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ABSTRACT

The use of operative environmental temperature (Te) has been a major 

advance in the study of thermal ecology. I review the use of operative 

temperature in thermal biology with an emphasis on insects. Then I use data 

from dragonflies in Interior Alaska (Odonata: Anisoptera) to compare the 

efficacy of operative and ambient temperature when examining 

thermoregulating ability. I conclude that although the use of Temay provide 

more accurate measures of thermoregulation under specific environmental 

conditions, the use of ambient temperature usually leads to the same 

conclusions about thermoregulating ability.

I next examine the relationships between thermoregulating ability, 

minimum flight temperature (MFT), mass, passive cooling rate, and wing 

loading for the ten species of dragonflies present in Interior Alaska. I 

investigate the influence of ambient temperature and solar radiation on daily 

and seasonal activity patterns. I find a range of thermoregulating abilities from 

complete thermoconformers to very efficient periodic thermoregulators. The 

ability to thermoregulate is strongly tied to body mass. Thermoconfomers have 

significantly lower MFTs than thermoregulators, suggesting a possible tradeoff 

between the ability to operate and low and high thoracic temperatures.
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GENERAL INTRODUCTION

Thermoregulation has been defined as the elevation and maintenance of 

thoracic temperature in insects (Heath 1964; May 1976; Heinrich 1981). It is 

important to insect biology because the ability to thermoregulate has been 

associated with greater enzymatic efficiency in flight muscles and ultimately 

fitness (Heinrich 1977,1981). To show that insects thermoregulate, one 

measures insect thoracic temperatures over a wide range of environmental 

conditions and compares these values to ambient or operative temperatures. 

Thermoregulators are defined by their ability to maintain a fairly constant 

thoracic temperature over a range of ambient conditions, while the body 

temperature of thermoconformers varies with ambient temperature.

A number of researchers (Heath 1964, Crawford et al. 1983, Dreisig 

1984,1990) noted that the standard procedure of comparing thoracic 

temperature to ambient temperature can be misleading due to the complexity of 

the microenvironment and its influence on an object. They propose that the 

comparison of thoracic temperature to operative temperature provides a more 

accurate measure of thermoregulating ability. Operative temperature is the 

temperature of a physical model such as a dead insect that is at equilibrium 

with the environment. Since the model is inert, it produces no heat, and its 

temperature is exclusively determined by the input of the environment— 

ambient temperature, solar radiation, substrate temperature, as well as the

BIOSCIENCES LIBRARY-UAF



major avenues of heat loss, including convection. The proposed advantage of 

operative temperature over ambient temperature is that operative temperature 

provides a species specific, integrated measurement of the environment.

I use my data on Interior Alaska dragonflies to compare measures of 

thermoregulatory ability with the use of ambient versus operative temperature.

I find that under certain environmental conditions the operative temperature 

model captures the impact of declining solar radiation (Sr) while ambient 

temperature (Ta) lags behind in its decline. Operative temperature also 

displays a significant positive relationship with thoracic temperature, while Ta is 

significantly related to Tth only during particular daily periods. Operative 

temperature, therefore, provides a more meaningful measure than ambient 

temperature. Although the two measures of temperature (Te and Ta) seldom 

lead to qualitatively different conclusions about thermoregulatory ability, I use 

operative temperature to determine thermoregulating ability because it more 

accurately explains species-specific thoracic temperature.

This investigation examines the thermoregulating ability and minimum 

flight temperatures of the adults of ten species of Interior Alaska dragonflies 

belonging to five genera, ranging in body mass from 0.09g to 0.86g, and fitting 

the two distinct behavioral types found in dragonflies (perchers and fliers). I 

examine how mass, passive cooling rate and wing loading are related to 

thermoregulating ability andminimum flight temperature (MFT). I find that 

smallest dragonflies have the lowest MFT and little to no ability to

10



thermoregulate. Medium-sized dragonflies have higher MFTs and a moderate 

ability to thermoregulate, while the largest dragonflies have similar MFTs but 

the greatest to thermoregulatory ability. One reason for these patterns is that 

increasing mass is associated with decreasing surface area to volume ratio and 

thus an increase in thoracic resistance to thermal change (thermal inertia). 

These differences in mass may lead to differential selection pressures on 

thermal strategies.

My results suggest that a tradeoff may exist between adaptation for low 

MFT and thermoregulating ability. Small dragonflies cannot generate or retain 

heat, especially during cool minimum flight conditions. They are forced to rely 

on the environmental inputs to reach MFT; thus it may be advantageous for 

them to have lower MFT to achieve flight when there is no way of warming 

themselves to a higher MFT. Once these small perchers reach MFT, they gain 

and lose heat relative to environmental conditions (thermoconformity). The 

advantage of thermoconformity over thermoregulation for these perchers lies in 

energy conservation. Thermoconformity is least expensive than 

thermoregulation (Corbet 1963) since thermoconformity relies only on passive 

heat gain and loss of thoracic temperature to changing ambient conditions.

While small species may not be capable of thermoregulating and may 

evolve low MFTs to compensate, the larger species thermoregulate more 

efficiently but may not be capable of or in need of low MFTs. These larger 

dragonflies are less subject to changing environmental conditions due to their
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greater thermal inertia and their near universal ability to warm-up 

endothermically by wing-whirring (May 1976). Heat produced by wing-whiring 

can be effectively retained within the thorax, allowing these species to increase 

thoracic temperature to MFT without having lower MFT set points. My finding 

that MFT is independent of mass for all but the smallest species is further 

evidence for the claim by Vogt and Heinrich (1983) that fliers are adapted to fly 

at similar thoracic temperatures despite differences in climate.
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Chapter 1. A Literature Review on the Use and Utility of Operative 

Temperature in Thermal Ecology1

Thermal ecology is the study of the effect of temperature on the 

relationship between an organism and its environment. Understanding this 

relationship may enable one to explain range (May 1991; Corbet 1999), 

phenology (Norling 1971, 1984), development (Cossins and Bowler 1987), and 

daily activity patterns (Lutz and Pittman 1970; Michiels and Dhondt 1989; 

Marden et al. 1996; Coelho 2001) of many organisms. Because of the 

tremendous impact that temperature can have on an organism (Cossins and 

Bowler 1987), thermal ecology can be of interest to a diverse group biologists, 

from environmental physiologists to integrated pest management biologists. By 

studying the thermal environment of an organism, one begins to understand 

potential thermal constraints and may be able to predict and control insect 

pests (Bale 1993) or increase populations of desired game species (Forrester 

etal. 1998).

Early studies examining insect thermal ecology compared the 

temperature of living insects to ambient temperatures when trying to describe 

thermal effects; however, ambient temperature can change more quickly than 

an insect’s body temperature. Furthermore, the temperature that an organism 

experiences (especially an insect) at a micro- and nano-climatic level may also

1 Prepared for submission to Odonatologica.



differ from ambient temperature, depending on the location ambient 

temperature is measured (Bakken 1976; Tracey 1977). Thus, when 

considering the degree to which an organism controls its heat balance, one 

should compare the temperature of a living organism to that of an inert control 

with the same thermal properties as the organism in question. The temperature 

of a model with the same thermal properties as the study organism is referred 

to as effective operative environmental temperature (Te). A dead animal, 

taxidermic mount, or metallic replica of similar size, shape, and color functions 

as the model and reacts to meteorological variables in ways very similar to a 

live organism but without metabolic input or behavioral repositioning. This 

physical model is termed effective operative environmental temperature 

thermometer or a Te thermometer.

Many thermal biologists (Bakken 1976, 1992; Heinrich 1981; Dreisig 

1990; May 1991; Forrester et al. 1998; Bishop and Armbruster 1999) agree that 

effective operative environmental temperature more accurately describes what 

an organism experiences thermally than ambient temperature (Ta); however, 

comparisons between effective operative environmental temperature and 

ambient temperature have not been made, especially in regard to insects. 

Although Temay more accurately describe an organism’s thermal experience, 

the question of whether or not Teis actually more useful than Ta still remains. In 

this literature review, I discuss the uses of operative environmental temperature 

and compare the utility of it against ambient temperature by examining a subset
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of my own data on dragonfly thermoregulation. I show that the use of effective 

operative environmental temperature rather than ambient temperature may 

lead to different conclusions about thermoregulating ability. These conclusions, 

however, differ to the degree in which dragonflies thermoregulate, and, in fact, 

would not have changed my general conclusions. I first present background 

information on the effective operative environmental temperature and a brief 

history of its use in animal thermoregulation. I then show how effective 

operative environmental temperature varies daily and/or seasonally due to 

changes in the relative contributions of ambient temperature, solar radiation, 

and their interaction on the physical models (also known as Tethermometers). 

Finally, I conclude that although the use of Temay be more appropriate during 

some time periods, it may not be more useful than using Ta during other 

periods.

Effective operative environmental temperature (henceforth “operative 

temperature”) provides a single measure of temperature of an inert model that 

is at equilibrium with the environment (Bakken and Gates 1975; Bakken 1976, 

1992; Crawford et al. 1983; Hertz et al. 1993; Corbet et al. 1993; Forrester et al. 

1998; Bishop and Armbruster 1999). By using a Te thermometer, the 

temperature of the model is due exclusively to environment effects. The model, 

therefore, does not contribute to heat gain or heat loss due to metabolism. By 

integrating the most significant environmental variables that affect an 

organism’s body temperature including radiative, conductive, and convective
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heat loss or gain, operative temperature can be used as a null model of 

thermoregulation with which to evaluate the potential effects of behavioral and 

physiological changes associated with maintaining body temperature.

The main routes of heat exchange for a body are radiation, evaporation, 

conduction, and convection (Cossins and Bowler 1987; May 1991; Withers 

1992). Radiation can lead to both heat gain and loss. All objects above 

absolute zero lose heat through radiation (Withers 1992); however, this heat 

loss tends to be negligible in operative models and is subsumed under 

conduction (Church 1960). On the other hand, radiative heat gain can be 

significant, especially for small organisms for whom incoming solar radiation 

may be a primary source of heat (May 1976; Walsberg 1992). Evaporation is 

heat transfer via the change in the state of water. Previous research (Church 

1960; Cossins and Bowler 1987; Bishop and Armbruster 1999) indicates that 

evaporative heat loss tends to be a minor component in determining insect 

body temperature (Casey 1992) and operative temperature (Parker 1982). 

