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Abstract 

The particularly severe effects of climate change anticipated in the Arctic, accompanied by 

ongoing anthropogenic activities, necessitate proactive and knowledge-based management of the 

region’s aquatic ecosystems. However, the paucity of information on the Arctic’s aquatic 

environments hinders strategic or spatially-explicit management. In this dissertation, I examine 

the habitat use of poorly studied taxa of the Arctic Coastal Plain (ACP) of Alaska, including 

freshwater fishes and yellow-billed loons (Gavia adamsii). Distribution studies can be biased by 

false absences; therefore, I began by determining the detection probabilities of six fish species 

common to Arctic lakes for five gear types (Chapter 2). Variation in gear- and species-specific 

detection probability was considerable, suggesting a multi-method approach may be most 

effective for whole-assemblage sampling. Adjusting for detection probability, I then examine 

how occupancy probabilities of the six fish species were related to lake and landscape scale 

covariates (Chapter 3). Three large-bodied salmonid species were influenced by factors 

associated with the probability of fish colonizing lakes, including whether the lakes had a stream 

connection. Models for small-bodied fish indicated different strategies for persistence among 

species. Ninespine stickleback (Pungitius pungitius) were widespread and captured in lakes that 

freeze to the bottom, suggesting rapid dispersal after spring freshet (when snow and ice had 

melted rapidly and caused widespread flooding) and colonization of sink habitats. In contrast, 

Alaska blackfish (Dallia pectoralis) distributions reflect tolerance to harsh conditions, while the 

slimy sculpin’s (Cottus cognatus) was indicative of its marine origin. Based on these patterns, I 

propose a model of primary controls on the distribution of fishes in ACP lakes. Severe winter 

conditions limit occupancy through extinction events, while lake occupancy in spring and 

summer is driven by directional migration (large-bodied species) and undirected dispersal 

(small-bodied species). To provide insight to the relevance of species-specific distributions of 

prey fish to yellow-billed loons (Gavia adamsii), I investigated loon diet on their breeding 

grounds using quantitative fatty acid signature analysis (Chapter 4). Tissues were collected from 

26 yellow-billed loons (shortly after they had moved from coastal staging areas), nine fish 

species and two invertebrate groups. Results suggest that yellow-billed loons are eating high 

proportions of Alaska blackfish, broad whitefish (Coregonus nasus) and three-spined stickleback 

(Gasterosteus aculeatus). The prominence of blackfish in diets highlights the importance of this 
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species’ tolerance to winter conditions that permits its widespread availability during the early 

stages of loon nesting. Broad whitefish and three-spined stickleback are more likely to be 

encountered in coastal regions at this time, and their importance may reflect pre-nesting period 

diet, when loons are staging in coastal and brackish waters before lakes are ice free. Finally, I use 

the prior chapters to inform an investigation into lake occupancy dynamics of nesting yellow-

billed loons and loon chicks (Chapter 5). From a total of four years of data (collected over nine 

years for nests and seven years for chicks), I examine landscape features that influence the 

distribution and breeding success of breeding loons on ACP lakes (>7 ha in area), including 

landscape and lake features, and fish prey occupancy. Over this time, nesting yellow-billed loons 

exhibited a relatively low (< 30%), but stable to increasing, lake occupancy. Local extinction and 

colonization rates were also relatively stable, suggesting the nesting population in this region 

may be near equilibrium. A decreasing rate of change in chick occupancy associated with 

concomitant increases in nesting occupancy implies density-dependence in chick production. 

The occupancy probability of a prey fish, least cisco (Coregonus sardinella), had a positive 

influence on the probability of colonization of unoccupied lakes by nesting loons. I confirm that 

lake size and lake depth were not only positively associated with nesting occupancy, but also 

with chick production. Large lakes had occupancy probabilities near one for nesting loons and 

chicks; this, along with the near equilibrium in breeding loon occupancy and the relative rarity of 

these large lakes over the landscape, suggests breeding habitat is limiting loon populations in this 

part of their range. Given the lack of data from the ACP on fish distributions and yellow-billed 

loons, my findings inform current management practices and provide foundation for future 

research. 
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Chapter 1: Introduction 

Water is a dominant feature on Alaska’s Arctic Coastal Plain (ACP) - a flat, expansive 

landscape dotted with tens of thousands of lakes, ponds and wetlands. Its mosaic of diverse 

waterbodies, which have varying levels of hydrographic connectivity to the streams and rivers 

that drain to the North Coast, create a vast aquatic ecosystem that provides habitat for a diversity 

of aquatic organisms. This includes a host of fish species that live in the Arctic throughout the 

winter and a diversity of migratory birds that only reside in the Arctic during the growing season. 

Due to the sheer extent of the landscape and the size and range of physical characteristics 

possible in this area, the aquatic ecosystem of the ACP has an inherent level of complexity. 

However, in other regards, it can be viewed as relatively simple. Arctic lakes have low species 

diversity and productivity, and species distributions are limited by a few key environmental 

drivers (Hershey et al. 1999). Further, the Arctic is removed from major population centers and 

thus is less affected by anthropogenic influences that complicate ecological study. 

The size and inaccessibility of Alaska’s ACP has limited studies of its aquatic animals. 

One such species is the Yellow-billed loon (Gavia adamsii) – a waterbird that breeds on Arctic 

lakes in the low-lying tundra regions of Canada, Alaska and Russia (U.S. Fish and Wildlife 

Service 2009). Approximately 6,000 adult yellow-billed loons are present on lakes or on adjacent 

marine waters in Alaska during summer months (Earnst et al. 2005). Of those, approximately 

5,000 occur on the ACP, 70% of which attempt to breed (for this dissertation, ‘breeding’ refers 

to the process of loon pairs both nesting and rearing chicks). Loons arrive between late May and 

mid-June, timed with the break-up of ice on breeding lakes. Pairs establish and defend territories 

on suitable lakes characterized as large, deep, and connected via streams, with suitable nesting 

habitat on the shoreline (Stehn et al. 2005, Earnst et al. 2006, Haynes et al. 2014a). Pairs of 

breeding yellow-billed loons aggressively defend the lake territory from other loons, including 

conspecifics (Sjölander and Ǻgren 1976) and Pacific (G. pacifica) and red-throated (G. stellata) 

loons (North 1994, Haynes et al. 2014b). They lay one or two eggs in nests constructed on the 

lake shore and incubate eggs for 27 - 28 days (North 1994).  

Although some basic information on yellow-billed loon exists, knowledge of loon nesting 

season ecology is limited. For example, during brooding, yellow-billed loons are thought to use 

fish primarily from the brood lake to feed their chicks (Sjölander and Ǻgren 1976, North 1994); 
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however, no empirical information is available regarding the diet of adults or chicks for inland 

areas. Additionally, the distribution and habitat use of yellow-billed loons during the nesting 

season is not well understood. The U.S. Fish and Wildlife Service conducts annual breeding bird 

surveys across the North Slope of Alaska; however, yellow-billed loons occur in such low 

densities that surveys have limited utility for examining their distribution and habitat use (Stehn 

et al. 2005).  

The overarching goal of this dissertation is to examine the habitat use and diet of yellow-

billed loons on the ACP. Past models of yellow-billed loon habitat use based on remotely sensed 

data (Stehn et al. 2005, Earnst et al. 2006) have identified important landscape factors 

influencing their distribution, but models generally over-predicted loon occupancy. Empirical 

data, measured in the field, have the potential to enhance past models (Stehn et al. 2005) and our 

understanding of loon breeding ecology. Because the distribution of fish prey likely is important 

in determining the distribution of yellow-billed loons, I initially examine how fish species are 

distributed across the landscape. I first examine the efficacy of fish sampling methods and then 

create distribution models for key fish species. Using molecular techniques, I investigate which 

fish species may be important in the diet of breeding yellow-billed loons. Lastly, I examine the 

occupancy dynamics of breeding loons and loon chicks on Arctic lakes and investigate how 

habitat features are related to loon distribution, chick production and breeding dynamics.  

In Chapter 2, I examine sampling issues related to determining occupancy of fishes in 

Arctic lakes. Although some efforts have been made to sample Arctic lakes (e.g., Hershey et al. 

1999, Hershey et al. 2006), many, if not most, of these waterbodies remain unstudied. This 

paucity of information on Arctic fish communities, combined with the potential threats due to 

climate warming, suggests that the Arctic may be an important area for future fish ecology 

research. Because species are rarely sampled with perfect detection (MacKenzie et al. 2002), it is 

important to understand efficacy of gear types to avoid bias in sampling efforts. In Chapter 2, I 

compare the detection probabilities of gear types for sampling fish species and provide unbiased 

occupancy data for modeling habitat relationships in Chapter 3. Results can be used for future 

sampling of Arctic lake fish communities by providing information useful in designing future 

sampling efforts. This is particularly relevant in the Arctic given this is a region where there may 

be substantial scientific investigation of aquatic ecosystems. Also, because industry on the ACP 
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and other Arctic areas use lake water for ice road construction, lakes are commonly sampled for 

fish occupancy without a strong understanding of sampling efficacy. 

No broad scale habitat models exist for fish species occupying lakes on the ACP. In 

Chapter 3, I examine the distributions of fish species in lakes to provide a better understanding of 

the environmental controls on fish distributions. Using modeling efforts from Chapter 2 to 

account for imperfect detection, I use an occupancy modeling approach to examine how local 

and landscape characteristics shape species distributions. I examined three large-bodied species: 

least cisco (Coregonus sardinella), broad whitefish (Coregonus nasus) and arctic grayling 

(Thymallus arcticus), and three small-bodied species: ninespine stickleback (Pungitius

pungitius), Alaska blackfish (Dallia pectoralis) and slimy sculpin (Cottus cognatus). These 

species vary in their ecological attributes and life histories, which can lead to species-specific 

responses to spatial and temporal variation in environmental conditions (Winemiller & Rose, 

1992) and, ultimately, variation in lake occupancy (Miyazono et al. 2010). Based on the patterns 

in occupancy, I construct a conceptual model of how these species distributions are shaped by 

seasonal changes in environmental controls. 

