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Abstract

We present an axiomatic development of geometric algebra. One may think of a geometric

algebra as allowing one to add and multiply subspaces of a vector space. Properties of the

geometric product are proven and derived products called the wedge and contraction product

are introduced. Linear algebraic and geometric concepts such as linear independence and

orthogonality may be expressed through the above derived products. Some examples with

geometric algebra are then given.

v





Table of Contents

Page

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1: Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Grades resulting from multiplication . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Multiplication of two vectors . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Multiplication of a vector and a blade . . . . . . . . . . . . . . . . . . 15

1.2.3 Reversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.4 Multiplication of two blades . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Products derived from the geometric product . . . . . . . . . . . . . . . . . . 24

1.3.1 Outer or wedge product . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.2 Linear independence and the wedge product . . . . . . . . . . . . . . 26

1.3.3 The wedge of r vectors is an r-blade . . . . . . . . . . . . . . . . . . . 29

1.3.4 Left/right contraction . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.5 Scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.6 Cyclic permutation of the scalar product . . . . . . . . . . . . . . . . 33

1.3.7 Signed magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 Additional identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2: The geometry of blades . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Wedge product and containment . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Blades represent oriented weighted subspaces . . . . . . . . . . . . . . 40

vii



Page

2.1.2 Direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Contraction and orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 The contraction of blades is a blade . . . . . . . . . . . . . . . . . . . 48

2.2.2 Orthogonal complement . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Geometric, wedge and contraction relations . . . . . . . . . . . . . . . . . . . 53

2.4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Projection operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 3: Examples with geometric algebra . . . . . . . . . . . . . . . . . . 61

3.1 Lines and planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.2 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.3 The point of intersection of a line and a plane . . . . . . . . . . . . . 64

3.2 The Kepler Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Reflections and rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.2 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Finding the components of a vector . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 4: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Construction of a geometric algebra . . . . . . . . . . . . . . . . . . . . . . . 77

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii





Preface

The birth of Clifford algebra can be attributed to three mathematicians: Hermann Gun-

ther Grassmann, William Rowan Hamilton and William Kingdon Clifford. Grassmann con-

tributed greatly to the early theory of linear algebra, and one of those contributions was the

exterior, or wedge, product. Hamilton invented the quaternions, a way to extend the com-

plex numbers into 4 dimensions. Clifford synthesized the works of the two mathematicians

into an algebra that he coined geometric algebra.

The purpose of this thesis is to come to terms with geometric algebra. I originally became

interested in geometric algebra from my undergraduate physics teacher. I was informed by

him that geometric algebra would be the language used by physicists. I greatly admired

that man, and so I picked up the book recommended by him,“Clifford Algebra to Geometric

Calculus” by David Hestenes and Garret Sobczyk [HS84]. I was taken aback by the plethora

of identities with no meaning what so ever behind them. My advisor David Maxwell has

helped me greatly by asking me questions that I could not answer and could not find answers

to in [HS84]. That book is written more for physicists than mathematicians, I believe. I

realized that one way to understand this subject would be to start, as a mathematician

should, from a set of axioms and build up the theory of geometric algebra.

Chapter 1 deals with establishing the product of two vectors, then the product of a vector

and a blade, finally the product of a blade with a blade. The wedge, left/right contraction

and scalar product are introduced and identities involving them are derived. Chapter 2

deals with establishing the correspondence between a subspace and a blade. Subspaces are

then studied with the wedge and right contraction products. Chapter 3 deals with lines and

planes, the Kepler problem, rotations and reflections and finding components of a vector via

the wedge product.

My indebtedness goes to David Maxwell and John Rhodes for their numerous conversations

about many mathematical topics and their patience with me. Finally, I should like to express
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my thanks to the University of Alaska Fairbanks for their financial support in my academic

studies.
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Chapter 1

Preliminaries

We begin by defining a Clifford algebra over the reals, or as Clifford called it, a geometric

algebra. Henceforth we shall also use the name geometric algebra. After defining a geometric

algebra, we establish the result of the product of two blades. We find that the product of two

blades always has a highest and lowest grade resulting from multiplication. New products

will be defined based on the highest and lowest grade. Useful identities between the products

will be established that will facilitate quick and efficient computations.

1.1 Definitions

There are two common approaches to defining a geometric algebra. The axiomatic treatments

found in [HS84] and [DL03] have the merit of being more accessible, but these works lack

full rigor. On the other hand, the treatment in [Che97] is mathematically rigorous, but its

abstract, formal style lacks accessibility. Our approach is intermediate between the two. We

start with a set of axioms inspired by [HS84], but modified so as to allow for a rigorous

subsequent development.

Definition 1.1.1. A geometric algebra G is an algebra, with identity, over R with the

following additional structure:

1) There are distinguished subspaces G0,G1, . . . such that

G = G0 ⊕ G1 ⊕ · · · .

2) 1 ∈ G0.
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3) G1 is equipped with a non-degenerate, symmetric bilinear form B. Recall that a symmet-

ric bilinear form B on a vector space V is non-degenerate if

for all y ∈ V, B(x, y) = 0 implies x = 0.

4) For all a ∈ G1

a2 = B(a, a)1 ∈ G0.

5) For each integer r ≥ 2, Gr is spanned by all r-blades, where an r-blade is a product of r

mutually anti-commuting elements from G1. Recall that two elements a, b anti-commute

if ab = −ba.

Remark. The explicit multiplication by 1 will not be written. We shall write

a2 = B(a, a)

instead of

a2 = B(a, a)1;

that is we are identifying R ⊆ G0.

Definition 1.1.2. Elements of G will be called multivectors. Elements of Gr will be called

r-vectors and will be said to have grade r. Elements of G0 will be called scalars; elements

of G1 will be called vectors.

A general element of G is then a sum of r-vectors, where each r-vector is a sum of r-blades.

By our definition, a scalar is a 0-blade and a vector is a 1-blade.

Definition 1.1.3. Let Ar be an r-blade. A representation of Ar is a set {a1, . . . , ar} of

mutually anti-commuting vectors such that

Ar = a1 · · · ar.

Each ai is called a factor of the representation of Ar.
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Intuitively, an r-blade may be thought of as a weighted, oriented r-dimensional subspace

spanned by its factors.

Example 1.1.4. Let a be a 1-blade or a vector. We view this as a arrow with an orientation

specified by the direction of a. Let λ be a positive real number. Then λa is a scaling of a.

We may think of λa has having a weight of λ, relative to a.

Example 1.1.5. Let a1a2 be a 2-blade. We view this as a plane spanned by a1, a2 with

an orientation from a1 to a2. Let λ be a positive real number. Then λa1a2 has a weight λ,

relative to a1a2.

These informal ideas will become more precise later.

The bilinear form B allows one to associate lengths and spatial relations between vectors.

One particular spatial relation is orthogonality.

Definition 1.1.6. Let a, b be vectors. If B(a, b) = 0 we say that a and b are orthogonal.

If b2 = B(b, b) = 0 we say that b is a null vector.

A null vector is then, orthogonal to itself. We will later give an example of a geometric

algebra containing null vectors.

Let us look at some examples of geometric algebras. In the following, we use 〈A〉 to denote

the span of elements of A.

Example 1.1.7. Consider C as a vector space over R. Let G0 = 〈1〉 and G1 = 〈i〉. Then

C = G0 ⊕ G1. Equip G1 with the bilinear form B defined by B(i, i) = −1. Then C is a

geometric algebra by a straightforward verification.

We now construct a geometric algebra with a subspace G2.

Example 1.1.8. Let G be the free R-module over the set of formal symbols {1, e1, e2, e12}.
Let G1 = 〈e1, e2〉 be equipped with the symmetric bilinear form B such that

B(e1, e1) = B(e2, e2) = 1 and B(e1, e2) = 0.
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Note that B is non-degenerate. Multiplication is defined by the following table

1 e1 e2 e12

1 1 e1 e2 e12

e1 e1 1 e12 e2

e2 e2 -e12 1 -e1

e12 e12 -e2 e1 -1

It is a trivial, but tedious exercise, to show that this defines a group. Extending multi-

plication over addition by bilinearity defines a geometric algebra on G as can be shown by

straightforward calculations.

Since

e1e2 = −e2e1

and

e12 = e1e2,

by definition e12 is a 2-blade. It is straightforward to show that G2 = 〈e12〉. Let G0 = 〈1〉,
then

G = G0 ⊕ G1 ⊕ G2.

Let a, b ∈ G1. Then

a = α1e1 + α2e2, b = β1e1 + β2e2, α1, α2, β1, β2 ∈ R

Observe

ab = (α1e1 + α2e2)(β1e1 + β2e2)

= (α1β1 + α2β2) + (α1β2 − α2β1)e1e2.

Observe that the product ab, contains a scalar and a 2-blade. The scalar is the familiar dot

product from Euclidean geometry. The coefficient of e1e2 can be interpreted as the signed

area between a and b, signed in the sense of an orientation from e1 to e2. The geometric

product between two vectors measures, in some sense, how parallel and how orthogonal the

two vectors a and b are. For if a is a scalar multiple of b, then the coefficient of e1e2 is zero
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and ab = B(a, b). If B(a, b) = 0, then ab = (α1β2 − α2β1)e1e2.

Finally, notice that G+ = 〈1〉 + 〈e12〉 is a subalgebra of G. A straightforward verification

shows that mapping defined by 1 7→ 1, i 7→ e12 from C to G+ is an isomorphism. Therefore,

G contains the complex numbers. The unit i now has a geometric interpretation as a plane.

This example should be thought of as the geometric algebra, generated by e1 and e2, of the

plane represented by e1e2. We denote this geometric algebra by G(R2).

The construction of a geometric algebra associated with a finite dimensional vector space,

as presented in Example 1.1.8, can be a laborious task when the dimension of the vector

space is large. In the appendix, we give a theorem about the structure of an associated

geometric algebra over a finite dimensional vector space. The results of the theorem are the

following.

Theorem 4.1.8 Let V be a finite dimensional vector space over R equipped with a

non-degenerate symmetric bilinear form B. Then there exists an orthogonal non-null ba-

sis {e1, . . . , en} such that the geometric algebra associated of V , is the direct sum of the

subspaces spanned by ei1 · · · eir , 1 ≤ i1 < . . . < ir ≤ n.

For convenience, let ei1···ik = ei1 · · · eik . Given a vector space V , we use the notation G(V )

to denote the associated geometric algebra with V . By Theorem 4.1.8, G(V ) is a direct sum

of the subspaces Gr spanned by ei1···ir , 1 ≤ i1 < · · · < ir ≤ n.

Recall the summation convention that
∑

k α
kek = αkek. We shall use this convention un-

less otherwise stated. Let us look at an example of a geometric algebra of three-dimensional

space.

Example 1.1.9. Let G(R3) be the geometric algebra generated by 〈e1, e2, e3〉 with the bi-

linear form B defined so that the generators are orthogonal and square to 1. We have

G = 〈1〉 ⊕ 〈e1, e2, e3〉 ⊕ 〈e12, e23, e31〉 ⊕ 〈e123〉.

Let a, b ∈ G1, with

a = αkek, b = βkek.

Then

ab = (α1β1 + α2β2 + α3β3) + (α1β2 − α2β1)e12 + (α2β3 − α3β2)e23 + (α3β1 − α1β3)e31.
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Observe, as in Example 1.1.8, the product contains a scalar term, B(a, b) and a sum of bi-

vectors. Notice also that the coefficients of the bi-vectors are the coefficients from the cross

product a× b.
Furthermore, notice that G+ = 〈1〉 ⊕ 〈e12, e23, e31〉 forms a subalgebra of G. Let i = e12, j =

e31 and k = e23. Then

i2 = j2 = k2 = ijk = −1.

These are the rules of quaternion multiplication discovered by Hamilton. The quaternions

i, j, k may be interpreted as planes.

Let us look at a geometric algebra used in special relativity.

Example 1.1.10. Let G(M) be the geometric algebra generated by the orthogonal vectors

〈e0, e1, e2, e3〉 with the bilinear form B defined by

e20 = −e2k = 1 , k = 1, . . . , 3.

We have

G = 〈1〉 ⊕ 〈e0, e1, e2, e3〉 ⊕ 〈e01, e02, e03, e12, e13, e23〉 ⊕ 〈e012, e123, e230, e013〉 ⊕ 〈e0123〉.

Let x ∈ 〈e0, e1, e2, e3〉. Then x = xαeα, x
α ∈ R. Observe

x2 = B(xαeα, x
αeα) = (x0)2 − (x1)2 − (x2)2 − (x3)2

is the so called invariant interval of special relativity. In this geometric algebra there exist

non-zero vectors that are null. Let n = e0 + e1. Then

n2 = 1− 1 = 0.

There are bi-vectors that square to 1 and -1. Observe

(e01)
2 = e0e1e0e1 = −e20e21 = 1 and (e12)

2 = e1e2e1e2 = −e21e22 = −1.

With some examples in mind, let us recall a fact associated with a direct sum decompo-
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sition. Since G = G0 ⊕ G1 ⊕ · · · we have the associated projection maps

〈·〉r : G → Gr,

satisfying the following properties:

〈A+B〉r = 〈A〉r + 〈B〉r

〈λA〉r = λ〈A〉r if λ ∈ R

〈〈A〉r〉r = 〈A〉r.

We define 〈A〉k = 0 if k < 0.

There is a relationship between the bilinear form B and the geometric product between

vectors.

Proposition 1.1.11. Let a, b be vectors. Then B(a, b) =
ab+ ba

2
.

Proof. Since

(a+ b)2 = a2 + b2 + ab+ ba

or

ab+ ba = (a+ b)2 − a2 − b2

we have

ab+ ba = B(a+ b, a+ b)−B(a, a)−B(b, b)

= B(a, a) +B(b, a) +B(a, b) +B(b, b)−B(a, a)−B(b, b)

= 2B(a, b)

as claimed.

Corollary 1.1.12. ab = −ba if and only if B(a, b) = 0.

Therefore, anti-commutativity and orthogonality are equivalent.
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Proposition 1.1.13. Let a and b be linearly dependent vectors. Then their geometric product

commutes.

Proof. If a = λb, λ ∈ R, then ab = λbb = λb2 = b2λ = bbλ = ba.

We shall often work with inverses of elements of the geometric algebra. Let us first

characterize invertibility for vectors, and then generalize to blades.

Proposition 1.1.14. Let b be a non-zero vector. Then b is invertible if and only if b is

non-null. Moreover,

b−1 =
b

b2

when it exists.

Proof. Suppose that b is invertible. Then

bb−1 = 1

implies

b2b−1 = b.

Since b is invertible and 0 is not, b 6= 0 and we find

b2b−1 6= 0.

