORX	5/25	6/2	6/9	6/16	6/23	6/30	7/7	7/14	7/21	7/28	8/4	8/11	8/18	8/25
ijdroz.0is														
Asginopsia laurentii	30	57	4	0	6	-	$+$	0	0	0	0	0	0	0
Agurmithe digitate	55	93	183	174	186	-	16	8	8	266	448	1149	385	1897
Bourrimillea spereiliaris	0	0	0	0	0	-	1	1	1	4	$+$	1	+	0
Fu, wion flamma	17	21	2	10	8	-	$+$	0	0	0	0	0	0	0
(bebra longisaenn	0	0	0	0	0	-	0	0	164	0	1	13	13	4
Lew-batiara sp.	35	22	32	1	159	-	6	2	2	0	$+$	0	0	0
Ratrex artowowtata	0	0	0	0	4	-	18	23	1148	90	5	7	0	0
Scyphozan														
sitseliar aurita	0	0	0	0	0	-	0	0	0	0	+	$+$	0	$+$
Oura	0	0	0	0	5	-	$+$	+	4	$+$	6	5	5	3
Tenophora														
sorcer curwis	0	0	0	0	0	-	$+$	+	+	0	0	0	0	0
Solinuosis insodibulum	0	0	0	0	+	-	0	0	0	0	0	0	0	0
licturata ovwn	10	43	18	20	44	-	0	0	+	$+$	+	0	0	0
Pler romessia vitews	0	0	0	0	$+$	-	+	$+$	1	$+$	3	$+$	0	0
aturororia														
ritirne timucina	2	3	3	2	0	-	$+$	$+$	3	0	+	$+$	0	0
Lisuoum inciona	3	9	11	0	2	-	80	23	48	$+$	4	$+$	0	22
polyci.ata . .														
larvas	221	1325	12.192	48887	23130	-	5557	1293	5730	114	10494	931	72	172
Mmanhoda														
Gmanaridae	2	26	58	4	46	-	1	5	2	+	$+$	1	0	0
Huorrildie	13	3	6	0	9	-	2	3	3	0	\pm	$+$	$+$	\pm
Cirripedia														
Eajcinus nauplii > 308 mm	7	7941	150383	397548	62230	-	35392	3730	12114	246	3793	25050	26424	65705
- < 308 fm	9	13747	260555	562340	27618	-	27	69	1735	0	208	5157	22264	5477i
" cyprids	0	0	0	0	19	-	5750	2264	15630	671	2936	13280	16444	13684

CACEGORY	5/25	6/2	6/9	6/16	6/23	6/30	7/7	7/14	7/21	7/28	8/4	8/11	8/18	8/25
Copepoda														
Arartla sp.	758	398	135	201	492	-	93	170	222	290	145	912	1703	1135
iaiamus cristatus	0	0	0	0	0	-	0	0	+	0	0	0	0	0
('. glacialis	9	8	49	634	3736	-	12235	4723	2495	33	121	22	49	55
c. hyperboreus	111	6	0	0	0	-	0	0	0	0	0	0	0	0
C. Diourcinma	0	0	0	0	0	-	9	8	6	1	C	0	0	0
Centropages abdominalis	0	0	0	0	0	-	0	0	19	47	32	205	60	47
Euralome biongit bungit	0	0	0	0	0	-	1	0	$+$	0	0	0	0	0
Evinata sp.	82	3	0	0	0	-	0	0	0	0	0	0	0	0
Eu"ytenora herimumni	0	0	0	0	0	\cdots	0	0	0	0	8	51	73	33
Motridia Zonga	14	5	0	0	0	-	0	0	0	0	0	0	0	0
oithona similio	352	301	1225	556	458	-	107	96	76	956	148	471	123	567
Peoudecalanis minutus	37756	22839	27188	17249	15674	-	7405	7891	1143	174	149	325	137	124
Toviunus discardatus	0	0	0	0	0	-	0	0	0	0	0	0	5	2
coserod nauplit	0	0	1242	582	1080	-	2770	251	75	6	37	25	10	14
Decajoda														
crab zoea larvae	76.3	2361	1189	2523	3865	-	73	34	98	0	12	$+$	$+$	0
- cirlmb juventlag	0	26	53	203	480	-	1	4	1	0	r	$+$	0	0
E¢Thiusiacea														
- 'arsuosea maschi	1	5	0	2	98	-	1	2	\pm	0	0	$+$	0	0
Sysimacea														
- Mas ocurata	\pm	0	0	0	0	-	\pm	0	0	5	\pm	0	$+$	0
Ostrocoda														
Conchosoin sp.	25	7	0	0	0	-	0	0	0	0	0	0	0	0
Euatere nowimanni	0	0	0	0	0	-	0	0	0	0	0	8	18	1045
- bosom iowioreti	0	0	0	0	0	-	0	0	0	0	0	9	45	1325
Eninodermata														
_melacic larvae	0	0	0	0	0	-	0	0	0	0	0	30	50	20000
Chaccognatha														
- zr itit elerans arotica	423	2412	542	1641	1012	-	275	153	220	407	88	46	66	42
Appendicularía														
oikopleura sp.	8	2	+	2	C	-	0	0	2	$+$	$+$	0	0	0
Fritillaria bonerita	0	0	0	0	0	-	0	9	0	27319	48	110	163	1110
Pisces	+	6	4	5	33	-	8	8	8	1	$+$	+	$+$	2

* Number of observations contributing to the weekly mean
+ less than 1 individual/100 m^{3}

ORDER NARCOMEDUSAE
Aesinopsis Zaupentii Brant

Fifty-two specimens of Aeginopsis Zaurentii were taken, of which 44 were collected under the ice from May 27 to June 15 . Only immature individuals were found in the material, diameters ranging from 3 mm to a 15 mm specimen collected on June 23. The majority of organisms (33) ranged from 6 to 10 mm in diameter. This species disappeared from the plankton after July 10, approximately 10 days after breakup.

ORDER TRACHYMEDUSAE

Aglantha digitule (Muller) var. camtschatica (Brandt)

This species was the most common and abundent hydrozoan in the Barrow area. Aglantha was oftert present in concentrations exceeding 1000 individuals $/ 100 \mathrm{~m}^{3}$. The establishment of this geographical variety of the North Pacific and Arctic Oceans distinct from the Atlantic populations of A. digitale, is based on the shorter peduncle length and smaller size of the individuals found in the Pacific and Arctic material (Hand and K3n, 1961).

The population showed no significant variduitity during May and June, but dramatic changes oceurred during open water condjition (Fig. 4). The lowest summer concentrations were recorded the week of July 21 to 27. A rapid significant increase occurred through mictagust, to levels of 1148 individuals $/ 100 \mathrm{~m}^{3}$, and stabilized for the res: of the month.

Figure 4. Quantitative distribution of AgZantha digitale from May 25 to August 28, 1972, with associated bell height-frequency histograms. Vertical bars indicate the 95% confidence limits of the weekly means

A shift in size-frequency groupings throughout the sumer sampling period is evident. Both large and small individuals (rarely exceeding concentrations of 100 ind $/ 100 \mathrm{~m}^{3}$) were major constituents of the population through mid-July. Beginning the week of July 21, a large number of 3 mm , saucer-shaped specimens were recruited to the population, a phenomenon continuing to the end of August. Large increases in overall abundance accompanied these periods of recruitment.

Aglantha digitale is reported in the literature to be primarily carnivorous (Hardy, 1965). An examination of gut contents of several 10 to 14 mm specimens on August 28 indicated an omnivorous, rather than strictly carnivorous, feeding habit for this northern variety at Barrow. Animal matter in the gut included: tintinnids and copepod appendages; Nitzschia ciosterium, Coscinodiscus sp., and Navicula spp. Were recognizable algae present in the gut contents. Detrital material was also present in modest abundance.

Immature, 10 mm high individuals of A. digitale vere recorded from the February samples. No other hydrozoan was found at that time.

ORDER ANTHONEDUSAE

```
Bougainviziea superciziaris (L. Agassiz)
```

A total of 65 specimens of Bunganvilitea superciliaris were taken during the sampling period, the great majority in July. Mature and juvenile individuals were collected consistently in small numbers from a first zeported occurrence on Tme 7, through August 3. After this time only 3 specimens were fourd in the samites. Population
density was always small (less than 10 organisms/ $100 \mathrm{~m}^{3}$), the greatest concentration existing on July 27 just prior to breakup. Bell height for the species neasured from 2 to 10 mn . Sexally ratura specimens were present on July 17 (1) and July 23 (3), and August 3 (1). The majority of individuals exceeded 5 mr in bell height.

Euphysa flamrea (Linko)

Euphysa flammea was taken consistently in small numbers from May 27 to June 12. Thirty-two specimens were collected in total, all immature. This species occurred only very rarely from June 12 to July 10, its last reported presence in the plankton. Bell height ranged from 3 to 10 mm , with the greatest portion of individuals between 4 and 5 min . Maximum bell height for \bar{E}. flarmea is reported to be 17 mm (Naumov, 1969).

Leuckartiara sp.

Leuckartiara was found commonly in the plankton under the ice during early summer, but rather infrequently once open water conditions prevailed. Hand and Kan (1961) report tro species of this genus in the Chukchi Sea, L. brevironis and L. nobilis. Their description of L. nobilis more closely resembles the present material. All specimens of the genus were imature and showed no advanced gonadal deveiopment. The maximum population density observed for the species was 159 organisms $/ 100 \mathrm{~m}^{3}$ in late June. The final record of Leuckartiara cf. L. nobitis in the Barrow area was August 4.

Fathkea octopunctata (M. Sars)

This small hydromedusa was first obseryed in the plankton on June 27, immediately prior to breakup in the nearshore area. Concentrations during this final week of the ice phase were about 5 individuals/100 m^{3}. The population increased significantly to a high of $1148 / 100 \mathrm{~m}^{3}$ from July 21 to July 27 , but disappeared by mid-August. The bell height of most specimens varied from 1 to 2 mm . Larger individuals were sexually mature and were observed to be "budding" smaller medusae from the manubrium.

ORDER LEPTOMEDUSAE

Obelic lorgissema (Pallas)

Species of this cosmepolitan meroplanktonic genus were differentiated on the basis of the extent of the periplieral location of the gonads on the radial canals (Naumov, 1969). Obelia Zongissema was not taken under the ice, its first occurrence coming on July 2.2 . Rather large concentrations of individuais (up to $1000 / 100 \mathrm{~m}^{3}$), measuring from 1 to 2 mm in diameter, were collected sporadically through August. Specimens in various stages of maturity ranging from fully mature to juvenile were represented.

Any significant trends in population abundance for the species were masked by the extremely high replication and within-week variability (Table 2).

Unidentified :Iedusae

Several unidentified medusae, rone of which were abundant in numbers, were among the constituents of the plankton. Specimens of each species have been sorted and stored as part of the overall zooplankton reference collection at the University of Alaska Museum, Marine Division. It is hoped that future identification of these species will be assisted by this reference collection.

3.2.2.2 Scyphozoa

Aurelia aurita (L.)

Aurelia aurita was found only raxely in the nearshore environment, exclusively from August 8 to the end of August. A total of 14 organisms were identified and measured. A wide range in size was evident, with the following relative frequencies observed: i0 to 20 mm in diameter, 6 specimens; 20 to $30 \mathrm{~mm}, 3 ; 30$ to $40 \mathrm{~mm}, 2$; and 50 to 60 mm , 3. The largest individuals were taken on August 14 and August 28. C'yanea capillata (L.)

Cyanea copillata was the most comnon scyphozoan taken from the inshore waters off Barrow. A tctal of 288 individuals were identified, of which 239 were collccted during August. The first reported specimens on June 28 measured 4 mm in diameter, and probably represented the ephyra stage of the species. Size generally increased up to 25 mm diameter during July, with many lareer indivicuals beginning to appear in early August. One 90 mm and two 85 mm apecimens were sampled on

August 9; the largest inlividuals (100 mm) appeared on August 14 and also on August 19, when collections were made at Barrow Village and Point Barrow in addition to the usual sampling site.

Cyanea was observed on calm days to congregate in pacches, scattered irregularly throughout the surface waters of the nearshore area. On these same days, an association was directly observed between the polar cod, Boreogacius saida, and C. conilizata. The cod could the seen swimming amongst the tentacles of the scyphozoan, apparently unaffected by the nematocyst discharge.

3.2.2.3 Ctenophora

Four species of ctenophores were present in the sumner collections or visually observed in the field. The following species were Identified: Mertensia ovum, Bolinopsis infundibulum, Beröe cucumis, and Pleurobrachia pileus. Attempts were made to identify the specimens before preservation because of the extreme difficulty involved in adequately preserving these fragile organisms. The contribution of the group as a wnole to community biomass was slight.

Beräe cuourris Fabricius

Beröe cucumis was absent from the nearshore area until July 8. However, collections taken on June 12 at the edge of the shorefast ice, seaward of the pressure ridge, proved the species was present

A total of 27 organisms were taken in open water, most ranging in height from 4 to 8 mm ; two 10 mm individuals were collected on July 22 , the last reported occurrence of B. cucumis at Barrow.

Bolinopsis infiadibulum Fabricius

This species was rarely seen in the field, and the only specimen collected was taken directly with a bucket on the evening of July 26. Exact measurement of the organism was not possible because of extensive damage during collection. The approximate length was 200 to 250 mm .

Mertensia ovum (Fabricius)

A total of 73 specimens of Mertensia ovum were collected, 64 during the ice covered phase of the summer. This species was the most common ctenophore in numbers and duration in the plarkton. Most individuals were 30 to 40 mm in height, with a few specimens 10 mn high. Large numbers were directly observed under the ice at times by SCUBA divers. Mertensia was also found in the February material coilected at Barrow.

Mertensia ovum was found to possess bioluminescent capability as evidenced by agitation of specimens in laboratory łarkness and resultant flashing of its comb riates. Such a phenonenon was net directly observed in the field because of the continuous light conditions during much of the summer.

Pleurobracinia pileus (Vanhofien)

The presence of this comnon arctir species, often rimes cailej
the "sea gooseberry", was first noted on June 26 and a toral of 59
organisms were encountered up to its disappearance on August 9. The majority of the material was 5 to 8 mm in length. Two 17 mm specimens were taken on June 28.

3.2.2.4 Pteropoda

These pelagic molluscs, commonly called "sea butterflies," were represented by two species, both of which were discontinuously distributed in space and time.

Clione Iimacina (Phipps)

Sixty-chree specimens of Clione Limacina were recorded from the collections. No significant temporal population variability existed for the species over the summer sampling period (Table 3).

The size-frequency distribution for all combined organisms was as follows: 3 to 8 mm length range, 27 . specimens; 10 to $18 \mathrm{~mm}, 26$; and 20 to $25 \mathrm{~mm}, 10$. The largest individuals of C. limacina were taken in open water, on July 16 and August 3 and $14 ; 3$ to 8 mm specimens were the dominant size class throughout the sampling period.

Limacira helicina (Phipps)

Limacina helicina was present in 11 of 13 sanpling weeks, with a maximun concentration of 80 individuals $/ 100 \mathrm{~m}^{3}$ the week of July 7 to July 13. Specimens captured during the under-ice sampling period were almost exclusively of 1 mm size. As open water conditions prevailed, more mature organistus in the range of 2 to 4 mm in diameter became present. Tne 1 mm and less than 1 mm organisus represented
the quantitatively dominant size for the species averaged over the entire summer. The largest specimens collected from the nearshore waters were tho 6 mm individuals taken on August 4. Very few L. helicina were found in the plankton during August.

Comparative surface tows taken 4 to 6 km offshore on July 22 , August 3, 4, and 5 indicated a more mature population of L. helicina existing in these waters, with sizes commonly in the 5 to 6 m diameter range.

Limacina helicina was often visually observed to exhibit extreme spatial patchiness; this distribution is reflected in the high field replication and within-week sampling error determined for the species (rable 2). Swarns of this pteropod were seen in the shallow shoreline waters from July 30 to August 3 ; such concentrations were not present at a distance of 1 km from shore.

3.2.2.5 Polychaeta

Trochophore larvae, intermediate and late larval stages, and fully developed adults were well represented in the Barrow collections throughout the summer. All larval stages were combined as one and enumerated.

Trochophore larvae became very prevalent on June 17 and continued to persist in high concentrations through August along with a mixture of post-trochophore stages. Individuals of the families Phyllodocidae, Syllidae, and Polynoidae, contributed a large fraction of this total.

The polychaete larvae reached maximum concentrations June 16 to Fiune $22,48,887$ individuals/ $100 \mathrm{~m}^{3}$, after increasing rapidly from fearly June. The population cycle after early July showed no discernable Frend until mid-August, when numbers significantly decreased to about 100 larvae $/ 100 \mathrm{~m}^{3}$.

Gravid females of the species Autolytus fallax (Syllidae) were Eobserved regularly throughout the summer. Bright orange egg cases Tere clearly visible on these specimens. The extended reproductive feriod of A. fallax was further exemplified by the presence of Figerous females in the late winter samples.
2.2.6 Amp̧ipoda

The amphipods were very difficult to identify and in most cases aly genera could be determined with certainty. Time did not permit inding the organisms to specialists for accurate specific identififation. Specinens were grouped into the families Gammaridae and ipperidae and examined on this taxonomic level (Table 4).

Gamaridae

Specimens of the genus Psaudaitiontus were the dominart gammarid phipods in collections from May through mid-August i i an admixture dizes ranging from 3 to 14 min length. A characteristic feature this genus was its yellow-brown coloration and bright red eyes.
reserves were also seen in many organisms, adding to the overall
Flow color. in gravid fenales containing brood pouches with young
were observed for Eeudatitpotion. Laxge numers of the genus were often directly observed at the shozeline scavenging on the bottom and in one instance on Argust 2 one individual was seen exhibiting a cannabalistic feeding habit.

Examination of February collections showed Pseudalibrotus to also exist at that time of year.

Several additional unidentified gammarids were present in the plankton. A description of possible diagnostic morphological characteristics is given here as a guide to future identification.

A form looking very much like Pseudalibrotus, but with black rather than red eyes, was often sampled during the summer. This form perhaps represents a different species of the genus. Another gammarid species with long, brown speckled pereiopods (legs) and a brown pigmentation of the thorax was collected on June 27, July 17, and August 5. Measured lengths were 30,8 , and 15 mm , respectively. One reddishcolored species with a long hooked rostrum was taken in small numbers from June 28 to July 17, ranging in length from 5 to 10 nm .