Conduction, the transfer of heat between two solids, can be significant 

depending on amount of surface area exposed, the temperature difference 

between the two bodies, as well as the conductance of the two bodies (Withers 

1992). For instance, some desert dwelling insects conduct heat to their bodies 

at certain times of the day by direct contact with warmer surfaces such as sand 

(Dreisig 1984,1990). Convection, the transfer of heat between a solid and a 

fluid such as air (Church 1960; Withers 1992), appears to be the primary

17



avenue of heat transfer in operative temperature models (Church 1960; May 

1991),

Due to the predominant effect of convection, operative environmental 

temperature has been measured in two ways. Standard operative 

environmental temperature (Tes) is an index of temperature measured under 

non-convective (or free convection), standardized conditions, usually in a lab 

setting. Operative environmental temperature (Te) is an index of temperature 

measured under field conditions when convection can be variable. Unless 

otherwise specified, I discuss only operative environmental temperature (Te) 

also referred to more simply as operative temperature.

Before the use of operative temperature models, the most common 

procedure for evaluating thermoregulating ability was to capture an animal and 

quickly record body temperature. The recorded temperature was then 

compared to ambient temperature. This method has two problems: a change 

in body temperature between capture and recording and the assumption that 

the instrument itself has the same heat capacity and thermal potential as the 

organism. Although this assumption is not valid (Winslow et al. 1937; Bakken 

1980; May 1978; Crawford 1983), this method has demonstrated that insect 

body temperature deviates from ambient temperature and provided the first 

step in investigations of insect thermoregulation.

Berthold (1835) and Newport (1837) recorded both nest temperature of 

social insects and individual insect body temperature of bees, moths, and

18



beetles by pressing small thermometers against the side of resting and agitated 

insects. In this way, they obtained external body temperature to compare to 

ambient temperature and concluded that some insects ought not to be 

considered “cold-blooded” ectotherms because they displayed body 

temperatures above ambient.

Elevation of body temperature above ambient, however, is not 

synonymous with thermoregulation, nor does it indicate that an organism is not 

an ectotherm. Insect thermoregulation, like that of mammals and birds, 

involves temperature regulation, whereas temperature elevation can be the 

result of a passive physical heat gain due to a heat source, mass, volume, and 

other physical variables of the organism and their interaction (Heath 1964; 

Dreisig 1984). Thus an ectotherm may display elevated body temperature and 

be able to thermoregulate behaviorally, but some degree of endothermy is 

necessary for physiological thermoregulation. The distinction between elevation 

and regulation is important in the use of operative temperature (Heath 1964). 

Heath’s (1964) primary objection to the comparison between body and ambient 

temperature was that no experimental control is used, and therefore body 

temperature elevation becomes the criterion for thermoregulation.

Heath (1964) demonstrated the problem of equating temperature 

elevation with thermoregulation in a simple experiment by placing cans filled 

with water in full sun and in shade and recording both internal can temperature 

and air temperature next to the can. As expected, the cans heated, cooled,
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and equilibrated in relation to changing environmental conditions. Heath found 

that can temperature was correlated with ambient, and his results indicated that 

can temperature in full sun displays a similar daily pattern to that of heliothermic 

reptiles. When he eliminated all data below 30°C (the temperature at which 

reptiles begin basking), he found that can temperature could be interpreted as 

being independent of ambient temperature. Heath (1964) concluded that a 

"consistent deviation of body temperature from air temperature cannot be 

regarded as prima facie evidence of thermoregulation" because body 

temperature elevation can be described as a purely physical event explained by 

Newton's law of heat exchange (Casey 1992): an object will take on or lose 

heat in proportion to the difference between the object's temperature and the 

environment.

Heath (1964) suggested comparing body temperature to a control.

While operative temperature had been used in human studies since the 1930s 

(Winslow et al. 1937), this was the initial call for its use in non-human 

physiological ecology. The use of a control provides a measure of potentially 

available body temperatures for comparison to live body temperatures (Heath 

1964; Turner et al. 1993). To do this, one records both thoracic temperature of 

a living specimen and operative temperature of a model. Although Heath's first 

attempt (1967) at using a control was not operative temperature perse, he did 

illustrate the need for a proper operative control.
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Heath (1967) captured 17-year cicadas, Magicicada cassini, and 

recorded body temperature. As a control, he recorded the temperature of 

tethered live cicadas in full sun. He found that as ambient temperature 

increased above 27°C, body temperature in the untethered specimens stopped 

increasing while body temperature of tethered specimens continued to 

increase. He related this difference directly to the thermoregulatory behavior of 

the untethered cicadas that moved to the underside of leaves at 27°C to 

decrease direct solar insolation and, therefore, body temperature. Although 

Heath (1967) used live tethered specimens as a control to provide evidence of 

potential body temperatures available to free insects, a live insect is not a true 

operative model.

By definition, an operative temperature model requires zero heat 

capacity as defined by Zeroth's law of thermodynamics (Bakken 1992): heat 

transfer between two thermodynamic systems proceeds from high temperature 

to low temperature until both are in a steady state, given each object’s thermal 

properties. The steady state is thermal equilibrium, yet tethered live cicadas 

could confound the result if capable of either physiological or limited behavioral 

thermoregulation. A proper operative model functions as a behaviorally and 

physiologically inert body (Corbet et al. 1993), or a null model of 

thermoregulation, providing organism-specific operative temperature (Winslow 

et al. 1937; Crawford et al. 1983; Corbet et al. 1993) when net heat flow
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between the model and environment equilibrates (Bakken 1992) and when the 

model has similar thermal properties to the organism in question.

While working on basking turtles Pseudemys scripta, Crawford et al. 

(1983) showed that although ambient temperature (Ta) is positively related to 

Te, Te is not equal to Ta nor does Te have a fixed relationship to Ta. Using ten 

hollow metallic replicas corresponding to three size categories of turtles, they 

showed that Te increases faster than Ta for all sizes at mid-day when Ta and 

solar radiation (Sr) reach maximum; however, during dawn and dusk, when Ta 

and Sr are lower, Te approximates Ta. They also showed that Te is more 

closely correlated with Sr than with Ta. The use of Te allowed them to predict 

thermoregulatory basking behavior in this turtle species because Te integrates 

the significant climatic conditions that in various combinations reach the 

minimum basking temperature (28°C). Minimum basking temperature is the 

temperature at which turtles of this species (Pseudemys scripta) begin to bask 

to increase body temperature by exogeneous sources. At this temperature, 

98% of turtles basked. If the authors had only used ambient temperature, they 

would have decreased the predictive power of their model because ambient 

temperature did not equal minimum operative basking temperature until 

approximately 1130 -1200 hrs., whereas their use of operative temperature 

indicated that potential basking temperatures were reached from approximately 

0830 -1900 hrs.
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As part of a study examining dragonfly thermoregulation (Sformo, 

chapter 2), I netted active, sexually mature dragonflies and recorded thoracic 

temperature (Tth) of individual dragonflies within seven seconds of capture. I 

also recorded temperature of a dragonfly model, ambient temperature, and 

solar radiation immediately after recording live-specimen temperature. The 

model was a specimen within the same genus, and usually the same species. 

The model was fully exposed to solar radiation and wind. The mean difference 

between operative temperature and ambient temperature increased with mass 

for the smallest taxa (Sympetrum spp., ca. 0.1 g); however, for species 

approximately 0.2 to 0.8 g, operative temperature remained approximately 6°C 

above ambient temperature. Although Crawford et al. (1983) noted that Te 

increases faster than Ta for their turtle replicas, my results are not as 

straightforward. I found that Te does not increase faster per unit time than Ta 

for all operative models (Table 1.1) which may be due to daily and/or seasonal 

changes in the relative contributions of ambient temperature, solar radiation, 

and their interaction on Te models.

Crawford et al. (1983) concluded that the microenvironment (or 

nanoenvironment, see Tracy 1977; Willmer 1982; Bakken 1992) of ectotherms 

is too complex for a single environmental variable to be a good indicator of 

what an organism experiences or a predictor of potential thermoregulatory 

behavior because Ta, Sr, and/or substrate temperature (Tg) may interact in 

ways that affect ectotherm thermoregulation. In flying insects, especially, highly
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complex relationships exist between height above a surface and these 

variables (Willmer 1982; Dreisig 1980; O'Neill and Kemp 1990, 1992).

Operative temperature has been used to determine the environmental 

constraints on insect body temperature and thus activity. Both Dreisig (1990) 

and Bishop and Armbruster (1999) measured thoracic temperatures of 

individual insects and operative temperatures of dead insect models in their 

investigations of insect thermoregulation. They regressed individual thoracic 

temperature on Te, the slope of which is the thermoregulatory performance 

index (TPI). A slope of one indicates perfect thermoconformity while a slope of 

zero indicates perfect thermoregulation. Dreisig (1990) tested the hypothesis 

that tiger beetles (Cicindela hybrida) were perfect thermoregulators when 

engaged in stilting behavior (Dreisig 1980,1984). Stilting, the extension or 

straightening of legs, is thought to be a graded, thermoregulatory behavior that 

creates a space between body and substrate, decreasing body temperature by 

reducing conduction and increasing convective heat loss (Dreisig 1984).

Dreisig (1984) predicted that body temperatures of tiger beetles would be 

constant during this activity. His results did not confirm the hypothesis of 

perfect thermoregulation but showed that stilting beetles are moderate 

thermoregulators with a TPI of 0.61. Bishop and Armbruster (1999) found a 

continuum of TPIs (0.96 - 0.12) among 18 species of solitary and social bees in 

Interior Alaska. The biophysical constraints of mass, thoracic volume, and wing 

loading explained both the ability to thermoregulate and to elevate thoracic
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temperature above Te at low temperatures. In general, large bees were able to 

thermoregulate better than small bees but required higher minimum thoracic 

temperatures to initiate flight after a foraging bout on flowers.

In my research on dragonflies, I too found a continuum of 

thermoregulating abilities related to the biophysical constraint of mass (Table 

1.1, see TPI). Although in most cases my determination of whether a dragonfly 

is a thermoregulator or thermoconformer would not have changed, my 

interpretation of the degree to which a dragonfly thermoregulates would have 

been different if I had used ambient temperature instead of operative 

temperature (Table 1.1). By using Ta, I would have concluded that Cordulia 

shurtleffii was a better thermoregulator than both Leucorrhinia spp. and 

Libellula quadrimaculata, but the use of Te clarifies that they are all intermediate 

thermoregulators of similar ability (Table 1.1). Further, the use of Te showed 

that Aeshna eremita, the largest species, thermoregulated well; however, if I 

had used Ta instead, I would have concluded that it was a moderate 

thermoregulator comparable to species that are only 0.73 (A palmata) and 0.30 

(Cordulia shurtleffii) times as massive (Table 1.1). Thus, the use of Te in 

studies of insect thermoregulation has improved our ability to detect actual 

behavioral and physiological thermoregulation as separate from thermal 

properties of an inert model. Although the extent to which an Interior Alaska 

dragonfly thermoregulates may be more accurately described, I did not find that
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the use of Te instead of Ta would have changed my conclusions as to whether 

or not a dragonfly thermoregulates.

