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Abstract 

The high latitude regions of the globe are responding to climate change at unprecedented magnitudes and 

rates. As the climate warms, extreme hydroclimate events are likely to change more than the mean events, 

and it is the extreme changes that present a risk to society, the economy and the environment of the north. 

The subarctic boreal forest is one of the largest ecosystems in the world and is greatly understudied with 

respect to hydroclimate extremes. Thus, defining a baseline for changing extremes is the first step towards 

planning and implementing adaptation measures to reduce risk and costs associated with the changing 

extremes. This thesis focuses on quantitative analysis of extreme events using historical data and future 

model projections of changing temperature, precipitation and streamflow in the Interior forested region of 

boreal Alaska. 

Historically, shifts in the climate have resulted in declining magnitudes of peak flow for snow 

dominated and glacial Interior Alaskan basins. However, changes are variable and dependent upon 

watershed topography, permafrost conditions, and glacial extents. Therefore, adjacent basins respond in 

considerably different ways to the same climate drivers. For example, peak streamflow events in the 

adjacent Salcha and Chena River basins had different responses to changes in climate. In the higher 

elevation Salcha basin, maximum streamflow increased as spring temperatures increased but in the lower 

elevation Chena, winter precipitation was a control on increases in maximum streamflow, while both 

were influenced by the Pacific Decadal Oscillation. Analysis of hydrologic change must take this 

variability into account to understand extreme hydroclimate responses and correctly account for process 

shifts. 

To examine future changes in peak streamflow, the implementation and parameterization of 

hydrologic models to simulate hydroclimate extremes is required. In the northern latitudes of the world, 

there is a sparse observational station network that may be used for evaluation and correction of 

hydrologic models. This presents a limitation to science in these regions of the globe and has led to a 

paucity of research results and consequently, a lack of understanding of the hydrology of northern 

landscapes. Input of observations from remote sensing and the implementation of models that contain 

parameterizations specific to northern regions (i.e. permafrost) is one aim of this thesis. Remote sensing 

of snow cover extent, an important indicator of climate change in the north, was positively validated at 

snow telemetry sites across Interior Alaska. Input of the snow cover extent observations into a hydrologic 

model used by the Alaska Pacific River Forecast Center for streamflow flood forecasting improved 

discharge estimates for poorly observed basins, whereas the discharge estimates in basins with good 

quality river discharge observations improved little. Estimates of snow water equivalent were improved 
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compared to station results and the adaptation of the model parameters indicated that the model is more 

robust, particularly during the snowmelt period when model simulations are error prone. 

Use of two independent hydrologic models and multiple global climate models (GCMs) and 

emission scenarios to simulate changes in future hydroclimate extremes indicated that large regime shifts 

are projected for snowmelt dominated basins of Interior Alaska. The Chena River basin, nearby 

Fairbanks, Alaska, is projected to be rainfall dominated by the 2080s, with smaller snowmelt peaks. 

Return intervals for flooding will increase by one-and-one half to double the flow volume magnitude 

compared to the historical return interval. Frequency of extreme streamflow events will increase five 

times the mean increase. These changes in extreme streamflow events necessitate further research on the 

implications for infrastructure, ecology and economy to constrain risk associated with the projected 

regime shift in boreal forested watersheds of Interior Alaska. 
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transportation corridors during the winter (Jones, 2014). Flood events may have the propensity to cause 

increased degradation of permafrost substrates and thermokarst along stream banks and flood plains that 

could alter land surfaces (Walker et al., 1987; Yarie et al., 1998). In Alaska, cities and villages are largely 

located along rivers or close to water sources and therefore Alaskan’s will be affected by changing 

extreme temperature, precipitation and streamflow, including their ability to use rivers for economic, 

transport and industrial needs. 

The study of changes to peak stream flow has been limited to regions outside of Alaska, or very 

high latitude northern basins. Changes to spring snowmelt peaks have been well documented, and most 

research indicates an earlier peak stream flow associated with an earlier snowmelt (Stewart et al., 2005) 

and decreases in snow cover extents (Brown et al., 2010). A number of studies examining peak flooding 

associated with summer rainfall events in the Kuparuk River basin linked the events to high rainfall 

occurring across the entire watershed (Kane et al., 2008; Kane et al., 2003). Changes to streamflow, 

temperature and precipitation extremes in Alaska are limited to a few studies (Stewart et al., 2013), 

although shifts have been examined in the context of global studies (i.e. IPCC, 2012; Sillmann et al., 

2013a; Sillmann et al., 2013b). Regional studies focused on basin responses have not been undertaken, 

despite the differences that locally scaled inputs may have on the response of extreme hydroclimate 

(Bürger et al., 2012). 

One of the major means by which to examine extreme changes in hydroclimate is to utilize a 

hydrologic model that simulates energy balances and moisture fluxes to develop scenarios of historical 

and future changes. To drive models under future conditions, gridded data sets of temperature and 

precipitation must be developed and tested (Hamlet and Lettenmaier, 2005; Liston and Elder, 2006b), and 

then coarse scale global models must be downscaled to these data (Hayhoe, 2010). Downscaling has its 

own inherent uncertainty associated with it, and the type of downscaling procedure can impact how 

extreme event are represented in models (Bürger et al., 2012; Bürger et al., 2013). Future climate 

estimates from global models must also be considered for specific regions as some models perform better 

than others within regions of the globe (Overland et al., 2011). There are additional concerns regarding 

the accuracy of models to estimate some of the most sensitive components of the hydrologic cycle, e.g. 

snow and frozen ground (Andreadis et al., 2009; Essery et al., 1999; Liston and Elder, 2006a; Liston and 

Sturm, 2002; Nicolsky et al., 2007; Pomeroy and Li, 2000; Verseghy, 2009; Verseghy et al., 2000). One 

approach to deal with this is to use remotely sensed observations of snow cover extent to update 

hydrologic models. Obtaining improved estimates of snow cover from observations as opposed to relying 

upon conceptual schemes to estimate the extent of snow has been applied in several studies in the past, 

with various degrees of success (Andreadis and Lettenmaier, 2006; Parajka and Blöschl, 2008). An 

additional uncertainty in hydrologic models is the parameterization of frozen ground processes and in 
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particular, discontinuous permafrost found in the region of Interior Alaska. These outstanding issues in 

modeling require careful attention as inaccuracies may result in incorrect representation of changes in 

modeling future climate and in particular, extremes. 

The objectives of this thesis are to address these challenges and present an examination of 

changes in extreme hydroclimate events in Interior Alaskan watersheds, considering: 

 historical changes in extremes of temperature and precipitation within the context of the broader 

Alaskan landscape 

 changes in historical extreme streamflow through an analysis of trends and generalized extreme value 

theory 

 validation of remote sensing of snow cover extent at Interior Alaskan sites, and presentation of an 

approach to model snowmelt timing, which has a large impact on changing flood conditions, using 

non-linear regression techniques and estimates of regression parameters from reanalysis-based 

climate variables to simulate snowmelt timing 

 insertion of snow cover extent observations from remotely sensed snow cover data sets into a 

hydrological framework utilized in Alaska for streamflow forecasting 

 modeling streamflow extremes to estimate future changes in return levels using downscaled global 

climate model projections of temperature and precipitation and hydrologic models implemented over 

a watershed located in a boreal forest watershed surrounding Fairbanks, Alaska 

 The first paper is entitled “Spatial and temporal changes in indices of extreme precipitation and 

temperature for Alaska”, and was published in the International Journal of Climatology in 2014 (Chapter 

2). Future projections of extreme temperature and precipitation are analyzed for Alaska based on the 

ClimDEX suite of indices and an Environment Canada database of recently released global climate 

models (GCMs). Extreme minimum temperature changes were greater during all seasons and annually 

(Alaska, +14.3ºC for the 2080s under emission scenario RCP 8.5) and larger than the changes in the mean 

temperature (+7.4ºC for the 2080s under emission scenario RCP 8.5) although this was not true for 

maximum temperature (+4.4ºC compared to +7.4ºC for the 2080s under emission scenario RCP 8.5). 

Spatial variability across the state was observed, with extreme temperature changes generally larger in the 

north during the cold season and larger in the south during the warm season. An index of 5-day 

precipitation showed strong increases in absolute values in southern Alaska (annually +25 mm for the 

2080s under emission scenario RCP 8.5), but the greatest percentage change occurred in the north (up to 

+40% at Barrow in some seasons for the 2080s under emission scenario RCP 8.5). Changes were 2-4 

times that of inter-GCM standard deviations for all three indicators analyzed, indicating robust projected 

changes for all GCMs. Model interannual variability in temperature changes decline with time to 2100, 

hypothesized to be occurring due to reduced sea ice and snow cover in the models by that time. 



 
  

4 
 

“Historical trends and extremes in regional scale Interior and Western Alaska river basins” 

(Chapter 3) details a study using nonparametric trends analysis and generalized extreme value theorem to 

examine maximum and minimum streamflow changes over the past 50/60 years for eight Interior and 

Western Alaskan river basins. Increasing maximum streamflow during early April and in late fall and 

declining late spring, summer and annual flow were documented at stations through Interior Alaska. 

Variability identified from the nonparametric trends analysis could be linked to regime type. Snow 

dominated systems and glacial basins exhibited strong declines in maximum streamflow over time, while 

complex systems such as the Tanana and the Yukon did not exhibit clear trends except flow increases in 

the fall. Minimum flows were generally increasing, although fewer trends in minimum flow were 

statistically significant compared to maximum flow trends. Analysis of trends using a complementary 

approach, generalized extreme value (GEV) theorem, supported the findings of the nonparametric trend 

study. An investigation of spring maximum streamflow changes revealed that linear nonstationary models 

best represent trends at almost all stations where trends could be identified (four out of the eight stations). 

The positive Pacific Decadal Oscillation (PDO) led to lower maximum streamflow values in snowmelt 

dominated basins and the Arctic Oscillation (AO) was linked to changes in a lake dominated watershed 

but the rest of the basins did not respond to climate drivers. On the other hand, all basins responded to 

either temperature or precipitation changes, as expected, with glacially dominant and high elevation snow 

pack systems largely responding to increased temperatures in April-May-June and snow dominated basins 

responding to winter precipitation. The study highlights the need for consideration of flow regime when 

examining trends in streamflow across multiple systems, in-depth analysis utilizing multiple toolsets to 

verify results and the use of multiple time scales (days to seasons to years) to understand process shifts 

within river basins. 

Chapter 4, “Estimating, verifying and predicting snow cover depletion in boreal watersheds of 

Interior Alaska from remote sensing, in situ measurements and statistical modeling” describes an analysis 

of snow cover depletion timing in Interior Alaska based on remote sensing of snow cover to estimate 

snowmelt characteristics using a nonlinear regression approach. Snow cover extent is an important driver 

to the hydrology of snow dominated systems of the north. Remote sensing tools are available to observe 

snow cover extent (SCE) across Alaska and show promise when compared against station results at 38 

sites across Interior Alaska. The Moderate Resolution Imaging Spectroradiometer (MODIS) remote 

sensing of (SCE) data were analyzed by using a simple nonlinear regression approach to quantify 

characteristics of the snow melt depletion curve, including the date of melt onset, and the rate of change 

(melt) over the snowmelt season. One of these derived indices, the date of snow depletion initiation, was 

significantly correlated with snow depth in February, March, December-January-February and over the 

October to mid-April season from results at Global Historical Climate Network (GHCN) stations (2000-
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2012), indicating these statistics could be useful for identifying changing snow conditions within these 

systems. The logistic parameters of the nonlinear regression were then estimated using gradient boosting 

and tree regression approaches and NARR climate reanalysis data, identifying temperature, albedo, and 

wind speed in conjunction with topographic features (namely slope and aspect) as important tools to 

characterize the three parameters in the model. Using the estimate, the nonlinear regression was recreated 

over the 1970-2012 period and used to produce trends and identify snow timing changes over time across 

multiple indicators, with most stations having strong and significant changes in melt timing indices over a 

standardized 30 year period. On the other hand, only one station (Eagle) showed a statistically significant 

decrease in the snow depth captured at the station (-53 mm). Insertion of these data into modeling tools is 

deemed reliable and the data are shown to be a useful tool to examine snowmelt timing in Interior 

Alaskan river basins. 

“Using MODIS estimates of fractional snow cover extent to improve river forecasting models in 

Interior Alaska” describes a study employing the United States National Weather Service’ Alaska Pacific 

River Forecast Center (APRFC) modeling framework to test the influence of integrating remotely sensed 

observations of snow cover fractional extent into a snow model and using this output to force a rainfall 

runoff model to generate streamflow simulations in Interior river basins of Alaska (Chapter 5). The 

integration of MODIS remote sensing of SCE into the APRFC modeling framework resulted in 

discernable improvements within sites lacking long term, high quality river gaging records (i.e. Chatanika 

River basin, +12% RMSE during the calibration period), while sites with quality streamflow gaging 

records that were calibrated with skill showed little or no improvement. Snow water equivalent estimates 

matched the melt timing at upper elevation snow telemetry sites located across the Chena River basin. 

Two different MODIS products were considered in the analysis; MOD10A1 slightly underperformed in 

basins where improvements in streamflow simulations were observed, whereas MODSCAG performed 

slightly better, however the results were similar between the two products and it appears that both 

estimates of snow cover extent work adequately at the basin scale in this region of boreal forest. The use 

of the semi-lumped model applied may be obscuring improvements that may be possible using a 

distributed approach. The study results are anticipated to be useful to the APRFC for verification of areal 

extent of snow cover depletion through the snowmelt season, a time when the model estimates are 

believed to be uncertain. 

A climate change analysis is presented in Chapter 6, “Climate change impacts on extreme events 

in a snow dominated watershed of boreal Interior Alaska” utilizing two hydrologic models, six 

downscaled GCMs, two emission scenarios and two time periods to consider changing extreme 

streamflow for one river basin in Interior Alaska.  Results indicate that by the 2050s, a snow melt peak is 

still projected to occur, although the volume magnitude of the flow is reduced and is similar to the 
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magnitude of the rainfall peak. However by the 2080s, a complete regime shift to a rainfall dominant 

system is projected for the Chena River basin. The distributed model that included frozen ground 

simulations projected a more severe change, while the semi-lumped rainfall-runoff model was better 

calibrated to current conditions and matched the peak flows with higher accuracy (NSE 0.73 versus 0.51 

for 1970-2005). Return interval analysis based on the GEV approach indicated that the 5-year flood event 

will increase in flow volume by 1.6 times, and the 100-year flow event will double in magnitude by the 

2080s. Differences between uncertainty around the return interval based on the range of GCM changes 

are largest for the 5-year return interval in the 2050s compared to the 2080s. These differences are due the 

variable representation of snow water equivalent (SWE) in the models, with cooler, wetter projections 

retaining more snow and warmer, drier models having lower estimates. However the remainder of the 

results provided similar ranges of uncertainty for both time periods, although for different reasons. 

Uncertainty during the 2050s is likely due to the range in model response to variable input forcings from 

the GCMs, and the variable simulation of snow pack changes, while in the 2080s the range is due to 

differences in the across GCM representations of precipitation. ClimDEX indices examined in the work 

illustrated large changes in minimum temperatures indices and in (increased) warm spells. Precipitation 

indices show the greatest changes in the indicators representing moderate extremes compared to the 

highest precipitation extremes. Maximum streamflow increases were related to total precipitation 

(increases) and days when minimum temperature is greater than the 90th percentile. This indicates the 

dominance over time of increasing maximum summer and fall streamflow driven by a rainfall dominant 

regime in the future. 

1.2 Literature Review 

Alaska’s Interior is part of a broader ecozone referred to as the Lowland Boreal or Taiga region 

Figure 1.1). The Alaskan Lowland Boreal extends from the Bering Sea in the west to the Richardson 

Mountains in the Yukon Territory on the east and bounded by the Brooks Range on the north and the 

Alaska Range on the south. The region includes the Tanana, Kuskokwim, and Yukon River basins, all of 

which contain glaciers in their headwaters and therefore are heavily impacted by silt outwash. The Susitna 

and Talkeetna River basins are located below the Alaska Range and are strongly impacted by large glacial 

complexes located in their upper headwater regions. The Yukon River is the fourth largest basin in North 

America and the fifth largest in terms of volume (Schumm and Winkley, 1994). Its headwaters are located 

in British Columbia, Canada and it flows through the Yukon Territory and Alaska to drain into the Bering 

Sea at the Yukon-Kuskokwim delta. The basin is considered to be of importance economically and 

culturally to the peoples of Canada and Alaska (Brabets et al., 2000). Although considered one of the 

major freshwater inputs to the Arctic Ocean, the overall contribution of the Yukon basin is relatively low 
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in comparison to other large Eurasian rivers and the Mackenzie (Lammers et al., 2001; McClelland et al., 

2006, Peterson et al., 2002). The Susitna and Talkeetna rivers flow into Cook Inlet and the Gulf of 

Alaska, while the Kuskokwim River flows south west to exit in Kuskokwim Bay west of the Aleutian 

Islands. Via the Alaska current, inflow from these rivers may contribute minor fresh water inputs to the 

Bering Sea and the Arctic Ocean. 

The Interior of Alaska as a whole is comprised of rolling hills and lowlands, and low, moderate 

and high mountains (Brabets et al., 2000). Discontinuous permafrost underlies most of the region, with 

permafrost generally found on north-facing slopes and absent from south-facing slopes and flood plain 

environments (Jorgenson et al., 2008; Smith et al., 2010). The permafrost though this region is considered 

to be warm permafrost, with temperatures close to 0ºC (Smith et al. 2010). Through the low elevation 

sections of the Interior, periglacial features such as pingos, thermokarst, ice-wedge polygons and 

hummocks are found (Kautz and Taber, 2004). Interior river basins such as the Salcha and Chena are 

considered part of the Yukon-Tanana Uplands ecoregion. The region is described as containing broad, 

rounded mountains of moderate height, with sharp ridges at higher elevations (Kautz and Taber, 2004). 

The region is underlain by bedrock and coarse rubble on ridges, with colluvium on lower slopes and 

fluvial deposits and slope alluvium in the valleys (Nowacki et al., 2001). Loess silts overtop these 

geological features, deepest at the valley bottoms and shallowest on the slopes. Loess silt has its origin in 

the late Quaternary and is considered eolian (wind deposited, Muhs and Budahn, 2006).  Soils are 

primarily gelisols (52%, poorly drained), inceptisols (32%, well drained), and entisols (10%); soil 

temperature and moisture regimes are pergelic or cryic and aquic or udic (Kautz and Taber, 2004). 

Vegetation consists of white spruce, birch and aspen on south-facing slopes, and black spruce on north-

facing slopes (Nowacki et al., 2001). Black spruce woodlands and tussock forming sedges and scrub bogs 

dominate valley bottoms while the floodplains environments consist of white spruce, balsam poplar, 

alder, and willows.  Above treeline, low birch-ericaceous shrubs and Dryas-lichen tundra are found 

(Nowacki et al., 2001). The two other major ecoregions of Tanana, Kuskokwim, and Susitna river basins 

are the Tanana-Kuskokwim Lowlands, and the Alaska Range. The Tanana-Kuskokwim Lowlands is an 

alluvial terraced floodplain environment. Towards the southern part of the Kuskokwim, isolated 

permafrost dominates (Jorgenson et al., 2008). Eolian loess silt underlies soils and forest cover of similar 

composition to the Yukon-Tanana Uplands ecoregion. Floodplains contain white spruce, balsam poplar 

with higher incidence of black spruces on north slopes, in cooler bog environments and tamarack, paper 

birch, shrubs, and sedge tussocks are found on permafrost flats. Hills and low relief mountains are 

scattered throughout the region (Kautz and Taber, 2004). The Alaska Range, on the other hand, is a steep 

mountainous region comprised of metamorphic rocks, with foothills surrounding mountain bases (Kautz 

and Taber, 2004). Large valley glaciers, icefields and perennial snowpacks make up about 15% of the 
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area (Kautz and Taber, 2004). Mountain colluvium and alluvium, moraines, drift and outwash deposits 

are common. The eolian silt present in other ecoregions is confined to the river valleys. Soils are similar 

to the Tanana Uplands with lesser amounts of the first two soil orders and spodosols (7%) comprising the 

third. Alpine tundra communities dominate in this environment, with shrubs, willow, birch and alder at 

lower elevations; permafrost is not present on steep mountainous slopes. More minor parts of the basins 

include the Kluane Range, Wrangell Mountains, Kuskokwim Mountains, Lime Hills and the Ahklun 

Mountains. Although the Wrangell Mountains are only a small part of the Tanana River basin, the 

extensive glacier complexes contribute high amounts glacial runoff, in addition to those glacier systems 

within the Alaska Range. 

The climate in Interior Alaska is continental, featuring cold, long and dark winters with short 

sunny summers. Monthly average air temperature in Fairbanks ranges from a low of -28ºC in the winters 

to a high of 23ºC in July (Shulski and Wendler, 2007). Due to its continental location and position behind 

the Alaska Range, average annual precipitation is low (254 mm), with an average annual snowfall of 173 

cm, hence the region is considered to be semi-arid (Shulski and Wendler, 2007). Large diurnal 

temperature variability is not uncommon during winter months. Inversions, where the coolest 

temperatures are found at low elevations and higher temperatures in the hills, are a unique feature of the 

Fairbanks climate (Shulski and Wendler, 2007). Wind speeds also tend to be low within this region, less 

than 2 m/s in the winter on average, with higher values (4 m/s) occurring during the summer (Shulski and 

Wendler, 2007). 

1.2.1 Climate Change  

Climate change impacts in Alaska reflect the changing Arctic, with strongly increasing global 

temperature changes and shifts in precipitation variability anticipated. Alaska has warmed more than two 

times the rate of the rest of the US since the 1950s (Karl et al., 2009). Interior Alaska has warmed the 

most of all regions in Alaska, increasing by 4ºC in winter and 1.9ºC annually from 1949-2011 (Stewart et 

al., 2013).  Future projections for Interior Alaska indicate that temperatures will rise by 2-3ºC by the 

2050s and 4.2-5.3ºC by the 2080s under emission scenario A2 of the Coupled Model Intercomparison 

Project version 3 (CMIP3), based on a multi-model ensemble (Stewart et al., 2013). Annual precipitation 

estimates from four different data sets analyzing the 60-90ºN latitudes indicate that precipitation increased 

weakly (0.63 +/- 1.27 mm/yr) relative to the 1981-2000 climatology from 1951-2008 (earlier time periods 

not available due to a lack of observations, see Figure 2.28 in Hartmann et al., 2013). Precipitation for 

Alaska specifically shows an increase of approximately 10%, with the most amount of change observed in 

recent decades (Shulski and Wendler 2007, Stewart et al., 2013). McAfee et al. (2013) documented results 

from seven research studies where precipitation changes were presented as either positive or negative, 
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with varying levels of statistical significance, for Alaska’s Interior (Table 1 in McAfee et al., 2013). 

Trend analysis indicated non-significant increases in precipitation of 6% and 13.4% for the Fairbanks and 

McGrath stations, respectively (1950-2010, McAfee et al. 2013). Annual precipitation is projected to 

increase in Alaska’s Interior region by approximately 10-15% by the 2050s and by 20-25% by the 2080s 

under the A2 CMIP3 ensemble scenario (Stewart et al., 2013) while a 20-40% increase is projected for 

the 2080s under CMIP5’s RCP 8.5 scenario (Walsh et al. 2014). The values presented in the Walsh et al. 

(2014) report are similar to those numbers projected by ACIA in its 2005 report for the region of the 

globe north of 60°N for the B2 scenario (ACIA, 2005). Due to the difficulty in measuring solid 

precipitation, there are major challenges in the historical records and estimates of this variable (Cherry et 

al., 2007; Goodison, 1978). 

Snowpack extents and duration in Alaska have decreased over time by 18% (1966-2012) due to 

an earlier snow melt (SWIPA, 2012). These value are higher than the 10% decline in snow cover extent 

presented for the Northern Hemisphere based on data from 1972-2003 (ACIA, 2005). It is unclear if snow 

depth is increasing or decreasing. Over the North American Arctic, snow depth has decreased since 1950 

however there is regional variation in these results (SWIPA, 2012). Snowfall was reported to be 

increasing in Canada’s North, but decreasing in the rest of the country (Mekis and Vincent, 2011). A 

recent study by Liston and Hiemstra (2011) documented declining snow precipitation based on analysis of 

MERRA-driven SnowModel results for the entire Arctic. The Fairbanks region exhibited a decrease in 

snowfall of 1-2% per decade and snow duration declined by 5-10 days per decade over the 30 year period 

of analysis from 1979-2009. Snow onset was delayed by 2-5 days and snow-off dates were earlier by 2-5 

days (Figures 9 and 10 in Liston and Hiemstra, 2011). SWE is mostly declining in the Interior of Alaska, 

although the trends were weaker than for snow precipitation. Rain on snow events were increasing in 

some interior regions and decreasing in others (Liston and Hiemstra, 2011). Shrubiness has been noted to 

be changing in the Arctic and subarctic, which is linked to increases in snow as the shrubs tend to 

influence drifting and redistribution of moisture. The influence of vegetation on moisture fluxes may lead 

to altered feedbacks in tussock tundra locations (comprising a small component of boreal ecosystems, 

Marsh et al., 2010; Pomeroy et al., 2006; Sturm et al., 2001). Future projections of snow cover indicate 

that by the 2071-2090 period declines of 9-18% (across GCMs) will occur (ACIA, 2005). Seasonality in 

the change is present, with the greatest declines occurring in April and November, March and December 

(ACIA, 2005). 

Even small changes in snowpack are anticipated to have large and variable impacts to the 

hydrology and ecology of Alaskan watersheds (Chapin III et al., 2005; Hinzman et al., 2005). Snow 

insulates the ground during the winter and provides a ‘blanket’ over the permafrost which guards against 

cold temperatures from penetrating deep into the soils. Snow has a high albedo such that declines in snow 
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cover reduce the albedo of the ground surface and cause an increase in energy absorption (Armstrong and 

Brun, 2008). The snow-albedo feedback has a great influence in the spring when incoming radiation is 

high (Groisman et al., 1994) and will lead to enhanced warming of the Arctic as a whole (Déry and 

Brown, 2007). There is a potential for clouds to interact with this feedback as well, as snow albedo can 

increase under cloudy conditions, leading to enhanced snowmelt and changes in snowmelt timing in the 

subarctic (Zhang et al., 1996). This is due to changes in incoming shortwave radiation, which is reflected 

by cloud tops and a corresponding increase in longwave radiation associated with greater emissivity of 

clouds versus clear sky conditions. 

Other climate changes include shifts in permafrost, glaciers and fire regimes. Changes in 

temperature and snow are affecting frozen ground, and leading to decreases in the permafrost. The 

temperature of the permafrost near Fairbanks Alaska has risen by 2-4ºC from 1930-2003 (Figure 6.22 by 

Romanovksy 2004 in ACIA 2005). Additionally, the active layer has begun to deepen in some areas. 

Sixty seven glaciers in Alaska were observed to be thinning with a resulting volumetric change of -

52±15km3/yr between the 1950s and the 1990s, with the rate of change observed to be increasing since 

the 1990s (Arendt et al., 2002). Glacial meltwater contributions are anticipated to rise as a result of 

continued thinning and melting (ACIA 2005). Fires in Alaska doubled in area during the 2000s compared 

with other time periods post the 1940s (Kasischke et al., 2010). Permafrost conditions are projected to 

experience considerable warming, leading to the degradation of permafrost in many areas across Interior 

Alaska (Stewart et al., 2013). These changes all have consequences for hydrologic regimes in Alaska.  

Rivers in north western Canada were observed to have declining magnitudes of annual snowmelt 

peaks (Cunderlik and Ouarda, 2009). However, in the Mackenzie River basin, no obvious trends were 

found in terms of changing flow magnitudes from 1973-1999, although variability was noted to be 

increasing (Woo and Thorne, 2003; Zhang et al., 2001). This was linked to a lack of change in the 

precipitation minus evaporation (P-E) relationships in these basins (Serreze et al., 2000). On the other 

hand, Déry and Wood (2005) found decreased streamflow discharge trends from 1964-2003 at coastal 

stations in Arctic Canada associated with declining precipitation in the region, and stated that these sites 

are dominated by recent changes in precipitation and not changes in evapotranspiration. However, an 

updated paper in 2009 revealed a trend reversal towards increasing flows and flow variability when the 

time series was extended by four years (1964-2007, Déry et al., 2009). These trends were attributed to an 

‘intensification’ of the hydrologic cycle that could lead to an increase in peak flows in the Northern 

American high latitudes (Huntington, 2006; Rawlins et al., 2010). This intensification of hydrology in the 

Arctic has been associated with climate change driven shifts the water vapor feedback, permafrost extent, 

snowpack, evapotranspiration, and soil moisture (Rawlins et al., 2010). Baseflow (winter) or low flow 

values were observed to be increasing in high latitude, western North American river systems (St. Jacques 
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and Sauchyn, 2009; Walvoord and Striegl, 2007) owing to permafrost thaw (Smith et al., 2007) although 

precipitation changes are also discussed as a cause (Zhang et al., 2000). Breakup dates on rivers have 

been noted to be occurring earlier, this is discussed further in the next section (ACIA 2005, Zhang et al., 

2001).  Challenges in defining streamflow trends and linkages to increased precipitation may be due in 

part to the consequence of sparse measurements and cold season biases in precipitation observations 

(Adam and Lettenmaier, 2003; Cherry et al., 2007; Yang et al., 2005). 

1.2.2 Extreme Event Analysis 

Extreme weather events are defined by the Intergovernmental Panel on Climate Change (IPCC) 

in their Fifth Assessment Report (AR5, Stocker et al., 2013) as, 

An event that is rare at a particular place and time of year. Definitions of rare vary, but an 

extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile of a 

probability density function estimated from observations. By definition, the characteristics of what is 

called extreme weather may vary from place to place in an absolute sense. When a pattern of extreme 

weather persists for some time, such as a season, it may be classed as an extreme climate event, 

especially if it yields an average or total that is itself extreme (e.g., drought or heavy rainfall over a 

season). 

The US Climate Change Science Program “synthesis and assessment products” (SAPs) report 

defined climate extremes similarly, but considered changes over a seasonal or longer term time period 

(CCSP, 2008). This definition is important because it reinforces that to characterize extreme events we 

need to define a target set of weather events on which to develop a statistical understanding of their 

distribution(s). Additionally, the definition makes clear that extreme events analysis must be pursued on a 

regional basis and across temporal scales to determine the baseline distributions on which to develop a 

study of changes. Definitions of events that cause impacts are relative to time and space; a return interval 

event that can cause a flood in one region or basin at one point in time may not necessarily create a flood 

in another basin at a different time (Lavell et al., 2012). Finally, extreme events are rare by nature and 

thus the methodology and approaches to determine changes in events must be carefully considered in 

order to assess impacts correctly and present reliable results for decision making purposes (Zhang and 

Zwiers, 2013). 

Extreme events have been changing with respect to climate shifts and have the capacity to cause 

deleterious impacts to society and the environment. Extreme events in particular are thought to have a 

more dramatic effect than changes in mean climate; as first documented by Katz and Brown (1992) and 

illustrated in SAP Figure ES.I (Figure 1.2 this chapter, CCSP, 2008). Climate extremes have particularly 

high risks associated with them because many systems are managed (human) and adapted (human and 
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ecological) according to the frequency and intensity at which they occurred over the historical time or a 

baseline period in the past. As the climate changes, we are moving into uncharted territory where the 

historical baseline may be a poor indicator of the magnitude, return interval and timing of climate events.  

Due to the concern about changing extreme events, a number of recent synthesis reports and 

research papers have presented overviews of extreme events occurring at regional, national and global 

scales. At the global level, Working Groups I (WGI) and II (WGII) of the IPCC’s Special Report on 

Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) 

was released in 2012 (IPCC, 2012). Chapter three of this report specifically details how extremes are 

changing, with emphasis on shifts in temperature, precipitation, droughts and floods. Temperature 

extremes have changed - cold days and nights have decreased while warm days and nights have increased 

and the length of warm spells or heat waves has increased in many regions and in particular in the high 

latitude Northern Hemisphere region (Alexander et al., 2006; Trenberth et al., 2007). Brown et al. (2008) 

found extreme trends in land area annual daily maximum temperature maximums and minimums to be 

increasing across most of the Arctic (1.64-1.95ºC), with annual daily minimum temperature maximums 

and minimums exhibiting the greatest change over the largest percentage of the area (1.98-2.49ºC) based 

on gridded data from 1950-2004. Trends in the number of days above the 90th percentile of minimum 

temperature for Alaska are for 1-3 more days per decade, with the southern region around Anchorage 

exhibiting the greatest trends (>2.7 days/decade, Peterson et al., 2008). Extreme temperatures were found 

to be changing at all stations analyzed in Interior Alaska, with the greatest increases (decreases) occurring 

in the frequency of warm (cold) extremes occurring in spring and winter (Stewart et al., 2013). Future 

projected extreme temperature examined globally, including results for Alaska, indicates that most GCMs 

agree that the fraction of warm days and warm nights will increase, and the fraction of cool days and cool 

nights will decrease, with the strongest changes projected for the cool indicators annually and for the 

summer (Orlowsky and Seneviratne, 2012). Kharin et al. (2007) also noted increases in annual daily 

maximum temperature maximums under different emission scenarios on the order of 2-4ºC by the 2090s 

based on results of 12 CMIP3 GCMs. 

Globally, heavy precipitation events have strong regional variation although statistically 

significant increases are more common than statistically significant decreases (Alexander et al., 2006). In 

Alaska, heavy precipitation extremes have been increasing south of 62ºN, based on the 99.7 percentile of 

daily precipitation (37%) since the 1950s, although the results were not statistically significant (Groisman 

et al., 2005). The 95th percentile threshold was noted to have increased by 18%, and total precipitation 

increased by 10.3%, both statistically significant results. The Canadian Arctic as a whole was analyzed by 

Stone et al. (2000), measuring large changes (increases) in precipitation events over that region from 1950 

onward. Peterson et al. (2008) documented slight decreases in precipitation intensity based on the Simple 
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Daily Intensity Index (an index value of heavy precipitation) for parts of southern Interior Alaska to the 

coast, with increases in the rest of the state, although these results were not statistically significant. 

Extreme precipitation was noted by Stewart et al. (2013) to be highly variable, with only 50% (33%) of 

stations in Interior Alaska showing increasing trends in heaviest 1% of three day precipitation for spring, 

summer and fall (winter). Model projections of daily precipitation indicate that wet day intensity, 

percentage of days with precipitation > 95th quantile, and fraction of days > 10 mm are all increasing in 

Alaska, with 90% of the 12 CMIP3 GCMs analyzed agreeing on the results (Orlowsky and Seneviratne 

2012).  Kharin et al. (2007) provided projections of return intervals for daily maximum precipitation rates, 

and presented results indicating that Alaska and Western Canada would experience an increase in return 

values between 10 to 30% by the 2080s. One study used downscaled precipitation data to examine 

extremes, finding a decrease in the probability of extreme precipitation over Alaska; however the authors’ 

suggest that their findings are not robust due to the lack of climate stations in the region (Wang and 

Zhang, 2008). 

Extreme streamflow events have been analyzed across the globe, with no evidence supporting a 

world-wide or a US/Canada increase in flooding, with most of the changes occurring in low flows or 

baseflow values (Lins and Slack, 1999; McCabe and Wolock, 1999; McCabe and Wolock, 2002). On the 

other hand, melt season peak flow in snow-dominated and glacial fed systems is occurring earlier 

(Regonda et al., 2005; Rosenzweig et al., 2007; Stewart et al., 2005) and earlier breakup is occurring with 

respect to river ice (Beltaos and Prowse, 2009; Smith, 2000; Zhang et al., 2001). Burn (2008) examined 

multiple timing measures for changes in peak streamflow in the Mackenzie River basin and found the 

strongest trends in spring freshet (earlier) across most of the stations for all three time periods (between 

1961-2005). Peak flow studies from the Kuparuk River basin in northern Alaska describe two extreme 

streamflow events that occurred due to high amounts of rainfall falling across the entire river basin (Kane 

et al., 2008; Kane et al., 2003). Kane argues that while snowmelt peaks are more common, the largest 

floods will occur during summer rainfall events due to the rainfall amount and intensity coupled with 

continuous permafrost conditions which retard infiltration. 

1.2.3 Hydrologic Models 

Hydrologic models are the primary way researchers study and understand climate change impacts 

on extreme events. There are several classifications of hydrologic models; two main categories are 

distributed, ‘physically’ based models and lumped or semi-lumped conceptual models. The semi-lumped 

conceptual Sacramento Soil Moisture and Accounting (SAC-SMA) model is a widely used rainfall-runoff 

model that was designed for the US River Forecast Centers for forecasting with a response time greater 

than 12 hours (Burnash et al., 1973). The model partitions inflow from rain and snow into various upper 
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and lower compartments that treat water in various ways. The model’s upper partition consists of 

interception, tension water and free water storage. The tension water storages represent water held by 

capillary force in either the upper or lower zones. Free water percolates from the upper to the lower zone 

as well as to interflow and surface water runoff. Baseflow occurs from either the primary free water 

storage or the supplementary free water storages. Direct runoff is also possible. The model requires an 

estimate of temperature, precipitation, and evapotranspiration at a six-hourly timestep. SAC-SMA is 

coupled with a temperature index based snow model, referred to as SNOW17 (Anderson, 2006). 

SNOW17 computes melt as either rain or snow as inflow into the SAC-SMA model. Both SAC-SMA and 

SNOW17 have parameters that are estimated based on either recommended values or standard settings, or 

calibrated using the observed streamflow. The Variable Infiltration Capacity (VIC) hydrologic model is a 

distributed, physically based model that was originally developed as a land surface scheme (Liang et al., 

1994; Liang et al., 1996). The model uses the physical understanding of processes that affect the runoff 

including infiltration, evapotranspiration, snow accumulation and ablation, canopy conductance and 

frozen ground to develop fluxes of runoff and baseflow on a grid cell basis. The model can be run in full 

energy balance mode, and with or without the frozen ground module for specific grid cells. Model inputs 

are precipitation, minimum and maximum temperature and wind speed. Soils, vegetation and topography 

must be supplied for each grid cell; only vegetation and topography is supplied at a sub-grid cell scale. 

Determining the best choice of model for a particular application, such as extreme event analysis, 

is challenging. Users must weigh the pros and cons of each model and there are literally dozens of 

hydrologic models available for use (Beven, 2001; Bourdin et al., 2012; Singh and Woolhiser, 2002). A 

recent study attempting to elucidate why people choose models highlighted the importance of model 

function, availability, and familiarity (Fleming, 2009). The Distributed Model Intercomparison Project 

(DMIP) were established specifically to assist the National Weather Service in determining the most 

suitable model for a specific application, namely river forescasting (Reed et al., 2004; Smith et al., 2004). 

There are two phases of the project, Phase 1 and Phase 2. Both the SAC-SMA model and a version of the 

VIC model were included in Phase 1 of the study, although the VIC model results are only provided for 

daily streamflow for one calibrated river basin (Reed et al., 2004). Out of the twelve models tested, the 

lumped models performed better than the distributed models, however well calibrated distributed models 

performed better than the calibrated lumped models at times. For the calibrated model results, the three 

models that exhibited the best performance in mid-sized watersheds all used the SAC-SMA model for soil 

moisture accounting. With regards to peak flow runoff statistics, again the lumped models performed 

better than the distributed models. On the other hand, distributed models outperformed the lumped 

models for peak flow in basins with distinguishable physiography and soils. Generally, calibrated models 

that combined conceptual rainfall-runoff approaches with physically based distributed routing performed 
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best for all basins, with the exception of small watersheds (Reed et al., 2004). In a follow up study (Phase 

2), Smith et al. (2012) outlines a comparison of 16 lumped versus distributed models that were part of the 

Oklahoma DMIP2 study. The findings concluded that while lumped models still outperformed distributed 

models, the distributed models had improved and they would continue to improve over time. The 

distributed models performed poorly, in particular, for peak flow estimation, highlighting the challenge of 

modeling extreme streamflow events. 

One particularly challenging aspect of modeling is the problem with model calibration and 

susceptibility to user error (Smith et al., 2012). This refers to the fact that the model intercomparison 

studies are not just tests of the model, but also tests of the implementation, calibration and verification of 

models (i.e. both the model structure and how it was set up). Another issue with regards to comparison of 

different models is the ways in which they are distinguished, which can be misleading. For example, 

distributed, ‘physically-based’ models that contain numerous parameters are in fact, closer to conceptual 

models because they may not be calibrated uniquely for an each grid cell, or rely upon empirical tools to 

determine their parameters. This can obscure the true differences between models. This issue is 

particularly true for domains such as Alaska, where there is a lack of field-based observations with which 

to develop parameters for distributed, physically-based models.  

For climate change studies, a number of other factors with regards to modeling must be 

considered, and these factors were not included as a part of the National Weather Service’s DMIP1 and 2 

studies. For example, conceptual models have parameters that are calibrated to streamflow but may be 

sensitive towards the selection of parameters under different calibration conditions (i.e. wet and dry, 

Wilby, 2005). Ludwig et al. (2009) assessed three different hydrologic models of varying complexity 

specifically with respect to the uncertainties related to climate change impacts.  The lumped conceptual 

model overestimated evapotranspiration, while the physical models operated in a reasonable range. The 

other issue with respect to conceptual models is that it is unclear if their parameterizations, developed and 

calibrated on current climate, will hold up under a future climate. Current research indicates that 

parameter uncertainty under future climate is similar to that obtained by recent past climate (Poulin et al., 

2011). On the other hand, Ludwig et al. (2009) found that uncertainties across models of increasing 

complexity can be in the same range as climate scenarios, and thus process descriptions are needed to 

provide robust predictions of future climate. A more recent study in Quebec found that low flow response 

was greatly impacted by the selection of hydrologic model, although high flows were much less sensitive 

(Velázquez et al., 2013). Catchment properties, however, also lent considerably to uncertainty across 

models (Bloschl and Montanairi, 2010, DMIP studies) These findings have obvious implications for the 

Arctic, where P-E relationships dictate the response of streamflow to climate change forcings (Serezze et 
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al., 2000) and where catchments have variable hydrologic conditions in terms of permafrost distributions, 

geology, topographic position and other factors (e.g. distance from the coast, vegetation). 

1.2.4 Remote Sensing of Snow 

Approximately 40–50% of the Northern Hemisphere is covered with snow during midwinter, 

making snow cover the most prevalent land-cover type during the season (Lemke et al., 2007). The 

accurate capture of snow at a landscape scale remains one of the most important components in the water 

balance of northern river basins. However, one of the key unknowns in the modeling of hydrology is the 

model representation of snow across the landscape. One potential approach to addressing this is to replace 

the modeled snow simulations with remotely sensed observations of snow. Remotely sensed snow 

measurements began in the 1970s, and more sensors have been added since the early 2000s (Armstrong 

and Brodzik, 2001), in particular for the North (Romanov et al., 2000). The most recently deployed 

remote sensors to observe snow is the Visible/Infrared Imager Radiometer Suite (VIIRS) on board the 

Suomi National Polar-Orbiting Partnership (NPP) satellite (Cao et al., 2013). 

Remote sensing of snow is possible due to the primary factors that influence spectral reflectivity 

and scattering in snow. These include grain size, grain texture, snow depth, snow metamorphism such as 

aging and albedo, snow stratigraphy (textural and crystal structure changes such as ice lenses, depth hoar), 

snow liquid water content (or lack thereof), and the physiographic situation of the snowpack itself 

(topography, aspect, slope, soil and vegetation characteristics of the underlying substrate to the pack, Hall 

and Martinec, 1985; Sturm et al., 1995). Snow grain size and crystal shapes affect scattering properties in 

both the visible and the microwave spectral ranges. In the visible spectrum, melting and refreezing in the 

snow that leads to changes in snow texture and grain sizes can reduce reflectance, which is the main 

property allowing researchers to correctly identify snow in the visible spectrum (Foster et al., 2005). 

Grain size differences also lead to an increase in variability of reflectance properties, obscuring the signal 

(Dozier, 1989). Metamorphism can lead to changes in snow density, crystal shape/texture and changes in 

liquid water content, which all reduce its reflectivity. 

Clouds are also major issue in terms of blocking the visualization of snow or confusion in terms 

of snow classification (Frei et al., 2012). Clouds reflect a higher proportion of shortwave infrared, and 

thus have a different reflectivity than snow. However, cloud properties themselves, such as ice crystals, 

cloud depth, type of cloud (high cirrus, stratocumulus) can also influence reflectance. Techniques to 

separate these affects from snow properties must be adopted in different terrain types and regions to 

determine if the algorithms are accurately correcting for the presence of clouds. The near-infrared bands 

can be used to distinguish between snow and clouds as the near-infrared reflectance of clouds is generally 

high while the near-infrared reflectance of snow is low (Hall et al., 2010; Hall et al., 2002).  
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Topography, including slope, aspect and other characteristics of the ground surface (vegetation) 

can also change the reflectivity of snow on the ground, limiting the use or reducing the accuracy of 

remote sensing tools (Frei et al., 2012). Shading of snow can produce a change in snow reflectance 

properties, making it difficult to detect using automatic classification techniques. Additionally, 

topography can introduce shading effects variably across a landscape. Vegetation such as forest cover, 

shrubs and exposed bare soils or rocky alpine outcrops (i.e. mountain tops with exposed/blowing snow) 

can also affect spectral properties by lowering surface albedo, creating issues in terms of detection and 

classification (Hall et al., 1998). Forest cover, in particular, is a major issue as the sensor cannot see under 

the canopy to determine snow properties (Chang et al., 1996; Klein et al., 1998). 

In the microwave ranges, snow properties influence the scattering of microwave wavelengths 

proportional to the grain size, which is one of the main properties that allow for microwave detection of 

snow cover (Chang et al., 1987). The scattering properties of snow become reduced as grain sizes grow 

larger, which permits estimates of snowpack volume (snow water equivalent, SWE). Passive microwave 

remote sensing does not require daylight conditions and can penetrate non-liquid forming clouds, which is 

ideal for northern applications where cloudiness and daylight are issues (Frei et al., 2012). However, the 

presence of liquid water in the snow pack can change as a result of metamorphism and this can affect the 

absorption of microwaves in the snow (Foster et al., 1999). Thus wet snow conditions limit the use of 

passive microwave techniques. Snow depth can also have an effect on the microwave emission properties, 

setting an upper limit to the maximum snow depth that can be analyzed using microwave remote sensing 

techniques (Derksen, 2008). Finally, depth hoar also affects scattering properties of the snow and may 

lead to an over estimation of SWE (Clifford, 2010). 