A 5 um long, transiucent gamarid, with bright red pereiopods and first antennae, was observed in the July 17 material. One redeyed individual, passessing one tooth on the dorsal widline of each thoracic and abdominal segment, was collected on August 3. The specimen measured 22 mm in length.

The Ganmaridae as a group were most plentiful during the ice phase of the summer season. Population density experienced a significant decline in the transition to open water conditions. A maximal concentration of 60 indiviauaisiluo m^{3} was realized the week of June 9 to 15.

Hyperidae

Hyperid amphipods were both quantitatively and qualitatively less prevalent than the gamarids. The taxon Hyperia cí. H. galba (Montagu) appeared to be the dominant member of the family based on the structure of the processes on the fifth article of the first gnathopod (Tencati, 1970). The majority of specimens were juveniles of 3 to 8 mm rostrum to uropod length. One 18 mm long hyperid was reported on June 1 ; a 23 mm long specimen of Hyperia was taken on June 23.

Large numbers of hyperid amphipods were observed on several occasions on the gravel beach above the water line. A probable component of these assemblages is the genus Themisto, which although not positively identified from the present material, was similarly observed in small pools above the water line by MacGinitie (1955).

The temporal cycle of abundance of the Hyperidae showed a trend similar to the Gamaridae, i.e., maximal concentrations under the ice. Specimens were rarely found in the material after late July.

3.2.2.7 Cimmpedia

BaZanus spp.

Ezcesdingly large numbers of barnacle larvae of the genus Balonus were observed at times in the Barrow collections, often exceeding abundances of 250,000 individuals $/ 100 \mathrm{~m}^{3}$. The species of Balanis responsible for the high recruitment of larval stages to the plankton
was not determined; Haccinitie (i955) reported Datanue onenatue to comprise the greatest portion of the sessile commity near NARL, with B. balanus comparatively subordinate in numbers.

The quantitative cycles of both the cypris and nauplius stages are depicted in Figure 5. The initial appearance of the nauplius developmental stage was May 27. Recruitment was extremely rapid from this period through mid-June. The nauplii concentration reached its summer peak of about 400,000 individuals $/ 100 \mathrm{~m}^{3}$ at this time. A population low was experienced the week of July 28 to August 3, with a compensating increase in numbers through the remainder of August.

Cyprid larvae first appeared on June 27, indicating a 31 day developmental period from the nauplius to the cypris stage in the Barrow area.

A rapid increase in cyprid recruitment was apparent by early July. The population cycle for this stage was closely correlated to the dyanaics of the barnacle nauplii from late July through the remainder of summer (Fig. 5).

2.2.2.8 Copepoda

The copepods were easily the most diverse group of zooplankton in the inshore commity (14 species), and along with barnacle larvae, were the major constituents of the community during the summer. Four species persisted in the plankton continuously during the entire sampling period, withstanding a highly variable temperature and salinity regime. Two of these four species in particular were most notable for their prevelance durine the season, Pavidectimus minutus (Krdyer),

Figure 5. Quantitative distribution of nauplii and cyprid larvae of the genus Balanus from May 25 to August 28, 1972. Vertical bars as in Figure 4

and Calanus giacialis jaschnov. The remaining, larger group of copepods, occurred only at distinct times in relation to specific hydrographic changes. Included in this group were species advected into the Barrow area from the Bering Sea.

The duration of the reproductive period and the time of maximum recruitment for individual species were highly variable for the group as a whole. Three major divisions existed based on the above criteria: (1) species whose breeding period was closely related with the blooming of the phytoplankton; (2) species with an extended breeding period during the summer, and (3) species showing indications of breeding before the flowering of the phytoplankton.

The single most dyannic event witnessed concerning the copepods was the gradual decline in the population abundance of the late May dominant, P. minutus, through the entire summer sampling period, with a compensating exponential population increase to early July by C. glacialis. The latter species attained its greatest concentration and biomass the first week in July, after which it similarly declined in numbers. No single copepod species was numerically dominant bsyond late July.

Acartia spp.

Two species of this genus were collected at Darrow, Acartia Zongiremis (Lilljeborg) and Acartia clausi Giesbrecht. From late say through July, the former was clearly identifiable as the dominant species of the genus. However, after this period, it became exceedingly more difficult to distinguish both epacies based on
easily determined diagnostic characteristics and the two species were thereafter combined.

Acartia spp. was one of four copepods persisting continnously from May through August. The population cycle showed no sustained trends, but a series cf statistically significant fluctuations. A decline in numbers from week 1 through June 22 was observed, with a slight increase in abundance occurring just before breakup. Lowest numbers, 93 individuals/ $100 \mathrm{~m}^{3}$, were recorded during the early open water period the second week of July. No significant changes in abundance were noted thereafter until early August. From early August to the end of the month, the population increased an order of magnitude over late July stocks, reaching a maximum of 1600 organisms $/ 100 \mathrm{~m}^{3}$ in late August. This represented the highest concentration attained by any one copepod species since late July.

Almost all the specimens coilected were in the late stages of development, usually adults and stage V copepodids. Scattered individuals of stages III and IV were captured periodically during the entire sampling season.

Acartia longiremis was one of the few copepods present in both the summer and late winter (February) collections.

Calanus cristatus Krdyer

This very large conepod was sampled only qualitatively, appearing in the nearshore waters on only two days: July 16 and July 26 . The Individuals taker ranged fron 8.5 to 9.2 mm in length, indicating the
organisms wert adults or stage V copepuilds. No ovigerous females were present in the samples.

Calanis cristatw occurs commonly in high abundance in the Bering Sea during the spring and sumner months (Heinrich, 1961).
c̈aloniks glaciolis Jaschnoy

This copepod was historically thought to be a larger cold water form of the species Calanus finmarchicus (Gunnerus). Morphological variation in the number of denticles (teeth) on the proximal basipodite segment of the fifth pair of swimming legs and their relative curvature has established this northern variate as a separate species (Jaschnov, 1955). The ratio of the lengths of the proximal exopodal segment to the second endopodal segment of the male left fifth swimming leg has also been used to support Jaschnov's taxonomic revision (Frost, 1971).

Calanus glacialis shared the distinction with Pseudocalanus minutus of being the most numerically important copepod at Barrow. Figure 6 depicts the temporal variability in population abundance for the species in comparison with P. minutus and copepod nauplii. Very few specimens of C. glacialis were taken up to June 8 ; most were adult or stage IV or V copepodids although stage III individuals were also present in slight abundance. Several ovigerous females were noted on May 25, May 27, and June 5 with eggs in ripe condition and a larger number of gravid females began appearing from June 20 to 28 . No gravid individuals were found after breakup. A peak in the ropepod

Figure 6. Quantitative distribution of (a) Calanus glacialis and copepod nauplii, and (b) Pseudocalanus minutus, from May 25 to August 28, 1972. Vertical bars as above

nauplii procuction was experienced approximately two weeks following the high incidence of ovigerous females (Fig. 6). Stage I specimens were first reported on June 15 in small numbers and by June 28 and well into July, imnature copepodids I and II, and to some extent stage III were exceedingly plentiful, with abundances of 3,000 to 15,000 individuals/ $100 \mathrm{~m}^{3}$.

The peak population density of $12,220 / 100 \mathrm{~m}^{3}$ was reached the week of July 7 to July 13 at the onset of the open water period. The population declined rapidily thereafter and experienced a summer low of 23 organisus $/ 100 \mathrm{~m}^{3}$ between August 11 and August 17. The preponderance of early developuental stages continued through July 16 , after which time stages III, IV, and V appeared in relatively equal concentrations. Developmental stages I and II became very rare during this period and disappeared from the plarkton on August 8, with the exception of a few stage II individuals present through August 26. Copepodid III became the dominant form by the end of August, with large numbers of stage IV and V evident. Adult specimens were present throughout the sumer, usually in small numbers.

CaZanws hyperboreu Krфyer

Very fev specimens of this large arctic-subarctic species were collected, appearing only through the first week of June, with the greatest number being taken during late May. Seventy-six individuals were classified according to developmental stage. The following relative numsical frequency of copepodid stages was observed:
adults, 22 specimens; stage $V, 37$: stage $I V, 13 ;$ and stage III, 4. No ripe females were encountered in the collections. Calanius hyperboreus was also found in the February samples, apparently overwintering as stages IV and V.

Calanus plumehrus Marukawa

This species was present from the first open water sample on July 8, to a final occurrence on August 3. With the possible exception of one $3.8-\mathrm{mm}$ animal, all of the 267 individuals collected were stage V or adults. Large lipid reserves were evident in the majority of these organisms. Peak concentrations of 9 individuals $/ 100 \mathrm{~m}^{3}$ were attained the week of July 7, most specifically on July 8. The population stabilized through the next two weeks and then decreased to 1 individual/ $100 \mathrm{~m}^{3}$ before disappearing from the samples.

Calanus plumchrus represents one of the major constituents of the summer zooplankton community in the surface layers of the Bering Sea.

Centropages abdominalis Sato

Centropages abdominalis was firse recognized on July 22 and gradually increased in numbers to 205 individuals $/ 100 \mathrm{~m}^{3}$ the week of August 11 , declining significantly to 60 and 4 ? organisms $/ 100 \mathrm{~m}^{3}$ the last two weeks of August. Fully mature or stage V individuals dominated the population. No ovigerous females were observed.

This large copepod was poorly represented in the collections. The first reported occurrence of Eucalanus bungii bungii was on July 8, coinciding with the initial appearance of Calonus plunchrus in the Barrow area. A total of 13 specimens were encountered in the samples prior to July 23, the time of dramatic change in the hydrographic regime (Fig. 2). A maximum weekly mean population density of 1 individual/ $100 \mathrm{~m}^{3}$ was attained the week of July 14 to 20 .

Euchaeta sp.

The population dynamics of this rarely captured genus closely followed those of Calanus hyperboreus and a third species, Metridia Zonga; Euchaeta sp. occurred in the plankton only through the first week of June. Forty individuals were collected, mostly stage III copepodids. The maximum population density was reached the first week of summer, at 82 ind $/ 100 \mathrm{~m}^{3}$. No specimens of Euchaeta were present in the February samples.

This zooplankter is probably Euchaeta norvegica Boeck, a species described from the area by Johnson (1950).

Eurjutemora nerdmanni Thompson and Scott

The presence of this calanoid was first reported on August 5 and continued to the end of the summer. The majority of specimens were fully developed or existed as stage V. Population size showed a significeni increase from eariy August concentrations to a high of

73 organisms/ $100 \mathrm{~m}^{3}$ for the week beginning August 18 . No significant population variability existed during the final three weeks of August.

Gravid females were very plentiful from August 19 to 28 and relatively large numbers of adult males were also present.

Eurytemora herdinanni appeared in the Barrow area only when the surface water temperature exceeded $7^{\circ} \mathrm{C}$.

Metridia Ionga (Lubbock)

Metridia longa appeared for only a short time at the beginning of the summer season. A breakdown of developmental stages included 7 adults, 13 stage V indivicuals, and 3 specimens of copepodid stage III or IV. Imature organismis (stage III and IV) were also reported from the February material. The largest numbers recorded for the species were 14 specimens $/ 100 \mathrm{~m}^{3}$ the week of May 25 .

Oithona similis Claus

Oithona similis was the only cyclopoid copepod found in the summer collections. It was at times a very important constituent of the community in terms of abundance. The species persisted throughout the sumer and was also collected in immature stages in February. The population cycle of 0 . similis was one of a series of significant increases and decreases. Population density ranged from a high mean of 1225 individuals/ $100 \mathrm{~m}^{3}$ the week of June 9 to a low of $76 / 100 \mathrm{~m}^{3}$ from July 21 to July 27 . In general, no consistant pattern was observed for the remainde: of the summer season.

Gravid fenales were observed sporadically throughout the summer on the following dates: June 1, 12, and 27; July 8 and 19; and August 3, 4, 19, 26, and 28 . The maximum reproductive period for the species, based on the relative number of ovigerous females, was the last two weeks of August; rather large numbers were also recorded the first week of August.

Pseudocalanus minutus (Krфyer)

The quantitative summer cycle of population variability for the micro-calanoid copepod Pseudocalconus minutus is shown in Figure 6. A gradual decline in the population was evident during May and June. Through the first month of the season, copepodids IV, V, and gravid females dominated the population in quantity and biomass. Few stage III individuals were found during this period while copepodid II was very rare. No stage I individuals were taken although they should theoretically have been caught if present. Egg-carrying females were very abundant through June, with isolated occurrences up to July 12.

During the period of July 14 to July 27, P. minutus experienced Fan abrupt exponential decline in numbers, after which time the populaKion stabilized at approximately 300 individuals $/ 100 \mathrm{~m}^{3}$ through August. pevelopmental stages IV and V predoninated in July and August.

Mature P. minutus were collected in February.

Tortonus discaudatus (Thompson and Scott)

Tortonus discordatue was found in the Barrow collections only
were 7° to $9^{\circ} \mathrm{C}$. Mean weekly numentrations attained a modest high of 5 individuals $/ 100 \mathrm{~m}^{3}$. The majority of specimens identitied were non-gravid adult females, with males in slight abundance. One stage I copepodid was taken on August 19 and a number of stage III specimens on August 17.

Copepod nauplii

Variations in the copepod nauplii population with time were similar to those noted for Calanus glacialis (see Fig. 6). A maximum density, 2770 individuals $/ 100 \mathrm{~m}^{3}$, was observed the first week of July, with numbers declining to a low of $5 / 100 \mathrm{~m}^{3}$ in late July. The initial occurrence of nauplii was on June 3.

3.2.2.9 Decapoda

The Decapoda were represented by crab zoea larvae and juvenile shrimp. The zoeal stages were differentiated intc the Anomura or "hermit crab," and Brachyura or "true crab" varieties. The anomuran group included larvae of the king crab, Paralithodes camischatica (Family Lithodidae). The zoea of the snow crab. Chicnoecetes opelio (Family Inachidae) comprised the majority of the brachyuran larvae. The shrimp juveniles were not successfully classified to family.

The temporal trend of population abundance for the two groups of crab zoea was sufficiently similar to allow enumeration under one heading. Crab larvae were a very importent meroplanktonic group, second in abundance only to the bernectes. The decarod zoea azperienced an early increase in numbers Erom Iavs Nay ($763 / 100 \mathrm{~m}^{3}$) to a peah
concentration to 3865 individuals/ $100 \mathrm{~m}^{3}$ in late June. The majority of specimens were immature zoea of stages I and II; the presence of megalop larvae was not indicated in the samples. A significant decrease in population density was observed curing the open water period, with small numbers of zoea present to August. Extremely low quantities of larvae were found in the plankton during August.

Juvenile shrimp measuring up to 11 mm in length were plentiful in the plankton during the months of May and June, but experienced a significant decline in abundance with the transition to open water. Shrimp were initially found in the nearshore waters on June 5. This stock increased gradually to a peak concentration of 480 organisms/100 m^{3} in late June. A relative paucity of organisms became evident beginning in early July and continued through August.

3.2.2.10 Eиphausiacea

Thysanoëssa raschii (M. Sars)

A total of 364 individuals of Thysanoëssa raschii greater than 10 mm in length were sampled and measured. Ninety-four percent of these anindls were in the size range of 10 to 16 mm . A size-frequency histogram of juvenile euphausiids, nauplii, and calyptopid larvae clearly indicates a bimodal size distribution (Fig. 7). No adult specimens were taken with the possible exception of three 24 mm individuals gathered on June 23.

The temporal distribution of the species was discontinuous during the sumer. Juvenile euphausiids were found in greatest numbers.

Figure 7. Length-frequency relationships for the composite summer population of Thysanoess a raschii, indicating nauplii, calyptopid, and juvenile stages NUMBER OF SPECIMENS

euphausiid nauplii larvae
stage I calyptopld larvae
juvenile Thysanoëssa raschii

93 specimens $/ 100 \mathrm{~m}^{3}$, during the ice pericd on June 22 . This population density represented a significant increase over the early sumer stock. Figh concentrations were occasionally found in open water, as on fuly 10 and 17 , specimens being in the 13 to 17 mm and 14 to 16 mm length Franges, respectively.

Thysanoëssa raschii became increasingly less abundant as the Eummer progressed and only one 10 mm specimen was taken from July 22 the end of August. Euphausiid nauplii were present as early as fune 12 and persisted continuously to the end of June, reappearing
ain from late July to August 4. Peak abundances of nauplii were eached during weeks 3 and 4 (June 15 to 21), declining to lower Fencentrations thereafter. High concentrations of the nauplii were Wosely correlated to high periods of phytoplankton biomass (see *igure 9).

Young calyptopids 1.0 to 2.0 mm long were first noted on June 12 Fid persisted from June 28 to the end of July. Calyptopid larvae were aken only rarely after July 23, as was the case for all euphausiid tages.
2.2.11 mysidacea

Mysids were rarely seen in the collections. Two species were entified: Mysic coulatu (Fabricius), and Neonysis rayi (Murdoch).

Mysis ocuZata was observed on May 27, July 10 and 12, and August 8.
trum to uropod length ranged from 5 to 9 mm for all specimens. No
vid females were present.

Only one in man specinen or Meomsis rayi was taken during the summer, on August 19. The organism was in a gravid state, with a large brood pouch containing many young.

3.2.2.12 Ostracoda

Three species of ostraceds were encountered at Barrow. Each existed only under specific ranges of temperature and salinity. The ostracods occurred exclusively at the beginning and end of summer.

Conchoecia borealis (Brady)

This species was taken only through early June, occurring at its highest concentration of 25 individuals/ $100 \mathrm{~m}^{3}$ the last week of May. The length of most of the specimens was 2.5 to 3.5 mm .

Evadne nordmanni Loven

The quantitative pattern of abundance for Evadne rordmanni was closely correlated to that of its ostracod counterpart, Podon leukarti (Table 8). Both species prevailed only when the temperature of the nearshore waters in the Barrow area was at a summer maximum during August.

Many specimens of E. nordmanni possessed brood pouches containing large numbers of ripe, yolky eggs. Reproduction and egg developmeni for this species is reported to occur parthenogenetically in the summer (Wimpenny, 1966). Immature individuals were also prevalent in the samples.

Fodon Leürarti Sars

This species was encountered only during the final three weeks of August. The population increased exponentially in numbers over this time period, from a low of 9 individuals/100 m^{3} in mid-August to a maximum of $1325 / 100 \mathrm{~m}^{3}$ the last week of the month. Fully mature and immature specimens were found in comparatively equal abundance.