Measuring operative temperature has also allowed researchers to verify 

that particular behaviors have a thermoregulatory function and to substitute 

operative body temperature models for actual living specimens. The method is 

twofold. First, body temperatures are taken from live individuals and operative 

models to establish the relationship between Te and live body temperature (Tth). 

Second, operative models are heated and/or cooled (in the lab and field) and 

the time course of a model's heating and/or cooling (time constant) in relation to 

ambient temperature is recorded. Knowing the relationship between Te and live 

Tth and the time course of a model's heating and/or cooling, researchers then 

substitute operative models to mimic postures, orientations, and perching 

heights associated with behaviors of interest to establish mean (operative) body 

temperatures (Tb) for different microclimate conditions and timed behaviors. 

The live body temperature of an organism engaged in a particular behavior for 

a specific time period then can be estimated based on the Tb of the specified 

behavior and microhabitat, the proportion of the time constant spent while 

engaged in the behavior, and the relationship between Te and Tth.

Dreisig (1980, 1984, 1985, 1990, 1995) determined thermoregulatory 

behavior patterns and tested earlier models of ectotherm thermoregulation 

(Cowles and Bogert 1944; Heath 1964, 1965) using mean operative body 

temperature for the lizard Lacerta agilis, graylings (Hipparchia semele),
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skippers (Ochlodes venata), and tiger beetles (Cicindela hybrida) inhabiting 

open sandy areas in Denmark. Dreisig (1984, 1985) used a Te thermometer, a 

dead tiger beetle functioning as a hypothetical non-regulating beetle in 

conjunction with observations of living beetles, to show that basking time 

linearly decreases while foraging time increases as Te increases until Te 

reaches optimal body temperature and continuous foraging occurs. He also 

showed that tiger beetles increase stilting height with increasing Te and that 

maximum stilting height is positively correlated to the upper beetle temperature 

limit before burrowing into sand to avoid lethal temperatures (Dreisig 1990). 

These findings would have been difficult or impossible to reach without the use 

of operative temperature models because body temperature of live individuals 

cannot be monitored continuously, and even if it could, a monitored or “wired” 

specimen would not be expected to exhibit normal behavior (Dreisig 1990). 

Also, if the "grab and stab" method had been used to find instantaneous body 

temperature, large number of specimens would have to be killed (Dreisig 1995). 

Operative temperature models, therefore, allow fewer specimens to be used, 

and the models can be manipulated such that body temperature and potential 

thermoregulating behaviors are related to a proper null model of 

thermoregulation.

Schultz (1998) used operative models of the tiger beetle, Cicindel 

sexuttata, to show that its life cycle and phenology are constrained by low 

ambient conditions. Schultz (1998) found that this deciduous woodland species
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from Ohio could only maintain body temperatures within their preferred range in 

light gaps but not in shaded microhabitats or during the fall. Schultz (1998) 

speculated that these thermal constraints on body temperature may also be 

reflected in the unique life cycle of this species in which adults overwinter in 

pupal chambers, in contrast to other species within this genus that overwinter 

as full adults. This research demonstrates how small, inexpensive operative 

temperature models can be randomly deployed throughout a study site to map 

the thermal effects of habitat and to calculate potential thermal constraints.

This method could be adapted to address questions of management such as 

how habitat fragmentation can impact the thermal ecology of an organism 

(Forrester et al. 1998) or ways in which habitats can be manipulated to 

thermally stress pest species.

Turner etal. (1993), like Dreisig (1980, 1985, 1990), used operative 

models as a proxy for live body temperatures with which to evaluate potential 

thermoregulatory behaviors associated with prey-capture of the burrowing 

spider Seothyra henscheli and to test theoretical alternative prey-capture 

tactics. On the dunes of the Namib Desert in southwestern Africa where 

surface temperatures can peak at 70°C (although during their research surface 

temperatures only reached 50°C), they used the Te thermometer of the spider 

to estimate body temperature under various web locations, burrow depths, and 

while engaged in timed prey-capture behaviors. This research could not be 

done by directly measuring the body temperature of live specimens because
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capture of live spiders would disturb and/or destroy the web. They predicted 

that particular behaviors would result in lower body temperatures so that the 

spider would not exceed its critical thermal maximum (CTM) of 49°C, assumed 

to be the spider's lethal temperature. Turner et al. (1993) showed that post­

strike retreats from the web resulted in body temperatures not exceeding CMT 

due to the amount of time spent at depth in the burrow, but that post-retreat 

visits to the web do not significantly increase body temperatures because of the 

brief time associated with the visits. Finally, Turner et al. (1993) tested 

theoretical alternative prey-capture tactics to show that altered behavior would 

lead to potential lethal body temperature increases, and, therefore should not 

be considered thermal shuttling behavior. By theoretically varying time spent in 

particular behaviors and even eliminating some behaviors, the authors showed 

that that all prey-capture techniques other than the post-strike behavior resulted 

in spiders thermally equilibrating to environmental temperatures, which, if at 

CTM, could lead to spiders exceeding their lethal limit.

Seebacher et al. (1999) used a mathematical analysis of Te to predict 

daily and seasonal body temperatures of large reptiles such as crocodiles, 

Crocodylus porosus. They obtained body temperatures from temperature 

sensitive radio transmitters sewn into chickens and fed to crocodiles. Body 

temperatures were obtained from eleven crocodiles of varying mass, and 

transmitters were retained by crocodiles from 4 to 30 days. They calculated 

operative temperature based on cooling constants (see also Seebacher 2000),
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heat transfer from two thermally distinct layers (a skin-muscle outer layer and 

bone-muscle inner layer), and varying surface area exposed to ambient, 

substrate, and water temperature daily and seasonally. Models, in this case, 

are not physical but mathematical. Due to the large mass of the crocodiles, 

zero heat capacity cannot be assumed; therefore, they estimated operative 

temperature as heat transfer through the two body layers (Seebacher per. 

comm.). Plotting Te for different behavioral activities and proportions of time 

exposed to air, ground, and water against time, Seebacher et al. (1999) 

showed effective daily and seasonal behavioral thermoregulation in large 

crocodiles weighing over 1,000 kg. While Te varied as much as 20°C, body 

temperature varied only approximately 20°C. They concluded that low 

variability in crocodile Tbs was a function of mass and the behavioral 

thermoregulation technique of diurnal and seasonal shuttling between land and 

water microhabitats. As mass increased for crocodiles, mean Tb increased 

while Tb variability decreased due to decrease in the surface area to volume 

ratio and a concomitant increase in the width of the surface area boundary. 

Simultaneously, as mass increased, thermal inertia increased while convective 

heat loss decreased in more massive animals.

Seebacher's et al. (1999) mathematical use of operative temperature 

shows the further utility of operative temperature. In the absence of empirical 

data, they were able to use operative temperature models to extrapolate 

crocodile results to crocodile-like dinosaurs up to 10, 000 kg. Seebacher et al.
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(1999) and Seebacher (2000) demonstrated that medium to large crocodile-like 

dinosaurs could also effectively thermoregulate based on biophysical principles 

of mass and behavioral patterns of movement between land and water.

The preceding examples illustrate the utility of operative temperature in 

studying thermal biology especially when organisms are inaccessible while 

engaged in the behaviors of interest, when measuring actual body temperature 

would disturb the animals in a way that would alter the results, in situations that 

are dangerous to both investigators and/or organisms (e.g., crocodiles), and 

when trying to predict thermal relations of extinct organisms such as in 

dinosaurs. The advantage of using of operative temperature models is that Te 

thermometers more properly represent the thermal environment an organism is 

experiencing and is the proper null model of thermoregulation with which to 

evaluate the potential effects of behavioral and physiological thermoregulation. 

On theoretical grounds alone, it appears that operative thermometers should be 

used. Operative temperature thermometers have certainly allowed us to 

research some aspects of thermal biology that were previously extremely 

difficult, impossible, or would require killing large numbers of animals. There is 

no doubt that researchers will continue to use operative temperature as a proxy 

for live body temperature when access to live specimens is limited. Finally, 

there are other aspects of operative temperature that I have not discussed. For 

instance, the thermal mapping of a habitat may allow researchers to begin to
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examine potential thermal constraints due to habitat fragmentation (Forrester et 

al.1998).

Based on my results of using Te thermometers with Interior Alaska 

dragonflies, however, I do not find that operative temperature is necessarily a 

more robust measure of these insects's thermal equilibrium with the 

environment than ambient temperature. My conclusions as to which species of 

dragonfly thermoregulate would not have changed if I were to have used 

ambient temperature. The extent to which a particular dragonfly species in 

Interior Alaska thermoregulates may be more accurately presented when a Te 

thermometer is used, but replacing the old proxy of ambient temperature may 

not be wholehartedly warranted at this time.

Although my results do not clearly show an advantage of using Te 

thermometers over ambient temperature for these insects, there are a number 

of procedures that should be tested before any definitive conclusions can be 

reached. For instance, I did not place the Te thermometers with respect to flier 

activity. By placing a number of Te thermometers at different heights both on 

shore and over the water, my thermometers may have more fully captured 

thermal differences among these locations. Unless one is able to follow flying 

insects and determine activity prior to capture, these insects may have been 

under highly different thermal conditions than when I actually captured them. 

These two changes may have a greater impact than I initially suspected. I also 

did not orient Te thermometers models as fully as possible for perchers. Dreisig
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(1995), in contrast, used two Te thermometers for measuring operative 

temperatures in “percher-like” butterflies (Hipparachia semele and Ochlodes 

venata). First, he mounted Te specimens on a rotating and turning arm with 

which he was able to rotate through 360° as well as to tilt upward and 

downward. Next, he orientented Te thermometers by mimicking the body 

posture, orientation, and wing position of live butterfliers and rotated the models 

to receive maximum and minimum solar radiation. He recorded temperature 

every 45°. With a second set of Te thermometers, he repeated the above 

procedure except that body posture mimicked butterflies on days when the sun 

was not shinning and body orientation was intermediate between maximizing 

and minimizing incoming insolation. The combination of Te thermometers 

allowed him to show that these male territorial butterflies pass through three 

successive behavioral phases to maximize flight efficiency but not flying time. 