Hence,

b2 6= 0

and b is non-null. We may conclude that

b−1 =
b

b2
.

Conversely, suppose that b is non-null. We shall show that b−1 =
b

b2
.

b
b

b2
=
b2

b2
= 1

10



similarly
b

b2
b = 1. Thus, b−1 is as claimed.

We extend Proposition 1.1.14 to blades.

Proposition 1.1.15. Let Ar be a non-zero r-blade. Then Ar is invertible if and only if each

factor of each representation of Ar is non-null.

Proof. Suppose that Ar is invertible with a representation

Ar = a1 · · · ar

containing a null vector. We suppose that a21 = 0 without loss of generality. Observe that

a1Ar = a21a2 · · · ar = 0

implies

a1 = a1ArA
−1
r = 0

contradicting the fact that Ar is non-zero.

Conversely, suppose that each factor of some representation of Ar = a1 · · · ar is non-null.

By Proposition 1.1.14, each factor of the representation is invertible. A simple verification

shows that

A−1r = a−1r · · · a−11 .

1.2 Grades resulting from multiplication

In this section we prove some fundamental results concerning the product of two blades. In

particular, we show that the resulting grades of a product of two vectors is a scalar and a

2-vector, of a vector and an r-blade is an r− 1 and an (r+ 1)-vector and of an r and s-blade

is a sum starting at grade |s− r| and incrementing by grade 2, until grade r + s.
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1.2.1 Multiplication of two vectors

Definition 1.2.1. Let a and b be vectors, with b invertible. We call

π(a, b) = B(a, b)b−1 the projection of a onto b

and

ρ(a, b) = a− π(a, b) the rejection of a from b.

Lemma 1.2.2. Let a and b be vectors, with b invertible. Then π(a, b) commutes with b.

Proof. By Proposition 1.1.14,

π(a, b) = B(a, b)b−1 = B(a, b)
b

b2
=
B(a, b)

b2
b.

Therefore, π(a, b) and b are linearly dependent. By Proposition 1.1.13, π(a, b) and b commute.

Lemma 1.2.3. Let a and b be vectors, with b invertible. Then ρ(a, b) anti-commutes with

b. Thus,

ρ(a, b)b

is a 2-blade.

Proof. First note that

B(b, b−1) = B(b,
b

b2
) =

B(b, b)

b2
=
b2

b2
= 1.

Observe that

B(b, ρ(a, b)) = B(b, a− π(a, b))

= B(b, a)−B(b, π(a, b))

= B(b, a)−B(b, B(a, b)b−1)

= B(a, b)−B(a, b)B(b, b−1)

= B(a, b)−B(a, b)

= 0.
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By Corollary 1.1.12, ρ(a, b) and b anti-commute.

Although Proposition 1.1.11 establishes part of the following lemma, we give a different

proof using the notion invertibility.

Lemma 1.2.4. Let a and b be vectors, with b invertible. Then

ab+ ba

2
= B(a, b) and

ab− ba
2

= ρ(a, b)b.

Proof. Since

a = π(a, b) + ρ(a, b)

we have

ab = π(a, b)b+ ρ(a, b)b and ba = bπ(a, b) + bρ(a, b).

By Lemma 1.2.2 and Lemma 1.2.3,

ab+ ba = π(a, b)b+ ρ(a, b)b+ bπ(a, b) + bρ(a, b)

= 2π(a, b)b

= 2B(a, b)b−1b

= 2B(a, b)

and

ab− ba = π(a, b)b+ ρ(a, b)b− bπ(a, b)− bρ(a, b)

= 2ρ(a, b)b.

Proposition 1.2.5. Let a and b be vectors, with b invertible. Then

ab = 〈ab〉0 + 〈ab〉2.

Moreover,

〈ab〉0 = B(a, b).

13



Proof. Observe

ab =
ab+ ba

2
+
ab− ba

2
.

By Lemma 1.2.4,

ab = B(a, b) + ρ(a, b)b.

The result now follows since B(a, b) ∈ G0 and ρ(a, b)b ∈ G2.

In establishing Proposition 1.2.5 it was assumed that b was invertible. We now show the

proposition holds for null vectors as well.

Lemma 1.2.6. Let n be a null vector. Then there exists non-null vectors x, y such that

n = x+ y.

Proof. Suppose that n = 0. Since B is non-degenerate, there exists a vector x such that

B(x, x) 6= 0. Then n = x − x is a sum of non-null vectors. Suppose now that n 6= 0. Since

B is non-degenerate, there exists a vector x such that B(n, x) 6= 0. Let yλ = n− λx where

λ ∈ R \ {0}. Then

y2λ = λ(−2B(n, x) + λx2).

If x2 = 0, then

y2λ = −2λB(n, x) 6= 0.

So,

n =
1

2
y1 +

1

2
y−1

is a sum of non-null vectors..

If x2 6= 0, then choose

λ 6= 2B(n, x)

x2

so that yλ is non-null. Then

n = yλ + λx

is a sum of non-null vectors.

Theorem 1.2.7. Let a, b be vectors. Then

ab = 〈ab〉0 + 〈ab〉2.
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Proof. By Proposition 1.2.5, the result holds if b is non-null. Suppose that b is null. By

Lemma 1.2.6, there exists non-null vectors x, y such that b = x+ y. By Proposition 1.2.5,

ab = a(x+ y) = ax+ ay = 〈ax〉0 + 〈ax〉2 + 〈ay〉0 + 〈ay〉2
= 〈a(x+ y)〉0 + 〈a(x+ y)〉2 = 〈ab〉0 + 〈ab〉2

.

The product of two vectors gives a grade 0 and grade 2 term in the sum.

1.2.2 Multiplication of a vector and a blade

We will now generalize Theorem 1.2.7 to a vector and a blade. The resulting product will

be a sum of a vector of one less and one greater in grade than the original blade.

Definition 1.2.8. Let a and Ar be a vector and an invertible r-blade with a representation

Ar = a1 · · · ar. We define the projection of a onto Ar by

π(a, a1 · · · ar) =
r∑

k=1

B(a, ak)a
−1
k

and the rejection of a from Ar by

ρ(a, a1 · · · ar) = a− π(a, a1 · · · ar).

The map π is called the projection because it measures how much of a is in the span of the

factors a1, . . . , ar and ρ measures how much of a is not in the span of the factors a1, . . . , ar.

The formula for the projection π appears to depend on the choice of representation of the

blade, but we shall see that it is independent of choice of representation and similarly for ρ.

We use the following convention. Given a product of vectors

a1 · · · ǎk · · · ar,

the check indicates the the vector ak is not present in the product.
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Lemma 1.2.9. Let a and Ar be a vector and an invertible r-blade with representation Ar =

a1 · · · ar, respectively. Then

π(a, a1 · · · ar)Ar = (−1)r+1Arπ(a, a1 · · · ar).

Moreover,

π(a, a1 · · · ar)Ar

is an (r − 1)-vector.

Proof. Since a−1k anti-commutes with ai for i 6= k and commutes with ak we have,

π(a, a1 · · · ar)Ar =

(
r∑

k=1

B(a, ak)a
−1
k

)
a1 · · · ar

=
r∑

k=1

B(a, ak)a
−1
k a1 · · · ar

=
r∑

k=1

B(a, ak)(−1)k−1a1 · · · ǎk · · · ar (1.2.2.1)

= a1 · · · ar
r∑

k=1

(−1)k−1(−1)r−kB(a, ak)a
−1
k

= (−1)r+1Arπ(a, a1 · · · ar).

Referring to (1.2.2.1), since the r − 1 factors mutually anti-commute, we have a sum of r,

(r − 1)-blades. Hence,

π(a, a1 · · · ar)Ar

is an (r − 1)-vector.

Lemma 1.2.10. Let a and Ar be a vector and an invertible r-blade with representation

Ar = a1 · · · ar, respectively. Then

ρ(a, a1 · · · ar)ak = −akρ(a, a1 · · · ar) for k = 1, . . . , r.
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Proof. Let 1 ≤ j ≤ r. Observe

B(aj, ρ(a, a1 · · · ar)) = B(aj, a− π(a, a1 · · · ar)) = B(aj, a)−B(aj, π(a, a1 · · · ar))

= B(aj, a)−B(aj,
r∑

k=1

B(a, ak)a
−1
k ) = B(aj, a)−

r∑
k=1

B(a, ak)B(aj, a
−1
k )

= B(aj, a)−B(a, aj)B(aj, a
−1
j )−

r∑
k=1k 6=j

B(a, ak)B(aj, a
−1
k )

= B(aj, a)−B(aj, a)− 0 = 0.

By Corollary 1.1.12, ρ(a, a1 · · · ar) and aj anti-commute for 1 ≤ j ≤ r.

Lemma 1.2.11. Let a and Ar be a vector and an invertible r-blade with representation

Ar = a1 · · · ar, respectively. Then

ρ(a, a1 · · · ar)Ar = (−1)rArρ(a, a1 · · · ar).

Moreover,

ρ(a, a1 · · · ar)Ar

is an (r + 1)-blade.

Proof. By Lemma 1.2.10, ρ(a, a1 · · · ar) anti-commutes with each factor ak. Then

ρ(a, a1 · · · ar)Ar = ρ(a, a1 · · · ar)a1 · · · ar
= (−1)ra1 · · · arρ(a, a1 · · · ar)

= (−1)rArρ(a, a1 · · · ar).

Also, since each factor is anti-commuting we have that ρ(a, a1 · · · ar)Ar is an (r+1)-blade.

Proposition 1.2.12. Let a and Ar be a vector and an invertible r-blade, respectively. Then

aAr − (−1)rAra

2
= 〈aAr〉r−1 and

aAr + (−1)rAra

2
= 〈aAr〉r+1.
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Consequently,

aAr = 〈aAr〉r−1 + 〈aAr〉r+1 and Ara = 〈Ara〉r−1 + 〈Ara〉r+1.

Proof. Since

a = π(a, a1 · · · ar) + ρ(a, a1 · · · ar),

by Lemmas 1.2.9 and 1.2.11,

aAr + (−1)rAra = π(a, a1 · · · ar)Ar + ρ(a, a1 · · · ar)Ar + (−1)rArπ(a, a1 · · · ar)+

(−1)rArρ(a, a1 · · · ar)

= π(a, a1 · · · ar)Ar + ρ(a, a1 · · · ar)Ar + (−1)2r+1π(a, a1 · · · ar)Ar+

(−1)2rρ(a, a1 · · · ar)Ar
= 2ρ(a, a1 · · · ar)Ar

or
aAr + (−1)rAra

2
= ρ(a, a1 · · · ar)Ar.

A similar calculation shows that

aAr − (−1)rAra

2
= π(a, a1 · · · ar)Ar.

Then

aAr =
aAr − (−1)rAra

2
+
aAr + (−1)rAra

2

= π(a, a1 · · · ar)Ar + ρ(a, a1 · · · ar)Ar
= 〈aAr〉r−1 + 〈aAr〉r+1.

Similarly,

Ara = 〈Ara〉r−1 + 〈Ara〉r+1.

Remark. This shows that π, ρ are independent of choice of representation.
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Corollary 1.2.13. Let a and Ar be a vector and an invertible r-blade, respectively. Then

〈aAr〉r+1 = (−1)r〈Ara〉r+1

and

〈aAr〉r−1 = (−1)r+1〈Ara〉r−1.

Proof. By Proposition 1.2.12 and Lemmas 1.2.10 and 1.2.9,

〈aAr〉r+1 = ρ(a, a1, . . . , ar)Ar = (−1)rArρ(a, a1, . . . , ar) = (−1)r〈Ara〉r+1.

The other equality is established similarly.

We assumed throughout the invertibility of the blade to establish Proposition 1.2.12. In

the case when the vector space is finite dimensional, the result still holds for a vector and

any blade. Let Ar be an r-blade with a representation Ar = a1 · · · ar. Each factor of the

representation is a sum of orthogonal non-null vectors e1, . . . , en

ak =
n∑
i=1

αikei, k = 1, . . . , r.

Then

Ar = a1 · · · ar =
n∑

i1=1

αi11ei1 · · ·
n∑

ir=1

αirreir .

After expanding we find that Ar is a sum of invertible r-blades. Then as in the case of

vectors, by linearity of the projection operators we have

Theorem 1.2.14. Suppose that G1 is finite dimensional. Let a and Ar be a vector and

r-blade, respectively. Then

aAr = 〈aAr〉r−1 + 〈aAr〉r+1.

Remark. The author is working on a way to generalize Theorem 1.2.14 when the vector space

is not necessarily finite dimensional. As it currently stands, the following results involving

the product of blades only are known to hold in the finite dimensional case.

Note the general structure of the geometric product of a vector with an r-blade has a

sum of an r − 1 and (r + 1)-vector.
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Now that we have established the grades resulting from the product of a vector with a blade

we shall generalize to the product of a blade with a blade. To help with this generalization

we introduce a new map.

1.2.3 Reversion

We shall introduce a very useful map called reversion. Reversion allows one to reverse the

order of a product of multivectors and this is useful for algebra manipulations.

Definition 1.2.15. Let A ∈ G given by the unique sum A =
n∑
r=1

Ar, where Ar = 〈A〉r.

Then the reverse of A is

A† =
n∑
r=1

(−1)
r(r−1)

2 Ar.

Remark. Note that for an r-blade Ar, A
†
r = (−1)

r(r−1)
2 Ar. So, A†r is an r-blade as well. Also,

(A†)† = A; reversion is an involution.

If λ is a scalar

λ† = (−1)
0(0−1)

2 λ = λ,

and if a is a vector

a† = (−1)
1(1−1)

2 a = a.

The general pattern is as follows

+ + − − + + · · · ,

which we see has a period of 4.

Lemma 1.2.16. Let a and A be a vector and multivector, respectively. Then

(aA)† = A†a.

Proof. We show the result holds for an r-blade Ar. By Proposition 1.2.12 and Corollary
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1.2.13,

(aAr)
† = (〈aAr〉r−1 + 〈aAr〉r+1)

†

= 〈aAr〉†r−1 + 〈aAr〉†r+1

= (−1)
(r−1)((r−1)−1)

2 〈aAr〉r−1 + (−1)
(r+1)((r+1)−1)

2 〈aAr〉r+1

= (−1)
(r−1)((r−1)−1)

2 (−1)r+1〈Ara〉r−1 + (−1)
(r+1)((r+1)−1)

2 (−1)r〈Ara〉r+1

= (−1)
r2−r+4

2 〈Ara〉r−1 + (−1)
r2−r

2 〈Ara〉r+1

= (−1)
r(r−1)

2 (〈Ara〉r−1 + 〈Ara〉r+1)

= (−1)
r(r−1)

2 Ara

= A†ra
†.