3.2.2.13 Echinodermata

Larvae of this phylum were poorly represented in the material. Ophioplutei larvae (of brittle stars) and some echinoplutei were first reported in sparse numbers of about 30 individuals $/ 100 \mathrm{~m}^{3}$ on August 17 . An abrupt population increase occurred from 100 larvae $/ 100 \mathrm{~m}^{3}$ on August 26 to over $50,000 / 100 \mathrm{~m}^{3}$ on August 28, the last day of sampling.

3.2.2.14 Chaetognatha

Sagitta elegans arctica Aurivillius

Sagitta elegans arctioa was the only species of Chaetognatha present in the coliections. The establishment of this northern, cold water variety distinct from the southern species is based on the comparatively larger size of the former. The species occurred In the plankton on all samiling dates during the summer.

The cycle of temporal variability in abundance and the concomitant change in length-frequency reiationships for the sfecies are depicted in Figure 8. The cuerail pattern obscrved in the popilation was a

Figure 8. Quantitative distribution of Sagitta elegans arctica from May 25 to August 28, 1972, with concomitant changes in length-frequency relationships. Vertical bars as above

the end of the sampling season; exceptions to this general pattern grere found during weeks 3 and 10. A high incidence of larger Epecimens in the 13 to 20 and 20 to 30 mm size ranges resulted fin an finitial population maximum of 2400 individuals $/ 100 \mathrm{~m}^{3}$ for the species Fthe first week of June. A smaller, secondary maximum occurred in late Fuly, consisting predominantly of juvenile individuals of 3 to 8 mm ivotal length.

Gravid specimens in the 25 to 35 mm range were seen with distended Nducts on June 1, 5, and 21. Large numbers of 3 to 5 mm individuals Irst began appearing in the material by July 10. A trimodal size Hstribution is indicated by the July 8 - July 16 histogran; a composite Not of the entire summer catch reinforces this distribution. After Ily 16, a shift in size-frequency was evident, with 95 percent or re of the population of S. elegans arctica existing as immature stages.

The contribution of this chaetognath to community biomass was est significant during the early summer months of May and June. Whole or semi-digested remains of the copepod Pseudocalanus Sutus were often seen in the guts of Sagitta, to the exclusion of Ther prey items. Sagitta was present in the February plankton, as F. minuius.

.2.15 Appendicularia

Fritillaria borealis Lohmann

Fritillaria borealis was the numerically ccminant appendicularian the samples, although ic was absent from the piankton until july 14.

Head lengths ranged from 0.3 mm to a maximum of 0.8 mm , suggestive of juvenile stock. The population peaked on August 3 at 27,3i9 specimens $/ 100 \mathrm{~m}^{3}$, shortly after an eastern intrusion of warmer water Finto the Barrow area in late July. Population density declined significantly during August.

OikopIeura sp.

This is probably oikopleura vanhoeffeni Lohmann, as the maximum eported head length in the present collections exceeds that of another Frtic species, 0. Zabradoriensis Lohmann.

June specimens were generally immature (1.0 to 1.5 mm
fead Iength) with soinewhat larger individuals appearing as summer
cogressed. The presence of the species in the plankton was very
rratic in general, with the largest concentrations found under
e
shorefast ice. Oikopleura was also encountered in the February
bllections.
2.2.10 Pisces

Three or more species of fishes, represented by both larval and Nenile stages, persisted through the summer. Larval fishes of undeterwed identity ranging in length from 5 to 10 mm , were caught through Catches increased from May to a sumer maximum of 93 individuals $/ 100$ Fthe last week of June. Numbers declined significantly through the Pletion of the sumer.

Beginning in early July, an upward shift occurred in the major Toth mocie to 10 to 15 mm ; smaller individuals rere still present in
modest abundance. A few 21 mm larvae were collected on July 22 . The final presence of larval fishes in the plankton was on August 4 and four days later juvenile fishes identifiable as Boreogadus saida (polar cod) were taken. By early August, juvenile polar cod were 25 to 30 mm long and increased in average size to a maximum length of 40 mim toward the end of the month. Eighteen B. saida were collected during the summer.

Two juvenile sculpins, Myxocephalus scorpiodes (Fabricius), the false sea scorpion, and IceZus bicomis Reinhardt, the two-horned sculpin, were introduced to the plankton beginning August 23. Average lengths were 30 to 35 mm for 18 juveniles of the two combined species.

Fish eggs were present in the plankton regularly throughout the entire summer. A maximum density of 8900 eggs $/ 100 \mathrm{~m}^{3}$ was recorded on June 12. Concentrations during the early summer were generally on the order of 1000 eggs $/ 100 \mathrm{~m}^{3}$. After ice recession, the relative paucity of eggs was evident with few exceptions. No eggs were collected after August 19.

The polar cod, Boreogadus saida, was previously cited in the text For its association with the scyphozcan medisa, Cycnea capillata. No fother species of fish found in my coliections exhibited a similar elavior.

3.2.3 Standing Stock

The weekly quantitative trend of zooplankton community formalin Fy weight is depicted with a similar accompanying curve of integrated torophyil a in figure \bar{y}. The results of a one-way analysis of

Tgure 9. Weekly distribution of (a) integrated chlorophyll a, and (b) zooplankton community formalin dry weight from May 25 to August 28, 1972. Vertical bars as above (chlorophyll data after Horner)

variance of zocplankton biomass with time indicated significant variability ($\underline{P}<0.05$) between weekly means for the sumner (see Table 3).

A maximum dry weight of $41 \mathrm{mg} / \mathrm{m}^{3}$ was attained the week of June 16 , approximately 2 weeks after the early Jume chlorophyll a maximum. Zooplankton biomass decreased through July and then rose to a secondary summer peak of $16 \mathrm{mg} / \mathrm{m}^{3}$ later that same month. A decline was observed into early August, followed by a gradual increase. This August trend was also observed in the phytoplankton standing stock, measured as chlorophy11 a.

The results of the determinations of average individual dry weight for various life history stages of the major planktonic groups at Barrow are listed in Table 9.

By multiplying the weekly population density for each of the selected categories of zooplankton (individuals/m ${ }^{3}$) by the individual dry weight for the specific organism (mg/individual), a fractionation of total dry weight ($\mathrm{mg} / \mathrm{m}^{3}$) contributed by major members is possible at weekly increments. Total biomass for the zooplankton community was partitioned in this manner into four major constituent groups of the Barrow plankton with an additional group to incordorate all miscellaneous organisms (Fig. 10).

The copepods comprised the greatest proportion of total community dry weight averaged over the entire sumer, constituting over 70 percent of weekly biomass at times (weeks 1, 7, and 8) and anproximately 40 percent of tocal bionass during May and June. Peewdocalanus minden was the najor antabotor to copenci biomass during this time. Following

Table 9. Average individual. dry weights for selected developmental stages of major zooplankton categories

Category Dever	Developmental Stage	Length (mm)	Individual Dry Weight (mg/ind)
Hydrozoa			
Aglantha disitale		12-16	3.65
		6-10	1.84
		3-6	0.37
Pteropoda			
Limacina helicina	juveniles	3	1.69
		2	0.80
		1	0.27
Cirripedia			
Balanus sp.	nauplius, cypris		26/8000 indiv
Copepoda			
Acartia spp.	adult	0.8-1.1	0.026
Calanus glacialis	adult	4.2-4.5	0.480
	IV-V	3.1-3.5	0.221
	III	2.6	0.062
	II	1.6	0.035
	I	1.1	0.023
Pseudocalanus minutus	adult	1.4-1.9	0.050
	V	0.8-1.4	0.032
	III-IV	0.5-0.8	0,024
Chaetognatha			
Sagitita elegons		30-40	3.75
arctica		20-30	0.84
		13-20	0.46

Figure 10. Qualitative and quantitative fractionation of average zooplankton community dry weight for 13 weekly periods from May 25 to August 28, 1972

breaicup in late june, the copepods, predominantly Calanus glacialie Fand nauplii larvae and to a lesser extent Acartia, contributed a somewhat smaller relative percentage of toial biomass, roughly 25 percent.

Cirriped larvae of the genus Balanus were the second most important Group of the Barrow plankton with regard to commity standing stock. Barnacle larvae constituted over 25 percent of community biomass during Emid-June and late August, both periods of maximum recruitment.

Hydrozoan medusae and the chaetognaths were subordinate to the Sopepods and barnacles in their relative contributions to the sumer Tommunity standing stock. However, these categories were very important times during the sumer season.

Sagitta elegans arctica was most notable early in the summer leason, particularly from June 2 to 9 , when it represented 50 percent
the weekly biomass. The species commonly accounted for about 10 20 percent of the weekly community dry weight through early August.

The greater portion of the hydrozoan medusae biomass was attributed Aglantina digitate. The relative contribution of the hydrozoans So the community dry weight averaged over the entire summer was Eproximately 10 percent; the majority of this stock occurred during Fhe month of August.

The miscellaneous zooplankton category included many sporadically mportant plankton groups. Polychaete larvae were of some importance the mid-June comunity biomass. Crab zoea, juvenile shrimp, Whausiids, and larval fishes were major contributors from June 23 June 30. A pelagic tunicate, Eritizlaria boreatis, was found in
large concentrations in early August. The scyphozoans, mostly Cuanea capillata, figured significantly in community biomass during the later three weeks of August.

3.2.4 Trophic ReZationsinips

Five feeding experiments ware completed in the laboratory, examining energy interrelationships between the phytoplankton and zooplankton on both the species and community levels of organization (Table 10).

Four experinents treated the zooplankton on the individual or species level of entrey buageting. The results of one experiment were rejected because cellular activity in the zooplankton feeding jars after the experiment was higher at times than that for the phytoplankton control jar, suggesting no active feeding took place. However, bodily activity of the organisms indicated active filtration.

Assimilation efficiency was caiculated by both the summation and difference methods using the equations listed in Appendix II. Efficiencies obtained by suming respiratory, excretory, and growth components, with the exception of a low value of 9.5 percent, ranged from 34.2 to 95.5 percent. A mean assimilation efficiency of 70.0 percent was determined for all zooplankiton groups.

Assimilation efficiencies calculated by subtracting faecal activity from ingested activity were consistently very high, 95 to 100 percent for all individual zooplankton. Zooplankters actively defaecated in many cases as evidenced from the number of pellets removed from the feeding jars (see Appendix TI). The pellete measured about $100=020$

Table 10. Leboratory estimates of filtration and ingestion rates, respiration and excretion, assimilation and gross growth efficiency for zooplankton fed radioactive labelled phytoplankton.

Experiment 1: 4 hours; initial cell conc. $\left(C_{0}\right)=4 \times 10^{6}$ cells/iiter; Chactoceros sp. as food organism; Calonus. $\operatorname{lizmonr} u s \mathrm{~V}$ as herbivore, feeding in dark @ $10^{\circ} \mathrm{C}$; July 17

		$\begin{gathered} \text { Filtration } \\ \text { rate } \\ \text { (ml/anim/day) } \\ \hline \end{gathered}$	Ingestion rate (cells/anim/day)	Resp+Excret (\%)	Assim eff (\%) (1) (2)		$\begin{aligned} & \text { Gross Growth } \\ & \text { eff (\%) } \end{aligned}$
Group	1	12.5	50,000	26.5	79.5	95	52.9
"	2	18.0	72,000	19.7*	34.2	97	14.5
"	3	4.8	19,200	5.8*	9.5	99	3.7

Experiment 2: 24 hours; $\mathrm{C}_{0}=1 \times 10^{6}$ cells/liter; Chaetoceros sp.; Calanus hyperboreus V (1), Pseudocalanus minutus adults (2,3), Calonus glacialis V (4,5) fed in light conditions @ $1^{\circ} \mathrm{C}$; July 29

Group 1	8.0	8,000	82.3	84.4	100	2.1
"	2	5.1	5,100	33.5	48.7	97
"	3	6.0	6,000	63.0	77.8	98
"	4	5.1	5,100	32.5	70.3	96
"	5	5.7	5,700	94.8	95.5	100

Experiment 4: 24 hours; low concentrations of mixed, natural phytoplankton, consisting of green biflagellates, Navicula sp., Mitzsenia spp.; Acartia spp. adults $(1,2,3)$, Pseudocalonus minutus (4,5), Balanus spp. nauplii larvae (6,7) fed in $20 / 4$ hour light/dark cycle @ $9^{\circ} \mathrm{C}$; August 28

Group	1	2.6				7.5
"	2	14.5			2.1	
$" 1$	3	14.7			4.1	
$" 1$	4	12.5	NOT	\ddots	NOT	NOT

Experiment 5: 24 hours; endemic algal populations at natural concentrations used, including those species mentioned in experiment 4 ; random samples of zoopla:kton cemmunity, including Balcons nauplii and cyprid larvae, Acartia and Oithona, echinoderm larvae, and assorted minor categories were chosen and tested @ $10^{\circ} \mathrm{C}$ in light; August 30

Group			60.0
	2	NOT MEASURED	25.7
	3		32.8

[^7]$\mu \mathrm{m}$ in length and were yellowish in color with tapering "tails" at the pellet end.

Active feeding by the Bering Sea expatriate copepod, Calanus plumchrus V, was indicated by the calculated filtration rates and faecal matter collected. Assimilation efficiency of ingester carbon was highly variable and a mean gross growth efficiency of 23.7 percent was determined. The relative amount of energy lost from metabrilic processes was roughly balanced by energy diverted into growth. No consistent correlation of ingestion rate to gross growth efficiency appeared to exist for C. plumchrus V.

The mean assimilation efficiencies of Calonus glacialis V and Pseudocalanus mirutus females in experiment 2 feeding on a unialgal Chaetoceros sp. culture of concentration 1×10^{6} cells/liter were comparatively equal, ranging from 63 to 82 percent. For both species, over 75 percent of assimilated energy was lost through metabolic processes. Calanus hyperboreus demonstrated active feeding behavior, but only slight diversion of ingested energy into growth. Percentage respiratory and excretory losses for ail zooplankton groups in experiment 2 (24 hours duration) were greater than for those groups in experiment 1 (4 hours).

The data availabie in Table 9 on the average individual dry weights of zooplankton organisms, coupled with certain assumptions on phytoplankton cell density, allowed the determination of the daily ingested ration for P. minutus and C. glacialis. The solitary Chaetoceros cyis used in experiments and 2 were examined under the microscope and tieasured in tw ainemeions, each about 10 ym long. A
similar length was applied to the third dimension and a cell volume of $10^{3} \mu \mathrm{~m}^{3}$ obtained. The density of seawater, about $1.02 \mathrm{~g} / \mathrm{cm}^{3}\left(10^{-5} \mu \mathrm{~g} / \mathrm{\mu m}\right)$, was used for cell density. Cell wet weight was then calculated by multinlying cell volume by cell density. A conservative wet to dry weight conversion factor of $1 / 2$ was used in determining cellular dry weight $\left(0.5 \times 10^{-3} \mu \mathrm{~g}\right)$. The average dry wet of an adult P. mirutus was earlier determined as 0.05 mg or $50 \mu \mathrm{~g}$. Pseudocalanus (groups 2 and 3) in experiment 2 daily ingested 5100 and 6000 ceils, respectively. This figures to $2.6 \mu \mathrm{~g}$ and $3 \mu \mathrm{~g}$ dry weight of Chaetoceros cells ingested per day. The weight to weight ratios indicate P. minutus adults ingested 5 to 6 percent of their body weight daily grazing on Chaetoceros cultures. A similar calculation for Calanus glacialis v resulted in a predicted daily ration of 1.0 to 1.3 percent of dry body weight.

Experiment 4 used mixed, endemic algal populations diluted to concentrations of about 5000 cells/liter. Gross growth efficiency determined for Acartia spp. was relatively constant, ranging from 2.1 to 7.4 percent. Grazing rates for Acartia were comparable to those of P. minutus. Filtration rates for P. minutus were over twofold higher than those measured under conditions of highly concentrated Chaetoceros culture in experiment 2. Growth efficiency for P. minutus showed little variation under the differing experimental conditions of experiments 2 and 4.

Balonus nauplii demonstrated both consj.stent grazing rates and growth efficiency. The indjvidual nauplius larva filtered smalien
volumes than the copepods, but was more efficient than Accartia in diverting energy into growth.

The random assemblages of zooplankters used in the community experiment included: BaZarius nauplii (approximately 64% by number) and cyprid larvae (32\%) ; ophioplutei larvae (2.7\%); the remaining portion was divided between copepods, Aglantha digitale, ostracods, polychaete larvae, Oikopleura, and Sagitta elegans juveniles.

The above community was more efficient in diverting ingested energy into growth than were individual species in the majority of cases. An average gross growth efficiency of 39.5 percent was obtained for the three commity aliquots.

CHAPTER 4. DISCUSSION AND CONCLUSIONS

The zooplankton of the Arctic Ocean and peripheral seas have been broadly categorized into several groups based on horizontal and vertical distributions and association with the major arctic water masses: (1) the Arctic surface layer; (2) the Atlantic layer; and (3) the Arctic bottom water. Grainger (1965) described three major groups of associated zooplankton from the Arctic Ocean, southeast Beaufort Sea coastal waters, and Amundson Gulf from reported horizontal and vertical distribution patterns and through relationships with Shysical parameters. The first group comprises species of wide horizontal foccurrence in the upper 100 m of both the inshore areas of the fontinental shelf and the offshore, oceanic regions. Species of this Group include the holoplanktonic medusae, Aglantha digitale and *eginopsis laurentii, the pteropods Limacina helicina and Clione iimacina, The chaetognath Sagitta elegans, and the appendicularians Dikopleura \$anhoeffeni and F'ritillaria borealis. Eight species of copepods are 1so included as members of this group, represented by Calanus glacialis, *alanus hyperboreus, Pseudocalanus minutus, Microcalanus pygmaeus, Pareucinaeta giacialis, Metridia longa, Oithona similis and Oncaea orealis. All species of group 1 are able to tolerate a rather Hde range of temperature and salinity.

Members categorized into group 2 include species restricted to ffshore waters, at considerable depth in the cold, high salinity Hantic water nass. The ostracod, Conchoecia maxima, and the copepods pinosalanus magnu and Gaidius brevispinus are incladed here. Guour
three of Grainger's classification of the arctic zooplankton consists of the primarily neritic, shallow water species, thriving in freshened waters of high temperature. Reported members of this group are the meroplanktonic medusae Obelia sp. and Euphysa flommea, and the copepod Eurytemora herdmanri.

Brodskii (1956) reported that the largest density of zooplankton occupies the Arctic surface layer in the central Arctic Ocean, whereas the greatest diversity of forms is found in the intermediate, or Atlantic water mass. With specific reference to the Copepoda of the polar basin, the composite results of Brodskii and Nikitin (1955), Brodskii (1957), and Johnson (1963), indicate 30 species to exist in the upper 300 m and 50 species between 300 and 1000 m .