Some of these biases in passive microwave remote sensing products can be overcome by 

combining these tools with optical sensors, or with active microwave that may compensate for the 

limitations. Active microwave can be used to map snow-cover characteristics of wet snow but dry snow 

cannot be identified (Wang et al., 2008). When dry snow is mapped using active microwave data, 

microwaves pass through the snow and detect/reflect the ground conditions under the snow (König et al., 

2001). Off-nadir scatter also affects reflectance properties, which can cause some vegetated surfaces and 

rock faces to be interpreted as snow at these locations. These require proper correction and adjustment in 

imagery. Despite this, active sensors can capture snow at high spatial resolutions, reduced swath widths 

(50–500 km) and have frequent pass overs (König et al., 2001). 

The MODIS products are one of the most widely used today to map snow cover extent. The 

MODIS sensor is situated onboard NASA’s Earth Observing System (EOS) Terra satellite, and has been 

used to calculate snow cover extent since 1999. One algorithm to detect snow in MODIS is based on the 

normalized difference snow index (NDSI). The suite of MODIS data served up by the National Snow and 
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Ice Data Center rely upon this algorithm for their MOD10A1 data product.  NDSI is calculated as a 

difference of band 4 and band 6, divided by the sum of band 4 and band 6 (Hall et al., 2002); a threshold 

NDSI value of 0.4 is used to indicate snow/no snow. The algorithm can detect the difference between 

clouds and snow, because the reflectance of snow is low while the reflection of clouds remains high on 

MODIS band 6 (Terra only). Procedures to map the fractional extent of snow cover are based on linear 

regression for NDSI and were developed from analysis of Landsat scenes (Salomonson and Appel, 2004). 

Another algorithm to detect snow cover is the MODIS Snow-Covered Area and Grain size (MODSCAG) 

model (Painter et al., 2009). MODSCAG is a linear spectral mixing model that utilizes snow, rock, soil, 

vegetation and lake ice endmembers to determine the best model fit based on the spectral characteristics 

of two or more endmembers. There are several other types of fractional products and combined products 

that hold great promise for remote sensing of snow (i.e. Foster et al., 2011; Hall et al., 2012). 

1.3 Structure of this Thesis 

This thesis is paper-based in structure. Chapters 2-6 describe the results of five studies that are 

included in this thesis as individual manuscripts. The final chapter (Chapter 7) is a summary and synthesis 

of all five chapters, including implications of the study with respect to infrastructure in Alaska. Individual 

chapters (Chapters 2-6) contain an abstract, introduction, study area description, and results and 

discussion sections. Figures, tables and references follow each chapter. 
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1.4 Figures 

 

Figure 1.1 Ecoregions of Alaska.  Major cities of Anchorage and Fairbanks and the village of Barrow are 
illustrated. 
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2.1 Introduction 

In recent years there has been an increasing demand from stakeholders and decision makers for 

more information on extreme weather events. Examples of such events include extremes of temperature, 

precipitation and wind.  Hydroclimatic extremes are especially important because of associated flooding 

on the one hand and drought-related impacts such as water availability, vegetative stress and fire risk on 

the other hand.  Due to the high physical and economic impacts of extreme events, decision makers (e.g., 

emergency responders, the insurance industry, natural resource managers) recognize the need to better 

account for and predict such occurrences. The expectation of recurrence based on past observations forms 

the basis of building codes, infrastructure design and operation, and land-use zoning and planning. An 

increase in the number and consistency of analyses of historic events is needed to improve the baseline 

for assessments of likelihoods of extreme events. It is also important to consider future changes in 

extreme events, as these events generally have greater impacts on humans and ecosystems than do 

changes in climatic means.  Impacts vary with the duration of the extreme event, complicating the 

definition of extreme events and the synthesis of information on them. 

There is growing concern that changes in frequency and intensity of extreme weather and climate 

events are due to human activity (Trenberth and Jones, 2007). Part of the concern is due to the fact that 

changes in the mean of the distribution are expected to result in correspondingly larger percentage 

changes in the tails of distribution or the extremes (Katz and Brown, 1992; Zhang and Zwiers, 2013). 

Attribution of changes in these extreme events first requires determination of whether and where 

statistically significant changes are occurring. The Intergovernmental Panel on Climate Change (IPCC) 

Fourth Assessment Report (AR4), summarized much of the research on regional changes in extreme 

weather and climate events (Trenberth and Jones, 2007).  All regions addressed by the IPCC (including 

the Arctic, examined by Groisman et al., 2005) showed patterns of changes in extremes consistent with a 

general warming. Recent warming has been especially pronounced in northern high latitudes. Alaska 

experienced an overall warming of 1.7ºC in its mean annual temperature from 1949 to 2012 (Bieniek et 

al., 2014). Most of this warming has occurred in winter and spring, and the smallest change has occurred 

in autumn. The possibility that the mean warming is associated with changes in occurrences of extremes 

is one of the motivations of this study.  

The change in four extreme indices in the IPCC AR4 report (Table 3.6 of Working Group I) 

indicated that the distribution of minimum and maximum temperature had not only shifted, but also 

changed shape, i.e., the probability density function changed  (IPCC, 2007). Minimum temperatures have 

shown a greater increase than maximum temperatures, which led to a reduction in the diurnal temperature 

range since 1951.  Analyses for Canada excluded the high-latitude Arctic and found no identifiable trends 
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in extreme precipitation for the country as a whole, although the frequency of days with precipitation did 

significantly increase during the twentieth century (Vincent and Mekis, 2006; Zhang et al., 2001). It is 

noteworthy that a focus on extreme events in the Arctic region is absent from the analyses presented in 

this section of the IPCC AR4. 

In 2008, the former U.S. Climate Change Science Program (CCSP - now the United States Global 

Change Research Program) published a Synthesis and Assessment Product (SAP) 3.3 which addressed 

the topic of weather and climate extremes (CCSP, 2008). SAP 3.3 found the largest increases in the 90th 

percentile threshold temperature in the western part of North America from northern Mexico through the 

western United States and Canada and across Alaska for the observation period from 1950 to 2004. These 

results were statistically significant at the 95% confidence level across almost all of Alaska, with the 

exception of the Aleutian Islands. All of Alaska showed an upward trend in the number of days with 

unusually warm daily low temperatures for the period of record 1950-2004. For the United States and 

Canada, the largest increases in daily maximum and minimum temperatures were found to occur in the 

colder days of each month.  More recently, Peterson et al. (2013) evaluated decadal frequencies in the 

occurrence of heat waves and cold waves (defined as once-in-five-year magnitude events) for various 

regions of the United States, including Alaska.  Like the other regions of the western United States, 

Alaska has shown an increase in heat waves and a decrease of cold waves in recent decades (Figure 1 in 

Peterson et al., 2013). 

SAP 3.3 (together with 20 other SAPs produced by CCSP) was summarized into a national 

climate assessment, Global Climate Change Impacts in the United States (Karl et al., 2009). General 

findings from this report include an expectation of a widespread trend toward more heavy downpours, 

with precipitation becoming less frequent and more intense, and more precipitation falling as rain rather 

than snow. As reported in Karl et al. (2009), Alaska showed a 23% increase in the amount of precipitation 

falling in very heavy precipitation events (highest 1% of all daily events) from 1958 to 2007. Alaska had 

the fourth highest increase behind the Northeast (67%), Hawaii (37%), and the Midwest (31%). Alaska 

also showed a 13% increase in the number of days with very heavy precipitation during the same period. 

The state once again had the fourth highest regional increase behind the Northeast (58%), Hawaii (46%), 

and the Midwest (27%).  More recently, the Fifth Assessment Report (AR5) of the IPCC (2013) 

summarizes observed changes in extremes in its Chapter 2.  The fact that the AR5’s Chapter 11 on model 

projections is somewhat sparser in its treatment of future changes, especially in high latitudes, is one of 

the motivations of the present study. 

As the atmosphere warms, evaporation increases, and the atmosphere’s capacity to hold moisture 

also increases. This holding capacity increases by about seven percent for every 1°C rise in temperature 

(Karl et al., 2009). Concordant with these changes in the water cycle, a corresponding increase in the 
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intensity of extreme heavy precipitation events is hypothesized, with associated hydrologic impacts 

(Rawlins et al., 2010). A test of this hypothesis for the Alaskan region is another motivation of the present 

study. 

Alaska is a natural focus for this study because (1) climatic extremes in the Arctic have received 

considerably less attention than climatic extremes in other areas, so an assessment of Alaskan extremes 

can serve as prototype for similar studies of other Arctic regions, and (2) Alaska is anticipated to 

experience larger mean changes as a result of Arctic amplification effects, which could have 

consequences in the tail ends of the distributions as well as in the means. Moreover, Alaskan extremes 

have yet to be assessed in a study that includes both historical and future extremes in a common analysis 

framework. Adding to the timeliness of the present study is the recent release of a compilation of a 

gridded database on climate model-derived climatic extremes (the ClimDEX archive of CMIP5 output), 

providing an opportunity to examine changes in extremes of hydroclimate drivers, i.e. temperature and 

precipitation extremes (Sillmann et al., 2013a; Sillmann et al., 2013b). 

The over-arching objective of the present study is to document the spatial patterns of ongoing and 

projected changes in extremes in Alaska, and to assess the level of agreement among different models in 

the projections of changes in extremes. The focus will be on variables (maximum and minimum 

temperature, and maximum five-day precipitation) that are directly relevant to high-impact hydrologic 

events (floods, droughts), although one intent of the present study is to highlight the availability of GCM-

derived information on extremes.  An additional goal of the study is to provide an analysis of historical 

and projected occurrences of extremes in Alaska, within a consistent framework. In particular, our use of 

standard (ClimDEX) indices of extremes will enable comparisons with other regions across the U.S. and 

globally. 

2.2 Study Area 

The Alaska region is used as a case study for assessing changes in climatic extremes both in 

climate models and in reference (historical) data (Figure 2.1).  The domain over which model output was 

analyzed is 55-75ºN, 134-172ºW.  As reference data, we use reanalysis output as well as station-based 

observations along a north-south transect in Alaska.  The transect extends from the coast of the Arctic 

Ocean (Barrow) to the southern portion of the Arctic mainland (Anchorage), which is only about 100 km 

north of the Gulf of Alaska. While Alaska’s climate is characterized by large heterogeneities arising from 

topography, proximity to coasts and sea ice, as well as the large size of the state, it is also poorly sampled 

by a sparse network of first-order stations (Bieniek et al., 2012). For this reason, we limit our selection of 

in-situ data to three first-order stations that have complete records for the historical period of interest 

(1971-2000) and that capture a cross section of the north-to-south range in the state’s climate.  
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The station-based observations include the Anchorage International Airport (61.17N, 150.03W, 

37 m, USW00026451, referred to in text and figures as ANC), the Fairbanks International Airport 

(64.80N, 147.88W, 132 m, USW00026411, referred to in text and figures as FAI), and the Barrow 

Airport (71.2834N, 156.7815W, 9 m, USW00027502, referred to in text and figures as BRW). The sites 

are not intended to illustrate the variability in climate conditions across the entire state, but rather were 

selected to show how the ClimDEX results correspond to station data at three widely different climate 

locations in Alaska. These stations were selected as examples and for comparison with statewide fields of 

temperature and precipitation from a major atmospheric reanalysis, described below. 

2.3 Methods  

2.3.1 Selection of Global Climate Models 

A set of more than twenty global climate models (GCMs) from the CMIP5 archive were 

evaluated for their ability to simulate the historical climate of the Alaska region.  The key metrics of 

evaluation were the seasonal cycles of surface air temperature, precipitation and sea level pressure over 

the Alaskan domain defined in the preceding section.  The historical validation data were the 

climatological mean fields for 1981-2000 from the ERA-40 reanalysis (Uppala et al., 2005). For each 

calendar month and each of the three variables, the root-mean-square error (RMSE, model minus 

reanalysis) was evaluated for all grid cells and then summed over the 12 calendar months.  The GCMs 

were ranked from smallest to largest RMSE, and the ranks of each model for temperature, precipitation 

and sea level pressure were summed.  The summed rankings provided an Alaskan performance metric 

which, together with the availability of the corresponding information on extremes in the ClimDEX 

archive, led to our identification of a subset of  six GCMs for inclusion in our comparison of simulated 

extremes:  Max-Planck Institute Earth System Model MPI-ESM-LR, the Community Climate System 

Model CCSM4, the Canadian Earth System Model CanESM2, Japan Meteorological Research Institute’s 

MRI-CGCM3, Institut Pierre Simon Laplace Climate Model IPSL-CM5A-LR, and the Centre National de 

Recherches Météorologiques CNRM-CM5.1. The main attributes of these models are listed in Table 2.1. 

It should be emphasized that the results of the GCM model evaluation pertain to Alaska only and 

would be different had different variables or even different metrics been used.  In the context of the 

present paper, we note that simulated extremes were not used in this evaluation of the models.  The 

relative performance of global climate models is known to vary with region, variable and metric (Reichler 

and Kim, 2008), and there is no “one size fits all” evaluation procedure (Overland et al., 2011).  

Nevertheless, the procedure described above represents one practical means for selecting a subset of 

CMIP5 models to illustrate the across-model variations of simulations of extreme events in our region of 
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interest. For GCMs having an ensemble of available simulations, the first of those simulations was 

selected for analysis to both limit the computation effort and focus the discussion of results to differences 

between GCMs and not between multiple ensemble members from the same models. Across-model 

differences are generally much larger than differences among ensemble members from a single model 

(Walsh et al., 2008).  The considerable internal variability in climate models contributes to these 

differences and will be a factor in comparisons among ensemble members from a single climate model as 

well as in across-model comparisons (Deser et al., 2012). 

2.3.2 Future Forcing Scenarios 

Future climate projections from global climate models require specifications of the external 

forcing, which are dependent on emission scenarios of greenhouse gases and aerosols, as well as land use, 

technology and economic development.  Because the factors contributing to future external forcing are 

not known, a range of future forcing scenarios is generally used to obtain future projections of climate.  

The most recently developed set of forcing scenarios has been termed “Representative Concentration 

Pathways” or RCPs (Moss et al., 2010).  These scenarios are termed RCP 2.6, RCP 4.5, RCP 6.0 and 

RCP 8.5, with the numerical values (2.6, 4.5, etc.) indicating the end-of-century (year 2100) radiative 

forcing in Watts per m2 resulting from anthropogenic inputs to the atmosphere (but not including changes 

in land use). The low-end RCP 2.6 scenario is considered highly unlikely by researchers, as it assumes a 

substantial reduction (~70%) in greenhouse gas emissions by 2050.  The RCP 6.0 scenario is comparable 

to the mid-range A1B scenario of the previous generation of scenarios used in the Fourth Assessment 

Report of the IPCC (2007).  In the present study, we use the RCP 4.5 and RCP 8.5, which can be loosely 

termed “low-end” and “high-end” emission scenarios, to illustrate the dependence of future occurrences 

of Alaskan extremes on the emission scenario.  We note that present rates of greenhouse gas emissions 

are closest to the RCP 8.5 scenario. 

2.3.3 Reanalysis Data 

The European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis, (ERA-40), 

like other reanalysis products, directly assimilates observed air temperature and sea level pressure (SLP) 

observations into a gridded product spanning the period from 1958-2002. A subsequent product, ERA-

Interim, continues beyond 2002 but is not used here because our historical reference period is 1971-2000.  

While temperature observations are assimilated directly into the simulations by the reanalysis model, 

precipitation measurements are not assimilated; rather, precipitation is computed by the reanalysis model 

for all grid cells at every time step.  The ERA-40 provides one of the most consistent, available and 

accurate gridded representations of these variables and compares favorably with other reanalysis products 
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of the Arctic (Bromwich et al., 2007).  ERA-40 precipitation has been compared with NCEP-NCAR and 

satellite-based Global Precipitation Climatology project (GPCP) data by Serreze et al. (2005) in Arctic 

river basins. The study found that ERA-40 outperforms the other sources of precipitation information, 

particularly during January, April and October, although lower correlations were found for July (Cassano 

and Cassano, 2010). It is therefore, a logical choice for the observational analysis from which we 

determine the biases of late-twentieth-century surface air temperature and precipitation extremes. Data 

and documentation for the ERA-40 can be found online at 

http://www.ecmwf.int/research/era/Products.  While the ERA-40 reanalysis was performed at T106 

(~125 km) resolution with 60 levels, we use the version of the output archived on a 2.5 latitude x 2.5 

longitude grid for compatibility with the GCM output. 

2.3.4 ClimDEX Calculations 

The Expert Team on Climate Change Detection and Indices (ETCCDI) developed a set of 

extreme indices that could be used for analysis of extreme events (Alexander et al., 2006; Frich et al., 

2002; Klein Tank et al., 2009; Zhang et al., 2011). The purpose of the ETCCDI indices was to have a 

compilation of reproducible, common index variables that could be easily calculated and were based on 

available daily climate data such as air temperature and precipitation (Zhang and Zwiers, 2013). The 

ETCCDI indices can be classified into three categories: monthly or annual minimum or maximum values 

of temperature and maximum daily values of precipitation; counts of the number of days exceeding a 

specific baseline climatological threshold; and counts of the number of days exceeding a specific fixed 

threshold. There are 27 ClimDEX indices in total (Zhang and Zwiers, 2013). 

The three ClimDEX indices on which this study focuses are from the first category only. These 

are considered high impact variables that are widely reported and thus can be compared with other 

quantities (i.e. mean temperature), and they have broad usage in terms of engineering design criteria 

(Zhang and Zwiers, 2013) and environmental indicators. The minimum of the daily minimum 

temperatures in a month or year (TNn), the maximum of the daily maximum temperatures within a month 

or year (TXx), and the maximum consecutive 5-day precipitation total in a month, Rx5 where chosen for 

this work.  For each of these indices, there is a single value for each month/year and grid cell (or station 

from in situ observational data).   TNn and TXx are archived in ºC, while Rx5 is archived in millimeters; 

see Table 2.2 for a description of the statistics and their calculation. The data set was developed based on 

the R package climdex.pcic as documented at The Comprehensive R Archive Network (CRAN) website 

(Bronaugh, 2012). Station data were downloaded from the  National Ocean and Atmosphere’s (NOAA) 

Climate Data Online Global Historical Climate Network (GHCN) database and processed using the same 
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climdex.pcic package for R (version 0.6-2, not currently released on CRAN) using the time period 1971-

2000. 

2.3.5 Processing ClimDEX 

Files of the monthly and yearly extreme indices were downloaded from Environment Canada’s 

ClimDEX portal (http://www.cccma.ec.gc.ca/data/climdex/, Kharin et al., 2013; Sillmann et al., 2013a; 

Sillmann et al., 2013b). Our analysis consists of two parts, the first focused on the extended ensemble of 

22 GCMs that provided a larger sample for assessing inter-variable relationships in the projected changes.  

This enlarged subset includes all models available in the ClimDEX archive, subject to the requirement 

that the archive of output be complete for 1950 to 2100 for both the RCP 4.5 and RCP 8.5 simulations. 

Eleven GCMs were thus excluded from the analysis, leaving the 22-model subset consisting of 

ACCESS1-0, BNU-ESM, CanESM2, CCSM4, CESM1-BGC, CMCC-CM, CNRM-CM5, CSIRO-Mk3-

6-0, GFDL-ESM2G, GFDL-ESM2M, GFDL-ESM2M, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, 

IPSL-CM5B-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR, MPI-ESM-MR, MRI-

CGCM3, and NorESM1-M. 

In the first part of the analysis, all 22 models were used to generate the figures relating projected 

changes of TNn versus Rx5 (Figure 2.2) and TXx versus Rx5 (Figure 2.3).  The second part of the 

analysis, which includes spatial patterns and time series from individual models, is limited to the smaller 

subset of six high performing models for Alaska (see Selection of global climate models) models in order 

to highlight these models and retain parsimony in the presentation of analytical results. 

GCMs time series were subset to 1971-2000, 2041-2070 (2050s) and 2071-2100 (2080s) using 

Climate Data Operators (CDO) tools. Each global file was clipped to the Alaskan domain defined in 

Section 2. All files were then averaged over 30-year time periods seasonally and annually. Raw monthly 

output extending from 1850-2100 was subset for each of three specific sites (ANC, FAI and BRW) and 

averaged over each season. 

For comparison with the projected changes in the extremes of temperature and precipitation 

(described by the ClimDEX indices), the corresponding changes in the models mean values were also 

calculated.  These changes were the differences between the 30-year means for the future timeslices 

(2041-2070, 2071-2100) and the historical base period (1971-2000).  These differences were evaluated 

using the temperature and precipitation output from the subset of six global climate models described 

above, under both the RCP 4.5 and RCP 8.5 scenarios. Percentage changes for both mean and extreme 

precipitation were calculated as the 2080s changes (from the 1971-2000 mean values) divided by the 

mean 1971-2000 values. Statistical significance of the differences in these changes in mean were 

calculated using the two-sided Wilcoxan rank-sum test (Table 2.3, Helsel and Hirsch, 2002). 
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In order to allow for comparison between GCMs and the reanalysis data (i.e. Table 2.3 results), 

all monthly fields of GCM temperature and precipitation were interpolated to a common grid (CCSM4’s 

0.94° latitude by 1.25° longitude grid). Geographic Information System (GIS) shape files were used to 

clip and average results for the grid boxes covering the Alaskan land area and particular subsets 

containing Anchorage, Fairbanks, and Barrow. Several grid boxes (3-4) were used to represent the 

conditions nearby those cities but without selecting ocean regions. 

Maps (Figures 2.4-2.6) were plotted using NetCDF Command Language (NCL). Line plots 

(Figures 2.7-2.9) were calculated based on the average and the range of the minimum and maximum 

temperature or 5-day precipitation that occurred at our two focus locations with the most widely differing 

characteristics (ANC, BRW). 

2.4 Results and Discussion 

The following discussion of results is divided into two sections.  In the first, we assess the 

occurrence of extreme temperatures and precipitation in Alaska over an historical period, 1971-2000.  

This section includes a comparison of the global climate models, the atmospheric reanalysis (ERA-40), 

and station observations for the same period.  With this comparative assessment providing context, we 

then turn in the second section to the changes projected by the models under two scenarios of future 

climate forcing. 

2.4.1 Historical Observations and Simulations of Extreme Temperature and Precipitation  

Tables 2.3, 2.4 and 2.5 provide overviews of the historical occurrences as well as the projected 

changes for TNn, TXx and Rx5, respectively. Each table is partitioned into sections for the Alaska 

statewide average and for locations corresponding to three stations having essentially complete daily 

records for the 1971-2000 historical period: Anchorage (ANC), Fairbanks (FAI) and Barrow (BRW).  

These stations provide a 3-point transect from the southern coastal region to the northern coast.  In the 

tables, the first three lines summarize the ClimDEX extremes for the 1971-2000 historical period as 

obtained from the station data, the ERA-40 reanalysis, and the aggregate (average) of the six models.  

Also included (line 4 of each table) are the across-GCM standard deviations for each index and for each 

season (and the full annual period). For the ERA-40 reanalysis and the climate models, the values listed 

for each station are for the grid cell containing the station location, averaged with the four surrounding 

grid cells, or in the case of Barrow, three grid cells (to exclude ocean cells).  This averaging was done on 

regridded data and acted to smooth results and reduce bias that may be introduced by selecting one grid 

cell. Note that the tables do not contain statewide averages of the station values because of the sparseness 

of the station network. 
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Several notable findings emerge from a comparison of the first three lines of the tables.  First, the 

models generally produce colder extreme minimum temperatures (TNn) than the reanalysis, except at the 

Barrow location. The magnitude of the cold bias is 5°C and even larger at Anchorage.  By contrast, the 

reanalysis values are quite close to the station values at all three stations, except for a cold bias of about 

5°C at Fairbanks in winter and autumn, an annual bias of about 5°C at Barrow and about 10°C at 

Fairbanks.  The cold bias of the models relative to the reanalysis and stations is most likely a consequence 

of the relatively coarse resolution of the GCMs.  The Anchorage station, for example, is at sea level while 

the major mountains (1 to 2 km in elevation) are found within 50 km of the station location and are 

therefore within the Anchorage grid cell of climate models run at 100-200 km resolution. Fairbanks is 

also located in a valley, with significant topography to the north, south and west, giving a GCM’s 

corresponding grid cell a higher elevation and hence colder temperatures.  Our inclusion of several grid 

cells surrounding each station’s grid cell can add to the elevational discrepancy.  Because the native grid 

of the ERA-40 reanalysis had a finer resolution, the ERA-40 bias, relative to the station data, is not as 

severe as the GCM bias. Comparisons between global climate model output and individual stations are 

subject to the caveat that station locations are often unrepresentative of the surrounding grid cell. 

The TXx values of the GCMs and the ERA-40 reanalysis are generally quite close to each other, 

although the models are colder than ERA-40 by 3º to 5ºC at Fairbanks in spring, summer and autumn.  

The models are also colder by about 3.5ºC at Anchorage in the spring, winter and fall. As was the case 

with TNn, the models and the reanalysis are colder (by 5 º to 10ºC in some seasons) compared to the 

station data at Anchorage and Fairbanks, although the models and reanalysis are much closer to the 

station values at Barrow. By comparison, the standard deviations across the six models range from 1.26ºC 

(Anchorage in winter) to 4.27ºC (Barrow in winter).  Thus model-reanalysis differences are generally 

within the spread of the models at Barrow, where there is little topography, but the cold biases relative to 

Anchorage and Fairbanks station data are much larger than the spread across GCMs.  In view of the 

locations of the three stations relative to topography, together with the sign of the biases when the values 

are large, the station-to-model discrepancies support the argument that topography and grid-cell 

elevations are at least partially responsible for the cold biases. 

The maximum 5-day precipitation amounts, Rx5, are considerably larger in the models and the 

reanalysis than in the station data. The GCM amounts are generally two to four times larger than the 

station amounts in the cold season at Anchorage and Barrow, with smaller positive biases at Fairbanks.  

The global climate model amounts are generally much closer to, although still larger than, most of the 

ERA-40 reanalysis amounts.  It is well known that station measurements of frozen precipitation suffer 

from gage undercatch, especially in cold windy conditions (Goodison, 1978).  Since the station amounts 

are not adjusted for gage undercatch, part of the model-to-station discrepancy is likely due to the fact that 
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the station amounts are artificially low.  However, it is also likely that topography also accounts for part 

of the discrepancy.  The mountains to the east of Anchorage often shelter the Anchorage climate station 

from precipitation in winter when low pressure systems to the south produce easterly winds in the 

Anchorage area.  As noted earlier, the models’ coarse resolution smoothes topography and also has the 

effect of giving Anchorage a spuriously high elevation.  These topographic mis-representations would 

contribute to an over-simulation of precipitation at Anchorage in the models and in the reanalysis. Given 

the absence of topography near Barrow, the models’ higher Rx5 values relative to the station values may 

well result primarily from gage undercatch.  

Despite the biases, the models capture much of the seasonality and the geographic (south-to-

north) variation of the three ClimDEX indices examined here.  Moreover, at least some portions of the 

models’ biases relative to station data should remain invariant as the simulations extend into the future 

(i.e., topography will not change over the 21st-century timeframe of the projections to be examined here).  

For these reasons, and because the models’ biases relative to ERA-40 are smaller than with respect to 

station data, the models offer the potential for useful inferences about changes in the indices of extremes 

during 21st-century simulations by the models. 

2.4.2 Projected Changes in Extreme Temperature and Precipitation 

Relationships between the statewide averages of seasonal changes in TNn vs. Rx5 and TXx vs. 

Rx5 for the 2050s and the 2080s for RCP 8.5 are illustrated for 22 models (Figure 2.2 and 2.3, 

respectively). These plots show how the top six models used to discuss the major findings of the work fit 

within the relative spread of all 22 models analyzed (highlighted using black, open circles). Overall, the 

subset of six selected models represents the ranges of increases in precipitation and temperature. The 

2050s results (green) are clustered in the lower left quadrant of the plots, while the 2080s (blue) tend to be 

clustered in the upper right hand quadrant, although there is some overlap.  Changes in all seasons for 

TXx except SON, and in MAM for TNn appear approximately symmetric about the 1:1 line (a 1°C 

change in temperature is associated with a 1mm increase in 5-day precipitation, Figures 2.2, 2.3); during 

winter, spring and summer for TNn, models fall above the 1:1 line and for autumn TXx, the models 

(generally) fall below the line. Model spreads are largest in the winter and autumn and for the 2080s. 

Temperature and precipitation changes in the winter and autumn for TNn and TXx are most strongly 

correlated. 

Results in the scatterplots relating TNn vs. Rx5 and TXx vs. Rx5 can be compared to recent work 

by Westra et al. (2012), who used ClimDEX indices to examine the relationship between increasing 1-day 

precipitation events and increases in global temperature for over 8000 stations observing precipitation and 

air temperature over 30-year time periods. Westra et al. (2012) used a generalized extreme value theory 
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analysis to explore the association between precipitation extremes and air temperatures. The results 

indicated a statistically significant relationship between extreme precipitation and changes in near surface 

atmospheric temperature between 6-8% K-1. Westra et al. (2012) also found that the greatest sensitivities 

have occurred in the high latitudes, and the tropics. A test was performed to determine if the significance 

of the results occurred due to random variability under the null hypothesis that the year-to-year extremes 

are distributed independent of each other, and the findings indicated that the magnitude of the sensitivity 

was significantly different than that obtained under the null hypothesis (Figure 11 in Westra et al. 2012). 

Westra et al.’s study found that two stations in Alaska with statistically significant results are positively 

associated with temperature (Figure 5 in Westra et al. 2012). This work suggests that the scatterplots in 

Figures 2.2 and 2.3 may be illustrating an association between precipitation changes and increasing 

temperatures in Alaska, particularly in autumn. 

For RCP 8.5, BNU-ESM, CanESM2 and ACCESS1-0 have the largest change in warm and wet 

extremes in most seasons and for both variables (TNn and TXx). This could be due to biases in these 

models. A temperature bias in CanESM2 is discussed in Chylek et al. (2011) and shown in relation to 

CanCM3 and CCSM3, which are precursors for CanESM2. However, Arora et al. (2011) present global 

mean temperature (2m) and precipitation results for CanESM2 and show good agreement with historical 

data. This is also found in our study; CanESM2 has reasonable historical results in comparison to 

reanalysis data across Alaska. It may be that the lack of a sophisticated sea ice model in CanESM2 that is 

leading to the large changes in extreme precipitation and temperature (see Table 2.1, Figure 2.2, 2.3). 

However, ACCESS1.0 was noted to have a relatively sophisticated sea-ice component (Massonnet et al., 

2012) which suggests another mechanism is causing these model projections to fall within the upper 

ranges of the 22 model spread. BNU-ESM was noted however to have some oddities in terms of 

atmospheric moisture balance, which indicates that the high values offered by the other two models may 

be inaccuracies (Liepert and Lo, 2013). MRI-CGCM3 projects the smallest change in temperature and 

precipitation extremes for most of the seasons. These results indicate that while a particular GCM’s 

changes in means may be similar to other models; its simulated changes in climate extremes could be 

quite different. This argues for presenting GCMs extremes, along with mean values when discussing 

global climate model performance. 

Changes in minimum and maximum temperatures across Alaska for an ensemble of the six top 

models are summarized in Table 2.3, along with the results for Anchorage, Fairbanks and Barrow sites. 

TNn is projected to increase more than TXx, up to three times as much in winter (+14°C TNn compared 

to +4°C for TXx for RCP8.5, for example), and two times as much in spring and autumn (for example, 

+11°C TNn compared to +6°C for TXx for RCP 8.5). Increases in TNn were statistically significant at the 

95% confidence level for all seasons and annually across Alaska. For TXx, the changes were mostly 
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significant at the 95% and 90% confidence level, with the exception of summer. Annually, TXx changes 

were only significant by the 2080s under the RCP 8.5 scenario. 

This finding that increases of TNn exceed those of TXx was documented using historical gridded 

station data in Canada, where it is associated with a decline in the diurnal temperature range (Zhang et al., 

2000) and is projected to occur globally over land although the differences are greatest in northern regions 

such as Alaska (Kharin et al., 2013; Sillmann et al., 2013a). By the 2080s, the increases in both TNn and 

TXx are about two times as large under RCP 8.5 and under RCP 4.5, respectively. The large changes in 

TNn are linked to changing snow covers in the north by Sillmann et al. (2013a), as these large differences 

between TNn and TXx are not found in lower latitudes, tropical regions such as South America.  

The models’ projected increases of TNn are much larger than the corresponding changes in mean 

temperature projected by the models, as shown in Table 2.6 for the 2080s RCP 8.5 results (the ratios of 

TNn to Tmean are similar for the 2050s and for the RCP 4.5 scenario).  The changes in the annual 

mean TNn are approximately twice as large in the statewide mean and at Anchorage and Barrow.  

Seasonally, the differences between the changes in TNn and the mean temperature are smallest in the 

summer and largest in the spring.  By contrast, the changes in TXx are smaller than the changes in the 

corresponding mean temperatures.  The gap between the changes in TXx and the mean is largest in 

winter, when the increases of TXx are less than half the changes in the mean for the statewide average 

and for all three specific locations. 

Autumn and winter increases in TNn and TXx are largest in the north (BRW), and in spring and 

summer increases are largest in the south (ANC, Table 2.3, Figure 2.4-2.5).  This is especially notable in 

Figure 2.4, which shows increased TNn along coastal regions of Alaska, particular in the western regions 

of the state.  At all three of the study sites (ANC, FAI and BRW), TNn and TXx are projected to increase 

the most in autumn and winter.   Projected changes are similar for spring and autumn, particularly 

towards the 2080s. In both seasons, the ensemble maps illustrate large changes over western Alaska for 

both TXn and TNn. Large changes are projected for the inland Bristol Bay region of southwestern Alaska 

by some models (not shown). Future projections of summer TXx by MRI-CGCM3 show slight cooling 

within the Interior of the state, while the rest of the models agree on the direction of future change (i.e., an 

increase) across Alaska (map not shown).  All models agree on increased maximum autumn temperatures 

(Figure 2.5). Projected changes in TNn at ANC are the least robust statistically, while the changes in TNn 

for FAI and BRW are almost all statistically significant at the 95% level. However, TXx projected 

changes are statistically significant for most seasons and annually at ANC, while the changes of TXx at 

FAI and BRW are not consistently significant until the 2080s under the RCP 8.5 scenario (with the 

exception being the annual signal at FAI). In all cases the season/scenario with the greatest amount of 

change was statically significant. 
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The increases in TNn and TXx overall are much larger (two to four times) than the across GCM 

standard deviations, indicating across-model robustness in the predicted changes in TNn and TXx. 

Standard deviations are generally lower for TXx than TNn. The models’ ranges of extremes converge by 

the year 2100 at the focus sites for TNn and TXx, particularly in spring and fall, and for TXx in winter 

under the RCP 8.5 scenario (Figures 2.7 and 2.8, Fairbanks not shown for clarity). It should be noted that 

the models’ standard deviations (variation between the 30-year means of the models) for the difference 

values are not getting smaller, rather the standard deviations increase from the 2050s to the 2080s (Table 

2.3). In other words, that the across-GCM differences are actually larger by the 2080s, whereas the 

interannual variability in models’ responses is generally decreases with time (Figures 2.7 and 2.8). The 

reason for the reduced range of the models’ extremes by 2100 is likely related to the reduction of sea ice 

and snow cover in the models.  In areas from which sea ice has been lost (e.g., the northern and western 

Alaskan coastal seas for increasingly long portions of the year), the temperatures are constrained to 

remain near the freezing temperature. This constraint will extend to land areas that are subject to maritime 

influences, thereby reducing the tendency for large excursions of surface air temperature.  Similarly, 

reduced snow on land implies less inter-model variability of snow cover during the periods of stronger 

insolation (i.e., spring, early summer), reducing the high-leverage effects of snow cover on surface air 

temperatures. 

Precipitation indices (Rx5) suggest increases across the state of Alaska, especially in the fall and 

summer seasons (Table 2.3). The magnitude of the Rx5 increase is largest in the south (ANC), whereas 

the percent increase is largest in the north (BRW, Table 2.3). There is only a slight change in Rx5 

projected by the models in the 2050s, largely in the southern and interior regions (Figure 2.6). However, 

by the 2080s much of Alaska is projected to experience increases in Rx5, and the increases are two times 

larger for RCP 8.5 compared to RCP 4.5 (Table 2.3). Projected changes are larger along the interior and 

along the coastal mountainous regions to the east of Anchorage in summer (Figure 2.6) and along the 

southern coastal region and western interior in the autumn (Figure 2.6). Winter increases are largely 

confined to the coastal regions (Figure 2.6). Record 5-day precipitation events become noticeably more 

common by the 2100s under RCP 8.5, but this is less detectible under RCP 4.5 (Figure 2.9). Changes 

projected for the wet seasons (SON/JJA) and annually are statistically significant for the Alaska-wide 

domain by the 2050s, and for all seasons and annually by the 2080s under the RCP 8.5 scenario (Table 

2.3). Extreme precipitation at ANC during JJA is projected to increase less so than in other seasons, but 

those changes are statically significant. FAI and BRW increases in precipitation are all significant at 90-

95% confidence level during fall and annually. At FAI, by the 2080s the spring, summer, fall and annual 

projected changes are significant under the RCP 8.5 scenario.   
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A striking feature of the increases in Rx5 is that they exceed the changes in mean precipitation by 

a factor of two or more (Table 2.6). While the increases in mean precipitation are typically 12-20%, the 

increases in Rx5 are generally in the range of 25-35%, and even more than 40% at some locations (e.g., 

Barrow in summer, autumn and the annual mean).  The implication is that a greater percentage of the 

precipitation will occur in the heaviest precipitation events.  This tendency for more extreme heavy 

precipitation events is consistent with the time series shown in Figure 2.9. 

2.5 Conclusions 

The ClimDEX database has enabled an evaluation of extremes simulated by global climate 

models over historical as well as future timeslices.  Our focus in this paper has been on the simulations of 

extreme minimum and maximum surface air temperature, as well as 5-day maximum precipitation 

amounts over Alaska.  While it is not surprising that a warming climate is accompanied by increasing 

values of extreme temperatures as well as by heavier extreme precipitation amounts, quantitative 

depictions of the changes must recognize regional, seasonal and climate scenario sensitivities such as 

those presented here.  These sensitivities are important for impact assessments, as the rates and 

magnitudes of changes in extremes will determine the impacts and adaptation strategies of stakeholders. 

In keeping with the paper’s organization, two categories of findings will be summarized: the 

projected changes in the extreme indices for Alaska, and the interpretation of these projected changes in 

the context of station-based changes.  In the first category, key findings include the following: 

 Projected increases of all three indices (extreme maximum and minimum temperatures, extreme 5-

day precipitation) are two to four times larger than the across-GCM standard deviations, both for the 

statewide averages and for the three specific locations examined in this work. 

 The increases in extreme minimum temperatures are much greater than the increases in extreme 

maximum temperature (by factors of about two in spring and autumn, and about three in winter).  

 The increases in extreme minimum temperature and extreme 5-day precipitation are much larger than 

the corresponding changes in mean temperature and precipitation.  However, the increases in extreme 

maximum temperature are smaller than the changes in mean temperature. 

 By the 2080s, increases in extreme temperatures are about twice as large under the RCP 8.5 forcing as 

under RCP 4.5 forcing. 

 The projected changes of extreme temperature are larger in the north during autumn and winter, but 

larger in the south during spring and summer. 

 For the three locations along a north-south transect in Alaska, the across-GCM interannual variability 

of the extreme maximum and minimum temperatures decreases by 2100, especially under RCP 8.5 

forcing. 
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 While the magnitude of the projected increase of Rx5 is largest in the south, the percentage increase 

is larger in the north. 

 By the 2080s, increases in Rx5 are about twice as large under RCP 8.5 as under RCP 4.5.  Record-

breaking 5-day precipitation events become noticeably more common by 2100 in RCP 8.5, less so in 

RCP 4.5. 

 The linearity of the relationship between increases of Rx5 and extreme temperatures is strongest in 

autumn and winter and suggests an association between precipitation changes and increasing 

temperatures in Alaska 

 The largest changes in future projected extreme minimum temperature and extreme 5-day 

precipitation are significantly different from the historical based on significance testing at the 95% 

confidence interval  

The second category of findings, those related to GCM simulations and station-based changes, 

has implications for the utility of the results for local applications (i.e. for the three sites analyzed in 

Alaska: Anchorage, Fairbanks and Barrow).  Notable findings include: 

 There are substantial discrepancies between the ClimDEX indices (TNn, TXx, Rx5) computed from 

the global climate models and the station data.  In general, the models’ values of TNn are 

considerably colder. 

 The global climate model-derived values of Rx5 tend to be much larger than the corresponding 

station-derived amounts. 

In explaining the discrepancies between the GCM-derived and station, it is useful to distinguish 

two components: differences between the GCMs and the reanalysis, and differences between the 

reanalysis and the stations. In the case of TXx, the reanalysis-station differences are much larger than the 

GCM-reanalysis differences, suggesting that GCM resolution is a key part of the explanation of the 

discrepancies. In particular, the GCMs and reanalysis data grid cells containing Anchorage and Fairbanks 

have average elevations that exceed the elevations of the stations, resulting in spuriously high elevations 

in the models.  This interpretation is supported by the fact that the reanalysis and GCMs differ from the 

station values by greater amounts at Anchorage and Fairbanks, which are both “topographically shaded” 

locations in reality but not in the models, and less at Barrow, where there is little topographic relief within 

100 km of the station.  Resolution-related topographic influences also explain the fact that the GCMs and 

reanalysis both produce values of Rx5 that are much larger than the station amounts, especially at 

Anchorage, which is known to be in a rain/snow “shadow” very often during the cold season.  For TNn, 

the GCMs are much colder than the reanalysis in the cold season, while the reanalysis is closer to the 

station values.  Since cold-season temperatures are strongly impacted by surface-based inversions, the 
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reanalysis evidently has a boundary layer parameterization and/or vertical resolution that enable improved 

capture of the near-surface temperature profile. 

Given the GCM-station discrepancies noted above, how credible are the projections of changes in 

extreme temperatures and precipitation amounts?  While the raw values of the model-derived ClimDEX 

indices are not optimal for applications, there are reasons why the changes from the present to the future 

may be more robust.  Biases in the GCMs, which are related to topography and parameterizations as 

noted above, can be expected to remain relatively consistent as the simulations extend through the 

remainder of the present century.  This assumption is indeed the basis for the success of the so-called 

“delta method” of global climate model downscaling (Hayhoe, 2010). While the assumption is not 

perfect, it justifies some confidence in the sign, if not the magnitude, of the projected changes.  The same 

reasoning applies to the seasonality and the spatial patterns of the projected changes.   

Perhaps the greatest need for applications of the results here is downscaling to the local scale.  As 

explained above, locations near significant topographic features can have significantly different weather 

and climate from other locations in the same grid-cell area of a GCM.  The use of grid-cell average 

elevations in GCMs creates substantial biases relative to actual values at locations with elevations 

substantially different from the grid-cell means.  Statistical downscaling is now coming into widespread 

use (e.g. Stoner et al., 2012), and the extension of the ClimDEX calculations to downscaled GCM output 

represents a potential future extension of the work described here.  

2.6 Acknowledgments 

The project described in this publication was supported by Grant/Cooperative Agreement 

Number GIOAC00588 from the United States Geological Survey’s Alaska Climate Science Center. Its 

contents are solely the responsibility of the authors and do not necessarily represent the official views of 

the USGS. Dennis Shea’s assistance with NCL graphical plots used in this paper is acknowledged. The 

contribution of John Walsh to this paper was supported by the Cooperative Institute for Alaska Research 

with funds from the Climate Program Office, National Oceanic and Atmospheric Administration through 

grant NA10OAR4310055, and by the National Science Foundation through grants ARC-1049225 and 

ARC-1023131. 