If A ∈ G, then A =
∑

k〈A〉k. Hence,

(aA)† = (a
∑
k

〈A〉k)† = (
∑
k

a〈A〉k)† =
∑
k

(a〈A〉k)† =
∑
k

〈A〉†ka
† = (

∑
k

〈A〉k)†a = A†a.

Proposition 1.2.17. Reversion satisfies the following properties:

1) (AB)† = B†A†

2) (A+B)† = A† +B†

3) 〈A†〉r = 〈A〉†r

Proof. Properties 2) and 3) follow straightforwardly from the definition of reversion. To

establish 1) we shall show that (BsAr)
† = A†rB

†
s for any r-blade and s-blade by induction on

s. By Lemma 1.2.16, the results holds for s = 1. Now suppose that the statement holds for

some fixed s. Let Bs+1 be an (s + 1)-blade. We can factor Bs+1 = Bsb for some s-blade Bs
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and some vector b. By our induction hypothesis and Lemma 1.2.16,

(Bs+1Ar)
† = (BsbAr)

†

= (Bs〈bAr〉r−1 +Bs〈bAr〉r+1)
†

= (Bs〈bAr〉r−1)† + (Bs〈bAr〉r+1)
†

= 〈bAr〉†r−1B†s + 〈bAr〉†r+1B
†
s

= (〈bAr〉†r−1 + 〈bAr〉†r+1)B
†
s

= (〈bAr〉r−1 + 〈bAr〉r+1)
†B†s

= (bAr)
†B†s

= (A†rb
†)B†s

= A†r(b
†B†s)

= A†r(Bsb)
†

= A†rB
†
s+1.

By the principle of mathematical induction the result holds for all s ∈ N. That (AB)† = B†A†

for all A,B ∈ G now follows from expanding A and B as their unique sums of r-vectors.

1.2.4 Multiplication of two blades

We will now generalize Theorem 1.2.14 to a blade and a blade. The result will be a gener-

alization of our previous results and will be called the grade expansion identity.

Proposition 1.2.18 (Grade Expansion Identity). Let Ar and Bs be an r- and s-blade,

respectively. Then

ArBs =
m∑
k=0

〈ArBs〉|s−r|+2k where m = min{r, s}.

We begin with two lemmas.
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Lemma 1.2.19. Let Ar and Bs be an r- and s-blade, respectively. If s ≥ r, then

ArBs =
r∑

k=0

〈ArBs〉s−r+2k.

Proof. We proceed by induction on r. When r = 0 the result is evident. Suppose that for

some r the result holds for all s blades such that s ≥ r. Let Ar+1 be an (r+ 1)-blade and Bs

be an s-blade such that s ≥ r + 1. Since Ar+1 is an (r + 1)-blade we can write Ar+1 = aAr,

where Ar is an r-blade and a is a vector. By the induction hypothesis and Theorem 1.2.14,

Ar+1Bs = aArBs

= a
r∑

k=0

〈ArBs〉s−r+2k

=
r∑

k=0

a〈ArBs〉s−r+2k

=
r∑

k=0

(〈a〈ArBs〉s−r+2k〉s−r+2k−1 + 〈a〈ArBs〉s−r+2k〉s−r+2k+1)

=
r∑

k=0

(〈a〈ArBs〉s−r+2k〉s−(r+1)+2k + 〈a〈ArBs〉s−r+2k〉s−(r+1)+2k+2).

Also since Ar+1Bs ∈ G, we have the unique direct sum decomposition

Ar+1Bs =
∑
k

〈Ar+1Bs〉k.

We must have

〈Ar+1Bs〉s−(r+1)+2k+1 = 0

for k = 0, . . . , r and

〈Ar+1Bs〉k = 0
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for k ≥ s+ (r + 1) + 1. Hence,

Ar+1Bs =
r+1∑
k=0

〈Ar+1Bs〉s−(r+1)+2k.

By the principle of mathematical induction, the result holds.

Lemma 1.2.20. Let Ar and Bs be an r- and s-blade, respectively. If r ≥ s, then

ArBs =
s∑

k=0

〈ArBs〉r−s+2k.

Proof. Reversion is an involution and hence

ArBs = ((ArBs)
†)† = (B†sA

†
r)
†.

Since reversion doesn’t alter grade, by Lemma 1.2.19,

B†sA
†
r =

s∑
k=0

〈B†sA†r〉r−s+2k.

Then

ArBs =

(
s∑

k=0

〈B†sA†r〉r−s+2k

)†
=

s∑
k=0

〈B†sA†r〉
†
r−s+2k =

s∑
k=0

〈ArBs〉r−s+2k.

Proposition 1.2.18 follows from Lemmas 1.2.19 and 1.2.20.

We find from the grade expansion identity that the product of two blades is not necessarily

a blade but a sum of blades where the grade increases by two.

1.3 Products derived from the geometric product

In this section we introduce four new products: the wedge product, left/right contraction

and the scalar product. The right contraction and wedge product shall be used extensively

in Chapter 2.
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1.3.1 Outer or wedge product

The wedge product is the product of the so-called exterior algebra. We will show that the

wedge product is alternating and associative, an r-blade is the wedge product of r vectors,

and the wedge of r vectors is an r-blade. Finally, in the case of a finite dimensional vector

space, it is shown that the wedge of linearly independent vectors is not zero.

Definition 1.3.1. Let Ar and Bs be an r- and s-blade, respectively.

Then the outer or wedge product is

Ar ∧Bs = 〈ArBs〉r+s.

We extend the definition of the wedge product to multivectors by bilinearity.

Example 1.3.2. Consider G(R3), the geometric algebra from Example 1.1.9. Let

A = e12 and a = α1e1 + α2e2 + α3e3.

Consider

a ∧ A = 〈aA〉3
= 〈(α1e1 + α2e2 + α3e3)e12〉3
= 〈α1e112 + α2e212 + α3e312〉3
= 〈α1e2 − α2e1 + α3e123〉3
= α3e123.

Then, since e123 6= 0,

a ∧ A = 0 iff α3 = 0 iff a = α1e1 + α2e32 iff a ∈ 〈e1, e2〉

Intuitively, if a ∧ A = 0, then the line a is contained in the plane A. If a ∧ A 6= 0 then the

line a and plane A form a volume, which is a grade 3 object, formed from grade 1 and 2

objects.

Proposition 1.3.3. Let Ar, Bs and Ct be r, s and t-blades, respectively. Then
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Ar ∧ (Bs ∧ Ct) = (Ar ∧Bs) ∧ Ct (1.3.1.1)

Ar ∧Bs = (−1)rsBs ∧ Ar (1.3.1.2)

Proof. We follow [HS84]. By associativity and expanding (ArBs)Ct = Ar(BsCt) each side

with the grade expansion identity (Proposition 1.2.18) we have

Ar ∧ (Bs ∧ Ct) = Ar ∧ 〈BsCt〉s+t
= 〈Ar〈BsCt〉s+t〉r+(s+t)

= 〈Ar(BsCt)〉r+s+t
= 〈(ArBs)Ct〉(r+s)+t
= (Ar ∧Bs) ∧ Ct.

Noting that reversion is an involution and grade preserving, we further have

Ar ∧Bs = 〈ArBs〉r+s
= (〈(ArBs)

†〉r+s)†

= (−1)
(r+s)((r+s)−1)

2 (−1)
s(s−1)

2 (−1)
r(r−1)

2 〈BsAr〉r+s
= (−1)rsBs ∧ Ar

1.3.2 Linear independence and the wedge product

We establish the connection between linear independence and the wedge of a product of

vectors when the vector space is finite dimensional.

Corollary 1.3.4. Let a, b be vectors. Then

a ∧ b = −b ∧ a.
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Consequently,

a ∧ a = 0.

Proof. This follows immediately from Proposition 1.3.3.

We now show that the wedge of linearly dependent vectors is zero.

Proposition 1.3.5. If the collection of vectors {a1, . . . , ar} is linearly dependent, then a1 ∧
· · · ∧ ar = 0.

Proof. Since a1, . . . , ar are linearly dependent there exist scalars λ1, . . . , λr not all zero for

which

λ1a1 + · · ·+ λrar = 0.

Without loss of generality suppose that λ1 6= 0. By Corollary 1.3.4,

a1 ∧ a2 ∧ · · · ∧ ar = λ−11 (λ1a1) ∧ a2 ∧ · · · ∧ ar = −λ−11 (λ2a2 + · · ·+ λrar) ∧ a2 ∧ · · · ∧ ar = 0.

The converse of Proposition 1.3.5 will be given next, but first a lemma.

Lemma 1.3.6. Let a1 · · · ar be a representation of an r-blade. Then

a1 · · · ar = a1 ∧ · · · ∧ ar.

Proof. We proceed by induction on r. When r = 1 the result holds trivially. Suppose the

result holds for any r-blade. By the induction hypothesis,

a1a2 · · · ar+1 = a1(a2 ∧ · · · ∧ ar+1) = 〈a1(a2 ∧ · · · ∧ ar+1)〉r−1 + 〈a1(a2 ∧ · · · ∧ ar+1)〉r+1

= 〈a1a2 · · · ar+1〉r−1 + 〈a1(a2 ∧ · · · ∧ ar+1)〉r+1 = a1 ∧ (a2 ∧ · · · ∧ ar+1)

= a1 ∧ a2 ∧ · · · ∧ ar+1.

Corollary 1.3.7. Let dimG1 = n. Let A = {a1, . . . , ar} be a set of r ≤ n linearly indepen-

dent vectors. Then a1 ∧ · · · ∧ ar 6= 0.
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Proof. Since A is linearly independent we may extend it to a basis of G1

A ∪ {ar+1, . . . , an}.

Furthermore, by Lemma 4.1.2 proved in the appendix, there exists an orthogonal non-null

basis {e1, . . . , en} for G1 where each basis vector squares to ±1. Let L : G1 → G1 be the

linear map defined by

ak = L(ek), k = 1, . . . , n.

Since L maps a basis to a basis, L is non-singular. Suppose that

ak = L(ek) = αskes, k = 1, . . . , n.

By Lemma 1.3.6,

a1 ∧ · · · ∧ ar ∧ · · · ∧ an = αj11 ej1 ∧ · · · ∧ αjnn ejn
=
∑
σ∈Sn

(−1)σα
σ(1)
1 · · ·ασ(n)n e1 ∧ · · · ∧ en

= det(L)e1 · · · en
= det(L)I,

where I = e1 · · · en. Since each basis vector ei squares to ±1, we have II† = ±1. Therefore,

I 6= 0. Then since det(L) 6= 0 also, we cannot have a1 ∧ · · · ∧ ar = 0; else

det(L)I = a1 ∧ · · · ∧ ar ∧ · · · ∧ an = (a1 ∧ · · · ∧ ar) ∧ · · · ∧ an = 0,

a contradiction.

If the wedge of r vectors is zero, then the vectors must be linearly dependent. We have

the following result.

Proposition 1.3.8. An r-blade a1 ∧ · · · ∧ ar = 0 if and only if {a1, . . . , ar} is linearly

dependent.

In Chapter 2, Proposition 1.3.8 will allow the correspondence between blades and sub-

spaces to be made.
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1.3.3 The wedge of r vectors is an r-blade

We now show that the wedge of r vectors is an r-blade. Recall some basic facts from linear

algebra.

Lemma 1.3.9. Let V be a finite dimensional inner product space. Let T be a self-adjoint lin-

ear operator on V . Then there is an orthonormal basis for V each of which is a characteristic

vector for T .

Translating Lemma 1.3.9 into the language of matrices, we have the following.

Corollary 1.3.10. Let A be an n × n real symmetric matrix. Then there is an orthogonal

matrix P such that P TAP is diagonal.

Proposition 1.3.11. Let {a1, . . . , ar} be a set of vectors of G1. Then

a1 ∧ · · · ∧ ar

is an r-blade.

Proof. We follow the strategy of [DL03]. If the set of vectors is linearly dependent then

a1 ∧ · · · ∧ ar = 0, hence an r-blade. Suppose now that the vectors are linearly independent.

Let M be the matrix with entries B(ai, aj). Then M is real symmetric. So, there exists an

orthogonal matrix P = (pij) such that P TMP = D is diagonal. Let

ek = pjkaj, k = 1, . . . , r.

Then

B(ek, es) = B(pjkaj, p
i
sai) = pjkB(aj, ai)p

i
s

= (P T )kj(M)ji(P )is

= (D)ks.

Hence, with respect to our bilinear form B, the vectors e1, . . . , er are orthogonal. This means
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that

e1 · · · er = e1 ∧ · · · ∧ er
= pj11aj1 ∧ · · · ∧ pjrrajr
=
∑
σ∈Sr

(−1)σpσ(1)1 · · · pσ(r)ra1 ∧ · · · ∧ ar

= det(P )a1 ∧ · · · ∧ ar.

We used here the anti-symmetry of the wedge product. Since P is an orthogonal matrix, we

have det(P ) 6= 0. Then

a1 ∧ · · · ∧ ar = det(P )−1e1 · · · er

is an r-blade.

1.3.4 Left/right contraction

The left/right contraction products might be less familiar operations. The contractions are

not associative like the wedge product but an identity will be established connecting the two

products.

Definition 1.3.12. Let Ar and Bs be an r and s-blade, respectively. Then the

right contraction is

ArcBs = 〈ArBs〉s−r (read Ar contracted onto Bs)

and the

left contraction is

ArbBs = 〈ArBs〉r−s.

Let a, b be vectors. Then

acb = 〈ab〉0 = B(a, b).

The right contraction between the vector a and b is just the bilinear form B evaluated on

them. Furthermore, by definition if s < r then ArcBs = 0. In general the right contraction
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is not a commutative product. We extend the definition of the left/right contraction to

multivectors by bilinearity.

Example 1.3.13. Consider G(R3), the geometric algebra from Example 1.1.9. Let A = e12

and a = α1e1 + α2e2 + α3e3. Observe

acA = 〈aA〉1
= 〈(α1e1 + α2e2 + α3e3)e12〉1
= 〈α1e112 + α2e212 + α3e312〉1
= 〈α1e2 − α2e1 + α3e123〉1
= −α2e1 + α1e2.

Intuitively, this is a line in the plane A. Furthermore, observe

ac(acA) = 〈(α1e1 + α2e2 + α3e3)(α2e1 − α1e2)〉0
= 〈α1α2e11 − α2

1e12 + α2
2e21 − α2α1e22 + α3α2e31 − α3α1e32〉0

= 〈α1α2 − α2α1 − α2
1e12 + α2

2e21 + α3α2e31 − α3α1e32〉0
= 0.

We interpret acA as the line contained in the plane, orthogonal to the line a.