Johnson (1956) cited the distribution of an additional group of zooplankton, these being certain copepod species expatriated northward from the Bering Sea up to the edge of the ice pack and along the arctic coast of Alaska east of Barrow. Two species, Calconus cristatis and Eucaianus bungii burgit, were found as far east as the Alaska-Yukon boundary in 1951 and their presence was interpreted as indicating the penetration of Pacific water far to the east of Poinc Barrow.

The observed distributions of several neritic copepods and hydromedusae along the northern coast of North America are more difficult to interpret. The populations of some species common to both the eastern and western arctic of North America are discontinuousiy distributed along the northern coast. Included here are minysa fiamea, Acartia longiremio, Eurytemora herdmami
and Tortanus discaudatus. Whether the original connection was made by transport via the Beaufort gyral or directly across the northern coast of America is not known, but the present tenuous connection between populations of these species could conceivably result in speciation.

4.1 The Ecclogy of the Inshore Zooplankton

Emphasis in the present study was towards the description of temporal distributions in abundance of members of an Alaskan neritic zooplankton community, and the establishment of life history patterns and associaitions of the primary constituents. The sequence of changes in the community were observed from a fixed location. Statistical analyses indicated significant differences in distributions of abundance of most zooplankton categories with time. Many of these observed differences can probably be attributed to kydrographic changes and the life histories of the zooplankton constituents.

A comparison of distributional and life histury patterns of the constituents of the Point Barrow community with those reported in arctic oceanic areas indicates a distinctly different community exists in the neritic enviroament.

4.1.1 Distributional Eattems

The observed presence and temporal distributions of several species of the Copepoda, as well as certain hydrozoan medusae, Indicated a northward penetration of Bering Sea water and its characteristic tauna into the study area during the sumer of 1972.

Biological indications of this phenonenon were further suostantiated by hydrographic observations.

The intrusion of North Pacific and Bering Sea water masses into the Chukchi Sea is well documented (Barnes and Thompson, 1938; Coachman and Barnes, 1961). American data suggest a summer northward transport of 1.4 million cubic meters of water per second through the Bering Strait, with a winter flow one-fourth this magnitude. This influx of warmer, more saline North Pacific water results in a subsurface temperature maximum in the central arctic below the cold, dilute Arctic surface layer. A description of the mechanics of mixing on the continental shelf is somewhat more difficult, particularly where distinct water properiies are rather ill defined (Coachman, personal communication).

The inshore zooplankton comunity near Point Barrow, Alaska, can be differentiated into two groups, based on my summer collections: (1) fauna characteristic of the Bering Sea; and (2) fauna common to the Chukchi and Beaufort Seas.

Species inciuded in the first group are the oceanic expatriate copepods Calaius cristatus, C. plumenrus, and Eucalanus brongii bungii, all previously cited by Johnson (1956) as indicative of the intrusion of Pacific water into the higher latitudes. These three species were present in small numbers for only a snort time during July either as adults or stage V copepodids. A plausible explanation of their distribution can be found in the reported life history data for these copepods in the Bering Se: (Heinrich, 1961). All three species breed
at considerable depth in early spring and by mid-summer have developed to stage V in the warm surface waters; the majority of stage V individuals have migrated to depth by mid-July. Since the shallow depth of the Bering Strait (75 m) would preclude transport $\mathrm{c} \tilde{f}$ deeper forms into the Barrow area, specimens would not be expected to occur in late summer collections. That no specimens were taken before July 8 can possibly be attributed to any of the following: the lag time in water mass transport from the Bering Sea to the study area; the smaller volumes of water filtered; or the presence of the offshore pressure ridge imposing a physical barrier to transport into inshore waters during June.

Johnson cited an additional group of copepods, apparently advected northward along the western Alaskan coast and eastward around Point Barrow. Primary examples are Tortanus discaudatus, Centropages abdominalis, Eurytemora herdmanni, and Acartia clausi. All of these members abound in the warm neritic environment along the western coast of Alaska during summer (Johnson, 1934, 1953). All four species in my collections were present at Barrow only during the period of maximum surface water temperature in August, indicating the strong neritic character of the area with respect to these copepods. Their distributional patterns can be closely tied to reported reproductive periods along the western Alaskan coast. I concur with Johnson that the majority of specimens are transported into the nearshore environment of Barrow from the south.

The cladocerans Evadne nordmanni and Podon leukarti also appear to be advected into the Barrow area from more southerly latitudes. Both were found exclusively during the final three weeks of August, coinciding well with the presence of the above-mentioned nericic copepods. Johnson (1953, 1956) reported E. nordmanni and P. leukarti to occur commonly only in the shelf waters of the Chukchi Sea and in the vicinity of the Nome-Norton Sound area of western Alaska during August.

Further evidence supporting the contention that all of the seven previously mentioned copepod species and the two ostracods are indeed advectively introduced subarctic species is presented in that none of the above, with the exception of Eurytemora herdmanni, are included among Grainger's three categories of arctic zooplankton.

The second major group of zooplankton described for the inshore commity at Barrow comprises the largest number of categories and the most significant members in terms of contribution to total numbers of individuals and biomass of the community. Both meroplanktonic and holoplanktonic constituents are well represented. Included among this group are all but two of the fifteen ubiquitous arctic species described by Grainger (1965) as the primary constituents of both the inshore and offshore zooplankron conmunities existing in the arctic surface layer. Microcalanis pycmaetis and Oncaea boreaits were not found. Johnson $(1956,1958)$ similarly reported M. pygmaeus and 0 . borealis to be absent from cosstal stations near Barrow and cited their major distribution beyond the 100 m contour.

The observed distributional patterns of three characteristically arctic copepods, Calaniz hyperboreus, Eucnaeta norvegica and Metiridia Zonga, indicate that the main pepulations of these species are held back in the Chukchi Sea by the intruding flow of Bering Sea water into the study area. All of the above became absent from the plankton as the southern influence on the nearshore hydrography becane very pronounced in June. Johnson found the southern limit of continuous distribution for C. hyperboreus and M. Zonga to exist at the 100 m depth contour and failed to observe specimens within this limit in July and August. The Burton Island collections also indicated larger numbers of E. norvegica to exist at the more offshore stations. The inshore, neritic environment near Barrow appears to be unsuitable for these arctic species under the influence of the warm southern water mass during the summer.

The remaining holoplanktonic members of group 2 (characteristic of the Chukchi and Beaufort Seas) are represented in the majority by the copepods Calanus glacialis, Pseudocalanus minuitus, and Oithona similis, the chaetognath Sagitta elegans arctica, and an assembiage of pteropeds, amphipods, euphausiids, appendicularians, and fishes. The population dynamics of the majority of these taxa are probably less the result of advective processes and more closeiy allied to biological phenomena, such as predation, natural death and sinking, and periods of spawning. A discussion of outstanding members is included in the following section on life history patterns.

The cenporal distributions of abundance for the barnacle larvae and certain hydrozoan medusae appear, on the other hand, to be the result of both advective and biological processes.

Hand and Kan (1961) reported on all the hydrozoan species represented in the present collections and concluded that the distribution of these medusae correlated well with the general hydrographic circulation near Barrow. From known locality records, they surmised that a continuous breeding population exists for most species from the North Pacific to the Chukchi Sea, with relatively little local replenishment as far north as Barrow. The introduction through advection of certain members of the hydromedusae into the nearshore watere of the Chukchi Sea near Barrow is probable, based on the simultaneous presence of a large number of intermediate and mature stages collected for several species with an apparent absence of juveniles.

The distribution of cirriped larvae also suggests a hydrcgraphic influence. Suitable substratum sites for the attachment of mature cyprid larvae are scarce in the inshore waters adjacent to Barrow as reported from direct observation by SCUBA divers and bottom dredges (MacGinitie, 1955). The majority of beds were found by MacGinitie to exist several miles offshore, in depths of 60 m or more. Johnson (1956) found the hignest concentrations of barnacle larvae some distance northwest of Pt. Barrow during the summers of 1950 and 1951. These data suggest that a sizable portion of the present catch is possiblv attrituted to advection into the area of investigation and
the observed temporal distribution is an admixture of this effect with local spawning.

4.1.2 Life Histories and Reproductive Success

Sufficient data were provided from the sumner collections to establish the life histories of several major Chukchi-Beaufort Sea zooplankters as well as to allow comment on the reproductive success of advectively introduced species.

Specimens of the oceanic Bering Sea expatriate copepods, calcalus cristatus, C. plumchrus and Eucalonus bungii bungii were present in the Barrow collections exclusively as stage V copepodids or adults. The absence of early developmental stages for all of these species in the summer collections suggests no local reproduction occurs in the Barrow area.

The reproductive success of the more sorthern neritic copepods, Tortanus discardatus, Eurytemora heramanni, Acartia clausi: and Centropages abdominalis in the inshore waters adjacent to NARL is uncertain. The present collections included a stage I copepodid of Tortanus discaudatus with adult females and males in relacively low abundance; Johnson (1958) found nauplii and egg cases of I. discaudatus in tows near NARL during the sumner of 1357. It appears that a continuous breeding populatior exists from the western coast of Alaska to some distance east of Barrow. Gravid females of Eunctemora herdmanni were prevalent in the summer collections, similarly suggesting a continuous breeding population, No rigerous fewles of either

Acartia clausi or ientropages abdominalis were noted, and until more samples are collected simultaneously in the vicinity of Barrow and along the western Alaskan coast, the geographical range of reproductive success of these latter two species cannot be established with certainty.

Podon leukarti and Evadne nordmanni were collected in both adult and juvenile stages, indicating some degree of reproductive success as far north as Barrow for these introduced cladocerans.

A combination of local replenishment and advection are probably responsible for the population fluctuations observed during the summer for several hydromedusan species. Aglantha digitale is the outstanding example, where large increases in population abundance were seen to accompany recruitment of smaller individuals in early August (see Figure 4); additionally, a wide range of developmental stages existed at any given time. Bougainvillea superoiliaris, Rathkea octopunctata, and Obelia Zongissema were also present in an admixture of developmental stages, implying an advective influence. Aeginopsis laurenti.i, Euphysa flammea, and Leuckartiara sp. Existed only as immature medusae and this is interpreted as indicating the major stock of these species is produced locally, with comparatively little outside introduction. Breeding appears to occur under the ice during May and June for these three hydrozoans.

The life history of the barnacles can be fairly well established from available data collected over the sumer.

The period of maximu liberation of barnacle larvae presumably occurs from mid to late June, with the initial release of nauplii in late May. Spawning appears to continue at least through August, with a secondary peak occurring in mid-August. Population highs were well correlated to a rich phytoplankton standing crop. A period of 31 days is indicated as necessary for the development of the nauplius larva to the cypris stage.

The initial breeding periods of other meroplanktonic members of the community appear to be well timed to available phytoplankton. Decapod larvae occurred in greatest abundance during June; echinoderm larvae were most prevalent in late August, both periods of high plant stocks.

The most prevalent copepods in my collections were common Chukchi and Beaufort Sea species, existing in a variety of reproductive states and developmental stages. Several positive comments car be made on the breeding periodicity and life history patterns for many of these species.

Heinrich (1961) established severai categories of northern latitude copepods on the relationship between breeding periods and development to the occurrence of high phytoplankton stocks. Heinrich places Eseudocalanus minutus and Calanus glacialis into a category including species breeding simultaneously with high phytoplankton abundance. Category 2, those species which may reproduce in the absence of high phytoplankton stocks, includes Metridia Zonga and Calanus hyperboreus. A third category includes species reproducing over extended periods, with maximuin broods produced during times
when the phytoplankton crop is rich. Oithona similis was the type species described for this group.

Observations on the reproductive state of the above mentioned copepods in relation to the summer phytoplankton standing crop at Barrow are in excellent agreement with Heinrich's classifications.

The majority of gravid females of Calonus glacialis and Pseudocalonus minutus were present during the early summer phytoplankton bloom, an optimal period for high egg production. Metridia Zonga and Calanus hyperboreus were found only at the beginning of summer, mostly as stages III and IV, apparently breeding at some period before the summer season. Too few specimens of C. hyperboreus and M. Zonga were collected to discern whether these copepods are annual breeders in the waters near Barrow. Conover (1962) reported wid-winter breeding of C. hyperboreus in the Arctic Ocean and described a two-year life cycle for the species. In subarctic and marginally arctic environments, the species is reported to reproduce annually (Digby, 1954; Grainger, 1959).

Oithona similis appears to fit Heinrich's third category of copepuds, as it was found to be ovigerous throughout most of the summer at Barrow. Grainger (1965) also classified 0 . similis into a similar category.

The primarily carnivorcus Euchaeta norvegica was found mostly as stage III at Barrow during the early summer, implying slight if any dependence of its breeding period on the phytoplankton.

The life cycle of Calanus glaciatis in the vicinity of Barrow appears to be completed in one year. The large number of copepod
nauplii found beginning in late June are probably the spawn of the gravid females of C. glacialis reported up through late June. Stage I copepodids became abundant during early july and most individuals of the species had reached stage III or IV by the end of August. All individuals found in late May and early June samples were mature stages, indicating development through stage V during the sumer season.

Dunbar (1940) pointed out the phenomenon of polyphasic, or alternating, breeding cycles for major members of the zooplankton in the high arctic. The simultaneous presence of three distinct year classes or broods in the plankton for these species is taken to indicate a two-year life cycle. This prolongation of the life cycle is interpreted as being an adaptive response to the very short biological season in the high arctic. Type species included in this group are Sagitta elegans arctica and Thuscnoëssar raschii, both present in the Barrow collections. Examination of the size-frequency histograms of both of these species (Figs. 7, 8) suggests an extended life cycle of the arctic variety.

Concerning S. elegans arctica, two modes are obvious in most cases and a third appears to exist in mid-July. Egg bearing inaividuals were reported in the 30 to 40 mm size range in mid-July and it was shortly aftervards that a large number of 3 to 8 mm individuals were recruited to the population. These data indicate a prolonged life cycle, if not two years, somewhat longer than one.

Thysonoëssa raschii existed in two very distinct population size classes. The aosence of a third mode consisting of lerger, mature
individuals is interpreted as the inability to sample adults at depth In the more offshore waters. Johnson (1958) similariy reported only juvenile T. raschii in his collections at Barrow taken up to 4 miles offshore. The obvious size gap between the young calyptopid larvae and the 10 ma juveniles is too distinct to discount. It appears that T. raschit has a prolonged life cycle of two years in the Barrow area; however, the collection of adults simultaneously with the younger stages is required before this can be established with certainty.

Substantial evidence exists in support of active summer breeding in the coastal waters near Barrow for several other holoplanktonic taxa. Epyral stages of the Scyphozoa were collected in August. Female Autolytus fallax were observed with egg sacs during the entire summer and larval polychaetes were prevalent at times. Amphipods and appendicularians were present in juvenile stages for much of the summer. Eggs and larval stages of fishes occurred in maximum concentrations during June, indicating active reproduction at this time.

The plankton commaity in the neritic waters of Barrow seems to exist in an unbalanced state; the time lag between the phytoplankton and zooplanktun peaks in Figure 9 bears this out. Seasonal fluctuations of this nature are commonplace in neritic environments throughout the world in contrast to the stable, balanced communities usually found in tropical oceanic environments. The lag time existing between zooplankton breeding periods (and effective grazing pressure) and the initial period of high prorary productivity is probably
partially responsible for this phase difference. Cyclic phenomena in arctic and high latitude areas are also perpetuated by the relative paucity of zooplankton species, allowing a few organisms to dominate through reduced competition. Dunbar (1968) hypothesizes a directional evolution toward a more seable, diverse comunity in arctic and subarctic areas.

4.1.3 Significance of the Meroplankton

Dunbar (1954, 1968) described the northern Alaskan coastal environment as marine subarctic based on existing biological and hydrographic differences in comparison to high arctic regions. The major criterion used in establishing this division is the mixing of arctic and non-arctic water masses. Additional characteristics distinguishing subarctic areas from arctic zones include: (1) lower percentage annual ice cover, (2) greater species diversity, (3) higher production rates, and (4) lesser seasonal oscillation in the biological community.

The application of the term subarctic to a marine environment based on the above criteria obviously encompasses a wide range of areas, some mnre "subarctic" than others. The intrusion of warm Pacific water into the Point Barrow vicinity imposes a marginally subarctic condition, in the biological as well as physical sense, especially for species with meroplanktonic life histories.

The meroplanktonic component of the Barrow inshore zooplankton community was significant during the sumer of 1972. In particular,
barnacle larvae were extremely prevalent, with hydrozoan medusae, crab zoea, and echinoderm larvae contributing a sizable fraction. Their abundance suggests that under the influence of the flow of wamer water from the Bering Sea, the conditions at Barrow are more typically subarctic than arctic with respest to the production of meroplanktonic larvae. A comparison of the 31 day nauplius to cyprid developmental period observed for the genus Balanus at Barrow with other reported developmental rates for the genus in arctic and subarctic areas (Barnes and Barnes, 1960) substantiates this conclusion.

It is the significant contribution of the meroplanktonic component at Barrow, with a commensurate increase in zooplankton standing stock and species diversity, that biologically differentiates this nearshore area from the central arctic. Reported zoopiankton biomass, as measured by dry weight, indicates the standing stock of zooplankton in the nearshore waters off Barrow is an order of magnitude higher than that present in the central arctic under T-3 (Minoda, 1967; Hopkins, 1969). This differential is in part due to the pauciry of benthic invertebrates in the central arctic that liberate planktenic larvae. Thorson (1936) concluded that only 5 percent of the benthic invertebrates in the figh arctic of East Greenland have meroplanktonic life histories.

Johnson (1956) found that the continental shelf of the Beaufort Sea was less productive than the shelf areas of the Chukchi Sea. He surmised that this was the result of the composite effects of a narrower shelf width and a less favorable temperature regime in the Beaufort Sea in comparison to the Chukchi region, with a correspondingly smelier meroplanktonic contribution to the commity.

4.1.4 Energetics and Secondary Production

Interest in the production rates and physiological processes of primary consumer organisus has bean generated with the intent of determining the efficiency of energy transfer through the plankton and estimating the production available for higher trophic levels. Much research in recent years has been directed toward answering the fundamental question of whether or not grazing organisms can derive nutrition equivalent to or in excess of their respiratory demands by filtering particulate matter in concentrations naturally found in the sea. Research efforts have been divided between two approaches: (1) determining respiratory and filtration rates in the laboratory and with a knowledge of total particulate organic matter found in seawater, calculating the resultant uptake and comparing this with the food requirements necessary to balance metabolic losses; and (2) establishing filtration rates and the total energy budget in the laboratory and then determining the ingested daily ration necessary to balance this observed budget. This second approach was employed in my study to investigate carbon utilization and secondary production of selected members of the Berrow zooplankton community.