 



 
  

50 
 

 



 
  

51 
 

2.7 Figures 

 

Figure 2.1 Focus sites in Alaska , Anchorage, Fairbanks and Barrow used in the text. Inset map shows 
Alaska in the context of continental USA and Canada. The Digital Elevation Model (DEM) in the 
background is the National Elevation Database (NED).  
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Figure 2.2 DJF, MAM, JJA and SON seasonal results for Rx5 versus TNn for RCP 8.5. The 2050s are 
shown in green, while the 2080s are shown in blue. The top six GCMs used in the primary analysis 
presented in this work are illustrated with circles around them. The 1:1 line is shown, and the correlation 
value is located in the bottom right hand corner of each plot. Symbology for each GCM is shown in the 
upper right hand corner of the MAM panel.   
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Figure 2.3 DJF, MAM, JJA and SON seasonal results for Rx5 versus TXx for RCP 8.5. The 2050s are 
shown in green, while the 2080s are shown in blue. The top six GCMs used in the primary analysis 
presented in this work are illustrated with circles around them. The 1:1 line is shown, and the correlation 
value is located in the bottom right hand corner of each plot. Symbology for each GCM is shown in the 
upper right hand corner of the MAM panel. 
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Figure 2.4 Graphical plots of TNn for all seasons. The first column shows the ERA-40 reanalysis 
historical (1971-2000, repeated down the rows), the second column is the ensemble GCM historical 
(1971-2000), and the third and fourth columns illustrate the differences between the future and historical 
climatology for the 2050s and the 2080s for the GCM ensemble (RCP 8.5). The legend is illustrated on 
the left bottom for the historical and reanalysis data, while the legend for the 2050s/2080s difference 
values is on the right bottom.  
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Figure 2.5 Graphical plots of TXx for all seasons.The first column shows the ERA-40 reanalysis 
historical (1971-2000, repeated down the rows), the second column is the ensemble GCM historical 
(1971-2000), and the third and fourth columns illustrate the differences between the future and historical 
climatology for the 2050s and the 2080s for the GCM ensemble (RCP 8.5). The legend is illustrated on 
the left bottom for the historical and reanalysis data, while the legend for the 2050s/2080s difference 
values is on the right bottom. 
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Figure 2.6 Graphical plots of Rx5 for all seasons. The first column shows the ERA-40 reanalysis 
historical (1971-2000, repeated down the rows), the second column is the ensemble GCM historical 
(1971-2000), and the third and fourth columns illustrate the differences between the future and historical 
climatology for the 2050s and the 2080s for the GCM ensemble (RCP 8.5). The legend is illustrated on 
the left bottom for the historical and reanalysis data, while the legend for the 2050s/2080s difference 
values is on the right bottom. 
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Figure 2.7 Plots of average daily minimum temperature  median, maximum and minimum results for 
(dashed and dotted lines, Anchorage and Barrow respectively, TNn, °C) for Anchorage (light grey) and 
Barrow (dark grey) for each season DJF, MAM, JJA, and SON from 1850 to 2100. RCP 4.5 is shown on 
the left hand column and RCP 8.5 is shown on the right. Where locations overlap the colors are mixed. 
Gray bars indicate the historical (1971-2000), and future time periods (2041-2100). 
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Figure 2.8 Plots of average daily maximum temperature  median, maximum and minimum results for 
(dashed and dotted lines, Anchorage and Barrow respectively, TNn, °C) for Anchorage (light grey) and 
Barrow (dark grey) for each season DJF, MAM, JJA, and SON from 1850 to 2100. RCP 4.5 is shown on 
the left hand column and RCP 8.5 is shown on the right. Where locations overlap the colors are mixed. 
Gray bars indicate the historical (1971-2000), and future time periods (2041-2100). 
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Figure 2.9 Plots of maximum 5 day precipitation median, maximum and minimum results (dashed and 
dotted lines, Anchorage and Barrow respectively, TNn, °C) for Anchorage (light grey) and Barrow (dark 
grey) for each season DJF, MAM, JJA, and SON from 1850 to 2100. RCP 4.5 is shown on the left hand 
column and RCP 8.5 is shown on the right. Where locations overlap the colors are mixed. Gray bars 
indicate the historical (1971-2000), and future time periods (2041-2100). 
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2.8 Tables 

Table 2.1 The six GCMs used in this study, including model name, modeling center and primary 
reference, resolution of the GCMs and major model features, including the sea ice and land surface 
scheme employed.
 Model Name Modeling Center, Main 

Reference 
Resolution Major Model Features 

(sea ice and land surface schemes) 
Community 
Climate System 
Model, Version 4  
(CCSM4) 

National Center for 
Atmospheric Research 
(NCAR), USA (Gent et al., 
2011) 

0.9° x 1.25° Sea Ice: Los Alamos Sea Ice Model 
Community Ice Code Version 4. Sub 
grid-scale ice thickness distribution 
and multiple layers. 
 
Land Surface: Community Land 
Model, version 4 (CLM4) 

Centre National 
de Recherches 
Météorologiques 
Climate Model  
(CNRM-CM5.1) 

Meteo France, National 
Centre for Meteorological 
Research, France 
(Voldoire et al., 2011) 
 

1.4° x 1.4° Sea Ice: GELATO version 5. Four ice 
thickness categories are included. Ice 
slabs have 10 vertical layers, with 
increased resolution in upper layers. 
 
Land Surface: Interaction between 
Soil Biosphere and Atmosphere 
(ISBA) run in SURFEX. 

Canadian Earth 
System Model 
CanESM2 

Environment Canada’s 
Canadian Center for 
Climate Modeling and 
Analysis (CCCma),  
University of Victoria, 
Canada (Arora et al., 
2011) 

2.8° x 2.8° Sea Ice: Mean thickness & 
concentration, no layers. 
 
Land Surface: Canadian Terrestrial 
Ecosystem Model (CTEM) 

Institut Pierre 
Simon Laplace 
Climate Model, 
Low Res. (IPSL-
CM5A-LR) 

Institut Pierre Simon 
Laplace (IPSL), France 
(Dufresne et al., 2012) 

1.9° x 3.75° Sea Ice: Version 3.2 Nucleus for 
European Modeling of the Ocean’s 
(NEMO) Version 2 Louvain-la-Neuve 
Sea Ice Model (LIM2). Three layers 
(snow and ice). 
Land Surface: Organizing carbon and 
Hydrology In Dynamic EcosystEms 
(ORCHIDEE ) 

Max Plank 
Institute, Earth 
System Model, 
Low Res. (MPI-
ESM-LR) 

Max Plank Institute (MPI)  
for Meteorology, Germany 
(Giorgetta, 2012) 

1.9° x 1.9° Sea Ice: Max Planck Institute ocean 
model (MPIOM) 
 
Land Surface: JSBACH 

Meteorological 
Research 
Institute Canadian 
Global Climate 
Model 
(MRI-CGCM3) 

Meteorological 
Research 
Institute Japan, (Yukimoto 
et al., 2012) 

1° x 0.5° Sea ice layers and thickness adopted 
from Los Alamos Sea Ice Model 
Community Ice Code 
 
Land Surface: Canadian Terrestrial 
Ecosystem Model (CTEM) 
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Table 2.2 ClimDEX indices selected for use in this study. ID is the identification code used in the text, 
description details fully each of the indices, units is the unit of measure for all of the indices, and details 
describes the calculations used to analyze all index values.
 ID Description Unit Details 
TNn Minimum daily minimum 

temperature, monthly or 
annual 

°C Monthly or annual minimum of daily 
minimum temperature. Let TNn be the 
daily minimum temperature in month 
k, period j. The minimum daily 
minimum temperature for each month 
is then: TNnkj = minimum (TNnkj).  

TXx Maximum of daily maximum 
temperature, monthly or 
annual 

°C  Monthly or annual maximum of daily 
maximum temperature. Let TXx be the 
daily maximum temperatures in month 
k, period j. The maximum daily 
maximum temperature for each month 
is then: TXxkj = maximum (TXxkj). 

Rx5 Maximum 5-day 
precipitation, monthly or 
annual 

mm Monthly or annual maximum 5-day 
consecutive precipitation. Let PRkj be 
the precipitation amount for the 5-day 
interval ending k, period j. Then 
maximum 5-day values for period j are: 
Rx5j = max (PRkj). 
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Table 2.3 Average seasonal minimum seasonal and annual daily minimum temperature(TNn, °C) for 
(DJF=December, January, February, MAM=March, April, May, JJA=June, July, August, SON=September, October, 
November) and annual (ANN) results for Alaska, Anchorage (ANC), Fairbanks (FAI) and Barrow (BAR) for RCP 
4.5 and RCP 8.5. The station average historical (1971-2000) is shown for ANC, FAI and BAR; statewide station 
values are not available (NA).. Historical mean from the Reanalysis and the mean and standard deviation (Stdev.) 
for the GCM is shown below. The 2050s and 2080s for both RCP 4.5 and RCP 8.5 is shown below, with the value 
as the difference (Diff.) from the 1971-2000 period shown first, followed by the standard deviation (Stdev.) from all 
GCMs. Italicized results indicate significance at the 90% confidence interval, while bold italicized values indicate 
95% confidence intervals.
 TNn Alaska Anchorage (ANC) 
 DJF MAM JJA SON ANN DJF MAM JJA SON ANN 
Station NA NA NA NA NA -23.34 -8.95 5.21 -10.42 -27.78 
Historical 
(Reanalysis) 

-32.49 -17.26 2.9 -15.73 -37.33 -22.24 -9.72 4.31 -10.45 -27.1 

Historical 
(GCMs) 

-37.42 -24.5 0.75 -18.06 -42.8 -32.52 -21.6 0.89 -15.3 -38.13 

Historical 
Stdev. 

3.7 2.86 1.54 1.75 3.34 6.48 5.93 2.72 3.91 6.17 

2050s Diff. 
(RCP 4.5) 5.83 4.74 2.27 5.19 5.67 5.33 4.85 2.82 4.31 5.09 

2050s Stdev. 
(RCP 4.5) 

1.88 1.62 0.89 1.15 1.5 1.98 1.82 1.33 1.34 1.4 

2050s Diff. 
(RCP 8.5) 8.19 5.98 3.02 6.47 8.07 7.32 6.3 3.85 5.46 7.11 

2050s  Stdev. 
(RCP 8.5)  

1.87 1.96 1 1.26 1.87 2.3 2.34 1.54 1.41 2.26 

2080s Diff. 
(RCP 4.5) 7.49 6.13 2.82 6.25 7.03 7.01 6.74 3.47 5.56 6.49 

2080s Stdev. 
(RCP 4.5) 

1.74 1.2 0.98 0.99 1.49 2.03 1.81 1.49 1.02 1.64 

2080s Diff. 
(RCP 8.5) 14.03 11.1 5.03 9.73 14.26 12.78 11.95 5.96 8.51 13.12 

2080s  Stdev. 
(RCP 8.5)  

3.13 2.78 1.34 1.32 3.05 3.85 4.29 1.93 1.81 3.81 

 Fairbanks (FAI) Barrow (BRW) 
Station -39.24 -17.3 4.19 -21.38 -49.35 -39.19 -29.69 -3.23 -23.26 -48.43 
Historical 
(Reanalysis) 

-34.55 -15.23 4.34 -16.71 -39.85 -39.95 -26.87 -1.07 -20.91 -43.85 

Historical 
(GCMs) 

-39.49 -24.08 1.78 -19.88 -45.02 -40.43 -28.96 -1.28 -18.95 -44.87 

Historical 
Stdev. 

3.75 2.48 1.52 2.08 3.75 2.32 2.22 1.66 2.11 2.33 

2050s Diff. 
(RCP 4.5) 5.22 4.38 2.09 4.81 5.29 6.32 4.35 2.12 7.56 5.6 

2050s Stdev. 
(RCP 4.5) 

1.76 1.77 0.97 1.15 1.45 1.94 1.56 0.76 1.87 1.7 

2050s Diff. 
(RCP 8.5) 7.52 5.39 2.8 6.12 7.62 9.49 5.71 2.67 9.02 8.21 

2050s  Stdev. 
(RCP 8.5)  

1.85 2.08 1.14 1.17 2.03 2.32 1.88 0.71 1.82 1.91 

2080s Diff. 
(RCP 4.5) 6.9 5.91 2.52 5.89 6.51 8.32 5.24 2.63 8.61 7.01 

2080s Stdev. 
(RCP 4.5) 

1.69 1.48 1.06 1.06 1.64 1.88 1.48 0.78 1.54 1.54 

2080s Diff. 
(RCP 8.5) 12.81 10.29 4.67 9.36 13.39 17.38 11 4.65 12.6 15.24 

2080s  Stdev. 
(RCP 8.5)  

2.8 2.81 1.34 1.25 2.94 4.09 2.58 1.27 2.06 3.19 
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Table 2.4 Average seasonal maximum seasonal and annual daily maximum temperature (TNn, °C) for 
(DJF=December, January, February, MAM=March, April, May, JJA=June, July, August, SON=September, October, 
November) and annual (ANN) results for Alaska, Anchorage (ANC), Fairbanks (FAI) and Barrow (BAR) for RCP 
4.5 and RCP 8.5. The station average historical (1971-2000) is shown for ANC, FAI and BAR; statewide station 
values are not available (NA).. Historical mean from the Reanalysis and the mean and standard deviation (Stdev.) 
for the GCM is shown below. The 2050s and 2080s for both RCP 4.5 and RCP 8.5 is shown below, with the value 
as the difference (Diff.) from the 1971-2000 period shown first, followed by the standard deviation (Stdev.) from all 
GCMs. Italicized results indicate significance at the 90% confidence interval, while bold italicized values indicate 
95% confidence intervals. 
TXx Alaska Anchorage (ANC) 
 DJF MAM JJA SON ANN DJF MAM JJA SON ANN 
Station NA NA NA NA NA 5.05 12.84 23.3 11.61 25.02 
Historical 
(Reanalysis) 

-2.56 6.55 20.13 5.99 22.3 1.49 8.51 20.1 8.24 22.2 

Historical 
(GCMs) 

-2.34 4.51 19.38 5.32 22.28 0.12 3.95 19.35 6.82 22.5 

Historical 
Stdev. 

2.28 2.28 2.38 1.26 2.54 1.26 2.04 2.07 1.89 2.1 

2050s Diff. 
(RCP 4.5) 

2.29 2.47 2.17 2.24 2.05 1.65 2.82 2.37 2.12 1.95 

2050s Stdev. 
(RCP 4.5) 

1 0.71 1.23 0.72 1.2 0.59 1.12 1.23 0.81 1.3 

2050s Diff. 
(RCP 8.5) 

2.78 3.22 2.78 2.88 2.75 2.18 3.74 3.26 2.9 2.91 

2050s  Stdev. 
(RCP 8.5)  

0.81 0.89 1.43 1 1.59 0.78 1.36 1.46 1.21 1.61 

2080s Diff. 
(RCP 4.5) 

2.67 3.02 2.74 2.45 2.49 2.07 3.56 3.13 2.55 2.69 

2080s Stdev. 
(RCP 4.5) 

0.63 0.94 1.55 0.77 1.48 0.7 1.12 1.5 0.92 1.4 

2080s Diff. 
(RCP 8.5) 4.47 5.57 4.5 4.6 4.38 3.78 6.64 5.1 4.57 4.62 

2080s  Stdev. 
(RCP 8.5)  

1.38 1.59 2.23 1.32 2.27 1.11 1.81 1.95 1.57 1.83 

 Fairbanks (FAI) Barrow (BRW) 
Station -0.16 15.69 28.66 10.39 31.03 -8.16 -3.49 16.08 2.13 19.35 
Historical 
(Reanalysis) 

-2.69 10.73 24.02 7.1 26.27 -8.86 -0.94 17.63 1.84 19.84 

Historical 
(GCMs) 

-2.39 7.12 21.88 5.89 24.73 -6.34 0.37 17.12 2.65 20.06 

Historical 
Stdev. 

3.01 3.13 3.16 1.58 3.62 4.27 2.33 3.8 1.49 4.17 

2050s Diff. 
(RCP 4.5) 

2.21 2.46 1.74 2.2 1.59 2.95 2.3 2.45 2.86 2.43 

2050s Stdev. 
(RCP 4.5) 

1.06 0.78 1.22 0.7 1.14 2 0.34 1.34 0.74 1.51 

2050s Diff. 
(RCP 8.5) 

2.5 3.12 2.34 2.83 2.33 3.95 3.09 2.97 3.43 2.99 

2050s  Stdev. 
(RCP 8.5)  

0.93 1.03 1.6 1.08 1.91 1.82 0.76 1.53 0.81 1.74 

2080s Diff. 
(RCP 4.5) 

2.45 2.91 2.24 2.34 1.99 3.71 2.81 2.96 3.02 2.73 

2080s Stdev. 
(RCP 4.5) 

0.71 1.18 1.64 0.74 1.72 1.58 1.06 1.81 0.71 1.97 

2080s Diff. 
(RCP 8.5) 4.21 5.21 3.9 4.42 3.71 6.08 5.33 4.86 5.3 4.79 

2080s  Stdev. 
(RCP 8.5)  

1.47 2.13 2.53 1.36 2.87 3 1.15 2.57 1.26 2.78 
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Table 2.5 Average seasonal and annual five-day maximum precipitation (Rx5, mm).for (DJF=December, January, 
February, MAM=March, April, May, JJA=June, July, August, SON=September, October, November) and annual 
(ANN) results for Alaska, Anchorage (ANC), Fairbanks (FAI) and Barrow (BAR) for RCP 4.5 and RCP 8.5 for The 
station average historical (1971-2000) is shown for ANC, FAI and BAR; statewide station values are not available 
(NA). Historical mean from the Reanalysis and the mean and standard deviation (Stdev.) for the GCM is shown 
below. The 2050s and 2080s for both RCP 4.5 and RCP 8.5 is shown below, with the value as the difference (Diff.) 
from the 1971-2000 period shown first, followed by the standard deviation (Stdev.) from all GCMs. Italicized results 
indicate significance at the 90% confidence interval, while bold italicized values indicate 95% confidence intervals. 
 Rx5 Alaska Anchorage (ANC) 

 DJF MAM JJA SON ANN DJF MAM JJA SON ANN 
Station NA NA NA NA NA 14 11 26 27 52 
Historical 
(Reanalysis) 

19 16 25 24 42 46 34 37 51 77 

Historical 
(GCMs) 

22 18 32 30 51 45 37 48 59 88 

Historical 
Stdev. 

4 3 2 2 2 10 7 5 11 11 

2050s Diff. 
(RCP 4.5) 

3 2 4 5 7 8 5 5 8 11 

2050s Stdev. 
(RCP 4.5) 

1 1 1 1 2 3 1 4 5 8 

2050s Diff. 
(RCP 8.5) 

4 3 6 6 10 9 6 8 10 16 

2050s  Stdev. 
(RCP 8.5)  

1 1 1 3 4 4 1 4 8 9 

2080s Diff. 
(RCP 4.5) 

3 3 5 5 8 8 6 7 8 12 

2080s Stdev. 
(RCP 4.5) 

1 1 1 2 3 4 2 3 6 8 

2080s Diff. 
(RCP 8.5) 6 5 9 10 16 15 11 11 17 25 

2080s  Stdev. 
(RCP 8.5)  

2 1 3 4 5 4 3 5 7 9 

 Fairbanks (FAI) Barrow (BRW) 
Station 9 6 22 13 35 2 2 12 6 19 
Historical 
(Reanalysis) 

11 9 21 15 30 7 6 13 11 21 

Historical 
(GCMs) 

13 12 29 19 41 9 8 16 15 28 

Historical 
Stdev. 

3 2 4 2 5 2 2 4 1 3 

2050s Diff. 
(RCP 4.5) 

1 2 4 4 6 2 1 3 2 6 

2050s Stdev. 
(RCP 4.5) 

1 0 2 1 3 1 0 1 2 2 

2050s Diff. 
(RCP 8.5) 

2 3 6 6 9 2 1 5 4 9 

2050s  Stdev. 
(RCP 8.5)  

2 1 2 3 4 1 0 2 2 3 

2080s Diff. 
(RCP 4.5) 

2 2 4 5 8 2 1 4 3 7 

2080s Stdev. 
(RCP 4.5) 

1 1 1 2 4 1 0 2 1 2 

2080s Diff. 
(RCP 8.5) 

2 4 8 8 12 3 3 8 7 13 

2080s  Stdev. 
(RCP 8.5)  

2 2 3 3 5 1 1 3 3 5 
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Table 2.6 Comparison of changes in extreme values (ClimDEX indices) and mean values averaged over 
six models and the 30 years, annually, centered on the 2080s, from the RCP 8.5 simulations. Results are 
shown for TNn (°C), TXx (°C), and Rx5 (%). 

 TNn vs. Tmean (ºC)
 Alaska ANC FAI BRW 
DJF 14.0 vs. 10.6 12.8 vs. 8.5 12.8 vs. 8.5 17.4 vs. 13.6 
MAM 11.1 vs. 6.4 11.9 vs. 5.7 10.3 vs. 5.7 11.0 vs. 7.1 
JJA 5.0 vs. 5.0 6.0 vs. 5.0 4.7 vs. 4.5 4.6 vs. 4.3 
SON 9.7 vs. 7.8 8.5 vs. 6.4 9.4 vs. 6.4 12.6 vs. 11.6 
Ann 14.3 vs. 7.4 13.1 vs. 6.4 13.4 vs. 6.4 15.9 vs. 9.1 
     

TXx vs. Tmean (ºC)
DJF 4.5 vs. 10.6 3.8 vs. 8.5 4.2 vs. 8.5 6.1 vs. 13.5 
MAM 5.8 vs. 6.4 6.6 vs. 5.7 5.2 vs. 6.4 5.3 vs. 7.1 
JJA 4.5 vs. 5.0 5.1 vs. 5.0 3.9 vs. 4.5 4.9 vs. 4.3 
SON 4.6 vs. 7.8 4.6 vs. 6.4 4.4 vs. 6.4 5.3 vs. 11.6 
Ann 4.4 vs. 7.4 4.6 vs. 6.4 3.7 vs. 6.4 4.8 vs. 9.1 
     

R5x vs. Prec (mean, %)
DJF 27 vs. 13 33 vs. 13 15 vs. 10 33 vs. 16 
MAM 28 vs. 12 30 vs. 10 33 vs. 13 38 vs. 13 
JJA 28 vs. 19 23 vs. 21 28 vs. 12 50 vs. 22 
SON 33 vs. 16 29 vs. 14 42 vs. 16 47 vs. 18 
Ann 31 vs. 15 28 vs. 14 29 vs. 13 46 vs. 18 
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3.1 Introduction 

Extreme hydroclimatic responses in regional-scale Alaskan watersheds are influenced by both 

climate change and natural climate variability, which lead to shifts in water storages that impact fresh 

water resource availability and quality. The signal of mean change in hydrologic systems has been well 

documented in previous work (ACIA, 2005; Hinzman et al., 2005) and include shifts in: snow cover 

extent (Brown, 2010); permafrost distribution (Osterkamp, 2005); lake and river freeze up and breakup 

(Magnuson et al., 2000); glacial mass-balance (Moore et al., 2009); and regional synoptic river discharge 

(Déry and Wood, 2005). Much of the work to-date focuses on climate change impacts in Arctic runoff in 

large river systems (Forbes and Lamoureux, 2005; Peterson et al., 2002b; Yang et al., 2002; Yang et al., 

2003), or small watersheds (Kane et al., 2008; Kane et al., 2003) but analysis of changing streamflow 

extremes that are occurring in regional-scale watersheds is lacking.  

Observed changes in mean streamflow indicates that the tails of the streamflow distributions are 

also likely to be changing and this could have an impact on human and ecologic systems at a regional-

scale in the Arctic and subarctic (Zhang and Zwiers, 2013). Extreme events in critical watersheds such as 

those being considered for future power and hydro-electric resources (i.e. Susitna), or rivers such as the 

Yukon that are utilized for food and transport by numerous villages throughout Alaska (Alaska Energy 

Authority, 2014; Brabets et al., 2000) have the potential to put both industries and resources at risk. 

Flooding and low flows will have a great effect on mining, infrastructure, ecology, and society in all parts 

of the state of Alaska. Understanding these changes allows for comprehensive review of existing planning 

measures, including tailing ponds and spillway allowances, bridge maintenance, and flood evacuation 

protocols in regions and basins where changes are occurring or have occurred in the historical record.  

Comprehensive extreme event analysis of changes in streamflow in the subarctic region of Alaska 

has been limited. This is because the building blocks for hydrologic models, such as a comprehensive 

understanding of hydro-climatologic regimes, snowmelt and freeze-thaw dynamics and antecedent 

moisture storage conditions driving events at the regional-scale in Alaskan watersheds remain unclear 

(Woo et al., 2008b). However, the lack of long term, high-quality, continuous records of streamflow 

available for comprehensive study, and for model calibration and validation also plays a large role in the 

paucity of research. Previous work on changes in extreme streamflow for Interior Alaskan boreal forest 

basins is also sparse. Major papers have looked at streamflow hydrology in the Kuparuk River basin, a 

high latitude watershed located on the North Slope of Alaska, adjacent to the Arctic Ocean (Kane et al., 

2008; Kane et al., 2000; Kane et al., 2003; McNamara et al., 1998). Jones and Rinehart (2010) examined 

small watersheds located in the Caribou-Poker Creek to relate storm flow to permafrost and precipitation. 

Changes in streamflow attributable to the Pacific Decadal Oscillation (PDO) were presented in Neal et al. 
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(2002) for southeast Alaska, for the Yukon River by Brabets and Walvoord (2009), and for a broad range 

of coastal to interior sites for Alaska by Hodgkins (2009). 

Large scale Arctic river networks have also been analyzed in a number of seminal research papers 

(Peterson et al., 2002b; Serreze et al., 2006; Serreze et al., 2002; Slater et al., 2006; Yang et al., 2002). 

Some of this work highlights the changing nature of hydrologic regimes with shifts in climate, namely the 

acceleration of the hydrologic cycle in northern regions, which is a major hypothesis for the change in 

extreme events within the Arctic (Rawlins et al., 2010; Serreze et al., 2009; Serreze et al., 2000). 

However, the direction of change and the proposed mechanisms driving streamflow changes is not agreed 

upon in the literature. Declining flow trends have been observed across northern, coastal Canadian rivers 

and rivers flowing into the Ungava, James and Hudson Bays (Déry et al., 2005; Déry and Wood, 2005). 

An updated paper in 2009 revealed a trend reversal towards increasing flows and flow variability for 

rivers in northern Canada when the time series was extended by four years (1964-2007, Déry et al., 2009). 

Increasing low flows have been reported in Interior river networks of the Northwest Territories (St. 

Jacques and Sauchyn, 2009) and the Yukon River (Walvoord and Striegl, 2007), attributable to enhanced 

infiltration due to permafrost thawing (Smith et al., 2007). In the Mackenzie River basin, no trends were 

found in flow magnitudes from 1973-1999, although variability was noted to be increasing (Woo and 

Thorne, 2003; Zhang et al., 2001). Janowicz (2011), focusing on the Yukon River region, associated 

streamflow declines with regions of thawing permafrost, owing to deeper infiltration and removal of 

runoff from the subsurface. Spence et al. (2011) documented increased winter baseflow to greater fall 

precipitation leading to a switch in systems from a purely snowmelt dominated system to a snowmelt-

rainfall regime, a change that is most apparent at small systems not dominated by lakes. 

The detection of long term trends is confounded by low-frequency climate variability, time scale 

of analysis, and the time period considered. A connection between process shifts in basins and across 

regions is possible by placing the nature of climate variability within the context of streamflow regimes. 

For example, Moore and Demuth (2001) examined streamflow at Place Glacier and found it to be 

declining. The basis for this was a correlation between winter and net glacier mass balance with the PDO, 

while summer glacier balance was negatively correlated with summer temperature, and showed a positive 

correlation with preceding winter balance. Fleming et al. (2006) distinctly different responses in 

snowmelt systems compared to glacier basins, where streamflow was moderated by the Arctic Oscillation 

(AO). Déry and Wood (2004) examined the impact of the AO on declining streamflow into Hudson Bay; 

isolating changes and linking those changes to streamflow regimes particular to the region.  While annual 

trends in streamflow have been broadly considered (Déry et al., 2009; Peterson et al., 2002a; St. Jacques 

and Sauchyn, 2009), seasonal studies are less common, despite the fact that at finer scales of analysis 
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process shifts can be determined (Whitfield et al., 2002). Trends detection is also susceptible to time 

period which is not always recognized (Bone et al., 2010). 

This paper seeks to expand our understanding of historical changes in hydroclimate extremes 

through the examination of trends in maximum and minimum flows, and through the use of nonstationary 

generalized extreme value theory (GEV) analysis to examine peak streamflow changes from 

comprehensive, long term records for regional scale Alaskan watersheds. The objective of this work is to 

document historical shifts in extreme streamflow and link observed changes associated with spring 

breakup peakflow with time, climate (temperature and precipitation) and/or climate variability by 

investigating the use of these variables as covariates in the GEV analysis of streamflow trends. The study 

is undertaken at eight watersheds across Interior and Western Alaska with variable hydrologic regimes – 

from glacial-snowmelt to snowmelt-rainfall. The paper outlines the study sites used in the analysis, and 

the methodology, including nonparametric trends and nonstationary GEV statistical approaches. Results 

are presented for trends and GEV, and results from each covariate analysis. The paper’s discussion 

focuses on a hypothesis-based presentation on the probable causes of changes observed to be occurring in 

these watersheds. The conclusion of the paper highlights the major points of the work and discusses 

implications. 

3.2 Methods 

3.2.1 Study Area 

The streamflow stations considered for this analysis span a range of climate and topographic 

conditions (Table 3.1), extending from the central Interior region of Alaska near Fairbanks, southwest to 

the village of Dillingham, and east to the town of Eagle near the Yukon Territory, Canada (Figure 3.1). 

The sites are therefore a sample of Interior stations exhibiting both glacial and snowmelt influences 

(glacial-nival), and snowmelt and rainfall influences (nival-rainfall). Some stations gage very large river 

basins (i.e. the Yukon at Eagle), while others capture flow from smaller sub-watersheds of major basins 

(i.e. the Chena River, Table 3.1). 

Historical streamflow in the Susitna and Talkeetna River (SUS, TAL, Figure 3.2) watersheds 

illustrates the characteristic glacial-nival shape of their hydrographs, with an initial snowmelt peak and a 

secondary peak in August associated with precipitation combined with glacial melt. The Kuskokwim 

River (KUS, Figure 3.2) is a complex system owing to its division between high elevation, mountainous 

and glacial headwater regions and its large low-elevation, boreal lowland/wetlands through which its 

extensive drainage flows. The Kuskokwim River therefore displays a subarctic nival-rainfall regime with 

some glacial influence.  The Nuyakuk River (NUY, Figure 3.2) drains a large lake complex, glacial and 
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perennial snow and ice fields of the Aklun Mountains and lowland wetlands in the Bristol Bay region of 

Alaska, approximately 100 km north of the city of Dillingham (pop. ~2300). The Nuyakuk River is the 

most southern system analyzed. The lakes act to delay the snowmelt peak in this watershed into June. The 

Nuyakuk is hence classified as a prolacustrine-nival system. 

The Yukon River watershed at Eagle drains a large expanse of Canadian landscape and has a 

sharp peak and a long recessional tail owing to snowmelt contributions located within high elevation 

regions of the watershed and glaciers of the White River basin in the Wrangell-St. Elias Mountain range 

(Table 3.1, Figure 3.2, Brabets et al. 2000). The glaciers in this area are receding and ablation is 

considered to dominate over changes in precipitation, based on a 30-year record from the Gulkana River 

glacier (Brabets et al., 2000).  Permafrost is both continuous and discontinuous and vegetation is largely 

boreal black and white spruce, deciduous and tundra, with numerous high elevation rocky outcrops. The 

Tanana River basin, which has its headwaters in the Alaskan Range, has the second highest percentage of 

glacial coverage (5%) and exhibits peak flows during months where both melt from glaciers and summer 

precipitation maximums occur (TAN, Figure 3.2). The Salcha and Chena rivers, sub-watersheds to the 

Tanana, are dual nival-rainfall dominated systems (SAL, CHE, Figure 3.2). The snowmelt peak is the 

largest annual contribution to flow, followed by a secondary maximum peak in late June that is only 

apparent on the Salcha River (Figure 3.2). Salcha’s June peak is indicative of late melt associated with 

high elevation snowpacks in the upper reaches of the watershed. The rainfall peak in both systems occurs 

in mid-August and is associated with frontal storms that results in widespread rainfall across the region. 

After a number of storm events, hillslopes become saturated and runoff occurs, which can generate peak 

flows and sometimes flooding. 

3.2.2 Data Sources 

All data were extracted from the United States Geological Survey’s (USGS) daily historical 

streamflow database. Only the gages with more than 40 years of data were considered for inclusion in the 

work. From all gages in the region, only eight stations had sufficient data (> 70% complete) for the time 

period under study. Years analyzed range from 1954 to 2013 for six of the eight stations and 1964 to 2013 

(Tanana/Talkeetna), see Table 3.1. 

Winter streamflow at gages is generally assumed to begin in late October or early November and 

last until snowmelt in April/May. Stream flow records are continuous through the year for all stations, but 

when ice-affected conditions are present the rating curves is not valid and must be verified using 

additional measurements or information. Under-ice measurements are collected by the USGS technicians 

periodically (two to four times) through winter by cutting 20 holes in the ice and inserting a current meter 

into the holes to measure flow at the average of 0.2 and 0.8 depths, if the river is deeper than 2.5 ft 
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(Rantz, 1982). At times, acoustic doppler current profilers (ADCP) are used for flow measurement but 

only when conditions are adequate for ADCP (H. Best, pers. comm.). Slush, for example, prevents use of 

ADCP because it interferes with the flow measurements. Streamflow is interpolated between these under-

ice readings to calculate daily flow values using additional information such as air temperature and 

precipitation data, knowledge of the river conditions by local USGS technicians and staff, and corrections 

against the index gages. The USGS demarcates the under-ice measurements with an ice flag in their 

database. For our analysis, we analyzed under-ice flows in the same manner as open water flows. 

The Chena River basin is the USGS’s index streamflow gage for northern Alaska because the 

Chena remains open (i.e. ice free) in one section through the winter. The Aurora Energy Coal Power Plant 

discharges steam and hot water into the Chena River from its outfall located  at 64°50 ̍'54"N, 

147°44'06"W (EPA, 2002) which results in warming and melting of a portion of the river downstream of 

the power plant (Ecology and Environment, 2012). Therefore the Chena can be gaged during the winter 

using standard gaging methods. Flows collected during winter months along the Chena are used to assess 

and correct flows at other Interior river sites where under ice measurements are undertaken. Most of the 

rivers in this study are proximal to the Chena index station which increases confidence in their winter 

streamflow measurements. The Kuskokwim and the Nuyakuk rivers do not have under-ice measurements 

observed during winter time and their winter flow curves are based on knowledge of the USGS 

technicians alone, so interpretation of these records must consider this assumption. It should be noted that 

the primary focus of this paper is on the AMJ and annual peak flows and therefore streamflow maximums 

for these systems occur outside of the time period that is ice-affected. 

3.2.3 Analysis 

Trends and nonstationary GEV analyzes were completed for all sites. Trends analysis was 

completed for 11-day, monthly, seasonal and annual periods. The daily streamflow records were pre-

processed to select maximum and minimum flow values for the period of record. For the GEV analysis, 

only the seasonal and annual data were analyzed; in this case missing years were deleted and partial years 

were filled based on the mean value. 

3.2.3.1 Trend Analysis 

Nonparametric trend analysis was completed for the maximum and minimum 11-day, monthly, 

seasonal, and annual time series of the time periods. The 11-day periods were selected based on Whitfield 

et al.’s (2002) finding that shorter time periods (5 days, 12 days) yields improved separation of variability 

based on cluster analysis of precipitation and temperature data across Canada. Monthly values are 

calculated over the 12 months of the year, and seasonal values were calculated for January-February-
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March (JFM), April-May-June (AMJ), July-August-September (JAS) and October-November-December 

(OND) seasons. Trends were only computed for records with greater than 70% complete time series. 

Trends were analyzed using an approach developed by Yue et al. (2002) as outlined in Wang and Swail 

(2001), where the trend magnitude is calculated using a Theil-Sen approach (Sen, 1968; Theil, 1950a; 

Theil, 1950b; Theil, 1950c). The nonparametric Mann-Kendall (Kendall, 1975; Mann, 1945) test for 

significance is used on this series. Prior to applying the Mann-Kendell test, a pre-whitening technique is 

applied to remove any serial correlation that may inflate the significance of the trend (Helsel and Hirsch, 

2002). The analysis was carried out using the zyp.R trends package for R-project statistical software 

(Bronaugh and Werner, 2009). 

3.2.3.2 Generalized Extreme Value Theorem Analysis 

Trends analysis presented in the previous section is complementary to the generalized extreme 

value theory (GEV) as the approach relies on the nonparametric Mann-Kendall test to calculate the trend 

significance and does not make assumptions about the data distribution except that the data are 

independently distributed in time. The GEV approach, on the other hand, is grounded in the theory of 

extremal limits that states a sufficiently long time series of block maxima will approach the GEV 

distribution asymptotically at large sample sizes (Coles, 2001). This provides justification for making 

inferences about return periods of extremes. The GEV-based approach to streamflow extremes can easily 

incorporate nonstationarity, thus allowing inferences on the changes in the frequency and magnitude of 

floods and low flows (Milly et al., 2008). Specifically, the parameters in the GEV distribution can be 

allowed to change with time (or with covariates that are time-dependent), hence allowing the efficient 

detection of trends in extremes within this framework. The particular form of nonstationary GEV analysis 

used here allows us to determine the form of the nonstationarity (or, if there is indeed evidence of 

nonstationarity) that best fits the streamflow data. Each of these methods described above are univariate 

and thus are applied to each individual time series of maximum or minimum annual and seasonal time 

periods separately. 

The GEV approach applied in this study utilizes the R-project’s GEVcdn package as described in 

Cannon (2010; Cannon, 2011). The approach models the GEV distribution as a function of covariates 

using a conditional density network, which is a probabilistic extension of the multilayer perceptron 

(MLP) neural network. The cumulative distribution function (cdf) of a GEV is as follows,  
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where μ  is the location parameter, which describes the distribution center; the scale parameter, σ , which 

determines the size of the deviations around μ ; and κ , which is the shape parameter that determines the 

tail behavior of the distribution  (normally Fréchet, Weibull or Gumbel type, Katz, 2013). The probability 

density function (pdf) is given by  
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To avoid problems with maximum likelihood (ML) estimation of the shape parameter, a 

penalized version of ML that applies a prior distribution to the shape parameter that is representative of 

natural processes (Cannon, 2010; Coles and Dixon, 1999; Martins and Stedinger, 2000) is used here. In 

addition, the shape parameter is kept constant in all candidate models. 

The work presented herein details results from five different candidate models. The initial model 

is stationary (S), in which parameters are not allowed to vary with the covariate (time is used here as an 

example). In the remaining models, the location and scale parameters are allowed to vary in time by 

specifying either a linear or non-linear hidden-layer activation function in the conditional density network 

model architecture. In the linear GEV model, this is the identify function, whereas it is the hyperbolic 

tangent function in the non-linear models. A linear nonstationary (LNS) version of the GEV framework 

assumes that the location and scale parameters are allowed to vary linearly and log-linearly with time, 

respectively. For the non-linear models, the scale parameter was not allowed to fall below a minimum 

threshold (15% of the range of the streamflow series) to reduce over fitting to specific data points 

(Cannon, 2012). 

This linear version of the nonstationary GEV essentially follows El Adlouni et al. (2007), 
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  1 2μ t  t    ( 3-7 ) 

   1 2log α t  t    ( 3-8 ) 

where 1 , 2 , 1  and 2  are parameters estimated from data. In the non-linear models, the number of 

hidden-layer nodes controls the degree of non-linearity that can be represented (Cannon, 2010). Three 

non-linear nonstationary candidate models of increasing complexity are analyzed by changing the number 

of nodes from one to three (NLNS with one node, NLNS with two nodes, and NLNS with three nodes, 

respectively). 

To determine which of the candidate model approaches is most applicable, a cost-complexity 

model selection criteria, the Akaike Information Criteria, corrected for small sample sizes (AICc), 

identified the best model when minimized (Burnham et al., 2011). To further prevent over fitting of the 

models, the model recommended by AICc was selected to run a bootstrapped version of the GEV 

analysis, which was iterated 100 times, and the mean value of the bootstrapped quantiles was used for 

plotting return values. 

To test the goodness-of-fit of the distributions and determine if the GEV fit of the model 

candidates is appropriate and statistically significant, a Kolmogorov-Smirnov (K-S) test was applied. The 

K-S test is applied to the GEV cdf (Equation 1) values from each fitted candidate model, otherwise 

known as the probability integral transform (PIT) values. If the PIT values follow a uniform distribution 

then the models are calibrated appropriately to the particular distribution (Gneiting et al., 2007). 

3.2.3.3 Covariate Analysis 

As well as using time as a covariate, nonstationary GEV analysis was also conducted for climate 

variability of the spring time (AMJ) changes and maximum streamflow. Values of the Pacific North 

American (PNA) pattern, the Arctic Oscillation (AO), the Pacific Decadal Oscillation (PDO) and the El 

Nino Southern Oscillation (ENSO) index were examined as potential covariates. Monthly values for each 

index were obtained from online sources, as listed below, from 1954/1964-2013. Average values were 

generated for the months of November, December, January and February (NDJF) for the standardized 

PDO, PNA and AO indices and applied to the JFM season to represent the strength of the climate signal 

during Interior Alaska’s winter (L'Heureux et al., 2004). October was included in the ENSO composite 

analysis to account for potential lags in tropical forcing and midlatitude response affecting the Alaskan 

climate (Bond and Harrison, 2006). A standardized ENSO value was generated by calculating the DJFM 

average value that was greater or less than the mean +/- half the standard deviation. 

The PNA is an atmospheric teleconnection pattern that responds to warm sea surface temperature 

anomalies in the central equatorial Pacific, and impacts climate across the Northern Hemisphere. It 
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follows that the PNA pattern is linked with warm and cold ENSO events, with a widespread response of 

ENSO that has been shown to have a direct impact on winter time temperature and precipitation across 

the western US (Redmond and Koch, 1991) and in North America (Shabbar et al., 1997; Yarnal and Diaz, 

1986). The PNA index was obtained from the National Weather Services’ Climate Prediction Center’s 

website (NWSCPC, CPC, Accessed Sep 2013). 

AO is considered to be a dominant and persistent mode of atmospheric variability; it is one of two 

annular modes with its prime influence in the Northern Hemisphere. It is also referred to in the literature 

as the Northern Annual Mode (NAM). The AO has influence at the high latitudes and is associated with 

low pressure fields near the pole, and high pressure fields at mid-latitudes that are linked with strong 

westerly wind anomalies. Glacier streamflow has been positively correlated with the AO index by 

Fleming et al. (2006) for sites in the Yukon and north western British Columbia nearby the border of 

Alaska. It has also been investigated for regions of Northern Canada and is positively correlated with 

runoff to the Bering Strait, and anticorrelated to runoff to the Labrador Sea and the Hudson Bay (Déry 

and Wood, 2004). The monthly AO index was downloaded from the NWSCPC website (CPC, Accessed 

Sep 2014). 

The PDO index is defined as the leading principal component of SST anomalies in the Pacific 

Ocean, poleward of 20°N. The PDO is an index of atmosphere and oceanic variability that encompasses 

both an interannual ENSO signal and a decadal ENSO-like mode (Bitz and Battisti, 1999; Mantua et al., 

1997). Positive values of PDO indicate the ‘warm phase’, attributed by warmer than average water in the 

equatorial Pacific and colder than average in the central North Pacific; negative values indicate the 

opposite pattern. The PDO index was obtained from the Joint Institute for the Study of Atmosphere and 

Ocean (JIASO, Accessed Sep 2014). 

ENSO represents the strength of the sea surface temperatures (SST) in the equatorial Pacific 

region. Warm SST anomalies lead to a weakening of easterly trade winds, and a reduction in the currents 

that contribute to upwelling along the eastern coast of the Pacific. A deepening of the thermocline thus 

develops and leads to enhanced precipitation along the equator, establishing a high pressure zone in the 

sub-tropics and strengthened low pressure in the Aleutians. The influence of ENSO is widespread and is 

linked in part to the strengthening of the jet stream northward, and the influence of the PNA in North 

America. The ENSO 3.4 index was downloaded from the ESRL NOAA site (ESRL NOAA, Accessed 

Sep 2014). 

Precipitation and air temperature covariates were explored using the CRU TS 3.21 data set 

(Harris et al., 2014). The CRU TS 3.21 monthly temperature and precipitation data were clipped and 

averaged over each basin to generate seasonal composites. The data were corrected to adjust major biases 

using the Climate Western North America (ClimateWNA, Wang et al., 2012) average monthly 
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climatology (1971-2000) data. In all cases the tests were formalized such that the seasonal temperature 

and precipitation from the current season and the previous season were tested for minimization using the 

AICc statistic; minimized results are plotted in figures and tables.  

3.3 Results 

3.3.1 Trends 

Trend results for each gage are presented for maximum and minimum streamflow in Table 3.2 

(monthly, seasonal and annual) and in Figures 3.3-3.4 (11-day, seasonal and annual). These results are 

provided as a percentage difference from the normal, calculated based on the average maximum or 

minimum streamflow over the whole period of record. Changes in the annual maximum flow at these 

sites are due to decreases in the May and summer flows, while changes in minimum flows are reflective 

of the increasing fall/winter/spring baseflow values (Table 3.2). Annually, maximum flow values are 

declining particularly in the glacial-nival systems (Susitna and Talkeetna) and in the mid-elevation sites 

that are snowmelt dominated (i.e Chena). These declines dominate the annual flow regime as the bulk of 

the water passes through the system during these times (Table 3.2, Figure 3.2). On the other hand, 

minimum flows (baseflow) are increasing in October and/or May at most of the sites (Table 3.2) however 

these flows comprise a small percent of the total flow volume. These results are partially corroborated by 

Hinzman et al. (2005), although glacierized basins were reported to have increasing flow volumes. 

Annual flow declines noted in this work are most closely aligned with Déry and Wood’s (2005) results of 

declining flow trends in rivers for Northern Canada.  

April–May 11-day maximum flows across all systems are increasing, with statistically significant 

results in either the early April period, or late April-early May (Figure 3.3). The April-May 11-day flow 

increase is likely a sign of earlier snowmelt; flows are shifting from a normally low flow period where 

river is ice covered and winter base flow conditions are dominant, to a breakup period where the snow 

and ice begin to melt and rivers start to flow. However, the large 11-day trend illustrated in Figure 3.3 

occurs early in the year when there is relatively low flows occurring, as opposed to the May flow decrease 

that is a smaller percentage change but represents a larger absolute difference in flow magnitude. Large 

declines are observed for May in the snowmelt dominated systems (Salcha and Chena), while the 

Talkeetna exhibits flow declines in June (Table 3.2). Summer maximum streamflow is largely 

characterized by declining flow trends, particularly in the largest glacierized basins such as the Susitna 

(July only) and the Talkeetna (JAS), but also at the snowmelt dominated Chena (JAS).  

Overall, changes in maximum flow are more statistically significant than changes in minimum 

flows. Where changes in minimum flows are statistically significant, flows tend to be increasing, while 
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maximum flows are mixed. Annual minimum baseflows are significantly increasing on the Yukon, 

Tanana and the Nuyakuk rivers (Table 3.2). The Yukon and Tanana basins are permafrost dominated with 

glacial headwaters – these findings reflect Walvoord and Striegl (2007) and St. Jacques and Sauchyn 

(2009) research documenting winter baseflow increases in permafrost basins. The Nuyakuk system is a 

prolacustrine system where flow signals and particularly baseflow is likely influenced by lake storage (see 

discussion on Lockhart River, Woo et al., 2008a). The highest increase in minimum flows is offset from 

the maximum flow increase an observable 11-days later in all systems except the Kuskokwim (Figure 3.4, 

3.5). This offset is likely due to the delay in baseflow response that occurs between recharge of snowmelt 

and runoff in these watersheds (Rouse et al., 1997).  