In Chapter 4, I use fatty acid analysis to resolve what prey items may be important in the 

diet of breeding yellow-billed loons. Unlike other loon species, relatively little is known about 

the diet of yellow-billed loons. Because diet may be a major influence on the distribution of 

yellow-billed loons and is a key feature of its ecology, this work is an important step for 

conserving the species. Current information available on yellow-billed loon diet is based on a 

few anecdotal records of stomach contents from individuals collected on marine waters (North 

1994), and essentially no information exists on the diet of loons breeding on Arctic lakes. Recent 

advances in molecular methods have allowed researchers to describe diet for predators for which 

it was previously impractical (Barrett et al. 2007). I use fatty acid analysis to determine diet 

composition of breeding yellow-billed loons. Fatty acids are a large group of molecules which 

are the main component of lipids found in organisms (Budge et al. 2006). The large diversity in 

fatty acid types results in different organisms having distinct arrays of fatty acids or fatty acid 

“signatures”. Fatty acid analysis can take advantage of these distinct signatures by examining 

predator fat tissues which reflect the distinct fatty acids signatures from prey. Because the 

physiology of predators’ bodies do not allow most fatty acids to digest, the fatty acid molecules 
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from the prey are incorporated into the tissue of the predator in a predictable fashion, which 

allows for inference as to what the predator has been consuming and in what proportion.  

In Chapter 5, I refine previous nesting season habitat models for yellow-billed loons by 

incorporating information on fish distributions from Chapter 3 and prey species importance from 

Chapter 4, with an additional focus on breeding birds in the core area of their range. Previous 

distribution models for yellow-billed loons on the ACP (Stehn et al. 2005, Earnst et al. 2006) 

found that loons were more likely to occupy lakes that were larger, deeper, had a more complex 

shoreline with emergent vegetation present and showed some level of hydrologic connectivity. 

However, both modeling efforts used remotely sensed explanatory variables. Stehn et al. (2005) 

suggested that forage fish prey data were likely the most important missing variables in their 

models. Earnst et al. (2006) reiterated this, suggesting that yellow-billed loon distribution models 

would be more accurate if models incorporated landscape scale models of fish communities. 

Also, models from Stehn et al. (2005) and Earnst et al. (2006) were for a broad spatial region of 

the ACP that included large regions with very few loons. Further, these studies included both 

breeding and non-breeding loons and did not discriminate between these two states in the 

analysis. I examine a core region of yellow-billed loon distribution and model lake occupancy 

dynamics of breeding loons (i.e., lakes with nesting loons or loon chicks). By examining 

occupancy over time, I can investigate temporal variation in breeding occupancy and chick 

production and examine key vital rates (e.g., local extinction and colonization probabilities). 

In my final Chapter, I summarize the findings of the dissertation, highlight potential 

management recommendations, and discuss the results in a broader ecological and conservation 

context.  
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Chapter 2: Method- and species-specific detection probabilities of fish occupancy in Arctic 

lakes: implications for design and management
1

Abstract 

Studies examining species occurrence often fail to account for false absences in field sampling. 

We investigate detection probabilities of five gear types for six fish species in a sample of lakes 

on the North Slope, Alaska. We used an occupancy modeling approach to provide estimates of 

detection probabilities for each method. Variation in gear- and species-specific detection 

probability was considerable. For example, detection probabilities for the fyke net ranged from 

0.82 (SE = 0.05) for least cisco (Coregonus sardinella), to 0.04 (SE = 0.01) for slimy sculpin 

(Cottus cognatus). Detection probabilities were also affected by site-specific variables such as 

depth of the lake, year, day of sampling, and lake connection to a stream. With the exception of 

the dip net and shore minnow traps, each gear type provided the highest detection probability of 

at least one species. Results suggest that a multi-method approach may be most effective when 

attempting to sample the entire fish community of Arctic lakes. Detection probability estimates 

will be useful for designing optimal fish sampling and monitoring protocols in Arctic lakes. 

1Haynes T.B., A.E. Rosenberger, M.S. Lindberg, M. Whitman, J.A. Schmutz. 2013. Method- and 
species-specific detection probabilities of fish occupancy in Arctic lakes: implications for design 
and management. Canadian Journal of Fisheries and Aquatic Sciences. 70(7): 1055-1062. 
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Introduction 

The study of how species’ distributions vary over time, space, and environmental 

heterogeneity has long been a central theme in ecology (e.g., Elton 1927; Krebs 1978). Studies of 

these kinds generally link species presence-absence data with environmental characteristics to 

infer how the environment influences a species’ distribution (Guisan and Zimmermann 2000). 

However, concluding a species is absent with 100% certainty is difficult, and “presence-absence” 

data are more accurately referred to as “detection-nondetection” data (MacKenzie et al. 2006). 

Studies examining the spatial patterns of species occurrence often incorrectly assume detection-

nondetection data to be presence-absence data by failing to account for false absences (i.e., the 

species is not detected at the site despite being present). Further, detection probability of a 

species can vary by the sampling method used and features of the habitat or survey (MacKenzie 

et al. 2006; Nichols et al. 2008). When a species has a detection probability less than one and 

detection probability is not incorporated into analysis, then information on species distributions 

will be incomplete and the naïve estimates of occupancy (i.e., the estimate of the probability that 

a site is occupied, not accounting for detection probability) may be biased (MacKenzie et al. 

2002). This bias can affect how we relate species distributional traits with habitat features (Tyre 

et al. 2001) or estimates of incidence functions when studying metapopulation dynamics 

(Moilanen 2002.). Further, partial observability, due to imperfect detection, can affect the 

efficacy of management actions and compromise the decision making process (Martin et al. 

2009a). 

Recent advances in occupancy estimation (MacKenzie et al. 2002; MacKenzie et al. 

2006) have provided the framework with which to incorporate detection probability. In many 

situations, detection probability might be viewed as a “nuisance variable” if examining 

occupancy is the main aim of the study. However, when designing sampling and monitoring 

protocols or developing standardized methodology, determining detection probability is of 

primary interest (Guillera-Arroita et al. 2010). During the planning phase, detection probability 

can be used to inform the most efficient sample design given the project goals and the resources 

available for conducting the study (Bailey et al. 2007; Guillera-Arroita et al. 2010). 

Understanding of detection probability is especially pertinent in the case of poorly studied 

systems where rigorous inventories, published information, or expert opinion is lacking or, 

alternatively, when conducting a pilot study to obtain this information is prohibitively expensive. 
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With sparse data on Arctic fishes on the North Slope of Alaska (due, in part, to the 

remoteness of the region and the cost of conducting Arctic research), much of the work that has 

taken place comes from a few locations such as the Toolik Lake region (e.g., Hershey et al. 

1999; 2006), where research facilities and access facilitate field research. Because the region’s 

fish communities are poorly studied and likely to be affected by increasing industrial 

development and the effects of climate change, a strong impetus exists to develop reliable 

methods with known sources of error. These methods can be used to set up a reliable sampling 

framework for ecological research and for monitoring and inventory. For example, current 

practices of water withdrawal from northern lakes to build ice roads require consideration of 

potential impacts to aquatic systems, including fish communities (Cott et al. 2008a;b). The State 

of Alaska permits a decreasing amount of water withdrawal based on whether lakes are 

unoccupied by fish (withdrawal of up to 20% of lake volume), are occupied only by “resistant” 

species (ninespine stickleback - Pungitius pungitius and Alaska blackfish - Dallia pectoralis; 

withdrawal of up to 30% of calculated volume deeper than 7 feet) or are occupied by any other 

fish species, which are classified as “sensitive” (withdrawal of up to 15% of calculated volume 

deeper than 7 feet, Cott et al. 2008b). While several hundred lakes on the North Slope have been 

sampled for fish to support this permitting process (e.g., MJM Research 2001; 2007), the 

protocols chiefly aim to identify the presence of any “sensitive” species, at which point the 

survey is sufficient for water permitting needs. To improve future fish distribution data for 

scientific and management applications, it is necessary to gain a better understanding of the 

detection probabilities of common fishing gear used to sample lakes on the North Slope. Further, 

this knowledge may be applicable to northern regions across Canada and Eurasia with 

comparable environmental characteristics that face similar issues of climate change and resource 

development.

We evaluate the detection probabilities of five common fish sampling gear types (fyke 

net, beach seine, gill net, minnow trap, and dip net) in lakes over a broad region (study extent > 

7600 km2) of the North Slope, Alaska. We investigate the detection probabilities of six fish 

species that commonly occur over this region, including small-bodied species such as ninespine 

stickleback, Alaska blackfish, and slimy sculpin (Cottus cognatus), and large-bodied species, 

such as least cisco (Coregonus sardinella), broad whitefish (C. nasus), and Arctic grayling 

(Thymallus arcticus). Specifically, we 1) compare detection probabilities of different gear types 
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and 2) determine how detection probabilities of gear types varied temporally among species and 

habitats. 

Methods 

Sampling 

We sampled fish in 86 lakes (sampling units) across the interior North Slope within the 

National Petroleum Reserve – Alaska (NPRA). We selected lakes > 7 ha in surface area from 7 x 

7 km plots that were randomly distributed across the study area (Figure 2.1). Within a plot, we 

randomly chose lakes with the following caveats: 1) because this was part of a larger study 

looking at nesting habitat of yellow-billed loons (Gavia adamsii), we stratified the random 

sampling within loon use/non-use designations determined by aerial surveys to accommodate the 

sampling scheme necessary for modeling loon habitat and 2) four lakes were sampled that were 

just outside sample plots as a result of logistical coordination with the overall project. 

Sampling by two (2009) or three (2010) independent crews began 4 July in 2009 and 23 

June in 2010, shortly after spring ice melt, and continued until mid-August. Lakes were accessed 

by fixed-wing amphibious plane or by helicopter. At each lake, we sampled over 48-72 h using 

both spatial and temporal replicate sampling to allow detection probability estimation with five 

gear types including: gill net (2 nets, 3 temporal replicates), minnow trap (8 traps, 2 temporal 

replicates), fyke net (2 nets, 2 temporal replicates), dip net (8 spatial replicates), and beach seine 

(2 spatial replicates). After each replicate for each gear type, fish were identified and 

enumerated. 

Gill nets – We used two variable-mesh multifilament gill nets measuring 38 x 1.8 m with five 

panels ranging in bar mesh size from 1.3 to 6.5 cm. We floated one gill net (“pelagic gill net”) 

perpendicular to the shoreline at the surface within the littoral zone (Bonar et al. 2009). The 

bottom of the net closest to shore was just above the lake floor. The second gill net (“benthic gill 

net”) was weighted so that it floated submerged with the lead line on the lake bottom. We 

deployed the benthic gill net at the deepest zone of the lake (as determined by depth sounder 

transects), perpendicular or oblique to the shoreline. Gill nets were checked every two to three 

hours and removed on the third check. 
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Minnow Traps – We baited eight Gee-style galvanized steel minnow traps (2.5 cm opening with 

6 mm mesh) with preserved salmon eggs. Four traps were deployed individually in shallow 

water along the shoreline (“shore minnow traps”) and four traps were sunk with weights in 

deepest zone of the lake (“deep minnow traps”). After 12 h, traps were checked for fish, baited 

again and replaced. Traps were checked for fish and removed after 24 h. 