Although my results do not show that the use of Te provides a more in-depth 

understanding of dragonfly thermal biology in Interior Alaska, previous studies 

reviewed here demonstrate the great utility of operative temperature. More 

comparisons between the measures of operative and ambient temperature 

would allow researchers a fuller understanding of species-specific equilibrium 

temperatures and how these may vary due to daily and/or seasonal changes in 

the relative contributions of ambient temperature, solar radiation, and their 

interaction on Te models.

33



34

Time

Figure 1.1. Daily changes in ambient temperature (Ta), solar radiation 

(Sr), the temperature of the Cordulia shurtleffii model (Te), and C. 

shurtleffii thoracic temperature (Tth) during June 2002, near Fairbanks, 

Alaska. Lines represent best fit slope for piecewise linear regression. 

The break at 1800 hrs corresponds to the consistent decline in solar 

radiation in Fairbanks for June.
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for two daily time segments.
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Table 1.1. Mean mass, mean difference between operative model and 
ambient temperature, and slopes (TPI) of simple linear regression of 
operative on ambient temperature, thoracic on operative temperature, and 
thoracic on ambient temperature by species for eight species of dragonflies 
collected and tested near Fairbanks, Alaska between June and August 
2001 and 2002.

Taxon

Mean
(±SE)
body
mass

(g)
[N]

Mean 
(±SE) 

difference 
(Te - Ta) 

[N]

Slope 
(Te on Ta) 

(R2)
[N]

TPI = 
Slope 

(Tth on 
Te) 
[N]

Slope 
(Tth on 

Ta) 
[N]

Sympetrum 0.09 3.88
internum (0.002) (0.64) * 0.8 (0.19) 0.96a 1.07a

[55] [19] [38] [38] [38]
Sympetrum 0.10 4.84 0.69

danae (0.002) (0.55) * (0.35) 0.983 0.99a
[139] [43] [82] [82] [82]
0.22 6.23 1.13

Leucorrhinia spp (0.005) (0.45) * (0.52) 0.4 0.59
[106] [37] [73] [73] [73]
0.27 6.00 0.54

Cordulia shurtleffii (0.005) (0.69) * (0.16) 0.46 0.37
[43] [27] [55] [55] [55]

Libellula 0.40 6.19 1.11
quadrimaculata (0.007) (0.71) * (0.44) 0.47 0.55

[85] [20] [44] [44] [44]
0.64 6.23

Aeshna palmata (0.004) (0.73) * 1.3(0.50) 0.19b 0.28b
[149] [16] [30] [30] [30]
0.65 6.13 1.54

Aeshna interrupta (0.004) (0.55) * (0.73) 0.06b 0.14b
[106] [34] [66] [58] [66]
0.89 5.89 0.98

Aeshna eremita (0.006) (0.78) * (0.55) 0.17b 0.34
[47] [19] [36] [36] [36]

Significant difference at P < 0.001, Wilcoxon Matched-Pairs of Te and Ta. 
a slope = 1, P > 0.05, thermoconformer. 
b slope = 0, P > 0.05,- thermoregulator.



37

Table 1.2. Results of multiple regression models examining the impact of 

ambient temperature (Ta) and solar radiation (Sr) on the operative 

environmental temperature of a Cordulia shurtleffii model during two daily 

time ranges.

Period Parameter t P

1000-1745 Ta 2.09 0.04
hrs

(n = 38) Sr -0.13 0.90

Ta2 -1.87 0.70
Sr2 0.06 0.95

1800-2115 Ta -1.67 0.13
hrs

(n = 15) Sr 3.58 0.01

Ta2 1.69 0.12

Sr2 -2.52 0.03
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Chapter 2. THERMOREGULA TING ABILITY AND MINIMUM FLIGHT 

TEMPERATURES IN DRAGONFLIES (ODONATA: ANISOPTERA) FROM 

INTERIOR ALASKA2

INTRODUCTION

The ability of insects to thermoregulate has been shown in a number of 

studies (Heath and Adams 1965; Heinrich 1974. See May 1976 and Heinrich 

1981 for reviews). For many insects the ability to both elevate and regulate 

body temperature is positively correlated with the intensity and duration of 

activities that directly influence fitness (Heinrich 1977, 1981; Singer 1987; 

Convey 1989; Ybarrondo and Heinrich 1996). However, there is not a single 

variable or suite of variables that allow researchers to specify a priori whether 

an insect should be able to thermoregulate. Rather, what is found is a 

continuum of abilities, ranging from a high degree of thermoregulation to none 

at all (thermoconformity).

One reason for this continuum of abilities is the variable extent to which 

insects can utilize different thermoregulatory mechanisms. Subtle changes in 

behavior such as orientation toward a heat source and microhabitat selection, 

as well as the physiological ability to shunt hemolymph to dissipate or increase 

thoracic temperature, have allowed a variety of insects to exploit a wide range

2 Prepared for submission to Physiological Zoology



of habitats (May 1976, 1991; Bishop and Armbruster 1999). This suggested 

that the ability to operate at high thoracic temperatures could be advantageous 

to fitness regardless of geographic location. However, insects that typically 

encounter cool ambient temperatures may benefit from an ability to be active at 

low thoracic temperatures (Sailor 1950; Heinrich and Mommsen 1985), and in 

some cases being able to commence activity at low body temperature may be a 

more favorable strategy than elevating body temperature.

The purpose of the present study is to examine the strategies used by 

adult dragonflies (Odonata: Anisoptera) in Interior Alaska to commence and 

continue adult activities throughout the day. I concentrate on the 

thermoregulating ability and minimum flight temperature of these species. Adult 

dragonflies are ideal subjects due to their cosmopolitan distribution (Corbet 

1963; 1999; May 1991), wide range of mass (May 1976; Grabowand Ruppell 

1995), and conspicuous thermoregulatory behaviors (Corbet 1963; 1999; May 

1976,1978,1991; Heinrich and Casey 1978). The ability of adult dragonflies to 

both thermoregulate and fly at low thoracic temperatures is positively correlated 

with mass and predominate behavior at ponds (May 1976; Heinrich and Casey 

1978; Vogt and Heinrich 1983). Smaller dragonflies tend to be ectothermic 

perchers and typically employ behavioral thermoregulation, whereas larger 

species tend to be periodically endothermic fliers that employ a combination of 

behavioral and physiological thermoregulation to control body temperature 

(Corbet 1963, 1999; May 1976,1978,1998; Parr 1983; Vogt and Heinrich
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1983; Heinrich 1981,1991). Heinrich and Casey (1978) noted that the superior 

thermoregulating ability of fliers may be due to their ability to shunt hemolymph, 

while perchers must rely on behavioral changes.

To initiate flight or regulate body temperature, insect flight muscles can 

reach a minimum temperature by one of three means: 1) insects remain at rest 

until ambient temperature increases flight muscle temperature to minimum flight 

temperature (MFT), 2) insects behaviorally position themselves to receive the 

maximum exogenous inputs to heat muscles to MFT (May 1976, 1978; Vogt 

and Heinrich 1983; Heinrich 1991), or 3) insects physiologically augment 

exogenous environmental inputs by endogenous warm-up to reach MFT (May 

1976, 1978, 1998; Vogt and Heinrich 1983; Heinrich 1991). Species incapable 

of endogeneous heat production may benefit from having a lower MFT which 

expands their activity period. However, species capable of endogenous heat- 

production may be able to reach MFT without having low MFT set points, and 

they may benefit most by maximizing activity through maintenance of high 

thoracic temperature. Thus two distinct strategies for maximizing adult activity 

may exist. Heinrich (1977) further suggested that specialization at both high or 

low thoracic temperature may be incompatible because insects adapted to fly at 

low thoracic temperatures may be unable to operate at high thoracic 

temperatures and vice versa. This specialization suggests a possible tradeoff 

between MFT and thermoregulating ability.
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In this paper, I investigate evidence for a possible tradeoff between 

thermoregulating ability and minimum flight temperature. First, I determine 

thermoregulating ability and minimum flight temperature for a suite of species. 

Then I examine relationships between thermoregulating ability and mass, 

passive cooling rate, and wing loading. Next, I relate seasonal and daily 

activity patterns to the thermal input of both ambient temperature and solar 

radiation to show the extent of dependence of dragonfly activity upon these 

abiotic factors. Finally, I compare my results to previous lower-latitude studies 

(May 1976; Vogt and Heinrich 1983; Polcyn 1994) to address whether 

differences in thermal physiology exist between high- and low-latitude species. 

METHODS

The dragonfly (Anisoptera) community of Interior Alaska near Fairbanks 

(64°48’N; 147°42’W) consists often species in five genera (Table 2.1). Three 

of the genera contain perchers and the other two contain fliers (pers. obs.). In 

this study, I consider species individually (unless otherwise noted) in all cases 

except for the three Leucorrhinia spp., which I could not identify to species in 

the field.

Mean fresh total body mass for adults varies nine-fold among species 

from the lightest Sympetrum internum (0.09g) to the heavier Aeshna eremita 

(0.86g) (Table 2.1), and mass significantly differs among taxa with the 

exception of the species pairs Aeshna interrupta and A. palmata and 

Sympetrum danae and S. internum (Table 2.1). Mean thoracic mass varies
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eight-fold between the taxa and displays a similar pattern to that of total body 

mass (Table 2.1),

All field work was conducted at three ponds near Fairbanks, Alaska: an 

artificial pond behind the small airplane runway at the Fairbanks International 

Airport; Sheep Creek pond located on the east side of Sheep Creek Road at 

the junction with Gold Hill Road; and a pond located north of Ballaine road 

approximately one-half kilometer east of Goldstream Creek. The pond at the 

Fairbanks International Airport, subsequently razed in spring 2002, was a 

fishless pond approximately 1364 meters long with a maximum width of 40.5 

meters covering up to 30,000m2. The Sheep Creek pond is also fishless and 

covers approximately 1019.5m2, while the Ballaine road pond is part of a large 

wetland area associated with Goldstream creek and had only one measurable 

shore approximately 30 meters in length.