3.3.2 Generalized Extreme Value Analysis 

The local K-S tests results for the minimized models never rejected the global null hypothesis 

(the global null in the K-S test specifies that the values of the analysis variable are a random sample from 

the specified theoretical distribution) at the significance (0.05) level except for the annual and summer 

seasons for the Salcha, Chena and Tanana systems. The 1967 flood was identified as the cause for poor 

fits (K-S tests were rejected) in the Tanana, Salcha and Chena River basins (Rouse et al., 1997). The 1967 

flow in the annual GEV analysis were therefore removed and replaced with the mean from the time series. 

Overall, annual maximum flows are minimized by the stationary (S), followed by the linear 

nonstationary models (LNS) at three basins and simple nonlinear nonstationary models at Susitna (Figure 

3.5). Stationary results are indicative of no trend in the system. When nonlinear models are 

recommended, simpler nonlinear architectures are more common (NLNS1) than the more complex 

models (NLNS3).  Where declines are shown by the GEV, the nonparametric trend results support these 

reductions in annual flow (Table 3.2). 

During the spring season, stationary and linear nonstationary models are more evenly split 

between the basins (Figure 3.6). The Talkeetna, Salcha and Chena River systems exhibit decreasing 

trends during this season (Table 3.2), and each system here is shown to decline via the GEV (Figure 3.6). 

All systems experience their peak flow during this time of the year with the exception of the Tanana 

River, which does not peak until late July (Figure 3.2).  

It is interesting to note that although the Talkeetna and the Susitna River basins are adjacent to 

each other they appear to be responding differently. These differences are not attributable to the different 

trend period examined; over the 1964 period the Susitna has no significant shift in its AMJ flows and 

does not show a significant flow decline annually (results not shown).  To investigate this matter, the 

average basin hypsometry (1780 m, Table 8 in Clarke et al., 1985) and a September, 2013 glacier 

inventory (Arendt et al., 2012) were examined. The Talkeetna glaciers are above the average ablation line 
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(1781 m) for the area as identified in Clarke et al. (1985), while Susitna River watershed has a higher 

percentage of its basin at lower elevations, including its glaciers (Figure 3.7). It is possible therefore that 

the Talkeetna is experiencing detectable shifts in its snowpack and glaciers, while the Susitna’s glacial 

decline has been surpassed (Moore et al., 2009). A larger relative August decline in streamflow at 

Talkeetna also supports this, while the Susitna flows experience smaller declines over July and August 

that are non-significant (Table 3.2). 

The Yukon River, Kuskokwim and Tanana River basins have no change in either annual or AMJ 

flow statistics with time, with the exception of increasing fall/winter baseflow on a monthly and seasonal 

time scale (Table 3.2), which is discussed above. The Nuyakuk, on the other hand, exhibits a slight 

increasing linear nonstationary pattern of flow in AMJ, likely owing to an earlier freshet in March and 

April that is not followed by strongly declining flows in May (Figure 3.3, Table 3.2).  

Return periods (2, 5, 10, 20, 50 and 100 year) shown in Figure 3.5 and Figure 3.6 illustrate the 

magnitude of changes in extreme value statistics over time. For example, in the Salcha system (SAL) a 

winter time maximum streamflow of ~25000 f3s-1 in the 1950s is recurrent at a 10% probability (10 year), 

but by 2013 the same flow volume is recurrent at a 98-99% probability (50-100 year return interval, 

Figure 3.6). Another way to think about this is that the 10 year winter time return flow value has 

decreased by approximately 5000 f3s-1 in the Salcha system over the 60 year period 1954-2013. 

3.3.3 Covariates Analysis: Climate Variability 

Results of the GEV analysis run using climate variability as a covariate indicate that decreasing 

maximum spring streamflow patterns are related to the occurrence of the positive PDO in snowmelt, and 

non-glacier/permafrost dominated systems (Figure 3.7g, h). The exception to this is the Nuyakuk River 

basin, where positive AO is associated with decreased maximum spring streamflow volumes (Figure 

3.7c). This result is similar to findings of Déry and Wood (2004) where declining Hudson Bay River 

inflows were associated with a positive AO. Bond and Harrison (2006) discuss the impact of ENSO with 

AO on the Alaskan climate, documenting a higher precipitation rate with combined ENSO/AO- winters 

for southern Alaska. Fleming et al. (2006) examined the AO in the context of glacial rivers in southwest 

Yukon but found the opposite relationships – positive AO was associated with higher glacial outputs but 

these glacial responses were distinct from the nival streamflow systems.  

In Alaska results the positive phase of the PDO generally leads to increased air temperature and 

decreased precipitation across interior regions of Alaska (Hartmann and Wendler, 2005). The negative 

PDO tends to bring about generally opposite changes in terms of direction although magnitudes can be 

considerably stronger (Brabets and Walvoord, 2009). Decreased maximum AMJ streamflow associated 

with positive PDO values is likely a result of the decreased precipitation and warmer temperatures 
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associated with positive phase of the PDO and leading to lower May runoff values overall. This decrease 

is most evident on the purely snowfall driven systems (Salcha, Chena), as opposed to the nival-glacial 

systems (Fleming et al. 2006), as discussed below (Figure 3.7). In the Kuskokwim River basin, which is 

comprised of mountainous, lowlands regions and soils with 50% discontinuous and 50% sporadic and 

isolated permafrost, streamflow is responding to PDO and associated shifts in year-to-year climate (Table 

3.1). 

The glacial/permafrost dominant basins Yukon, Tanana, Susitna and Talkeetna do not show a 

response to any of the climate variability indices for AMJ, indicative of their stationary responses (Figure 

3.7), as in the previous analysis using time as a covariate (Figure 3.6). The lack of response to both time 

and climate variability as covariates indicates that maximum AMJ streamflow has an alternate mechanism 

that contributes to high and low streamflow responses. Because of the amount of high elevation areas, 

permafrost, bare ground/rock and glaciers in the Yukon basins, the lack of a response is not surprising 

given that glaciers, ice fields, frozen ground, and groundwater interaction in this basin may act in opposite 

directions to system drivers (i.e. climate variability) and complicate responses (Table 3.1, Woo et al. 

2008). The Tanana system’s peak flow response is not represented in the AMJ period, although no 

response to climate variability indices was observed during this peak flow season either (JAS, not shown).  

3.3.4 Covariate Analysis: Precipitation and Temperature 

Precipitation and temperature covariates had much stronger relationships than time or climate 

variability, which is not unexpected. Results for the spring season reveal the differences in the basins’ 

response to changing conditions in the season analyzed, or the preceding season (JFM). Glacial and high 

elevation snowmelt systems respond most cohesively to temperature in the AMJ season, with all basins 

exhibiting smaller maximum streamflow with warmer conditions. The Kuskokwim, Tanana and Chena 

River basin respond most strongly to increasing precipitation in the JFM season, indicative of higher 

winter snowpacks. The Nuyakuk basin responds to temperature in JFM, with warmer winter temperatures 

resulting in larger streamflow maximums. The Salcha River basin has a unique step-change response that 

is represented by the nonlinear nonstationary model of AMJ temperatures. Lower streamflow maximums 

are observed with increased temperatures. 

3.4 Discussion 

Interior Alaska river basins respond to climate shifts across variable time scales (11-day, 

monthly, seasonal and annual). The glacier systems (Talkeetna and Susitna) respond to temperatures 

changes at an annual time scale (Figure 3.5, Table 3.2). Maximum streamflow declines were related to 

increase temperatures in the AMJ period in both the Talkeetna and the Susitna river basins. Flow 
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responses were primarily negative for the June, July and August months (Table 3.2), with shifts towards 

earlier snowmelt observed (Figure 3.3). Although volumetric accounting of glacier contributions to 

streamflow was not considered explicitly in this study, research by Arendt et al. (2002) on sixty seven 

glaciers in Alaska noted thinning and volume reductions between the 1950s and the 1990s, with the rate 

of change observed to be increasing since the 1990s. Thus, higher temperatures during the AMJ season 

are indicative of reduced snow packs, faster runoff, shifts in streamflow timing, and hence lower flows 

(Liston and Hiemstra, 2011; Stewart et al., 2005). On the other hand, no relationship was found between 

climate variability indices in these basins, indicating that maximum streamflows are not responding in the 

same manner as purely snowmelt dominated basins (Fleming et al. 2006). The Talkeetna River basin 

appears to be more sensitive than the Susitna, exhibiting primarily linear nonstationary responses to 

changes in temperatures noted for Alaska over the 1964-2013 period. The Talkeetna’s response could be 

attributable to the percentage of glaciers located at high elevation compared to the Susitna which has a 

greater amount of its glaciers below the ablation line (Figure 3.7). Further research is required on these 

systems to determine the exact reason for the differences in response between these two adjacent basins. 

Streamflow changes in snow dominated systems were the most detectable using trends analysis 

and GEV, responding to time and climate variability shifts (Table 3.2, Figure 3.6). The Salcha and Chena 

systems are both experiencing streamflow declines that can be related to changing spring streamflow 

associated with a loss of snowpack. The Chena responds to increased winter precipitation, higher flows 

occur with higher snowpacks - a clear result for a snowmelt dominated basin. However, the Salcha system 

with a much higher percentage of its basin at a higher elevation, is temperature modulated (Figure 3.9). 

Shifts in the Salcha AMJ streamflow peak have a nonlinearity, although the mechanism for this 

nonlinearity is unclear it does not seem to be directly traceable to the PDO (Figure 3.9).  Both systems 

appear to be affected by PDO, with lower maximum streamflows associated with positive PDO. May and 

June streamflow was found to be lower on the Salcha River during warm PDO streamflow versus cold 

PDO (Table 3 in Brabets and Walvoord, 2009). 

The Tanana does not experience detectable shifts in AMJ streamflow over the 1964-2013 period, 

nor does it response to climate variability but does respond in spring to winter precipitation. It should be 

noted that this response is not occurring at peak flow for the system (Figure 3.2). This is not unexpected 

given the Tanana’s variable headwater influences, including high elevation mountain snowpacks and 

glaciers. Additionally, the Tanana basin has a combined total of 83% of its basin underlain by 

discontinuous or continuous permafrost, further complicating streamflow patterns. The Kuskokwim River 

has a much smaller percentage of glacier and a smaller fraction of discontinuous/continuous permafrost. 

This basin responds in a similar manner to the snowmelt dominated systems, with a detectable trend of 

lower spring streamflow maximums during the positive PDO (Figure 3.8). 
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Winter baseflow increases noted in this work have been related to thawing permafrost in the 

Northwest Territories of Canada (St. Jacques and Sauchyn, 2009) and in the Yukon River basin of Alaska 

and Canada (Walvoord and Striegl, 2007). Most of the eight watersheds, and in particular the Yukon, are 

experiencing higher October, November or December maximum flows and higher minimum flows in 

October or March (Table 3.2). Baseflow increases are hypothesized to be occurring in conjunction with 

climate change (Hinzman et al., 2005). Extensive/continuous permafrost dominated soils do not thaw 

until late summer and hence any snowmelt and precipitation runoff occurring during this time is delivered 

to the river systems as runoff. As temperatures warm, the active layer depths deepen and permafrost 

degrades, hence the land surface can act more as a storage reserve for runoff. The water will eventually 

work its way through the system and exit this groundwater storage in the fall or winter time as baseflow. 

Water storage in the active layer increases through summer, as noted by Bolton et al. (2000) for the 

Caribou Poker Creek watershed, but reaches a threshold when overland flow occurs off of the saturated 

active layer and into rivers as runoff. However, streamflow may also be responding to increased 

summer/fall precipitation inputs, supported by research documenting that summer precipitation exceeds 

evapotranspiration in recent years at these sites (Carey and Woo, 1999; Jones and Rinehart, 2010). 

Generally, this region of the world is thought to be dominated by positive net precipitation (Serreze et al., 

2006). 

The Nuyakuk River basin examined in this work is clearly a unique system and is operating often 

in an opposite direction to either the glacial systems or the snowmelt dominated streamflow regimes. The 

peak flow at this site is increasing in fall, and minimum flow magnitudes show an annual increase. The 

lake is drained by the Aklun Mountains that receive influences from the Bering Sea and the Gulf of 

Alaska that may be leading to increased snowpacks. However, the modulating effect of the lake 

confounds signals and more in-depth research of the patterns of change occurring at this site is needed, 

particularly in regards to its response to the Arctic Oscillation. 

The Yukon River trends responded only to increased temperatures during the snowmelt season, 

similar to those of the glacially dominated Susitna and Talkeetna basins (Figure 3.9). Annual or spring 

streamflow changes were not observed to be occurring over time, or in response to climate variability and 

trends are not significant during either period. This watershed exhibits a plethora of landscape types, 

including glacier, high elevation snowpacks, and permafrost substrates, all of which could be changing 

but in opposite directions. However, if the basin’s primary driver is temperature, the indication is that 

future increases in temperature within the region may eventually lead to lower streamflow that could 

outweigh the increases in either winter baseflow conditions, deepening active layers or alterations in 

summer or fall precipitation inputs. On the other hand, for the Tanana system, where winter precipitation 

inputs are a primary driver of spring streamflow, we could see a response to declining snowpacks at lower 
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elevations that may outweigh changes in permafrost and active layer shifts. However, changes in 

snowpacks at the high elevation aspects of the Tanana would also need to be considered. 

3.5 Conclusions 

Trends and nonstationary GEV analyses were applied to examine changes in maximum and 

minimum streamflow over a 50-60 year time period for eight Interior and Western Alaskan watersheds 

located in the discontinuous and continuous boreal permafrost zone. The observed trends indicate that 

regime shifts are occurring in Alaskan Interior snowmelt dominated systems that are indicative of 

nonstationary linear responses to climate variability and climate change. Glacial systems appear to have 

passed the stage of flow increases and are declining. For some systems, changes are non-significant or 

opposite in nature and therefore offset any detectable shifts in the system, as evidenced in the Yukon 

River basin. 

Trends analysis indicated that streamflow is changing, as follows: 

 Annually, maximum streamflow is decreasing, while minimum flows are increasing. 

 Direction of changes is not always apparent when considering the seasonal or annual flows. In order 

to determine how streamflow systems are changing, a mixture of techniques is required to detect 

processes, differentiate changes and link to broader phenomena such as climate variability. 

 Shifts in streamflow occur in different time periods depending on the physical processes that are 

changing. The Talkeetna river watershed has a delayed response in its flow changes associated with 

its high elevation snow and glacier complexes and results in a magnitude change in flow trend that is 

not comparable to an adjacent site (Susitna). 

 Maximum streamflow is increasing in nival-dominated streamflow systems such as the Chena and 

Salcha River basins in spring indicative of a shift in snowmelt freshet; these systems have an 

associated decline in May flows that is indicative of a transfer of the pulse of flow from May to April. 

These systems are responding to changes in PDO, which could be included in modeling efforts or 

streamflow foreacasting for ungaged Interior Alaskan snowmelt dominated systems. 

 The Salcha River has a larger percentage of its basin at a high elevation, and hence it is more 

responsive to temperature shifts in the spring snowmelt season, with a nonlinear change associated 

with warming temperatures. 

 Streamflow is declining in spring, summer and annually in glacial systems and this change results in 

reduced streamflow associated with warming temperatures and climate change accelerated melt. 

 Large basins with developed rocky upland zones, mixed nival/glacier/pluvial regimes and where 

groundwater contributions could be changing, such as the Yukon, do not respond to climate 

variability, or climate change directly. 
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 Increasing winter baseflow is observed across many systems. These changes are reflected in 

minimum flow results as well but are more strong and significant in the maximum streamflow trends. 

These changes have been noted by other researchers but represent a small proportion of the overall 

streamflow volumes. This results in non-detectable annual change in the hydrology of systems such 

as the Yukon. 

 Maximum streamflow responses were clearly linked to changes in climate, such as temperature or 

precipitation increases/decreases. This has implications for future climate change with regards to how 

(strongly) these systems may respond to shifts in either temperature or precipitation. 

 The Tanana and Kuskokwim systems have the same response to climate drivers and climate 

variability (Kuskokwim only) to snowmelt dominated watersheds while the Yukon responds similarly 

to glacial basins. 

 The Nuyakuk River, which drains a number of large lake complexes, has a very different hydrology 

compared to other sites, and requires more in-depth study. 

3.5.1 Implications 

Changes in extremes influence systems to a greater extent than mean change (Katz and Brown 

1992). Extreme value theory offers an analytical means to present and understand changes that are 

occurring in response to nonstationary forcings (i.e. climate variability) and in non-linear manners. Not 

only is this important from a research standpoint, but it is also fundamental information for operational 

and resource management perspectives within governmental agencies and the Alaskan public, who rely 

on the development of frequency analysis of return levels to demarcate floods of major and minor impact 

(Ed Plumb, NWS, pers. comm.). 

The results of this work demonstrate that analysis of peak flows within a regime-based 

framework can identify particular processes that are impacted by climate change or variability. Likewise, 

directional changes are not likely to be consistent across regions – rather they are more likely to be 

consistent between regimes. Complicated systems such as the Yukon may be experiencing multiple 

effects that cascade down the system and can result in opposing changes in the system – changes that 

could very well cancel out in terms of streamflow volume or timing changes. Systems must be examined 

very carefully and in a fashion that enables a clear separation of regimes operating across expansive 

basins of the north. However, there are identifiable limits of extrapolation of results from trends analysis, 

such as identifying the nature of processes such as permafrost degradation versus increased fall 

precipitation. For this research, a more fine scale, physical model of the basins is required.  
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3.7 Figures 

 

Figure 3.1. Stations analyzed in the study. Basins are identified by numbers at gages (open triangles), 
index provided in Table 3.1. The inset shows the basin set in the context of North America. 
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Figure 3.2 Streamflow hydrographs shown for 11-day composites for all eight stations, mean (dashed), 
maximum and minimum line are shown, with a horizontal line indicated the day of maximum flow. 
Seasons are greyed (JFM, JAS grey, AMJ and OND white) to illustrate the data ranges, and months of the 
year (representing the mid-month date) are on the x-axis. Abbreviations for basins are found in Table 3.1. 
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Figure 3.3 Maximum streamflow trends (%) for the period of record for all eight stations.Trends for 11-
days are shown in circles, seasonal results are in boxes and annual trend is given in the upper right box. 
Statistical significance is shown as follows, dark grey is 99th confidence interval, light grey is the 95th 
confidence interval, and non-significant results are white. The y-axis indicates the trend magnitude, while 
the x-axis illustrates the months of the year (representing the mid-month date). Abbreviations for basins 
are found in Table 3.1. 
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Figure 3.4 Minimum streamflow trends (%) for the period of record for all eight stations. Trends for 11-
days are shown in circles, seasonal results are in boxes and annual trend is given in the upper right box. 
Statistical significance is shown as follows, dark grey is 99th confidence interval, light grey is the 95th 
confidence interval, and non-significant results are white. The y-axis indicates the trend magnitude, while 
the x-axis illustrates the months of the year (representing the mid-month date). Abbreviations for basins 
are found in Table 3.1. 
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Figure 3.5 GEV results for maximum streamflow for the annual time period for the eight basins examined 
in this study. Black circles and lines illustrate the streamflow maximums for the season. Dashed lines 
show 2, 5, 10, 20, 50 and 100 year return intervals, based on the GEV fits. Time interval (x-axis) is 
relative to length of record.   
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Figure 3.6 GEV results for maximum streamflow in AMJ for the eight basins examined in this study. 
Black circles and lines illustrate the streamflow maximums for the season. Dashed lines show 2, 5, 10, 20, 
50 and 100 year return intervals, based on the GEV fits. Time interval (x-axis) is relative to length of 
record. 
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Figure 3.7 Susitna and Talkeetna river basins elevation ranges. Mapping based on the National Elevation 
Data (NED) are shown from green to light blue to dark blue. Regions above the average ablation line 
(1781 m) are shown in yellow. Glaciers are clipped to the watershed boundaries (Arendt et al. 2012) and 
illustrated with red outlines. 
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Figure 3.8 GEV climate variability results for maximum streamflow for AMJ. Black circles and lines 
illustrate the streamflow maximums for the season. Stationary results indicate no trend; and minimized 
climate variability indices are not meaningful. Dashed lines show 5, 20 and 100 year return intervals, 
based on the GEV fits. The x-axis shows the selected GEV index, as described in the text. 
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Figure 3.9 GEV results for maximum streamflow in MAM, temperature or precipitation covariates for the 
eight basins examined in this study. Black circles and lines illustrate the streamflow maximums for the 
season. Dashed lines show 2, 5, 10, 20, 50 and 100 year return intervals, based on the GEV fits. 
Temperature or precipitation (x-axis) is relative to values in record. 
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3.8 Tables 

Table 3.1 Table of station information.  Site/station names, station number, drainage basin size, elevation, 
length of record, and geographic setting/climatic setting. Permafrost results are provided for continuous, 
discontinuous, sporadic and isolated, respectively. 

Site/Station Name 
Station 

Number 

Station 
Code 
(Map 

Number) 

Basin Size 
(km2) 

Elevation 
at Gage 
(Mean) 

(m) 

Time 
Period 

Susitna R at Gold Creek 15292000 SUS (4) 16,350 676 1949-2012 
Talkeetna R near Talkeetna 15292700 TAL (3) 5,270 400 1964-2012 
Nuyakuk R near Dillingham 15302000 NUY (2) 3,910 325 1953-2012 
Kuskokwim R at Crooked Creek 15304000 KUS (1) 81,415 150 1951-2012 
Yukon R at Eagle 15356000 YUK (8) 287,690 850 1950-2012 
Tanana R at Nenana 15515500 TAN (5) 66,205 338 1962-2012 
Salcha R near Salchaket 15484000 SAL (7) 5,740 631 1948-2012 
Chena R at Fairbanks 15514000 CHE (6) 5,350 422 1947-2012 

 
Snow + Ice 

(%) 
Glaciers+

(%) 
Deciduous 

(%) 
Coniferous 

(%) 
Permafrost 

(%) 
Susitna R at Gold Creek 4 4 1 16 69, 19, 4, 3 
Talkeetna R near Talkeetna 14 5 5 6 68, 0, 24, 2 
Nuyakuk R near Dillingham 5 1 1 7 2, 0, 45, 1 
Kuskokwim R at Crooked Creek 1 1 4 33 46, 0, 29, 23 
Yukon R at Eagle 5 2 1 64 73, 11, 15, 2 
Tanana R at Nenana 10 5 11 39 67, 15, 5, 4 
Salcha R near Salchaket 0 0 14 45 88, 12, 0, 0 
Chena R at Fairbanks 0 0 22 47 97, 2, 0, 0 
*interpolated from NED 
+calculated based on Arendt et al. (2012) 
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Table 3.2 Monthly, seasonal and annual trends results for the period of records (1954/1964 -2013) for maximum and minimum flow statistics as a 
percent difference from the normal. Bolded, bracketed values illustrate statistically significant results > 90th percentile confidence interval. 
 Code Jan 

(%) 
Feb 
(%) 

Mar 
(%) 

Apr 
(%) 

May 
(%) 

Jun 
(%) 

Jul 
(%) 

Aug 
(%) 

Sep 
(%) 

Oct 
(%) 

Nov 
(%) 

Dec 
(%) 

JFM 
(%) 

AMJ 
(%) 

JAS 
(%) 

OND 
(%) 

YR 
(%) 

Maximum Streamflow 

SUS 20 
(0.32) 

33 
(0.03) 

44 
(0.01) 

97 
(0) 

2 
(0.81) 

-12 
(0.35) 

-16 
(0.05) 

-10 
(0.28) 

11 
(0.7) 

29 
(0.06) 

25 
(0.06) 

12 
(0.34) 

22 
(0.14) 

-17 
(0.34) 

-11 
(0.23) 

30 
(0.09) 

-24 
(0.05) 

TAL -7 
(0.25) 

-9 
(0.27) 

0 
(0.62) 

58 
(0) 

21 
(0.16) 

-41 
(0.05) 

-36 
(0.1) 

-19 
(0.07) 

6 
(0.87) 

27 
(0.09) 

14 
(0.24) 

0 
(0.82) 

-4 
(0.32) 

-28 
(0.06) 

-25 
(0.03) 

27 
(0.09) 

-33 
(0.05) 

NUY 27 
(0.06) 

34 
(0.04) 

38 
(0.01) 

58 
(0.01) 

36 
(0.15) 

8 
(0.42) 

-7 
(0.28) 

20 
(0.24) 

14 
(0.55) 

40 
(0.02) 

46 
(0) 

30 
(0.03) 

26 
(0.11) 

8 
(0.39) 

-8 
(0.33) 

38 
(0.01) 

8 
(0.43) 

KUS 16 
(0.04) 

10 
(0.11) 

14 
(0.05) 

49 
(0) 

13 
(0.68) 

-21 
(0.22) 

-16 
(0.09) 

-31 
(0.04) 

-29 
(0.32) 

12 
(0.41) 

53 
(0) 

32 
(0) 

15 
(0.06) 

-6 
(0.5) 

-27 
(0.11) 

5 
(0.67) 

-21 
(0.43) 

YKE 41 
(0) 

25 
(0.02) 

21 
(0.1) 

52 
(0.38) 

5 
(0.89) 

-13 
(0.17) 

-10 
(0.29) 

-3 
(0.56) 

7 
(0.6) 

14 
(0.25) 

38 
(0.02) 

46 
(0) 

40 
(0) 

-11 
(0.2) 

-8 
(0.4) 

12 
(0.41) 

-11 
(0.14) 

TAN 18 
(0.04) 

14 
(0.14) 

14 
(0.12) 

72 
(0) 

0 
(0.76) 

-4 
(0.78) 

2 
(0.59) 

6 
(1) 

26 
(0) 

22 
(0.01) 

33 
(0.03) 

22 
(0.18) 

16 
(0.19) 

-4 
(0.82) 

5 
(0.58) 

25 
(0.01) 

2 
(0.59) 

SAL 44 
(0.04) 

38 
(0.11) 

42 
(0.23) 

105 
(0) 

-59 
(0.02) 

-14 
(0.91) 

10 
(0.97) 

-21 
(0.17) 

-18 
(0.69) 

5 
(0.74) 

42 
(0) 

46 
(0.01) 

42 
(0.05) 

-45 
(0.09) 

-16 
(0.37) 

5 
(0.74) 

-33 
(0.16) 

CHE 15 
(0.64) 

10 
(0.81) 

11 
(0.72) 

71 
(0.01) 

-75 
(0) 

-13 
(0.77) 

0 
(0.86) 

-18 
(0.2) 

-30 
(0.28) 

-11 
(0.58) 

30 
(0.05) 

25 
(0.08) 

9 
(0.92) 

-69 
(0) 

-29 
(0.05) 

-11 
(0.58) 

-55 
(0) 

Minimum Streamflow 

SUS 14 
(0.38) 

23 
(0.16) 

33 
(0.08) 

32 
(0.06) 

28 
(0.17) 

-9 
(0.49) 

-12 
(0.14) 

-3 
(0.77) 

-3 
(0.69) 

4 
(0.62) 

0 
(0.99) 

14 
(0.29) 

34 
(0.08) 

32 
(0.06) 

-3 
(0.69) 

13 
(0.33) 

42 
(0.12) 

TAL -14 
(0.17) 

-11 
(0.38) 

-12 
(0.33) 

-8 
(0.62) 

58 
(0.01) 

-7 
(0.98) 

-14 
(0.21) 

10 
(0.4) 

12 
(0.31) 

0 
(0.48) 

-3 
(0.79) 

-15 
(0.39) 

-12 
(0.33) 

-8 
(0.62) 

12 
(0.32) 

-15 
(0.36) 

-8 
(0.45) 

NUY 14 
(0.37) 

20 
(0.13) 

28 
(0) 

20 
(0.12) 

31 
(0.05) 

27 
(0.36) 

3 
(0.8) 

14 
(0.38) 

1 
(0.83) 

21 
(0.25) 

10 
(0.49) 

9 
(0.25) 

28 
(0) 

20 
(0.12) 

9 
(0.91) 

9 
(0.29) 

28 
(0.03) 

KUS 0 
(0.93) 

0 
(0.66) 

0 
(0.45) 

0 
(0.98) 

8 
(0.58) 

-6 
(0.43) 

-8 
(0.26) 

-6 
(0.5) 

-5 
(0.98) 

23 
(0.1) 

14 
(0.16) 

0 
(0.29) 

4 
(0.35) 

0 
(0.98) 

2 
(0.91) 

0 
(0.29) 

0 
(0.41) 

YKE 21 
(0.05) 

13 
(0.29) 

16 
(0.14) 

17 
(0.15) 

20 
(0.57) 

-11 
(0.31) 

-2 
(0.63) 

0 
(0.79) 

11 
(0.28) 

23 
(0.07) 

25 
(0.02) 

27 
(0.01) 

18 
(0.15) 

18 
(0.14) 

11 
(0.28) 

25 
(0.01) 

22 
(0.08) 

TAN 11 
(0.21) 

13 
(0.06) 

12 
(0.33) 

8 
(0.35) 

62 
(0.01) 

-3 
(0.87) 

7 
(0.34) 

14 
(0.13) 

10 
(0.1) 

25 
(0.03) 

14 
(0.21) 

16 
(0.12) 

12 
(0.11) 

8 
(0.35) 

10 
(0.1) 

14 
(0.27) 

19 
(0.05) 

SAL 26 
(0.28) 

30 
(0.4) 

30 
(0.47) 

19 
(0.63) 

46 
(0.03) 

-35 
(0.09) 

8 
(0.73) 

-3 
(0.7) 

7 
(0.52) 

19 
(0.11) 

11 
(0.64) 

23 
(0.23) 

32 
(0.38) 

19 
(0.63) 

6 
(0.84) 

21 
(0.27) 

32 
(0.41) 

CHE 5 
(0.88) 

14 
(0.64) 

12 
(0.64) 

9 
(0.71) 

41 
(0.06) 

-37 
(0.08) 

-6 
(0.4) 

-15 
(0.35) 

-2 
(0.98) 

-4 
(0.86) 

-1 
(0.96) 

15 
(0.24) 

16 
(0.51) 

9 
(0.71) 

-12 
(0.3) 

9 
(0.41) 

22 
(0.64) 
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4.1 Introduction 

Spring snowmelt in the Alaskan Interior is the dominant driver of watershed hydrology and the 

timing and characteristics of the melt can amplify or mitigate flood events, sedimentation patterns, forest 

fires, and drought. Defining the variability of snow cover extent (SCE) and identifying the main 

hydroclimate drivers of spring snow cover depletion is useful in identifying linkages among climate and 

hydrologic impacts at local-and watershed-scales in the warm-permafrost dominated boreal regions of the 

subarctic [Hinzman et al., 2005; Serreze et al., 2002]. This work is particularly important in vast Alaskan 

Interior boreal watersheds that remain under-monitored, despite a heightened interest in climate change in 

the Arctic and subarctic. 

Changes in spring SCE duration and depletion timing associated with shifts in climate may lead 

to earlier snowmelt that could increase the length of the snow-free season and has been linked to 

numerous ecologic and physiological indicators of change [Chapin III et al., 2005; Trujillo et al., 2012; 

Wipf et al., 2009] such as growing season length [McDonald et al., 2004], tree growth in Siberia 

[Kirdyanov et al., 2003], CO2 fluxes [Aurela et al., 2004], and active-layer thaw rates [Oelke et al., 2004]. 

There is also a correlation between the length of the snow-free season and forest fires in the Yukon River 

basin, which is corroborated with results from studies in the Western US  [Hess et al., 2001; Semmens 

and Ramage, 2012; Westerling et al., 2006], but remains an open research question in boreal Alaska 

[Duffy et al., 2005]. Increased fires could result in subsequent effects such as permafrost thawing 

[Kasischke et al., 2010; Yoshikawa et al., 2002] that may lead to a major shift for the boreal forest, the 

world’s largest biome, and hence a fundamental alteration in a major ecosystem of the Northern 

Hemisphere. Thus, developing a clear understanding of snow ablation timing is important for modeling 

the effects of a changing melt regime in Alaska. 

Modeling of snow disappearance timing in Alaskan watersheds has been primarily limited to the 

treeless, high northern sub-basins that have available, accurate observational data, with few exceptions 

[Kane et al., 1997; Liston and Hiemstra, 2011; Ramage and Semmens, 2012; Woo and Thorne, 2006]. 

Where no in situ observational data exists, satellite imagery can be used to infill gaps. The satellite 

records information across a swath of the landscape, as opposed to a single point, which can be 

advantageous when considering heterogeneous snow conditions. Additionally, satellite imagery is often 

available on a routine (i.e. daily or weekly) basis, thus the temporal records for these data are continuous.  

However, work using remote satellite data for snow depletion analysis has been limited in large 

part because of the challenges associated with capturing meso-scale snow conditions obscured under the 

boreal canopy [Hall and Riggs, 2007; Klein et al., 1998]. Vegetation, topography, cloud cover, scaling 

issues, and shading effects can reduce the quality of remote sensing tools to capture on-the-ground 
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observations of SCE [Simic et al., 2004]. Because of these errors, the information must be thoroughly 

tested to ensure it is providing an accurate picture of the boreal North. Comparison at the watershed scale 

is paramount prior to using these data to inform models such that both spatial and temporal biases may be 

identified and removed if necessary. 

An additional concern with remotely sensed information is the lack of a long record for both the 

satellites themselves and the observations to validate them. Satellite sensors tend to have a short life, on 

the order of 5-10 years. In order to construct a useful, long-term record using this information, methods 

must be developed to be able to link longer-term surveys of remotely sensed information such as SCE 

[Brown et al., 2010]. In addition, new sensors such as Visible Infrared Imaging Radiometer Suite (VIIRS) 

onboard the Suomi National Polar-orbiting, which retrieves daily remotely sensed information and has 

recently come online, requires testing to determine improvement compared to the current generation of 

products (i.e. MODIS). The station network that would allow validation of snow depletion studies in 

Alaska is also a major limitation. Station observations tend to be shorter than 30 years (the climatologic 

standard), operate intermittently, and have quality issues related both to systematic (i.e. human or 

instrumental bias, or a lack of metadata) and random (i.e. mechanical failure) effects. 

Work-to-date on SCE timing has focused on characterizing data from the high Arctic and/or on 

fine and very coarse scales (i.e. pan-Arctic). Research has widely applied binary response data, utilizing 

remote satellite sensors operating in the visible range [Dye, 2002]. Much of this work relies on the 

National Oceanic and Atmospheric Administration’s National Ice Center (NOAA/NIC) SCE charts and 

their associated uncertainties [Wang et al., 2005] to measure the weekly change in SCE and examine melt 

timing as anomalies of the mean day of snow disappearance across the Arctic [Brodzik and Armstrong, 

2013; Derksen and Brown, 2012; Foster et al., 2008]. The Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite imagery has been used to estimate percentage SCE change in 

studies focusing on high Arctic basins [Déry et al., 2005; Liston, 1999]. A body of work also focuses on 

utilizing the passive microwave satellite remote sensors for small scale and broad scale studies of SCE, at 

coarse resolutions [Ramage and Isacks, 2003; Tedesco et al., 2009]. More recently, Ramage and 

Semmens [2012], Ramage et al. [2007], and Yan et al. [2009] detailed their work utilizing the Advanced 

Microwave Scanning Radiometer – Earth Observing System (AMSR-E) and SSM/I brightness 

temperatures coupled with the SWEHydro model to estimate changes in SWE timing and runoff in the 

upper Yukon River basins of the Stewart and Pelly rivers. Studies are also ongoing to map melt onset 

using the brightness temperature over a long time scale utilizing several different passive microwave 

sensors [Wang et al., 2013] across the pan-Arctic. 

Combined approaches to examine changes in SCE are also being developed for the Arctic region 

as a whole, either through multi-sensor averaging or data assimilation, using two or more sensors and 
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imaging types [Brown et al., 2010]. A new, coarse scale (25 km) global snow product has been developed 

by the US Air Force Weather Agency (AFWA) and the Hydrospheric and Biospheric Sciences Laboratory 

at NASA/Goddard Space Flight Center. Referred to as the AFWA–NASA Snow Algorithm (ANSA), the 

product is a blend of MODIS, AMSR-E [AMSR-E, Kawanishi et al., 2003] and the Quick Scatterometer 

[QuikSCAT, Nghiem and Tsai, 2001] sensors [Foster et al., 2011]. ANSA is currently being evaluated in 

the Great Lakes region, Finland, and Turkey [Akyurek et al., 2010; Hall et al., 2012] and was recently 

analyzed for Alaska [Liu et al., 2013]. 

Examples from other forested regions of the world highlight the issues in obtaining an accurate 

metric of snow disappearance timing. Several studies have analyzed snow ablation based on changes in 

center of mass of streamflow [Stewart et al., 2005; Westerling et al., 2006]. However, the center of mass 

approach has been shown to be a weak indicator of changes in snowmelt timing [Whitfield, 2013]. To 

estimate snow disappearance, some satellite studies utilize a binary snow on/snow off within a cell over a 

region (i.e. Arctic) that may be based on the full snow season or a shorter duration, as such, results for 

these various estimates may differ [Choi et al., 2010]. Binary, lumped responses across regions cannot be 

related specifically to site conditions such as elevation, slope or vegetation patterns that exhibit control 

over snowmelt [Blöschl et al., 1991; Sturm and Wagner, 2010]. 

Landsat has been widely applied to capture SCE from visible imagery using several different 

approaches [Rosenthal and Dozier, 1996].  The goal of much of this work is obtain SCE estimates from 

remote sensing for estimate of snow water equivalent (SWE) [Cline et al., 1998; Molotch, 2009; Rango 

and Martinec, 1979]  via the processing of depletion curves or modified depletion curves [e.g. Anderson, 

1976; Buttle and McDonnell, 1987; Liston, 1999; Luce et al., 1999]. But, many of the studies inherently 

require an accurate assessment of SCE through time and also require selection of imagery not obscured by 

clouds [Gao et al., 2010; Molotch et al., 2004]. This is where uncertainties can be introduced into the 

calculation of SWE should the underlying SCE depletion curve estimate be erroneous [Parajka and 

Blöschl, 2008]. These techniques can also be complex, computationally prohibitive and require in situ 

measurements which are all subject to error, and do not necessary capture inter-annual variability in snow 

depletion [Shamir and Georgakakos, 2007]. However, the remotely sensed SCE time series itself offers a 

tool that can be mined to understand regional variation in snow depletion timing. If these SCE data are 

properly validated, it can be used to guide resource managers, forecasters and hydrologists towards 

focused selection of more complex modeling approaches. Subsequent processing may follow based on 

this initial study of the depletion curve and its variability through time and space. 

The outline of the paper are as follows: 1) define a nonlinear regression curve that replicates the 

MODIS remotely sensed SCE data through the melt season for 38 sites in Alaska’s boreal Interior region 

and create a continuous time series of SCE data 2) use this data to validate the MODIS SCE data and 
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characterize the snow cover depletion properties at each site in terms of the dates of maximum, mid-melt 

and melt termination, melt duration and melt rates 3) estimate the logistic parameters of the nonlinear 

snow cover depletion curve using tree regression and a combination of uncorrelated climate and 

physiographic indices to reconstruct the depletion curve, 4) illustrate the use of this tool by reconstructing 

snow cover depletion at one site from 1979-2012. The objectives of the work are as follows;  

 validate the MODIS SCE data in subarctic boreal Interior watersheds, 

 illustrate how a quantifiable, repeatable nonlinear modeling approach can be used to generate 

multiple metrics of snow cover depletion to characterize temporal and spatial variability of snow 

depletion at site-specific, basin-wide, or pan-Arctic scales, for improved understanding of process 

shifts in melt depletion timing, 

 identify relationships between melt cover depletion timing metrics and provide a tool that can be used 

to a) examine relationships between melt depletion timing and other indicators to better understand 

these relationships in boreal Arctic ecosystems, and b) reconstruct these curves over a longer duration 

of time using available climate reanalysis products for other types of analysis such as the trends 

example illustrated in this paper or c) predict patterns of snow depletion used for agencies monitoring 

flooding hazards or water resources. 

The method will also be useful to compare specific snow depletion timing characteristics across 

remote sensing data products as sensors experience phase out and researchers advance towards improved 

and/or new snow cover fractional extent algorithm development [i.e. Painter et al., 2009].  

4.2 Methods 

4.2.1 Study Area 

The boreal interior of Alaska includes the southeast, northeast and central regions as indicated in 

Bieniek et al. [2012]. Stations are situated north of the Chugach mountain range in southern Alaska; north 

to the Brooks Range; west to the village of Galena in the Yukon-Koyukuk region; and east to the 

Canadian border at Eagle (Figure 4.1). Five index sites from the region were selected to highlight study 

results. The most northern index site is the Bettles Airport Global Historical Climate Network (GHCN) 

station (USW00026533, 66.92°N, 151.51°W, 205 m), which began operating on May 1st, 1951. The 

Fairbanks International Airport GHCN site (USW00026411) is located in the central interior Yukon-

Tanana Upland regions of the Fairbanks North Star Borough at 64.80°N 147.89°W at an elevation of 135 

m; the site has been operational since July 1st, 1948. The Fairbanks Airport site is proximal to the city of 

Fairbanks North Star Borough, Alaska, population ~100,000 [Parnell et al., 2012], and thus is generally 

considered to be affected by urbanization, particularly in the estimation of the lowest temperature records. 
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Despite this, the Fairbanks station was included as an index site because of its long period of record and 

central location. The nearby Mt. Ryan SNow TELemetry (SNOTEL) site (Centralized Database System 

record id 46Q01, SNOTEL id 948) is located in the Yukon-Tanana Upland regions of the Fairbanks North 

Star Borough at 65.25°N, 146.15°W, at an elevation of 853 m, and has been operating since 1981. The 

McGrath GHCN climate station (USW00026510) is located Western Alaska’s Tanana-Kuskokwim 

lowlands outside the village of McGrath at 62.96°N, 155.61°W, and has been operational since April 1st, 

1939. The site is situated on the alluvial floodplain of a meander bend of the Kuskokwin River. The Eagle 

GHCN site (USW00026422) is the most easterly location (64.79N, 141.20W) on the banks of the Yukon 

River in the village of Eagle. The Eagle station has been operational since September 1st, 1949. 

4.2.2 Data Sources 

Fractional SCE imagery was extracted from the MODIS/Terra Snow Cover Daily L3 Global  

Version 5 (MOD10A1) 500 m gridded data set available from the National Snow and Ice Data Center 

[Hall and Riggs, 2007; Hall et al., 2006].  MOD10A1 SCE is estimated using the Normalized Difference 

Snow Index (NDSI) to calculate the difference between MODIS band 4 (0.555 μm) and MODIS band 6 

(1.6 μm), divided by the sum of the two reflectance values. The resulting NDSI value is then subject to 

several conditions that determine if a cell is snow covered [Hall et al., 2001]. If the cell is found to be 

snow covered, the snow cover fraction is calculated as outlined by Salomonson and Appel [2004]. The 

MODIS Re-projection Tool was used to pre-process imagery into an Alaska Equal Area Conic projected 

GeoTIFF of fractional SCE [USGS, 2011]. 

The MOD10A fractional SCE data does not contain the tree cover correction described by Klein 

et al. [Klein et al., 1998] therefore SCE was adjusted to remove the effects of screening by the forest 

cover that would result in underestimated SCE values in the product. For this work, an approach to inflate 

the MOD10A SCE on the viewable gap fraction, or the amount of snow covered ground between trees 

that the sensor can see [Liu et al., 2004] was applied. This technique, while widely applied, assumes that 

the viewable gap fraction remains constant through the snowmelt season, which is incorrect as we know 

that the viewable gap fraction can vary based on a complex number of factors, including forest canopy 

density, age and class, zenith angle of the sensor, solar zenith angles, topography and snow loading [Kane 

et al., 2008; Liu et al., 2008; Molotch and Margulis, 2008; Raleigh et al., 2013; Rittger et al., 2013]. To 

account for these issues, rather than applying a forest cover product to correct the product itself, the 

MOD10A1 data were applied [Durand et al., 2008]. All 2000-2013 March 1-March 15th MOD10A1 

pixels across Interior Alaska were differenced from 100 and then a composite average of all days (n=207) 

was calculated. While in southeast Alaska some melt may have occurred during this time, the Interior 

SCE should still be at 100% across most of the region. To account for bare ground regions such as open, 
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wind-blown rocky faces values less than 20% SCE were removed from the correction. The standard 

division by viewable gap fraction, or SCE/(1-F) where F is the tree cover percentage was then applied to 

each SCE pixel in all days and years.  The results were constrained to 100% when exceeded. 

R (R-Project, http://www.r-project.org) was used to analyze the corrected SCE images and 

extract grid cell results for a 10 km circular buffer zone around each site for the period of time March 1st 

through July 31st, 2000-2012. The snow cover fraction information (i.e. the grid cell values equaling 100% 

or less) was averaged across cells in the buffer zone to create a single daily fractional SCE for each site 

and time step; this average value is referred to when discussing SCE. Missing data, cloud cover, or cells 

where the target was obscured from view were not included in the SCE fraction calculation. 

SNOTEL [SNOTEL, NRCS, 2013; Serreze et al., 1999] snow water equivalent (SWE, mm) was 

downloaded from the National Resource Conservation Service (NRCS) snow pillow data repository 

(http://www.wcc.nrcs.usda.gov/ftpref/data/snow/snotel/cards/alaska/). The snow course data (SWE 

measurements of snow on the first-of-the-month) were downloaded from the same repository 

(http://www.wcc.nrcs.usda.gov/ftpref/data/snow/snow_course/table/history/). GHCN [Menne et 

al., 2012; Williams et al., 2006] snow depth on-the-ground (mm) data were downloaded from the 

National Climatic Data Center’s Climate Data Online repository (http://www.ncdc.noaa.gov/cdo-

web/). Sites with greater than 20 years of data and five contiguous years of record were selected from the 

broader network; to avoid spatial co-linearity proximal stations were removed, prioritizing record lengths. 