Fyke nets – We sampled shorelines with two fyke nets, each having  a hoop net constructed of 

0.3 cm sized stretched mesh and had a frame opening of 1.1 x 1.1 m, followed by five sequential 

hoop frames spaced 0.8 m apart and measuring 0.6 x 0.6 m in size. Attached to the hoop net were 

two 15.2 x 1.2 m wings and a 30.5 x 1.2 m centerline with 0.6 cm sized stretched mesh. Wings 

and centerline had float lines and weighted lead lines. The hoop net had three net throats within 

the frame measuring 15 x 23 cm at the middle of each throat. We set nets either in the morning 

(8 am – 12 pm) or the evening (8 pm – 12 am) at separate locations within a lake. Nets were 

checked twice for fish, once after approximately 12 h and again after 24 h when the nets were 

pulled. If a lake had a stream connection, one fyke net was set adjacent the connection, but did 

not entirely block it. Centerlines were set perpendicular from the shore except in lakes with very 

shallow shelf zones (< 0.4 m depth) that exceeded the length of the centerline. At locations with 

extensive shallow shelves, the centerline was set away from shore (but still perpendicular) such 

that the fyke net was closer to the drop off and would sample the deeper water. 

Dip nets – We used dip nets (3 mm mesh; two opening sizes 28 x 38 x 20 and 41 x 41 x 41 cm) 

on the lakeshore. We swept nets along the lake bottom adjacent to shore for three eight-minute 

intervals. 

Beach seine – We employed a 3 mm mesh beach seine measuring 15 m in length and tapered in 

width from 3 m at the middle to 1.2 m at the wings. Two beach seine replicates, covering 

approximately 10-15 m in length, were conducted at a location with shoreline structure amenable 

to seining. The second replicate was offset from the first by at least 5 m parallel along the shore.  

Multi-Method Analysis 

We used the multi-method parameterization described by Nichols et al. (2008) to 

estimate detection probability (p) of each gear type while simultaneously estimating the 
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probability of occupancy at the sample lake (Ψ), and the probability of occupancy at the 

sampling location within the lake (θ). The multi-method approach allows direct comparison 

among methods while incorporating the influences of other covariates (e.g., lake size, species) 

and uses the combined detection histories from all methods to estimate detection probabilities of 

individual methods. Estimating probability of occupancy at the local scale (i.e., the scale of the 

sampling location within the lake, θ) allows for the relaxation of the closure assumption and 

provides information on how available species are to spatial replicate sampling within the lake 

(Nichols et al. 2008; Pavlacky et al. 2012). When θ is high and varies little, species are 

distributed throughout the lake and available to spatial replicates. When θ is low or has high 

variation, species may be patchily distributed within the lake and will not be available to all 

spatial replicates which can induce estimation bias (Kendall and White 2009). We used a single 

season parameterization and included year as a covariate (see below) because we did not sample 

any sites in both years. We split the species data into two sets based on fish body size and 

analyzed each data set separately because not all gear types catch fish of both size classes (e.g., 

gill nets catch only large-bodied fish). No large-bodied species (including juveniles) were caught 

in gear that targeted small-bodied species. We only included fish species that had a naïve 

occupancy > 10% to ensure we had adequate data to estimate detection probability (MacKenzie 

et al. 2005). Although Arctic grayling had a naïve occupancy of 16%, we analyzed this species 

separately from other large-bodied species because sparse detection data required a simple 

detection model without site covariates. 

We created a set of a priori models in the program PRESENCE (Version 4.4, Hines 

2006). We modeled occupancy with a purposely simple structure because we were primarily 

interested in detection probability (occupancy will be investigated further elsewhere). We 

included two covariates for occupancy – one representing the propensity of a site to be colonized 

by a species (presence of stream connection) and the other representing the propensity for 

species to go locally extinct (area of the lake >2 m which represents the area with depths greater 

than the maximum winter ice depth; Grunblatt  and Atwood 2014). These two factors have been 

important in determining fish distribution in Arctic lakes in the foothills of the Brooks Range 

(Hershey et al. 2006). We assumed that the probability a species is present at the immediate 

sample location given the lake is occupied (θ) was constant because we did not see a compelling 

biological basis for variation in θ among survey locations within a lake and we did not have a
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priori information on how θ might vary by species or covariates. Because our primary goal was 

estimation of gear- and species-specific detection probabilities, these variables were included in 

every model. We also examined the influence of four covariates likely to influence detection 

probability, including: lake area, percent of the lake deeper than 2 m (Grunblatt and Atwood 

2014), day from the beginning of sampling for each season (4-Jul in 2009 and 23-Jun in 2010) 

which may be related to seasonal changes in fish abundances, and year (2009 or 2010). We 

standardized all continuous covariates by calculating z-scores (Donovan and Hines 2006) and 

limited interactions to 2-way for interpretation and parsimony. Finally, we examined gear-

specific covariates for gear types that had sample specific covariates that may affect detection 

probability. We first considered whether detection probabilities differed between the pelagic and 

benthic gill nets for large-bodied species or between the shore and deep minnow traps for small-

bodied species. Because sample covariates were method-specific and contained missing data for 

sample covariates, we tested whether sample covariates were important for fyke net (N = 83) and 

deep minnow traps (N = 61) in separate analyses. We investigated two site covariates specific to 

the fyke net: whether or not it was set next to a stream connection (“stream”) and the time of the 

set (morning - evening, or evening - morning). For the deep minnow trap, we assessed whether 

detection probability was affected by the water depth of the trap. 

For all analyses described above, we examined the candidate model sets using an 

information-theoretical approach (Burnham and Anderson 2002). We ranked models using 

Akaike’s Information Criterion, corrected for sample size (AICc, Burnham and Anderson 2002). 

We ranked models from lowest to highest AICc values and calculated ∆AICc as the difference in 

AICc relative to the model with the lowest AICc value (Burnham and Anderson 2002). 

Determining sample size for occupancy models is still a topic of debate (i.e., whether the sample 

size is the number of sites or the number of surveys; MacKenzie et al. 2006), thus we used the 

mean value between the number of sites and the number of surveys to adjust the sample size 

(MacKenzie et al. 2012). To check for overdispersion (i.e., inadequate variance structure in the 

model; Mackenzie et al. 2006), we ran goodness-of-fit tests (MacKenzie and Bailey 2004) on 

single season models for each set of repeat samples (i.e., the first sample for each gear type) 

using our most complex model. With evidence for overdispersion (the dispersion parameter, ĉ , 

is greater than one), we adjusted the selection criteria (QAICc) and sample variances (Burnham 

and Anderson 2002). Because our objectives were to resolve sampling issues, detection 
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probabilities are the main focus. We are exploring occupancy probabilities in more detail in a 

separate effort (Haynes, unpublished data) that focuses on habitat use, and thus, occupancy 

probabilities are not presented here. Parameter estimates and covariate beta coefficients (β) are 

presented ± standard error unless otherwise specified. 

Results 

Multi-method Analysis 

Goodness-of-fit tests on the multi-method datasets suggested that there was no lack of fit 

for either small- (mean ĉ ± SD = 1.045 ± 0.213) or large-bodied fish analyses (mean ĉ ± SD = 

0.592 ± 0.248); we therefore did not adjust for overdispersion. The most complex models 

received the highest support based on the AIC scores for both the small and large-bodied fishes 

(Tables 2.1 and 2.2). For small-bodied species, the detection probabilities of deep and shore 

minnow traps differed (∆AICc = 270.64). For large-bodied species (broad whitefish and least 

cisco), the best fitting model ascribed equal detection probabilities to pelagic and benthic gill 

nets.  

For both small and large-bodied species, detection probabilities varied drastically among 

methods and species (Tables 2.3 and 2.4). Deep minnow traps had the highest detection 

probability of any method for Alaska blackfish (0.25 ± 0.03), while shore minnow traps were 

better for sampling ninespine stickleback (0.60 ± 0.03) and slimy sculpin (0.02 ± 0.01). Fyke 

nets generally had high detection probabilities for each species and were the best method for 

detecting least cisco (0.82 ± 0.05), Arctic grayling (0.16 ± 0.06), and ninespine stickleback (0.77 

± 0.04). Beach seining generally had low detection probabilities for all species, with the 

exception of slimy sculpin, for which it was the method with the highest detection probability 

(0.13 ± 0.05). Gill nets had high detection probabilities for broad whitefish (highest, 0.39 ± 0.07) 

and least cisco (0.56 ± 0.06), but not for Arctic grayling (0.02 ± 0.01). Estimates of small scale 

occupancy (local occupancy at a sample location within a lake θ) were high for both small (0.959 

± 0.020) and large-bodied species (0.885 ± 0.038). 

The effects of site covariates on detection varied in magnitude and direction depending 

on the sampling method and species group (small or large-bodied, Table 2.5). Lake depth 

generally had a positive influence on detection, except in the case of sampling large-bodied 
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species with the fyke net (logit β = -0.65 ± 0.18). Lake area generally had a negative effect on 

detection, but most effects were weak with the exception of fyke net (small-bodied, logit β = - 

0.44 ± 0.13), shore minnow traps (logit β = -0.23 ± 0.08) and gill net, for which there was a 

positive effect (logit β = 0.43 ± 0.20). Day and Year effects were highly variable among 

methods. There was a notably strong positive effect of day on fyke net detection probability for 

large-bodied (logit β = 0.93 ± 0.24), and a positive but weaker effect for small-bodied species 

(logit β = 0.15 ± 0.11).  