The summertime thermal environment of Interior Alaska differs from that 

of lower latitudes by having significantly lower average daily temperatures 

compared to sites in Maine, New Jersey and Florida (Wilcoxon Rank Sums, P < 

0.0001; Fig. 2.1). Dragonflies in Interior Alaska also experience a shorter 

season available for activity and longer day length (Figs. 2.1 and 2.2).

Cooling Curves

To measure cooling curves for Fairbanks species, a cooper/constantan 

thermocouple lead was implanted into the thorax of a freshly killed 

individual which was mounted four centimeters above a Styrofoam block. The
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mounted dragonfly was heated with a 250 watt infrared heat lamp until thoracic 

temperature (Tth) was 22 °C above ambient. The lamp was then turned off and 

thoracic temperature was recorded every five seconds as the individual cooled. 

Standard operative environmental temperature (Tes.‘ the temperature of a dead, 

mounted dragonfly of the same species, placed approximately one meter from 

the heating source in still air) was recorded approximately every five seconds 

as the freshly killed individual cooled. Cooling curves (thoracic temperature vs. 

time) were generated for each species and showed approximately exponential 

decay, as expected. The difference between Tth and Tes was calculated and 

then log-transformed to obtain a linear relationship with time. The slope of the 

log-linearized relationship is the passive cooling rate K (°C/min). I used 

ANCOVA to examine the influence of mass, taxon, and their interaction on 

passive cooling rate. I then performed all pairwise comparisons between 

species using a Tukey-Kramer procedure for multiple comparisons. To ensure 

model assumptions were met for this and all other analyses, I 

visually examined scatterplots for deviations from normality.

Wing Loading

To determine wing area and wing loading for each species, I clipped 

fore- and hind- wings at the base of the four main veins distal to the wing joint. 

The wings, a ruler, and a one-square centimeter piece of paper were color- 

photo scanned at 150 dots per inch. Using NIH Image software (Scion 

Image™), I standardize length and area and traced wing perimeter. Wing
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loading was determined as a ratio of fresh mass (g) to wing area (cm2). I 

examined the influence of mass, taxon, and their interaction on wing loading by 

performing ANCOVA. I then performed all pairwise comparisons between 

species using a Tukey-Kramer procedure for multiple comparisons.

Minimum Flight Temperature

From May to mid-September in 2000 and 2001,1 measured minimum 

flight temperature (MFT); measurements were taken in the lab, at the Institute 

of Arctic Biology Greenhouse, or at the nearby study ponds.

To estimate MFTs, I recorded the lowest temperature at which a 

species maintained level flight (following methods of May 1976, 1978, 1998). 

For field measurements, I located roosting individuals unable to fly during cool 

mornings. Once I determined that individuals could not fly, I heated them in my 

hands, released and then recaptured them after a horizontal flight of a few 

meters. Upon recapture, I recorded thoracic temperature (Tth) with a 

thermocouple thrust into the thorax. Since it is not always possible to locate 

roosting individuals of all species in the field, I brought specimens of some 

species into the lab and cooled them in a refrigerator. To estimate MFT, I 

warmed specimens and tossed them into the air. Once they were able to 

maintain horizontal flight by flying to a mesh net a few meters away, I recorded 

Tth as above. I examined the influence of mass and taxa on MFT by performing 

ANCOVA.
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To examine whether Alaskan individuals have lower MFTs than those 

from lower latitudes, I used two sided f-tests to compare the estimated MFTs 

from my research to those of species from other regions (May 1976, 1979,

1991, 1998; Vogt and Heinrich 1983). I based comparisons on similarity in total 

body mass and behavior as well as recommendations from M. May (per. 

comm.) and B. Heinrich (pers. comm.)

Thermoregulation

To measure thermoregulating ability, I netted active, sexually 

mature dragonflies at each study site between 0500 to 2400 hrs Alaska 

Daylight Time (ADT) throughout a species' flight season. I recorded Tth of 

individual dragonflies within seven seconds of capture using a thermocouple 

(Physitemp BAT 12) equipped with a 29-gauge copper-constantan (Cu-Cn) 

probe. The lead was thrust into the thorax ventrally and posterior to the last 

pair of legs. If the interval between capture and acquisition of thoracic 

temperature exceeded seven seconds, the dragonfly was collected but only 

used for morphometric analysis. I also recorded temperature of a dragonfly 

model immediately after recording live-specimen temperature. The model was 

a freshly killed specimen within the same genus, and usually the same species, 

placed in an unshaded location and at equilibrium temperature with 

the environment, given the model's particular thermal properties of size, 

shape, and color (Crawford et al. 1983; Hertz et al. 1993; Forrester et al.

1998). The model's thoracic temperature was used as an estimate of operative
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environmental temperature (Te). After recording live and model temperature, I 

used the same thermocouple to measure ambient temperature (Ta), and I 

measured solar radiation with a Li-Cor photometer placed horizontally on a 

foam pad at ground level and free from any obstruction.

I transported live specimens in partially sealed, labeled plastic bags in 

a cooler with moistened towels to prevent desiccation. Total body mass 

was usually measured within five hours, and thoracic and abdominal mass, 

total body length, forewing and hindwing length were measured within 24 

hours.

For each species, the Thermoregulatory Performance Index (TPI) was 

computed as the slope of the regression line of Tth against Te (Bishop and 

Armbruster 1999). To determine if species thermoregulate, I compared TPI to 

a theoretical isothermal line (slope = 1) that represents perfect thermal 

conformity, as well as a slope = 0 which represents perfect thermoregulation.

The thoracic temperature that I measured for perchers during perching 

activity may be somewhat inflated. It is difficult to net individuals without 

eliciting take-off and hovering. Although I did not record thoracic temperatures 

of individuals that hovered for more than two seconds before capture, inevitable 

thoracic heating is likely even for as short a period of flight as two seconds and 

may contribute to increased thoracic temperature. However, it is unlikely that 

this error is great enough to affect TPI indices since the temperature is raised
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consistently only 1-2 °C (pers. obs.) regardless of Tth, resulting in a slighty 

elevated but parallel slope of the regression line of Tth against Te.

Phenology and Activity Patterns

In 2001,1 examined adult phenology and surveyed hourly activity 

whenever I was in the field collecting thermoregulation data. From June 7- 

September 15, 2001,1 surveyed study ponds a total of 26 times for a total of 

220 hours over the season. At least once each month, I examined activity at 

the Sheep Creek Pond continuously from 0600-2400 hrs in order to determine 

times of first and last daily activity. I set up twelve eight-meter2 quadrats at 

each of the three study ponds. The quadrats were two meters wide and 

extended two meters over the pond and two meters on shore. Each hour, I 

surveyed activity by counting and categorizing individuals (genus and/or 

species) that either perched in or flew through the quadrats. Quadrats were 

surveyed for 30 seconds at a time. Dragonfly activity for a given time period 

was calculated as the mean number per quadrat averaged over all 12 quadrats.

I used linear mixed models to examine the factors impacting activity 

levels for the different genera. I examined the effects of date, time of day, 

ambient temperature, solar radiation, and all two-way interactions. For time of 

day, I included a pre- and post- active period. Ambient temperature and solar 

radiation were calculated as the mean of measurements taken just prior to and 

immediately after each hourly survey; both their linear and quadratic effects 

were examined in the models. Study site was included as a random effect.
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Nonsignificant interactions were dropped from models. To ensure model 

assumptions were met, I visually examined scatterplots. The reported results 

are for the reduced models.

RESULTS 

Cooling Curves

Across species, the passive rate of cooling declined with increasing 

mass (Fi,36 = 8.46, P = 0.0065; Fig. 2.3), indicating that smaller dragonflies 

cool more rapidly than larger dragonflies. Neither species (Fii36= 0.35, P < 

0.5590) nor the mass by species interaction (F-i,36 = 0.99, P < 0.3280) were 

significant. However, the rate of passive cooling was significantly higher in the 

Sympetrum spp. and Leucorrhinia spp. than all larger species (Fig. 2.3).

Wing Loading

Wing loading increased with mass across taxa (Fi,70 = 151.86, P < 

0.0001; Fig. 2.4) and varied significantly among species (F770 = 5.92, P = 0.01). 

The interaction between species and mass was also significant (F170 = 5.14, P 

= 0.02), but for all taxa there was either a positive relationship between wing 

loading and mass or no significant change over the small range of mass 

measured for each species. Pairwise comparisons indicated that wing loading 

increases with mass to a certain extent regardless of percher-flier status and 

begins to level off at 0.2 g, although the aeshnids are significantly greater than 

all other species.
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Minimum Flight Temperature (MFT) o f Dragonflies in Interior Alaska

When all species were considered, MFT significantly increased with 

mass (F 1,68 = 35.34, P < 0.0001; Fig. 2.5) and varied significantly among 

species (F7,68= 4.44 = 2.11, P = 0.03); however, the interaction was not 

significant. Least square means with Tukey-Kramer procedure for multiple 

comparisons indicated that while larger perchers display higher MFTs than 

smaller perchers, MFTs do not significantly differ between the various fliers 

(Fig. 2.5). Even the most and least massive fliers (Aeshna eremita and 

Cordulia shurtleffii), which differ threefold in mass, did not differ in MFT (Fig. 

2.5).

MFT Comparisons among Latitudes

I obtained comparable MFT data for percher species from Maine (Vogt 

and Heinrich 1983, 44°N), New Jersey (May 1998, 42°N), and Florida (May 

1976, 28°N); however, comparable data for fliers were obtained only 

from Florida (May 1976). When I examined whether Interior Alaska perchers 

had lower MFTs than comparable species from lower latitudes, I found varied 

results. MFTs of Sympetrum spp. in Interior Alaska were slightly but 

significantly greater than Sympetrum vicinium and S. obtrusum in Maine (44°N, 

Table 2.2); however, Alaskan Sympetrum spp. had lower MFTs than 

Sympetrum vicinium in New Jersey (42°N, Table 2.2). Leucorrhinia spp. had 

significantly lower MFTs than Pachydiplax longipennis and Erythemis
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simplicicollis in Florida, and MFT of Libellula quadrimaculata was slightly but 

significantly greater than Libellula spp. in Florida (Table 2.2).

The only available study that examined MFT for fliers at lower latitudes is 

May (1976), and he found that in general MFT for species of sizes comparable 

to Alaskan species (from approximately 0.3g to 0.6g) only ranged between 20- 

23°C. Of the five comparisons I examined, in two cases the Alaskan species 

had significantly higher MFT and in the other three cases there was no 

significant difference in MFT (Table 2.2).