Consider

Ace123 = 〈e12123〉1 = −e3.

A more general interpretation for the intuition of this result is as follows. In the volume

represented by e123, the line represented by −e3 is most unlike the plane represented by A.

Proposition 1.3.14. Let Ar, Bs and Ct be r-,s- and t-blades, respectively. Then

Arc(BscCt) = (Ar ∧Bs)cCt. (1.3.4.1)

Proof. We follow [HS84]. By associativity and expanding (ArBs)Ct = Ar(BsCt) each side
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with the grade expansion identity (Proposition 1.2.18) we have if t ≥ s+ r

Arc(BscCt) = Arc〈BsCt〉t−s
= 〈Ar〈BsCt〉t−s〉t−s−r
= 〈〈ArBs〉s+rCt〉t−s−r
= 〈(Ar ∧Bs)Ct〉t−(r+s)
= (Ar ∧Bs)cCt

and if t < s+ r

Arc(BscCt) = 0 = (Ar ∧Bs)cCt,

since negative grades are zero.

Identity (1.3.4.1) will be very useful in Chapter 2.

Proposition 1.3.15. Let Ar and Bs be an r- and s-blade, respectively. Then

ArbBs = (−1)r(s−1)BscAr (1.3.4.2)

Proof. Recall that the reversion map is an involution and grade preserving. Observe

ArbBs = 〈ArBs〉r−s
= (〈(ArBs)

†〉r−s)†

= (−1)
(r−s)((r−s)−1)

2 (−1)
r(r−1)

2 (−1)
s(s−1)

2 〈BsAr〉r−s
= (−1)s(r−1)BscAr.

1.3.5 Scalar product

We introduce the scalar product to define the magnitude of a blade, which will be used in

Chapter 3. The product of two multivectors will be shown to commute under the scalar
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product. The scalar product is used heavily in [DL03].

Definition 1.3.16. Let Ar and Bs be an r- and s-blade, respectively. Then the scalar

product is

Ar ∗Bs = 〈ArB†s〉0.

We extend the definition of the scalar product to multivectors by bilinearity.

1.3.6 Cyclic permutation of the scalar product

Lemma 1.3.17. Let Ar and Br be r-blades, respectively. Then

Ar ∗Br = Br ∗ Ar.

Proof. Recall that the reversion map is an involution. Observe

Ar ∗Bs = 〈ArB†s〉0
= 〈(ArB†s)†〉0
= 〈BsA

†
r〉0

= Bs ∗ Ar.

Proposition 1.3.18. Let A,B ∈ G. Then

A ∗B = B ∗ A.

Proof. Let A,B be given by their unique sum

A =
∑
r

Ar, B =
∑
s

Bs,

respectively. Note first that 〈ArBs〉0 = 0 unless r = s, by the grade expansion identity

(Proposition 1.2.18). By Lemma 1.3.17,

〈AB〉0 = 〈
∑
r,s

ArBs〉0 =
∑
r

〈ArBr〉0 =
∑
r

〈BrAr〉0 =
∑
s,r

〈BsAr〉0 = 〈BA〉0.
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Corollary 1.3.19. Let A1, . . . , An ∈ G. Then

〈A1A2A3 · · ·An〉0 = 〈A2A3 · · ·AnA1〉0. (1.3.6.1)

Products of multivectors can be cyclically permuted under the scalar product.

1.3.7 Signed magnitude

For an r-blade Ar with a representation Ar = a1 · · · ar,

Ar ∗ Ar = 〈ArA†r〉0 = 〈a1 · · · arar · · · a1〉0 = a21 · · · a2r.

The scalar product defines in some sense a “magnitude” of a blade. But one must be careful

for the square of a factor may be non-positive.

Definition 1.3.20. Let Ar be an r-blade. Then the (squared) magnitude of Ar is

|Ar|2 = Ar ∗ Ar.

If λ is a scalar

|λ|2 = λ ∗ λ = λ2,

if a is a vector

|a|2 = a ∗ a = a2.

In general, for an r-blade,

|Ar|2 = Ar ∗ Ar = 〈ArA†r〉0 = (−1)
r(r−1)

2 A2
r. (1.3.7.1)

In the case that an r-blade is invertible, we have |Ar|2 6= 0. So,

|Ar|2 = ArA
†
r

which means

A−1r =
A†r
|Ar|2

=
(−1)

r(r−1)
2

|Ar|2
Ar.
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The inverse of a blade is just a scalar multiple of the blade.

Example 1.3.21. Consider G(R2). Let a = α1e1 + α2e2, b = β1e1 + β2e2. Then a ∧ b =

(α1β2 − α2β1)e12. The magnitude of a ∧ b is

|a ∧ b|2 = (a ∧ b)(a ∧ b)† = (α1β2 − α2β1)
2.

The squared magnitude of a ∧ b, may be interpreted as the square of the Euclidean area of

the parallelogram with sides a and b.

With the contraction and wedge products, we may write in our new symbols

aAr = acAr + a ∧ Ar, (1.3.7.2a)

acAr =
aAr − (−1)rAra

2
, (1.3.7.2b)

a ∧ Ar =
aAr + (−1)rAra

2
. (1.3.7.2c)

1.4 Additional identities

Proposition 1.4.1. Let Ar, Bs and a be an r-,s-blade and a vector, respectively. Then

ac(ArBs) = (acAr)Bs + (−1)rAr(acBs) (1.4.0.3a)

= (a ∧ Ar)Bs − (−1)rAr(a ∧Bs), (1.4.0.3b)

a ∧ (ArBs) = (a ∧ Ar)Bs − (−1)rAr(acBs) (1.4.0.4a)

= (acAr)Bs + (−1)rAr(a ∧Bs) (1.4.0.4b)

Proof. Identity (1.4.0.3a) will be proven, the others follow similarly. Let m = min{r, s}.
We follow the strategy of [HS84]. By the grade expansion identity (Proposition 1.2.18), and
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equation (1.3.7.2b),

2ac(ArBs) = 2ac
m∑
k=0

〈ArBs〉|r−s|+2k

= 2
m∑
k=0

ac〈ArBs〉|r−s|+2k

=
m∑
k=0

a〈ArBs〉|r−s|+2k − (−1)|r−s|+2k〈ArBs〉|r−s|+2ka

= a

m∑
k=0

〈ArBs〉|r−s|+2k − (−1)|r−s|
m∑
k=0

〈ArBs〉|r−s|+2ka

= aArBs − (−1)r+sArBsa

= (aAr − (−1)rAra+ (−1)rAra)Bs + (−1)rAr(−aBs + aBs − (−1)sBsa)

= 2(acAr)Bs + (−1)rAr2(acBs)

Corollary 1.4.2. Let Ar, Bs and a be an r-,s-blade and a vector, respectively. Then

ac(Ar ∧Bs) = (acAr) ∧Bs + (−1)rAr ∧ (acBs) (1.4.0.5)

a ∧ (ArcBs) = (acAr)cBs + (−1)rArc(a ∧Bs) (1.4.0.6)

Proof. The identities follow from Proposition 1.4.1 by projecting out and collecting the

highest and lowest grades.

We introduce the notion of containment only briefly. Much more will be said in Chapter

2.

Definition 1.4.3. Let Ar, Bs be r, s-blades, respectively. If a ∧ Ar = 0 implies a ∧ Bs = 0

we write Ar ⊂ Bs and say that Ar is contained in Bs.

Proposition 1.4.4. Let Ar, Bs and Ct be r-,s- and t-blades, respectively. If Ar ⊂ Ct, then

(ArcBs)cCt = Ar ∧ (BscCt). (1.4.0.7)
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Proof. We proceed by induction on r. Let r = 1. By identity (1.4.0.6),

A1 ∧ (BscCt) = (A1cBs)cCt + (−1)sBsc(A1 ∧ Ct) = (A1cBs)cCt.

Suppose the statement holds for some fixed r. Let Ar+1 be an (r+1)-blade, with Ar+1 ⊂ Ct.

We may write Ar+1 = a ∧ Ar where a and Ar is a vector and an r-blade, respectively. Note

that a,Ar ⊂ Ct. By the induction hypothesis, base case, and identity (1.3.4.1),

Ar+1 ∧ (BscCt) = a ∧ Ar ∧ (BscCt)

= a ∧ ((ArcBs)cCt)

= (ac(ArcBs))cCt
= ((a ∧ Ar)cBs)cCt
= (Ar+1cBs)cCt.

By the Principle of Mathematical induction the result holds for all r ∈ N.

Lemma 1.4.5. Let a, a1, . . . , ar ∈ G1. Then

1

2
(aa1 · · · ar − (−1)ra1 · · · ara) =

r∑
k=1

(−1)k−1Bka1 · · · ǎk · · · ar

where Bk = B(a, ak).

Proof. We induct on r and use Proposition 1.1.11. Let r = 1. By Proposition 1.1.11, the

result follows trivially. Suppose the statement holds for some r. By the induction hypothesis
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and Proposition 1.1.11,

aa1a2 · · · arar+1 = (
r∑

k=1

(−1)k−12Bka1 · · · ǎk · · · ar + (−1)ra1 · · · ara)ar+1

=
r∑

k=1

(−1)k−12Bka1 · · · ǎk · · · arar+1 + (−1)ra1 · · · araar+1

=
r∑

k=1

(−1)k−12Bka1 · · · ǎk · · · arar+1 + (−1)ra1 · · · ar(2Br+1 − ar+1a)

=
r+1∑
k=1

(−1)k−12Bka1 · · · ǎk · · · arar+1 + (−1)r+1a1 · · · arar+1a.

By the Principle of Mathematical Induction the result holds for all r ∈ N.

Note that the result holds for any product of vectors regardless of commuting or anti-

commuting and does not depend on the vectors being invertible.

Proposition 1.4.6 (Reduction Identity). Let a and Ar be a vector and an r-blade with

representation Ar = a1 · · · ar, respectively. Then

acAr =
r∑

k=1

(−1)k−1B(a, ak)a1 · · · ǎk · · · ar.

Proof. By equation (1.3.7.2b) and Lemma 1.4.5,

acAr =
aAr − (−1)rAra

2
=

r∑
k=1

(−1)k−1B(a, ak)a1 · · · ǎk · · · ar.

38



Chapter 2

The geometry of blades

This chapter shall discuss properties of the lowest and highest grade of a product of blades,

the contraction and wedge. With the wedge product, the notion of containment will be

introduced, which will allow the correspondence between blade and subspace. The right

contraction, which we shall call just the contraction, will allow us to generalize orthogonality

between blades. Much use of our algebraic machinery established in Chapter 1 will take place.

2.1 Wedge product and containment

In this section a correspondence between subspaces and blades is developed.

Definition 2.1.1. Let Ar and Bs be r- and s-blades, respectively. Then Ar is

contained in Bs, written Ar ⊂ Bs, if a ∧ Ar = 0 implies a ∧Bs = 0.

Containment is a transitive relation. That is, if Ar ⊂ Bs and Bs ⊂ Ct, then Ar ⊂ Ct; for

if a ∧ Ar = 0 then a ∧Bs = 0 so a ∧ Ct = 0.

Example 2.1.2. Consider the geometric algebra G(R3). Let A = e12 and suppose that

a ∧ A = 0. We showed in Example 1.3.2 that this is equivalent to a ∈ 〈e1, e2〉. Then

a = α1e1 + α2e2 for some scalars α1, α2. Observe

a ∧ e123 = 〈(α1e1 + α2e2)e123〉4 = 〈α1e23 + α2e31〉4 = 0.

Therefore, A ⊂ e123. Intuitively, e123 represents a volume, containing the plane A.

We show that containment in the sense of the wedge product means containment in the

sense of the span of a collection of vectors.
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Proposition 2.1.3. Let Ar be a non-zero r-blade with a representation Ar = a1 · · · ar. Then

b ∧ Ar = 0 if and only if b ∈ 〈a1, . . . , ar〉.

Proof. If b ∈ 〈a1, . . . , ar〉, then the set {b, a1, . . . , ar} is linearly dependent. By Proposition

1.3.8,

b ∧ Ar = 0.

Conversely, suppose that b ∧ Ar = 0. By Proposition 1.3.8, the set {b, a1, . . . , ar} is linearly

dependent and since {a1, . . . , ar} is linearly independent we have

b ∈ 〈a1, . . . , ar〉.

Definition 2.1.4. Let Ar be an r-blade. Then G1(Ar) = {a ∈ G1 : a ∧ Ar = 0}. We shall

call G1(Ar) the subspace representation of Ar.

Corollary 2.1.5. Let Ar be a non-zero r-blade with a representation Ar = a1 ∧ · · · ∧ ar.
Then G1(Ar) = 〈a1, . . . , ar〉.

Proof. This follows immediately from Proposition 2.1.3.

Given a blade, by Corollary 2.1.5, there is a corresponding subspace. In the next section

we show the converse.

2.1.1 Blades represent oriented weighted subspaces

With the notion of containment we now establish a correspondence between a subspace and

a blade.

Proposition 2.1.6. Let H be a subspace of vectors, dimH = m. Then there exists a non-

zero m-blade Hm for which G1(Hm) = H.

Proof. There exists a basis for H, {h1, . . . , hm}. By Proposition 1.3.11,

Hm = h1 ∧ · · · ∧ hm
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is an m-blade and is non-zero by Corollary 1.3.8. By Proposition 2.1.3,

G1(Hm) = H.

This is a key result, for it says that given a subspace there is a corresponding blade,

and that blade is the wedge between the basis elements. This allows one to do algebra with

subspaces.

Example 2.1.7. Consider the geometric algebra G(R3) and the subspace H = 〈e1, e2〉. A

blade representing the subspace is e1 ∧ e2 = e12. With this association, we may interpret

the subspace as having an orientation, from e1 to e2; and weight given by the area of the

parallelogram determined by e1 and e2 which is 1.

Consider the subspace L = 〈e1〉. A blade representing the subspace is e1. With this asso-

ciation, we may interpret the line as having the orientation specified by e1; and the weight,

which is 1. We could also use the blade −2e1. In this instance, the orientation is that of

−e1; and the weight is twice of e1, or 2.

Note the correspondence between the grade of a blade and the dimension of a subspace.

It will now be shown that any blade representing a subspace, will have its grade equal to the

dimension of the subspace.

Proposition 2.1.8. Let H be a subspace of vectors, dimH = m, and let Ak be a non-zero

k-blade. If G1(Ak) = H, then k = m.

Proof. Suppose that Ak has a representation Ak = a1∧· · ·∧ak and suppose that {h1, . . . , hm}
is a basis of H. By our hypothesis,

〈h1, . . . , hm〉 = 〈a1, . . . , ak〉.

Since the dimension of a vector space is unique and the a′ks are linearly independent, we

conclude that k = m.