A total of 38 sites with continuous records of observational data for the period under study were chosen 

for in-depth analysis. 

The North American Regional Reanalysis (NARR) data were used to represent climate 

information not readily or consistently spatially or temporally available from the SNOTEL and GHCN 

networks including: precipitation, temperature, albedo, relative humidity, radiation, and wind speeds 

[Mesinger et al., 2006]. NARR (~32 km in latitude and longitude) was downloaded from NOAA’s Earth 

System Research Laboratory Physical Sciences Division site 

(ftp.cdc.noaa.gov/pub/Datasets/NARR/Dailies/monolevel/) and pre-processed to extract the time 

series from the NARR grid cell closest to the climate stations [Mesinger et al., 2006].  NARR wind 

magnitudes were calculated using the square-root of the squared u- and v-wind components. 

NARR data were compared with a station in the Caribou-Poker Creek research watershed 

(CPCRW) to illustrate the reliability of the reanalysis product in this area. NARR climate data used in 

Figure 4.2 is compared with the station observations at a site located in the Caribou-Poker Research 

Watershed (CPCRW, Figure 4.3). Six panels illustrate air temperature (°C), precipitation (mm), snow 

depth (mm), relative humidity (%), wind speed (m/s), downwelling shortwave (W/m2) and longwave 
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radiation (W/m2) at CPCRW compared to the NARR data. Data are only available for two years; 2007-

2008, and 2010-2011. 

Topographic data (elevation, slope, aspect) used in the study were derived from the 60 m 

National Elevation Dataset (NED) [Gesch et al., 2002] digital elevation model (DEM), updated for 

Alaska in 2012. Data were averaged from the 10 km buffer zone around each climate station. 

4.2.3 Analysis 

Simple models of snow depletion timing based on measured change in MODIS fractional SCE 

were developed using a log-logistic nonlinear regression function available via R’s “drc” package [Bates 

and Watts, 1988; Ritz, 2010; Ritz and Streibig, 2008]. The function (Equation 1) utilizes three main 

parameters and has a lower limit of zero; the maximum extent of snow cover occurring before the melt 

begins, the asymptote (asym) of maximum fractional SCE; the midpoint of the snow cover depletion melt 

in terms of date (midpt); and the relative slope of the depletion curve around asym (rslop, Figure 4.4), 

  (log log )
, (a,s,m)  

1 s x m
f x

e

a



 ( 4-1 ) 

where a is the asymptote, m is the midpoint, s is the relative slope around a and x is the time 

sequence [Pinheiro and Bates, 2000; Streibig et al., 1993]. The nonlinear function is constrained to values 

lesser than one (or 100% SCE), and values approximating zero are considered to be zero (i.e. 0% SCE). 

These parameters are ideal in that they both define the snow depletion curve and have a physical meaning 

representative of the MODIS SCE depletion through time.  

The first derivative of the nonlinear function was used to estimate the remaining SCE depletion 

statistics, including the initiation of the depletion (the point at which the upper asymptote starts its 

downward trajectory) and the termination (the starting point at which the lower asymptote levels off). The 

maximum depletion, or the point in time at which the snow depletion rate is at a maximum value, was 

defined from the maximum value of the curvature (κ), formulated as, 
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The minimum values of the curvature defined the termination of the maximum snow depletion 

period. 

Regression models to estimate the logistic parameters of the nonlinear function  (asym, midpt, 

rslop) were developed using ensemble machine learning techniques designed to overcome issues related 

to weak predictors [Hancock et al., 2005] common in climate analysis using R’s “caret” [classification 

and regression training, Kuhn, 2008; Kuhn et al., 2013] package. Machine learning is the application of 
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algorithms that are utilized in order to extract information from data. Ensemble approaches are defined by 

the use of multiple modeling tools run iteratively upon multiple composites of predictors. Together, they 

are used in this work to determine a) the best model from a suite of models, and b) the best set of model 

predictors from a set of multiple predictors. The aim was to find a statistically significant, parsimonious 

regression model to represent the logistic parameters of the MODIS SCE nonlinear function that would 

identify or rank the importance of the features (variables and indices). The independent variables or 

predictors in the regression models are the climate/physiographic variables and indices (i.e. maximum 

seasonal temperature), and the dependent variable is asym, midpt, or rslop; separate models were 

developed for each logistic parameter. 

Eight different climate (NARR) and physiographic variables (derived from the NED DEM) were 

considered in the initial regression models; temperature (°C), precipitation (mm), albedo (%), sea level 

pressure (Pa), wind speed (m/s), relative humidity (%), radiation (W/m2) and topography (Table 4.2). 

NARR mean sea level pressure was selected as a variable to represent broad scale pressure variations 

associated with changes in temperatures that is not susceptible to local variability effects [Compo et al., 

2011]. Within these main variables, approximately 70 different indices were generated. A major challenge 

in model development is that climate indices tend to display a high amount of multi-collinearity, which 

invalidates modeling techniques that do not address these issues. A process was therefore utilized that 

focused first on reducing climate indices to only those with weak and non-significant correlations, 

calculated using a nonparametric Spearman’s rank measure of dependence (rho), and analyzed for 

significant and strong correlations (rho > 30%, p-value <= 0.05). This reduced the input indices to 19 

(Table 4.2). A framework was developed to test all possible combinations of the non-correlated climate 

indices using all eight variables which resulted in 432 different formulations, which were analyzed in four 

different models for each parameter at the 38 sites and all years (2000-2012, n=494, Table 4.3). 

Cumulative freezing (thawing) days were calculated as the minimum (maximum) cumulative sum of 

temperature on the days for which the minimum (maximum) daily temperatures were below (above) zero 

°C, respectively. The maximum cumulative freezing degree days was calculated as the maximum value of 

the cumulated degree-day value from October to April 15th. The date of maximum change in downward 

shortwave radiation is the first day of the year on which the cumulative flux (difference day-to-day) in 

radiation increases above 100 W/m2 (henceforth referred to as CSWR). For example, this occurs on 

average at the Mt. Ryan site on Julian Day 91 (April 1st).  

Regression models included random forest [RF, Breiman, 2001] and generalized boosted 

regression modeling [GBM, Friedman, 2001; 2002; Ridgeway, 1999; 2012]. RF is a tree-based regression 

selects random sub-samples of data to calculate predictor space into rectangles, using rule based selection 

of regions with the best mean response to predictors; normal distribution errors are assumed [Elith et al., 
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2008]. Bootstrapping approaches are used to select samples from the sub-subsets for each split in each 

classification tree [Strobl et al., 2009; Strobl et al., 2008]. RF just has one meta-parameter in caret (mtry, 

the number of parameters in the model, Table 4.3). GBM is a modeling approach that uses stage-wise 

processing to build progressively improved models while minimize a loss function with each new tree to 

form a generalized ensemble of prediction models [Elith et al., 2008; Ridgeway, 1999]. These models can 

be thought of as numerous regression trees that are developed from random sub-samples of the training 

data set using the residuals of the previous tree to improve response variation not explained by the model 

[Friedman, 2001; 2002]. The GBM model used herein utilized three meta-parameters, shrinkage (which 

was kept constant at 0.1), number of trees (1500) and interaction depth (number of parameters utilized, 5, 

Table 4.3). Both techniques (RF and GBM) protect against model overfitting and minimize the effect of 

outliers by building recursive trees but the models must be run to allow the appropriate (large, but to a 

threshold) number of trees to be built. The additional application of cross-fold validation (see below), 

split-sample processing and removal of correlated parameters reduces model overfitting. 

The data set was divided by random selection training (50%) and validation (50%) data partitions, 

preserving the representative sample distribution in each. To retain consistency in the randomization 

between model runs, a specific random seed was used [Kuhn, 2008] although not for partitioning. All 

models were run with k-fold cross-valuation (k=10), repeated 25 times, to iteratively select the model’s 

ensemble meta-parameters (i.e. mtry in the case of RF). This technique splits the sample into k partitions 

and all but one of these partitions is used for model training, while predictions are made on the withheld 

observations. This process is repeated 25 times and the results are averaged. RMSE was used to evaluate 

model performance, along with R2 and p-value summaries, with Bonferroni adjustment to inflate p-values 

according to the number of models that were explored [Dunn, 1961]. 

Variable importance measures were calculated and used to create parsimonious models. Variable 

importance is calculated in GBM and RF using similar methods. For RF, a “permutation” approach is 

used to calculate the mean standard error (MSE) of the prediction for the out-of-bag observations in each 

tree and recalculated iteratively and compared with the initial error after all predictors have been added to 

the tree to determine if the order of the predictors affects the MSE result [Breiman and Cutler, 2014]. 

Normalization of the MSE differences is not performed when the standard error is zero [Breiman and 

Cutler, 2014]. A “relative influence” variable importance calculation is used in GBM. It is a similar 

approach to Breiman’s random forests, but GBM computes variable importance using the entire training 

dataset (not the out-of-bag observations) [Ridgeway, 2012]. For this work, top models and 

parameterizations that result in the lowest RMSE and highest R2 were selected. These top models were 

further reduced by iteratively removing the lowest ranked variable based on the variable importance 

measures. Results of the top performing combination of non-correlated climate indices for the four 
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models are illustrated for the training data set (Figure 4.5a), and the test data set (Figure 4.5b).Values for 

RMSE, R2 and p-value statistics are given in Table 4.3. 

Utility of the method is illustrated by recreating SCE data for all index sites and making 

predictions using the models described above and NARR from 1979-2012. Trends were analyzed using 

an approach developed by Yue et al. [2002] as outlined in Wang and Swail [2001], where the trend 

magnitude is calculated using Theil-Sen approach [Sen, 1968; Theil, 1950a; b; c]. The trend slope, as long 

as it is not close to zero, is assumed to be linear and the time series is pre-whitened and the trend and the 

residuals are combined. The effect of this pre-whitening is to remove any serial correlation that may 

inflate the significance of the trend. The nonparametric Mann-Kendal [Kendall, 1975; Mann, 1945] test 

for significance is used on this series. The analysis was carried out using the “zyp” R trends package for 

R-project statistical software [Bronaugh and Werner, 2009]. 

4.3 Results 

In the following text, the three logistic parameters used in the nonlinear regression are referred to 

as ‘logistic parameters’. The eight main climate and physiographic classes used to predict logistic 

parameters are referred to as ‘variables’, while the specific climate and topographic statistics (i.e. 

minimum elevation or maximum temperature in October to March) are referred to as ‘indices’.  

Validation of the MODIS data were undertaken in part by comparing plots of SWE/snow depth 

and MODIS SCE depletion. Peak SWE/snow depth occurs on or just after April 1st, and plateaus until 

mid-April to late-April (based on SWE captured at the SNOTEL pillow/snow course or snow depth at the 

GHCN station) with the melt beginning shortly after this point (Figure 4.2). At some sites, MODIS 

observations match closely with the SWE captured over the period by the snow course recordings (red 

circles, Mt. Ryan in Figure 4.2). The MODIS SCE data match with the station snow depletion timing at 

the Fairbanks and Mt. Ryan sites. At Eagle, Bettles and McGrath, the MODIS SCE does not detect the 

same melt depletion dates (Figure 4.2c, d). The grey envelope around the MODIS data illustrates the 

range of the MODIS SCE (based on the 25 and 75th quartile) from year-to-year; showing the continuity of 

the depletion patterns and the range from year-to-year at each site (i.e. Figure 4.2). This is not a surprising 

finding given that the stations tend to be located in open clearings that may have higher exposure to 

radiation and wind effects, causing them to melt out earlier than the surrounding region [Molotch and 

Bales, 2006]. However, the Mt. Ryan and Fairbanks sites are located within regions that contain urban 

developments (i.e. airport, roads) and Mt. Ryan is an alpine treed site. Note that in these figures the 

snowpack volume is not being considered; only the timing is compared. Thus, where Mt. Ryan SNOTEL 

and the MODIS regression lines differ from each other on the y-axis, this is occurring because SWE (mm) 

is accumulating, while SCE stays the same (95-100%, Figure 4.2). 



 
  

122 
 

Inter-comparison of the NARR data with the CPCRW site specific meteorological data collected 

over two years shows that NARR provides a good approximation of almost all climate variables 

considered in this study (Figure 4.3) with a couple of exceptions. NARR has been noted to out-perform 

other reanalysis products for monthly temperature in Alaska [Lader, 2014] although some issues with the 

precipitation assimilation are apparent (Figure 4.3). NARR also seems to have limited ability to 

characterize winds in CPCRW. It is common, however, for models to under predict the low wind speeds 

experienced in the interior of Alaska [Mölders and Kramm, 2010]. Radiation data appears to match 

closely in year 2010-2011, but NARR over predicts the SR in 2007-2008 during the latter half of the year, 

which is consistent with the findings of Markovic et al. [2009]. However, NARR also appears to 

overestimate longwave radiation in 2007-2008, which was not corroborated in the Markovic et al. (2009) 

study. It is unclear if this is due to under prediction of cloud cover, as suggested by Markovic [2009], or if 

there are other factors leading to the under estimate (i.e. station quality). NARR data has been utilized in 

previous hydrologic modeling studies to estimate snowmelt contributions in northern latitude basins 

[Choi et al., 2009; Woo and Thorne, 2006].  

4.3.1 Nonlinear Model 

SCE observations (MODIS), nonlinear modeling simulations and derived timing characteristics 

are illustrated in Figure 4.6, and described in Table 4.4 to characterize the 38 sites examined herein. 

MODIS SCE is illustrated for each year 2000-2012 along with the SNOTEL SWE or GHCN snow depth, 

depending on the site. Generally, the nonlinear model was successful at fitting the snow depletion curve 

for most sites and years, with the exception of situations when there was too much cloud cover or 

erroneous sensor retrievals in the time series during the early or late part of the melt season. The five 

different index stations have variable melt timing statistics (Table 4.4, bold) based on physiography, 

illustrating different processes involved in snowmelt across sites. Year-to-year variation is apparent but 

sites maintain similar melt patterns across the years (Figure 4.6). The earliest melt initiation dates of JD 

101/107 occur at Fairbanks’ and Eagle’s airport stations (Table 4.4). The latest melt initiation date is the 

most northern station, Bettles. Eagle (furthest east) and Mt. Ryan (highest elevation) are the last stations 

to melt out, with the lowest melt rates. Bettles has the fastest melt rate and the shortest melt duration, 

while McGrath and Fairbanks (the lowest elevation sites) have similar melt rates although they have 

different melt initiation dates by 12 days. Eagle and Fairbanks have the lowest SCE at the beginning of 

melt, on average over the study period, with 92% and 93% respectively, with the rest of the stations 

having 95-97%. 

The MODIS SCE and the SNOTEL SWE year-to-year timing are quite similar for most years and 

stations, however for some years they do not correspond as well, namely 2001/2006 at the Fairbanks 
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Airport station (Figure 4.6), 2003 at Bettles (not shown), 2003/2009 for Mt. Ryan (not shown), 

2003/2009/2012 at McGrath (not shown). The timing between SNOTEL SWE and MODIS SCE at Eagle 

are quite different (not shown). Reasoning for why these years in particular were not well matched is 

based on analysis of the climate and MODIS data. Some of these mismatched years had warmer winter 

temperatures and more precipitation, but this was not consistent across the sites. Cloud cover (based on a 

count of the cells designated as clouds in the MOD10A1 data set) was sometimes higher but not 

anomalously high compared to other years. For example, Fairbanks and Mt. Ryan experienced higher 

cloud cover days (> 40% of the buffer cells contained clouds) during these years, but other years had 

similarly high values when there was no noted difference between the station and the MODIS snow 

depletion timing. The Eagle site represents an interesting case, as it appears that the GHCN site has a very 

different melt timing signature from the MODIS estimates.   

The snow depletion timing metrics were examined in relation to snow data observed across the 

sites. The snow depletion indices were correlated with snow depth (GHCN stations) over the season 

revealing a strong and significant positive relationship between the mean snow depth in February, March, 

DJF and over the Oct to mid-April season, including the date of snow depletion initiation (average 

rho=0.52 p-values < 0.001) for 2000-2012. Other snow depletion timing indices were significantly 

correlated with mean snow depth in February and March, max and mean winter snow depth (DJF) and 

max and mean snow depth over the Oct to mid-April season, including the midpoint of the melt (average 

rho=0.53, p-values < 0.001), date of maximum snow depletion initiation (average rho=0.57 p-values < 

0.001), and SCE % at the beginning of the season (asym, average rho=0.53, p-values < 0.001). 

4.3.2 Nonlinear Logistic Parameters Regression Models 

The boosted trees [GBM, Ridgeway, 1999] provides the best observed to predicted correlation 

value for the midpoint and relative slope logistic parameters [Breiman, 2001; Breiman and Cutler, 1993], 

while random forest (RF) model provides the best results for the asymptote logistic parameter (Table 4.3). 

The final RF model predicts asym (maximum SCE 2000-2012) for n=494 with a root mean squared error 

(RMSE) of 2.50 and an adjusted R2 value of 81% (significant at the 99% confidence interval). GBM 

provided estimates of midp with an RMSE of 3.90 and an adjusted R2 value of 88% (significant at the 

99% confidence interval). GBM predicted the rslop parameter for n=494 with RMSE of 17.25 and 

adjusted R2 of 82% (p-value <0.001). Table 4.3 lists the training statistics for the models; note that these 

statistics change slightly depending on the seed used to generate the split sample data. The model 

predictions for the Fairbanks site are shown with a red line in Figure 4.6. 

Models to estimate the logistic parameters indicated the importance of broad scale climate 

features, namely on temperature, albedo, wind speeds combined with topographic features (slope and 
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aspect) to identify melt characteristics. Of less importance were precipitation, radiation and relative 

humidity. Indices used for modeling the asym parameters included the mean temperature in winter, range 

in slope, CSWR, average March sea level pressure, and average March wind speeds. The indices used in 

the midp model included the mean temperature in winter, mean albedo in February, change in relative 

humidity from February to March, and mean daily March sea level pressure. The midp parameter did not 

use a topographic index. The rslop parameter was modeled by the RF using indices of the mean 

temperature in winter, mean wind speed in March, mean albedo in February, the total number of 

precipitation days for October to April 15th, and the standard deviation of aspect. 

The utility of the estimated nonlinear regression tool is introduced by applying the tool to produce 

the long term (1979-2012) climatic trends in snow timing indices. The availability of more than just one 

indicator allows for a more in-depth analysis of changes in snow metrics. Trends results indicate that the 

Fairbanks, Mt. Ryan McGrath, and Eagle stations are experiencing changes in snow timing that are 

significant at an 80% confidence interval, while only Eagle snow depth exhibits change at this 

significance level. Fairbanks shows a decline in four of its melt timing indices of more than 3 days over a 

standardized 30 year period. At McGrath, a 5% increase in maximum SCE occurs while at Eagle site, 

there is a decrease in the average maximum SCE (6%) at the beginning of the season. 

4.4 Discussion 

Due to the availability of remote sensing products across the entire state of Alaska, characterizing 

snow depletion timing characteristics for watersheds and regions where station data do not exist is of 

great value. Forecasters, researchers, modelers, engineers and resource managers who require intra-year 

and multi-year estimates of snow depletion patterns can use the characteristics for a plethora of 

information needs. The tools illustrated in this paper allow for generation of a continuous estimate of SCE 

through melt season based on existing data sources, and also allow for reconstruction of the SCE over 

longer durations that are suitable for climate change studies. This data may be useful in tracking longer-

term changes of snow depletion properties, or when examined across different sites, can point to 

coherence or variability in conditions between different sites or at one site over several years. Utilizing 

the SCE depletion results in this way can highlight locations and regions where the greatest change is 

occurring and further field studies are needed. This type of prioritization of focal studies is required in the 

vast, understudied remote regions of the globe such as the boreal forest. 

The work presented in this study serves to validate the MODIS SCE data for subarctic boreal 

Interior watersheds. While capturing snow conditions at different scales, the MODIS 500m products 

relate well to the snow pillow and snow depth sensors at SNOTEL and GHCN observations across the 

Interior (~ 3m scale), provided the 500 m MODIS cell is averaged for a 10 km buffer zone around the 
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observed station. The averaging technique overcomes the issue of a paucity of information at small (i.e. 

one grid cell) scales due to cloud cover or other issues with MODIS data on specific days throughout the 

year and minimizes the inherent bias that results when one specific cell is chosen to represent sites. 

Differences found between the stations and MODIS melt depictions are likely complex and dependent on 

many factors, including observed data quality and the nature of the average 10 km MODIS to represent 

the surrounding region and/or the station. Better understanding will require a more thorough analysis to 

compare the anomalies between the station melt to the MODIS data, and other remotely sensed satellite 

information, which is beyond the scope of the current work. 

Quantifiable metrics of snow cover depletion can be used to characterize temporal and spatial 

variability of snow depletion at site-specific, basin-wide, or pan-Arctic scales. The snow depletion timing 

examined in this study varies between proximal locations experiencing similar broad scale climate 

conditions due to differences in physiographic setting (i.e. elevation, aspect) or vegetation patterns. For 

instance, Mt. Ryan, an alpine treed site, begins to melt later (13 days) and with a more protracted melt on 

average compared to the lower elevation Fairbanks Airport site that is reflected both in duration of melt 

and the melt rate [Table 4.4, Storck et al., 2002]. Fairbanks Airport is open and susceptible to changing 

weather conditions during the melt period, exhibited by its fast melt rate and shorter duration of melt. 

Increased melt rates at the Fairbanks site also occur due to a thinner snowpack, increased radiation 

exposure during March and April, and emergence of vegetation leading to decreased albedo. Mt. Ryan, in 

comparison, has increased interception and shading associated with its thin but present canopy cover, and 

it high elevation dictates that it would have deeper, more persistent snow cover compared to the open 

Fairbanks sites where snow can be easily re-distributed by wind and humans  [Pomeroy and Granger, 

1997; Storck et al., 2002]. Increased melt rates for open areas compared to forested stands have also been 

observed by Faria et al. [2000] and by Pomeroy and Granger [1997]. 

SCE timing values are corroborated with other work on melting timing characteristics at nearby 

sites. Carey and Woo [2001] noted a snow free date for a headwater basin to the Yukon River located in 

the Yukon (Wolf Creek) on April 26th (116) for a south-facing slope, and May 19th (139) for a north-

facing slope, but melt onset was not noted. A proximal site at a similar elevation to Wolf Creek (1175 m) 

is the Nabesna (863 m), which has a termination date of ~May 25th (143). Nabesna is located further west 

than the Wolf Creek site, and slightly further north. Snow depletion timing noted in other studies includes 

a melt date of ~120 for a high elevation site southeast of the extent of this study [Ramage and Isacks, 

2003]. 

The tools provided in this work are helpful for identify relationships between melt cover 

depletion timing metrics through the melt season which allow for analysis pointing to shifts in processes 

that may not otherwise be identifiable from a single melt statistic. The strong and significant relationship 
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found between melt timing indices and total seasonal snow depth for GHCN sites is an example. The date 

of melt is aligned with the snow pack characteristics, despite the variability in both melt dates and snow 

depths, allowing for identification of patterns in the snow timing and snow characteristics. These findings 

suggest that statistics, such as melt start date, initiation maximum date, and midpoint of melt may capture 

more information in regards to snow pack characteristics. Meanwhile, the overall duration of the melt 

period was not as strongly correlated with the snow depth indices examined. 

The NARR-based nonlinear model reconstruction shows good coherence to the MODIS SCE 

nonlinear regression (illustrated in Figure 4.6). At times, the reconstruction matches more closely with the 

station results, particularly in the timing of the melt termination. This can be observed for the Fairbanks 

station in years 2001 and 2006 (Figure 4.6). Although asym and midp test data set results were successful, 

the infl parameter was challenging to model in general (Table 4.3). This could be due to the fact that melt 

rate (rslop) may be largely determined by the canopy conditions, as suggested by Metcalfe and Buttle 

[1998], which is why it is difficult to estimate based on available and largely coarse-scale climate and 

topographic data used in this study.  Outliers in the data set were also difficult to capture accurately – very 

fast or slow melt timing is not always replicated well in this approach (Eagle). Therefore, this technique 

may not be applicable in coastal regions or low elevation sites. 

Important climate variables and indices used to estimate the logistic model parameters 

highlighted the utility the nonlinear model reconstruction. Statistical models used to estimate parameters 

do not imply causation however some of the variables used in these models were ranked consistently, 

between different models (RF and GBM) and between the logistic parameters. The consistency in some of 

the model variable importance rankings suggests that they have meaning and can be discussed. However, 

a note of caution is required as indices and rankings will shift depending upon the input data, station 

mixes and periods of record therefore the results are discussed in regards to the broader scale variable 

groups rather than focusing on specific climate indices and their importance ranking.  

Important model variables included climate factors with an emphasis on temperature, albedo, 

wind speeds combined with topographic features (slope and aspect). This finding is similar to that 

presented in Gelfan et al. [2004], which suggests that snow depletion is driven largely by the interaction 

between topographic and climate conditions. Slope in this work is indicative of elevation and was 

strongly, positively correlated with maximum elevation. Elevation driven increases in snow pack caused 

by orographic uplift and cooling mechanisms are well known causes of increases in snow and snow 

cover. The standard deviation of aspect was negatively correlated with mean slope (rho=-0.41), elevation 

and latitude (average rho=-0.38). Thus, the variation in aspect may be representative of combined factors 

found in the more southern portions of the study region at moderate elevations, such as the north and 

south facing slopes that are a dominant factor for melt timing in the Fairbanks region. North versus south 
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facing slopes are noted to melt five days to a week apart even in the same watershed (S. Lindsey, pers. 

comm.). 

Analysis of sea level pressure revealed that sea level pressure and temperature variables were 

related in this study (although indices used in the models were not correlated as noted previously). 

Temperature is known to be an important influence on the snowmelt and is often used as the single factor 

in modeling melt [Anderson, 2006; Hock, 2003]. Increased sea level pressure was indicative of declines in 

air temperature at the sites. This was found to be related to stability of air masses during the winter that 

favored cold, clear days where insolation is low, and gradients between pressure cells allowed for 

transport of cold, dry air from the Eastern Arctic (results not shown). However, the values of sea level 

pressure are less susceptible to local variations that may be exhibited in temperature data from stations 

records [Compo et al., 2011]. Sea level pressure in February was representative of the broad scale 

temperature regimes occurring across the sites. 

Albedo is known to play an important role in snowpack melt timing and rates of melt associated 

with snow ripening and declines in albedo [Blöschl, 1991]. In this work, albedo was used in two models 

and tended to be ranked higher in variable importance when used. Albedo was positively correlated with 

topographic parameters (elevation and slope, average rho=0.55) and negatively correlated with thawing 

degree days – when the temperatures were greater than 0ºC, the albedo values were low. Albedo 

conditions in the boreal forest are strongly tied to absorption of radiative energy, and are typically higher 

in the winter and decrease in value as the melt progresses, shrubs and trees emerge and snow cover 

declines [Warren and Wiscombe, 1980]. Wind speed was an important factor in the models when 

considering the maximum SCE for the season and the relative slope. Wind speed was negatively 

correlated with relative humidity (rho=-0.35) and topography (rho=-0.34) in the work, indicating the 

combined effect of these parameters on melt conditions. Wind speed, radiation and relative humidity, 

when combined, is considered to be just as important as temperature in melt for prediction of snow 

depletion [Zuzel and Cox, 1975]. Interestingly, the (maximum) count of precipitation days through the 

season was the only time precipitation was utilized to estimate the rslop logistic parameter. It is possible 

that precipitation does not play a strong role in the modeling the logistic parameters because it is poorly 

measured in NARR (Figure 4.3). 

The reconstruction was used to estimate trends, highlighting how the SCE climatology may be 

applied to glean useful information regarding snow fractional depletion metrics. Three of the five index 

stations showed changes in their melt depletion metrics, although not all findings were statistically 

significant (90% confidence interval). Most stations showed declining initial melt date and melt 

termination dates, resulting in slightly faster melt rates but no change in duration of melt. However, the 

Mt. Ryan station illustrated an increased duration and a decline in melt rates that were significant. At 
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Bettles, the melt initiation did not change but the termination was reduced and thus the slope has declined 

(increased melt rate), although only the slope change was significant (p-value=0.01). At Eagle, all melt 

timing indices changed by about five days. Although declines in SWE and snow depth were noted for all 

stations, none of these declines were statistically significant. Eagle was the only site where the snow 

depth declined over the period at an 85% confidence interval. None of the timing changes associated with 

start and end dates of melt may be understood from looking at the declines in SWE/SD alone. 

4.5 Conclusions 

The paper describes a technique to utilize MODIS SCE data to capture key characteristics of melt 

timing and use this information to identify relationships between snow depletion, climate and topographic 

variables in subarctic Interior Alaskan systems. Nonlinear estimates of MODIS SCE data were 

representative of site-specific snow depletion timing, although some years were challenging to replicate 

and the reasons behind these poorly matched years are still under investigation. The approach was applied 

to estimate specific properties of the melt timing, such as maximum melt and date of snow off.  The 

relationship between the melt timing indices and the snow cover depth was strong and provides an 

example of how a complete suite of snowmelt timing characteristics can be useful to define the nature of 

melt timing in relationship to snow cover properties. This is anticipated to be valuable in calculating 

timing characteristics required for estimates of SWE that are widely used in modeling approaches, and 

also for regional characterization of snow depletion timing that can inform modeling approaches or more 

complex data assimilation techniques.  

The methods described in this paper will be particularly useful at a broad scale across ungaged 

basins of the north. These regions have little information on snow depletion timing other than models (i.e. 

reanalysis tools) and thus a data base to identify regional variations and patterns in snow depletion timing 

is needed. Additionally, the MODIS Terra and Aqua Earth-observing mission is planned to go offline in 

the coming years and will be replaced by newer platforms such as the Suomi National Polar-orbiting 

Partnership (NPP) and its VIIRS sensor.  Defining snow depletion characteristics during this overlap 

period can assist to identify and determine if algorithms in the new sensors are operating at the same level 

as the previous sensors to replicate snow depletion patterns on a local and a broad scale. 

Modeling to estimate the logistic parameters of the nonlinear regression function was successful 

based on training data sets, and these estimates were used to replicate the snow depletion regression. The 

climate variables had consistency between the types of models utilized and the estimated parameters. The 

main drivers of the logistic parameters of are climate indices relating to temperature, albedo and wind 

speed, along with topographic variables related to slope and aspect. Precipitation and relative humidity 
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were not as useful in estimating the logistic parameters, although this doesn’t negate their importance in 

energy balance and snowmelt models outside of this application. 

The utility of this work is shown by reconstructing the SCE depletion curve and calculating all 

metrics of snow timing, and then running a trends analysis over the long term (1979-2012) for the five 

index sites. The results indicate that changes in the sites can be observed in the melt timing that are 

distinct from trends in the snow depth or SWE alone. Plots of snow depth (Figure 4.7) exemplify as well 

the exploration of relationships between important parameters that are sparsely observed in the region. If 

a clear relationship can be understood between the long term reconstructed SCE data and these 

parameters, attempts can be made to calculate these based on SCE. 

It is important to note that the ensemble machine learning tools determined to most successfully 

estimate relationships between the climate variables and snow depletion indices may fluctuate depending 

on the region under examination, data sets and also depending on the time interval that is used. However 

the process of model exploration and development described in this work may be useful in attempts to 

estimate relationships between snow depletion and weak predictors such as climate and other 

physiographic drivers. 

The next steps in this research are to input the MODIS data into the Sacramento [Burnash et al., 

1973] rainfall-runoff model to estimate the changes to snow depletion patterns within meso-scale 

watersheds in the interior of Alaska. The work is part of a larger project to estimate changes in historical 

and future extreme hydroclimate events in watersheds in Interior Alaska. 

4.6 Acknowledgements 

The co-authors of this work wish to acknowledge the collaborative support of the National 

Weather Services’ Alaska Pacific River Forecast Center, particularly Scott Lindsey, Ben Balk and Dave 

Streubel. The authors are grateful for internal review and valuable commentary provided by Dr. John 

Walsh. MODIS data processing tools were originally developed with assistance from staff at the 

Geographic Information Network for Alaska, located at the University of Alaska Fairbanks. Funding for 

this project was provided by the NOAA NESDIS Proving Ground project (NA08OAR432075), Alaska 

Climate Science Center and Natural Science Research Council of Canada. 

 



 
  

130 
 

 



 
  

131 
 

4.7 Figures 

 
Figure 4.1 Study sites and their geographic location in Alaska. The 38 sites SNOTEL and GHCN sites 
(triangles) in the Interior regions of Alaska. The Alaska climate divisions are shown in black lines 
(Bieniek et al. 2012). Index sites are labeled on the map and shown with square boxes. The Tanana River 
basin is illustrated in transparent gray. The Yukon River basin is shown in transparent white. 
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Figure 4.2 SNOTEL, NARR, snow course, and MODIS data for all index stations  a) Mt.Ryan, b) 
Fairbanks Airport, c) Eagle, d) McGrath, and e) Bettles. Plots illustrate snow accumulation from 
SNOTEL SWE at the pillow or GHCN snow depth (black line, mm on left axis), SWE at the snow course 
(red open circles, mm on left axis, SNOTEL only), and MODIS SCE (blue circles, % on right axis), with 
the grey illustrating the MODIS SCE variability over the time period. The x-axis indicates months from 
October 1st through May 31st. The data are calculated as averages from 2000-2012. 
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Figure 4.3 Inter-comparison with NARR data at the Caribou Poker Creek Research Watershed, located 
nearby Fairbanks, Alaska. CPCRW data shown on x-axis, NARR data shown on y-axis. Data Source: 
CPCRW database, 2007-2008, 2010-2011. Air temperature (a), precipitation (b), relative humidity (c), 
wind speed (d), downwelling shortwave (e) and longwave radiation (f). 
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Figure 4.4 Example of the nonlinear regression function with sample values illustrated for asym, midp and 
rslop. 
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Figure 4.5 Model fits for the midpoint logistic parameter, predicted versus observed, for the a) GBM for 
the training data set and b) RF for the training data set, and c) GBM for the test data set and d) RF for the 
test data set. See Table 4.3 for model codes. 
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Figure 4.6 The Fairbanks GCHN climate station MODIS SCE observed and estimated. (USW00026411) Each panel 
represents a year from 2000-2012, dates are mid-month. The blue circles indicate the MODIS SCE, the black circles 
indicate the GHCN snow depth (mm), the blue line is the nonlinear regression model based on the MODIS 
snowmelt curves, and the red line is the recreated nonlinear regression model. Green straight lines illustrate the dates 
of snowmelt initiation/termination and the grey bar indicates the period of maximum melt. 
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4.8 Tables 

Table 4.1 Stations used in the study with physiographic information (2000-2012). Index sites discussed in 
the text are bolded. 
 Station ID Station Name Elev 

(m) 
Lat 
(dd) 

Long 
(dd) 

PC AJMT 
(°C) 

ATWP 
(mm) 

ASWE
/ASD 
(mm) 

SNOTEL 
44Q07 Upper Chena 869 65.10 -144.93 C -16.3 136 59 
45O04 Granite Crk  378 63.95 -145.40 D -19.8 87 33 
45P03 Teuchet Creek  500 64.95 -145.52 D -20.6 96 35 
45Q02 Monument Creek  564 65.08 -145.87 D -20.9 123 44 
46P01 Munson Ridge  945 64.85 -146.20 D -17.2 165 78 
46Q01 Mt. Ryan  853 65.25 -146.15 D -17.6 106 47 
46Q02 Little Chena Ridge  610 65.12 -146.73 D -15.5 110 40 
48P01 Bonanza Creek  351 64.75 -148.30 D -18.3 47 31 
         

GHCN 
USC00501243 Cantwell 2E 656 63.40 -148.90 D -17.2 114 281 
USC00501466 Central #2 293 65.57 -144.77 D -26 60 201 
USC00501492 Chandalar Lake 556 67.51 -148.49 C -27.1 26 456 
USC00501497 Chandalar Shelt. 991 68.08 -149.56 C -20.6 103 468 
USC00501684 Chicken 415 64.09 -141.92 D -29.5 54 156 
USC00501987 Circle Hot Springs 285 65.49 -144.64 D -27.5 60 209 
USC00502339 Delta 6N 320 64.12 -145.75 D -20.7 65 100 
USC00502568 Dry Creek 412 63.68 -144.60 D -22.4 92 177 
USC00502707 Eielson Fld. 167 64.67 -147.10 D -21.8 68 161 
USC00503160 Ft Knox Mine 494 65.00 -147.34 D -17.8 103 151 
USC00503181 Fox 2 SE 358 64.96 -147.63 D -18.5 40 210 
USC00503212 Galena 46 64.74 -156.88 S -23.9 125 261 
USC00503275 Gilmore Creek 292 64.97 -147.51 D -20.9 73 175 
USC00503304 Glennallen 445 62.11 -145.53 D -19.5 73 123 
USC00504567 Kenny Lake 7SE 378 61.68 -144.76 D -18.1 128 136 
USC00504621 Keystone Ridge 488 64.92 -148.27 D -16.2 98 231 
USC00504971 Kobe Hill 244 64.19 -149.43 D -21.3 90 245 
USC00505644 Manley Hot Springs 99 65.00 -150.65 S/D -28.3 73 118 
USC00505778 McKinley Park 638 63.72 -148.97 D -17.1 84 199 
USC00505880 Mile 42 Steese 284 65.22 -147.17 D -19.9 79 221 
USC00506147 Nabesna 863 62.40 -143.00 D -19.7 60 226 
USC00506581 North Pole 146 64.76 -147.33 D -24.1 79 195 
USC00507513 Port Alcan 589    -26.2 36 90 
USC00508409 Sheep Mtn Lodge 853 61.81 -147.50 D -15.7 70 215 
USC00509313 Tok 497 63.35 -143.04 D -24.6 62 197 
USC00509869 Wiseman 393 67.42 -150.11 C -24.9 90 237 
USW00026411 Fairbanks+ 135 64.80 -147.88 D -23.1 73 163 
USW00026422 Eagle 245 64.79 -141.20 D -23.2 93 188 
USW00026510 McGrath* 104 62.96 -155.61 I -22.3 166 257 
USW00026533 Bettles* 205 66.92 -151.51 C -24.7 142 309 
Station identification code (ID); Elev, elevation; Lat, latitude (dd, decimal degrees); Long, longitude (dd, decimal 
degrees), PC, permafrost condition (C=continuous, D=discontinuous, S=sporadic, I=isolated); AJMT, average 
January mean temperature  (°C); ATP, average total Oct-Mar precipitation (mm); and ASWE/SD, average winter 
snow water equivalent or average snow depth (mm). 
+ Intl Airport 
* Airport 
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Table 4.2 Climate variables and climate indices used to estimate asym, midpt and slope  for the RF and 
GBM models. 
Variables Indices (Units) Logistic 

Parameter 
   
Temperature Mean daily temperature for October to April 15th (days)  
 Minimum daily temperature for October to April 15th (days)  
 Mean daily temperature for December, January, February (degree) a, m, i 
 Maximum daily temperature for December, January, February 

(degree) 
 

 Count of freezing degree days for October to April 15th (days)  
 Maximum cumulative sum of freezing degree days October to April 

15th  (days) 
 

Precipitation Maximum precipitation October to March (mm)  
 Precipitation days from October to March (days) i 
Albedo Mean albedo for October to April 15th (%)  
 Change in mean albedo from February to March (%)  
 Mean albedo in February (%) m, i 
 Mean albedo in March (%)  
Sea Level 
Pressure 

Maximum daily average sea level pressure for December to 
February  (Pa) 

 

 Mean daily average sea level pressure for February (Pa)  
 Mean daily average sea level pressure for March (Pa) a, m 
Relative humidity Change in maximum relative humidity from February to March (%) m 
 Maximum relative humidity in March (%)  
Wind Speed Mean wind speed for  October to April 15th (m/s)  
 Maximum wind speed in February (m/s)  
 Mean wind speed in March (m/s) a, i 
 Maximum wind speed in March (m/s)  
Radiation Mean downward shortwave radiation for October to November  

(W/m2) 
 

 Mean downward shortwave radiation for March  (W/m2)  
 Date of daily cumulative downward shortwave radiation change > 

100 W/m2 (day) 
a 

Physiography Mean aspect (degree)  
 Standard deviation aspect (degree) i 
 Range slope (degree) a 
 Longitude (decimal degrees)  
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Table 4.3  Training and testing results for RF and GBM for all stations. 
Logistic 
Params 

Model Method/Base 
Package 

Model 
Params 

RMSE R2 P-
value* 

    Training  
asym 

RF 
rf/ 

randomForest 
mtry 

3.41 0.40 < 0.001 
midp 7.82 0.48 < 0.001 
rslop 30.80 0.27 < 0.001 
asym 

GBM gbm/gbm 

n.trees, 
shrinkage, 
interaction 

depth 

3.51 0.34 < 0.001 
midp 7.92 0.49 < 0.001 

rslop 30.82 0.32 < 0.001 

Params, Parameters; RMSE, root mean square error; R2, r-squared; RF is random forest; GBM is gradient 
boosting 
*with Bonferroni adjustment 
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Table 4.4 Snowmelt timing statistics for all sites based on the MODIS SCE nonlinear regression analysis 
as averages for the 2000-2012. The five index stations used to illustrate results are in bold. 

Station ID Station Name Init. 
Date 

(Jday) 

Term. 
Date 

(Jday) 

Max. 
Melt 

(Jday) 

Min. 
Melt 

(Jday) 

Middle 
of Melt 
(Jday) 

Dur. 
(days) 

Rate 

44Q07 Upper Chena 110 141 115 134 124 31 -7.3 
45O04 Granite Crk  93 153 102 135 118 60 -3.4 
45P03 Teuchet Creek  105 148 111 137 124 43 -3.9 
45Q02 Monument Creek  106 151 113 140 126 46 -3.9 
46P01 Munson Ridge  103 138 108 130 119 35 -5.5 
46Q01 Mt. Ryan 114 148 120 141 130 34 -5.0 
46Q02 Little Chena Ridge  106 146 112 137 124 40 -4.5 
48P01 Bonanza Creek  102 125 106 121 113 23 -7.1 
USC00501243 Cantwell 2E 99 177 111 153 132 77 -2.4 
USC00501466 Central #2 114 128 116 126 121 14 -12.5 
USC00501492 Chandalar Lake 121 172 129 159 144 50 -3.6 
USC00501497 AK Chandalar Shelt. 129 172 136 162 149 43 -4.3 
USC00501684 Chicken 111 128 113 125 119 18 -9.7 
USC00501987 Circle Hot Springs 110 141 115 135 124 31 -6.0 
USC00502339 Delta 6N 88 133 94 120 106 45 -4.0 
USC00502568 Dry Creek 93 155 102 137 119 62 -2.7 
USC00502707 Eielson Fld. 104 120 106 117 111 16 -11.7 
USC00503160 Ft Knox Mine 101 136 107 128 117 35 -5.2 
USC00503181 Fox 2 SE 101 123 104 119 111 22 -7.2 
USC00503212 Galena 118 140 122 136 129 21 -8.0 
USC00503275 Gilmore Creek 101 123 104 119 111 22 -7.2 
USC00503304 Glennallen 101 136 106 128 117 35 -4.6 
USC00504567 Kenny Lake 7SE 93 167 104 144 124 73 -2.5 
USC00504621 Keystone Ridge 99 138 105 128 116 39 -4.5 
USC00504971 Kobe Hill 102 132 107 125 116 29 -8.9 
USC00505644 Manley Hot Springs 108 130 111 126 118 23 -8.5 
USC00505778 McKinley Park 95 153 103 134 118 58 -3.8 
USC00505880 Mile 42 Steese 113 140 117 134 125 27 -6.5 
USC00506147 Nabesna 92 171 103 144 124 79 -2.9 
USC00506581 North Pole 104 120 106 117 111 16 -11.7 
USC00507513 Port Alcan 107 132 111 127 119 25 -7.1 
USC00508409 Sheep Mtn Lodge 112 165 120 151 135 52 -3.9 
USC00509313 Tok 103 133 108 127 117 30 -5.6 
USC00509869 Wiseman 119 154 125 147 135 35 -4.9 
USW00026411 Fairbanks+ 101 123 104 119 111 22 -7.2 
USW00026422 Eagle 107 154 114 143 128 47 -3.5 
USW00026510 McGrath* 113 132 116 129 122 19 -8.4 
USW00026533 Bettles* 125 140 128 137 132 15 -12.4 

Init., Initiation of melt depletion; Term., termination of melt depletion; Max. Melt, maximum melt depletion; Min. 
Melt, minimum melt depletion; Middle of melt, midpoint of melt; Dur., duration of melt in days; Rate, rate of melt 
duration; Jday, Julian Date of year 
+International Airport 
*Airport 
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5.1 Introduction 

Skillful hydrological models are useful for a number of different applications, including the 

analysis of extreme events and to study future climate change, particularly in the high latitude regions 

where shifts in the hydrosphere are anticipated to cause disruptions to hydrological and ecological realms 

(Dowdeswell et al., 1997; Euskirchen et al., 2009; Hinzman et al., 2005; Overpeck et al., 1997; Serreze et 

al., 2000). The observations of rapid change and climate projections highlight alterations to the subarctic 

Interior boreal forest, and indicate increasing risk associated with these changes, not only to the local and 

state resources but also regionally and globally. This multi-scale risk introduces a pressing need in Alaska 

to further understand the anticipated changes through modeling of major climate drivers of streamflow 

(Bennett and Walsh, 2014).  

However, Alaska’s vast territory, complex landscape and sparse observational network represent 

an enormous challenge for scientists attempting to develop and accurately calibrate streamflow models. 