Single Method - Sample Covariates 

We found overdispersion in the data used to examine sample covariates for fyke nets (ĉ = 

2.62) and deep minnow traps (ĉ = 1.40) and thus adjusted for overdispersion. Further, we ran the 

deep minnow trap analysis without slimy sculpin because they were found in only 3 deep 

minnow traps total. Top models for both the fyke net and deep minnow trap analysis included 

only species-effects, and model ranking suggested only limited support for sample covariates in 

both cases (Tables 2.6 and 2.7). Setting a fyke net near a stream connection had little effect on 

detection probability (logit β = -0.05 ± 0.19, Model 3, Table 2.6). When we examined the Catch-

Per-Unit-Effort (CPUE) of the two most abundant species (least cisco and ninespine 

stickleback), we found no notable difference in CPUE between fyke nets set either adjacent to 

(ninespine stickleback = 520 ± 355; least cisco = 57 ± 24) or apart from a connection (ninespine 

stickleback = 693 ± 532; least cisco = 45 ± 16). Checking the fyke net in the morning as opposed 

to the evening had a weak negative effect on detection probability (logit β = -0.11 ± 0.17, Model 

2, Table 2.6) suggesting that fish may be more likely captured during the day compared with 

overnight sets. Support for an interaction effect with species and the sample covariates was weak 

(Time*Species model ∆QAICc =11.11, Stream*Species model ∆QAICc = 11.92). Depth of the 

deep minnow traps had some support from the data as a positive influence on detection 

probability; however, this effect size was also relatively weak and poorly estimated (logit β = 

0.13 ± 0.09, Model 2, Table 2.7). 

Discussion 

Detection probability varied considerably by species, method, and habitat conditions. 

This highlights the importance of considering not only the actual values of detection, but also 

incorporating both species- and habitat-covariates when designing studies intended to understand 
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fish distribution across North Slope lakes. Although the most widespread and common species, 

such as least cisco and ninespine stickleback, had high detection probabilities for most methods, 

no method provided detection probabilities greater than 0.9 for a single sampling event. 

Conversely, species such as slimy sculpin and Arctic grayling had relatively low detection 

probabilities for all methods, and are thus difficult to sample regardless of method. Finally, other 

species, such as broad whitefish in gill nets, had a specific method that provided much higher 

detection probability. 

High estimated values of θ suggest that, if fish species are present at the scale of the lake, 

they are likely available to spatial replicates within the lake itself. Thus, data support that spatial 

replication can be used in addition to or in lieu of temporal replication in North Slope lakes 

(Kendall and White 2009; Pavlacky et al. 2012). Because our values of θ were high with low 

standard errors, we suggest using data from spatially replicated surveys to sample occupancy of 

North Slope fishes in lakes is a robust approach because fish generally occupy a large proportion 

of the lake. This is an important consideration when sampling remote lakes that are difficult and 

costly to access because using spatial replicates can potentially decrease the time spent at the 

lake and reduce or eliminate the need for repeated visits to the lake. However, although we kept 

θ constant, θ is less likely to be constant for rare or patchily distributed species and this should be 

considered in further analyses. 

Our results indicate a sample design to assess the entire fish community of a lake may be 

most effective if it includes multiple sampling methods. In addition to providing high detection 

probabilities across species, a multi-method approach may provide the highest sampling 

efficiency, as multiple gears can be deployed simultaneously, and active sampling (e.g., beach 

seining or dip netting) can occur while passive sampling gears are in place. However, 

investigators must weigh the detection probabilities of individual or combined gear with the cost 

of transport, deployment, and sampling. Adding multiple methods and replicates generally will 

increase detection probability, but the cost and time investment will trade off with these 

increases (Mattfeldt and Grant 2007).  

Until now, detection probabilities of different gear types for Arctic fish species were 

lacking. Results from this study will prove useful in designing future sampling protocols for 

lakes on the North Slope. Because other areas of the circumpolar Arctic are replete with large 
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thermokarst lakes (Smith et al. 2007), our results may be useful in designing surveys in other 

regions as well. Investigators must choose between allocating sufficient sampling efforts at a 

given site to ensure target species are detected if present, with efforts to sample multiple sites 

(MacKenzie et al. 2005). Computer programs that can guide the design of occupancy studies 

(monitoring or research), such as GENPRES (Bailey et al. 2007) or SODA (Guillera-Arroita et 

al. 2010), require values for detection probabilities and results presented here can provide those 

initial estimates. Investigators can also use the detection probabilities presented here to 

determine the number of surveys necessary given a goal of detecting a species with a desired 

level of certainty. For example, an investigator may plot a cumulative detection probability (i.e., 

the detection probability of >1 survey) and determine how many replications are necessary to 

detect the species with 85% certainty (Figure 2.2). In this example, each species was sampled 

with the method with the highest detection probability, resulting in a variable number of samples 

that are required to achieve a cumulative detection probability > 0.85, depending on the species 

considered. For instance, least cisco would require only two repeated samples with fyke nets 

while slimy sculpin, which has the lowest detection probability, would require 14 repeated 

samples with a beach seine to achieve the same cumulative detection probability. When targeting 

multiple species or the whole fish community, investigators can add detection probabilities of 

different gear types to determine the cumulative detection probability for each species given a 

sampling protocol. Further, investigators can optimize the sample design by balancing the time, 

cost, and desired cumulative detection probability (e.g., Mackenzie and Royle 2005, Bailey et al. 

2007). Similarly, if the goal is to detect a change in occupancy over time, investigators may 

consider design trade-offs in the context of a power analysis (Guillera-Arroita and Lahoz-

Monfort 2012). If investigators wish to reduce mortality, they could choose methods that provide 

similar detection methods to those that have higher mortality levels (e.g., gill nets). Further, the 

level of sampling required to achieve a particular cumulative detection probability could be more 

precise, thus allowing for more streamline sampling which often leads to less mortality. 

Regardless of species or method, our results suggest that multiple samples are required to detect 

species with the high degree of confidence necessary to avoid bias (i.e., detection probability ≥ 

0.9, McKann et al. 2012). 

Site covariates showed high variability in magnitude and direction depending on the 

species group and the sampling method. Standard sampling methods for fishes generally 
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recommend more survey effort for larger lakes (e.g., Bonar et al. 2009, p. 92), and we found a 

general negative effect of lake size on detection probability that supports this recommendation. 

However, we noted some exceptions, including gill net and dip net detection probabilities, which 

had a positive relationship with lake area. Detection probabilities were generally higher with 

increasing lake depth (i.e., % area >2m in depth), suggesting that most gear types are more 

effective at capturing target species in lakes that have a higher percentage of their area >2m in 

depth. Interestingly, this included gear types such as dip nets and minnow traps deployed on the 

shoreline. Effects of this variable may be related to the productivity of deeper lakes leading to 

higher abundances of fish, which in turn, could positively affect detection probability (Royle and 

Nichols 2003). Day and year covariates indicate temporal variation by method and species 

group. These temporal effects may be both biological (e.g., changing abundances through the 

season or between seasons) or related to sampling (e.g., crews becoming more experienced 

through time). Regardless of whether these temporal effects are biological or sampling induced, 

inclusion of temporal effects in the analysis minimizes bias in estimates of lake occupancy. 

A likely source of heterogeneity in site-specific detection is differences in fish abundance 

among sites. Detectability is not only a function of gear type, habitat, and species, but also the 

number of individuals in the site that will be vulnerable to the gear in question (Royle and 

Nichols 2003). By incorporating habitat features important for these fishes (e.g., lake size) in our 

detectability models, we likely indirectly accounted for some of this heterogeneity. Further, 

underlying heterogeneity does not preclude the use of these results in areas where similar 

environmental conditions and abundances of fish are expected. 

Sample covariates that did not appear in our top models may still merit consideration for 

further study. For example, the depth of the deep minnow traps did not greatly influence the 

detection probability of Alaska blackfish or ninespine stickleback, potentially due to the low 

amount of variation in the depths we examined (all lakes were relatively shallow and we always 

targeted the deepest portions). For fyke nets, we were surprised that time of set or location of set 

relative to stream connections did not greatly affect the detectability of fish species, considering 

that there are strong reasons to believe that both these covariates are likely related to diel patterns 

(night versus day sets) and migration patterns (adjacent to or away from a connection) of fish 

movement, which in turn, would affect the probability of detection. The lack of difference 



19 

between location of sets (at or away from a connection) suggests that, generally, movement 

along the shoreline of a lake may be similar to movement in and out of a connection. Similarly, 

because of known relationships between fish movement and the diel cycle (e.g., Bohl 1979; Levy 

1990; Natsumeda 1998), we expected differences in detection probabilities for sets checked after 

a 12 h night set versus a 12 h day set. Lack of a strong relationship between check time and 

detection probability may be due to the lack of a strong diel cycle in the Arctic in the summer, 

during which there is 24 h sunlight (Kahilainen et al. 2004). 

We chose gear types that represented commonly used techniques in fisheries sampling. 

Gear types used in other studies may differ in certain aspects such as mesh size and net material 

and length. These differences could lead to differences in detection probability. However, gear 

types such as minnow traps, variable mesh gill nets, and dip nets are standardly used in many 

sampling protocols (e.g., Nielsen and Johnson 1983; Bonar et al. 2009). Other gear we used 

which may vary more in size and shape from study to study, such as the fyke nets and beach 

seines, were designed specifically for sampling lakes on the North Slope, and thus, we would 

recommend studies use similar gear when sampling in this area. If similar gear is used, detection 

probabilities provided here should provide good values for preliminary planning. If gear differs 

from what we used, these detection probabilities can provide a starting point for investigators, 

who may adjust probabilities according to perceived differences in catch efficiencies of the 

differing gear.  

The occupancy modeling framework used here allowed for direct estimation of detection 

probabilities from data containing repeated surveys and direct comparisons among methods. 

Valid inferences of population level parameters such as occupancy require an adequate sample 

design that considers detection probability (Pavlacky et al. 2012). Our results suggest that failure 

to incorporate detection probabilities will bias occupancy estimates and the description of the 

species-environment relationship. Further, this bias can influence validation of predictive models 

(Long et al. 2011). Results from this study provide investigators critical information about the 

sampling efficiencies of different gear types for common species on the North Slope and will be 

instrumental in designing research or monitoring programs in the future. Given that the North 

Slope is relatively poorly sampled for fish and is liable to face impacts from climate change and 

resource development (e.g., water withdrawal for ice roads), results from this study should be 
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useful for planning sampling frameworks for future inventory and monitoring efforts. Further, 

these results can be used to address similar environmental and resource management issues 

facing Arctic areas of Canada and Eurasia, allowing for a more informed design of sampling 

protocols aimed at sampling fish populations in Arctic lakes. 