We now show that two blades representing the same subspace, are scalar multiples of

each other.
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Proposition 2.1.9. If Am, Bm are non-zero m-blades that represent the same subspace of

dimension m, then Bm = λAm, λ ∈ R. Conversely, if Bm = λAm, then G1(Bm) = G1(Am).

Proof. By Proposition 2.1.6, the blades Am and Bm have the form

Am = h1 ∧ · · · ∧ hm, Bm = h′1 ∧ · · · ∧ h′m

where {h1, . . . , hm}, {h′1, . . . , h′m} are bases for the subspace. Then

h′k ∈ 〈h1, . . . , hm〉, k = 1, . . . ,m.

Therefore, there exist scalars η for which

h′k = ηskhs (sum on s), k = 1, . . . ,m.

Hence,

Bm = h′1 ∧ · · · ∧ h′m
= ηj11 hj1 ∧ · · · ∧ ηjmm hjm

=
∑
σ∈Sn

(−1)ση
σ(1)
1 · · · ησ(n)n h1 ∧ · · · ∧ hm

= λAm

where

λ =
∑
σ∈Sn

(−1)ση
σ(1)
1 · · · ησ(n)n .

The converse of the statement is trivial to prove.

If we take Am in the proposition above to have unit weight, then Bm will have a weight

of λ. The wedge product allows the correspondence between blades and subspaces. Even

though the correspondence is not unique it is essentially unique up to a scalar multiple. A

blade can be thought of as an oriented weighted r dimensional subspace.
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2.1.2 Direct sum

We show, under a simple condition, that the wedge of two blades may be interpreted as

the direct sum of their representative subspaces. We begin with a vector and blade then

generalize to a blade with a blade.

Example 2.1.10. Consider G(R3). Informally, if we interpret e1 and e2 as lines and e1 ∧ e2
representing a plane containing e1, e2. We may view e1 ∧ e2 as the direct sum of the lines

e1, e2.

Often we do not need a representation for a blade. When this is the case we will use

the symbol Ar to denote the collection of its factors; for example we may say {a,Ar} is a

linearly dependent set, which means that if Ar has a representation Ar = a1 ∧ · · · ∧ ar, then

{a, a1, . . . , ar} is a linearly dependent set.

Lemma 2.1.11. Let a and Ar be a vector and an r-blade, respectively. Then there exists a

non-zero vector b ⊂ a,Ar if and only if a ∧ Ar = 0.

Proof. Suppose there exists a non-zero vector b ⊂ a,Ar. By Proposition 2.1.3, b ∈ 〈a〉, 〈Ar〉
Then the set {a,Ar} is linearly dependent, so that by Corollary 1.3.8, a ∧ Ar = 0.

Conversely, suppose that a ∧ Ar = 0. Then {a,Ar} is linearly dependent. Suppose that Ar

has a representation Ar = a1 ∧ · · · ∧ ar. Then there exists scalars λ, λ1, . . . , λr not all zero

for which

λa+ λ1a1 + · · ·+ λrar = 0.

The set {a1, . . . , ar} is linearly independent so λ 6= 0 and there is a λk 6= 0. Then the vector

b = −λa = λ1a1 + · · ·+ λrar

is contained in a and Ar and is non-zero.

Proposition 2.1.12. Let a and Ar be a vector and an r-blade, respectively. If a ∧ Ar 6= 0,

then 〈a〉 ⊕ G1(Ar) = G1(a ∧ Ar).

Proof. Since a ∧ Ar 6= 0, by Lemma 2.1.11,

〈a〉 ∩ G1(Ar) = {0}.
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Let b ∈ G1(a ∧ Ar). Then b ∧ (a ∧ Ar) = 0 or b ∈ 〈a,Ar〉. If Ar has a representation

Ar = a1 · · · ar, then b = λa+ µ1a1 + · · ·µrar. Thus, b ∈ 〈a〉 ⊕ G1(Ar). So,

G1(a ∧ Ar) ⊆ 〈a〉 ⊕ G1(Ar).

Conversely, let v ∈ 〈a〉 ⊕ G1(Ar). Then v = λa+ µ1a1 + · · ·µrar. Therefore,

v ∧ a ∧ Ar = 0. So, v ∈ G1(a ∧ Ar). Hence,

〈a〉 ⊕ G1(Ar) ⊆ G1(a ∧ Ar).

Thus,

〈a〉 ⊕ G1(Ar) = G1(a ∧ Ar).

Let’s generalize Proposition 2.1.12. First we give a lemma similar in flavor to Lemma

2.1.11.

Lemma 2.1.13. Let Ar and Bs be non-zero r- and s-blades, respectively. Then

Ar ∧Bs = 0 if and only if there exists a non-zero vector b ∈ G1(Ar) ∩ G1(Bs).

Proof. Suppose there exists a non-zero vector b ∈ G1(Ar) ∩ G1(Bs). Then

b ∧ Ar = b ∧Bs = 0.

Suppose that we have a representation

Ar = a1 ∧ · · · ∧ ar, Bs = b1 ∧ · · · ∧ bs.

Then

{b, a1, . . . , ar}, {b, b1, . . . , bs}

are linearly dependent sets. Hence, there exists scalars λ, λ1, . . . , λr, µ, µ1, . . . , µs not all zero
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for which

λb+ λ1a1 + · · ·+ λrar = 0, (2.1.2.1)

µb+ µ1b1 + · · ·+ µsbs = 0. (2.1.2.2)

Since

{a1, . . . , ar}, {b1, . . . , bs}

are linearly independent sets, µ, λ 6= 0 and there is non-zero λk and µk. Multiplying (2.1.2.1)

and (2.1.2.2) by µ and λ, respectively, then subtracting we obtain

µλ1a1 + · · ·+ µλrar − λµ1b1 − · · · − λµsbs = 0.

Hence, the set

{a1, . . . , ar, b1, . . . , bs}

is linearly dependent. Thus,

Ar ∧Bs = 0.

Conversely, suppose that Ar ∧ Bs = 0. Then {Ar, Bs} is a linearly dependent set. Suppose

that Ar and Bs have a representation Ar = a1 ∧ · · · ∧ ar and Bs = b1 ∧ · · · ∧ bs, respectively.

There exist scalars λ1, . . . , λr, µ1, . . . , µs not all zero such that

λ1a1 + · · ·+ λrar + µ1b1 + · · ·+ µsbs = 0.

All the λ cannot be simultaneously zero; for Bs is non-zero, hence the factors of the repre-

sentation are linearly independent. Similarly, all the µ cannot be simultaneously zero. Then

the vector

b = λ1a1 + · · ·+ λrar = −µ1b1 + · · ·+−µsbs

is contained in Ar and Bs and is non-zero.

Proposition 2.1.14. Let Ar and Bs be an r- and s-blade, respectively. If Ar ∧Bs 6= 0, then

G1(Ar ∧Bs) = G1(Ar)⊕ G1(Bs).
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Proof. Since Ar ∧Bs 6= 0 by Lemma 2.1.13,

G1(Ar) ∩ G1(Bs) = {0}.

Suppose that Ar and Bs have a representation Ar = a1 ∧ · · · ∧ ar and Bs = b1 ∧ · · · ∧ bs. Let

v ∈ G1(Ar ∧Br). Then v ∧ (Ar ∧Bs) = 0 or v ∈ 〈a1, . . . , ar, b1, . . . , bs〉. Therefore,

v = λ1a1 + · · ·+ λrar + µ1b1 + · · ·+ µsbs ∈ G1(Ar)⊕ G1(Bs).

Hence,

G1(Ar ∧Bs) ⊆ G1(Ar)⊕ G1(Bs).

Let v ∈ G1(Ar)⊕ G1(Bs). Then

v = λ1a1 + · · ·+ λrar + µ1b1 + · · ·+ µsbs,

Ergo,

v ∧ Ar ∧Bs = 0.

Hence,

G1(Ar)⊕ G1(Bs) ⊆ G1(Ar ∧Bs).

Thus,

G1(Ar)⊕ G1(Bs) = G1(Ar ∧Bs).

Example 2.1.15. Consider the geometric algebra G(R3). Let a = e1 + e3 and b = e2 + e3.

Let H1 = 〈a, b〉 and H2 = 〈e1〉. Then a blade representation of H1 and H2 is A2 = a∧ b and

A1 = e1, respectively. Since A2 ∧ A1 = a ∧ b ∧ e1 = e321 6= 0. We have G1(A2) ⊕ G1(A1) =

G1(e321) = G1, the whole vector space.

2.2 Contraction and orthogonality

In this section we show that the contraction of a blade onto another blade is a blade, the

notion of orthogonality is generalized to blades. We will further introduce the notion of
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orthogonal complement.

Definition 2.2.1. Let Ar and Bs be an r- and s-blade, respectively, with r ≤ s. Then Ar

is orthogonal to Bs if ArcBs = 0.

Note that the blade being contracted onto must have the greater grade.

Example 2.2.2. Consider G(R3). Observe

e1c(e12) = 〈e1e12〉1 = e2.

Since the line e1 is contained in the plane e12, the line and plane are not orthogonal. Note

that the line obtained from e1 contracted onto the plane e12, e1ce12, is orthogonal to e1.

Observe

e3ce12 = 〈e3e12〉1 = 0.

The line e3 is orthogonal to the plane e12.

Observe

e12ce23 = 〈e1223〉0 = 0.

Therefore, the planes e12 and e23 are orthogonal. Note that the line e2 is contained in both

planes.

We have shown that a vector contained in a blade is in the span of the blade. We should

then expect a vector to be orthogonal to a blade precisely when it is orthogonal to each

vector in its span.

Proposition 2.2.3. Let a and Ar be a vector and an r-blade, respectively. Then acb = 0

for all b ⊂ Ar if and only if acAr = 0.

Proof. Let Ar have a representation Ar = a1 ∧ · · · ∧ ar. Suppose that b ⊂ Ar implies that

acb = 0. In particular, acak = 0, k = 1, . . . , r. By the reduction identity (Proposition 1.4.6),

acAr =
r∑

k=1

(−1)k−1(acak)a1 ∧ · · · ǎk · · · ∧ ar = 0.
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Conversely, suppose that acAr = 0. By the reduction identity (Proposition 1.4.6),

0 = acAr =
r∑

k=1

(−1)k−1(acak)a1 ∧ · · · ǎk · · · ∧ ar = 0. (2.2.0.3)

Wedge equation (2.2.0.3) with a1 to obtain

0 = (aca1)a2 ∧ · · · ∧ ar ∧ a1

Since Ar 6= 0, aca1 = 0. Similarly, acak = 0, k = 1, · · · , r. Now, if b ⊂ Ar, then b ∈
〈a1, · · · , ar〉. Hence, acb = 0 since a is orthogonal to each of the spanning vectors.

If a vector is not orthogonal to a blade then there exists a vector in the span of the blade

not orthogonal to the vector.

2.2.1 The contraction of blades is a blade

We have shown that acAr is an (r − 1)-vector, but a stronger statement can be made.

Lemma 2.2.4. Let a be a vector, Ar an r-blade. Then there exists vectors b1, . . . , br such

that acbk = 0, k ≥ 2 and

Ar = b1 ∧ · · · ∧ br.

Proof. Using an argument from [Chi12], suppose that Ar has a representation Ar = a1 ∧
· · · ∧ ar. By the reduction identity (Proposition 1.4.6),

acAr =
r∑

k=1

(acak)a1 ∧ · · · ǎk · · · ∧ ar. (2.2.1.1)

If a is orthogonal to all but one of the ak, say, a1 we have

acAr = (aca1)a2 ∧ · · · ∧ ar,

an (r − 1)-blade. Suppose after a suitable rearrangement of the given factors of Ar, that a

is orthogonal to ak+1, · · · , ar and not orthogonal to a1, · · · , ak, so that aca1 6= 0. Let

a′j = ac(a1 ∧ aj)(aca1)−1, j = 2, · · · , k (2.2.1.2)
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Then

aca′j = ac(ac(a1 ∧ aj)(aca1)−1)

= (a ∧ a)c((a1 ∧ aj)(aca1)−1)

= 0,

so a is orthogonal to a′j for j = 2, · · · , k. By the reduction identity (Proposition 1.4.6)

equation (2.2.1.2) may be rewritten to obtain,

aj = a′j + a1acaj(aca1)−1, j = 2, · · · , k.

Then

Ar = a1a2 · · · akak+1 · · · ar
= a1 ∧ a2 ∧ · · · ∧ ak ∧ ak+1 ∧ · · · ∧ ar
= a1 ∧ (a′2 + a1aca2(aca1)−1) ∧ · · · (a′k + a1acak(aca1)−1) ∧ ak+1 ∧ · · · ∧ ar
= a1 ∧ · · · ∧ a′2 ∧ · · · ∧ a′k ∧ ak+1 ∧ · · · ∧ ar.

By replacing this factorization for Ar into equation (2.2.1.1), we have returned to the initial

case.

Corollary 2.2.5. Let Ar and Bs be r- and s-blades, respectively, r ≤ s. Then there exist

vectors b1, . . . , bs−r such that

bk ∧Bs = 0, k = 1, . . . , s− r,

and

ArcBs = λb1 ∧ · · · ∧ bs−r, for some λ ∈ R.

Proof. We proceed by induction on r. By Lemma 2.2.4, the statement holds for r = 1.

Suppose the statement holds for all (r − 1)-blades. Let Ar be an r-blade. We may write

Ar = a∧Ar−1 where a is a vector and Ar−1 is an (r− 1)-blade. By the induction hypothesis
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there exist vectors b1, . . . , bs−(r−1) such that

bk ∧Bs = 0, k = 1, . . . , s− (r − 1)

and

Ar−1cBs = λb1 ∧ · · · ∧ bs−(r−1).

Then

ArcBs = (a ∧ Ar−1)cBs = ac(Ar−1cBs) = λac(b1 ∧ · · · ∧ bs−(r−1)).

By Lemma 2.2.4, there exist vectors b′1, . . . , b
′
s−(r−1) such that

b′k ∧ (Ar−1cBs) = 0, k = 1, . . . , s− (r − 1)

and

λac(b1 ∧ · · · ∧ bs−(r−1)) = λ(acb′1)b′2 ∧ · · · ∧ b′s−(r−1)

that is

ArcBs = λ(acb′1)b′2 ∧ · · · ∧ b′s−(r−1).

Finally, since

b′1, . . . , b
′
s−(r−1) ∈ 〈b1, . . . , bs−(r−1)〉

and

b1, . . . , bs−(r−1) ∈ 〈Bs〉

we may conclude that

b′1, . . . , b
′
s−(r−1) ∈ 〈Bs〉

or

b′k ∧Bs = 0, k = 1, . . . , s− (r − 1).