Thermoregulation

Perchers

Not all perchers thermoregulate. Both Sympetrum species appeared to 

be thermo-conformers; their thermoregulatory performance indices did not differ 

significantly from the isothermal line (Table 2.1, Fig. 2.6). In contrast, TPI for 

Leucorrhinia spp. and Libellula quadrimaculata indicated moderate 

thermoregulatory abilities (Table 2.1, Fig. 2.6).

Fliers

On the other hand, all fliers thermoregulated. The smallest flier 

Cordulia shurtleffii had an intermediate TPI that is similar to that of the larger 

percher species; thus, it has a moderate ability to thermoregulate. In contrast, 

all three aeshnid species had TPIs not significantly different from zero, 

indicating that they are very good thermoregulators (Table 2.1, Fig. 2.6).
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Phenology and Activity Patterns

In 2000-2001, adult dragonfly activity in Interior Alaska began in late 

May-early June and continued through mid-September; this matches a general 

pattern reported by Paulson (1999). Unless otherwise noted, activity results 

are from 2001. The highest species richness was observed from early June 

through mid July. Within four days of observing first adult activity, both 

perchers and fliers were active and up to five species (Leucorrhinia borealis, L  

proxima, L  glacialis, Libellula quadrimaculata, and Cordulia shurtleffii) co­

occurred at ponds on a majority of days during the period June 9 to July 21,

2001 (Fig. 2.7).

The activity of Libellua quadrimaculata and Cordulia shurtleffii dropped off 

by late-June to early-July, 2001, while Leucorrhinia spp. continued until July 21. 

Within this initial activity period, the genus Aeshna appeared on June 23. The 

addition of aeshnids (Aeshna eremita, A. palmata, and A. interrupta) marked 

maximum species richness of eight co-occurring fliers and perchers.

During the period July 22 through August 4, 2001, only the three Aeshna 

species were observed. The perchers in the genus Sympetrum (Sympetrum 

danae and S. internum) appeared on August 6, alongside Aeshna fliers, and 

both genera continued activity through September 15, 2001, when I ended my 

observations (Fig. 2.7).

I do not have survey data for Sympetrum internum because they were 

seldom present at ponds in either years. They appeared to spend most of their
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time in fields where they forage, copulate, and oviposit on moist soil or at small 

ephemeral ponds.

Perchers

All perchers showed a pattern of increasing activity with increasing Ta 

(Table 2.3), and all showed a significant response to the quadratic effect of time 

of day (Table 2.3, Fig. 2.8). S. danae displayed a significant negative response 

to Sr, as well as a number of significant interactions (Table 2.3, Fig. 2.8).

Fliers

Cordulia shurtleffii activity significantly decreased with Ta; the linear and 

quadratic effects of time of day were also significant, but the effect of Sr was not 

significant (Table 2.3, Fig 2.8).

The Aeshna spp. displayed a strikingly different pattern than all other 

taxa. They were active from early morning (0800hrs) to late evening (2400hrs) 

(Fig. 2.8), and displayed no significant relationships between activity and any of 

the tested effects (Table 2.3).

DISCUSSION

Perchers

Interior Alaska Anisoptera follow the general pattern in which smaller 

dragonflies show percher behavior, short duration sallies between extended 

periods in horizontal perched position (Corbet 1963, 1999; May 1976,1978, 

1991; Grabow and Ruppell 1995). Despite the similarity in behavior among the 

three-percher genera, their four-fold variation in mass is associated with large
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differences in MFT and thermoregulation. Lower mass decreases thermal 

inertia, allowing heat to be both gained and lost at a faster rate than in larger 

species (May 1976; Bartholomew 1981; Vogt and Heinrich 1983; Casey 1992; 

Bishop and Armbruster 1999). Because perchers tend to be of low mass and 

ectothermic, and because I have not witnessed any percher wing-whirring 

either in the lab or field, perchers are potentially more influenced by 

environmental conditions than larger species with greater thermal inertia.

For body mass below approximately 0.2 g, I found that the rate of 

passive cooling rises quickly (Fig. 2.3), indicating a poor ability to retain heat. 

The smallest perchers, Sympetrum spp., are strictly ectothermic and 

thermoconforming (Table 2.1), so that their behavior is determined by heat 

input from the environment. These perchers are able to reposition themselves 

to elevate body temperature but can only attain an approximately 2.2 °C 

temperature elevation regardless of ambient temperature. In contrast, the 

larger Leucorrhinia spp. and Libellula quadrimaculata are ectothermic but 

capable of thermoregulating (Table 2.1). These perchers are able to both 

elevate and maintain a fairly constant body temperature over a wide range of 

ambient temperatures by changes in position, orientation, and posture. 

Consequently, their activity is less tied to environmental conditions than that of 

the smaller perchers.

Perchers are known to engage in both heat-gaining and heat-reducing 

behaviors (Corbet 1962, 1999; May 1976, 1978, 1987, 1991). In the field, I
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observed heat-gaining behavior nearly every time Sympetrum spp. and 

Leucorrhinia spp. landed. Individuals perched so as to intercept solar radiation 

in two ways. First, they pointed the long axis of their bodies perpendicular to 

the incoming solar radiation, and, second, they oriented their already spread- 

wings downward and foreword. Wings are thought to trap heat either by 

forming a “micro-greenhouse” that confines long wave radiation from incoming 

solar radiation around its thorax (Corbet 1999) and/or by intercepting heat 

radiating from an underlying substrate such as the ground or reflective stones 

(May 1976; Corbet 1999). The use of these postures and wing orientations has 

been described as heat-gaining in dragonflies (May 1976,1998; Tracey et al. 

1979) and moths and butterflies (Kingsolver 1983, 1985, 1987). In contrast, I 

observed Sympetrum danae and Leucorrhinia spp. in the heat-reducing obelisk 

position (i.e., wings depressed, head and thorax tipped forward and away from 

incoming solar radiation, abdomen pointed upwards) only in the lab at 

temperatures of approximately 35-37 °C, and not when perched at ponds.

Some dragonfly species use the obelisk behavior to slow heat gain by shading 

the thorax and decreasing the surface area exposed to solar radiation (Corbet 

1963, 1999; May 1976, 1991). My observations, therefore, suggest that the 

challenge for these species is gaining and retaining enough heat for activity 

rather than dissipating heat.

In contrast to the smaller perchers, Libellula quadrimaculata engaged in 

both heat-limiting and heat-gaining behavior, with the second behavior being
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more frequent (pers. obs.). Although Libellula quadrimaculata did not use the 

obelisk behavior in the lab or field, I did observe that they would perch vertically 

on vegetation, appearing to use a stem to shade the thorax. Thus, the largest 

Interior percher used heat-limiting activity.

Wings can contribute to the maintenance of favorable thoracic 

temperature in a second way. Wing loading measures the amount of effort a 

dragonfly must expend to remain aloft. Generally, wing loading increases with 

mass (Bartholomew and Heinrich 1973), and all Interior Alaska perchers have 

low wing loading (Fig. 2.4), indicating that they require relatively little power to 

remain aloft during flapping flight. While this indicates that compared to many 

species, they generate little heat while in-flight, it may still be a significant input 

to their overall heat load (Bartholomew and Heinrich 1973). Given the general 

positive relationship between wing loading and mass in dragonflies 

(Bartholomew and Heinrich 1973), Leucorrhinia spp. may have slightly higher 

than expected wing loading while Libellula quadrimaculata has a lower than 

expected wing-loading for species of their respective masses. The wing 

loading in Leucorrhinia spp. indicates a trend toward a higher level. With a 

higher level, Leucorrhinia spp. may generate more heat, potentially contributing 

to greater thoracic elevation than Sympetrum spp. The lower than expected 

wing loading in Libellula quadrimaculata may allow Libellula quadrimaculata to 

decrease excessive thoracic heat by forced convective heat loss, as May 

(1976, 1991, 1995) has reported for flier species. Although Libellula



quadrimaculata is a percher and not a flier, my observations indicate that it flies 

much more often and for longer periods than any other Interior Alaska percher.

Although I was surprised at the moderate thermoregulating ability of 

Leucorrhinia spp. and Libellula quadrimaculata, perchers can display a range of 

thermoregulating abilities. May (1976, 1998) showed that, despite their small 

size, some perchers are able to thermoregulate well by postural adjustments 

alone. For instance, Ishizawa (1991, 1994, 1998, as reported by May 1998) 

has shown variability in thermoregulating ability among other species in the 

genus Sympetrum, with some thermoregulating well (TPI = 0.1, based on a 

regression of Tth on Ta) while others are complete thermoconformers (TPI = 

0.9). May (1998) also showed that S. vicinum (0.1 g) orient their body and 

wings similarly to Interior Alaska Sympetrum spp. and Leucorrhinia spp. (pers. 

obs.) and are able to thermoregulate as well as, and sometimes better than 

(slope of Tth on Tais 0.31 for S. vicinum) Leucorrhinia spp. The variation in 

Sympetrum thermoregulatory ability among studies may be due to differences 

in ambient temperature between regions (Fig. 2.1). Even endothermic warm­

up, an activity more typical of larger species, has been reported in very small 

dragonfly species (May 1976).

Having lower MFT can also compensate for the thermal relations 

dictated by small size (May 1976; Vogt and Heinrich 1983). Lower MFTs allow 

individuals to engage in activities at lower ambient temperatures without the 

need to raise thoracic temperature above ambient. Thus, they do not need to
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maintain a large differential between thoracic and ambient temperature in order 

to be active, and, as a result, they do not suffer the associated heat loss, which 

would be particularly acute in the smallest of perchers. I found Sympetrum spp. 

to have the lowest MFTs among Interior Alaska species and to have lower 

MFTs than comparable species at lower latitudes, except for Sympetrum spp. 

from Maine (Vogt and Heinrich 1983). For the heavier perchers, Leucorrhinia 

spp. and Libellula quadrimaculata, MFTs are not consistently lower than 

species from lower latitudes. A possible explanation for this is that during the 

majority of their late spring/early summer flight season, low ambient 

temperatures are often infrequent or of short duration, except overnight roosting 

temperatures. At this time both Ta and Sr are increasing toward their seasonal 

maxima. Thus, low MFTs may be unnecessary for these ectothermic species 

and could potentially restrict beneficial activity at higher ambient temperatures.