Assimilation efficiencies determined foi che several species examined in this study generally ranged from 70 to 85 percent, indicating an efficient grazing community in terms of utilization of native algal species at varied concentrations. Although most assimilated energy was lost through metabolic processes, some fraction of assimilated carbon in excess of these losses was found to be
channeled into growth for most organisms, suggesting some production was being realized. That some surplus of energy existed above respiratory requirements even at low cell concentrations appears to indicate that the grazing organisms are indeed able to meet and exceed their minimal metabolic demands by feeding on algal concentrations comparable to those found in the inshore waters off Barrow.

By integrating field observations and laboratory results, a quantitative estimation of secondary productivity attributed to two major copepods, Pseudocalonus minutus and Calonus glacialis, can be obtained for late July.

Daily ingested rations were earlier calculated for both species as 5 and 1.3 percenc of dry body weight, respectively. Using additional data on integrated standing stocks (mg dry weight/m ${ }^{2}$) during late July for each species and applying a dry weight to carbon conversion factor of 0.4 (Mullin, 1969) allows for determination of $\mathrm{mgC} / \mathrm{m}^{2} /$ day ingested. Laboratory measurements indicated an average of about 15 percent of ingested energy was diverted into growth (production) for both P. minutus and C. glacialis V; this calculates to daily production rates of 0.0075 $\mathrm{mgC} / \mathrm{m}^{2}$ and $0.023 \mathrm{mgC} / \mathrm{m}^{2}$, respectively. Integrated net primary productivity determined for July 24 was $0.37 \mathrm{mgC} / \mathrm{m}^{2} / \mathrm{hr}$ or $8.9 \mathrm{mgC} / \mathrm{m}^{2} / \mathrm{day}$ (Horner, unpublished data). The composite production of F. minutus and C. glacialis therefore appears to be less than 1 percent of daily primary production in the nearshore waters at this time. Additionally, the standing stock of these two species integrated over the photic zone amounts to only about 4 percent of the phytoplankton standing
crop, if a chlorophyll a to carbon conversion factor of 50 is used (McAllister, 1969).

Since available data indicate that primary production in late July was relatively low in comparison to other periods during the summer and the concentrations of the two dominant copepods were, in contrast, relatively high, it would appear unlikely that grazing pressure by these copepods could be a major factor responsible for the fiuctuations noted in the summer phytoplankton stock.

Barnacle larvae were the numerically dominant grazing zooplankton throughout most of the summer and, as such, warrant consideration with respect to their production and the potential grazing pressure they exert on the phytoplankton commity.

An alternate method can be used for the calculation of secondary production of the barnacle larvae, which although perhaps less precise than the previous method, can nevertheless be a useful tool in arriving at rough estimates. The two potential drawbacks to the method are in assuming a filtration rate independent of phytoplankton standing crop and applying a chiorophyll a to carbon conversion factor.

The laboratory caiculated filtration rate for an individual Balanus larva was $3.5 \mathrm{ml} /$ day. By multiplying this grazing rate by the standing crop of pi:ytoplankton converted to $\mathrm{mgC} / \mathrm{ml}$, and the concentration of larvae $/ \mathrm{m}^{2}$, an estimate of daily ingestion by the population is obtained in units of $\mathrm{mgC} / \mathrm{m}^{2}$. Growth was determined in the laboratory to be approximately 10 percent of ingestion. Production of barnacle larvae can therefore be calculated for any given period.

The week of June 16, Balconus larvae approached concentrations of 50,000 individuals $/ \mathrm{m}^{2}$. Using a factor of 50 to convert chlorophyil a to carbon, an individual larva would ingest $1.75 \times 10^{-4} \mathrm{mgC} /$ day or $8.75 \mathrm{mgC} / \mathrm{m}^{2} /$ day ingested by che entire population. The rate of production would calculate to $0.88 \mathrm{mg} \mathrm{C} / \mathrm{m}^{2} /$ day , or roughly 2 percent of the average primary productivity determined for the week of June 16.

No values were obtained in the laboratory on the percentage of dry body weight ingested daily by Balanus larave. However, the late naupliar stages of copepods of the genus Calonus have been reported to often ingest over 300 percent of their body weight daily feeding on naturally existing phytoplankton concentrations (Paffenhöfer, 1971). If the previously calculated ingestion rates are underestimates and a daily ingestion ration of 100 percent of body weight is applicable, grazing pressure assumes a very significant role. An average standing crop of barnacle larvae of $65 \mathrm{mgC} / \mathrm{m}^{2}$ for the week of June 16 can bc calculated from earlier determinations of dry weight (carbon)/individual and average weekly abundance. The average phytoplankton biomass for the same weekly period would convert to $250 \mathrm{ngC} / \mathrm{m}^{2}$. The ingestion by Baianus larvae could therefore represent 25 percent of the plant standing crop and very conceivably act to effectively reduce this stock through grazing pressure, especially during periods of low turnover rates in the phytoplankton stock.

It therefore appears that the Cirripedia, in contrast to the Copepoda, could potentially exert significant grazing pressure at speciffic
times during the summer and possibly act to regulate fluctuations in the phytoplankton standing stock to some degree.

As yet, the biomass and feeding biology of the microzooplankton have not been examined; these organisms may perhaps be found to have a pronounced influence in the dynamics of the plankton community.

The zooplankton community adjacent to Barrow appears to be rather efficient at utilizing particulate organic matter that they ingest, of definite ecological importance due to the short biological summers existing in the area. However, the grazing community seemingly ingests only a small fraction of the total carbon produced by the phytoplankton during the summer, the majority of this production being lost from the pelagic system by sinking to the bottom. It would appear that the plankton community in this very shallow photic zone is very inefficient in this regard.

4.2 Sources of Error

The sampling design used ir this study was chosen to provide a description of the temporal variabiiity in abundances of zooplankton organisms on a tiule scale on one week, and to allow tests of hypotheses concerning observed discributions. Both the effectiveness of the samping procedure and the appropriateness of methods of analysis are factors that must be considered in the interpratation of results.

4.2.1 Field Sompling and Data Analysis

An unknown component of the variability determined for all samples collectef in int field was introduced by differences in the
volumes of water filtered on successive tows. For the replication process, however, it was unlikely that the magnitude of these differences was very large, even though the means of estinating the speed of the skiff were rather crude. The net most certainly filtered water at less than 100 percent efficiency, but no correction was possible since a flowmeter was not available for the study. However, because low towing speeds were employed and nets were carefully rinsed following each tow, the average filtration efficiency was probably in excess of 80 percent. Slight underestimates of the abundance of organisms probably resulted, since numbers $/ 100 \mathrm{~m}^{3}$ were determined on the assumption of 100 percent filtration efficiency.

No attempt was made to assess the numbers of animals small enough to pass through the $0.308-\mathrm{mm}$ mesh netting. Barnacle nauplii smaller than 0.308 mm total length were commonly retained in hauls, and their numbers were routinely estimated. This subjective appraisal is certainly subject to unknown error.

The statistical evaluation of variability associated with the subsampling procedure, with replicated tows on sarpiing days, and with collection on different days of the week, does suggest that a more efficient allocation of sampling effort can be applied to similar future studies. For all zooplankton categories, subsampling error was considerably less than either the repiication or within-week variance. This result was gratifying yet hardly surprising since the technique employed is standard for most plankton surveys. However, more information (smaller confidence limirs) can be obtained fer weekly estimates of abundance by scmpling more deys of the weak and
eliminating the within-day replication, except perhaps during that time of the year when day-night changes in light are pronounced. For most organisms, samples taken at 1500 hrs . were not different ($\underline{p}<0.05$) from collections made at other times of the day. Wind mixing in the shallow water and the absence of a marked diumal cycle in incoming radiation operate to increase the homogeneity of organisms in the water column and supress variations in day-night distribution patterns often characteristic of lower latitudes. Although the question of how representative samples taken adjacent to the NARL facility were of the general nearshore coastal area was only superficially examined, the evidence on hand indicates that fcr most organisms no differences in abundance can be detected between this location and others that were visited. Rather, the few samples obtained from further offshore suggest that most major gradients in numbers and community composition probably run perpendicular to the coast.

With regard to data analysis, it should be noted that a logarithmic transfcrmation of counts does result in geometric averages which are negatively biased compared with arithmetic means of the same data. However, aside from preparing counts of animals in a format acceptable for analysis of variance, most workers feel that geometric averages are probably more representative than arithmetic information simply because the former are less affected by the occasional very high or 10 w values that are characteristic in all plankton count data.

4.2.2 Labcratory Studies

Several potential sources of error are associated with the behavior of radioactive labels used in biological research. Investigations of the consumer organism must consider such problems on both the phytoplankton and zooplankton levels.

A major problem to be considered in using radicactive tracers in the study of the feeding biology of grazing zooplankton is the possibility of non-uniform labelling of the algal culture, resulting in inaccurate estimates of ingestion rates. This possibility was early recognized in this study and necessary precautions were taken by incubating the algal cultures for long periods of time in a concentration of label they could not possibly deplete. The calculation of filtration rates by zooplankters assumed a homogeneous distribution of cells in the feeding jar during the experimental period. Deviations from this distribution, such as would occur through sinking, would certainly have the effect of introducing errors in estimation. However, the possibility was thought to be at least partially obviated by periodically shaking the feeding jars during experiments.

The assumption of a strictly unialgal culture in estimating cell density could have led to underestimation of ingestion rates. Settings on the Coulter Counter were adjusted to count only a restricted size range based on this contention. This assumption indeed appeared to be valid, however, as the projected size-frequency
distribution observed on the counter oscilloscope showed only slight deviations from the mean cell size.

The specific activity retained on filter paper from the filtration of radioactive phytoplankton has teen reported to be inversely proportional to the volume filtered (Arthur and Rigler, 1967). This would result in increasing the filtrate activity and decreasing the calculated ingested activity, which was determined by differences in the filter paper activity measured at the beginning and completion of the experiments. No procedures were taken to allow for this possibility. The very "hot" cultures used in this study were perhaps less sensitive to such errors than would be weakly labelled cultures, if indeed errors did exist.

Incomplete removal of defecated material would have the effect of giving very high assimilation efficiencies. Significant errors in this regard would probably only be associated with diffusely egested material, as intact faecal pellets were clearly visible.

The measurement of the activity of the individual organism was used as an index of growth. Self-absorption problems were probably slight since organisms were thoroughly solubilized and were counted using efficient liquid scintillation techniques.

4.3 Future Plankton Fesearoh

Annual observations on the phytoplankton community have been conducted in the nearshore environment off Barrow for several years. Year round investizations on the zooplankton comnunity should be
yearly distributions of the fauna and to define interactions in the plankton community as a whole. Only seasonal information exists to date on the dynamics of the zooplankton community, with very litte research conducted during the winter months. Hydrographic measure-ments, including temperature, salinity, and nutrient concentrations, should continue to be taken along with investigations of the biota. Field sampling should be expanded to include the more offshore areas, with coincident investigations of the zooplankton elements for comparisons of community structure and dynamics. Sampling effort

In the field should be most intensive during the dynamic sumer period, when the short term temporal variability is expected to be most pronounced.

A more extensive study of life histories and spawning periods is necessary so that abrupt changes in abundance of particular species can be assessed with more certainty. Future research should include effort toward describing the presently little known microconstituents f the zooplankton and estimates made of their relative contribution the total animal plankton biomass and community productivity. Biomass as determined from direct water samples should accompany stimates based on the net-caught comunity "binmass."

Continued research is proposed in the field of quantitative rophic dynamics, to include estimates of the efficiency of energy ransfer through the pelagial and the definition of major pathways
energy flow in the nearshore system.
Efforts should be made toward estinating secondary productivity specific times, apolying the results of integrated research in
both che laboratory and the field with the intent of establishing possible relationships between laboratory measured requirements and energetics and community dynamics observed in the field. An important component required in field estimates of secondary production is a knowledge of mortality rates at several levels of development for a particular species, a project necessarily involving a sampling program designed to include all such stages.

More intensive examination of the possible ecological repercussions of selective feeding and interspecific competition for available food sources are also needed. The relative importance of detritus as an energy source for the inshore zooplankton community at Barrow should receive considerable attention. Johnson postulates that in addition to the local organic production in arctic areas of the northern Chukchi Sea and central basin, a considerable amount of particulate food matter must be advected into the higher latitudes through the Bering Strait by the northward flowing current. Parsons and Strickland (1962) found large quantities of detritus in the northeast Pacific Ocean in the form of faecal pellets, fibers and animal chitin, and consider it a potential source of food for marine consumers. The role of animal material in the diet of zoopiankton commonly thought to be "classic grazers" should also receive attention.

The composition and quantitative variability of the inshore marine zooplankton community near Point Barrow, Alaska, were investigated from May 25 to August 28, 1972. In addition, laboratory trophic studies were conducted as a supplement to field investigations, The objectives of this research were (1) to describe the pattern of temporal variability in spacies abundance and the composition and standing stock of the summer inshore zooplankton comanity; (2) to examine the relationship of this variability to the local hydrography and phytoplankton community; (3) to study life histories, associations, and periods of recruitment for dominant meribers; and (4) to investigate the bioenergetics and fescing biology of grazing zooplankton in the laboratory.

Zooplankton were collected from horizontal hauls both under the ice and in open water conditions. Replicate tows were taken on most sampling dates; 107 samples were examinec. Aniuals were subsampled for estimates of numbers, identified, sized, and enumerated within distinct taxonomic caregories.

Numbers of organisms per 100 ta 3 were tsantiormed logarithmically, with sums of squares for analysis of variance and somparison of geometric means generated by an IBM 360 computer. Data were grouped into calendar weeks for the analysis of variance. Upper percentage confidence limits were determined about three levels of sampling for comparison of variability associated with these levels, Subsampling, replication,
and within-week error were compared and, in ail cases, the error associated with subsampling was less than that for the other two levels; replication error was usually smaller than within-week error. Differences in weekly mean abundances for 30 categories of zooplankton were tested using the F-statistic, with 29 of 30 categories showing significant temporal variability over the summer ($\mathrm{P}<0.05$). Tests of both diel and spatial effects on the abundance of organisms showed no significant differences in numbers in the majority of cases ($\mathrm{P}<0.05$).

Forty-six categories of zooplankton on several taxonomic levels were analyzed. The copepods were the major community constituents in terms of both biomass and species diversity. Hydromedusae were the second most diverse assemblage of organisms. Chaetognaths and barnacle larvae were additional major summer constituents in terms of numbers and biomass. The meroplankton were a very significant component of the inshore zooplankton commity. The Barrow commity can be differentiated into fauna characteristic of the Bering Sea, and fauna commonly found in the Chukchi and Beaufort Seas.

The intrusion of Bering Sea water into the Foint Barrow area, as evidenced ty the presence of several expatriata copepods and hydromedusae, as well as the warmer water temperatures, imposes a marginally sulazctic condition on the zoopiankton community with respect to diversity and productivity. The presence of large numbers of meroplankton especially reflects this condition and is further suggested by the short deveicmental period observed for
the barnacle larvac. The temporal patterns of distribution recorded for many organisms were highly influenced ty this dynamic hydrographic regime. Biological processes probably play a more significant role than do advective processes in influencing the distributions of fauna characteristic to the Chukchi and Bearfort Seas.

Continuous breeding populations from Eatrow to the Bering Sea appear to exist for several neritic copepods and hydromedusae taken in the collections. Some holoplankton, such as the copepod Calanus glacialis, seem to exhibit one-year life cycles characteristic of subarctic areas. Sagitta elegans and Triysanoëssa rascinii, however, appear to be characterized by polyphasic, or two-year life cycles. Active breeding during the summer was also noted for the holoplanktonic scyphozoans, poiychaetes, amphipods, appendicularians, and fishes. Recruitment of meroplanktonic larvae was extensive and was well correlated to peaks in the availaile food s:mply.

The zooplankton community biomass was an order of magnitude higher than that reported for a similar period in the central arctic; the relatively significant contribution of the meroplankton is proposed as an explanation. The sumer plankton cormunity at Barrow exists in an unbalanced state, stch that the pericis of higil zoopiankton standing stock lag one to two weeks behind the phytoplankton peaks.

Laboratory trophic studies involved investigations of the feeding biolcgy of grazing zooplankton fed ${ }^{14}$ C-labelled aigae and the examination of the relative apporionment of ingested energy into
several parameters. Parameters estimated incluied assimilation and gross growh eificiency, filtation and ingestion rates, and
metabolic losses. It was desirable to attempt to access the impact of grazing zooplankton on the natural phytoplankton community based on laboratory measurements of these critical indices.

Experiments ran either 4 or 24 hours, under varied conditions of algal composition and concentration. Assimilation efficiency was usually high for most species, generally 70 to 85 percent. Metabolic losses accounted for the majority of assimilated energy, but a considerable amount of carbon was at times diverted into the growth of the organism. The results obtained for the Bering Sea expatriate species, Calanus plumchrus V, indicated active feeding in the Barrow area. The daily ration determined for Calanus glacialis V was 1.0 to 1.3 percent of dry body weight. Pseudocalanus minutus females appeared to necessitate 5 to 6 percent of dry body weight daily. Secondary production for these species was very low in comparison to the primary production and it appears uilikely that these copepods could effectively regulate fluctuations in the plant standing crop. The extremely high concentration of barnacle larvae found in mid-June, however, could conceivably impose such grazing pressure as to act in a regulatory capacity. The grazing community seemingly ingests only a smail fraction of the total carbon fixed by the phytoplankton during the summer, most being lost to the pelagic system by sinking. It would appear that the plankton community in the snallow inshore environment adjacent to Barrow is very inefficient in this regard.

Future research is urged in both the areas of laboratory trophic. Investigations and fiald studies. Year round staries of the zooplankton
community, including the microconstituents, are needed. Life histories should be more extensively examined to account for abrupt population fluctuations. Field sampling should be expanded to include an examination of the more offshore elements coincldent with investigations of the inshore fauna for comparison of comnunity structure. More extensive research in the field of quantitative trophic dynamics is urged, including estimates of the efficiency of energy transfer through the pelagial and the definition of major pathways of energy flow in the nearshore system. Efforts toward estimating secondary productivity should integrate research in both the laboratory and the field, directed with the intent of establishing possible relationships between iaboratory measured energetics and population dynamics observed in the field.