Corollary 2.2.6. Let a and Ar be a vector and an r-blade, respectively. Then acAr is an

(r − 1)-blade.

Proof. This follows directly from Lemma 2.2.4 and the reduction identity (Proposition 1.4.6).
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2.2.2 Orthogonal complement

Recall that ArcBs can be thought of as the geometric object contained in Bs, that is most

unlike Ar, “most unlike” in this context meaning, orthogonal. This is a generalized notion

of the orthogonal complement.

Proposition 2.2.7. Let a be a vector and Ar a non-zero r-blade, r 6= 1. Then

acAr ⊂ Ar

and

ac(acAr) = 0.

Proof. By Lemma 2.2.4 there exists vectors a1, . . . , ar such that

Ar = a1 ∧ · · · ∧ ar

and

acAr = (aca1)a2 ∧ · · · ∧ ar.

Suppose that b ∧ (acAr) = 0. Then

b ∈ 〈a2, . . . , ar〉 ⊂ 〈a1, . . . , ar〉.

Hence,

b ∧ Ar = 0.

Thus,

acAr ⊂ Ar.

Finally, by identity (1.3.4.1),

ac(acAr) = (a ∧ a)cAr = 0.

Note that the restriction on r 6= 1 in Proposition 2.2.7 is essential. Suppose that acA1 6= 0.
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Then

(acA1) ∧ A1 = 〈(acA1)A1〉1+0 = (acA1)A1 6= 0

and we do not have containment.

Let us generalize to the contraction of two blades. We shall see that Proposition 2.2.7

generalizes for blades. We show first that ArcBs is an (s − r)-blade, for an r- and s-blade

Ar and Bs, respectively.

Proposition 2.2.8. Let Ar and Bs be an r- and s-blade, respectively. Then ArcBs is an

(s− r)-blade.

Proof. This follows directly from Corollary 2.2.5.

Proposition 2.2.9. Let Ar and Bs be r- and s-blades, respectively, r ≤ s. Then

ArcBs ⊂ Bs

and

Arc(ArcBs) = 0.

Proof. By Corollary 2.2.5,

ArcBs = λb1 ∧ · · · ∧ bs−r

where

bk ∧Bs = 0, k = 1, . . . , s− r.

We shall show containment. Suppose that

b ∧ (ArcBs) = 0.

Then

b ∈ 〈b1, . . . , bs−r〉 ⊂ 〈Bs〉

or

b ∧Bs = 0.
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Thus,

ArcBs ⊂ Bs.

By equation 1.3.4.1,

Arc(ArcBs) = (Ar ∧ Ar)cBs = 0.

2.3 Geometric, wedge and contraction relations

In this section we find conditions for when the geometric product of two blades contains only

the highest or lowest possible grade in the resulting multiplication.

Proposition 2.3.1. Let Ar and Bs be r- and s-blades, respectively.

i) If for all a ⊂ Ar, acBs = 0 then ArBs = Ar ∧Bs.

ii) If Ar is invertible, then the converse of i) holds.

Proof. To show (i), we proceed by induction on r. When r = 1 the result follows from

equation (1.3.7.2a). Suppose the statement holds for all r-blades. Let Ar+1 be an (r + 1)-

blade for which a ⊂ Ar+1 implies that acBs = 0. We may write Ar+1 = bAr where b is a

vector and Ar is an r-blade. Since b, Ar ⊂ Ar+1, bcBs = 0 and if a ⊂ Ar then acBs = 0 since

Ar ⊂ Ar+1. By the induction hypothesis, the base case and identity (1.4.0.5)

Ar+1Bs = aArBs

= a(Ar ∧Bs)

= ac(Ar ∧Bs) + a ∧ Ar ∧Bs

= (acAr) ∧Bs + (−1)rAr ∧ (acBs) + Ar+1 ∧Bs

= Ar+1 ∧Bs.

Conversely, to show (ii), suppose that Ar is invertible and ArBs = Ar ∧ Bs. Suppose that

a ⊂ Ar. We will show that acBs = 0. We have

aAr = acAr.
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Consider

acBs = 〈aBs〉s−1
= 〈(acAr)A−1r Bs〉s−1
= 〈(acAr)A−1r ∧Bs〉s−1
= 0

for the lowest grade is r + s− (r − 1) = s+ 1 by the grade expansion identity.

Remark. If Ar is not invertible we are not guaranteed property ii); Consider e1, e2, e3 orthog-

onal vectors with e21 = e22 = 1 and e23 = 0. Let A2 = e1e3, B3 = e3e2e1. Since A2 has a null

vector it is not invertible. Observe

A2B3 = 0 = A2 ∧B3

and e1 ⊂ A2 while

e1cB3 = 〈e1e3e2e1〉2 = e3e2 6= 0.

Proposition 2.3.2. Let Ar and Bs be r- and s-blades, respectively.

i) If Ar ⊂ Bs, then ArBs = ArcBs.

ii) If Ar or Bs is invertible, then the converse of i) holds.

Proof. To show (i), we proceed by induction on r. When r = 1 the result is trivial. Suppose

the statement holds for all r-blades. Consider Ar+1 an (r+1)-blade for which Ar+1 ⊂ Bs. We

may write Ar+1 = aAr where Ar is an r-blade and a is a vector. Note that since Ar+1 ⊂ Bs,

then a,Ar ⊂ Bs and we may use identity (1.4.0.7). Observe

Ar+1Bs = a(ArBs)

= a(ArcBs)

= ac(ArcBs) + a ∧ (ArcBs)

= (a ∧ Ar)cBs + (acAr)cBs

= (aAr)cBs

= Ar+1cBs.
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Conversely, to show (ii), suppose that Ar is invertible and a ∧ Ar = 0. We shall show that

a ∧Bs = 0. By our hypothesis, we may write

a = (acAr)A−1r .

Then

a ∧Bs = 〈aBs〉s+1

= 〈aA−1r ArBs〉s+1

= 〈(acA−1r )(ArcBs)〉s+1

= 0

since the highest grade will be, by the grade expansion identity, (s − r) + (r − 1) = s − 1.

Suppose now that Bs is invertible. Then

Ar = (ArcBs)B
−1
s

since B−1s is a scalar multiple of Bs we have

Ar = (ArcBs)cB−1s ⊂ Bs.

2.4 Duality

We introduce the notion of dual when G1 has dimension n. It is shown that the subspace Gr

is isomorphic to Gn−r.
In Theorem 4.1.8 of the appendix, we show that

Gn = 〈e1 ∧ · · · ∧ en〉

where

{e1, . . . , en}
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is an orthogonal basis of non-null vectors squaring to ±1. Note that Gn has the same

dimension as G0.

Definition 2.4.1. Let I = e1 ∧ · · · ∧ en. Let A ∈ G. Then the dual of A with respect to I

is given by

A∗ = AI.

When the context is clear we just say A∗ is the dual of A.

We will now show that Gr and Gn−r are dual to each other.

Proposition 2.4.2. The subspaces Gr and Gn−r are canonically isomorphic as vector spaces.

Proof. It is straightforward to show ∗ is a linear map on G. Since each factor of I is invertible,

I is invertible. Therefore, ∗ is invertible and defines a linear isomorphism of G. We will show

that (Gr)∗ = Gn−r. By Corollary 2.1.5,

G1(I) = 〈e1, . . . , en〉 = G1.

Let Ar be an r-blade. If a∧Ar = 0, then a∧ I = 0 since a ∈ 〈e1, . . . , en〉. Therefore, Ar ⊂ I.

By Proposition 2.3.2,

A∗r = ArI = ArcI,

so A∗r is an (n− r)-blade.

Let An−r be an (n− r)-blade, then An−rI
−1 = An−rcI−1 is an r-blade and

(An−rI
−1)∗ = An−r.

Thus,

Gr ∼= Gn−r.

Let us now characterize relationships between a blade and its dual. Let Ar be an r-blade

such that A2
r 6= 0. Then

Ar ∧ A∗r = 〈ArArI〉n = A2
rI 6= 0.
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By Proposition 2.1.14,

G1(Ar)⊕ G1(A∗r) = G1(Ar ∧ A∗r) = G1(A2
rI) = G1.

The direct sum of the subspaces corresponding to Ar and its dual is the whole vector space,

when A2
r 6= 0. Furthermore,

ArcA∗r = 〈ArArI〉n−2r = A2
r〈I〉n−2r = 0.

A blade and its dual are orthogonal.

Proposition 2.4.3. (Duality relationships) Let Ar and Bs be an r- and s-blade, respectively.

Then

(Ar ∧Bs)
∗ = ArcB∗s (2.4.0.1)

(ArcBs)
∗ = Ar ∧B∗s . (2.4.0.2)

Proof. Observe

(Ar ∧Bs)
∗ = (Ar ∧Bs)cI = Arc(BscI) = ArcB∗s

and since Ar ⊂ I, we have by identity (1.4.0.7)

(ArcBs)
∗ = (ArcBs)cI = Ar ∧ (BscI) = Ar ∧B∗s .

With the use of the dual we see how the contraction and the wedge are dual to each

other. Let us show how a statement about the wedge product can be used to establish a

statement about the contraction product with the use of the duality relations.

Proposition 2.4.4. Let Ar and Bs be an r- and s-blade, respectively, r ≤ s. Then ArcBs = 0

if and only if there exists a non-zero vector a ⊂ Ar such that acBs = 0.
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Proof. By Lemma 2.1.13 and identity (2.4.0.2),

ArcBs = 0⇔ Ar ∧B∗s = 0

⇔ a ∈ G1(Ar) ∩ G1(B∗s ) \ {0}

⇔ a ∧ Ar = 0 and a ∧B∗s = 0

⇔ a ⊂ Ar and acBs = 0.

Note though that it need not be the case that all vectors contained in Ar are orthogonal

to Bs; consider the geometric algebra G(R3). Let A = e1e2 and B = e2e3. Then

AcB = 〈e1e2e2e3〉0 = 0

while e2 ⊂ A but

e2cB = 〈e2e2e3〉1 = e3 6= 0.

We now show that a vector orthogonal to a blade is orthogonal to any blade contained

in that blade.

Proposition 2.4.5. If Ar ⊂ Bs and bcBs = 0, then bcAr = 0.

Proof. Suppose Ar has a representation Ar = a1∧· · ·∧ar. Since Ar ⊂ Bs, a1, . . . , ar ∈ 〈Bs〉.
By Proposition 2.2.3, b is orthogonal to the a′ks. Again by Proposition 2.2.3, b is orthogonal

to Ar.

We now show that the dual reverses inclusion.

Proposition 2.4.6. If Ar ⊂ Bs, then B∗s ⊂ A∗r.

Proof. Let b ⊂ B∗s . By identity (2.4.0.1),

b ∧B∗s = 0⇒ bcBs = 0

⇒ bcAr = 0

⇒ b ∧ A∗r = 0.
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So, b ⊂ A∗r. Thus,

B∗s ⊂ A∗r.

2.5 Projection operator

In this section we show how to project blades onto other blades.

Definition 2.5.1. Let Bs be an invertible s-blade. Given an r-blade Ar the projection of

Ar onto Bs is

PBs(Ar) = (ArcBs)B
−1
s .

Since ArcBs ⊂ Bs, by Proposition 2.3.2,

PBs(Ar) = (ArcBs)cB−1s .

We may interpret the projection as the composition of two contractions onto the same space.

The projection of Ar onto Bs, is then the object most unlike ArcBs in Bs or the object most

like Ar in Bs. When discussing projections, the blade being projected onto is assumed to be

invertible.

Example 2.5.2. Consider G(R3). Let a = αkek, A = e12. Observe,

PA(a) = (acA)A−1 = (αkek)ce12 = (α1e2 − α2e1)ce21 = α1e1 + α2e2.

The projection thus projected the line a onto a line in the plane A. If a = α3e3, then

PA(a) = 0. If α3 = 0, then PA(a) = a. We may interpret this as geometric objects in the

plane are left fixed by PA, while geometric objects orthogonal to the plane are mapped to

zero.

The projection operator is now shown to have the properties of a projection.

Proposition 2.5.3. Let Ar and Bs be r- and s-blades, respectively. Then

(i) If Ar ⊂ Bs, then PBs(Ar) = Ar.
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(ii) If ArcBs = 0, then PBs(Ar) = 0.

(iii) P 2
Bs

(Ar) = PBs(Ar), (PBs is idempotent)

(iv) 〈PBs(A)〉r = PBs(〈A〉r), A ∈ G.

Proof. (i) If Ar ⊂ Bs, then by Proposition 2.3.2, ArBs = ArcBs, since Bs is invertible.

Therefore,

PBs(Ar) = (ArcBs)B
−1
s = ArBsB

−1
S = Ar.

(ii) This is immediate from the definition of PBs .

(iii) Since PBs(Ar) ⊂ Bs, by Proposition 2.3.2,

PBs(Ar)cBs = PBs(Ar)Bs.

Observe,

P 2
Bs

(Ar) = PBs(PBs(Ar)) = (PBs(Ar)cBs)B
−1
s = PBs(Ar)BsB

−1
s = PBs(Ar).

(iv) This follows from linearity of the projection operator and the direct sum decomposition.
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Chapter 3

Examples with geometric algebra

The language of geometric algebra is used to discuss analytic geometry, namely lines and

planes; reflections and rotations; the Kepler problem; and finding components of vectors.

3.1 Lines and planes

In this section the wedge product is used to describe lines and planes. The geometric algebra

G(Rn), will be used to model n-dimensional Euclidean space.

3.1.1 Lines

We follow [Hes99]. In this subsection it will be shown that a line is uniquely specified by a

vector u and a bivector M such that u ∧M = 0. The vector specifies the direction of the

line and the bivector specifies the angular momentum of the line.

Let u be a fixed, non-zero, vector and let x be a vector. By Proposition 1.3.8,

x ∧ u = 0

is equivalent to

x = λu, λ ∈ R.

The equation

x ∧ u = 0 (3.1.1.1)
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therefore describes a line passing through the origin. A line passing through a 6= 0, is given

by

(x− a) ∧ u = 0 (3.1.1.2)

or

x = a+ λu. (3.1.1.3)

Equation (3.1.1.3) gives the familiar parameterized form of a line passing through some

point offset from the origin, while equation (3.1.1.2) describes the line by an equation (i.e.

implicitly).

Let M = a ∧ u. We may write (3.1.1.2) as

x ∧ u = M. (3.1.1.4)

Since equation (3.1.1.2) is homogeneous, we may suppose that u is of unit magnitude so that

u−1 = u. Since

xu = xcu+ x ∧ u = xcu+M,

we obtain

x = (α +M)u, α = xcu.