With little ability to generate heat, the smallest perchers might be 

expected to emerge in late spring/early summer when ambient temperature and 

solar radiation approach their maxima. Early summer emergence could 

potentially offset the effect of small mass on thermal relations. However, the 

least massive perchers were active during late summer, a period corresponding 

to the lowest solar radiation (Wendler and Eaton 1981) and ambient 

temperature during the flight season of any Interior Alaska dragonflies. This is 

likely a consequence of their obligate, univoltine phenology (Norling 1971; 

Corbet 1999) that may also restrict the mass they can attain in this region.
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For all Interior Alaska perchers, activity significantly increased with 

increasing ambient temperature. In contrast, only Sympetrum spp. displayed a 

significant decrease in activity with increasing solar radiation. On a daily basis, 

the average number of hours of activity at ponds varied considerably. 

Sympetrum spp. were active for five to seven hours, whereas both Leucorrhinia 

spp. and Libellula quadrimaculata were active for 16 and 15 hours, respectively 

(Fig. 2.8).

Fliers

The larger dragonflies of Interior Alaska follow the general pattern of flier 

behavior, defending territory and pursuing mates and prey while continuously 

on the wing. When they perch at ponds, they tend to perch vertically on 

vegetation and only for short periods (Corbet 1963, 1999; May 1976, 1978, 

1991; Grabowand Ruppell 1995), although some have been reported to perch 

horizontally on the ground and gravel in Alaska when light levels are low 

(Donnelly 1993). The threefold variation in flier mass is associated with a large 

difference in thermoregulating ability but is not associated with a significant 

difference in MFT. Because fliers tend to be more massive than perchers, their 

greater mass and relatively low surface area:volume increases thermal inertia 

(Cossins and Bowler 1987) and could increase thermal resistance and slow the 

rate of exogenous warm-up. The low surface area:volume potentially could 

delay the daily on-set of flight (Vogt and Heinrich 1983); however, for Interior 

Alaska fliers, the ability to increase thoracic temperature by wing-whirring as



well as retaining and dissipating endogenous heat appears to confer 

independence from environmental conditions while diminishing the need for 

lower MFT set points

For body masses above approximately 0.2 g, I found that the rate of 

passive cooling did not significantly decrease with increasing mass (Fig. 2.3) 

and that all Interior Alaska fliers retained heat equally well. Wing loading 

increased with flier mass. However, wing loading did not differ among three 

species, the flier Cordulia shurtleffii and the perchers Leucorrhinia spp. and 

Libellula quadrimaculata, despite significant differences in mass. This suggests 

that the larger of these species may have lower wing loading than expected. 

Thus, the flier C. shurtleffii may generate less heat in flight than expected for its 

mass. The combination of lower passive cooling rate and lower wing loading in 

Cordulia shurtleffii allows it to thermoregulate moderately well, despite evidence 

that although it need s relatively high Ta to initiate activity. In contrast, low 

passive cooling rate and high wing loading in Aeshna spp. allows for greater 

ability to thermoregulate over a wide range of ambient temperatures. As for 

perchers, convection appears to be the main avenue of heat loss in these fliers. 

However, in the case of the fliers, excess heat produced by the flight muscles is 

shunted to the abdomen and then dissipated through convection.

As mass increases for Interior Alaska fliers, the dependence of thoracic 

temperature on operative temperature decreases. With greater mass, the 

elevation and maintenance of thoracic temperature at low ambient temperature



as well as the ability to shunt hot hemolymph from the thorax to the abdomen at 

high ambient temperatures allows aeshnids to function as classic periodic 

endotherms (Heinrich 1974; May 1976 Bartholomew and Heinrich 1978). Once 

aeshnids attained MFT and arrived at a pond, their activity was independent of 

both Ta and Sr (Table 2.3), and they remained active at ponds for approximately 

17 hours/day over their flight season. In contrast, C. shurtleffii shows a 

significant decrease in activity with increasing Ta (Table 2.1) and is active 

between 11-13 hours/day.

Cordulia shurtleffii appears to be constrained at both low and high 

temperature, and this may account for its shorter window of daily activity (Fig.

2.8). The ambient temperature required for initial C. shurtleffii activity was ,
id

higher than for any other species in the region (Fig. 2.6), which may delay the »!
it

onset of activity. On the other hand, when I captured individuals, nearly 60% of *

C. shurtleffii had Tth of 36° C and 33% of individual C. shurtleffii with Tth of 39°

C or greater. The high thoracic temperature may be a consequence of its small 

mass, low passive cooling rate, and moderate thermoregulating ability to 

dissipate excess thoracic heat near temperatures of 40° C. Lutz and Pittman 

(1970) reported that in general anisoptera activity decreases near 36° C. May 

(1976) studied a small Florida flier, Tramea Carolina, of comparable mass (0.15 

- 0.36 g) and behavior to C. shurtleffii. Tramea Carolina ceases flying when 

ambient temperatures approach 34°C and has a maximum voluntary tolerance 

(MVT) of approximately 38.5°C (May 1976). Ubukata (1975) speculated that
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Cordulia aenea amurensis from Japan (mass not reported) decreased activity 

when ambient temperature approached 35°C. Therefore, the high thoracic 

temperatures recorded for C. shurtleffii are probably approaching its maximum 

voluntary range and may require additional heat dissipating activity.

By supplementing physiological thermoregulation with behavioral 

methods, C. shurtleffii remains active, but for fewer hours a day than all species 

except Sympetrum spp. (Fig. 2.8). Because I restricted my investigation of 

thermoregulation to adult activity at ponds, I only have incidental observations 

of perching activity in nearby fields and woods. At one pond I observed C. 

shurtleffii perched inclined on a mound of soil approximately 20 - 30 m away 

from the pond beginning in the late morning and continuing through early ,
n

afternoon. They neither appeared to be consuming prey nor did they cant their I

wings downward and foreword as perchers do in order to shield the thorax; j
i

however, the slope of the mound and body of the dragonfly may have allowed it !

to shield its thorax without having to move its wings into the heat-dissipating

posture. The similarity in general perching posture between perchers and C.

shurtleffii may allow the latter to behaviorally dissipate heat. This, of course,

needs to be verified. Some percher-like behavior has been reported for smaller

fliers. For instance, May (1987) noted that the small Corduliid flier

Tetragoneuria cynosura (0.15g) sought shade as Ta increased. This behavior

remains a possible thermoregulatory method for C. shurtleffii.
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Prior to taking-off from this percher-like position on the mound and 

heading back toward the pond, C. shurtleffii did not wing-whir, which may 

indicate that thoracic temperature was not allowed to reach levels low enough 

to require endogenous heat production to reach MFT. On a number of 

occasions, I did witness C. shurtleffii wing-whirring in the field after perching 

vertically in vegetation while consuming prey, although I could not elicit this 

behavior in the lab. The intermittent use of wing-whirring for adjustment of 

thoracic temperature in addition to preflight warm-up has also been 

documented in various species (May 1976,1998) including the male cicada 

killer wasp (Sphecius speciosus) (Coelho 2001). Despite its moderate ability to 

thermoregulate, C. shurtleffits small size may not allow it to physiologically 

dissipate heat fast enough as ambient temperature increases. Therefore, 

alternating between basking and wing-whirring at high rather than low ambient 

temperature may offer a finer control over body temperature than endothermy 

orectothermy alone (May 1976).

Having lower MFT in combination with an ability to thermoregulate would 

seem to be the best situation for fliers. With both of these traits, fliers could 

take-off at low temperature without expending energy on wing-whirring and 

regulate body temperature during peak Ta and Sr; however, I found that MFTs 

of Interior Alaska fliers do not consistently differ either among themselves or 

from those of lower latitude species. This supports the ideas of Vogt and 

Heinrich (1983) and May (1987, 1991) that in contrast to perchers, flier MFT is
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not dependent on climatic conditions within their geographical range. One 

reason may be the near universal ability of Aeshnidae and Corduliidae to wing 

whir (May 1976). Wing whirring allows individuals to increase thoracic 

temperature to MFT without having lower MFT set points or sacrificing the 

ability to operate at high body temperature. One indication that wing whirring 

allows fliers to be active at low temperature is that aeshnids are active at ponds 

at approximately the same time as the smaller perchers, which rely on 

exogenous inputs of Taand Srto achieve MFT. Although C. shurtleffii wing-whir 

and have MFT set points no different than aeshnids, the Ta at which wing 

whirring commences may differ and constrain C. shurtleffii activity to more 

favorable environmental conditions. Since C. shurtleffii activity decreases with 

increasing temperature, it may be more advantageous for them to emerge 

when season climatic conditions are intermediate between their seasonal 

maximum and minimum. In contrast, the phenology of aeshnids appears fairly 

independent of season. The activity of these massive species is not highly 

constrained by climatic conditions and their multi-year life cycle (Norling 1971, 

1984) may result in their emerging throughout the summer once they have 

obtained a threshold size.

Tradeoffs in Thermoregulatory Strategy between Perchers and Fliers 

In many insects, elevated thoracic temperature is positively correlated 

with the intensity and duration of activities that directly influence fitness such as 

prey capture, predator avoidance, and, ultimately, reproductive success
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(Heinrich 1977, Convey 1989; Marden 1992). Heinrich (1977) noted that 

positive selection for performance at high temperature may be inversely 

correlated to low temperature performance (Cossins and Bowler 1987; 

Hochachka and Somero 2002). Specialization at either extreme may preclude 

the other due to deactivation and, eventually, denaturation of flight muscle 

enzymes. In my examination of Interior Alaska dragonflies, I found that both 

the smallest and largest species were active at ambient temperatures of 

approximately 14° C. This is notable because they have strikingly different 

abilities to elevate and maintain thoracic temperature (Table 2.1). The 

thermoconforming Sympetrum spp. have a low MFT set point that allows 

activity to commence when little behavioral thoracic warming is possible. 

Although they can elevate body temperature, they are unable to 

thermoregulate. To have both a lower MFT and an ability to thermoregulate 

may be energetically too costly; therefore, for small species in cooler climates, 

ectothermy and lower MFT may save energy by allowing species to be active 

without having to maintain an elevated Tth. Once environmental conditions 

reach MFT set points, the thoracic temperature of Sympetrum spp. remains 

elevated by behavioral repositioning. This can be accomplished at minimal 

cost to these strict ectotherms due to their low thermal resistance. If these 

species are cold adapted, their muscle enzymes may be susceptible to 

decreased function at high temperature. This fits my finding that the thermal 

niche of Sympetrum spp. is highly constrained by diurnal patterns in Ta and Sr
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as well as the seasonal flux in these variables. In contrast, MFT for the 

aeshnids is approximately 20°C, 6°C higher than that of Sympetrum spp. 