Arthur, C. R., and F. H. Rigler. 1967. A possible source of error in the ${ }^{14}$ C method of measuring primary productivity. Limnol. Oceanogr. 12: 121-124.

Barnard, J. L. 1969. The Families and Genera of marine gammaridean Amphipoda. Smithsonian Institution Press, Washington, D. C. 535 p.

Barnes, H., and M. Barnes. 1960. The rate of development of Balanus balanoides (L.) larvae. Limnol. Oceanogr. 4: 29-32.

Barnes, C. A., and T. G. Thompson. 1938. Physical and chemical investigations in Bering Sea and portions of the North Pacific Ocean. Univ. Wash. Publ. Oceanogr. 3: 356-370.

Bigelow, H. B. 1920. Medusae and ctenophores from the Canadian Arctic Expedition. Rep. Can. arctic Exped. 1913-1918. 3(H): 1-22.

Bogorov, B. G. 1946. Zooplankton collected by the Sedov Expedition. In Dreifuiushchaia Elspeditsiia Glavsevmorputi na ledokol' mom Parokhode "G. Sedov" 1937-1940. Trudy 3: 336-370. (reference not seen, cited from Scott, 1969).

Brodskif, K. A. 1956. Life in the deep waters of the polar basin. Priroda 5: 41-48.

Brodskii, K. A. 1957. The sopepod faura (Calancida) and zoogeographic divisions of the North Pacific Ocean and adjacent waters. Izd. Akad. Nauk. SSSR. 225 p.

Brodskii, K. A. 1967. Calanoida of the far eastern seas and polar basin of the USSR (translated from Russian). Israel Program for Scientific Translations, Jerusalem. 442 p.

Brodskii, K. A., and M. N. Nikitin. 1955. Observational data of the scientific research drifting station of 1950-1951. In M. M. Somov [ed.] Hydrobiol. Work. 1: 404-410. (Amer. Meteorol. Soc. trans.).

Coachman, L. K., and C. A. Barnes. 1961. The contribution of Bering Sea water to the Arctic Ocean. Arctic 14: 147-161.

Conover, R. J. 1962. Metabolism and growth in Calonus hyperboreus in relation to its life cycle. Rapp. P-v Réun Cons. perm. int. Explor. Mer. 153: 190-197.

Conover, R. J. 1964. Food relations and nutrition of zooplankton. Symp. exp. mar. Ecol., Occ. Pub1., Proc. 2: 81-91.

Conover, R. J. 1966. Feeding on large particles by Calonus hyperboreus (Krфyer), p. 187-194. In H. Barnes [ed.] Some contemporary studies in marine science. Hafner Eublishing Co., New York.

Cooney, R. T. 1971. Zooplankton and micronekton associated with a diffuse sound-scattering layer in juget Sumd, Washington. Ph.D. Thesis. Univ. Wash. 153 p.

Dakin, W. J. 1908. Notes on the alimentary canal and food of the Copepoda. Inter. Rev. Hydrobiol. Hyàrogr. 1: 772-782.

Dawson, J. K. 1971. Species of Arctic Ocean chaetognaths, p. 6-21. In H. A. Kobayashi [ed.] Taxonomic guides to arctic zooplankton (IIIj. Uriv. So. Calif. Terh. Rep. no. 4, Los Argeles.

Digby, P. S. B. 1953. Plankton production in Scoresby Sound,
East Greenland. J. Anim. Ecol. 22: 289-322.
Digby, P. S. B. 1954. The biology of the marine planktonic copepods of Scoresby Sound, East Greenland. J. Anim. Ecol. 23: 298-338.

Dixon, W. J. 1965. BMD biomedical computer programs. Health Sciences Computing Facility, Dept. Preventive Medicine and Public Health, School of Medicine, Univ. Calif., Los Angeles. 620 p.

Jubar, M. J. 1940. On the size distribution and breeding cycles of four marine planktonic animals from the Arctic. J. Airim. Ecol. 9: 215-226.
unbar, M. J. 1954. The Amphipod Crustacea of Ungava Bay, Canadian eastern Arctic. J. Fish. Res. Bd. Can. 11: 709-798.
unbar, M. J. 1968. Ecological development in polar regions. A study
in evolution. Prentice-Hall, Inc., Englewood Cliffs, N. J. 119 p.
Mglish, T. S. 1961. Some biological oceanographic observations in the central North Polar Sea Drift Station Alpha, 1957-1958. Arctic Inst. N. Amer. Scient. Rep. no. 15. 80 p.
fterly, G. 0. 1916. The feeding habits and food of pelagic copepods and the question of nutrition by organic substances in solution in water. Univ. Calif. Publ. Zool. 16: 171-184.
, B. W. 1971. Taxonomic status of Calanus finmarchicus and C. glacialis (Copepoda), with special reference to adult males.
J. Fish. Res. Bd. Can. 28: 23-30.

Fuller, J. L., and G. L. C1arke. 1936. Further experiments on the feeding of Calanus finmarchicus. Biol. Bull. mar. biol. Lab., Woods Hole. 70: 308-320.

Fulton, R. J. 1968. A laboratory manual for the identification of British Columbia marine zooplankton. Fish. Res. Bd. Can. Tech. Rep. no. 55. 141 p.

Gauld, D. T. 1951. The grazing rate of planktonic copepods. J. mar. biol. Ass. U. K. 29: 695-706.

Grainger, E. H. 1959. The annual oceanographic cycle of Ig1oolik in the Canadian Arctic. I. The zooplankton and physical and chemical observations. J. Fish. Res. Bd. Can. 16: 453-501. Grainger, E. H. 1962. Zooplankton of Foxe Basin in the Canadian Arctic. J. Fish. Res. Bd. Can. 19: 377-400.

Grainger, E. H. 1965. Zooplankton from the Arctic Ocean and adjacent Canadian waters. J. Fish. Res. Bd. Can. 22: 543-564.

Hand, C., and L. B. Kan. 1961. The medusae of the Chukchi and Beaufort Seas of the Arctic Ocean including the description of a new species of Eucodonium (Hydrozoa: Anthomedusae). Arctic Inst. N. Amer. Pub1. 1. 55 F.

Hardy, S. A. 1965. The open sea. Part I: The world of plankton. Houghton-liffelin Co., Boston. 335 p.

Harrison, M. J., Wright, R. T., and R. Y. Morton. 1971. Method for measuring mineralization in lake sediments. Appl. Microbiol. 21: 698-702.

Harvey, H. W. 1937. Note on selective feeding by Calonus. J. mar. biol. Ass. U. K. 22: 97-100.

Heinrich, A. K. 1961. Seasonal phenomena in plankton of the World
Ocean. I. Seasonal phenomena in the plankton of high and temperate latitudes. Akad. Nauk. SSSR. Trudy Inst. Oceanol. 51: 57-81. Horner, R. A. 1969. Phytoplankton studies in coastal waters near Barrow, Alaska. Ph.D. Thesis. Univ. Wash. 201 p. Hopkins, T. L. 1969. Zooplankton standing crop in the Arctic Basin. Limncl. Ojceanogr. 13: 80-85.

Hughes, K. H. 1968. Seasonal vertical distributions of copepods in the Arctic water in the Canadian Basin of the North Polar Sea. M.S. Thesis. Univ. Wash. 85 p.

Jaschnov, V. A. 1955. Morphology, distribution, and systematics of Calanus finmarchicus s.l. Zool. Zhurnal. 34: 1210-1223. Johnson, M. W. 1934. The production and distribution of zooplankton in the surface waters of Bering Sea and Bering Strait. Part II. In Report of oceanographic cruise U. S. Coast Guard Cutter "Chelan"-1934. Mimeographed Rep. p. 45-82. Johnson, M. W. 1953. Studies on plankton of tne Bering anc Chukehi seas and adjacent areas. Seventh Pacific Sci. Congr., Proc. 1949. 4: 480-500.

Johnson, M. W. 1956. The plankton of the Beaufort and Chukchi Sea areas of the Arctic and its relation to the hydrography. Arctic Inst. N. Amer. Tech. Paper No. 1. 32 p.

Johnson, M. W. 1958. Observations on inshore zooplankton collected during summer 1957 at Point Barrow, Alaska. J. Mar. Res. 17: 272-281.

Johnson, M. W. 1963. Zooplankion collections from the high polar basin with special reference to the Copepoda. Limnol. Oceanogr. 8: 89-102.

Lasker, R. 1960. Utilization of organic carbon by a marine crustacean: analysis with carbon-14. Science 131: 1098-1100.

Lebour, M. V. 1922. The food of plankton organisms. J. mar. biol. Ass. U. K. 12: 144-177.

Leung, Y. M. 1970. Euphausiids of the arctic basin and peripheral seas, $\mathrm{p} .38-45$. In Y. Leung and H. Kobayashi [eds.] Taxonomic guides to arctic zooplankton (I). Univ. So. Calif. Tech. Rep. no. 2, Les Angeles.

Lovegrove, T. 1966. The determination of dry weight of plankton and the effect of various factors on values obtained, p. 429-467. In H. Barnes [ed.] Some contemporary studies in marine science. Hafner Publishing Co., New York.

Maccinitic, G. E. 1955. Distribution and ecoiogy of the marine invertebrates of Paint Barrow, Alaska. Smithson. misc. Coll. 128(9): 1-153.

Marshall, S. M. 1924. The food of Calanus finmarchicus during 1923. J. mar. biol. Ass. U. K. 13: 473-479.

Marshall, S. M., and A. P. Orr. 1955a. On the biology of Calanus finmarehicus. VIII. Food uptake, assimilation, and excretion in adult and stage V Calconus. J. mar. biol. Ass. U. K. 34: 495-529.

Marshall, S. M., and A. P. Orr. 1955b. Experimental feeding of the copepod CaZanus finmarchicus (Gunnerus) on phytoplankton cultures labelled with radioactive carbon (${ }^{14} \mathrm{C}$). Papers in Marine Biclogy and Oceanography. Supp1. to vol. 3. Deep Sea Res. 110-114.

McAllister, C. D. 1969. Aspects of estimating zooplankton production from phytoplankton production. J. Fish. Res. Bd. Can. 26: 199-220.

Minoda, T. 1967. Seasonal distribution of Copepeda in the Arctic Ocean from June to December, 1964. Records of Oceanographic Works in Japan 9(1): 162-168.

Mohr, J. L., and S. Geiger. 1968. Arctic basin faunal précis. Animals taken mainly from Arctic drifting stations and their significance for biogeography and water mass recognition. Arctic Drifting Sta. Symp., Proc. Arctic Inst. N. Amer. 297-313. Mullin, M. M. 1963. Some factors affecting the feeding of marine copepods of the genus Calanus. Limnol. Oceanogr. 8: 239-250. Mullin, M. M. 1969, Production of zooplankton in the ocean: the present status and problems, p. 293-314. In H. Barnes [ed.] Annual review of oceanography and marine biology. George Allen and Unwin, Ltd., London.

Mullin, M. M., and E. R. Brooks. 1967. Laboratory culture, growth rate, and feeding behavior of a planktonic marine copepod. Limnol. Oceanogr. 12: 657-666.

Mullin, M. M., and E. R. Brooks. 1970. Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food, p. 74-95. In J. H. Steele [ed.] Marine food chains. Oliver and Boyd, Edinburgh.

Naumov, D. V. 1969. Hydroids and hydromedusae of the USSR. [Trans1. from Russian] IPST Press, Jerusalem. 660 p.

Paffenhöfer, G. A. 1971. Grazing and ingestion rates of nauplii, copepodids and adults of the marine planktonic copepod Calanus helaozandicus. Mar. Biol. 11: 286-298.

Parsons, T. R., and J. D. H. Strickland. 1962. Oceanic detritus. Science 136: 313-314.

Pettibone, M. H. 1954. Marine polychaete worms from Point Barrow, Alaska, with additional records from the North Atlantic and North Pacific. U. S. Nat. Mus., Proc. 103: 203-356.

Rose, M. 1933. Copépodes pelagiques. Faune de France. Renauld Publ. Co., Paris. 374 p.

Sars, G. G. 1300. Crustacea. In F. Nansen [ed.] Norvegian North Polar Expedition, 1893-1896. Scient. Results Norw. N. polar Exped. 1(5): 1-137.

Schmitt, W. L. 1919. The schizopod crustaceans of the Canadian Arこさic Expedftion, 1913-1916. Fep. Can. arctic Exped. 1913-1918. Crustacea. $7(3): 1-9$.

Scott, D. A. 1969. Seasonal and vertical distributions of zooplankton in the Canadian Basin of the Arctic Ocean. M.S. Thesis. Univ. Wash. 156 p.

Shirley, W. D. and Y. M. Leung. 1970. Medusae of the central arctic, p. 3-18. In H. A. Kobayashi [ed.] Taxonomic guides to arctic zooplankton (II). Univ. So. Calif. Tech. Rep. no. 3, Los Angeles.

Shoemaker, C. R. 1920. The amphipod crustaceans of the Canadian Arctic Expedition. Rep. Can. arctic Exped. 1913-1918. Crustacea 7(E): 1-30.

Snedecor, G. W., and W. G. Cochran. 1967. Statistical methods. Sixth edition. Iowa State Univ. Press, Ames, Iowa. 593 p.

Sorokin, Yu. I. 1969. The use of radioactive carbon for the study of the nutrition and food relationship of aquatic animais, p. 83-132. In B. K. Shtegman [ed.] Plankton and benthos of inland waters. Keter Press, Jerusalem.
Steemann Nielsen, E. 1952. The use of radioactive carbon (${ }^{14}$ C) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer. 19: 117-140.

Stepanova, V. 1937. Biologische Zeichnungen der Stromungen in Nordlichen Teil des Bering und im Sudlicken Teil des Tschuktschen Meeres. Pub1. Hydrolog. Inst. of Leiningrad 5: 175-216.

Tanaka, 0. 1956. The pelagic copepods of the I?n region, middle Japan. Systematic account I. Family Calanidae and Eucalanidae. Pub1. Seto Mar. Biol. Lab. 6: 169-207.

Taylor, C. C. 1953. Nature of variability in trawl catches. Bull. U. S. Fish. Wildl. Serv. 83: 144-166.

Tencati, J. R. 1970. Amphipods of the central arctic, p. 6-37. In Y. Leung and H. Kobayashi [eds.] Taxonomic guides to arctic zooplankton (I). Univ. So. Calif. Tech. Rep. no. 2, Los Angeles.

Thorson, G. 1936. The larval development, growth and metabolism of Arctic marine bottom invertebrates. Medd. Grфnland 100: 1-155.

UNESCO. 1966. Determination of photosynthetic pigments in sea water. Monographs on oceanographic methodology 1. UNESCO. Paris. 69 p.

UNESCO. 1968. Zooplankton sampling. Monograph on oceanographic methodology 2. Paris. 174 p.

VanDorn, W. G. 1956. Large volume water samplers. Trans. Amer. Geophy. Union 37: 382-385.

Vidal, J. 1971. Key to the calanoid copepods of the central Arctic Ocean. Taxonomic guides to arctic zooplankton (IV). Univ. So. Calif. Tecti. Ne: no. 5, Los Angeles. 125 p.

Waiters, V. 1955. Fishes of western arctic America and eastern arctic Siberia: taxonomy and zoogecgraphy. Ph.D. Thesis. New York Univ. 109 p.

Willey, A. 1920. Report on the marine Copepoda collected during the Canadian Arctic Expediticn. Rep. Can. arctic Exped. 1913-1918. Crustacea. 7(K): 1-46.

Wimpenny, R. S. 1966. The plankton of the sea. American Elsevier Publishing Co., Inc., New York. 426 p.

Zenkevitch, L. A. 1963. Biology of the seas of the USSR. George Allen and Unwin, Ltd., New York. 955 p.

APPENDIX I

Abundance of zooplankton categories $/ \mathrm{m}^{3}$ as sampled near Point Barrow from May 25 to August 28, 1972. The values calculated for each of the replicate tows are included uncer each sample date and are separated by a hyphen.

date	25 May	27 May	27 May	129 May
TIME	0900	0900	1600	1600
1.	3.41	71.25	5.26-8.90	13.64-15.42
2.	3.41	0.01	0.30-0.30	0.42-0.54
3.	.	.	-	.
4.	5.0	0.3	1.68-1.19	0.54-0.43
5.	-	.	.	.
6.
7.	-	-	-	-
8.	0.45	0.25	0.79-0.59	1.19-5.57
9.
10.	0.34	0.06	0.59-0.20	0.43-0.43
11.	3.41	2.48	1.30-2.23	10.9-5.14
12.	415	188	234-200	504-487
13.	.	.	-	.
14.	-	.	.	
15.	1.82	0	3.70-2.37	7.25-8.20
16.	.	.	.	+
17.	-	-	.	.
18.	-	.	-	-
19.	0.1	0.07	0-0.1	0.4-0.2
20.	0.11	0.18	1.28-1.48	0.43-0.76
21.	.	.	-	.
22.	-	0.1	0.8-0.3	0-0.1
23.	0.11	0.06	1.28-4.45	0.76-0.34
24.
25.
26.
27.	-	.	-	
28.	-	0.06	-	0.22-0
29.	0.11	.	0.20-0.10	0.43-0
30.	10.23	0.18	7.9-4.5	6.05-8.5
31.
32.	-	0.1	.	
33.	6.82	5.56	0.50-1.73	0.65-0.43
34.	0.61	0.20	.	.
35.	0.61	.	0-0.2	0.23-0.18
36.	0	.	0.1-0	0.2-0.1
37.	10	0.2	4-1	1-0.2
38.
39.	-	.	-	.
40.	-	0-2	0.1-0.1	0.32-0.22
41.	-	.	.	.
42.	-	-	-	
43.	-	-	.	0.11-0.33
44.	-	-	-	.
45.	-	0.06	0.10-0	.