Ongoing climate change is given to have the strongest impact in Arctic regions (Martin et 

al. 2009b), and there is anticipated to major changes in the function of freshwater ecosystems in 

the North Slope (Reist et al. 2006; Wrona et al. 2006). Given the complexity of aquatic systems, 

the potential for indirect effects, and confounding factors such as anthropogenic development 

and oil exploration (Reist et al. 2006), reliable baseline data and monitoring programs are crucial 

to understand changes to aquatic ecosystems of the far north. Beyond a regional understanding, 

Arctic systems are also excellent model ecosystems for studying the impacts of climate change 

because impacts are likely to be more pronounced in the far north. Our methods provide a means 

by which researchers and managers can acquire data to investigate these sorts of questions with 

maximum flexibility of circumstances and gear (required in a place as difficult to sample as the 

North Slope), but with less concern for the bias that multiple gear types and changing 

circumstances can bring. 
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Table 2.1: Model ranking for the multi-method analysis for small-bodied fish species based on 

Akaike’s Information Criterion adjusted for sample size (AICc), differences in AICc (∆AICc), 

model weight, model likelihood, and number of parameters (K). Fish were sampled in lakes on 

the Arctic Coastal Plain, Alaska. 

Modela AICc ∆AICc

AIC 
wgt Likelihood K 

p(LakeDepth + LakeArea + Day + Year + 
Species*Method) 4613.90 0.00 1.00 1.00 41 
p(LakeDepth + LakeArea + Species*Method) 4665.46 51.56 0.00 0.00 31 
p(Day + Year + Species*Method) 4666.21 52.31 0.00 0.00 31 
p(LakeDepth + LakeArea + Day + Year + 
Species*Method), No Method*Covar 4691.17 77.27 0.00 0.00 25 
p(Species*Method,) 4727.76 113.86 0.00 0.00 21 
p(LakeDepth + LakeArea + Day + Year + 
Species*Method), DMT = SMT 4884.54 270.64 0.00 0.00 34 
p(LakeDepth + LakeArea + Day + Year + Species + 
Method) 4969.04 355.14 0.00 0.00 31 
a All models included area of lake below 2 m and presence of stream connection as covariates for 

occupancy probability (ѱ) while local occupancy (θ) was kept constant among surveys. 

Interaction between method and habitat and temporal covariates were included unless indicated 

(No Method*Covar). Detection probabilities of deep (DMT) and shore minnow traps (SMT) 

were estimated separately unless otherwise indicated (DMT = SMT). 
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Table 2.2: Model ranking for the multi-method analysis for large-bodied fish species (least cisco 

and broad whitefish) based on Akaike’s Information Criterion adjusted for sample size (AICc), 

differences in AICc (∆AICc), model weight, model likelihood, and number of parameters (K). 

Fish were sampled in lakes on the Arctic Coastal Plain, Alaska. 

Modela AICc ∆AICc AIC wgt Likelihood K 
p(Species*Method + LakeArea + 
LakeDepth + Year + Day) 1081.27 0.00 0.97 1.00 23 
p(Species*Method + LakeArea + 
LakeDepth) 1089.39 8.12 0.02 0.02 17 
p(Species*Method + LakeArea + 
LakeDepth + Year + Day), No 
Method*Covar 1091.15 9.88 0.01 0.01 15 
p(Species*Method + Year + Day) 1092.08 10.81 0.00 0.00 17 
p(Species*Method) 1092.46 11.19 0.00 0.00 11 
p(Species*Method + LakeArea + 
LakeDepth + Year + Day), BGN ≠ PGN 1092.98 11.71 0.00 0.00 29 
p(LakeArea + LakeDepth + Year + Day) 1119.13 37.86 0.00 0.00 20 
a All models included area of lake below 2 m and presence of stream connection as covariates for 

occupancy probability (ѱ) while local occupancy (θ) was kept constant among surveys. 

Interaction between method and habitat and temporal covariates were included unless indicated 

(No Method*Covar). Detection probabilities of benthic (BGN) and pelagic gill nets (PGN) were 

estimated as equal unless indicated otherwise (BGN ≠ PGN). 
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Table 2.3: Detection probability estimates with standard errors of small-bodied fish species for 

each gear type. Models included day of sampling, year, lake depth, and lake area as covariates 

for detection and a species-method interaction. Detection estimates are for average values of the 

covariates in 2009. Fish were sampled in lakes on the Arctic Coastal Plain, Alaska. 

Species Fyke Net Beach Seine 
Deep 

Minnow Trap 
Shore 

Minnow Trap Dip net 
Ninespine stickleback 0.766 (0.035) 0.665 (0.059) 0.117 (0.017) 0.598 (0.033) 0.370 (0.032) 

Alaska blackfish 0.128 (0.025) 0.069 (0.027) 0.251 (0.029) 0.115 (0.018) 0.083 (0.016) 
Slimy sculpin 0.038 (0.012) 0.129 (0.045) 0.005 (0.003) 0.017 (0.007) 0.027 (0.010) 
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Table 2.4: Detection probability estimates and standard errors of large-bodied fish species for 

each gear type. Models for broad whitefish and least cisco included day of sampling, year, lake 

depth, and lake area as covariates for detection and a species-method interaction. Detection 

estimates for these species are for average values of the covariates in 2009. The detection 

probability model for Arctic grayling included only the species-method interaction. Fish were 

sampled in lakes on the Arctic Coastal Plain, Alaska. 

Species Fyke Net Beach Seine Gill net 
Least cisco 0.815 (0.049) 0.231 (0.089) 0.556 (0.055) 

Arctic grayling 0.163 (0.060) 0.071 (0.045) 0.015 (0.011) 
Broad whitefish 0.104 (0.033) 0 (0) 0.378 (0.067) 
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Table 2.5: Logit-scale regression coefficients of site covariates for the top models for small and 

large-bodied fish species. Fish were sampled in lakes on the Arctic Coastal Plain, Alaska. 

Large-bodied Small-bodied 
Covariate Method Estimate SE Estimate SE 
Day1 fyke net 0.925 0.242 0.145 0.112 

beach seine 0.196 0.394 -0.304 0.158 
deep minnow trap -0.005 0.084 
shore minnow trap -0.327 0.081 
dip net 0.042 0.088 
gill net 0.110 0.173 

Year fyke net -0.806 0.372 0.841 0.221 
beach seine -0.433 0.603 -0.591 0.304 
deep minnow trap 0.367 0.168 
shore minnow trap -0.532 0.155 
dip net -0.579 0.167 
gill net 0.140 0.259 

Lake Area2 fyke net 0.053 0.183 -0.442 0.137 
beach seine -0.160 0.341 -0.087 0.147 
deep minnow trap -0.082 0.090 
shore minnow trap -0.231 0.081 
dip net 0.117 0.073 
gill net 0.427 0.197 

Lake Depth3 fyke net -0.645 0.180 0.531 0.116 
beach seine 0.482 0.386 0.547 0.174 
deep minnow trap 0.133 0.102 
shore minnow trap 0.283 0.082 
dip net 0.221 0.092 
gill net 0.008 0.117 

1Measured as day from beginning of the sampling season with the first day = 0 

2Mean ± SD = 146.3 ± 192.8 ha, Range = 15.0-1489.3 ha 

3Mean ± SD = 92.8 ± 141.7 ha, Range = 0-1109.2 ha
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Table 2.6: Model ranking based on Akaike’s Information Criterion adjusted for sample size and 

overdispersion (QAICc), differences in QAICc (∆QAICc), model weight, model likelihood, and 

number of parameters (K) for the single-season model of fyke net detection probability for all 

fish species. Fish were sampled in lakes on the Arctic Coastal Plain, Alaska.  

Model QAICc ∆QAICc 
QAICc 

wgt Likelihood K 
p(Species) 549.73 0.00 0.55 1.00 9 
p(Species + Time) 551.77 2.04 0.20 0.36 10 
p(Species + Stream) 551.92 2.19 0.18 0.33 10 
p(Species + Stream + Time) 553.98 4.25 0.07 0.12 11 
p(Species + Time + Time*Species) 560.84 11.11 0.00 0.00 15 
p(Species + Stream + Stream*Species) 561.65 11.92 0.00 0.00 15 
p(.) 568.77 19.04 0.00 0.00 4 
Note: p(.) represents the null model (no covariates) for detection. The model set included models 

with sample covariates time (whether fyke net sets sampled morning - evening, or evening - 

morning) and stream (whether the fyke net was set at or away from a stream connection). All 

models included area of lake below 2 m and presence of stream connection as covariates for 

occupancy (ѱ), while local occupancy (θ) was held constant among surveys. 
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Table 2.7: Model ranking based on Akaike’s Information Criterion adjusted for sample size and 

overdispersion (QAICc), differences in QAICc (∆QAICc), model weight, model likelihood, and 

number of parameters (K) for the single-season model of sinking minnow trap detection 

probability analysis for small-bodied fish species. Fish were sampled in lakes on the Arctic 

Coastal Plain, Alaska. 

Model QAICc ∆QAICc 
QAICc 

wgt Likelihood K 
p(species) 486.24 0.00 0.34 1.00 5 
p(species+MTDepth) 486.89 0.65 0.25 0.72 6 
p(species+MTDepth+species*MTdepth) 486.90 0.66 0.25 0.72 7 
p(.) 488.89 2.65 0.09 0.27 4 
p(MTDepth) 489.35 3.11 0.07 0.21 5 
Note: p(.) represents the null model (no covariates) for detection. Model set included models 

with the depth of the sinking minnow trap (MTDepth) as a covariate. All models included area of 

lake below 2 m and presence of stream connection as covariates for occupancy (ѱ), while local 

occupancy (θ) was held constant among surveys. 
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Figure 2.1: Study area on the North Slope of Alaska. Sample plots are shown as white boxes and 

sampled lakes are shaded in black. 
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Figure 2.2: Example of the number of repeated samples required to achieve a cumulative 

detection probability of 0.85 (solid black line) using the gear type with the highest detection 

probability for each respective species. Detection estimates are for average values of the 

covariates in 2009. 
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Chapter 3: Patterns of lake occupancy by fish indicate different adaptations to life in a 

harsh Arctic environment
1 

Abstract 

For six fish species sampled from 86 lakes on the Arctic Coastal Plain, Alaska, we examined 

whether lake occupancy was related to variables representing lake size, colonization potential, 

and/or the presence of overwintering habitat. We found the relative importance of each factor for 

a given species could be related to its ecology and adult size. The three large-bodied migratory 

species, least cisco (Coregonus sardinella), broad whitefish (Coregonus nasus), and arctic 

grayling (Thymallus arcticus), were influenced by factors associated with the likelihood of fish 

recolonizing lakes, including whether the lakes had a stream connection. Of the large-bodied 

species, least cisco had the highest likelihood of occupancy (estimate ± SE = 0.52 ± 0.05) and 

models provided evidence that least cisco exhibit both migratory and resident forms. Models for 

small-bodied fish differed among species, indicating different niches. Ninespine stickleback 

(Pungitius pungitius) were the most widespread and ubiquitous of the species captured 

(occupancy probability = 0.97 ± 0.01); they were captured in lakes that freeze to the bottom, 

suggesting they disperse widely and rapidly after spring freshet, including colonization of sink 

habitats. Alaska blackfish (Dallia pectoralis) had a lower occupancy (occupancy probability = 

0.76 ± 0.05) with a distribution that reflected tolerance to harsh conditions. Slimy sculpin (Cottus

cognatus) had an occupancy probability of 0.23 ± 0.06, with a distribution indicating its marine 

origin. Based on these patterns, we propose an overall model of primary controls on the 

distribution of fishes on the Arctic Coastal Plain of Alaska. Harsh conditions, including lake 

freezing, limit occupancy in winter through extinction events while lake occupancy in spring and 

summer is driven by directional migration (large-bodied species) and undirected dispersal 

(small-bodied species). 