An approach to dealing with the lack of stream gages and in situ snow observations is to use remotely 

sensed snow cover areal extent (SCE) to supplement point observations such as temperature, precipitation 

and streamflow commonly used as the main inputs to models and for calibration and validation (Parajka 

and Blöschl, 2008). There are two main ways that this data has been used, either to directly insert a time 

series of SCE data into the model (McGuire et al., 2006; Rodell et al., 2004) or to use complex 

assimilation procedures to filter the snow series and merge it with observational data (Andreadis and 

Lettenmaier, 2006; Sun et al., 2004). However, assimilation approaches have yet to be integrated into 

operational models, in part due to multi-step processing that has not been streamlined for the operational 

user community. There is a concern that direct insertion methods are ineffective at improving streamflow 

models and do not perform better than uninformed models because melt can happen before reductions in 

snow cover below 100% occur (Clark et al. 2006). In addition, the melt season duration can often be 

short, transitioning rapidly from snow covered to snow free, although this is considered to be basin-

dependent (Clark et al., 2006). Another study found calibrating models based solely on SCE values may 

not improve skill in estimating discharge, and the improvements for in-catchment distributed SCE 

estimates does not always result in improved discharge simulation (Franz and Karsten 2013).  

Alaskan hydrologic systems suffer from large uncertainties in various data inputs, and thus 

require great care when attempting to simulate hydrologic water balance components with skill. Reducing 

these uncertainties is of utmost importance, as they will overwhelm model output (Slater et al. 2013) and 

generate results that are non-transferable to problems such as future changes in snow cover extents that 

are anticipated as a result of climate change (Stocker et al., 2013). In addition, the variability in landscape 

(i.e. forest cover, topography, discontinuous permafrost) and climate across Alaska and amplification of 
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changes (Serreze and Barry, 2011; Serreze and Francis, 2006; Serreze et al., 2000) requires robust 

modeling techniques to account for these shifts. Temperature index models, based on the most reliable 

climate forcing, are therefore presumed to perform better in regions with highly variable landscapes and a 

sparse network (Hock, 2003; Stahl et al., 2006). Additionally, a skillfully calibrated conceptual model 

may provide a better representation of hydrologic responses because the underlying model is reliant upon 

parameterizations rather than observations that lack spatial and temporal consistency (Franz et al., 2008; 

Reed et al., 2004). 

One approach is to utilize newly developed forecasting frameworks to integrate remotely sensed 

data on snow cover extent for calibration of streamflow models. These newer tools have been recently 

adopted by the National Weather Services’ (NWS) River Forecast Centers (RFCs) and offer an 

opportunity for more advanced forecasting techniques, including ensemble prediction using variable input 

and/or forcing data. The Community Hydrologic Prediction System (CHPS), brought online in 2012 by 

the Alaska Pacific River Forecast Center (APRFC), is a test case for this approach. The modeling 

framework, developed on the Delft-FEWS software platform, can run many different types of models, but 

in its current state implements the conceptual Sacramento Soil Moisture Accounting System (SAC-SMA) 

rainfall-runoff model (Burnash et al., 1973), with snowpack input from the SNOW17 snow model 

(Anderson, 2006). 

The objectives of this work are to adapt the CHPS operational forecasting modeling framework to 

ingest the Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed SCE data for 

streamflow modeling in the Interior boreal forest region of Alaska. A simple procedure is undertaken to 

replace the standard areal depletion curve used in SNOW17 with pre-processed MODIS SCE grids for 

snow depletion. Two different versions of MODIS are applied, the MOD10A1 fractional SCE product 

(Hall et al., 2002), and the MOD-Snow Covered Area and Grain size (MODSCAG) fractional SCE 

product (Painter et al., 2009). The SNOW17 manual calibration with evaluation by two criteria is 

described. A detailed consideration of all model parameters, including a tolerance parameter controlling 

snow cover updates (snow cover tolerance, SCTOL), is investigated to simulate a mixed method between 

direct insertion and more complex data assimilation. Pre-processing, model frameworks and use of 

existing parameterization structures are thus offered as a means of employing remotely sensed 

information into operational models that can be utilized out-of-the box by the NWS RFCs. The work also 

offers insight on several previously unknown components of the research, including the use of the 

MODIS SCE product in high latitude boreal forest basins, interpolation of missing data, and how to 

improve discharge estimates using calibration of model parameters.  
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5.2 Methods 

5.2.1 Study Area 

This study is carried out in five adjoining headwater sub-basins of the Tanana River, which is a 

sub-basin of the Yukon River basin (Figure 5.1). The Chatanika River basin above the Steese Highway 

(64°50′37″N, 147°43′23″W, Figure 5.1) is approximately 950 km2 in size and runs predominantly east to 

west. Only the area upstream of the Caribou-Poker Creek confluence is considered in this study. The 

Chatanika was gaged from 1987 to 2007 but the records are highly discontinuous. The Upper Chena 

River basin is approximately 2440 km2 and has gage records from 1967 onward. This portion of the basin 

contains high elevation peaks and rocky outcrops where snow can persist late into the melt season. The 

Little Chena is 1030 km2 and has the highest proportion of lowlands located within it, relative to the 

others; it has been gaged since 1966. 

The Salcha River watershed is a large 5740 km2 basin with its gage at the Salchaket Bridge; 

Salcha has the longest historical record of all rivers in this region (1948 onward). The Goodpaster basin is 

located east of the Salcha and is 1770 km2 in size. It has the highest proportion of its basin above 600 m 

elevation. The Goodpaster basin has been gaged since 1997. There are minor urban and agriculture 

developments throughout the region, including the town of Fairbanks, which is located downstream of the 

Little Chena gage on the main stem of the Chena River. These minor developments have little or no 

bearing on the hydrologic response of the headwater systems of Chena basins we examine here. More 

information on the watersheds and basin units is provided in Table 5.1. 

5.2.2 Data 

The MODIS satellite product (Terra MOD10A1, version 5) daily, 500 m resolution snow cover 

fractional areal extent (SCE) data are downloaded from the National Snow and Ice Data Center (Hall and 

Riggs, 2007; Hall et al., 2006) for 2000-2010 and preprocessed into a projected GeoTIFFs (North Pole 

Stereographic). The MOD10A1 fractional SCE data are developed based on the normalized difference 

snow index (NDSI), which is calculated as a ratio of band 4 and band 6 on Terra: 

 

NDSI
b4‐b6
b4 b6

 ( 5-1 ) 

Snow is mapped when NDSI is greater than 0.4 (Hall et al., 2002) and where reflectance in 

MODIS band 2 is >11% and MODIS band 4 is >10%. The fractional product is then calculated based on 

an empirical algorithm generated from a linear regression developed from analysis of binary Landsat 

Thematic Mapper scenes and applied to MODIS NDSI (Salomonson and Appel, 2004). 
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MODSCAG data products are obtained from the NASA Jet Propulsion Laboratory’s Snow Data 

System Portal (http://snow.jpl.nasa.gov/) for the area of interest and preprocessed as described above. 

MODSCAG is a spectral mixing model that utilizes end member analysis to identify the best fit of linear 

end members that has the strongest relationship to surface spectral reflectance in the Terra MOD09GA 

product (Painter et al., 2009). Operating under the assumption that spectral reflectance viewed by the 

MODIS sensor varies based on grain size of the snow, MODSCAG utilizes a radiative transfer model to 

calculate reflectance across different snow grain sizes. A look up table is used to store and retrieve the 

spectral reflectance end member formulations. From this look up table, all the end members are permuted 

to generate multiple models and the algorithm selects the minimized model solution (i.e. low error and 

minimum number of end members). When a pixel is identified as containing snow, then the fraction of 

the pixel containing snow is calculated in relation to other end members (soil, rock, ice, vegetation), 

normalized by the shading geometry (Rittger et al., 2013). Both MODIS products are initially screened to 

remove any values that are classified as cloud cover; only SCE data from 0-100% for March 1st to June 

30th are ingested into CHPS. 

Both MOD10A1 and MODSCAG fractional products require correction to adjust the values of 

SCE estimates (Raleigh et al., 2013; Rittger et al., 2013), which do not account for the snow that is 

blocked from the sensor view. For the MOD10A1 SCE product, this calculation is based on the viewable 

gap fraction, or the amount of snow covered ground between trees that the sensor can see (Liu et al., 

2004). This technique, while widely applied, assumes that the viewable gap fraction remains constant 

through the snowmelt season, which is incorrect as the viewable gap fraction can vary based on a 

complex number of factors, including forest canopy density, age and class, zenith angle of the sensor, 

solar zenith angles, topography and snow loading (Kane et al., 2008; Liu et al., 2008; Molotch and 

Margulis, 2008; Raleigh et al., 2013; Rittger et al., 2013). To account for some of these issues, rather than 

applying a forest cover product to correct the product itself, the MOD10A1 data are used (Durand et al., 

2008). All 2000-2013 March 1-March 15th MOD10A1 pixels across Interior Alaska are differenced from 

100 and then a composite average of all days (n=207) is calculated. While in southeast Alaska some melt 

may have occurred during this time, the Interior SCE should still be at 100% across most of the region. 

To account for bare ground regions such as open, wind-blown rocky faces, values less than 20% SCE are 

removed from the correction. The standard division by viewable gap fraction,  

 

SCEfadj
SCEf
1‐Fveg

 ( 5-2 ) 

where Fveg is the tree cover percentage,  SCEfadj (henceforth referred to simply as SCE) is the fractional 

SCE adjusted for canopy cover, and SCEf is the unadjusted SCE data. This formulation is applied as a 
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static adjustment to each SCE pixel in all days and years.  For MODSCAG, the daily vegetation fractional 

product provided with the data product is utilized, resulting in a dynamic adjustment for each SCE pixel 

in all days and years. In both cases the results are constrained to 100% SCE when exceeded. 

Mean areal values of temperature and precipitation at 6 hour increments are obtained for each 

sub-watershed from the APRFC for the time period 1969 to 2012; only the 1999-2010 data are utilized in 

this study. River discharge at each gage is based on the United States Geological Survey (USGS) gaging 

record database. The exception to this is the Chatanika River at the Steese Highway site, where observed 

discharge is generated based on once-a-day stage readings from a Cooperative Network observer. These 

daily stages are converted to mean daily discharge using the APRFC’s rating curve for the river. To 

calculate north and south facing slopes and elevation criteria, the 30 m US Geological Survey’s National 

Elevation Dataset (NED), updated for the region in 2012, is applied (Gesch et al., 2002). Seven snow 

telemetry (SNOTEL) sites are utilized to compare results of modeled simulated SWE with observed data 

(Table 5.2, NRCS 2013). SNOTEL snow water equivalent (SWE, mm) is downloaded from the National 

Resource Conservation Service (NRCS) snow pillow data repository 

(http://www.wcc.nrcs.usda.gov/ftpref/data/snow/snotel/cards/alaska/). 

Potential evapotranspiration (PE) estimates are provided by the APRFC based on an assessment 

of historical PE from pan evaporation data and in some cases Thornthwaite estimates (Anderson 

2006). These data are used to develop a general linear relationship between PE and elevation to estimate 

average monthly PE values for a generic low-elevation site. The APRFC uses the low elevation PE values 

to derive monthly PE estimates for the mean elevations of the sub-basins as a coefficient.  The coefficient, 

C, is derived using the equation, 

C	=	0.9- e-1000 ·0.00011  ( 5-3 ) 

where e represents elevation in feet. For example, if the catchment mean elevation is 2350 ft, the 

coefficient is 0.75.  Finally, a monthly PE adjustment factor is applied to account for vegetation changes 

during the year.  The result is an evapotranspiration demand estimate that is used in the SAC-SMA 

model, described in the proceeding section. 

5.2.3 Models 

5.2.3.1 SNOW17 

The SNOW17 snow model is a single layer snow model that calculates snow accumulation and 

ablation using empirical formulae to estimate heat and liquid water storage, liquid water throughflow and 

snowmelt (Anderson, 1976). The model is designed for river forecasting and has been used operationally 

by the NWS RFCs since the mid-1970s. The only input requirements for SNOW17 are temperature and 



 
  

157 
 

precipitation, at the time step of the model (6 hrs). There are 12 parameters in the SNOW17 model, 

including the areal depletion curve; sensitive or ‘major’ parameters control the model while less sensitive 

or ‘minor’ parameters have little impact (Table 5.3, He et al., 2011). 

SNOW17 determines the division between rain and snow using the rain-snow elevation 

(RSNWELEV) module. RNSWELEV uses a defined lapse rate (6 ºC /100m) to determine the elevation of 

the threshold temperature (PXTEMP). The elevation is passed to SNOW17 where the percent area above 

and below is determined from a defined area elevation curve. Multiplying these percentages by the 

precipitation will distinguish the proportion of precipitation that is falling as snow or rain in the basin. 

Non-rain snowmelt (mm) is determined from air temperature minus the value MBASE, or the baseline for 

which melt occurs (set to 0ºC), weighted by a seasonably variable melt factor that is calculated using an 

oscillating sine curve that varies between parameters MFMIN and MFMAX, representing the minimum 

and maximum melt factors for December 21st and Jun 21st (mm/ºC/6 hrs). These values are adjusted for 

northern latitudes above 54ºN to account for low radiation input, a paucity of days when temperatures rise 

above freezing, and rapid changes in melt rates during spring and fall (Anderson, 2006). The TAELEV 

parameter, when it differs from basin mean elevation, is used to lapse mean air temperature within the 

lumped basins by a standard value. This fixed lapse rate can be configured in the SNOW17 model using 

TALMIN and TALMAX parameters; set to 0.6ºC/100m in this study. 

A simplified energy balance method is used to calculate melt from rain-on-snow, making 

assumptions about the meteorology, including the use of the Stefan-Bolzman constant for incoming 

longwave radiation, negligible shortwave radiation, 90% relative humidity, and accounting for wind 

speed (mm/mb/6hrs) using the parameter UADJ. In-pack heat content is calculated based on the 

difference between air temperature and the antecedent temperature index, scaled using the TIPM 

parameter, which determines the time interval length for weighting. Heat deficit in the snow is either 

negative or positive and the rate of loss or gain is based on the negative melt factor (NMF) weighted by 

MFMAX to account for seasonal variations in pack heat translation. Heat can also be translated from the 

ground to the snow in SNOW17 using the DAYGM parameter and is assumed to occur constantly 

through the snow season. When the capacity of the snow to hold water (PLWHC) is filled and the pack is 

isothermal at 0ºC, the snow is ripe and any excess water entering the snow will flow through it as 

outflow. As water passes through a ripe pack, it is attenuated or lagged based on empirical formula 

derived from lysimeter studies (Anderson 2006). 

SNOW17 uses an areal depletion curve (ADC) to calculate the extent of the snow cover, which is 

used in the model for calculating the percentage of area over which surface melt, changes in heat storage, 

ground melt, and rainfall on bare ground occurs. The ADC not only represents areal extent of snow cover, 

but also accounts for slope, aspect and differences in vegetative cover (i.e. open versus closed sites). In 
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this study, the ADC is replaced by the observed areal extent of snow cover, thus the description that 

follows only pertains to the APRFC baseline run. The areal extent of snow cover is calculated from a 

lookup table that defines the depletion curve and relates the curve to the ratio of SWE to the areal index. 

The areal index is either the maximum value of SWE that occurred during snow accumulation or a 

parameter SI that represents the areal SWE at which 100% snow cover exists. The curve is applied as 

follows; when snow accumulates, the snow cover is set to 100%, and it stays at this value until it falls 

below SI or the maximum SWE value, whichever is smaller. If new snow totaling greater than 0.2 mm/hr 

falls onto bare ground, 100% snow cover is assumed until 25% of the new snow has melted. In Alaska, 

there are several different ADC configurations used depending on whether slopes are south versus north 

facing, or upper versus lower elevation basins. Basins examined in this study use the same ADC for upper 

south, upper north and lower units since they have similar orientation in a similar geographic region. The 

Little Chena uses a different ADC for its upper basin since no north/south aspect split is used in this 

basin. 

A tolerance parameter is available in the SNOW17 model that can be used to alter the impact of 

the observed SCE data. The tolerance setting for snow cover (SCTOL) can be altered from 0 to 1 to adjust 

the use of observed data when there are differences in the simulated versus observed areal extents. When 

the areal extent of snow cover subtracted from the observed (in absolute terms) is greater than the 

tolerance multiplied times the observed, the snow cover is updated. Otherwise it is left the same. The 

effect of this parameter is to rely solely on the observed data value (SCTOL=0), rely partially on observed 

only when there are large differences (0.1-0.9), or to rely wholly on the simulated data (SCTOL=1). 

5.2.3.2 SAC-SMA 

A conceptual rainfall-runoff model can be used to produce a streamflow simulation from 

observed input precipitation and PE (Burnash et al., 1973). The SAC-SMA model has been widely 

applied by the NWS to estimate streamflow runoff in basins across the United States. The model moves 

water into either an upper or lower storage zones that conceptually represent soil interception or deep 

groundwater storage. Interception water in the upper zone flows to the lower zones via downward 

percolation or can run off directly or via interflow when the upper zone layers become saturated and 

precipitation rate exceeds downward percolation. Lower zone water can be held in tension storage and 

contributes to baseflow runoff slowly over time or can run off more quickly over shorter durations. 

Drainage from the upper and lower zones follows gravity drainage and is governed in part by both water 

delivery from the upper zone and soil moisture in the lower zone. Tension water is driven by potential 

evapotranspiration (PE) and diffusion; with a fraction of the lower zone unavailable for potential PE as it 

is considered below the rooting zone.  
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5.2.3.3 Community Hydrologic Prediction System 

The Community Hydrologic Prediction System (CHPS) was implemented at River Forecast 

Centers across the United States in 2012 and builds on the Delft-FEWS model framework, developed by 

Deltares. The system allows for integration and ensemble forecasting of multiple models under a single 

synchronous system. The framework can be run in live mode for forecasting purposes or in an offline 

standalone mode for testing and development purposes (Werner et al., 2013). The offline model is 

implemented for this study at the University of Alaska Fairbanks using the calibration capabilities 

introduced to the NWS with the FEWS 2013.01 build in November, 2013. 

The CHPS framework is modified to allow for the ingestion of the MODIS SCE data to replace 

the SNOW17 snow cover areal depletion curve, or to update the curve in the case of SCTOL > 0. The 

MODIS SCE grids are read in using an import function, and then clipped and averaged over each sub-

watershed area using a preprocessing module. The SCE grids are imported as special forms of ArcInfo 

ASCII files in a Stereographic projection (this projection, which is generally inappropriate for Alaska, is 

used due to the limitations of CHPS projection parameters). Calibration modules are configured for 

peakflow, discharge statistics and water balance for each sub-watershed. We developed a parallel 

configuration to allow simultaneous display of MODIS and non-MODIS-forced model output. Statistics 

are generated for calibration, validation and for the entire time period by altering the initial conditions 

appropriately for each run using the input MOD10A1 data. 

The framework is set up to run on semi-lumped upper and lower sub-basins with additional 

designations (referred to as units) for north and south facing slopes in the Chena, Chatanika, Salcha and 

Goodpaster basins. The model runs at a six-hourly timestep, and is run continuously from 2000 to 

September 2010, with initial conditions starting in October, 1999. Updates to the model framework 

included the basin area, and north/south facing slope delineation with new information from the 2012 

NED digital elevation model (Gesch et al., 2002). This also formed the basis of updates to the model’s 

area elevation curves and unit hydrographs.  

Linear interpolation is used to estimate snow cover over periods when no MODIS SCE data are 

available.  An optional element in FEWS, maxGapLength, can be configured to define the maximum 

length of gaps that should be filled.  Gaps equal to or smaller than maxGapLength will be filled with 

interpolated values.  Gaps larger than maxGapLength will not be filled.  A maxGapLength of 11 days is 

used; gaps greater than 11 days are not interpolated. This ensured that periods with extensive cloud cover 

obscuring the MODIS SCE data are interpolated but long periods with no data, such as the summer 

period, are not interpolated. Testing of a shorter interpolation time steps resulted in lower streamflow 

simulation skill, thus the 11-day length is applied.  
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A unit hydrograph model is used to time distribute the runoff produced by the SAC-SMA model. 

Each sub-watershed has its own unit hydrograph to translate the runoff through the channel system to the 

gage location.  Simple routines sum the unit hydrograph outputs to calculate simulated streamflow at the 

basin outlet.  While downstream basins incorporate routing models, e.g. Lag/K, this study focuses on 

headwater basins so no routing models are needed.  

5.2.4 Calibration and Validation 

Several calibration procedures are undertaken for this project. The first calibration effort updated 

the SAC-SMA/SNOW17 model parameters previously adjusted by APRFC to 1970-2003 historical data 

to the 2000-2010 study years used in this study. This provided a baseline calibration for the APRFC runs. 

The MODIS manual calibrations are undertaken using this baseline, utilizing the features of the APRFC 

CHPS calibration version to adjust parameters and then generate statistics for the 11 years of the study. 

Visualizations of streamflow hydrographs from 2006-2010 are used for calibration; however statistics 

from the entire period of record are generated for ultimate parameters selection. For validation purposes, 

statistics from 2000-2005 are provided for all watersheds except the Chatanika. The Chatanika basin is 

calibrated on 2000-2004, and validated from 2005-2010 to make use of improved data quality and 

availability during the first five years of the study.  

To calibrate the MODIS model output, a simple approach is taken to minimize the terms required 

for calibration. This simple approach ensures that it is easy to replicate the model adjustments to the 

MODIS SCE data and focused solely on the snow parameterization. An attempt to adjust the SAC-SMA 

parameters resulted in only minor improvements to statistics during the breakup period, therefore only the 

SNOW17 parameters are considered. A priority is placed on adjusting the empirical parameters towards a 

physically-based realization using sub-unit properties, including the topographic aspects and the observed 

melt trajectory impacted by the MODIS SCE data. To complete this simple, physically realistic 

calibration approach only the parameters MFMAX and TAELEV are adjusted. 

The goal of the physically realistic calibration is one that focuses only on the empirical 

parameters that have physically based schemes associated with them. For example, the maximum melt 

factor for non-rain melt periods (MFMAX, specified for June 21st) represents the melt rate; increasing this 

parameter is indicative of increasing melt responses towards an earlier date in the season and changing 

melt timing. The MFMAX value incorporates slope, aspect, forest cover and meteorological conditions; it 

is generally considered to be higher for open regions with predominantly deciduous tree covers, higher 

wind speeds and mountainous terrain. The TAELEV parameter is used to warm or cool the MATs 

without recompiling the historical data.  ELEV is the mean elevation of the catchment and the elevation at 

which the MAT is applied in the snow model. TAELEV is the elevation associated with the historical 
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MAT time series. Using a standard lapse rate of 0.6ºC per km, if ELEV is 1000m and TAELEV is set to 

1200m, then the MAT that is applied in the SNOW17 model is effectively warmed by 1.2ºC.  Since MAT 

is generated for the entire upper zone, we used TAELEV to "warm" the temps for the southern basin units 

and "cool" the temps for the northern basin units. Slight adjustments to the NMF parameter are made 

across all basins and sub-basin units to correct a small over estimate of the values; this is anticipated to 

have little impact on the overall results but is undertaken to ensure representativeness of the north, south 

and lower basins. 

5.2.5 Analysis 

Statistics used to evaluate model success are based on five main objective functions. The first two 

of these criteria are standard in NWS RFC calibration approaches and are provided in the CHPS statistical 

output. These statistics are used for evaluation during the calibration; total volume bias as a percent 

(PBIAS, %) and the correlation coefficient (R, unitless). An additional three objectives are added for 

further validation of the results, Nash Sutcliff efficiency (NSE, unitless) and the mean absolute error 

(MAE, m3/sec) and the root mean squared error (RMSE, m3/sec). Statistics are run for April, May and 

June only to focus on the changes to the snowmelt season; March is not included because breakup in 

Interior Alaska occurs after March and thus any differences in statistics would be indicative of changing 

winter conditions rather than changes in spring snowmelt timing or volume. The equations are calculated 

as follows: 
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where N is equal to the number of data points (i.e. sub-daily streamflow realizations), i is the time step 

(days), S is the simulated streamflow (m3/s), and Q is the observed streamflow (m2/sec). 
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5.3 Results 

5.3.1 Model Results 

The APRFC SAC-SMA/SNOW17 model estimates of streamflow in Interior Alaskan river basins 

for the 11-year period of record indicate that these watersheds are captured with skill. The Chatanika 

basin is problematic given the limited quality and quantity of the observed streamflow data, as noted in 

the below statistics for each objective function. For all of the five basins analyzed, the daily average bias 

for the period of record is ±3% or less. Daily correlation coefficients (R) are equal to or greater than 0.84 

(unitless) and higher for the four watersheds with quality observed data, while the Chatanika basin is 0.70 

(unitless). NSE daily values are also above 0.60 (unitless) for all basins except the Chatanika (which is 

0.18 due to the noise in the observed data values). Daily mean absolute error statistics are below 10 

m3/sec for all basins except the Salcha, which is 15.89 m3/s (owing to its large discharge record). RMSE 

is between 3.5 m3/s (Chatanika) to 33 m3/s (Salcha). Across all basins, SCE are variable by elevation 

zones and years (Figure 5.2). Upper elevation areas tend to have 100% SCE, while mid-to-lower areas 

often begin the year with 75% SCE or less. The very lowest elevation zone appears to have a slightly 

higher SCE values than the next two bins (Figure 5.2). Some years have a markedly late melt out, with 

high variability across the elevation bins. Lower elevation zones tend to melt out in early April, while the 

upper regions of the watersheds hold snowpack weeks or months into the subarctic spring (Figure 5.2). 

5.3.2 Parameters 

Calibrated SNOW17 parameters for the APRFC and MOD10A1 runs illustrate increases to 

MFMAX for north facing aspect in two sub-basins and increases in TAELEV for the northern slopes 

(Table 5.4). In some systems, TAELEV is set to be equal for the north and south basins, for reasons that 

are discussed in the following section. MFMAX for the Chatanika’s lowland sub-basin is increased and 

TAELEV at the north sub-basin is increased, while TAELEV is decreased for the south unit. MFMAX in 

the Upper Chena north unchanged and TAELEV is equalized for both south and north units.  The Little 

Chena sub-basin is altered by setting MFMAX equal to its maximum recommended value (1.4) for the 

upper and lower sub-basins and by increasing TAELEV 100 m greater than the elevation for both sub-

basins. TAELEV for Salcha and the Goodpaster are differenced by 100 m for the north and south units 

and the northern sub-basin MFMAX for Goodpaster is increased slightly. Goodpaster’s lower basin 

MFMAX is reduced by a small amount. Although these changes may appear minor, because MFMAX is 

a very sensitive parameter during the melt season, the changes have a substantial effect on the MODIS 

SCE forced snowmelt trajectory at these sites (Anderson, 2006). 
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In the MODSCAG runs, the values for MFMAX are increased slightly for the northern units for 

all basins. The TAELEV values are adjusted slightly in Upper Chena, Salcha and Little Chena bains 

(Table 5.5), and they are not altered from the baseline run in Chatanika. In the Goodpaster basin, the 

TAELEV value for the south unit is decreased. For this version of MODIS, it appears that a slightly more 

rigorous calibration is required. 

NMF is altered slightly to account for different snow densities and thermal conductivities of snow 

on south and lowland sites versus north aspects. Snow density is generally low in Interior Alaskan 

watersheds; based on analysis of field data from the Caribou Poker Creek watershed, snow density on the 

sites is approximately 0.20 and is slightly higher on the southern sites compared to the north site. The 

northern facing slopes are therefore given the NMF value of 0.15 mm/°C/6hr, which Anderson (2002) 

indicates is the ‘reasonable’ value of NMF. The south and lowland sites, which have generally warmer 

temperatures and more dense snow, are assigned the NMF value of 0.2. For these runs, SCTOL is set to 0 

for all basins to ensure that the MODIS data are utilized 100% of the time. 

5.3.3 SASC and SWE 

Compared to the APRFC runs, the MODIS runs have less snow cover on the north facing slopes 

and more on the south facing slopes (Figure 5.3, Upper Chena River basin results for 2001 is shown as an 

example). Differences between the two runs become discernable in late January as a result of the different 

calibrations of the SNOW17 model in the watersheds (Figure 5.3), with larger differences at the north 

units compared to the south unit. As soon as the MODIS SCE begins to alter the weighting factors for 

outflow from the snow, differences between the SWE generated by APRFC and MODIS runs are 

observed (after March 1st). The greatest differences between the model runs occur during the melt season. 

All model runs peaks in early April and start the downward melt trajectory from this point, and reflect the 

melt patterns of the upper elevation SNOTEL sites, Mt. Ryan, Munson, and Upper Chena. The 

MODSCAG SCE north unit estimates are closer to the APRFC runs in volume, and melt out more slowly 

than both the MOD10A1 and the APRFC run, although all runs terminate on the same approximate day 

for the northern sub-basins. The SNOTEL sites are mostly located at upper elevations (Mt. Ryan, 850m 

and Munson, 940 m) compared to the SNOW17s ~800 m for the upper basin and thus illustrate conditions 

exhibited at high elevation northern sites in the basin. Mt. Ryan, in particular, does not build a snow pack 

early in the season, perhaps owing to its open, mountainous and presumably windy environment. The 

SNOW17 model is run over a lumped area so there is mix of site conditions that act to smooth the model 

responses; hence these comparisons are inherently qualitative as opposed to quantitative (Molotch and 

Bales, 2005). Lower elevation sites such as Teuchet and Little Chena melt out significantly earlier than 

the model and remote sensing estimates. There is stronger coherence in the response of the northern sites 
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as opposed to the southern sites. At the southern sub-basins, the MODIS runs melt out later, with 

MODSCAG again having the latest melt, similar in timing to the high elevation stations. 

The areal extent of snow cover varies from basin to basin across the watersheds in both runs. The 

preprocessed gridded MOD10A1 SCE illustrated for May 15th, 2001 for the watersheds is shown in 

Figure 5.4a and the MODSCAG SCE is show in Figure 5.4b. The high elevation snow pack (blue) is 

present within the upper watershed regions but the pack is largely gone in the valleys and lower basins 

reaches. This translates into the lumped average SCE estimates as shown in Figure 5.4c and 5.4d, which 

illustrates the way that CHPS ingests and converts the gridded MODIS SCE for the sub-basins and units. 

North and south units are differentiated in the upper basin units but not other locations because both 

aspects have begun to melt by this date (as opposed to early in the melt period when the south slopes 

would have comparatively less SCE than the north slopes). MODSCAG has less cloud cover interaction 

in this scene (Figure 5.4b) and this results in slightly higher values of SCE (Figure 5.4d). Basin SWE 

estimates for MOD10A1 (Figure 5.5a), MODSCAG (Figure 5.5b), and the difference between the 

MODIS (both versions) and APRFC run (Figure 5.5c and 5.5d) is shown for May 15th, 2001. Basin units 

can be clearly differentiated in these plots, which illustrate the range of SWE values from 0-0.5 inches in 

the lowland regions to 5 inches remaining in the upper headwater zones. The MODSCAG data has an 

average SCE value of 0.5 and SWE is 1.7 inches, whereas the MOD10A1 has an average of 0.45 SCE, 

has an average of 2.1 inches SWE, very small differences overall although basin-to-basin the variation 

between the products is notable. The difference plots highlight the fact that MODIS tends to have lower 

SWE values compared to the APRFC SNOW17 model runs on the north facing slopes and higher values 

on the south facing slopes. The APRFC tends to be have lower SWE estimates for the lowland regions, 

although this is more true for MOD10A1 versus MODSCAG (Figure 5.4c, d). 

5.3.4 Streamflow Estimates 

Calibration and validation results are provided for April-May-June (Table 5.6) for the MODIS 

and APRFC runs. The calibration, validation and whole period of record results based on observed 

discharge are provided for all watersheds for MAE, NSE, PBias, R and RMSE, boxplots illustrate the 

range of all basins exhibited for the each run of the model and the SCTOL results which are discussed in 

the preceding section (Figure 5.6). The boxplots, whiskers and outliers indicate the range in results across 

basins. The results show moderate improvements; model improvements are observed for the MODSCAG 

run during the calibration periods in the Chatanika, Salcha and Goodpaster basins. The validation period 

statistics showed improvement for the Chatanika, Little Chena, and Upper Chena basins. Many statistics 

are similar or nearly identical to the APRFC run with slight declines in model performance and some 

gains (Chatanika, Little Chena), particularly for the analysis focused on the whole period of record. The 
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MOD10A1 is improved for the Chatanika and Goodpaster systems during the calibration period, while it 

performs similarly or slightly worse during the validation and period of record in most of the basins 

except the Chatanika. NSE statistics are particularly poor for all runs in the Chatanika basin, where the 

lack of continuous and high quality observations hamper calibration efforts. The boxplots illustrate a 

reduction in volume biases (PBIAS) for MOD10A1 during the calibration period however PBIAS 

remains below 10% for almost all cases for the ten year period with the exception of Chatanika. Over the 

period of record there is almost no difference in statistics across all the model runs (Figure 5.6). Overall, 

the greatest improvements in skill are observed for the MODIS runs in the Chatanika and Goodpaster 

basins, the validation period for Upper Chena and the calibration period for Goodpaster (Table 5.6). 

Volume biases are improved in most of the basins as well. MODSCAG tends to do slightly better where 

improvements are made compared to the MOD10A1, while all runs perform nearly identically over the 

11-year period. 

Cumulative streamflow for each basin illustrate the differences between simulated discharges 

plotted against observed discharge at the streamflow gage (Upper Chena, Figure 5.7-5.11). Plots illustrate 

all years of the study with the mean value provided in the last panel. Only March to June results are 

shown; in March the basins have not begun to melt and hydrograph depicts baseflow contributions in the 

systems. The active period begins in late March, early April and the differences between the two 

estimates of streamflow persist until June, after which point streamflow responses to rainfall input are 

essentially the same. Statistics for the April-May-June calibration, validation and the period of record are 

also provided in Table 5.6. The Upper Chena River basin (Figure 5.7) shows improvement for some years 

(2000, 2006- 2008) compared to the APRFC run, while some years have poor fits between both 

simulations (2002-2004, 2009). For Chatanika, the simulated MODIS runs are of greater magnitude 

(Figure 5.8) and have earlier timing compared to the observed flows (not shown), which are sparse as 

noted earlier. In the Little Chena river basin, MODIS simulated discharge overall fits better than the 

model, which over simulates streamflow on average; the MOD10A1 provides slightly higher streamflow 

simulations at peak flow values (Figure 5.9). Streamflow simulations for the Salcha and Goodpaster 

systems capture the observed flows well on average, with some years improved upon by the MODSCAG 

runs and for other years by the MOD10A1 (Figure 5.10, 5.11). 

5.3.5 Sensitivity to Parameter SCTOL 

The sensitivity of model parameter SCTOL represents a way to partially integrate the MODIS 

data into CHPS as a means for forecasters to combine the strength of the areal depletion curve and the 

MODIS data together. Table 5.7 and boxplots 4-6 in Figure 5.6 illustrates the results of setting the 

SCTOL parameter to 0.25, 0.50, and 0.75 for the MODSCAG run, while holding the rest of the 
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parameters constant. No recalibration is performed. The boxplots illustrate the advantage of using this 

parameter. NSE and R statistics increase during the calibration period, MAE and RMSE remain similar 

on average but the interquartile range decreases for the SCTOL=0.50. The basin with the greatest 

improvement based on differences between APRFC and MODIS runs (Chatanika) does not benefit from 

model integration, owing to the low skill performance of APRFC model version (Table 5.7). However, 

for the remaining basins strong improvements are apparent for the increase values of SCTOL during the 

calibration period (Upper Chena, Little Chena and Salcha), validation and period of record (Upper Chena, 

Little Chena). Diminishing returns occurring at a threshold between 0.25 and 0.50 SCTOL for most 

basins, however the Goodpaster improves at 0.50 but not 0.75. This suggests that the SCTOL parameter 

should be uniquely applied dependent upon the basin. 

5.4 Discussion 

Results for the study illustrate how basins in interior Alaska can be captured with skill using 

conceptual, semi-lumped hydrologic models. Using gridded observations of MODIS SCE in the models 

generates streamflow estimates as good or better than estimates based on SNOW17s areal depletion 

curve, particularly if the initial streamflow observations are of poor quality (i.e. Chatanika River basin). 

However, there are challenges in obtaining improved estimates in streamflow discharge values when 

introducing additional observed data sets and their associated uncertainties into models. These results are 

similar to work performed in the American River basin where the California Nevada RFC (CNRFC) 

lumped model provided the most accurate representation of snow cover area (Franz and Karsten 2013). 

As indicated by Franz and Karsten (2013), although the gridded representation of SCE is improved in 

their distributed version of SNOW17, the streamflow simulations and associated statistics did not reflect 

this improvement. In addition, they found that discharge values had lower skill when estimates of snow 

cover are included in the calibration even though it is hypothesized that the process representation is 

improved, which is a finding of a number of other research studies focusing on this topic (Parajka and 

Blöschl, 2008; Udnæs et al., 2007). These findings are also true for Alaskan interior boreal watersheds, 

highlighting the importance of performing this work in remote and under monitored systems that are 

changing quickly due to climate shifts and increased occurrences of extreme events (Bennett and Walsh, 

2014; Sillmann et al., 2013). 

The goal of this work is, in part, to undertake a simple application of inserting preprocessed 

MODIS SCE into the CHPS operational framework to simulate streamflow across basins in Interior 

Alaska. The preprocessing of MODIS data for insertion into the model, which included the MOD10A1 

and MODSCAG data products, along with the CHPS areal averaging eliminated some of the issues 

related to cloud cover and missing data given the comparison between the results provided in Lui et al. 
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(2013) for similar stations in the region. For example, the findings in Lui et al. (2013) for the best case 

(assimilated Air Force Weather Agency–National Aeronautics and Space Administration Snow Algorithm 

or (ANSA) SCE data) indicate NSE improvement for Salcha, Little Chena and Chena at Fairbanks of 

0.30, 0.31, and 0.06. Our study reports comparable NSE improvement values for some stations 

(Chatanika and Goodpaster) for the months impacted by the adjustments although the Salcha and Little 

Chena system differences are closer to those values reported for the raw MODIS data in Lui et al.’s 

(2013) study. The averaging approach and use of a newly developed tools (ANSA, MODSCAG) applied 

in both studies appear to produce slightly superior results from that of MOD10A1. Further analysis is 

required to determine if cloud correction processes, such as those applied in the ANSA study, would act 

to reduce the impact of pixel shifting that is likely a major problem in Alaska (Arsenault et al. 2014) and 

improve streamflow estimates further. Both studies indicate improved representation of internal snow 

pack and improvements in streamflow estimates for some basins, but not all, for these new iterations of 

the MODIS data. 

Differences in the improvements provided by Lui et al. (2013) for the Salcha and Little Chena 

highlight some important variations between the two studies that should be considered. The first is that, as 

noted by the authors, the model simulated streamflow estimates are biased and thus the improvements 

reported in the paper are still poor representations of the streamflow (Lui et al. 2013). The question then 

remains that if a model result without updated observations is already skillful, how much better or 

improved can the model be by added information (which carries its own uncertainty with it)? Perhaps the 

differences between the distributed model in Lui et al. (2013) versus the lumped models used in this study 

is also adding a buffer to the data improvements in the case of this study, and limiting the amount of 

difference or improvement that MODIS SCE insertion can provide. Snow cover data appears to be 

improved at Interior locations within the model when compared to five different SNOTEL stations 

(Figure 5.4), particularly for the melt timing. However, the discharge values improved moderately given 

either MODIS input over the different periods analyzed, and in particular smaller changes are noted over 

the entire period of record (Table 5.6). For the Chatanika basins with limited observed data and poorer 

streamflow simulations however, the improvements are closer to the values shown in the Lui study. These 

results suggest that skill can be added by introducing new observations when the models are performing 

poorly due to inadequate or low quality records. Considering that there are numerous incomplete and low-

quality gages throughout the high latitudes, this result is of great value and indicates the utility of the 

MODIS SCE data in this regard. Another obvious difference is that this study did not run the 

accumulation season with MODIS inputs, which explains the focus on statistics in the melt season (April-

May-June). 
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Calibrations performed are limited in nature and targeted specifically at two parameters that had 

the most influence on improving discharge estimates during the melt season. MFMAX and TAELEV 

control the air temperature and impact the snow cover depletion to speed or retain melt. Previously, the 

APRFC parameters are set to lower MFMAX values. The TAELEV parameter was not equal to ELEV 

and set to different values for north and south aspects. For north-facing upper elevations, 

TAELEV<ELEV so temperatures were lapsed upward to simulate the slower melt rates and cooler 

conditions. For south-facing aspects, TAELEV>ELEV so temperatures were lapsed downward to 

simulate increased melt from solar influence. The updated parameterization where the MODIS data are 

employed requires an upward adjustment of these values because the areal depletion curve is no longer 

controlling the melt rate; thus SCE present on northern, upper elevation slopes in the late spring must 

have higher melt rates applied to melt the snow with the correct timing. The primary reason that the areal 

depletion curves in SNOW17 differs from one that would be derived from actual measurements of SCE is 

that melt rates decline as SCE declines because the remaining snow is usually found in locations where 

snow melts at a slower rate, such as under canopies or on north facing slopes (Anderson, 2006). 

Adjustments to MFMAX across the northern units represented the underestimation of the 

modified areal depletion curves within SNOW17 to accurately capture snow covered area. At many of the 

sites, particularly for the MODSCAG product, the MFMAX for the northern sites required adjustment 

upwards; indicating a lower setting in the APRFC run that is attempting to account for cooler 

temperatures on the northern slopes by retaining the snow on these slopes for longer and hence slowing 

runoff (Franz and Karsten 2013). By more accurately representing the conditions on the northern units of 

the watersheds, the MODIS runs required an increase in the snowmelt factor that would allow for 

initiation of the melt on these slopes. The MFMAX represents the dependency between the melt factor to 

account for a constant SCE curve used in the model; and the ability of the ‘standard’ SCE curves used in 

the APRFC SNOW17 to replicate the conditions of the melt properties within the basins (Shamir and 

Georgakakos 2007). As noted in Shamir and Georgakakos (2007), there is considerable inter-annual 

variability in snow cover depletion and this variability is not represented when the standard APRFC 

model is applied. Thus by improving the internal physical processes in the model, the snowmelt timing 

should improve. However, this still may not translate into improved discharge estimates because 

precipitation and temperature inputs may still be incorrect, and errors in forcing data that generates 

incorrect water equivalents for snow carry larger uncertainty bounds than that which can be impacted by 

changing the weighting factors and timing of snowmelt by adjusting SCE, as undertaken here. 

For the MOD10A1 calibration, fewer parameters were adjusted compared to the MODSCAG 

runs. The end result is that the MODSCAG data has improvements that are slightly greater than the 

MOD10A1 result. The model parameters require greater adjustment for MODSCAG runs as a result of 
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the variability between the two data sets compared to the baseline runs of the model. As shown in Figure 

5.3, the MODSCAG data have a different melt trajectory for northern slopes, and holds snow for longer 

on the south facing slopes of the Upper Chena River basin while the MOD10A1 acts similarly to the 

APRFC melt trajectory for SWE data. Whether this is more correct or not is difficult to say. This region is 

known to have variable melt timing based on south-facing slopes therefore the north and south slopes 

should be differentiated to reflect the physical processes occurring on the warmer south facing slopes 

compared to the cold, and often permafrost dominated north facing slopes (Jones and Rinehart, 2010). 

Although MODSCAG improvement is noted for Chatanika and Goodpaster basins in the streamflow 

statistics, the results for both MODIS versions are overall very similar in this region. This may be due to 

the different canopy adjustments applied to the data sets, or because of the lack of a spectral end member 

for the boreal forest. Regardless, it is not clear that one of these data sets is markedly improving 

streamflow estimates and it is possible that both approaches could be considerably useful as additional 

observations of SCE estimates for the region.  

Two other means by which the CHPS framework can be altered to improve streamflow estimates 

are explored in this work. The interpolation between missing data values is altered from 1 day to 11 days 

to determine how changing the value impacted model results. Generally, the number of days of 

interpolation had little impact on the results, but the longer interpolation period results produced slightly 

higher correlations and improved streamflow estimation. The SCTOL parameter in the SNOW17 model 

indicates a means by which a partial rule-based direct insertion approach can be simulated without any 

additional change to the CHPS model framework. Because this allows for interaction between the model 

and the observed MODIS SCE data, it may be a useful technique for the RFCs to apply during 

recalibration efforts to observed snow cover data. An advantage is noted between the MODSCAG with an 

SCTOL setting greater than to 0.25. However, the basins with the strongest improvement (Chatanika) 

over the APRFC run did not improve using an SCTOL greater than zero because the baseline model 

performed so poorly given the weakness of the underlying observed discharge data. Therefore the RFCs 

may wish to selectively apply this parameter when basins have reliable observed information and the 

MODIS data can be utilized partially in conjunction with the model ADC and partially on the MODIS 

SCE observations. 