Date	1 June	5 June	8 June	12 June
TIME	1600	1539	1100.	1530
1.	13.34-7.11	2.34-2.21	10.85-447	7.34-2.05
2.	0.6-0.59	0.401-0.134	0.103-0.05	0.32-0.494
3.	.	.		.
4.	0.49-0.40	0.13-0.13	0-0.10	-
5.
6.	-	-	-	-
7.	-	-	-	-
8.	0.30-1.09	0.13-0.13	0-0	.
9.		.	.	-
10.	0.0	0.13-0.13	0.10-0	-
11.	2.3-7.11	2.34-13.4	1.19-1.11	4.52-13.03
12.	517-402	122-321	242-229	355-327
13.	.	-	.	
14.	- ${ }^{\text {a }}$	-	- ${ }^{-1}$	7.2-7.2
15.	6.62-8.90	39.4-115	7.33-7.75	6.1-8.4
16.	31-30	8.6-94	130-116	1298-1460
17.	94-93	17-187	195-175	1948-2192
18.	.	-	.	.
19.	0.9-0.7	0.93-1.2	0.1-0.4	0.1-0
20.	0.99-0.99	2.1-2.3	0.21-0.72	0.49-1.09
21.
22.	0.1-0	0.2-0.8	0.1-0	.
23.	0.10-0.10	0.40-0.27	0.1-0.21	0.10-0.10
24.
25.	-	.	-	-
26.	.	.	.	-
27.	-	-	-	.
28.	0.10-0.3	0.2-0.27	0.1-0.62	0.1-1.09
29.	0.40-0.20	0.13-0.4	0-0.1	
30.	8.92-10.7	14.1-49	19.4-18	44.5-54
31.	-	0.40-0	0.21-0.62	0.49-0.10
32.	-	-	.	
33.	13.35-3.66	2.34-36.7	10.8-13.4	118-196
34.	0.1-0.2	.	$0.10-0.3$	0.1-0.3
35.	0.1-0	0-0.27	0-0.1	0-0.1
36.	0.1-0.2	0.2-1.7	0.1-0.3	0.1-0.3
37.	0.1-0	0.1-0.1	.	.
38.	.	.	-	-
39.	-	-	.	
40.	0.25-0.18	0-0.13	0.1-0.1	0.1-0
41.	-	-	.	.
42.	-	-	.	.
43.	-	0.67-0.5	-	
44.	-	-	-	14.7-10.1
45.	-	0.13-0	c-0.10	0.10-0.4

date	12 June	15 June	17 June	20 June
TIME	2130	1030	1600	1630
1.	1.0-1.0	2.0-2.0	5.30-4.0	3.50-2.09
2.	0.56-0.36	0.464-0.45	.	.
3.	.	-	-	-
4.	.	.	-	-
5.	-	-	-	-
6.	.	-	-	-
7.	-	-	-	-
8.	-	-	-	-
9.	.	.	-	-
10.	.	-	-	.
11.	2.10-1.56	17.27-19.55	22.3-4.90	2.09-4.17
12.	119-86	86-216	222-245	177-92
13.	.	-	.	.
14.	3.18-304	9-39	12.6-15	3.2-4.1
15.	5.73-5.82	3.20-4.09	4.55-5.45	40-73
16.	302-252	414-1641	7721-7948	1810-2250
17.	455-403	8636-3284	15442-15896	1811-2250
18.	.	-	.	.
19.	-	.	-	
20.	7.45-7.45	5.00-4.54	0.91-2.27	0.72-6.10
21.	-	.	.	.
22.	0.1-0	.	.	0.2-0
23.	0.10-0.05	0.30-1.36	0.0	0.10-0.12
24.
25.	-	-	-	-
26.	.	.	-	-
27.	-	.	.	
28.	0-0.1	0.91-1.36	0-0.45	0.12-0
29.	0-0.1	0-0.45	-	
30.	12.7-18.5	2.7-3.2	29.4-21.3	31.3-52.3
31.	1.64-0.91	1.36-0	2.73-5.45	0.36-3.11
32.	.	.	.	
33.	89-235	16-98	445-293	565-775
34.	0-0.09	-	0-0.0.1	.
35.	0-0.09	0-0.45	.	
36.	4.4-1.8	0-0.2	-	0.4-0
37.	.	.	-	.
38.	.	-	.	.
39.
40.	-	-	0.45-0	.
41.	.	-	.	-
42.	-	-	-	-
43.	0.32-0.17	-	-	0-0.36
44.	3.2-30.4	8.6-39.1	8.1-10.3	1.7-2.3
45.	0.18-0.27	.	.	0.24-0.36

DATE	23 June	26 June	26 June	27 June
TIME	1400	1000	1545	1400
1.	2.50-1.75	2.61-13.24	5.15-10.45	9.20-10.12
2.	21.90-5.54	27-45	58-65	45-23.4
3.	-	.	.	.
4.	-	-	-	-
5.	-	-	-	-
6.
7.	-	-	-	-
8.
9.	.	-	.	-
10.	-	-	-	
11.	2.50-2.50	2.61-3.31	7.72-11.6	5.48-4.40
12.	227-136	62-235	190-163	143-141
13.	-	-	-	
14.	16.4-1.7	10-5	10.4-8.2	13.2-15.3
15.	157-9.3	1.47-3.07	4.95-4.81	4.95-4.14
16.	2215-988	136-326	251-338	195-205
17.	2215-990	78-184	197-255	65-68
18.	-	.	.	1.4-1.35
19.	0.1-0.1	-	-	0.1-0
20.	1.41-2.72	0.27-0.53	1.07-1.60	1.34-1.60
21.	.	.	.	0.13-0.10
22.	0.1-0	-	.	0.1-0
23.	1.41-0	0-0.40	0.94-1.74	3.61-4.28
24.	-	-	-	.
25.	.	.	4.35-5.08	.
26.	.	.	.	-
27.	-	-	-	
28.	0.43-0.32	0.3-0.1	0.67-0.40	0.67-0.67
29.	0.32-0.21	0.1-0	.	0.13-0.13
30.	44.5-57.7	15.64-33	36-14.5	60.1-44.5
31.	0.87-2.71	1.20-3.35	5.21-6.68	10.7-11.4
32.	.	.	.	
33.	96-108	28-172	293-320	275-218
34.	-	-	-	-
35.	-	0-0.13	$+$	0.05-0.1
36.	0.9-0.4	0.2-0.1	0.2-0.1	0.4-0.3
37.	-	.	.	.
38.	-	,	.	.
39.	-	.	.	.
40.	.	.	-	-
41.	-	.	.	.
42.	-	-	.	-
43.	0.87-0.97	0.13-0.67	2.27-3.34	0.40-0.32
44.	8.2-0.7	6.2-7.1	5.4-3.7	2.1-3.0
45.	1.30-0.5	0-0.54	$0.80 \cdots 0.80$	1.55-1.47

date	28 June	8 july	10 Jaiy	11 July
TIME	1400	1530	0945	1130
1.	9.34-1.25	1.38-1.38	0.78-0.78	0.74-0.78
2.	96-82	75-63	398-495	20-1.26
3.	-	.	-	.
4.	.	.	-	.
5.	-	0.33-0.19	0.03-0.02	0.17-0.13
6.	-	.	.	.
7.	-	0.06-0.05	0.02-0.01	0.01-0.01
8.	-	.	.	.
9.	.	.	-	-
10.	-	.	-	-
11.	3.08-3.95	1.70-1.70	0.79-0.39	0.48-1.83
12.	140-135	54-56	122-170	25-86
13.	.	.	.	-
14.	24-11.7	37.5-79.2	23.6-19.3	9.8-15.7
15.	16.10-0.89	4.52-10.4	8.27-3.94	1.59-1.86
16.	1422-2005	1181-351	4090-3225	18-146
17.	222-313	234-48	+	0.26
18.	18.7-7.9	58-5.3	200-162	39-60
19.	0-0.2	.	0-0.01	
20.	2.27-3.88	1.23-0.11	0.54-0.42	0.02-0.01
21.	0.13-0.10	0.03-0.01	0.05-0	0.01-0
22.	.	0-0.01	0.01-0	
23.	10.23-11.50	0.11-0.05	0.32-0.10	0-0.02
24.	.	-	-	
25.	.	0.06-0.01	0.04-0.77	1.23-1.31
26.	-	.	.	.
27.	0.25-0.12	-	0.05-0.01	.
28.	0.88-0.13	0.01-3	0.05-0	0.14-0.01
29.	0.38-0.13	0.03-0.01	0.03-0	0.30-0.01
30.	42-102	2.7-1.0	3.6-1.8	0.69-0.3
31.	6.44-4.28	0.03-0.01	0.65-0	$0.01-0$
32.	.	.	0.01-0	
33.	355-395	58-71	118-135	12-58
34.	-	-	0.01-0	.
35.	-	0.23-0.23	16-11.6	2.8-0.3
36.	1.1-0.8	0.13-0.02	0.02-0	0.01-0.01
37.
38.	-	.	.	.
39.	-	-	.	-
40.	-	-	-	-
41.
42.	-	-	-	-
43.	0.25-3.88	0.02-0	0.63-0	-
44.	4-2.1	.	.	-
45.	0.88-0.8	0.11-0.06	0.58-0	0.23-0.03

DATE	12 July	12 July	14 July	16 July
TIME	1600	1630	1430	1300
1.	1.06-0.82	0.18	2.81-1.62	1.48-2.36
2.	157-85	1.45	30-18.4	39-25
3.	-	.	.	+
4.	-	-	-	-
5.	0.08-0.03	0.08	0.06-0.05	0.08-0.19
6.	-	-	.	.
7.	.	-	-	-
8.	-	-	-	-
9.	-	.	.	.
10.	-	-	-	-
11.	1.33-0.82	0.18	1.73-1.62	0.43-0.36
12.	108-63	8	84-80	48-33
13.	-	.	-	
14.	60.9-27.3	-	7.42-6.9	5.75-3.45
15.	0.67-1.04	0.04	2.09-1.59	0.81-0.52
16.	28-668	9.45	10.8-3.7	242-8
17.	$+$	3.27	0.5-0	26.7-0.7
13.	28-172	0	9.9-3.7	65-8.7
13.	-	-	.	.
20.	$0.25 \cdots 0.28$	-	0.01-0.01	0.18-0.01
21.	0.02-0.02	-	0.02-0.01	0.02-0
22.	-	-	-	
23.	0.03-0.08	-	0-0.01	0.02-0
24.	.	-	.	.
25.	0.80-0.01	0.05	0.22-0.20	0.03-0
26.	.	.	.	
27.	-	-	- 0	0.01-0
28.	0.23-0	.	0.23-0.05	0-0.06
29.	-	0.01	0.01-0.01	0.02-0.05
30.	0.1-0.27	1.09	0.1-0.11	0.1-0.18
31.	-	0.01	.	0.01-0
32.	0.01-0	.	-	.
33.	30-60	15	26-19.7	40-7.4
34.	-	.	-	0-0.01
35.	0.11-0.14	.	0.1-0.28	0.05-0.14
36.	0.01-0.06		0.01-0	0.04-0
37.	.	-	.	.
38.	-	-	-	
39.	.	-	-	-
40.	-	.	-	-
41.	-	-	25.5-16.2	0.2-0
42.	-	-	.	
43.	0.03-0	.	-	0.02-0
44.	-	.	0.23-0	0.93-0.55
45.	0.02-0.2	-	0.04-0.04	0.04-0.07

date	17 July	19 July	19 July	22 July
TIME	1030	1600	1630	1230
1.	1.43-0.97	1.94-2.05	5.98-	0.62-1.01
2.	107-106	64-65	126	33-20
3.	-	.	.	.
4.	-	- 0		
5.	0.21-0.20	0.06-0.05	0.08	0.11-0.05
6.
7.	0.01-0	.	.	.
8.	.	.	.	-
9.	-	-	-	-
10.	-	-	-	-
11.	2.86-0.97	0.48-0.57	1.80	0.12-0.22
12.	125-120	144-65	85	12.3-10.1
13.	-	.	,	
14.	1.82-0.5	1.45-1.14	1.80	4.83-0.81
15.	2.53-1.38	3.80-1.78	2.49	1.00-0.67
16.	5.10-1087	10-8.5	18	24.6-155
17.	51-71	0-0.73	.	3-20
18.	99-215	13.6-11	25	20.8-114
19.
20.	0.45-0.58	0.17-0.16	0.25	0.03-0.07
21.	0.08-0.05	0.02-0	0.01	0-0.02
22.	-	.	.	.
23.	0.08-0.11	0.01-0.04	0.04	0.01-0
24.	.	.	.	3.07-4.07
25.	0.95-0.80	0.50-1.48	4.43	9.85-7.82
26.	-	-	-	-
27.	0.01-0.02	0.03-0.01	0.04	0.16-0.05
28.	0.08-0.07	0.02-0.03	0.03	0.02-0.04
29.	0.05-0.07	0.03-0.02	0.02	0.02-0.03
30.	7.6-4.3	0.48-0.68	1.60	3.94-4.69
31.	1.67-1.45	0.02-0.01	0.01	0-0.17
32.
33.	11.5-12.1	11.8-3.07	4.8	94-94
34.	0-0.01	-	0.01	0.01-0.03
35.	0.24-0.20	0.39-1.53	1.27	3.30 -3.16
36.	0.02-0.01	.	.	0.05-0.02
37.	.	-	-	.
38.	-	-	-	.
39.	-	.	.	-
40.	-	-	-	-
41.	.	-	+	+
42.	- 36	-	.	.
43.	0.36-0.46	-	0.01	0-0.05
44.	.	0.73-0.23	1.00	3.07-1.30
45.	0.07-0.07	0.47-0.10	0.04	0.19-0.35

DATE	$\begin{aligned} & 23 \text { July } \\ & 1330 \end{aligned}$	$\begin{aligned} & 3 \text { August } \\ & 0930 \end{aligned}$	$\begin{aligned} & 3 \text { August } \\ & 1000 \end{aligned}$	$\begin{aligned} & 4 \text { August } \\ & 1400 \end{aligned}$
1.	6.70-5.71	3.35-2.02	1.48	4.14-1.48
2.	21-27	0.52-0.2	2.55	7.88-1.6
3.
4.	-	.	-	
5.	0.02-0	0.01	.	-
6.	-	1.03-0.21	0.85	0.98-0.57
7.	0.01-0	.	.	.
8.	.	.	.	-
9.
10.	-	-	.	
11.	3.55-3.35	7.76-11.77	22.77	15.56-3.64
12.	12.6-11	2.6-1.2	1.70	7.09-1.14
13.	-	-	-	.
14.	0.15-1.1	0.1-0.1	0.84	0.23-0.33
15.	5.88-5.87	3.67-4.50	2.28	1.48-1.65
16.	215-262	2.9-2.6	2.23	.
17.	41.6-34.5	.	.	
18.	553-455	12-3.7	0.64	5.91-0
19.	-	-	.	.
20.	0.22-0.06	1.50-2.67	2.86	18.32-9.59
21.	0.02-0.02	0-0	.	0.01-0
22.	.	-	-	.
23.	0.01-0	0.00-0.05	-	.
24.	3.07-4.07	0.41-1.38	.	
25.	18.20-12.41	0.77-1.06	.	0-1.14
26.	.	.	-	
27.	-	-	.	0-0.02
28.	0.02-0	0.01-0	.	
29.	0.02-0.03	.	.	0.01-0
30.	0.20-0.39	.	-	0-0.11
31.	.	-	.	-0.11
32.	-	-	-	
33.	41-30	10-131	23	95-176
34.	0.02-0.01	.	0.04	0-0.02
35.	0.10-0.04	0-0.02	3.56	2.59-0.37
35.	0.01-0	0-0.02	0.01	0.03-0.02
37.	.	-	.	.
38.	-	-	.	.
39.	-	.	-	-
40.	0-0.4	0.01-0	0.02	
41.	.	310-240	232	153-129
42.	-	-	.	.
43.		-	-	.
44.	1.30-4.1	0.15-0.7	.	
45.	0.04-0.01	0.01-0.01	-	0-0.01

DATE	4 August	4 August	August TIME	1430

DATE	8 August	9 August	13 August	14 August
TIME	1500	2100	1300	1500
1.	1.19-2.25	9.45-11.88	8.48-5.73	16.50-6.01
2.	6.89-2.78	0.41-0.91	1.81-0.82	0.03-0.26
3.	-	-	-	.
4.	-	-	-	-
5.	-	- 6	- 4	- 78
6.	0.34-0.12	0.62-0.62	4.40-4.42	2.76-2.83
7.	-	.	-	.
8.	-	-	-.	-
9.	0.33-0.12	0.31-0.31	1.12-1.15	0.27-0.53
10.	.	-	.	
11.	0.89-0.48	0.40-0.93	7.16-5.38	6.97-4.77
12.	1.56-1.58	0.80-1.06	9.82-12.6	10.80-5.61
13.	-	-	+	
14.	0.34-0.30	0.13-0.66	0.49-1.48	0.20-0.14
15.	0.45-0	0.40-0.80	0.31-1.13	0.32-0.30
16.	162-306	46-45	413-295	1803-561
17.	24.6-23	7.9-4.0	37-31	381-115
18.	23-68	82-68	152-187	355-124
19.	-	-	-	-
20.	4.06-5.79	13.96-8.35	1.45-1.93	21.30-8,30
21.	.	.	-	0.01-0
22.	-	-	-	.
23.	.	.	.	
24.	.	0.27-0	0.20-0	0.91-0
25.	-	.	-	-
26.	0.02-0.01	0.02-0.03	0.01-0	0.01-0
27.	0.2-0.08	0.18-0.09	0.02-0.03	0.09-0.15
28.	0.01-0.01	0.023-0	.	0.02-0.02
29.	0-0.02	0.02-0	-	0-0.01
30.	0.34-0.24	.	0.40	0.15-0
31.	.	-	.	.
32.	0-0.01	.	-	
33.	98-69	212-189	23-25	57.6-35
34.	0.02-0	0.01-0	.	0.01-0
35.	0.03-0		-	.
36.	0.01-0.02	0.63-0.03	-	-
37.	.	.	-	-
38.	-	-	-	+
39.	-	-	-	+
40.	-	-	-	.
41.	.	3.1-5.7	1.30-0	.
42.	-	.	.	-
43.	-	-	-	.
44.	-	-	-	-
45.	0.02-0.01	0.01-0.02	-	0-0.02