Let d = Mu = Mbu. Since du = Muu = M , we obtain

d ∧ u = M and dcu = 0.

This means that d is contained on the line and is orthogonal to u. We may write

x = αu+ d

and observe that

x2 = α2 + d2

is minimal when α = 0. Hence, d is on the line and of minimal distance from the origin. In

the literature, d is called the directance for ‘directed distance’ and the bivector M , is called

the moment of the line. The name moment may be made clearer with the following example.

Suppose a particle of unit mass has position x given by equation (3.1.1.3) with parameter λ
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representing time. Then the velocity of the particle is v = u. The moment of momentum,

or angular momentum, is then x ∧ v = (a+ λu) ∧ u = a ∧ u, which is precisely the bivector

M as given in equation (3.1.1.4).

If we are given a bivector M and a vector u, with the condition that u ∧M = 0, we may

uniquely form a line by defining the set of points satisfying

x = (α +M)u, α ∈ R.

We see

(x−Mu) ∧ u = αu ∧ u = 0

is a line with direction u, passing through the point Mu.

3.1.2 Planes

Let U be a fixed, non-zero, bivector and x a vector. The equation of a plane passing through

the point a is given by

(x− a) ∧ U = 0 (3.1.2.1)

Since equation (3.1.2.1) is homogeneous we may suppose that U has unit magnitude, so that

U2 = −1. We may express this in a more familiar form. Suppose that U has a representation

U = u1u2. Then equation (3.1.2.1) is equivalent to

(x− a) ∈ 〈u1, u2〉

or

x = a+ α1u1 + α2u2, α1, α2 ∈ R.

Let T = a ∧ U . Suppose that a is not contained in U , so that T is a nonzero trivector. We

may write equation (3.1.2.1) as

x ∧ U = T.

Let d = TU−1 = U−1cT .

Since

dU = TU−1U = T,
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we obtain

d ∧ U = T and dcU = 0.

This means that d is contained on the plane and is orthogonal to U . We solve for x,

xU = xcU + x ∧ U = xcU + T.

Hence,

x = (xcU)U−1 + TU−1 = (xcU)U−1 + d.

The quantity

(xcU)U−1

is the projection of x into the bivector U . We have

x2 = ((xcU)U−1)2 + d2

which is a minimum when

(xcU)U−1 = 0.

Hence, d is on the plane and of minimal distance from the origin. The vector d is called the

directance.

3.1.3 The point of intersection of a line and a plane

Let n = 3. Then given a 3-blade I and a vector z, by Theorem 4.1.8 in the appendix,

z ∧ I = 〈zI〉4 = 0. (3.1.3.1)

Suppose that we have a line and plane given by

(x− a) ∧ u = 0, (y − b) ∧ U = 0

for fixed vectors a, b, u and bivector U and u, U 6= 0. Suppose there exists a point of

intersection p, i.e.

(p− a) ∧ u = 0 , (p− b) ∧ U = 0
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Let us determine the point. Define

z = p− a.

Then we have from our relations

z ∧ u = 0, (z + a− b) ∧ U = 0

or

z ∧ u = 0, z ∧ U = (b− a) ∧ U.

By equations (3.1.3.1) and (1.4.0.5),

z(u ∧ U) = zc(u ∧ U)

= (zcu) ∧ U − u ∧ (zcU)

= (zcu)U − u ∧ (zcU)

= zuU − u ∧ (zcU)

= uzU − u ∧ (zcU)

= u(zcU + z ∧ U)− u ∧ (zcU)

= uc(zcU) + u ∧ (zcU) + u(z ∧ U)− u ∧ (zcU)

= (u ∧ z)cU + u(z ∧ U)

= ((b− a) ∧ U)u

Hence,

(p− a)(u ∧ U) = z(u ∧ U) = ((b− a) ∧ U)u (3.1.3.2)

From analytical geometry we would expect either 0, 1 or infinitely many solutions. Let us

examine the possible cases:

Case 1: suppose that a = b.

If u ∧ U = 0, then the line, u, is contained in the plane, U , and we should expect infinitely

many solutions. Indeed, by equation 3.1.3.2,

(p− a)0 = 0.
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This suggests that there are infinitely many solutions.

If u ∧ U 6= 0, then the line is passing through the plane at a = b and we should expect one

point of intersection, namely a = b. Indeed, since u ∧ U is invertible, by equation 3.1.3.2,

p = a.

Case 2: suppose that a 6= b.

If u ∧ U = 0, then when translated to the origin the line is contained in the plane. Then

either (b− a) ∧ U = 0 or (b− a) ∧ U 6= 0. If (b− a) ∧ U = 0, then a and b are on the plane

and there should be infinitely many solutions. Indeed, by equation 3.1.3.2,

(p− a)0 = 0.

This suggests that there are infinitely many solutions. If (b − a) ∧ U 6= 0, then a is not on

the plane and there should be no solution. Indeed, since u and (b− a) ∧ U are invertible, if

such a solution existed, by equation 3.1.3.2,

0 = 1,

a contradiction.

If u∧U 6= 0, then the line is not in the plane and we should expect one solution. Indeed, by

equation 3.1.3.2,

p =
((b− a) ∧ U)u

u ∧ U
+ a

which is a unique point.

3.2 The Kepler Problem

We follow [Hes99] and [DL03]. The Kepler Problem is to determine the orbit given the

inverse square law of gravitation. Before we begin to solve for the orbit, let us recall a

definition of a conic section.

Let d = δê, ê2 = 1, be the directance of some plane offset from the origin. A point
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r = |r|r̂, r̂2 = 1, is on the conic section if its magnitude satisfies the relation

|r|
δ − rcê

= ε,

this is known as the polar form of a conic section and the quantity r̂ce = e cos θ. The number

ε is called the eccentricity. Let e = εê. We may solve for |r|,

|r| = εδ

1 + r̂ce
. (3.2.0.3)

The number εδ, is the semi-latus rectum. We shall show that the orbit satisfies (3.2.0.3).

Suppose that we are given a force

F = − k

|r|3
r,

k is a proportionality constant. By Newton’s second law,

mr̈ = mv̇ = − k

|r|3
r.

Define the angular momentum by

L = mr ∧ v.

Note that v ∧ L = r ∧ L = 0, i.e., v, r are contained in the plane L. (Therefore, all the

dynamics takes place on the plane L.) Observe

L̇ = mṙ ∧ v +mr ∧ v̇

= mr ∧ − k

m|r|3
r

= 0,

and so L is conserved. Since L is a 2-blade, this means that neither the orientation, weight

nor attitude in space changes. Let

r̂ =
r

|r|
.

Then

r̂ · r̂ = 1.
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After differentiation we obtain

2r̂ · ˙̂r = 0.

Hence,

r̂ ˙̂r = − ˙̂rr̂.

Since

v = ṙ and r = |r|r̂

we have

v = ˙|r|r̂ + |r| ˙̂r.

The angular momentum is

L = mr ∧ v = m(|r|r̂) ∧ ( ˙|r|r̂ + |r| ˙̂r) = m|r|2r̂ ∧ ˙̂r = m|r|2r̂ ˙̂r.

Then

Lv̇ = −L k

m|r|3
r = −m|r|2r̂ ˙̂r

k

m|r|3
r = k ˙̂r.

Since L, k are constants,
d

dt
(Lv − kr̂) = 0.

Then

Lv − kr̂ = ke

or

Lv = k(r̂ + e)

where e is a constant vector. In the literature, e is called the eccentricity vector. The scalar

part of the equation

L(vr) = k(r̂ + e)r

is

L(v ∧ r) = k(r̂ + e)br.

Then

k(|r|+ rce) =
LL†

m
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or

|r| =
|L|2
mk

1 + r̂ce
.

This is the equation of a conic with eccentricity ε = |e| and semi-latus rectum |L|2
mk

.

As is known the energy, E, is conserved and is given by

E =
1

2
mv2 − k

r
.

We show that if L 6= 0, then E is determined by the angular momentum L and the eccentricity

vector e. Recall that

Lv = k(r̂ + e).

After solving for ke and squaring we obtain

k2e2 = (ke)(ke)†

= (Lv − kr̂)(Lv − kr̂)†

= (Lv − kr̂)(vL† − kr̂)

= LvvL† − Lvkr̂ − kr̂vL† + kr̂kr̂

= |L|2v2 + k2 − k(Lvr̂ + r̂vL†)

= |L|2v2 + k2 + k(vLr̂ + r̂vL)

= |L|2v2 + k2 + 2k(r̂c(vcL)

= |L|2v2 + k2 +
2k

m|r|
(mr ∧ v)cL

= |L|2v2 + k2 − 2k

m|r|
|L|2

so that

k2(e2 − 1) = |L|2(v2 − 2k

m|r|
).

The quantity

v2 − 2k

m|r|

69



must be constant for every other quantity is a constant. Observe that the quantity is

2E

m
.

Hence, E is a constant that is already built into the other constants of motion L and e.

3.3 Reflections and rotations

In this section we will express reflections and rotations in the language of geometric algebra.

The effect of two reflections is a rotation, which takes place in a plane. The result holds for

any dimension. We shall suppose the standard Euclidean inner product for the bilinear form

B.

3.3.1 Reflections

Definition 3.3.1. Let v be a vector of unit magnitude. The reflection of u about the vector

v is given by

Uv(u) = vuv.

Let u‖ = (ucv)v and u⊥ = u − u‖ denote the component of u parallel to v and perpen-

dicular to v, respectively. To compare this with the standard formula of a reflection about

a line, we compute

Uv(u) = vuv

= v(uv)

= v(−vu+ 2ucv)

= −v2u+ 2(ucv)v

= −u+ 2(ucv)v

= u‖ − u⊥.

We see explicitly, that the reflection of u about the vector v reflects the component perpen-

dicular to v.
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3.3.2 Rotations

Let us reflect u about v and then w. Observe,

UwUv(u) = Uw(vuv)

= wvuvw

= (vw)†u(vw). (3.3.2.1)

Let ψ = vw. The multivector ψ is called a rotor. Note that

ψ†ψ = ψψ† = 1.

In the literature, see [DS07] for example, a rotor R is defined as a geometric product of an

even number of unit vectors such that RR† = 1.

Let us examine ψ when B(v, w) = 0. Since B(v, w) = 0,

ψ† = wv = −vw = −ψ.

Notice that

vψ = v(vw) = w and wψ = w(vw) = −v.

We may interpret this as v has been rotated by π
2

into w. Similarly, w has been rotated by
π
2

into −v. Intuitively, the bivector ψ = v∧w specifies a plane, and when acting on a vector

on the right produces a rotation by π
2
. Let us examine this action on a general vector in the

plane v ∧ w. If u ∈ 〈v, w〉, then u = αv + βw. We have

uψ = αw − βv.

The vector u has been rotated in the plane v ∧ w by π/2 radians. We may compound this

rotation further by an additional π/2. Observe,

ψ†uψ = −uψ†ψ = −u.

We observe that u has been rotated π in the plane v ∧ w.
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Let s be a vector such that sc(v ∧ w) = 0, i.e., s is perpendicular to the plane v ∧ w. By

identity (1.3.1.2),

sψ = s(v ∧ w) = (v ∧ w)s = ψs.

Observe,

ψ†sψ = ψ†ψs = s.

We see that vectors perpendicular to the plane v∧w are not effected by the two sided action

of v ∧ w. Let x ∈ V . We may write

x = u+ s

where u and s are contained in and perpendicular to the plane v ∧ w, respectively. Then

ψ†xψ = ψ†(u+ s)ψ = ψ†uψ + ψ†sψ = −u+ s.

Intuitively, given a vector, we may rotate, in this particular case by π, only the component

of the vector contained in the plane. This result holds in any dimension.

Let us consider the general case when B(v, w) is not necessarily zero. Then

ψ = vw = vcw + v ∧ w.

Let θ
2
, 0 < θ

2
< π, be the angle between v and w. Then

vcw = cos
θ

2
.

This means that

|v ∧ w|2 = 〈(v ∧ w)(w ∧ v)〉0
= 〈(vw − vcw)(wv − wcv)〉0
= 〈vwwv + (vcw)2 − 2(vcw)2〉0
= 1− (vcw)2

= 1− cos2
θ

2

= sin2 θ

2
.
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So,

|v ∧ w| = sin
θ

2
.

Let

R̂ =
v ∧ w
sin θ

2

.

Observe, by equation 1.3.7.1,

R̂2 =
(v ∧ w)2

sin2 θ
2

=
−|v ∧ w|2

sin2 θ
2

= −1.

Then

ψ = cos
θ

2
+ R̂ sin

θ

2
.

Observe that,

ψ†ψ = ψψ† = 1.

Let us examine equation 3.3.2.1 when u ∈ 〈v, w〉. In this case we have

uR̂ = −R̂u

which means that

ψ†u = uψ.

Hence,

ψ†uψ = uψ2 = u(cos θ + R̂ sin θ).

We may interpret this result as u has been rotated in the plane v ∧w by an angle θ. To see

this, recall that R̂ be interpreted as rotating u by π/2 in the v∧w plane. Then uψ2 is a sum

of orthogonal vectors u and uR̂ that have been scaled appropriately by cos θ and sin θ such

that the sum of each length, gives the length of u.

Let us now examine equation 3.3.2.1 when sc(v ∧ w) = 0. In this case we have

sR̂ = R̂s

which means that

ψ†sψ = ψ†ψs = s.
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We see that vectors perpendicular to the plane v ∧ w are not rotated. Let x ∈ V . We may

write

x = u+ s

where u and s are contained in and perpendicular to the plane v ∧ w, respectively. Then

ψ†xψ = ψ†(u+ s)ψ = ψ†uψ + ψ†sψ = uψ2 + s.

Intuitively, given a vector, we may rotate the component of the vector contained in the plane

by twice the angle between the vectors representing the blade. This result holds in any di-

mension.

3.4 Finding the components of a vector

We follow the strategy of [Lou04]. One is familiar with finding the components of a vector

with respect to a basis by projecting the length of the vector in question onto the basis. An-

other method to calculate the components, may be viewed by using ratios of Euclidean areas.

Let a, b ∈ Rn linearly independent, so a ∧ b is invertible. Suppose that v ∈ Rn is such

that v ∧ a ∧ b = 0, so v ∈ 〈a, b〉. Then

v = αa+ βb, α, β ∈ R.

We proceed to determine α and β. Wedging by a we find that

a ∧ v = βa ∧ b

or

β =
a ∧ v
a ∧ b
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and wedging by b we find

α =
v ∧ b
a ∧ b

.

So

v =
v ∧ b
a ∧ b

a+
a ∧ v
a ∧ b

b.

Example 3.4.1. Let e1, e2 be an orthonormal basis. Let

a = e1 − 2e2, b = e1 + e2, and v = 5e1 − e2.