5.5 Conclusions 

Although complex tools and distributed models are available in the CHPS system, the RFCs 

across the US are not currently using these features in their river forecasting to estimate flooding and 

droughts. This study focuses on developing tools that can, with a minor amount of testing, be brought into 

the RFC’s CHPS modeling framework and used to improve physical estimates of SCE across watersheds 
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of interest. The method integrates information such as the MODIS remotely sensed snow cover into the 

model framework using a simple calibration approach for the SNOW17 model, and also provides some 

input regarding expected improvements and other possible parameters that can be introduced to improve 

forecasting and simulation of streamflow. These interim modes of research and operations are badly 

needed until a point at which the RFCs are prepared to transition to more complex modeling and data 

assimilation tools. Several outstanding questions are answered regarding the application of this data in the 

RFC models, mainly the limited impact of changing the interpolation length between missing days, and 

also the new algorithms for estimating SCE based on MODIS remotely sensed data. Basins with poor 

quality streamflow observations benefited from the use of the MODIS SCE but improvements are also 

made to the internal snow timing estimates, observed in both the validation against SNOTEL data and 

also through the calibration that corrected the model parameters to better reflect the physical differences 

altering processes occurring on north and south facing slopes. Although marginal differences were 

observed between MOD10A1 and MODSCAG data, the MODSCAG data provided a slight improvement 

over MOD10A1 when improvements to streamflow simulations were observed for both data sets. The 

utility of the MODIS data in CHPS also goes beyond improvements to the streamflow; these tools can be 

used for a number of internal checks for SWE and SCE that are currently under way, such as the ingestion 

of data for multi-model ensemble forecasts (HEFS) (Lindsey, pers. comm). This study opens the door for 

insertion of parameters via assimilation alongside developments such as physically based model usage. 
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5.7 Figures 

 

Figure 5.1 Map of the four study basins with upper and lower divisions shown. Alaska SNOTEL sites are 
shown with black triangles, number indicate SNOTEL sites; 1), Fairbanks International Airport 2) Little 
Chena Ridge, 3), Munson Ridge, 4) Mt. Ryan, 5), Monument Creek, 6) Teuchet Creek, 7) Upper Chena 
(Table 5.2). Legend illustrates topographic variation throughout the basins. Inset shows the Tanana River 
basins location in the Yukon watershed in proximity to Canada and the USA.  
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Figure 5.2 Snow cover fractional extents based on MOD10A1 for the entire region divided into elevation 
zones.  The years 2000 to 2010 are shown, with the mean of all years in the final panel. Grey areas 
indicate dates when there is no SCE information (i.e. cloud cover, sensor error). 
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Figure 5.3 Simulated model output for SWE (mm) versus SNOTEL SWE (mm) for APRFC (solid black), 
MOD10A1 (dashed), MODSCAG (dotted) for October 2000 to June 30th, 2001. The north slope of the 
Upper Chena River basin is shown in blue in left panels, and the south slope is shown in green on right 
panel. 
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Figure 5.4 Study area areal extent of snow cover in the CHPS model framework for a) MOD10A1, b) 
MODSCAG, where white is either missing or cloud covered, and the lumped snow cover extent based on 
c) MOD10A1, and d) MODSCAG for all basins for May 15th, 2001. Values range from 0.1 to 1, or 10% 
to 100% snow cover. 
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Figure 5.5 Study area basin SWE (in) estimates in CHPS model framework for a) MOD10A1, b) 
MODSCAG, and the difference between the both SWE estimates and the APRFC run (positive values are 
higher MODIS, and negative values are higher APRFC estimates, Figure c and d) for May 15th, 2001. 
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Figure 5.6 Streamflow evaluation and validation statistics for R, NSE, MAE, RMSE and PBAIS for 
calibration (first column), validation (second column) and third row (period of record). Values given for 
all five basins within boxplots, 1=APRFC, 2=MOD10A1, 3=MODSCAG, 4= MODSCAG with 
SCTOL=0.25, 5= MODSCAG with SCTOL=0.50, 6= MODSCAG with SCTOL=0.75). 
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Figure 5.7 Upper Chena River basin simulated versus observed flows. Observed (black line), simulated 
APRFC (blue) simulated MOD10A1 (red dash-dot line) and MODSCAG (red dotted line) as the 
cumulative flow distribution for all years 2000-2010. The mean of all years is shown in the final panel. 
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Figure 5.8 Chatanika River basin simulated versus observed flows. Observed (black line), simulated 
APRFC (blue) simulated MOD10A1 (red dash-dot line) and MODSCAG (red dotted line) as the 
cumulative flow distribution. The mean of all years is shown in the final panel. 
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Figure 5.9 Little Chena River basin simulated versus observed flows. Observed (black line), simulated 
APRFC (blue) simulated MOD10A1 (red dash-dot line) and MODSCAG (red dotted line) as the 
cumulative flow distribution. The mean of all years is shown in the final panel. 
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Figure 5.10 Salcha River basin simulated versus observed flows. Observed (black line), simulated 
APRFC (blue) simulated MOD10A1 (red dash-dot line) and MODSCAG (red dotted line) as the 
cumulative flow distribution. The mean of all years is shown in the final panel. 
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Figure 5.11 Goodpaster River basin simulated versus observed flows. Observed (black line), simulated 
APRFC (blue) simulated MOD10A1 (red dash-dot line) and MODSCAG (red dotted line) as the 
cumulative flow distribution. The mean of all years is shown in the final panel. 
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5.8 Tables 

Table 5.1 Sub-basin characteristics, including name, sub-basin ID, area, elev (elevation, mean and range below in brackets), T (temperature, 
January and July), P (precipitation, winter October-March and summer April-September in brackets), Q (annual average daily discharge), % basin 
units (lower, N=north and S=south), % land cover (based on majority cover values*). T, P, and Q calculated for the 2000-2010 water year. 

Name 
Sub-basin 

ID 
Sub-basin 

Unit 
Area 
(km2) 

Elev (m) 
T 

(ºC) 
P (mm) 

Q 

(m3/s/d)
% Units 
(N/S+) 

% Land cover 

Chatanika at the 
Steese 

CRSA2 Lower 395 
475 

(228 – 625) 
-22.5 
(12.6) 

96 
(393) 

11 
42 9 D, 83 C, 4S 

  Upper 558 
780 

(548 – 1513) 
-18.5 
(11.9) 

116 
(441) 

25/33 
0 D 76 C, 15 S / 
2 D, 47 C, 39 S 

Little Chena CHLA2 Lower 802 
380 

(141 – 617) 
-24.4 
(13.7) 

97 
(385) 

6 
78 16 D, 78 C, 5 S 

  Upper 225 
721 

(584 – 1230) 
-21 

(11.5) 
116 

(464) 
10/12 

2 D, 80 C, 13 S /  
8 D, 63 C, 26 S 

Upper Chena UCHA2 Lower 973 
466 

(223 – 626) 
-22.5 
(12.7) 

75 
(370) 

20 
40 9 D, 84 C, 5 S 

  Upper 1462 
806 

(553 – 1584) 
-18.2 
(11.6) 

103 
(426) 

29/31 
2 D, 74 C, 17 S/ 
10 D, 54 C, 33 S 

Salcha SALA2 Lower 1838 
421 

(194 – 624) 
-23.9 
(13.8) 

74 
(364) 

44 
32 18 D, 69 C, 10 S 

  Upper 3900 
924 

(581 – 1768) 
-19.3 
(10.6) 

111 
(475) 

33/35 
2 D, 63 C, 20 S / 
7 D, 50 C, 31 S  

Goodpaster GBDA2 Lower 737 
734 

(411 – 967) 
-20.6 
(11.8) 

83 
(389) 

14 
42 2 D, 84 C, 12 S  

  Upper 1036 
1166 

(873 – 1961) 
-19.3 
(10.1) 

104 
(465) 

29/29 
5 C, 33 D 45 S / 
2 D, 24 C, 56 S 

+denoted for upper units only 
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Table 5.2 SNOTEL stations, map identification, length of record, and average snow water equivalent 
(SWE) used to compare model SWE results. Average SWE is based on the average over the entire period 
of record, and summed over the snow season. 
SNOTEL Station Map ID Record 

Length 
Average 

SWE (mm) 
Fairbanks F.O. 
(47P03) 

1 1983-current 446 

Little Chena Ridge 
(46Q02) 

2 1981-current 595 

Munson Ridge 
(46P01) 

3 1980-current 1016 

Mt. Ryan (46Q01) 4 1981-current 639 
Monument Creek 
(45Q02) 

5 1980-current 554 

Teuchet Creek 
(45P03) 

6 1981-current 461 

Upper Chena 
(44Q07) 

7 1985-current 792 
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Table 5.3 Range of parameter values in the SNOW17 model for APRFC and MODIS runs. Sensitivity indicates whether a parameter is major or 
minor influence in the model. Minimum (Min) and maximum (Max) ranges are provided. 

  Parameter Sensitivity Description Min Max 

SCF Major 
Snow correction factor that adjusts precipitation for gage deficiencies 
and processes not explicitly represented in the model (dimensionless) 0.65 0.95 

MFMAX Major 
Maximum melt factor during non-rain periods occurring on June 21 
(mm/ºC/6 hrs ) 0.9 1.4 

MFMIN Major 
Minimum melt factor during non-rain periods occurring on December 
21(mm/ºC/6 hrs ) 0.2 0.2 

UADJ Major Average wind function during rain-on-snow periods (mm/mb) 0.03 0.03 

SI Major 
Mean areal snow water equivalent below which there is less than 100% 
snow cover and the areal depletion curve is applied (mm) 500 500 

NMF Minor Maximum negative melt factor (mm/ºC/6 hrs ) 0.15 0.3 
DAYGM Minor Constant melt rate at the snow/soil interface (mm) 0 0 
MBASE Minor Base air temperature for non-rain melt computations ( ºC ) 0 0 
PXTEMP Minor Air temperature threshold determining precipitation as rain or snow  (ºC) 1.7 1.7 

PLWHC Minor Maximum liquid water holding capacity of the snowpack (decimal 
fraction) 0.05 0.05 

TIPM Minor Antecedent temperature index (dimensionless) 0.1 0.1 

PXADJ Minor 
Adjustment factor for precipitation, must be between 0.0 and 1.0 
(dimensionless) 0.97 1.21 

TAELEV Minor Elevation associated with the air temperature time series (m) 380 1267 
ELEV Minor Average sub-basin elevation (m) 380 1167 

SCTOL Minor 
Tolerance used when updating water-equivalent or areal extent of snow 
cover with observed data. Range is 0.0 to 1.0. Updates when |Simulated-
Observed| > tolerance *Observed (dimensionless) 0 0.05 
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Table 5.4 Parameters for the MOD10A1 calibration. North (N), south (S) and lower (L) sub-basins are described. The first column indicates the 
parameter value in the APRFC calibration; the second parameter provides the value for the MODIS calibration. Bolded values indicate change. 

Parameters Sensitivity N  S  L  N  S  L  U  L  
  CRSA2 UCHA2 CHLA2 

MFMAX Major 1.00 1.00 1.40 1.40 1.00 1.40 0.90 0.90 1.40 1.40 1.00 1.00 0.90 1.40 1.30 1.40 
NMF Minor 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.15 0.30 0.20 0.30 0.20 0.20 0.20 0.20 0.20 

TAELEV Minor 665 865 1088 988 474 474 708 908 1002 908 465 465 720 820 380 480 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 

                  
  SALA2 GBDA2  

MFMAX Major 0.90 0.90 1.40 1.40 1.00 1.00 0.90 1.00 1.40 1.40 1.00 0.90 
NMF Minor 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.15 0.30 0.20 0.30 0.20 

TAELEV Minor 823 1023 1123 1123 420 420 863 1167 1267 1267 734 734 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 
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Table 5.5 Parameters employed in the MODSCAG calibration. North (N), south (S) and lower (L) sub-basins are described. The first column 
indicates the parameter value in the APRFC calibration; the second parameter provides the value for the calibration. Bolded values indicate 
changes were made. 

 

  

Parameters Sensitivity N  S  L  N  S  L  U  L  

  CRSA2 UCHA2 CHLA2 

MFMAX Major 1.00 1.20 1.40 1.40 1.00 1.2 0.90 1.00 1.40 1.40 1.00 0.90 0.90 0.90 1.30 1.20 
NMF Minor 0.30 0.15 0.30 0.20 0.30 0.2 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.20 

TAELEV Minor 665 665 1088 1088 474 474 708 702 1002 902 465 465 720 720 380 580 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 

                  
  SALA2 GBDA2  

MFMAX Major 0.90 1.00 1.40 1.40 1.00 1.10 0.90 1.00 1.40 1.40 1.00 0.90 
NMF Minor 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.15 0.30 0.20 0.30 0.20 

TAELEV Minor 823 923 1123 1023 420 420 863 863 1267 1163 734 734 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 
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Table 5.6 April-May-June monthly calibration statistics (Cal), validation (Val) and the period of record (Per., 1999-2010) statistics (MAE=mean 
absolute error (m3/sec), NSE=Nash Sutcliff efficiency (unitless), PBIAS=flow bias (%), R=correlation coefficient (unitless), and RMSE=root 
mean squared error (m3/sec) for APRFC, and MOD10A1, and MODSCAG modeled discharge for all basins.  
 Stat Cal. Val. Per. Cal. Val. Per. Cal. Val. Per. 
  APRFC MOD10A1 MODSCAG 
CRSA2 MAE 3.96 4.73 3.07 3.45 4.64 2.96 3.26 4.17 2.85 
  NSE 0.10 -0.87 -0.04 0.27 -0.81 0.03 0.30 -0.40 0.14 
  PBias -17.28 -25.48 -13.08 -16.68 -26.74 -13.01 -18.34 -27.26 -13.53 
  R 0.61 0.19 0.58 0.69 0.21 0.61 0.72 0.37 0.64 
  RMSE 5.17 7.24 4.31 4.65 7.12 4.16 4.57 6.27 3.94 
CHLA2 MAE 1.85 2.88 1.57 1.95 2.97 1.59 2.28 1.98 1.51 
  NSE 0.74 0.58 0.81 0.74 0.57 0.81 0.59 0.73 0.81 
  PBias 4.29 4.84 -2.32 -4.01 -1.48 -4.87 -10.27 -10.98 -7.24 
  Corr. 0.88 0.87 0.93 0.86 0.82 0.92 0.78 0.89 0.92 
  RMSE 2.44 3.46 2.20 2.47 3.51 2.22 3.09 2.80 2.21 
UCHA2 MAE 9.12 8.22 5.34 9.06 8.02 5.39 8.77 8.45 5.32 
  NSE 0.71 0.62 0.81 0.64 0.65 0.80 0.65 0.68 0.81 
  PBias 16.76 0.39 0.21 10.63 -4.49 -0.87 12.66 -0.96 -0.51 
  Corr. 0.87 0.85 0.91 0.81 0.84 0.91 0.83 0.86 0.91 
  RMSE 10.64 12.43 8.43 11.85 11.95 8.66 11.70 11.51 8.40 
SALA2 MAE 17.66 21.93 12.31 19.36 25.13 13.02 20.21 23.59 12.81 
  NSE 0.69 0.63 0.80 0.62 0.53 0.78 0.55 0.53 0.77 
  PBias 17.21 -14.98 0.35 9.90 -18.98 -1.13 10.53 -17.64 -0.85 
  Corr. 0.89 0.83 0.90 0.82 0.78 0.88 0.81 0.78 0.88 
  RMSE 21.1 30.24 19.27 23.54 34.42 20.6 25.53 34.17 20.79 
GBDA2 MAE 7.00 3.91 3.62 6.55 5.37 3.93 6.46 4.62 3.81 
  NSE 0.45 0.90 0.84 0.56 0.83 0.82 0.52 0.86 0.83 
  PBias 28.1 -11.17 1.46 14.29 -17.61 -1.31 17.65 -14.41 -0.37 
  Corr. 0.88 0.96 0.92 0.89 0.95 0.91 0.90 0.95 0.92 
  RMSE 10.05 5.05 5.66 8.92 6.77 6.01 9.40 6.08 5.93 
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Table 5.7 Comparison between RMSE (%) and NSE (in brackets) based on AMJ using SCTOL values of 
0.25, 0.50 and 0.75. Differences are calculated as percent and absolute differences from the MODSCAG 
base run. 
SCTOL  CRSA2 UCHA2 CHLA2 SALA2 GBDA2 

0.25 Cal. -2 (-0.02) 19 (0.14) 11 (0.07) 23 (0.18) -4 (-0.04) 
0.50  -8 (-0.24) -11 (-0.07) -1 (-0.01) 8 (0.08) 17 (0.04) 
0.75  -3 (-0.06) 4 (0.02) 2 (0.01) 7 (0.03) 5 (0.01) 
0.25 Val. -10 (-0.15) 17 (0.13) 15 (0.1) 18 (0.15) 0 (-0.01) 
0.50  -11 (-0.34) -20 (-0.12) -2 (-0.02) 6 (0.06) 22 (0.05) 
0.75  -7 (-0.13) 1 (0.01) 3 (0.01) 6 (0.03) 6 (0.02) 
0.25 Per. -10 (-0.15) 21 (0.15) 12 (0.08) 19 (0.16) -7 (-0.08) 
0.50  -11 (-0.34) -20 (-0.12) -12 (-0.09) 7 (0.06) 17 (0.04) 
0.75  -7 (-0.13) 1 (0.01) -1 (0) 6 (0.03) 4 (0.01) 
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6.1 Introduction 

The discontinuous permafrost zone of the boreal subarctic represents one of the largest 

ecosystems on earth and is vastly understudied with respect to changing hydrologic extreme events. 

Extreme hydrologic events in Alaska’s Interior boreal forest may be exasperated by climate shifts linked 

to the warming of the hydroclimate system in the Arctic (Stocker et al., 2013). These events have the 

propensity to impact ecosystems and infrastructure services in severe and possibly irreversible ways. The 

occurrence, duration, frequency, and timing of extreme events may change, such that existing modeling, 

forecasting and management tools and/or rule based infrastructure designs may be ineffective in the face 

of such changes. As such, it is important for both scientists and managers to understand the risks 

associated with changing streamflow extremes, where vulnerability exist in the context of these changes 

and how to best plan for changes in the face of uncertainties around specific numbers. 

At the global level, Working Groups I (WGI) and II (WGII) of the IPCC’s Special Report on 

Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) 

was released in 2012 (IPCC, 2012). Chapter three of this report specifically details how extremes are 

changing, with emphasis on shifts in temperature, precipitation, droughts and floods. Temperature 

extremes have changed - cold days and nights have decreased while warm days and nights have increased 

and the length of warm spells or heat waves has increased in many regions and in particular in the high 

latitude Northern Hemisphere region (Alexander et al., 2006; Trenberth et al., 2007). Brown et al. (2008) 

found extreme trends in land area annual daily maximum temperature maximums and minimums to be 

increasing across most of the Arctic (1.64-1.95ºC), with annual daily minimum temperature maximums 

and minimums exhibiting the greatest change over the largest percentage of the area (1.98-2.49ºC) based 

on gridded data from 1950-2004. 

Trends in the number of days above the 90th percentile of minimum temperature for Alaska are 

for 1-3 more days per decade, with the southern region around Anchorage exhibiting the greatest trends 

(>2.7 days/decade, Peterson et al., 2008). Extreme temperatures were found to be changing at all stations 

analyzed in Interior Alaska, with the greatest increases (decreases) occurring in the frequency of warm 

(cold) extremes occurring in spring and winter (Stewart et al., 2013). Future projected extreme 

temperature examined globally, including results for Alaska, indicates that most GCMs agree that the 

fraction of warm days and warm nights will increase, and the fraction of cool days and cool nights will 

decrease, with the strongest changes projected for the cool indicators annually and for the summer 

(Orlowsky and Seneviratne, 2012). Kharin et al. (2007) also noted increases in annual daily maximum 

temperature maximums under different emission scenarios on the order of 2-4ºC by the 2090s based on 

results of 12 CMIP3 GCMs. 
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Globally, heavy precipitation events have strong regional variation although statistically 

significant increases are more common than statistically significant decreases (Alexander et al., 2006). In 

Alaska, heavy precipitation extremes have been increasing south of 62ºN, based on the 99.7th percentile of 

daily precipitation (37%) since the 1950s although the results were not statistically significant (Groisman 

et al., 2005). The 95th percentile threshold was noted to be increasing by 18%, and total precipitation 

increased by 10.3%, both statistically significant results. The Canadian Arctic as a whole was analyzed by 

Stone et al. (2000), measuring large changes (increases) in precipitation events over the region from 1950 

onward. Peterson et al. (2008) documented slight decreases in precipitation intensity based on the Simple 

Daily Intensity Index (an index of heavy precipitation) for parts of southern Interior Alaska to the coast, 

with increases in the rest of the state, although these results were not statistically significant. Extreme 

precipitation was noted by Stewart et al. (2013) to be highly variable in Alaska, with only 50% (33%) of 

stations in Interior Alaska showing increasing trends of heaviest 1% of 3-day precipitation for spring, 

summer and fall (winter). Model projections of daily precipitation for indicate that wet day intensity, 

percentage of days with precipitation greater than the 95th quantile, and fraction of days greater than 10 

mm are all increasing in Alaska, with 90% of the 12 CMIP3 GCMs analyzed agreeing on the results 

(Orlowsky and Seneviratne 2011). Kharin et al. (2007) provided projections of return intervals for daily 

maximum precipitation rates, and presented results indicating that Alaska and Western Canada are 

projected to experience between 10-30 % increases in return values by the 2080s. One study used 

downscaled precipitation data to examine extremes, finding a lowered chance of extreme precipitation 

over Alaska; however the author’s suggest that their findings are not robust due to the lack of climate 

stations in the region (Wang and Zhang, 2008). 

Extreme streamflow events have been analyzed across the globe, with no evidence supporting a 

world-wide or a US/Canada increase in flooding, with most of the changes occurring in low flows or 

baseflow values (Lins and Slack, 1999; McCabe and Wolock, 1999; McCabe and Wolock, 2002). On the 

other hand, streamflow peaks in snow-dominated and glacially-fed systems are occurring earlier 

(Regonda et al., 2005; Rosenzweig et al., 2007; Stewart et al., 2005) and earlier breakup is occurring with 

respect to river ice (Beltaos and Prowse, 2009; Smith, 2000; Zhang et al., 2001). Burn (2008) examined 

multiple timing measures for changes in peak streamflow in the Mackenzie River basin and found the 

strongest trends in spring freshet towards an earlier peak across most of the stations for all three time 

periods analyzed (between 1961-2005). Peak flow studies from small scale basins in the Kuparuk River 

watershed in northern Alaska describe two extreme streamflow events that occurred due to high amounts 

of rainfall falling across the entire river basin (Kane et al., 2008; Kane et al., 2003). Due to the rainfall 

amount and intensity, coupled with continuous permafrost conditions which retard infiltration, Kane 
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argues that the largest floods will occur during summer while peak snowmelt events are more common on 

average. 

Extreme events are considered to be changing more than mean events due to the capacity of the 

atmosphere to hold exponentially greater amounts of moisture as temperatures increase, as governed by 

the Clausius-Clapeyron theory (Trenberth, 1999). Due to the constraints on relative humidity, the 

moisture content of saturated air has 6.5% more water vapor for every 1ºC rise in temperature, although 

due to energy limitations it is possible that this could be much closer to 3.4% ºC-1 lower (Allen and 

Ingram, 2002). Therefore, when precipitation occurs it is more likely to be heavier due to the larger 

amounts of water in the air parcel, and the intensity is expected to increase as more moisture comes 

available. The latent heat of moisture also adds energy to the atmosphere, which must be balanced by 

increased evaporation at the surface, leading to an intensification feedback cycle towards increased 

extremes that is particularly relevant in the hydrologic cycle (Arnell, 2001; Huntington, 2006; Rawlins et 

al., 2010). However, as noted by Pall et al. (2007) an overall increase in the upper 50th percentile of total 

precipitation (mm/day) at high latitudes (65ºN) did not follow the Clausius-Clapeyron relation and was 

indicative of changing dynamics across high latitudes that could be related to sea-ice distributions or other 

feedbacks and associated amplifications of the climate occurring in these regions (Serreze et al., 2009; 

Serreze and Barry, 2011). However the extreme changes were larger on the order of 20-30% when 

compared to changes in the mean at high latitudes (Pall et al., 2007). 

The main goal of this work is to provide a local scale understanding of projected changes extreme 

hydrological events in the subarctic domain, specifically focusing on the Chena River basin near 

Fairbanks, Alaska. The primary objectives are to examine changes in temperature, precipitation and 

streamflow (runoff) extremes and to answer the questions 1) are the projected changes in streamflow 

detectable 2) are the maximum streamflow changes projected greater than the mean changes and 3) what 

are the greatest indicators on changing extreme streamflow based on indices of extreme temperature and 

precipitation. The work employed two streamflow models, one semi-lumped model used by the Alaska 

Pacific River Forecast Center (APRFC) to forecast streamflow in Alaska and the other a semi-distributed 

land surface scheme, six downscaled GCMs, two emissions scenarios and two future time periods (2050s, 

2080s). We focus on understanding changes in temperature and precipitation through the use of the 

ClimDEX suite of indices (Alexander et al., 2011), and Generalized Extreme Value theorem to consider 

shifts in streamflow return intervals. The study area, models used, downscaling techniques and analytical 

approaches are described in the Methods sections. The results and discussion present the major findings 

of the paper and the implications for subarctic basins, and the paper concludes with a summary of work 

and future directions. 
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6.2 Methods 

6.2.1 Study Area 

The Chena River basin is situated in the Yukon-Tanana Uplands, within the discontinuous 

permafrost region of the subarctic Alaskan Interior Boreal forest (Figure 6.1). The watershed (5350 km2) 

is a meso-scale headwater system to the Tanana River basin, which drains eventually into the Yukon 

River, entering the Bering Sea via Norton Sound (Figure 6.1). The Chena runs through the town of 

Fairbanks, Alaska and is proximal to long term climate, snowpack and river gaging sites used to develop 

streamflow simulations and for verification of the modeling tools used in this study. Table 6.1 lists the 

main properties of the basin, and Figure 6.2 illustrated the mean annual minimum temperature and 

monthly precipitation totals. The system is snowmelt-dominated with rainfall peaks occurring in August 

corresponding to frontal systems that are common in Interior Alaska. The climate ranges from cold, dry 

winters with average January temperatures of approximately -21ºC, and July average temperatures 10-

14ºC with periodic warm (>20 ºC) and cold spells (-40ºC, Shulski and Wendler, 2007). The region is 

considered to be semi-arid due to low annual precipitation totals (approximately 270 mm, Fairbanks 

International Airport climate station, 1970-2000), with higher precipitation in the hills (Table 6.1, Figure 

6.2). Vegetative cover in the Chena consists largely of black spruce (60%), deciduous (15%), and shrubs 

(12%, Table 6.1). Because of the relationship of tree cover to discontinuous permafrost, the ratio of 

deciduous to coniferous forest cover is indicative of permafrost located under black spruce stands found 

on north facing slopes and low slope/elevations within the basin (Haugen et al., 1982). Due to this fact the 

Chena is hypothesized to have slightly greater amounts of permafrost owing to larger amounts of its basin 

at low elevation while other more upland basins adjacent the Chena (i.e. the Salcha River basin) have 

more shrub upload and white spruce conifers. Soils in the Chena consists of loess at depth of Aeolian 

origin with organic horizons overtop moisture rich permafrost soils on north slopes and moderately well-

draining silt loams under birch and aspen stands on south facing slopes (Haugen et al. 1982).  

6.2.2 Climate and Topographic Data 

Climate data to run both hydrologic models were generated by the Alaska Pacific River Forecast 

Center (APRFC) for use in this project. A technique referred to as Mountain Mapper was applied to 

generate historical gridded forcing data for the region for the time period with 1970-2010 (Schaake et al., 

2004). An inverse distance weighting function was used to convert point station data to gridded fields, 

and then corrects these against the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) climatology for Alaska (Daly et al., 2002). Only the US National Climate Data Center 

Cooperative daily climate stations were used to generate the gridded fields. The data set, which extended 



 
  

200 
 

from Anchorage to Fairbanks, was comprised of 82 minimum and maximum temperature stations and 180 

precipitation stations. A variable mix of these stations was combined for each day to form complete 

records at each grid cell over the entire time series, dependent upon the record availability and grid cell 

proximity to the station. The updated PRISM climatology data at 800 m (monthly average temperature 

and total precipitation, 1971-2000) was used for monthly correction (Gibson, 2009). The final 800 m cells 

were resampled by mean condition to 3.2 km by 3.2 km and values were extracted to a 1/16th grid 

(approximately 4 km by 7 km in Interior Alaska). This gridded data set was then preprocessed specifically 

for each hydrological model accordingly, described below. Topographic information required for 

estimating elevation was derived using the 60m National Elevation Dataset (NED) digital elevation model 

(DEM) updated for Alaska in 2012 by the US Geological Survey (Gesch et al., 2002). 

6.2.3 Models 

6.2.3.1 SAC-SMA 

The Sacramento Soil Moisture and Accounting Model (SAC-SMA), coupled with SNOW17, is 

the model used in Alaskan river basins by the APRFC to forecast streamflow conditions across the state 

of Alaska (Burnash et al., 1973; Peck, 1976). SAC-SMA is run in a semi-lumped mode, and was applied 

to basin divisions for upper and lower sub-basins and for north and south facing slopes for snow and 

rainfall-runoff accounting. The model ingests average areal mean temperature (ºF, Mean Areal 

Temperature, MAT) and precipitation (in, Mean Areal Precipitation, MAP) on a six-hourly time scale for 

the period of interest for each lumped sub-basin. For historical data analysis and calibration in Alaska, the 

APRFC runs these models using the MAT/MAP data. However, for this work a gridded data set was 

required for downscaling of the GCM data to generate the future projections of temperature and 

precipitation in both hydrologic models. To generate lumped MAT/MAPs from the gridded climate data, 

all grid cells in each sub-basins were averaged and then converted from daily to six-hourly format using 

seasonally weighted diurnal fluctuations adapted specifically for Alaska 

(http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/27ofs_mat.pdf), as follows, 

 

12Z-18Z=WN1*TNd-1+WX1*TXd ( 6-1 ) 

18Z-0Z=WN2a*TNd-1+WX2*TXd+WN2b*TNd ( 6-2 ) 

0Z-6Z=WX3*TNd+WN3*TNd  ( 6-3 ) 

6Z-18Z=WN1*TNd-1+WX1*TXd  ( 6-4 ) 
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Where d is the current hydrologic day, time is in Zulu hours and WXn and WNn are weighting 

factors for Alaskan river basins, listed for each season in Table 6.2 (NWSRFC, 2005). Hours were 

adjusted accordingly to match with CHPS local timing (+9 hrs GMT). The monthly climatological (1970-

2010) MATs provided by APRFC were used to bias correct the gridded temperature data developed using 

the Mountain Mapper technique (Schaake et al., 2004). This step was included because the gridded 

temperature derived from COOP stations and PRISM data were too cool and delayed snowmelt in the 

SAC-SMA/SNOW17 models (unpublished results). 

The SAC-SMA model has been widely applied to estimate streamflow runoff in basins across the 

United States (Boyle et al., 2001; Gan and Burges, 2006; Gupta et al., 1998) and globally (e.g. Vaze et al., 

2011). The model moves water into either upper or lower storage zones that conceptually represent soil 

interception or deep groundwater storage. Interception water in the upper zone flows to the lower zones 

via downward percolation or can run off directly via interflow when the upper zone layers become 

saturated and precipitation rate exceeds infiltration. Lower zone water can be held in tension storage and 

either may contribute to baseflow runoff slowly over time, or can run off more quickly over shorter 

durations. Drainage from the upper and lower zones follows gravity drainage and is governed in part by 

both water delivery from the upper zone and soil moisture in the lower zone. Tension water is driven by 

potential evapotranspiration (PE) and diffusion; with a fraction of the lower zone unavailable for PE as it 

is considered below the rooting zone. PE estimates are provided by the APRFC based on an assessment of 

historical PE from pan evaporation data and in some cases Thornthwaite estimates (Anderson, 

2002). These data are used to develop a general linear relationship between PE and elevation to estimate 

average monthly PE values for a generic low-elevation site. The APRFC calculates a coefficient to apply 

the low elevation PE values to monthly PE estimates for the mean elevations of the sub-basins.  The 

coefficient, C, is derived using the equation 

 

C	=	0.9- e-1000 ·0.00011  ( 6-5 )	

where e represents elevation in feet. For example, if the catchment mean elevation is 2350 ft, the 

coefficient is 0.75.  Finally, a monthly PE adjustment factor is applied to account for vegetation changes 

during the year.  The result is an evapotranspiration demand estimate that is used in the Sacramento 

model, described in the proceeding section. 

The SNOW17 snow model is a single layer temperature index based snow model that calculates 

snow accumulation and ablation using empirical formulas to estimate heat and liquid water storage, liquid 

water throughflow and snowmelt (Anderson, 1976). The model is designed for river forecasting and has 

been used operationally by the NWS RFCs since the mid-1970s. The only input requirements for 

SNOW17 are temperature and precipitation, at the time step of the model (6 hrs). There are 12 parameters 
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in the SNOW17 model, including the areal depletion curve; sensitive or ‘major’ parameters control the 

model while less sensitive or ‘minor’ parameters have little impact (Table 6.3, He et al., 2011).  

A unit hydrograph model is used distribute the runoff produced by the SAC-SMA model. Each 

sub-watershed has its own unit hydrograph, calculated based on basin elevation, to translate the runoff 

through the channel system to the gage location. Simple routines sum the unit hydrograph outputs to 

calculate simulated streamflow at the basin outlet. While downstream basins incorporate routing models, 

e.g. Lag/K, this study focuses on headwater basins so no routing models are needed.  

Parameterizations for the SAC-SMA and SNOW17 models were adopted from the APRFC 

modeling system used to forecast river flows in Alaska. These parameterizations were adjusted based on 

the MAT/MAP 1970-2010 lumped forcing data during calibration, which was run from 1970-2010 

following the normal protocol for calibration adopted by the APRFC. Following this, the gridded, bias 

corrected MAT/MAPs were used to calibrate SNOW17 values to address any outstanding snowmelt 

issues arising from slightly different climate data. Results are provided in Table 6.3 in comparison with 

VIC calibration and validation time periods, along with the period of record. 

6.2.3.2 VIC 

The Variable Infiltration Capacity (VIC) hydrologic model is a distributed model that was 

originally developed as a land surface scheme (Liang et al., 1994; Liang et al., 1996). VIC contains 

explicit formulations for snow accumulation, snow ablation, evapotranspiration, and frozen soils and 

solves the full energy balance at a sub-daily time scale to simulate daily baseflow and runoff for 

individual grid cells. These fluxes are then collected and routed downstream using an offline routing 

model to simulate streamflow (Lohmann et al., 1996; Lohmann et al., 1998). 

VIC was implemented at a 1/16th degree grid scale (4 by 7 km) in four Interior Alaskan 

watersheds, the Chatanika, Chena, Salcha and Goodpaster systems, although results are only presented 

herein for the Chena River basin. Methods to set up VIC generally followed the approach described in 

Bennett et al. (2012) and Schnorbus et al. (2014). VIC was run on a 3 hourly basis using energy balance 

and frozen ground modules and results were output at a daily time scale. VIC’s primary input 

requirements are daily minimum and maximum temperature (ºC), precipitation (mm) and wind speed 

(m/s). To generate the VIC gridded climate data, the minimum and maximum temperature and 

precipitation data were extracted from the Mountain Mapper upscaled grids for each 1/16th grid cell for 

1970-2010. To correct the APRFC MAT data, the same climatological bias correction approach was 

applied to the VIC temperature grids to maintain consistency between the two data sets. Daily wind 

speeds were generated by resampling the National Centers for Environmental Prediction-National Center 

for Atmospheric Research (NCEP-NCAR) reanalysis (Kalnay et al., 1996) 10-m wind speed for all 1/16th 
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degree grid cell. To account for overly high estimates of wind speeds for this region, values > 4 m/s were 

adjusted (-1.3 m/s) based on analysis of local data from the Bonanza Creek watershed 

(http://www.lter.uaf.edu/,  results not shown, Mölders and Kramm, 2010). 

VIC’s fluxes are generated based on distinct parameterizations for soils, vegetation, and 

topographic information, which are generally prepared using available local data, or when no local 

information is available, using regional or global scale data. Due to a lack of available soils data for the 

entire region, a global soils classification was implemented using a soil pedon database created by the 

International Soil Reference and Information Centre (Batjes, 1995) and merged with the FAO-Unesco 

Digital Soils Map of the World (FAO, 1995) to create the 05' (5 arc minutes or approximately 50 km2 a 

side) Soils Program in Global Soil dataset (Global Soil Data Task Group, 2000). Three soil depths were 

used: 0.1 m, 0.3 m and a variable depth for the third soils layer based on topographic scaling with 

shallower depths at higher elevations, to a maximum depth limit 1.8 m at low elevation sites (the 

algorithm was originally designed for estimating soil depths in the University of Washington’s DHSVM 

model). Soil textural classes were extracted directly from the Soils Program database, along with 

saturated hydraulic conductivity, bulk density, and porosity, adjusted as suggested by Dingman (Figure 6-

4 in Dingman, 2002). Field capacity is estimated from soil textures using the formulations of Cosby et al.  

(1984). Wilting point was estimated based on Soils Program derived estimates that utilizes the van 

Genuchten equation (Table 5.1.1 in Rawls et al., 1993). Water retention was estimated using the Brooks-

Corey calculations as listed in Tables 5.1.1 and 5.3.3 of Rawls et al. (1993). Bubbling pressure and 

residual water content was based on Brooks and Corey (Table 5.3.3 in Rawls et al. 1993). Soil particle 

density was obtained from Skopp (Skopp, 2000). Initial soil moisture and residual soil moisture were 

estimated from a study from British Columbia (Schnorbus et al., 2010). Rooting depths were formulated 

from recommended values and adjusted to the boreal forest cover (University of Washington’s VIC 

model website http://www.hydro.washington.edu, Viereck et al., 1992).  The rate of exponential decrease 

of saturated hydraulic conductivity with soil moisture was taken from Demaria et al. (2007).  The 

infiltration curve rate, and three empirical parameters used in the baseflow generation were calibrated 

following the common approach for VIC model calibration (University of Washington’s VIC model 

website http://www.hydro.washington.edu, Shi et al., 2008). 

The frozen ground module in VIC was implemented for select cells in the basins.  Where black 

spruce cover comprised greater than 50% of the grid cell, these grid cells were considered to be 

‘permafrost dominated’ and were subjected to the following conditions; saturated hydrologic conductivity 

was reduced by a factor of 10 and the sand (quartz) content was set to zero in the first soil layer, following 

testing of the model in a nearby basin (Endalamaw et al., 2013). Damping depth was set to 10 m 

following Smith et al. (2010) and 13 soil nodes were utilized. A complete description of the frozen 



 
  

204 
 

ground module is described in publications of Cherkauer and Lettemaier (Cherkauer, 2001; Cherkauer et 

al., 2003; Cherkauer and Lettenmaier, 1999; Cherkauer and Lettenmaier, 2003). In brief, the thermal 

fluxes are calculated in the soil column to determine ice content and the heat balance is then calculated 

based on ice content. Soil moisture fluxes are calculated separately for frozen, unfrozen and thawed soils. 

Volumetric heat capacity and thermal conductivity are calculated based on the moisture flux solutions. 

Soil thermal fluxes are solved for each node (n=13) in the soil temperature profile using an explicit finite 

difference approximation of the soil thermal flux equation. For this application, the finite difference 

approach was only utilized for the last time step, and the explicit heat flux calculation as described in 

Liang et al. (1994) were used to reduce computational time, and because testing with and without these 

settings resulted in no difference to flow estimates. 

Vegetation data were generated using a mosaicked vegetation classification map produced by the 

Alaska Natural Heritage Program that contained estimates of fine forest classifications such as black 

spruce and alder (http://aknhp.uaa.alaska.edu/ecology/vegetation-map-and-classification-northern-

western-and-interior-alaska/), considered to be of prime importance for the classification of forest cover 

in the region. Using this map as a starting point, north facing aspects were combined with elevations < 

400 m and intersected with the conifer forest cover from the above mentioned data set to produce an 

enhanced black spruce class. The final classification contained eight classes where water, burned area, 

rock outcrops, and perennial snow were treated as bare ground. Leaf Area Index (LAI) values for the 

region were determined for each vegetation class based on the Global Inventory Modeling and Mapping 

Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) data set (Zhu et al., 2013). The 

data set is available at a 1/12th of a degree resolution for 15 day intervals, from 1981-2011. For this study, 

the average monthly 2000-2010 data from the second monthly reading was utilized. Original results 

appeared to be higher than those observed within the Caribou Poker Creek Research Watershed and thus 

were corrected downward accordingly (J. Young, pers. comm.). The remainder of the vegetation library 

parameters was selected based on the University of Washington data set and a study based in British 

Columbia, adjusted for local vegetation characteristics (Nijssen et al., 2001; Schnorbus et al., 2014; 

Viereck et al., 1992). 

Elevation bands are used to represent sub-grid topography to improve model performance in 

locations with mountainous terrain where elevation affects snow pack accumulation and ablation.  Five 

elevation bands were populated, with a maximum range of 200 m per band; thus not every band was 

utilized at all times. Within the elevation bands, temperature change is based a lapse rate of 6.5°C per 

1000 m multiplied by the difference between the grid cell elevation and the median elevation of the band.  

The variation of precipitation with an elevation band is determined by calculating the amount of 

precipitation occurring in each elevation band as a fraction of the grid cell. 
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Calibration of the VIC model was applied using the multi objective calibration program 

MOCOM, which provides an automatic calibration procedure (Yapo et al., 1998). The soil parameter b-

infiltration and four parameters governing baseflow generation were used to calibrate the model. 

Objective functions included the R2, Nash Sutcliff efficiency, and the natural log of Nash Sutcliff 

efficiency. The model simulations are compared with the Unites States Geological Survey (USGS) 

streamflow at the Chena River gage (Table 6.1). The calibration period used was 1980-1985. Results for 

the two basins are provided in Table 6.3. 

6.2.4 GCMs 

The Coupled Model Intercomparison project version 5 database (CMIP5) of GCMs and emissions 

scenarios were extracted and applied in this study (Taylor et al., 2012). A subset of six, top performing 

GCMs were chosen based on their relative performance over the Alaskan domain (Bennett and Walsh, 

2014), model availability and completeness of records within the CMIP5 database. In all cases, the first 

physical realization from the ensemble members was retrieved. The six models selected were the 

Canadian Earth System Model CanESM2, Centre National de Recherches Météorologiques CNRM-

CM5.1, Institut Pierre Simon Laplace Climate Model IPSL-CM5A-LR, Japan’s Model for 

Interdisciplinary Research on Climate (MIROC), Max-Planck Institute Earth System Model MPI-ESM-

LR, Japan Meteorological Research Institute’s MRI-CGCM3 (see Table 2 in Bennett and Walsh, 2014 for 

more information on these models). The Community Climate System Model CCSM4 utilized in Bennett 

and Walsh (2014) was not included in this work due to the requirement for wind speeds to run the VIC 

hydrologic model; MIROC5 was used as an alternate because it also ranked high in the model comparison 

for Alaska. 

GCMs were downscaled at a monthly resolution using the Bias Correction Spatial Downscaling 

(BCSD) approach, which is a widely used downscaling technique adopted by many different climate 

users across the US and North America (Werner, 2011; Wood et al., 2004) and shown to be among the 

better approaches for representation of extreme values (Bürger et al., 2012; Bürger et al., 2013). The 

technique uses detrended monthly time scale GCM data and corrects spatially and temporally using a 

quantile mapping approach. Detrending is applied to ensure that any trend in the GCM is retained through 

the downscaling procedure. The method bias corrects based on the differences within the monthly 

quantile maps. Non paired data falling outside the quantile map are estimated based on a Weibull fit for 

precipitation minimum, and a Gumbel fit for precipitation maximum; a Gaussian fit is applied for 

temperature (Bürger et al. 2012). The final step is to re-apply the trend and then reduce the GCMs to a 

daily time step using a temporal disaggregation that matches a monthly time series from the past with 
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future monthly data values. The downscaling code used in this work was developed by Alex Cannon at 

the Pacific Climate Impacts Consortium in Victoria, BC, Canada. 

Two emission scenarios were analyzed in this work, Representation Concentration Pathway 

(RCP) 4.5 and 8.5, and are considered to be “low-end” and “high-end” emission scenarios (Moss et al., 

2010; Stocker et al., 2013), with the numerical values (2.6, 4.5, etc.) indicating the end-of-century (year 

2100) radiative forcing in Watts per m2 resulting from anthropogenic inputs to the atmosphere (but not 

including changes in land use). Regional average minimum and maximum temperature, total precipitation 

and wind speed for each season are provided for the GCM ensemble for both scenarios as differences 

from the 1971-2000 climatology (Table 6.5), however for brevity, we focus only on RCP 8.5 for the 

remaining tables and figures. 

6.2.5 Verification 

Both hydrologic models were verified by running the calibrated results over an adjacent temporal 

period to the calibration years. Three verification statistics were utilized, the correlation coefficient (R), 

Nash-Sutcliff efficiency, and natural log of Nash-Sutcliff efficiency. 
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where N is equal to the number of data points (i.e. sub-daily streamflow realizations), i is the time step 

(days), S is the simulated streamflow (m3/s), and Q is the observed streamflow (m2/sec). Results are 

provided for both models for the calibration, verification and the historical periods of record (1970-2005), 

respectively, in Table 6.3.   

6.2.6 Analysis 

The Expert Team on Climate Change Detection and Indices (ETCCDI) developed a set of 

extreme indices that could be used for analysis of extreme events (Alexander et al., 2006; Frich et al., 

2002; Klein Tank et al., 2009; Zhang et al., 2011). The purpose of the ETCCDI indices was to have a 

compilation of reproducible, common index variables that could be easily calculated and were based on 
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available daily climate data such as air temperature and precipitation (Zhang and Zwiers, 2013). The 

ETCCDI indices can be classified into three categories: monthly or annual minimum or maximum values 

of temperature and maximum daily values of precipitation; counts of the number of days exceeding a 

specific baseline climatological threshold; and counts of the number of days exceeding a specific fixed 

threshold. There are 27 ClimDEX indices in total (Zhang and Zwiers, 2013). ClimDEX statistics used in 

the analysis rely upon most of the major 27 indices described by the ETCCDI (Table 6.4). 

The R ClimDEX software package was used to calculate indices for each GCM and scenario 

using the downscaled gridded 1/16th degree fields, and then results were averaged over the region. 

Analysis was calculated based on six GCMs, for each emission scenario, averaged over the Chena River 

basin, upon which ClimDEX statistics were calculated. The median value of all GCMs for RCP 8.5 

emission scenario averaged over the Chena basin are presented in Figure 6.3, 6.4, Figure 6.9, and Table 

6.6 for the quantile results across individual GCMs. The Fairbanks Airport Global Historical Climate 

Network (GHCN) level one climate station (USW00026411) is used for comparison to the ClimDEX 

results for gridded historical observations (Figure 6.4). 

Streamflow output was analyzed for the SAC-SMA model and VIC using the same techniques. 

Values from 1971-2005 were seamed together with future model projections (2006-2099) to ensure all 

GCMs had the same baseline for correction. Monthly and seasonal minimum, maximum and mean flows 

were calculated based on this time series for each GCM and hydrologic model. The range of all GCMs 

and the median are used to present results in figures and tables as described in the figure/table captions. 

The GEV analytical approach is outlined in Chapter 3 using the methods described in Cannon 

(2010; 2011). The statistical approach focused on annual streamflow return intervals. Return intervals 

were generated for the AICc minimized model results, based on the mean of 100 bootstrapped iterations 

for 2, 5, 10, 20, 50 and 100 year time periods for the historical (1971-2000), the 2050s and the 2080s. The 

final return intervals are based on the mean of the covariate (time, i.e. for 1971-2000 this would be 1985). 