DATE	16 August	17 August	19 August	19 August
TIME	2230	1130	1415	1515
1.	16.50-6.01	8.64-8.75	1.76-4.52	8.76-7.00
2.	0.03-0.26	0.02-0.03	0.35-0.75	1.10-0.34
3.	-	.	.	.
4.
5.	- 00	-	-	-
6.	2.00-0.31	3.10-1.01	0.20-0.40	0.42-0.31
7.
8.	-	-		
9.	0.79-0.21	0.64-0.32	0.72-1.20	0.73-0.42
10.	-	.	.	.
11.	7.87-4.97	2.59-1.86	0.35-1.02	2.48-0.58
12.	1.02-1.31	1.15-1.06	0.35-0.87	0.92-0.58
13.	-	-	-	
14.	0.15-0.26	0.14-0.14	0.16-0.09	i. 05-0.14
15.	0.51-0.26	0.58-0.8	0.01-0.01	0.78-0.31
16.	26-39	552-224	56-44	13.6-29
17.	5.2-29	109-61	35-39	16-34
18.	64-73	135-121	111-224	152-155
19.	-	.	-	
20.	65.48-39.47	16.70-14.05	14.44-21.5	15.3-4.81
21.	.	.	0-0.01	
22.
23.
24.	-	10.36-6.89	0.12-1.17	0.65-0
25.	0.51-0.78	0.50-0.53	.	.
26.	0-0	.	-	
27.	0.02-0.08	0.04-0.06	0.03-0.07	0.07-0.09
28.	0.06-0.02	.	.	
29.	.	.	0.02-0	0.01-0.01
30.	-	.	.	.
31.	-	0.08--0	-	-
32.	.	.	.	
33.	7.7-2.6	2.30-1.06	0.47-0.44	2.35-1.68
34.	-	.	.	.
35.	0-0.26	-	-	+
36.	0-0.01	-	0-0.01	.
37.	.	-	.	-
38.	$+$	0.29-0.29	0-0.1	0-0.15
39.	+	0.29-0.29	0.23-0.29	0.13-0.44
40.	-	.		
41.	50-67	12-42	0.5-2	0.1-0.44
42.		0-0.27	.	.
43.	0.01-0	.	-	
44.				
45.	0.01-0	-	0.01-0	0-0.01

DATE	19 August	21 August	23 August	23 August
TIME	1630	0945	1500	1515
1.	1.13-1.05	35.64-45.09	42.0-45.08	25.45-
2.	0.43-0.27	0.43-0.47	0.50-0.53	0.24
3.	-	-	-	-
4.	.	.	-	-
5.	-	-	-	-
6.	0.08-0.07	1.20-2.40	0.08-0.56	0.04
7.	.	-	.	.
8.	-	-	-	-
9.	0.48-0.31	0.50-1.20	0.38-1.25	0.08
10.
11.	0.56-0.13	2.83-1.41	1.33-1.77	0.85
12.	0.56-0.23	1.27-2.79	1.67-3.54	0.61
13.	-	0.14-0.31	0.14-0.14	0.12
14.	0.22-0.10	0.08-0.10	0.15-0.11	.
15.	0.45-0.10	0.99-1.45	0.40-0.49	0.15
16.	3.1-1.6	516-525	561-902	250
17.	7.1-1.8	526-445	415-397	19.4
18.	68-50	383-412	102-49	84.5
19.	.	-	-	.
20.	11.8-8.63	2.60-4.52	0.37-2.09	1.65
21.
22.	-	-	-	.
23.
24.	.	0.85-0.63	.	.
25.	-	.	-	-
26.	.	0.01-0	0-0	.
27.	0.14-0.10	0.01-0.01	0.12-0.12	0.04
28.	0.11-0.10	.	.	.
29.	0.08-0.15	.	-	0.02
30.	.	-	0.15-0	.
31.	-	-	.	.
32.	.	-	-	.
33.	0.67-0.26	4.24-3.29	0.25-0.18	
34.	.	.	.	-
35.	-	-	.	.
36.	0.02-0	.	.	.
37.	.	.	-	-
38.	0.11-0.09	0.21-0.47	0.50-0.71	0.36
39.	0.34-0.17	0.21-0.47	1.00-1.24	0.61
40.	.	. ${ }^{\text {a }}$.	.
41.	0.45-0.26	1.9-1.88	2.5-2.1	$+$
42.	.	0-0.25	.	.
43.	:	.	-	-
44.
45.	0-0.01	.	0.08-0	0.03

Date	26 August	28 August	28 August	28 August
TINE	2015	0939	1530	2330
1.	27.35-25.61	9.14-2.91	3.75-6.30	63.33-60.0
2.	1.33-1.11	0.25-0.25	0.25-0.24	0.22-0.27
3.
4.	.	.	.	-
5.	-	-	-	
6.	0.36-0.57	0.60-0.82	0.50-0.10	4.00-5.50
7.	-	.	.	.
8.	.	-	-	
9.	0.36-0.57	0.31-0.41	0.23-0.05	0.67-1.39
10.
11.	6.91-10.39	15.23-19.20	4.25-3.39	4.00-2.12
12.	2.59-1.86	2.28-0.49	0.25-1.94	3.3-1.59
13.	-	.	-	0-0.53
14.	0.43-0.93	-	0.17-0.10	
15.	0.58-0.82	0.20-0.25	0.50-0.30	1.01-1.10
16.	209-227	2970-2672	2030-1928	1742-1145
17.	101-91	6151-4047	3249-2994	2230-2018
18.	92-133	45i-530	144-197	146-128
19.	.	.	.	
20.	17.56-12.62	72.59-67.76	29.50-19.39	24.67-44.02
21.	.	.	.	,
22.
23.	.	-	-	
24.	.	0.25-0	.	0-0.33
25.	-	-	-	
26.	.	0.01-0	0.03-0.01	0-0.01
27.	0-0.03	0.06-0.05	0-0.03	0-0.06
28.	.	.	.	0-0.01
29.	.	0.01-0.01	0.01-0	0.01-0
30.	-	.	.	.
31.	.	.	.	-
32.	.	.	-	-
33.	0.58-2.04	7.11-7.30	3.00-2.42	34.09-25
34.
35.	0-6.15	.	.	.
36.
37.	.	-	.	
38.	1.44-2.23	56.7-43	76.1-48.5	88.6-98
39.	3.37-5.57	38.64-37.50	25.38-58.2	40.9-70.9
40.	-	.	.	.
41.	2.59-5.6	46-42	30-34	81-49
42.	0.86-1.13	123-100	213-964	487-272
43.
44.
45.	0.02-0.01	0.05-0.03	0.01-0.02	-

DATE	28 August
TIME	0630
1.	25.91-37.52
2.	0.33-0.23
3.	.
4.	-
5.	-
6.	1.75-1.25
7.	.
8.	-
9.	0.40-0.17
10.	.
11.	1.08-0.57
12.	1.03-0.85
13.	.
14.	-
15.	0.04-0.28
16.	1327-2304
17.	2267-4313
18.	35.5-79
19.	.
20.	6.89-5.62
21.	.
22.	-
23.	-
24.	0-0.57
25.	.
26.	-
27.	0.01-0.01
28.	.
29.	-
30.	-
31.	-
32.	-
33.	6.72-6.53
34.	.
35.	-
36.	-
37.	-
38.	68-74.9
39.	68.2-57.6
40.	.
41.	22-17
42.	6.8-5.2
43.	.
44.	.
45.	-

APPENDIX II

Phytoplankton cellular activity in control jar at beginning (t_{0}) and end (t_{1}) of the experimental period: phytoplankton cellular activity in the zooplankton feeding jar at time t_{1}; initial filtrate activity; filtrate activity in the phytoplankton control jar at time t_{1}; filtrate activity in the zooplankton feeding jar at time t_{1} : zooplankton body activity; and faecal pellet activity as measured during five trophic experiments employing radioactive tracers. All values listed are in disintegrations per minute (DPM).

Included are formulae used for the calculation of ingested activity, filtration rates, and assimilation and gross growth efficiency for zooplankton grazing on ${ }^{14}$ C-labelled Fhytoplankton.

Payto cells, t_{c}	Phyto cells, t_{1}	Zoopl jar cells, t_{1}

\section*{Experiment 1
 | Group | 1 | | | $1,938,297$ |
| :---: | :--- | :--- | :--- | :--- |
| $"$ | 2 | $2,104,314$ | $2,113,735$ | $2,013,226$ |
| $"$ | 3 | | | $1,888,339$ |}

Experiment 3				
Group	1			48,1.76
"	2			38,332
"	3			35,174
"	4	41,841		39,910
"	5		S0,994	41,427
"	6			29,221
	7			23,068
"	8			34,218

Experiment 4				
Group	1			447,341
"	2			337,626
"	3			333,498
"	4	615,093	470,009	396,343
${ }^{\prime \prime}$	5			439,671
"	6			309,410
1	7			316,546

Expertinent 5 $\begin{array}{cc}\text { Group } & 1 \\ \text { " } & 2 \\ \text { " } & 3\end{array}$
$21,874 \quad 18,925$
16,461

$\begin{gathered} \text { Filtrate, } \\ t_{0} \end{gathered}$	$\begin{aligned} & \text { Filtrate } \\ & \text { phytopl, } t_{1} \end{aligned}$	Filtrate, zoop1, t_{1}	Zoop1 Body	$\begin{aligned} & \text { Faecal } \\ & \text { pellets } \end{aligned}$
185,008	128,950	175,400	92,842	4,921
		134,823	3,677	7
		173,407	32,577	1,996
1,910	8,950	12,900	702	0
		12,950	1, 844	0
		18,050	2,020	28
		12,900	4,589	126
		21,900	83	0
217,861	189,700	180,500	--	0
		170,000	8,031	340
		178,750	9,326	502
		187,100	7,266	424
		182,400	7,564	313
		187,850	14,310	403
		88,600	531	0
		--	2,897	0
NOTME.ASURED	NOTMEASURED	NOTMEASURED	4,358	
			2,508	
			4,915	NOT
			7,745	MRASURED
			4,898	
			13,796	
			13,32\%	
MEASURED	NOT	NOT	1,476	NOT
	MEASURED	MEASURED	1,106	MEASURED
			3,077	

List of Formulae
(1) ingested activity (I) $=\mathrm{DPM}_{\mathrm{t}}$ phyto $-\mathrm{DPM}_{\mathrm{t}}$ zoopl
(2) filtration rate (ml/amin/day) $=\frac{I}{n \cdot t \cdot D P M / m I ~ p h y t o}$
(3) percent assimilation efficiency (AE) =

$$
\frac{I-(R+E+G)}{I} \times 100
$$

or

$$
\frac{I-F}{I} \times 100
$$

(4) gross growth efficiency (GGE) =

$$
\frac{\mathrm{G}}{\mathrm{I}} \times 100
$$

where:
DPM_{t} phyto is the phytoplankton cellular activity in the control jar at time t

DPM $_{t}$ zoopl is the similar activity from the zooplankton experimental jar
n is the number of zooplankton in the experimental jar
t is the experimental time in days
DPM/m1 phyto is the activity per ni of phytoplankton culture
$R+E$ is zooplankton respiratory and excretory losses
G is zooplankton bodily activity, and
F is egested or faecal peliet activity

APPENDIX III

Simple correlation matrix between 28 categories of zooplankton, surface water temperature, average water column salinity, and chlorophyll a from May 25 to August 28, 1972. Data were entered as weekly means for each parameter.

List of Variables in Correlation Yatrix

Pseudocalanus minutus 1
Calanus glacialis 2
Acartia spp. 3
Oithona similis 4
Podon leukarti 5
Evadne nordmanni 6
Clione limacina 7
Limacina helicina 8
Sagitta elegons arctica 9
Polychaete larvae 10
Chinocoetes zoea larvae 11
Fritillaria borealis 12
Balanus nauplii, >308 $\mu \mathrm{m}$ 13
Balanus cyprid larvae 14
Aglantha digitale 15
Thysconoëssa raschii 16
Zooplankton biomass 17
Fish larvae 18
Gammarid amphipods 19
Hyperid amphipods 20
Copepod nauplii 21
Centropages abdominalis 22
Eury temora herdmanni 23
Shrimp juveni.les 24
Paralithodes zoea larvae 25
Balanus nauplii, <308 $\mu \mathrm{m}$ 26
Leuckartiara sp. 27
Rathkea octoprnctata 28
Temperature 29
Salinity 30
Chloropiyll a 31

CORRELATION MATRIX
VARIABLE 1
NUMBER

1	1.000	0.202	-0.357	0.123	-0.595
2		1.000	-0.536	-0.513	-0.285
3			1.000	0.144	0.700
4				1.000	0.101
5					1.000
6					
7					
8					
9					
10					

6	7	8	9	10
-0.578	0.591	0.179	0.776	0.492
-0.279	-0.217	0.458	0.066	0.548
0.671	-0.286	-0.465	-0.365	-0.654
0.135	0.109	-0.433	0.293	-0.013
0.995	-0.432	-0.032	-0.551	-0.544
1.000	-0.420	0.006	-0.642	-0.516
	1.000	0.170	0.589	0.370
		1.000	-0.088	0.138
			1.000	0.469
				1.000

VARIABLE NUMBER	11	12	13	14
1	0.911	-0.836	-0.005	-0.800
2	0.246	-0.368	0.372	0.276
3	-0.394	0.357	-0.129	0.162
4	0.118	0.246	0.070	-0.529
5	-0.020	0.524	0.251	0.477
6	-0.604	0.519	0.249	0.463
7	0.677	-0.633	-0.006	-0.660
8	0.119	-0.316	0.056	0.238
9	0.922	-0.558	0.020	-0.841
10	0.693	-0.669	0.535	-0.349
11	1.000	-0.875	0.123	-0.808
12		1.000	-0.192	0.531
13			1.000	0.069
14				1.000
15	-			
16				
17				
18				

15	16	17	18	19	20
-0.528	0.521	0.597	0.525	0.764	0.770
-0.602	0.404	0.210	0.697	0.089	0.012
0.555	0.003	0.002	-0.340	-0.298	-0.104
0.597	0.014	0.240	-0.096	0.345	-0.010
0.622	-0.313	-0.029	-0.368	-0.475	-0.455
0.626	-0.305	-0.012	-0.350	-0.460	-0.444
-0.338	-0.058	0.443	0.056	0.497	0.493
-0.579	-0.064	0.022	0.287	0.068	0.297
-0.338	0.549	0.577	0.533	0.704	0.536
-0.253	0.418	0.594	0.615	0.557	0.200
-0.441	0.602	0.749	0.632	0.800	0.736
0.574	-0.462	-0.665	-0.535	-0.625	-0.638
0.214	0.133	0.535	0.377	0.274	-0.304
0.070	-0.362	-0.564	-0.229	-0.777	-0.601
1.000	-0.193	-0.008	-0.429	-0.198	-0.465
	1.000	0.559	0.861	0.609	0.561
		1.000	0.584	0.573	0.365
			1.000	0.651	0.476
				1.000	0.715
					1.000

VARIABLE NUMBER	21	22	23	24	25
1	0.275	-0.942	-0.751	0.671	0.902
2	0.790	-.0.348	-0.372	0.298	0.085
3	-0.591	0.474	0.673	-0.271	-0.232
4	-0.059	-0.020	-0.059	0.334	0.236
5	-0.248	0.567	0.794	-0.387	-0.529
6	-0.237	0.585	0.766	-0.377	-0.519
7	-0.109	-0.460	-0.502	0.349	0.585
8	0.269	-0.279	-0.318	-0.163	-0.069
9	0.105	-0.757	-0.798	0.754	0.875
10	0.722	-0.498	-0.465	0.727	0.580
11	0.325	-0.868	-0.744	0.797	0.949
12	-0.375	0.769	0.540	-0.578	-0.784
13	0.654	-0.0.23	0.198	0.522	0.117
14	0.044	0.724	0.595	-0.672	-0.828
15	-0.26?	0.575	0.705	-0.086	-0.263
16	0.27 .1	-0.536	-0.411	0.707	0.654
17	0.353	-0.550	-0.290	0.784	0.757
18	0.535	-0.589	-0.570	0.743	0.564
19	0.341	-0.701	-0.564	0.827	0.800
20	-0.04?	-0.707	-0.581	0.386	0.694
21	1.000	-0.361	-0.277	0.511	0.194
22		1.600	0.787	-0.662	-0.856
23			1.000	-0.499	-0.639
24				1.000	0.831
25					1.000
26					
27					
28					
29					
30					

0.145	0.811	-0.254	-0.949	0.423
-0.051	0.109	0.491	-0.200	-0.462
0.226	-0.125	-0.391	0.501	0.223
0.265	0.194	-0.427	-0.062	0.418
0.335	-0.453	-0.328	0.732	-0.117
0.328	-0.441	-0.314	0.71 .4	-0.124
0.305	0.389	-0.098	-0.730	0.447
-0.181	0.147	0.381	-0.240	-0.312
0.140	0.655	-0.142	-0.826	0.622
0.396	0.369	0.064	-0.511	0.023
0.303	0.820	-0.198	-0.910	0.483
-0.304	-0.694	0.125	0.812	-0.312
0.803	-0.074	-0.166	0.107	-0.125
-0.253	-0.631	0.515	0.783	-0.703
0.373	-0.315	-0.528	0.648	0.193
0.164	0.727	-0.064	-0.400	0.229
0.715	0.568	-0.392	-0.503	0.533
0.223	0.639	0.206	-0.474	-1.022
0.413	0.830	-0.252	-0.698	0.290
-0.035	0.920	-0.141	-0.738	0.357
0.273	0.130	0.165	-0.213	-0.332
-0.073	-0.753	0.248	0.894	-0.340
0.256	-0.596	-0.279	0.837	-0.210
0.588	0.625	-0.286	-0.590	0.320
0.346	0.809	-0.415	-0.843	0.622
1.000	0.126	-0.502	-0.025	0.201
	1.000	-0.231	-0.730	0.471
		1.000	0.046	-0.544
			1.000	-0.408
				1.000

VARIARLE	31
NUMBER	
1	-0.026
2	-0.407
3	0.213
4	0.520
5	0.510
6	0.528
7	0.143
8	0.187
9	-0.252
10	-0.242
11	-0.140
12	0.137
13	0.2 .6
14	-0.070
15	0.382
16	-0.419
17	0.081
18	-0.305
19	0.147
20	0.014
21	0.015
22	0.109
23	0.276
24	-0.105
25	-0.146
26	0.367
27	0.029
28	-0.383
29	0.118
30	0.0140
31	1.000

,

$$
\stackrel{i}{\sim}
$$

[^0]: J. J. Ross Mill Furnishing Company. Seattie, Washingtor ogits

[^1]: ${ }^{\circ} \mathrm{C}$ and transparency were also recorded on all zooplankton abaninac

[^2]: Leung, 1971

[^3]: $3_{\text {Mettler }}$ Instrument Corp., San Francisco, Californja 94119

[^4]: $40-1$

 Suman, EL Lertio, Califoraia 94530

[^5]: 1
 $H_{0}: \quad \alpha_{i}=0$

[^6]: 1 critical $\mathrm{r}=0.566(\underline{P}<0.05) ; 0.745(\underline{P}<0.01)$

[^7]: * respiration and excretion measured by phenethylamine process.
 ${ }^{1}$ Assimilation efficiency measured by sum of resp+excret \% and gross growth afficiency \%;
 2 Assimilation eificiency as measured by difference of faecal pellet activity from ingestion activity