1Haynes T.B., A.E. Rosenberger, M.S. Lindberg, M. Whitman, J.A. Schmutz. 2014. Patterns of lake 
occupancy by fish indicate different adaptations to life in a harsh Arctic environment. Freshwater 
Biology. 59: 1884-1896. 
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Introduction 

Patterns of habitat occupancy are a consequence of the relationship between species traits 

and the habitat features that limit their distribution (Poff, 1997). The distribution of fish may be 

affected by historical constraints (e.g. glaciation; Oswood et al., 2000), barriers to local 

colonization (Spens et al., 2007), or factors that promote recruitment and overall population 

persistence (Salonen et al., 2009). At regional scales, the distribution of fish is shaped by 

climate, large scale barriers to dispersal and historical biogeographical influences (Tonn et al., 

1990). At finer spatial scales, distribution is influenced by the extent, shape and abiotic features 

of the habitat, the structure of the surrounding landscape, and biological factors (e.g. competition 

and predation; Jackson et al., 2001). Controls on fish distribution are complex and act on a 

number of scales. However, this complexity can be alleviated in situations where the system is 

well-studied or has a single dominant factor (e.g. hypoxia, severe cold) that simplifies the 

number of filters determining assemblage composition. 

Arctic lakes provide an excellent opportunity to examine how environmental features 

affect the distribution of fish and how species are adapted to a harsh and dynamic environment. 

Compared with other aquatic systems, lakes are isolated (Magnuson, 1976), and can be examined 

as discrete patches with a limited number of environmental influences. Biologically, Arctic lakes 

are relatively simple because of low species diversity and productivity, and because species have 

physiologically and geographically constrained distributions (Hershey et al., 1999). Further, 

these systems are less affected by anthropogenic influences that complicate ecological study, 

including heavy fishing pressure, pollution, introduction of non-native species, transfer and 

stocking of native species, and alterations of waterways.  

Fish assemblages on the Arctic Coastal Plain (ACP) are largely recruited from the fauna 

of the Beringian refugia, but also include species that took advantage of Pacific Coast or 

Mississippi Pleistocene refugia (Oswood et al., 2000). At finer spatial scales, species-specific 

responses to landscape controls, like colonization potential and the presence of local refugia, are 

likely to be reflected in differences in distribution patterns among species (Jackson et al., 2001). 

Fishes on the ACP have diverse morphologies and ecologies, including major life history traits 

such as reproductive timing and investment, migratory patterns, and trophic position (Reynolds, 

1997; Hershey et al., 1999). Species also differ in their ability to persist in lakes and to colonize 
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new lakes. These differences among species traits probably drive the variation in occupancy 

among fishes on the ACP. 

There are relatively few descriptions of the distributions of fish on the ACP and 

elsewhere in the Arctic. Two notable studies include Hershey et al. (1999), who suggested a 

geomorphic-trophic conceptual model of the distribution of Arctic fish, and Hershey et al. 

(2006), who provides empirical models of fish distributions in lakes in relationship to landscape 

features. Both these studies were restricted to an area (18,000 km2) in the foothills of the Brooks 

Range Mountains, which differs from most of the ACP, in terms of fish species composition and 

abundance, landscape features and topography, geomorphic constraints, and glaciation history 

(Oswood et al., 2000). Catalogues of fish inventories that are used to manage fish populations, 

such as the Anadromous Waters Catalogue (Alaska Department of Fish & Game) also have very 

coarse and limited data for the ACP. To improve our understanding of the distribution of 

lacustrine fish in the Arctic, we investigated the occupancy of six species across a broad 

northerly area of the ACP. We examined three large-bodied species, least cisco (Coregonus

sardinella), broad whitefish (Coregonus nasus) and arctic grayling (Thymallus arcticus), and 

three small-bodied species, ninespine stickleback (Pungitius pungitius), Alaska blackfish (Dallia

pectoralis) and slimy sculpin (Cottus cognatus). These species vary in their ecological attributes 

and life histories, which can lead to species-specific responses to spatial and temporal variation 

in environmental conditions (Winemiller & Rose, 1992) and, ultimately, variation in lake 

occupancy (Miyazono et al., 2010). We expected that local and regional features relating to local 

persistence and colonization potential in lakes would determine fish occupancy; however, the 

scale and strength of the effects would depend on the biology of the individual species, including 

their dispersal and migratory capabilities and tolerance to winter conditions. Our overall goal 

was to provide a conceptual model of primary controls on the distribution of fish in Arctic lakes, 

contrasting the effects of landscape connectivity and overwintering refugia on fish species that 

vary in body size, tolerance to winter conditions and ecology. 

Methods 

We sampled 86 lakes for fish over a large area (~ 8500 km2) of the ACP located within 

the National Petroleum Reserve – Alaska. To our knowledge, no sampling had been conducted 

on these waterbodies previously. We focused on lakes in 16 plots, each 7 x 7 km in dimension, 
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randomly distributed across the study area (Figure 3.1). Within a plot, we selected a lakes with a 

surface area > 7 ha, at random except that half were occupied by piscivorous yellow-billed loons 

(Gavia adamsii) and half not.  

We began sampling on 4 July in 2009 and 23 June in 2010, shortly after spring freshet 

(when snow and ice had melted rapidly and caused widespread flooding) and continued until 

mid-August, encompassing the growing season for fish. Three sampling crews (two-four people 

in each) worked independently on separate lakes throughout the season. Crews sampled each 

lake during a single visit of 48-72 h before moving to the next lake. We used five methods to 

sample the fish, including: gillnets (two nets, three replicates net-1), minnow traps (eight traps, 

two replicates trap-1), fyke nets (two nets, two replicates  net-1), dip nets (one net, 30 replicates

net-1) and beach seines (one net, two replicates net-1). Samples were replicated spatially (several 

sets of the same gear sampling at the same time) and temporally (a single set of gear used a 

number of times). For example, we used two fyke nets (two spatial replicates), each checked 

twice (two temporal replicates) for a total of four replicates per lake. Because our temporal 

replication took place over a short period (i.e. < 72h), it is unlikely that we violated the site-

closure assumption for occupancy modelling (MacKenzie et al., 2006). We generally deployed 

fyke nets and minnow traps before midday and conducted beach seine, dip net and gill net 

sampling throughout the afternoon. Although there was some variation in the timing of gear 

deployment, our previous work suggested that there were no strong diurnal effects on gear 

sampling efficiency (Haynes et al., 2013). Methods used for each gear type are described below 

and in greater detail in Haynes et al. (2013).

Gill nets – We used two variable-mesh gill nets measuring 38 m x 1.8 m with five panels ranging 

in mesh size from 1.3 to 6.5 cm. We checked gill nets every two to three hours, then removed the 

nets after the third check. 

Minnow Traps – We baited eight Gee-style galvanized steel minnow traps (2.5 cm opening with 

6 mm mesh) with preserved salmon eggs and generally deployed traps before midday. We 

deployed four traps individually in shallow water along the shoreline (“shore minnow traps”) and 

sunk four traps in deepest zone of the lake (“benthic minnow traps”). Shore and benthic minnow 

traps had different probabilities of catching fish and were therefore considered as two separate 
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methods (Haynes et al., 2013). We checked traps after 12 h, re-baited and replaced them, and 

checked and pulled them after 24 h. 

Fyke nets – We sampled shorelines with two fyke nets, each with 15.2 x 1.2 m wings and a 30.5 

x 1.2 m centreline with 0.6 cm sized stretched mesh. Wings and centreline had float lines and 

weighted lead lines. The hoop net was constructed of 0.3 cm sized stretched mesh and had a 

frame opening of 1.1 x 1.1 m, followed by five sequential hoop frames spaced 0.8 m apart and 

measuring 0.6 x 0.6 m in size. The hoop net had three net throats within the frame measuring 15 

x 23 cm at the middle of each throat. We checked nets twice for fish, once after about 12 h and 

again after 24 h when we removed the nets.  

Dip nets – We swept dip nets (3 mm mesh; two opening sizes 28 x 38 x 20 and 41 x 41 cm) 

along the lake bottom adjacent to the shore for three eight-minute intervals and identified and 

counted fish for each interval. 

Beach seine – We employed a 3 mm mesh beach seine measuring 15 m in length that tapered in 

width from 3 m at the middle to 1.2 m at the wings. We conducted two beach seine replicates, 

covering approximately 10-15 m in length. The second replicate was offset from the first by at 

least 5 m parallel along the shore.  

Environmental Variables 

For hypothesis testing and model development, we categorized environmental variables 

(Table 3.1) based on proposed ecological mechanisms determining the distribution of fish, 

including patch size (one variable), directional migration (five variables), undirected dispersal 

(four variables) and persistence (two variables). Variables were evaluated and quantified for two 

spatial scales: local (the scale of the sample lake) and regional (the mean value of the variables 

from lakes within the boundaries of a set of 7 x 7 km plots gridded across the study area). 

Although we measured water quality variables (dissolved oxygen, temperature, pH, specific 

conductivity) on most lakes, we did not consider these variables in analyses because lakes varied 

little in water chemistry (also noted by Hershey et al., 2006).  