We calculate α and β in the linear combination

v = αa+ βb.

We have

a ∧ b = 〈(e1 − 2e2)(e1 + e2)〉2 = 3e1e2,

v ∧ b = 〈(5e1 − e2)(e1 + e2)〉2 = 6e1e2

and

a ∧ v = 〈(e1 − 2e2)(5e1 − e2)〉2 = 9e1e2.

Then

α =
6e1e2
3e1e2

= 2

and

β =
9e1e2
3e1e2

= 3

so that

v = 2a+ 3b.

We may generalize to n vectors as follows. Let {bi} be a linearly independent set of

vectors. Then if v ∧ b1 ∧ · · · ∧ br = 0 (i.e., v ∈ 〈b1, . . . , br〉) we have

v =
r∑

k=1

(−1)r−k
b1 ∧ · · · ∧ b̌k ∧ · · · ∧ br ∧ v

b1 ∧ · · · ∧ br
bk.

We see that the components of v are ratios of “hypervolumes”.
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Chapter 4

Appendix

4.1 Construction of a geometric algebra

We will show in Theorem 4.1.8 below, how, given a finite dimensional vector space and a

non-degenerate symmetric bilinear form, one can construct an associated finite dimensional

geometric algebra.

Proposition 4.1.1. (Polarization Identity) Let B be a symmetric bilinear from on a vector

space V over R. Then for all v, w ∈ V

B(v, w) =
1

2
(B(v + w, v + w)−B(v, v)−B(w,w)).

Proof. Let v, w ∈ V . Then

B(v + w, v + w) = B(v, v) +B(v, w) +B(w, v) +B(w,w) = 2B(v, w) +B(v, v) +B(w,w)

or

B(v, w) =
1

2
(B(v + w, v + w)−B(v, v)−B(w,w)).

Intuitively, the polarization identity says that to know a symmetric bilinear form along

the diagonal, is to know the bilinear form for all pairs of vectors.

Lemma 4.1.2. Let V be a finite dimensional vector space over R with a non-degenerate

symmetric bilinear form B. Then there exists a basis of orthogonal non-null vectors that

square to ±1.
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Proof. Suppose for all x ∈ V,B(x, x) = 0, i.e., all vectors of V are null. By the polarization

identity

2B(v, w) = B(v + w, v + w)−B(v, v)−B(w,w) = 0

for all v, w ∈ V . Since B is non-degenerate, this cannot happen. Hence, there exists x ∈ V
such that B(x, x) 6= 0. Define the function

B̂ : V → R

by

v 7→ B(x, v).

It is a straightforward verification that B̂ belongs to the dual space of V . Let K = ker B̂.

We will show that V is the direct sum of 〈x〉 and K. Let v ∈ V . Then we may write, for

b ∈ K,

v =
B̂(v)

B̂(x)
x+ b.

This is well-defined since

B̂(x) = B(x, x) 6= 0.

Hence,

V = 〈x〉 +K.

Furthermore, if y ∈ 〈x〉 ∩K, then y = λx, λ ∈ R and

0 = B̂(y) = B(x, λx) = λB(x, x).

Since B(x, x) 6= 0, λ = 0. Hence,

V = 〈x〉 ⊕K.

We now show that B|K is non-degenerate. Let k ∈ K. Since B is non-degenerate there

exists v ∈ V such that B(k, v) 6= 0. By our direct sum decomposition, we may write

v = λx+ b, λ ∈ R, b ∈ K.
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By bilinearity, we have

B(k, b) = λB(k, x) +B(k, b) = B(k, λx+ b) = B(k, v) 6= 0.

Hence, B|K is non-degenerate. By induction it follows that V is the direct sum of one

dimensional orthogonal spaces whose generator is non-null. So, V has an orthogonal non-

null basis. Since the vectors forming the basis are non-null, they can be normalized to square

to ±1.

Definition 4.1.3. Let R be an algebra over R and let A be a subspace of R. We define the

map

D : A× · · · × A→ R

by

D(a1, . . . , ar) =
1

k!

∑
σ∈Sr

(−1)σaσ(1) · · · aσ(r),

where Sr is the set of all permutations of the numbers 1 to r and (−1)σ is the sign of the

permutation σ, +1 or −1 if σ is even or odd, respectively.

Proposition 4.1.4. The map D is an alternating map, i.e., D is r-multilinear and

D(a1, . . . , aj, . . . , ai, . . . , ar) = −D(a1, . . . , ai, . . . , aj, . . . , ar).

Proof. By distributivity of the ring structure on R, D is r-multilinear. We follow [Spi65]

to show that D is alternating. Let (i j) be the permutation that interchanges i and j. If
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σ ∈ Sk, let τ = σ ◦ (i j). Then

D(a1, . . . , ai, . . . , aj, . . . , ar) =
1

k!

∑
σ∈Sr

(−1)σaσ(1) · · · aσ(i) · · · aσ(j) · · · aσ(r)

=
1

k!

∑
σ∈Sr

(−1)σaσ(1) · · · aσ(i j)(j) · · · aσ(i j)(i) · · · aσ(r)

=
1

k!

∑
σ∈Sr

(−1)σaτ(1) · · · aτ(j) · · · aτ(i) · · · aτ(r)

= (−1)(i j)
1

k!

∑
τ∈Sr

(−1)τaτ(1) · · · aτ(j) · · · aτ(i) · · · aτ(r)

= −D(a1, . . . , aj, . . . , ai, . . . , ar).

Corollary 4.1.5. Let R be an algebra over R and let A be a subspace of R. Then

D(. . . , a, . . . , a, . . .) = 0. (4.1.0.1)

Proof. Since D is alternating,

D(. . . , a, . . . , a, . . .) = −D(. . . , a, . . . , a, . . .),

and the result follows.

Corollary 4.1.6. If a1, . . . , ar mutually anti-commute, then

D(a1, . . . , ar) = a1 · · · ar. (4.1.0.2)

Proof. Since a1, . . . , ar mutually anti-commute,

aσ(1) · · · aσ(r) = (−1)σa1 · · · ar.
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Hence,

D(a1, . . . , ar) =
1

k!

∑
σ∈Sr

(−1)σaσ(1) · · · aσ(r) =
1

k!

∑
σ∈Sr

a1 · · · ar = a1 · · · ar.

Proposition 4.1.7. Let T be a ring; let I be an ideal of T ; let π : T → T/I be the canonical

projection; let φ : T → T be a homomorphism. If π(φ(I)) = 0, then there is an induced

homomorphism φ̃ : T/I → T/I defined by φ̃(ȳ) = π(φ(x)) for any x ∈ π−1(ȳ). That is, the

following diagram commutes:

T

π
��

φ // T

π
��

T/I
φ̃ // T/I

Proof. We show that the function φ̃ is well-defined. Suppose that ȳ = ȳ′ in T/I. Then

y = y′ + i for some i ∈ I, and

πφ(y) = πφ(y′ + i) = πφ(y′) + πφ(i) = πφ(y′).

Hence, φ̃ is well-defined. It is straightforward to show φ̃ is a homomorphism.

The construction of a geometric algebra from a finite dimensional vector space and a

non-degenerate symmetric bilinear form is now given.

Theorem 4.1.8. Let V be a n-dimensional vector space over R equipped with a non-

degenerate symmetric bilinear form B. Let T (V ) =
∑∞

k=1 Tk(V ) be the tensor algebra over

V . Let I be the two-sided ideal generated by elements of the form

v ⊗ v −B(v, v)1, v ∈ V (4.1.0.3)

and let G(V,B) = T (V )/I. Then G(V,B) is a geometric algebra such that

G(V,B) = G0 ⊕ G1 ⊕ · · · ⊕ Gn

where each subspace Gr has dimension
(
n
r

)
. Moreover, the subspaces Gr are spanned by
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ei1 · · · eir 1 ≤ i1 < · · · < ir ≤ n, where {e1, . . . , en} is the basis of V guaranteed by Lemma

4.1.2.

Proof. Since G(V,B) = T (V )/I, it is an algebra, with identity, over R. When working in

the quotient space G(V,B), we shall drop the tensor product symbol. By Lemma 4.1.2, V

has an orthogonal non-null basis {e1, . . . , en}. We introduce some convenient notation. Let

σ = (i1 · · · ir), 1 ≤ i1 < · · · < ir ≤ n. Then

eσ = ei1 · · · eir .

We say that σ has length r. For an empty sequence σ0 = (), we define eσ0 = 1. Note that

since the e′is are non-null, in G(V,B), they are invertible with e−1i = 1
B(ei,ei)

ei. Therefore,

the e′σs are invertible.

Our strategy will be to first establish Property 1; then identify R with G0 and V with G1,
respectively, Properties 2, 3 and 4 will follow; and finally Property 5.

The elements ei1 ⊗ · · · ⊗ eir form a basis of T (V ), therefore their cosets span G(V,B). Since,

in G(V,B),

(ei + ej)(ei + ej) = B(ei + ej, ei + ej)1,

we see

eiej = −ejei, i 6= j. (4.1.0.4)

By equation (4.1.0.4), the factors of each coset of ei1 ⊗ · · · ⊗ eik may be shuffled so to

have increasing indices and by 4.1.0.3, any repeated factors may be identified with a scalar.

Hence, the e′σs span G(V,B). We now show that the e′σs are linearly independent, to establish

property 1.

We follow the strategy of [Rie58] to show that the e′σs are linearly independent. Observe,

ejeσ = ejei1 · · · eir =

(−1)reσej if j 6= is, s = 1, . . . , r

(−1)r−1eσej if j = is, for some s, s = 1, . . . , r

We see if the length of σ 6= σ0 is less than n, then there exists an ej that anti-commutes

with eσ. If the length of σ is n, then any basis element will anti-commute with eσ when n is

even, but not when n is odd.
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Let I be a finite indexing set. Consider,∑
σ∈I

Aσeσ = 0 (4.1.0.5)

and suppose to produce a contradiction that there exists a β ∈ I, β 6= σ0, such that Aβ 6= 0.

If β has length less than n, or length n with n even, multiply equation (4.1.0.5) by A−1β e−1β .

Then equation (4.1.0.5) becomes

1 +
∑
σ∈J

A′σe
′
σ = 0 (4.1.0.6)

where J = I \{β}, A′σ = AσA
−1
β , e′σ = eσe

−1
β . If the coefficients A′σ are zero, we obtain 1 = 0

and since the ideal I is a proper ideal, we reach a contradiction. Suppose that Aα 6= 0, α ∈ J .

There exists an ej that anti-commutes with e′α. Multiply equation (4.1.0.6) on the right by

ej and on the left by e−1j and add to equation (4.1.0.6). After dividing the result by 2, we

obtain

1 +
∑
σ∈J

1

2
A′σ(e′σ + eje

′
σe
−1
j ) = 0.

We have eliminated the coefficient Aα and will have

1 = 0

if all other coefficients are zero. Assuming we never have the Aβ 6= 0 in (4.1.0.5) with β 6= σ0

of length n with n odd, iterating a finite number of times we will obtain 1 = 0. Thus, the

e′σs are linearly independent.

Suppose now that the only Aβ 6= 0 in equation (4.1.0.5) with β 6= σ0 such that β has

length n with n odd. Since there may not exist a basis vector of V to anti-commute with

e1 · · · en, we proceed by a different route. We will introduce a homomorphism on G(V,B),

that will allow for a proof of the linear independence of the e′σs. Let

φ̂ : V → V

defined by

ei 7→ −ei.
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This map extends to a homomorphism

φ : T (V )→ T (V )

defined by

ei1 ⊗ · · · ⊗ eik 7→ (−1)kei1 ⊗ · · · ⊗ eik .

Let

π : T (V )→ G

be the canonical projection map. Observe, for the generators of I,

π(φ((x⊗ x−B(x, x)1)) = π(x⊗ x−B(x, x)1) = 0.

Hence, πφ(I) = 0. Thus, by Proposition 4.1.7, we obtain an induced homomorphism

φ̃ : G(V,B)→ G(V,B)

defined by

φ̃(y) = π(φ(x))

where x ∈ π−1(ȳ). Proceeding with the same argument as the earlier case, suppose that

equation (4.1.0.5) states

1 + Aβe1 · · · en = 0. (4.1.0.7)

Apply φ̃ to equation (4.1.0.7). We obtain

1− βe1 · · · en = 0. (4.1.0.8)

Add equations (4.1.0.7) and (4.1.0.8) and divide by 2, we obtain

1 = 0,

a contradiction. Hence, in this case the e′σs are linearly independent.

Thus, in all cases, the e′σs are linearly independent. Let Gr denote the subspaces spanned

by eσ, σ = (i1 · · · ir). By what we have just shown, G is a direct sum of the subspaces Gr.
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We now establish Properties 2, 3 and 4. Since V and G1 have the same dimension, they are

isomorphic. We then identify G1 with V . Then G1 is equipped with the bilinear form B.

Furthermore, G0 contains 1 and is isomorphic to R.

We now establish Property 5. Let

D : G1 × · · · × G1 → G

be defined as in Definition 4.1.3. We now show that all r-blades are contained in Gr. Let

a1 · · · ar be an r-blade. Since ak ∈ G1, ak =
∑

s αkses, k = 1, . . . , r. By Corollary 4.1.6,

a1 · · · ar = D(a1, . . . , ar)

= D(
∑
s1

α1s1es1 , . . . ,
∑
sr

αrsresr)

=
∑
s1,...,sr

α1s1 · · ·αrsrD(es1 , . . . , esr) (4.1.0.9)

By (4.1.0.1) and (4.1.0.2), the sum on the right of (4.1.0.9) may be written as a linear

combination of the eσ, where σ = (i1 · · · ir). Hence,

a1 · · · ar ∈ Gr.

Furthermore, if r > n there will be at least one repeated basis vector ei in eσ, which means

that by Corollaries 4.1.5 and 4.1.6,

eσ = D(ei1 , . . . , eir) = 0.

Thus, Gk = {0} for k > n. Thus, G(V,B) is the direct sum of G0, . . .Gn where Gr contains

all r-vectors.

Since each Gr is generated by eσ, σ = (i1 . . . ir), i1 < · · · < ir, there are
(
n
r

)
basis vectors.
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2004.

[Rie58] Marcel Riesz. Clifford numbers and spinors (Chapters I–IV). Lectures delivered Oc-

tober 1957-January 1958. Lecture Series, No. 38. The Institute for Fluid Dynamics

and Applied Mathematics, University of Maryland, College Park, Md., 1958.

[Spi65] Michael Spivak. Calculus on manifolds. A modern approach to classical theorems of

advanced calculus. W. A. Benjamin, Inc., New York-Amsterdam, 1965.

87