Aeshnids appear to employ the physiological mechanism of wing-whiring to 

raise thoracic temperature to MFT; this enables them to be active at lower 

ambient temperatures, despite having a higher MFT. This may also allow 

specialization of muscle enzymes for high temperature performance.

The least massive flier, C. shurtleffii, and the most massive percher, 

Libellula quadrimaculata, share many thermoregulatory characteristics with the 

aeshnids. Although these two species are significantly smaller than the 

aeshnids, their passive cooling rates and MFTs do not significantly differ from 

those of the aeshnids; however, C. shurtleffii and Libellula quadrimaculata are 

not active at low ambient temperatures. One reason for this in Libellula 

quadrimaculata may be an inability to wing whirr, as Heinrich and Casey (1978) 

have noted for another Libellula species. Therefore, Libellula quadrimaculata 

may remain perched until ambient conditions increase and passively heat flight 

muscles to MFT, delaying the onset of flight. This circumstance has been 

reported for many perchers (Vogt and Heinrich 1983). Explaining the delay in 

activity for C. shurtleffii is more problematic. There appear to be two possible 

explanations for my findings. First, although I have noted that this species can 

wing whir after consuming prey during the day, it remains to be shown whether 

it can endothermcially increase thoracic temperature at other times. Second, 

Vogt and Heinrich (1983) have noted that for some species the voluntary
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takeoff temperature is substantially higher than MFT. They speculated that 

these species may remain perched until they reach thoracic temperatures high 

enough for fast, agile flight; this would allow for increased maneuverability for 

catching prey and avoiding predators. Hence, C. shurtleffii may delay the onset 

of flight even after achieving MFT.

Leucorrhinia spp. appear to employ aspects of both MFT and 

thermoregulating strategies. Although the mass of Leucorrhinia spp. is 

statistically greater than Sympetrum spp., passive cooling rate is not. The 

moderate thermoregulating ability of Leucorrhinia spp. is similar to larger 

perchers and fliers. It may be that in the range of mass between Sympetrum 

spp. and Leucorrhinia spp. both thermal conformity and thermoregulation are 

viable strategies. The transition from thermoconformity in Sympetrum spp. to 

thermoregulation in Leucorrhinia spp. may be governed by the difference in 

wing loading as well as the difference in environmental conditions during each 

species’ flight season. In Leucorrhinia spp., higher wing loading potentially 

generates enough heat as a byproduct of flight to favor thermoregulation while 

the ability to elevate body temperature may also diminish the need for very low 

MFT. Finally, warmer summer and cooler early fall conditions may favor 

thermoregulation in Leucorrhinia spp. and thermoconformity in Sympetrum spp.

My findings on MFTs and thermoregulating ability among Interior Alaska 

dragonflies largely confirm the major results of May (1976), Heinrich and Casey 

(1978), and Vogt and Heinrich (1983). I show that MFTs of perchers do not
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decrease at higher latitudes or in cooler climates when compared to the lowest 

MFTs recorded for similar species from Maine. This suggests that there may 

be a lower limit on MFT set points in dragonflies. Like MFT, thermoregulating 

ability increases with increasing mass among perchers and fliers; however, for 

small species with low thermal inertia, low MFT and thermoconformity may be 

favored in cooler climates and during colder seasonal periods (but see May 

1998). Finally, my results suggest a tradeoff between MFT and 

thermoregulating ability such that the ability to maintain thoracic temperature 

may decrease the need for lower MFT; however, when flight season is late 

summer/early fall when the major ectothermic sources are in decline at higher 

latitudes, a lower MFT may be more important than is the ability to maintain a 

thoracic temperature over a wide range of ambient temperatures especially in 

smaller species.

73



1

74

O 30

§ 10

1 Fairbanks, AK (44) Rumford, ME (52) Newark, NJ (27) 

31 15

Gainsville, FL (42)

1 16 
May June

30 15
July

30 14 29
August

13 28
Sept.

Figure 2.1. Mean daily temperature derived from daily maximum and 

minimum temperatures from localities where MFT of dragonflies have been 

studied. Number next to each locality is years of data.
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Figure 2.3. Mean (±SE) passive cooling as a function of mean (±SE) 
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differences in means (p< 0.05; LS Means with Tukey-Kramer precedure 

for multiple comparisons). Abbreviations beside bars are as follows: 

Aesh = Aeshna spp., Ae = A. eremita, Ai = Aeshna interrupta, Ap = A. 

palmata, Cs = Cordulia shurtleffii, Lq = Libellula quadrimaculata, Leu = 

Leucorrhinia spp., Sd = Sympetrum danae, Si = S. internum.
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Table 2.1. Predominate behavior at ponds, mass, and thermoregulatory data 

for dragonfly species of Interior Alaska arranged from least to most massive.
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Morphometric data were collected in (2000-2001).

Taxon Behavior Mean body Mean thoracic 
Mass (g)+ Mass (g)+ 

(SE) (SE)
N  N

Thermoregulatory 
performance Index 

(SE)
N

Sympetrum Percher 0.09* 0.04a 0.96’
internum (0.002) (0.003) (0.14)

55 13 39
Sympetrum Percher 0.10a 0.058 0.98*

dame (0.001) (0.007) (0.09)
139 20 82

Leucorrhinia Percher 0.21b 0.09a 0.40
hudsonica, (0.005) (0.005) (0.05)
L. borealis, 106 35 73
L. proximo
Cordulia Flier 0.27c o .i i5 0.46
shurtleffii (0.004) (0.003) (0.09)

46 19 55
Libellula Percher 0.40d 0.19C 0.47

quadrimaculata (0.006) (0.004) (0.05)
85 31 44

Aeshna Flier 0.64e 0.253 o . r r
palmata (0.004) (0.003) (0.08)

149 63 30
Aeshna Flier 0.65e 0.27s 0.06"

interrupta (0.004) (0.004) (0.03)
106 38 58

Aeshna Flier o 00 os
.

" o i^ 0 17^
eremita (0.009) (0.005) (0.08)

47 25 36
+ Different superscript letters indicate a significant difference in means (LS Means with 
Tukey-Kramer adjustment for multiple comparisons)
*TPI does not differ from a value of 1— thermoconformer 
** TPI does not differ from a value of 0— thermoregulator



Table 2.2. Minimum flight temperature comparisons between Interior Alaska
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species and lower latitude species from previous studies.

Interior Mean Mean Lower Mean M63D
Alaska Mass MFT Latitude Mass MFT
Taxon (g) n** (SE) Taxon Be* (g) «** (SE) t P
Sympetrum
internum 0.09 4

13.47 Sympetrum 
(0.17) vicinum1 P 0.1 10

15.4
(.22)

<
17.52 0.001

ft
Sympetrum 
obtrusum2 P 0.13 5

13.2
(■1) -2.81 0.05

Sympetrum 
vicinum2 P 0.14 10

12.5
(-1) -7.39 0.003

Sympetrum
danae 0.10 25

14.00 Sympetrum 
(0.09) vicinum1 P 0.1 10

15.4
(.22)

<
19.36 0.001

M
Sympetrum 
obtrusum2 P 0.13 5

13.2
CD

<
-16.59 0.001

M
Sympetrum 
vicinum2 P 0.14 10

12.5
( • 1 )

<
14.76 0.001

Leucorrhinia 18.16 Pachydiplax 20.9 <
spp.

ft

0.21 13 (0.51) longipennis3 
Erythemis 
simplicicollisi

P

P

0.17

0.27

41

30

(.29)
19.7
(.36)

12.7

7.64

0.001
<

0.001
Cordulia 21.27 Tramea 20.75
shurtleffii 0.27 6 (0.47) Carolina3 f 0.38 20 (.44) -2.4 ns
Libellula
quadrimaculat
a 0.40 19

20.79 Libellula spp. 
(0.58)3 P 0.45 29

19.5
(•25) -9.11

<
0.001

Aeshna
interrupta 0.64 6

20.58 Gynacantha 
(0.68) nervosa3 f 0.63 3

21
(.35) 1.31 ns

Aeshna
palmata 0.65 9

22.25 Gynacantha 
(0.60) nervosa3 f 0.63 3

21
(.35) -4.07 0.025

Aeshna
eremita 0.86 6

22.38 Gynacantha 
(0.76) nervosa3 f 0.63 3

21
(.35)
25

-3.7 0.01

»f Anax junius3 f 1.04 4 (1.2) 3.67 ns
*Be= behavior-p = percher; f = flier 
**n = number tested for M FT
1 May 1998 -  Data from New Jersey
2 Vogt and Heinrich 1983 -  Data from Maine
3 May 1976 -  Data from Florida
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Table 2.3. Results of linear mixed model analysis of dragonfly activity.

Taxon Source Estimate SE df F  P
Sympetrum Time -2.450 3.144 1,52 0.61 Ns

danae Ta 6.9790 1.975 1, 52 12.48 0.0009
Sr -0.084 0.029 1,52 8.31 0.0057

Time2 0.3426 0.147 1,52 5.43 0.0237

Time x Ta -0.5082 0.125 1,52 16.37 < 0.0001
Time x Sr 0.0113 0.002 1,52 18.7 < 0.0001
Tax Sr -0.0028 0001 1,52 4.63 0.036

Leucorrhinia Time -5.2562 1.468 1, 120 12.82 0.0005
spp. Ta 1.1543 0.236 1, 120 23.88 < 0.0001

Sr 0.0066 0.004 1, 120 2.72 ns
Time2 0.1635 0.047 1, 120 11.87 0.0008

Cordulia Time 6.6614 1.290 1,91 26.67 <0.0001
shurtleffii Ta -0.5901 0.183 1,91 10.35 0.0018

Sr -0.0049 0.003 1,91 1.75 ns
Time2 -0.2115 0.042 1,91 24.57 < 0.0001

Libellula Time -5.415 2.119 1, 86 6.53 0.0124
quadrimaculata Ta 1.8473 0.302 1,86 37.13 0.0001

Sr 0.0024 0.006 1,86 0.14 ns
Time2 0.1553 0070 1,86 4.9 0.0295

Aeshna Time 0.1238 0.1089 1,149 1.29 ns
spp. Ta 0.1258 0.1252 1, 149 1.01 ns

Sr 0.0017 0.002 1, 149 0.51 ns
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