Patch size can represent the amount and diversity of habitat available to a species. Small 

lakes, like small islands (MacArthur & Wilson, 1967), may have lower colonization rates simply 
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due to their size. We expected patch size to be important for all species, especially resident 

species. We calculated the patch size as the lake surface area (“L_LakeArea”).  

Swimming aquatic organisms require hydrological connections between lakes to disperse 

(De Bie et al., 2012). For lakes, colonization potential can be influenced by environmental 

features that promote directional migration (i.e. movement to a specific location) or undirected 

dispersal (i.e. movement with no specific destination). The importance of directional migration 

versus undirected dispersal for fish depends on species. We predicted that the ‘occupancy 

probability’ (the probability of a species being present in a lake) for large-bodied species would 

be influenced by directional migration over relatively long distances along migratory pathways 

from overwintering habitats (river systems and estuaries) into lakes in the summer for breeding. 

We considered the following variables as likely influences on colonization potential along 

migratory pathways: hydrologic connectivity (both local and regional), regional lake area and 

regional measures of the distance to the coast and to the nearest river. We defined local 

hydrologic connectivity (“L_Connect”) as the existence of a surface waterway (generally a 

stream) connecting a focal (surveyed) lake to another water body (stream, river, lake, pond or 

wetland). We determined whether a lake had a connection during the summer by a combination 

of observations of a digital map (i.e. National Hydrography Dataset), aerial photographs and 

ground-observation (truthing). Regional connectivity (“R_Connect”) is a measurement of the 

total linear distance (km) of streams and rivers at the regional scale (i.e. within a 7 x 7 km grid). 

Lakes may provide stepping-stones for fish migration, and we calculated regional lake area 

(“R_LakeArea”) as the mean L_LakeArea at the regional scale. We measured the distance to the 

nearest river (“R_DistRiver”) or to the north coast (“R_DistCoast”) as the shortest linear distance 

to the feature from the centroid of the 7 x 7 km grid cell. 

We predicted that lake occupancy by resident, small-bodied species would be influenced 

by variables related to undirected dispersal (i.e. variables that may promote general dispersal, 

with no specific destination). Variables we considered to be related to undirected dispersal 

included regional and local measures of altitudinal gradient and distance among lakes. These 

variables may affect dispersal ability during the spring freshet, when low lying flood waters can 

create temporary pathways for dispersal. As a measure of local altitudinal gradient (“L_Grad”), 

we used the mean value of the lake altitude relative to the minimum value within a set of ‘buffer 

zones’ (5-10 m, 10-25 m, 25-100 m) around the lake perimeter (Gross et al., 2013). The regional 
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altitudinal gradient (“R_Grad”) was calculated as the mean L_Grad at the regional scale. We 

measured local distance between lakes (“L_DistLake”) as the distance of the sample lake to the 

next closest lake > 7 ha in surface area. We calculated the regional distance between lakes 

(“R_DistLake”) as the mean value of L_DistLake at the regional scale. 

Lake depth can be an important driver of fish distributions on the ACP through its 

influence on the persistence over winter of resident fish. The ACP has extremely cold winters 

during which much of the water becomes frozen. When stream and river connections freeze, it 

restricts fish movements and isolates fish populations within the lakes. Lakes may partially or 

completely freeze, depending on the water depth (generally depths < 1.6-2.2 m freeze to the 

bottom; Jeffries et al., 1996; Grunblatt and Atwood, 2014). When shallower lakes freeze 

partially to the bottom, fish habitat within that lake becomes restricted, and this can reduce or 

eliminate local populations due to anoxia in liquid water under the ice. If the entire lake freezes, 

local extinction occurs. Synthetic Aperture Radar (SAR) satellite imagery shows strong 

differences in signal between ice extending to the lake bed and ice with liquid water beneath 

(Jeffries et al., 1996). We used SAR modelled data of the proportion of the lake (by surface area) 

that does not freeze to the bottom (Grunblatt and Atwood, 2014) to represent the amount of deep, 

unfrozen water available to fish within a lake. Deep-water refugia can promote survival through 

extreme winter or summer temperatures. We predicted that non-migratory (resident) species 

would have higher occupancy probabilities in lakes with more refugia. The availability of winter 

refugia (L_RefArea) was calculated as the percentage of the lake surface area that did not freeze 

to the bottom during winter, as inferred from SAR imagery collected in late winter (April 2009; 

Grunblatt and Atwood, 2014). Regional availability of winter refugia (R_RefArea) was 

calculated as the sum of the lake surface area that does not freeze to the bottom during winter 

from all lakes within each 7 x 7 km grid cell. 

Data Analysis 

We used occupancy modelling and an information theoretic approach to model selection 

to estimate occupancy probability and to examine whether specific environmental covariates 

affected it. For each pair of variables showing a high degree of colinearity (correlations ≥0.70; 

Berry & Felman, 1985), we removed the variable that showed the highest correlation with others 
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in the set. This excluded R_LakeArea (correlated with R_RefArea) and R_Connect (correlated 

with R_DistCoast) from further analysis. We created a set of a priori models in the program 

PRESENCE (Version 5.7; Hines, 2006) using the single season, multi-method occupancy 

modeling parameterization (Nichols et al., 2008). Although we had two years of data, we did not 

sample any site in both years so we could not use a multi-season approach. Haynes et al. (2013) 

explicitly examined detection for these data and found cumulative detection probability to be 

high and to vary by sampling method, lake area, relative lake depth (inferred by SAR imagery), 

day and year. We used the detection probability structure from Haynes et al. (2013) to examine 

occupancy by allowing detection probability to vary by sampling method and four site 

covariates: L_LakeArea, L_RefArea, Day and Year, where Day was the number of days from the 

beginning of sampling and Year was binary (representing 2009 or 2010). 

We constructed separate candidate model sets for each species to determine its occupancy 

was associated with variables categorized by their spatial scale (local or regional scales) and 

perceived ecological relevance, including: patch (lake) size, directional migration or undirected 

dispersal (affecting colonization potential), or overwinter habitat variables (affecting population 

persistence). We used a two-step approach to reduce the number of candidate models in the 

model set. First, for each variable category (4), we ran combinations of variables based on scale 

(local versus regional versus local plus regional variables) and ranked these in the overall model 

set, including a saturated and a null model (18 models). Using the highest ranked variable 

combination for each category determined from the previous step, we ran combinations of 

variables, grouped by category (e.g. directional migration and overwinter habitat), for all 

category combinations that remained (11 models). For example, based on the competing model 

set within each category, a species may be found in the first step to be influenced by L_LakeArea 

for patch size; L_Connect for directional migration; L_Grad, R_Grad and R_LakeDist for 

undirected dispersal; and L_RefArea for overwintering habitat. In the second step, all 

combinations of models from the four categories competed against each other (if more than one 

variable was important for a category, then those variables were entered together). The 

hypothetical species in the example above may have the top model in the second step include 

variables representing patch size and undirected dispersal, giving a top mode with the following 

covariates for occupancy: L_LakeArea, L_Grad, R_Grad, R_LakeDist. 
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For each species, we evaluated all models from both steps in the same model set by 

ranking models using Akaike’s Information Criterion, corrected for sample size (AICc; Burnham 

& Anderson, 2002). Determining sample size for occupancy models is still a topic of debate 

(MacKenzie et al., 2006) and thus we used the mean value between the number of sites and the 

number of surveys (least cisco and arctic grayling N = 683, broad whitefish N = 463, small-

bodied species N = 1284) to adjust the sample size (MacKenzie et al., 2012). To check for 

overdispersion, we ran a goodness-of-fit test for each species using the most complex model 

(MacKenzie & Bailey, 2004). When we found evidence for overdispersion, we adjusted the 

selection criteria (QAICc) and sample variances (Burnham & Anderson, 2002). We standardized 

all continuous covariates by calculating z-scores and did not consider interaction effects for ease 

of interpretation and parsimony. We eliminated models from the candidate set that did not 

converge. To adjust for model selection uncertainty, we used model averaging for all models 

with an AIC weight ≥ 0.01 to produce parameter estimates and standard errors for beta 

parameters (Burnham & Anderson, 2002). For each fish species, we examined parameter 

estimates and standard errors from model averaged results to determine a covariate’s influence 

on occupancy. We considered variables to be biologically important if they had relatively large 

effect sizes and precise estimates. 

Results 

For all species, model estimates of occupancy were very similar to occupancy evident 

from the raw data (’observed occupancy’), because we conducted a large number of repeated 

surveys, which produced high cumulative detection probabilities (Haynes et al., 2013). Model 

selection tables for each species are presented in Supporting Information (Tables A3.1-A3.5). 

Besides the six species we were investigating, we caught eight other fish species with observed 

occupancies too low to allow for occupancy modelling: Arctic char (Salvelinus alpinus; 3/86 

lakes), northern pike (Esox lucius; 3/86 lakes), rainbow smelt (Osmerus mordax; 3/86 lakes), 

humpback whitefish (Coregonus pidschian; 2/86 lakes), three-spined stickleback (Gasterosteus

aculeatus, 2/86 lakes), Arctic flounder (Liopsetta glacialis, 1/86 lakes), fourhorn sculpin 

(Myoxocephalus quadricornis, 1/86 lakes) and burbot (Lota lota; 1/86 lakes). Two fishless lakes 

were sampled during the beginning of the season (Day 0 and Day 5); these were unconnected 
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and relatively isolated (large local distance between lakes; one lake had a high local altitudinal 

gradient [L_Grad] value). 

The occupancy of least cisco was influenced by variables related to directional migration 

(L_Connect, R_DistCoast) and suitable habitat within the lake (L_RefArea, L_LakeArea; Figure. 

3.2a,b). Least cisco were more likely to be in lakes connected to streams (logit βL_Connect= 1.51 ± 

0.62) and closer to the coast (logit βR_DistCoast= -1.26 ± 0.37). Least cisco occupancy probability 

increased as a greater percentage of the lake remained unfrozen during winter (i.e. deeper lakes; 

logit βL_RefArea= 0.54 ± 0.34) and for larger lakes (logit βL_LakeArea = 0.99 ± 0.53). Least cisco had 

an observed occupancy of 0.51 and an estimated occupancy from the null model of 0.52 ± 0.05. 