6.3 Results 

6.3.1 Calibration and Verification 

The SAC-SMA model calibration, verification and period of record results are provided in Table 

6.3 for the Chena River basin. Although calibration and verification periods were not explicitly used 

during the calibration phase of the SAC-SMA/SNOW17 model, the same range of dates applied in the 

VIC model calibration are provided for context. The SAC-SMA performs well in this area. The VIC 

model performs at a lower skill level; flow volume biases and baseflow statistics (Nash-Sutcliff efficiency 

natural log values) tend to be stronger than the peak flow matching (Nash Sutcliff Efficiency). The 
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average historical monthly simulations for the SAC-SMA model and the VIC model are plotted against 

the observed streamflow in Figure 6.5. Timing in SAC-SMA is matched well with the observed in terms 

of the spring flood peak, while the VIC model does not match the flood peak timing as well 

(approximately one month late). The VIC model simulates the rainfall peak and under simulates the mean 

values, while the SAC-SMA model over simulates the maximum (but captures the mean appropriately). 

Both models tend to underestimate low flows through the summer, fall and winter time periods.  

6.3.2 Temperature and Precipitation 

Temperature and precipitation gridded data developed for this project provides a reasonable tool 

by which to examine changes in extreme events across the region. Average gridded historical (1970-

2010) daily minimum and maximum temperature and monthly precipitation for the Chena River basin are 

illustrated in Figure 6.2, and spatially in Figure 6.3. Regionally averaged seasonal results (ensemble) are 

shown for temperature, precipitation and wind speeds shown as a difference from the historical baseline 

period for the two time periods, 2041-2070 and 2071-2100 (RCP 8.5) in Table 6.5. Regional spatial 

variability in temperature results is minimal given the relatively small region and the use of an ensemble 

average (see standard deviations in Table 6.5, Figure 6.3). However, differences between the two time 

periods and across the seasons is discernable (Table 6.5). The largest projected changes in minimum 

temperatures occur during the winter and fall, with increases up to 8ºC. Maximum temperatures 

projections exhibit a similar pattern of change, with increases that are slightly larger in spring on average 

and slightly smaller in fall on average compared to minimum temperature changes (Table 6.5). 

Changes in projected precipitation totals over the seasons have a much more variable spatial 

pattern across the watersheds (see standard deviations in Table 6.5). The precipitation changes are always 

positive in the region, with stronger increases projected for the spring and summer. The most notable 

change occurs during the summer for the 2080s (+82 mm, Table 6.5). Winter increases in precipitation 

are small in comparison to other seasons but not insignificant (+10 mm, Table 6.5). Precipitation 

increases are always larger for the 2080s as opposed to the 2050s. Absolute values of precipitation 

increase strongly in the upper reaches of the adjacent Salcha River basin during spring and summer in the 

2050s, but percentage change is greatest in the lowlands (Figure 6.3). However, by the 2080s, widespread 

increases are noted for all regions of the study area (+73 mm), with the highest absolute increases 

observed again in the upper elevations. In the fall, larger increases are observed in northwest of the Chena 

River basin that strengthen in the 2080s. 

Changes in extreme temperature and precipitation indices are compared against the changes in 

minimum and maximum temperature and precipitation based on the median of all GCMs for the Chena 

River basin in Figure 6.4. The dual lines indicate the different scenarios (RCP 4.5 vs RCP 8.5); dashed 
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lines illustrate the extremes while the solid lines indicate the mean condition. The emission scenarios for 

mean maximum, minimum and extreme temperature start to diverge around the 2060s, differences 

between scenarios have distinct signals after this time period (Figure 6.4). However, minimum extreme 

temperature and precipitation (bottom panel) have fairly distinct signatures as early as the 2050s. Each 

value (average or extreme) tends to have a similar trajectory in terms of its trend, although the variability 

is quite different. The spread in precipitation extremes compared to mean total monthly precipitation is 

notable, with large deviations observed, particularly around the 2020s. The variability tends to taper 

somewhat by the end of the 21st century. The historical average values and extreme values (in this case, 

TXx, TNn, Rx5) considered in comparison to data from the Fairbanks International Airport station show 

good correspondence to the downscaled gridded extreme values (Figure 6.4). Discrepancies in terms of 

the variability of extreme precipitation and with respect to a low bias in average extreme maximum 

temperatures are somewhat expected given that the smoothing over high and low elevations presented by 

the gridded data for the Chena River basin (Figure 6.4). An additional verification of the data set is the 

quality results that it produces for streamflow simulation for two separate hydrologic models (Table 6.3). 

Annual ClimDEX index values are provided as absolute differences for RCP 8.5 illustrate 

changing extremes in the Chena River basin (Table 6.6). The results are presented for quantile 

distributions (0, 50, 75 and 99%) of all six GCMs results to show the spread across models (RCP 8.5). 

Temperature differences (TXx and TXn and TNn/TXn, see Table 6.4 for definitions) are increasing in the 

future for most models (50%), with a greater spread across models projected for TNn and TXn values 

(minimum values for minimum and maximum temperatures). Daily temperature ranges are not projected 

to change by a large amount, and cold nights and days and warm nights and days are warmer in the future. 

Summer days increase, while icing and freezing days decrease by a greater amount; overall many more 

warm spells are projected but cold spells change little (Table 6.6). Precipitation indices, examined as a 

percentage change from the historical, indicate large increases in the moderately high precipitation 

(R95Pt, R10mm) indices compared to those changes in R99Pt and R20mm (results not shown). A more 

muted response is observed for the simple daily intensity index (SDII). Total precipitation is projected to 

increase with a wide range of responses across GCMs. This finding opposed another study, which 

reported the largest changes in Rx5, and illustrates the value of downscaling results for local scale studies 

as discussed by the authors (Sillmann et al., 2013). Notably, for precipitation, there are only small 

differences in the changes between the 2050s and the 2080s, indicating that precipitation increases will be 

experienced as soon as the 2050s, and those changes are sustained (and become larger) into the 2080s 

(Table 6.6). 
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6.3.3 Streamflow 

Streamflow simulations are shown for the historical period (dashed lines) compared to the future 

time periods (solid lines) in Figure 6.6 and Figure 6.7 for the Chena River basin. Maximum and minimum 

median values (black line) streamflow estimates are provided for the range of all GCMs (grey envelope) 

for the RCP 8.5 scenario, and for the 2050s compared to the 2080s. Significant maximum streamflow 

changes are denoted by open triangles (95% confidence interval). These plots show a dramatically 

different future scenario for streamflow condition, particularly for maximum streamflow, while minimum 

streamflow appears to change very little (Figure 6.6, 6.7). The historical streamflow illustrates a classic 

snowmelt driven system where the peak flow is clearly identified with the melting of over-winter storages 

of snow and ice in during May and June. The future scenario illustrates a dual-peak system which has 

comparable peaks for both snowmelt and rainfall seasons in the 2050s for the Chena.  

By the 2050s, snowmelt peaks are still larger than the historical in the SAC-SMA however the 

peak timing has shifted by approximately one month (Figure 6.6, upper panel). By the 2080s, however, 

the rainfall peak has surpassed the snowmelt peak and is the dominant hydrologic event in the year and 

occurs in August in the 2050s and reaches a maximum in September in the 2080s (Figure 6.6, lower 

panel). The VIC model, on the hand, represents a higher rainfall peak in both the 2050s and the 2080s 

(Figure 6.8). The snowmelt peaks occur in June and has a comparable magnitude, although the melt 

begins in early March (as opposed to April in the historical data) and appears to be much more protracted 

in terms of duration. The rainfall peaks occur in August in the 2050s but is spread over August and 

September during the 2080s (Figure 6.7). Minimum streamflow changes little in both models. The SAC-

SMA shows a larger shift upward in low flows while the VIC model shows winter increases and summer 

declines (Figure 6.6, 6.7). 

The range of results illustrated by the grey envelope indicate that changes are more variable and 

therefore have greater uncertainty around the streamflow maximums and around the peak flow periods, 

particularly in the 2080s for the SAC-SMA model (Figure 6.6). Both models tend to have greater 

uncertainty around the snowmelt and rainfall peaks. The minimum flow response has considerably less 

uncertainty around it compared to the maximum flow response for both models. However even the 

smallest of the GCM responses in both hydrological models represents a shift away from snowfall peak 

towards a peak rainfall driven streamflow regime in the Chena (Figure 6.6, 6.7). 

Return levels are provided across the range of models to illustrate the annual historical and 

maximum flow responses at different intervals for the Chena (Figure 6.8). The upper whiskers indicate 

the maximum of the maximum flow values from a single hydrological/GCMs and tend to have a larger 

range, while the lower whiskers (minimum maximum flow values) have a much narrower range. The 
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boxplot results provides the range of responses for all GCMs and both hydrologic models and for each 

time periods (right is historical, left is 2080s and middle is the 2050s). The historical period has much 

smaller deviations given that the historical baseline is the same for each model, thus the range within the 

boxplots represents the differences between the two hydrologic baselines. This range increases as the 

return interval increases. By the 2050s, all return levels have increased, particularly at the 50 and 100-

year return level (Figure 6.8). The ranges in the boxplots are smallest in the 5-year return intervals for the 

2050s, but from then on the ranges are fairly similar. The boxplot range illustrates the peak snowmelt 

representation in the hydrologic models where the sensitivity of snow to changes in temperature and 

precipitation plays a large role in the boxplot variability (Dickerson‐Lange and Mitchell, 2013; Karl et al., 

1993; Knowles et al., 2006). However, by the 2080s the rainfall regime shift dominates maximum 

streamflow return levels and there is more coherence between the hydrologic models (Figure 6.8). 

Instead, the range in boxplots in the 2080s is accountable to difference between GCMs. Return intervals 

for the 5, 20 and 50-year events illustrate increases by the 2080s of 1.6 times the historical flow values, 

while the 100-year return events double by the 2080s. 

6.3.4 Median to Maximum Flow Changes 

Historical flow magnitudes, exceedances and future changes in exceedances are provided for the 

5th, 95th and 99th percentiles compared to the median (50th) percentile annual flows for the median of all 

GCMs and both hydrologic models under RCP 8.5 (Table 6.7). The 99th percentile increases by 83% by 

the 2050s and 168% by the 2080s, compared to the 95th percentile which increases by 53% in the 2050s 

and the 98% by the 2080s. The 5th percentile flows are shown as negative numbers, indicating that 

historical low flow values are only encountered 2% of the time, and never encountered in the 2080s. The 

50th percentile or median flow values, on the other hand, only show moderate increases to the 2050s of 

15%, and 34% by the 2050s.The differences in flow responses are five-fold between the 50th and the 99th 

percentile. Therefore, examining these changes using the mean flow condition would lead to a drastic 

underestimate of the changes projected for floods. This is important because of the nature of floods to 

impact property and infrastructure with a single occurrence. 

6.3.5 Relationship of Maximum Streamflow to ClimDEX Indices 

The relationship between ClimDEX indicators and maximum streamflow was considered by 

examining correlations and linear relationships between the ClimDEX indices and streamflow maximums 

at an annual time scale.  Figure 6.9 illustrates the correlation matrix between ensemble annual maximum 

streamflow and linear regression is discussed in the text. Results indicate that streamflow changes are 

positively and significantly related to temperature indices (TXx, TNn, TNx, TXn, and Tn90p, Tx90p), 
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while streamflow is negatively and significantly related to temperature indices Tn10p and Tx10p. 

Summer days and length of dry spells are positivity and significantly related to increasing maximum 

streamflow while icing and freezing days are negatively correlated. The strongest positive relationship is 

exhibited between streamflow and the percent of days when maximum temperature is greater than the 90th 

percentile, the annual count of summer days, and the strongest negative relationships are icing days and 

the percent of days when maximum temperature is greater than the 10th percentile. All precipitation 

indices are positively related to increasing streamflow maximums with the strongest relationship found 

for total precipitation amounts. 

6.4 Discussion 

Future changes in average temperature minimums and maximums have a strong and consistent 

signal across the region and indicate a pattern of increasing minimum and maximum temperatures 

through to the 2100s (Table 6.4, Figure 6.4), a finding that is now common knowledge in our 

understanding of climate change shifts expected in the subarctic and Arctic regions (ACIA, 2005; Stocker 

et al., 2013). Minimums increase more than maximums by the 2080s under the RCP 8.5 scenario within 

the Chena River basin, a finding that is reflected in other studies (Bennett and Walsh, 2014; Sillmann et 

al., 2013). Although historical temperatures have been increasing in the region, and the Arctic as a whole, 

the projected increase in precipitation is in contrast to historical uncertainty in direction or trend of 

precipitation change noted in the literature for northern Alaska (Hinzman et al., 2005; McAfee et al., 

2013), or moderately increasing trend (+20%) in the past forty years for Fairbanks, Alaska (data 1966-

2003, ACIA, 2005; McBean et al., 2004). More recent studies have shown that precipitation for Alaska 

shows an increase of approximately 10%, with the most amount of change observed in recent decades 

(Shulski and Wendler, 2007; Stewart et al., 2013). The projections for precipitation indicated herein 

correspond with precipitation projections in Alaska’s Interior region indicating increases of 

approximately 10-15% by the 2050s and by 20-25% by the 2080s under the A2 CMIP3 ensemble 

scenario (Stewart et al. 2013). 

Maximum streamflow changes in the subarctic snow dominated systems of Interior Alaska are 

influenced by the changing nature of precipitation and particularly the change in form of precipitation that 

is projected to occur in these basins. The change in the dominant form of streamflow from snowfall to 

rainfall indicates a significant and major regime shift for these basins. By the 2050s, the SAC-SMA 

model projects a maximum streamflow peak from rainfall comparable in magnitude to the snowmelt 

peak. The range of models response indicates that there are some models that project less severe changes, 

with the lowest of model scenarios suggesting that the streamflow maximum will be similar; however 

timing of streamflow in the spring are projected by all GCMs to shift forward by one month (Huntington 
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et al., 2004; Stewart et al., 2005). The VIC model, on the other hand, reflects larger change in the Chena 

River hydrograph and depicts the system being more rainfall-than-snowmelt driven by the 2050s. By the 

2080s, both hydrologic models show a rainfall peak that is larger than the snowmelt peak. The GCMs 

range around the peak is greatest during the rainfall season and for the 2080s, however all GCMs agree 

that the rainfall peak will be larger. The greatest difference between this study and others on changing 

streamflow volumes is that for many rivers in North America, the change in peak streamflow is associated 

with declines in SWE/P ratios linked to drought, decline in low flows, and changes in stream temperature 

(Elsner et al., 2010). 

The change in direction of trend or convergence of model estimates towards a projection of 

increasing precipitation has a strong influence on changing flood levels and reoccurrence intervals 

projected by hydrologic models for the area. For instance, changes in return intervals by the 2050s 

indicate that Interior Alaska’s snowmelt dominated systems may experience more moderately sized (5-

year return interval) flooding related to snowmelt peaks, but this is largely dependent upon the 

GCM/hydrologic model considered (Figure 6.8). However, the 2080s show consistency across results for 

these 5-year events that is indicative of the convergence in model agreement towards a rainfall dominant 

regime where peak floods are associated with summer and fall high flows. However, this is not true of the 

20, 50, and 100-year events, which are just as uncertain in the 2050s as the 2080s, likely for different 

reasons. The uncertainty in the 2050s is due to differences in snowmelt regimes, whereas the uncertainty 

in the 2080s is linked to uncertainty around precipitation regimes. Return levels are 1.6 times as large in 

the 2080s for the 5, 20 and 50-year return interval almost twice as large as the historical at the 100-year 

interval by the 2080s. These increased flow magnitudes and 100-year return intervals are attributed to 

increased rainfall peaks. 

The VIC model’s frozen ground and a distributed snowmelt module were utilized in this work. 

Over half of the Chena cells were permafrost and treated as such in the model. The larger uncertainty 

present in the model predictions is likely due in part to the variable treatment of frozen ground, and 

distributed snow. Decreases in summer baseflow values may also be due to increased permeability of the 

frozen ground layer as the active layer deepens through time with climate change (Romanovsky et al., 

2010; Smith et al., 2010). However, the module itself is not without its issues, and testing and comparison 

to observations at a nearby location indicates an overestimation of the seasonality in the cold front. This 

may be due to the lack of parameterization of the organic soils in the model. More research is required to 

determine and correct the issues with frozen ground in this area, and ensure that the model is working as it 

should be. 

Analysis of exceedances compared annual differences across the 99th, 95th, 5th and median (50th) 

percentiles and illustrate the vast under estimation provided by the mean conditions when considering the 
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differences between mean flow and maximum flow changes (Table 6.7). Median flows only marginally 

increase in the future, while future flow conditions in the maximum percentiles are magnified 5-times the 

median changes (Table 6.7). Because it will only take one flood to cause great damage to a region, the 

implication here is that for examining changing conditions and future projections of climate change with 

respect to high flows, a peak flow indicator or statistical approach must be applied.  Studies that do not 

take into account changing maximum flood distributions (based on mean flows) may be dramatically 

under evaluating the risk potential for impacts within regions. Thus it is recommended that studies on 

climate change impacts incorporate shifts in extremes as a rule. 

The indication, based on the relationship between maximum streamflow increases and ClimDEX 

indices is that the majority of change in maximum streamflow is largely driven by the bulk volume of 

precipitation occurring in the system (Ptot). ClimDEX indices of precipitation showed the greatest 

changes in indices representing moderately high indicators (R95mm), followed by R10mm and then the 

highest indicators, R99 and R20mm, all of which have significant and positive correlations to annual 

streamflow change. Although physical models are best to describe changes in complex systems such as 

streamflow – in regions where calibrating models can be challenging due to the lack of station and 

network observational systems, such as Alaska, a statistical method could have promise. Thus, 

relationships between indicators in the ClimDEX archive could be explored to generate maps of projected 

estimates of changing streamflow. Although changes may not be applicable to glacierized basins, a large 

percentage of the boreal forest region in Alaska is currently snow dominated, and an estimate could be a 

worthy tool to define at-risk regions.  

6.5 Conclusions 

This study examined climate change impacts on extreme indices and streamflow for a watershed 

located in the boreal forest of Interior Alaska. The major findings are that increasing temperatures in 

conjunction with increasing precipitation is projected to shift streamflow peaks from a snowmelt and 

rainfall dominated system to a rainfall driven system by the 2080s. GCMs and hydrologic models have a 

narrower range across estimates of moderately sized (5-year return interval) floods, while 20, 50 and 100 

year floods have a wider spread. The median return level estimate for both hydrologic model and all six 

GCMs indicates that 5-year return interval flows will increase by 1.6 times the historical flow and double 

in terms of peak streamflow magnitudes associated 100-year floods generated by summer and fall high 

flows. This represents a major regime shift for the region. This regime shift will have implications for 

many different aspects of environment and society. Impacts are projected to begin to be experienced as 

early as the 2050s, and as such planning measures must incorporate these projections where possible. 
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Two different hydrologic models were applied in this study, a semi-lumped model used currently 

as the National Weather Service’s river flood forecasting tool (SAC-SMA) and a distributed model that 

explicitly accounts for frozen ground, changes in energy balance and snow across elevation bands (VIC). 

The SAC-SMA model performed better in the historical ranges, and simulated peak flows more 

accurately. Both models tended to agree on changes in rainfall peaks however differences were observed 

in the prediction of peak streamflow around the snowmelt season. In particular, VIC simulated a more 

distinct rainfall peak by the 2050s, whereas SAC-SMA did not project this shift until the 2080s and the 

snowmelt peak was retained into the future.  Both models indicate however that snowmelt peaks would 

move forward by approximately one month in the 2050s and retain this pattern into the 2080s. The 

implications of this difference are likely to be of note to the forecasters and hydrologists attempting to 

calibrate and validate models if the projected regime shift for the watershed are realized. 

Uncertainties in GCM projections of return intervals for 5-year flow events are smaller in the 

2080s, indicating coherence in changes for moderately sized events, while the 2050s uncertainty was 

greater owing to the variable representation of snowmelt peaks by the models. Generally, uncertainty 

increases at higher return levels, and towards the 2080s. Percentile exceedance comparing results for 

median (50th) streamflow compared to maximum streamflow (95th and 99th) indicate that large 

discrepancies between flow projections for mean versus maximum. Analysis of future projected changes 

in streamflow should focus on maximum distributions in order to fully evaluate the potential for flooding 

and impacts in regional studies. 

Streamflow was correlated and a linear relationship was found between total precipitation and 

minimum temperature extremes in the ClimDEX archive. Developing a statistical method for identifying 

at-risk regions in areas such as the subarctic and Arctic, where calibrating models can be challenging due 

to the lack of station and network observational systems could have promise. Questions that could not be 

addressed by this study due to limitations also include addressing the changing low flow patterns related 

to shifts in permafrost that may have consequences for streamflow extremes, the role of antecedent 

moisture conditions in the systems with regards to peak snowmelt runoff. Future directions for this work 

include addressing a number of these issues using statistical methods and continued exploration with the 

VIC model. Finally, the ensemble GCM projections of streamflow in the APRFC CHPS system, which 

was implemented at the University of Alaska Fairbanks, will be provided as an offline tool for the 

forecasters to investigate and consider scenarios of change for the basins in Interior Alaska. This may 

provide a valuable tool to stimulate discussion and planning efforts around future projections of change 

for this region. 
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6.6 Figures 

 

Figure 6.1 Chena River basin, Interior Alaska, U.S.A. The inset illustrates the Tanana and Yukon River 
basin, Alaska in the context of Yukon Territory, Canada. 
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Figure 6.2 Climatological data.  Average total monthly precipitation (upper) and average daily minimum 
and maximum temperature (lower, 1970-2010) for the Chena River basin. Values based on the historical 
gridded observed data set.  

 

  



 
  

219 
 

 

Figure 6.3 Historical and future hydrological variables in the Chena River basin, based on VIC model 
results. 
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Figure 6.4 Time series of ClimDEX extremes compared to mean values. Average (solid lines) minimum 
temperature, maximum temperature, and total precipitation compared to extreme values (dashed lines) for 
annual average (1970-2100) in the Chena River Basin. The ensemble of all GCMs is used. The Fairbanks 
Airport GHCN climate station data are overlaid on the extreme indices (red lines). TXx, TNn, and Rx5 
ClimDEX indices are used as illustrations of extremes; see Table 6.4 for description of indices. 
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Figure 6.5 Streamflow average historical monthly differences between observed streamflow (red lines, 
grey fill), SAC-SMA (dotted lines with open boxes) and VIC model simulated streamflow (dashed lines 
with open triangles) for the 1971-2000 baseline in the Chena River basin. 
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Figure 6.6 Chena River Basin SAC model simulated streamflow ranges for the 2050s (top panel) and the 
2080s (bottom panel) for future minimum and maximum streamflow (solid lines) plotted against 
historical minimum and maximum (dashed lines). Historical mean (thick dashed line) is shown for 
context. Triangles indicate where future streamflow is significantly different than the historical 
streamflow by month. 
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Figure 6.7 Chena River Basin VIC model simulated streamflow ranges for the 2050s (top panel) and the 
2080s (bottom panel) for future minimum and maximum streamflow (solid lines) plotted against 
historical minimum and maximum (dashed lines). Historical mean (thick dashed line) is shown for 
context. Triangles indicate where future streamflow is significantly different than the historical 
streamflow by month. 
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Figure 6.8 Chena River basin return intervals for 5, 20, 50 and 100 year return periods. The impact levels 
are shown by action (yellow), minor (orange) and major (red) flooding. Boxplots median values are 
indicated with thick black lines, the range of the data set is the box (the first and third quartiles), and the 
minimum and maximum values are indicated by dashed lines and whiskers. Outliers are plotted as open 
circles.  
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Figure 6.9 ClimDEX indices and streamflow correlation plot for maximum streamflow (ST) against 
annual indices for the Chena River basin. Blue values indicate positive correlations with streamflow and 
negative values are indicative of negative correlations and decreased streamflow. Non-significant 
correlations are denoted with crosses. Lighter values indicate weaker correlations and darker values 
indicate stronger correlations. 
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6.7 Tables 

Table 6.1 Chena River basin characteristics including gages, sub-basins, area, elevation (Elev), 
temperature (T), precipitation (P), streamflow (Q) annual averages, and percent land cover (D=deciduous, 
Bs= black spruce, C=conifers, S=shrubs). 

Name 
USGS 
Gage 

Area 
(km2) 

Elev (m) 
T 

(ºC) 
P 

(mm) 
Q 

(m3/s) 
% Land cover 

Chena River 15514000 5155 595 
12.4 

(-21.5) 
98 

(411) 
328 

12% D, 59% Bs, 
15% C, 12% S 
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Table 6.2 Maximum and minimum temperature weighting factors used for Alaskan basins. WX=weighted 
maximum and WN=weighted minimum. 
Seasons WN1 WX1 WN2a WX2 WN2b WX3 WN3 WX4 WN4 
Mar-May 0.78 0.22 0.20 0.69 0.11 0.21 0.79 0.65 0.35 
Jun-Aug 0.79 0.21 0.15 0.69 0.16 0.23 0.77 0.68 0.32 
Sep-Nov 0.73 0.27 0.23 0.64 0.13 0.31 0.69 0.64 0.36 
Dec-Feb 0.61 0.39 0.28 0.53 0.19 0.39 0.61 0.58 0.42 
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Table 6.3 Calibration and verification results, SAC-SMA and VIC Models 
 CHFA2 CHFA2
 SAC-SMA/ 

SNOW17 VIC 
Calibration (1980-1985) 

Correlation Coefficient  0.85 0.79 
NS Efficiency 0.66 0.56 
NS Efficiency Natural Log   0.77 0.72 

Verification (1986-1990) 
Correlation Coefficient  0.85 0.80 
NS Efficiency 0.68 0.59 
NS Efficiency Natural Log   0.72 0.64 

Period of Record (1970-2005) 
Correlation Coefficient  0.87 0.75 
NS Efficiency 0.73 0.51 
NS Efficiency Natural Log   0.74 0.61 
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Table 6.4 ClimDEX indices, codes, definitions and units. 
Name Code Definition Units 
Cold nights TN10p Monthly/annual percentage of days when TN < 10th 

percentile 
% 

Cold days TX10p Monthly/annual percentage of days when TX < 10th 
percentile 

% 

Warm nights TN90p Monthly/annual percentage of days when TN > 90th 
percentile 

% 

Warm days  TX90p Monthly/annual percentage of days when TX > 90th 
percentile 

% 

Warm spell duration 
index 

WSDI  
 

Annual count of days with at least 6 consecutive days 
when TX > 90th percentile 

days 

Cold spell duration 
index 

CSDI Annual count of days with at least 6 consecutive days 
when TN < 10th percentile 

days 

Max TX TXx Monthly/annual maximum value of daily maximum 
temperature 

°C 

Min TX TXn Monthly/annual minimum value of daily maximum 
temperature 

°C 

Max TN TNx Monthly/annual maximum value of daily minimum 
temperature 

°C 

Min TN TNn Monthly/annual minimum value of daily minimum 
temperature 

°C 

Number of frost days FD Annual count of days when TN (daily minimum 
temperature) < 0oC. 

days 

Number of icing days ID Annual count of days when TX (daily maximum 
temperature) < 0oC. 

days 

Number of summer 
days 

SU Annual count of days when TX (daily maximum 
temperature) > 25oC. 

days 

Daily temperature 
range 

DTR Monthly/annual mean difference between TX and TN °C 

Max 1-day 
precipitation 

RX1day Monthly/annual maximum 1-day precipitation mm 

Max 5-day 
precipitation 

RX5day Monthly/annual maximum consecutive 5-day precipitation mm 

Simple daily intensity SDII Annual simple precipitation intensity index mm 
Heavy precipitation 
days 

R10mm Annual count of days when PRCP≥ 10mm days 

Very heavy 
precipitation days 

R20mm Annual count of days when PRCP≥ 20mm days 

Precipitation total Ptot Annual total precipitation in wet days mm 
Consecutive dry days CDD Annual maximum length of dry spell, maximum number 

of consecutive days with RR < 1mm 
days 

Consecutive wet days CWD Annual maximum length of wet spell, maximum number 
of consecutive days with RR ≥ 1mm 

days 

Very wet days R95p Annual total PRCP when RR > 95p mm 
Extremely wet days R99p Annual total PRCP when RR > 99p mm 
 

  



 
  

231 
 

Table 6.5 Regional values for gridded downscaled ensemble of temperature, precipitation and wind speed 
as differences from the historical baseline period (1971-2000). Results are given for each variable, time 
period (2050s, 2080s) and RCP for the four seasons. 
Variables, Time periods and RCPs Seasons 
 JFM AMJ JAS OND 
Average Daily Minimum Temperature (ºC)     
2041-2070 RCP 4.5 (Average) 3.92 2.49 2.17 3.91 
2041-2070 RCP 4.5 (SD) 0.08 0.03 0.02 0.09 
2071-2100 RCP 4.5 (Average) 4.62 2.99 2.62 4.65 
(SD) 0.13 0.07 0.03 0.08 
2041-2070 RCP 8.5 (Average) 4.76 3.15 2.8 4.86 
(SD) 0.09 0.04 0.03 0.09 
2071-2100 RCP 8.5 (Average) 8.07 5.44 4.75 7.76 
(SD) 0.21 0.11 0.04 0.14 
Average Daily Maximum Temperature (ºC)     
2041-2070 RCP 4.5 (Average) 3.81 2.46 2.4 3.73 
(SD) 0.07 0.07 0.03 0.09 
2071-2100 RCP 4.5 (Average) 4.71 3.2 2.52 4.52 
(SD) 0.08 0.05 0.07 0.1 
2041-2070 RCP 8.5 (Average) 4.63 3.24 3.01 4.65 
(SD) 0.06 0.05 0.02 0.1 
2071-2100 RCP 8.5 (Average) 8.14 5.58 4.65 7.63 
(SD) 0.16 0.05 0.06 0.15 
Average Total Daily Precipitation (mm)     
2041-2070 RCP 4.5 (Average) 9.64 27.86 34.07 19.67 
(SD) 2.45 6.1 6.98 4.76 
2071-2100 RCP 4.5 (Average) 7.91 32.14 54.35 22.94 
(SD) 1.88 7.2 10.93 6.12 
2041-2070 RCP 8.5 (Average) 9.91 40 49.29 31.64 
(SD) 2.47 7.54 9.96 7.39 
2071-2100 RCP 8.5 (Average) 7.89 64.67 81.51 43.37 
(SD) 1.96 13.1 15.75 10.71 
Average Daily Wind Speed (m/s)     
2041-2070 RCP 4.5 (Average) 6.49 -1.81 0.41 5.22 
(SD) 0.3 0.33 0.33 0.35 
2071-2100 RCP 4.5 (Average) 7.72 0.47 -1.9 5.41 
(SD) 0.79 0.27 0.55 0.52 
2041-2070 RCP 8.5 (Average) 5.98 -0.94 2.02 3.88 
(SD) 0.62 0.26 0.26 0.76 
2071-2100 RCP 8.5 (Average) 14.63 -0.95 4.21 5.04 
 1.15 0.17 0.26 0.64 
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Table 6.6 ClimDEX indices for the 2050s and the 2080s as differences from the historical (1971-2000) 
for quantiles 0, 50, 75 and 99% probability. Note the variable y-axis scale and the mixing of units 
(denoted by separate lines in plots, and labels). See Table 4 for ClimDEX indice codes and descriptions. 
 2050s Differences 2080s Differences 
 0% 50% 75% 99% 0% 50% 75% 99% 
TXx -4.42 2.94 4.7 9.05 -1.06 5.06 6.88 10.89 
TNn -15.73 4.73 10.01 20.91 -13.71 8.2 12.35 23.24 
TNx -6.04 2.93 4.25 8.46 -3.27 4.58 5.98 9.97 
TXn -16.38 6.39 11.4 22.73 -15.78 9.35 14.09 25.03 
DTR -2.57 0.02 0.43 2.11 -1.64 -0.06 0.32 1.89 
Tn10p -22.57 -7.67 -4.71 2.26 -22.57 -9.18 -6.75 -0.84 
Tn90p -12.65 21.64 30.54 51.36 -2.36 40.71 49.28 68.07 
Tx10p -25.76 -7.95 -4.89 3.61 -27.95 -9.1 -6.74 -1.37 
Tx90p -11.12 19.01 25.93 43.09 3.98 36.05 43.41 62.58 
SU -3 8.5 14 31.91 -2 19 25.75 48.91 
ID -82 -27 -16 13.82 -117 -52 -36 -3 
FD -86 -32.5 -19 14.73 -102 -58 -44.25 -11.18 
WSDI -23 43 62 133.83 3 99 133.75 215.1 
CSDI -26 0 0 14.73 -26 -2 0 6.91 
SDII -1.3 0.77 1.2 2.74 -1.02 1.1 1.53 3.05 
Rx1 -29.93 6.35 13.99 38.17 -23.02 8.16 16.68 40.31 
Rx5 -46.3 12.12 23.9 68.69 -33.35 15.74 28.94 66.15 
CDD -58 -4 7.75 43.91 -60 -4 5.75 46.73 
CWD -7 0 2 6.91 -10 1 3 8.91 
R10mm -7 5 8 18 -3 8 11 20.82 
R20mm -5 1 3 6 -4 2 3.75 9.91 
R95Pt -135.38 73.46 142.16 299.29 -93.83 118.94 174.69 394.59 
R99Pt -123.46 32.18 68.32 186.89 -97.28 44.14 87.64 270.68 
Ptot -125.79 131.64 201.66 406.59 -78.47 181.14 262.98 573.78 
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Table 6.7 The 99th, 95th, 5th, and 50th (median) exceedances for historical, 2050s and the 2080s.  
Calculations based on annual median flow simulations for GCMs and hydrologic models. 
 Historical 

Magnitude 
(m3/s) 

Historical 
Exceedance 

(count) 

2050s 
Exceedance 

(count) 

2050s 
Exceedance 

(%) 

2080s 
Exceedance 

(count) 

2080s 
Exceedance 

(%) 
99th 158 128 234 83 343 168 
95th 98 640 977 53 1266 98 
5th 3 640 10 -98 0 -100 
50th 17 6392 7335 15 8577 34 
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Streamflow responses are variable depending on the regime examined (Fleming et al., 2007; Neal 

et al., 2002; Whitfield, 2001; Whitfield and Cannon, 2000; Whitfield et al., 2003). Figure 1 illustrates this 

concept. Climate forcings are passed through nonlinear filters such as glaciers and/or snow pack that alter 

the characteristics of extreme streamflow response (Fleming and Moore, 2007). For example, adjacent 

watersheds such as the Salcha and the Chena River basin have variable nonlinear responses to climate 

forcings that are a consequence of basin hypsometry, although overall they respond similarly to climate 

variability (i.e. Pacific Decadal Oscillation, PDO) and to changes in snow over time. Streamflow changes 

in glacier systems do not respond to climate variability, but do respond to changes in spring temperature. 

Lack of consideration with respect to streamflow regime and filters such glaciers, permafrost, lakes, and 

geological variability will lead to confusion when attempting to understand trends, and changes in 

extremes with respect to climate change on hydrology. 

Examining extreme hydroclimate events in Alaskan river basins is challenging on a number of 

fronts. Lack of temporal and spatial consistency in station records and baseline information (i.e. soils, 

vegetation, elevation) to parameterize, calibrate and validate models hinders analytical approaches and 

leads to a paucity of studies detailing high latitude hydrology. To address these issues, approaches to 

input remote sensing tools have been introduced into models to attempt gap filling spatially, although 

temporally, remote sensing data are generally only available after the 1970s. These approaches can be 

coupled with distributed models that contain approaches to define frozen ground routines, for example, 

although these models are generally known to underperform conceptual models developed for flood 

forecasting in the region due to the lack of information to parameterize them. This presents a confounding 

issue – does a hydrologist apply a lumped model that performs well or a distributed model with 

parameterizations for such processes such as frozen ground but that also has greater uncertainty 

associated with it? This question cannot be resolved in this thesis work but both types of models are 

explored and their responses are documented. 

Historical streamflow trends illustrate a picture of changing conditions within basins that largely 

represent shifts towards declining streamflow as a result of reduced snowpack, earlier snowmelt peak, and 

reductions in flow from the glaciers. Future streamflow projections, on the other hand, are towards 

increased maximum streamflow peaks. These increases in peak streamflow are a consequence of 

increases in precipitation coupled with increased spring temperatures leading to decreased snowmelt 

peaks and a marked change in summer and fall flow regimes. For systems such as the Chena River basin, 

this change represents a major shift away from a snowmelt dominated regime to a rainfall dominated 

hydrologic regime. These changes were verified by results of not just one, but two different hydrologic 

models. The projected peak rainfall events were directly linked with increased occurrence of flooding 

within watersheds, and therefore pose a risk to property and infrastructure in the region. 
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Our analysis showed that drivers of extreme hydroclimate in Alaska have changed over the past 

and are projected to change in the future. Global climate models and existing indices of extremes can be 

used to examine Alaska-wide responses and compare those responses to local stations and reanalysis 

products. ClimDEX indices calculated based on station data were different from GCMs but these 

differences are explained by topographic variability between the station and the model grid cells, while 

the reanalysis products were similar to the GCMs. When considering local changes in extreme events, 

however, downscaling processing should be applied. Downscaling applied in Chapter 6 revealed that 

compared to the historical time period, the 2080s RCP 8.5 differences between minimum and maximum 

extreme temperatures were smaller, indicating a narrowing in the range of results depicted by the coarse 

scale models for GCM grid boxes nearby Fairbanks, Alaska. Precipitation differences were greater in the 

downscaled results compared to raw GCM anomalies for Fairbanks. Quantile methods represent an 

improvement on downscaling processes for extremes, however other more complex methods exist and 

should be explored to determine if and how downscaling affects the modeling and representation of 

extremes in Alaska and the interior, in particular. 

This work described herein involved collaborations with forecasters at the National Weather 

Service’s Alaska Pacific River Forecast Center (APRFC). The APRFC’s forecasting model framework 

was implemented at the University of Alaska to determine if input of MODIS observed snow cover extent 

would improve modeled streamflow. The MODIS data were verified against stations data across the 

region and found to be valid for use in these models. The model framework was altered to accept inputs 

of MODIS gridded data and the results indicated that sub-basins with poor or limited time series of 

streamflow could be improved, which has promise for ungaged or under-monitored streamflow 

throughout the state of Alaska. The next steps in the work will allow for researchers at UAF and 

collaborators at APRFC to work together to bring these offline tests into an online forecasting mode for 

use in the daily river forecasting. The model can then be updated on a day-to-day basis with snow cover 

observations from MODIS during the snowmelt season, a time during which the model simulated areal 

snow cover estimates are usually considered to be problematic. 

The final chapter of this thesis outlines a climate change study of extreme events. The models 

used for the work did not integrate dynamic vegetation therefore fire activity, plant succession or 

landscape changes resulting from thermokarst erosion are not incorporated. Dynamic vegetation models 

exist and may be used to simulate changes in vegetation components, which may yield different answers 

with respect to changing extreme streamflow projections. Frozen ground models in discontinuous 

permafrost regions require further testing to determine their adequacy in the area. However, the frozen 

ground module presents a much larger uncertainty range around the GCMs, compared to the semi-lumped 

model examined in this work. That uncertainty may be representative of the true uncertainty present in the 
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system, and therefore ensemble modeling approaches should be undertaken in order to fully consider the 

range of uncertainty associated with the climate change projections and return level estimates. Finally, the 

quantitative results provided in this work need to be incorporated into adaptation strategies if the findings 

are going to make a difference. Because of the high costs associated with these projected impacts, moving 

forward with planning measures is vital so that resources and management frameworks may be re-

allocated appropriately in the future. 

7.2 Implications 

Changes in hydroclimate extremes in Alaska’s boreal region will impact not only natural systems, 

but also resource and economic development that relies upon, in part, the stability of the environment. 

Soil structures, erosion rates, and permafrost conditions, all of which will have a direct effect on state 

infrastructure such as buildings, pipelines, tailings ponds and water retention structures will be impacted. 

These challenges are discussed in this section to highlight some concerns and indicate where future 

studies should be focused. 

Alterations in permafrost conditions in the boreal zone represent perhaps the greatest threat to 

infrastructure. Increased warm and decreased cold extremes affect frozen soils regimes, in zones such as 

the boreal where discontinuous ‘warm’ permafrost is close to 0°C this may result in the complete 

degradation of permafrost. Increased temperatures may also lead to increased frost heave, and other 

processes that affect the structure of the soil. The complicating factor with regards to permafrost change is 

related largely to the change in hydrology, including changes in snow, vegetation and soil moisture 

(Riseborough 1990). Snow pack provides insulation from cold waves penetrating deep into soil therefore 

an increase in snow depth might lead to warming of permafrost (Romanovsky et al. 2010). Organic soils 

also can protect the ground from thawing in the summer time by insulate the underlying soil from heat 

fluxes. The presence of water or ice in the ground also changes thermal conductivity of the soils, and 

latent heat processes can lead to decreased amplitudes of cold waves in the ground (Riseborough 1990). 

Thus, changing permafrost condition is highly dependent on snow cover, ice and unfrozen water, and 

vegetation characteristics, all of which can be altered by changing extremes. 

Where hydrologic changes result in permafrost degradation and active layer thawing, increased 

soil moisture storages may lead to decreased runoff, as proposed by some researchers. The addition of this 

moisture may consequently result in lower soil stability which would impact structural supports. The 

findings in this work indicate that snow water equivalent (not always an indication of snow depth) will 

decrease in the future in boreal watersheds. Soil moisture increases slightly, but the largest change is in 

the increased runoff owing to increased precipitation that overwhelms the changes in evapotranspiration. 

Frozen ground warms considerably over the century, although the ground remains frozen at the deepest 
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soil layer to 2100. However, the active layer deepens and all soil layers above this become unfrozen 

towards the end of the century. Increased runoff and deepened active layers have a considerable effect, 

and are discussed below. 

Unfrozen soils have weaker structures compared to frozen soils. Building supports designed for 

frozen soils that become unfrozen may collapse, leading to economic loss either in the redesign or 

abandonment of these structures. Personal property loss may occur if these effects are predominant in 

populated regions, for example in the town Fairbanks where development on permafrost is common. 

Since deep ground thaw is not projected to occur, it is likely that mid-sized buildings with pile 

foundations in the upper soil profile may be the most strongly impacted by these changes (ACIA, 2005). 

Thawing action in soils can also lead to soil heave, frost piles, settlement and other impacts that would 

affect structures. Pipelines, which stretch across vast tracts of Interior Alaska, may be particularly 

susceptible to changes in frozen ground if regional warming and thawing of permafrost occurs. A deeper 

active layer may also lead to erosional effects such as slope failure which could impact roadways and 

transmission lines and disrupt communications, energy, transport and emergency access. Pit mining 

facilities could be affected by changing soil conditions and soil moisture, leading to potential collapse or 

failure of pit slopes (ACIA 2005). 

Summer flooding would have a great effect on infrastructure and settlements located nearby 

water resources. After the 1967 Fairbanks flood, the Army Corps of Engineers build the Chena River 

diversion project to capture flood waters and protect the town of Fairbanks. However, the structure has 

never been tested to withstand a flood similar in size to the 1967 event. Changes to soil characteristics 

(i.e. strength) caused by changing freeze/thaw regimes may alter the retention capability of the side banks 

of the Chena Diversion, or other water retention structures. These impacts may limit the ability of the 

structure to hold and retain flood waters. On the other hand, if the structure was developed to account for 

these changes, this concern would be mitigated. 

Flooding along the upper Chena River basin would affect access to Chena Hot Springs Road 

River and the popular Chena Hot Springs resort. Summer flooding also affects the Pogo mine airstrip, 

inundating the airstrip at moderate to high flows on the Salcha, and restricting emergency access and 

roadways in and out of the mine. Summer flooding could also have implications for tailings ponds located 

at the Kinross Fort Knox mine site, or the nearby True North gold mine. Flooding could also impact 

bridges, pipeline river crossings, and lead to culvert blow outs along roadways. High flows in rivers 

adjacent highways or settlements may undercut structures, leading to loss of integrity. Flooding will 

impact airports, and army and air force bases such as Fort Wainwright, Eielson and Fort Greely, which 

are all located adjacent to Interior river systems nearby Fairbanks, Alaska.  
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7.3 Conclusions 

Extreme events in Alaska’s Interior boreal forest are projected to change into the future. Peak 

streamflow is projected by models to be precipitation dominated with lower peaks associated with 

snowmelt, and an earlier snowmelt peak. Models to simulate changes in streamflows are improved by 

estimates of remotely sensed snow cover observations in under monitored watersheds. All such 

improvements should be utilized to project the impacts of changing extremes and attempt to minimize 

and/or accurately assess uncertainty associated with the climate projections. Basins such as the Chena are 

susceptible to changing form of precipitation (i.e. snow) due to relatively low elevation gradients, which 

respond largely to changing precipitation conditions and regime shifts (such as the PDO). Low summer 

flows are not likely to be an issue, however increasingly high winter baseflows are projected. The major 

impact, however, will be the shift in flow regime from a snowmelt-rainfall dominated system to a rainfall 

dominated system, which will have consequence for many components of the boreal forest ecosystem, the 

community and the economy. These consequences include thawing permafrost, active layer deepening 

and reduced soil stability, increased erosion, sedimentation and increased liquid soil water content and 

reduced ice content. These changes will impact infrastructure and in particular, mid-sized buildings, 

residential homes, highways, bridges, mining tailings ponds and pits, pipelines and military lands. The 

work presented herein is a first step towards understanding changing extreme events in the boreal forests 

of Alaska. The changes projected are of a magnitude that can be managed through proper planning and 

targeted adaptation strategies but the call towards those efforts must be heeded. 
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7.4 Figures 

 

Figure 7.1 Large scale climate forcing when applied through landscape filters (i.e. snow, glaciers, 
permafrost) alter response and result in variability in hydroclimate response to extreme events, even in 
adjacent basins. Figure and concepts adapted from Fleming and Moore, 2007. 
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