The occupancy probability of broad whitefish was positively related to directional 

migration variables (L_Connect, R_DistCoast) and negatively related to the distance between 

lakes (L_DistLake; Figure 3.2c,d). Broad whitefish were more likely to occupy lakes that were 

connected to streams (logit βL_Connect= 2.69 ± 1.38; Table 3.2), closer to the coast (logit 

βR_DistCoast= -1.24 ± 0.69) and close to another lake (logit βL_ DistLake = -0.803 ± 0.466). Broad 

whitefish had an observed occupancy of 0.27 and an estimated occupancy from the null model of 

0.31 ± 0.06. 

Four of the most complex models of arctic grayling occupancy (K = 11-19) failed to 

converge and were removed from model rankings. Arctic grayling were more likely to be found 

in lakes that were locally connected (logit βL_Connect= 2.77 ± 1.26; Table 3.2). Grayling were 

found at 14 of the 86 lakes (observed occupancy = 0.16) and had an occupancy estimate of 0.27 

± 0.09 from the null model. 

Ninespine stickleback were found at 83 of the 86 sample sites (observed occupancy = 94 

%). Because they were found at almost every lake, it was not possible to investigate how 

covariates influenced occupancy. Based on the null occupancy model (i.e. no covariates for 

occupancy), occupancy for ninespine stickleback was estimated to be 0.97 ± 0.01. 

We used criteria adjusted for overdispersion (QAICc) for model selection for Alaska 

blackfish. Based on the model-averaged results, occupancy of Alaska blackfish was influenced 

by regional distance among lakes and availability of winter refugia within the lake (Table 3.2). 

The probability of occupancy decreased as lakes became less densely distributed at the regional 



45 

level (logit βR_DistLake = -0.93 ± 0.35) and increased as a greater percentage of the lake remained 

unfrozen during winter (logit βL_RefArea = 0.72 ± 0.32). Alaska blackfish had an observed 

occupancy of 0.74 and an estimated occupancy from the null model of 0.76 ± 0.05.  

The distance of the plot to the coastline influenced occupancy of slimy sculpin, with 

probability of occupancy decreasing as distance from the coast increased (logit βR_DistCoast= -0.86 

± 0.68; Table 3.2). Slimy sculpin were also more likely to occupy lakes that had a stream 

connection (logit βL_Connect = 1.04 ± 1.29). However, neither R_DistCoast nor L_Connect were 

estimated with a high level of precision. Observed occupancy was 0.13 and estimated occupancy 

from the null model was 0.23 ± 0.06. 

Discussion 

Lake occupancy by fish was associated with colonization potential (i.e. variables related 

to directional migration or undirected dispersal) while other habitat features, such as lake size 

and the availability of deep water refugia, were also important for certain species. Broad scale 

assemblage patterns may depend on whether dispersal rates exceed extinction rates (Shurin et al., 

2009), especially when local habitat characteristics vary little (Spens et al., 2007) as they do for 

ACP lakes. Given that patch connectivity is increasingly recognized as important in structuring 

aquatic communities (Fullerton et al., 2010), it is not surprising that colonization plays a key role 

in shaping the Arctic fish communities. In the Arctic, hydrological connectivity plays a primary 

role in affecting colonization potential and strongly corresponds to the spatial patterns of 

resources and organisms (Lesack & Marsh, 2010) including fish (Hershey et al., 1999, 2006). 

The role of colonization was evident from the importance of local connectivity, whereas the 

availability of winter refugia (a proxy for persistence potential) was less important than we 

predicted. However, the relative importance of colonization and local extinction probably varies 

seasonally. Because we were examining occupancy after the spring freshet, when fish have 

already dispersed and colonized new habitats, we found colonization to be a stronger driver of 

fish occupancy than factors associated with overwinter survival (persistence). 

Based on our findings, we propose a conceptual model of the primary drivers of fish 

distribution and occupancy on the Arctic Coastal Plain (Figure 3.3). At the ecoregional (or 

hydroregional) scale, distribution and species composition of fish in the Arctic has been shaped 

by the Pleistocene glaciations (Oswood et al., 2000). At finer scales, the functional relationships 
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between the ecology and life history of individual species and the dynamics of the harsh Arctic 

environment are the likely determinants of current habitat occupancy. These traits include 

dispersal capabilities when faced with a seasonally dynamic hydrology (Shurin et al., 2009) and 

the ability to persist through harsh winters (Jackson et al., 2001). Given that species vary 

ecologically, we can expect that in the face of the dynamic Arctic environment, the influence of 

environmental characteristics on species occupancy is likely to vary temporally and among 

species. During the winter, when lakes are covered with ice, deep water refugia are likely the 

primary driver of fish distribution, with a lack of refugia resulting in local extinctions (Figure 

3.3). This is particularly important for resident species that do not migrate out of lakes in the 

autumn. In this region, Alaska blackfish were widely distributed and ninespine stickleback were 

nearly ubiquitous, suggesting that both these species can tolerate winter conditions. Shallow 

lakes that freeze to the bottom are likely to lose their fish. However, even in lakes with deep 

water refugia, conditions can be harsh enough to cause local population loss (e.g. Danylchuk & 

Tonn, 2003). As the winter proceeds and surface ice increases in thickness, the remaining water 

can be hypoxic, saline (due to the concentration of solutes; Salonen et al., 2009) and very cold. 

In general, small-bodied species require less oxygen and both ninespine stickleback and Alaska 

blackfish can tolerate low oxygen concentration (Lewis et al., 1972; Crawford, 1974). Ninespine 

stickleback also tolerate high salinity (Nelson, 1968). These adaptations allow sticklebacks and 

blackfish to overwinter in lakes where other species cannot. This is especially the case for the 

Alaska Blackfish, which may be more tolerant due to its air-breathing capabilities and resistance 

to extreme cold (Scholander et al., 1953). The occupancy models showed that Alaska blackfish 

were more likely to be found in lakes with more deep water refugia, likely because they 

overwinter in these lakes. Conversely, slimy sculpin may be less tolerant of winter conditions 

than sticklebacks and blackfish. This disparity in tolerance may restrict slimy sculpin to areas 

with large amounts overwintering habitat (Hershey et al., 2006), which is reflected in their 

restricted distribution and low occupancy rates. If these refugia also harbor overwintering 

piscivores, this may further affect slimy sculpin through predation (Hanson et al., 1992). 

As ice melts during spring, fish occupancy becomes less dependent on deep water refugia 

(Figure 3.3). Rapid thawing is accompanied by a spring freshet, causing an increase in water 

level, widespread flooding and an overall increase in landscape connectivity. Lakes become 

connected temporarily, at which point undirected dispersal is an important driver of fish 
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occupancy for small-bodied species, particularly those capable of rapid recolonization of 

depopulated lakes. Although movement capabilities and body size are generally positively 

related (De Bie et al., 2012), the small size of Alaska blackfish and ninespine stickleback may 

aid dispersal through ephemeral pathways in early spring. Many of these connections are 

temporary and shallow, do not have directional flow, and are potentially difficult to navigate for 

larger-bodied species. The number of ephemeral connections peaks in the spring and declines 

thereafter (Figure 3.3). However, ephemeral connections may continue to act as dispersal 

conduits for small-bodied species through the summer; young or adults may disperse 

opportunistically at times of high water. This may be particularly true in landscapes where lakes 

are close together and may occasionally become connected. Perhaps for this reason, Alaska 

blackfish were more likely to be found in areas where lakes were close together.  

Alaska blackfish are physiologically tolerant of winter conditions, possessing an air-

breathing organ that allows them to breathe air (Crawford, 1974), including that trapped under 

the ice of frozen lakes (Campbell et al. 2014). Such specialist adaptations and limited dispersal 

capabilities suggest that tolerance explains their persistence. Ninespine sticklebacks, in contrast, 

may be less tolerant than blackfish but appear to have a dispersal and recolonization capabilities 

characteristic of an opportunistic life history (Winemiller & Rose, 1992). It seems possible that 

sticklebacks are widely distributed in the Arctic largely due to their ability rapidly to recolonize 

depopulated lakes via shallow and ephemeral connecting water bodies, indicating that 

stickleback are resilient rather than tolerant. The ninespine stickleback has a short generation 

time, grows quickly and can reaches high population density quite rapidly (Cameron et al.,

1973). They were often caught in large numbers; in some lakes, a 12 h fyke net set would catch 

more than 10,000 individuals (100 fold greater than the maximum Alaska blackfish catch-per-

unit-effort). Such high density may make dispersal more likely and perhaps density dependent. 

Although stickleback dispersal has not been studied directly in this region, Cameron et al. (1973) 

noted major population movements at the beginning of the growing season at a single lake, 

supporting our speculation that sticklebacks use the spring freshet for dispersal and 

recolonzation. 

The spring freshet is also an important time for large-bodied migratory species. Formerly 

frozen rivers and streams begin to flow and connect overwintering and summer foraging habitats 
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(Figure 3.3). Large-bodied species demonstrate characteristics of a ‘periodic’ life history 

(Winemiller & Rose, 1992; Miyazono, et al. 2010); in summer, they migrate from overwintering 

habitats into connected systems. This may have been reflected in the occupancy patterns of large 

bodied species, which were associated with local lake connectivity. Least cisco, broad whitefish 

and arctic grayling have a strong ability to colonize lakes with connections that remain wet 

through the growing season, but not lakes with only ephemeral connections. The spatial 

arrangement and composition of landscape features are also important, which can affect 

colonization potential beyond direct measures of connectivity alone (Dunning et al., 1992). We 

found that the broad whitefish was more likely to occur in regions where lakes were spaced 

closer together. Although we initially categorized the L_DistLake variable as related to 

undirected dispersal, it may also be important for migratory species, which can use lakes as 

migratory stepping-stones. Least cisco and broad whitefish were more likely to be found in lakes 

closer to the north coast, which allows better access to the marine feeding and overwintering 

habitat (Reist & Bond, 1988).  

The probability of occupancy for least cisco was also positively related to local habitat 

features, including lake size and availability of overwintering refugia. These features may be 

more important for least cisco, than for other large-bodied species, because least cisco may have 

a resident form. Least cisco can have riverine, anadromous and lacustrine forms (Reist & Bond, 

1988), and thus, certain populations of least cisco may overwinter in large lakes with deep-water 

refugia. If least cisco are permanent residents in some lakes on the ACP, it would explain the 

importance of deep water refugia and lake size for them but not other large-bodied species. It 

might be that all three large-bodied species move into lakes during the summer to feed and then 

leave for winter refugia in streams and rivers, which can be widespread on the ACP (Huryn et

al., 2005), or in the sea. However, if a connected lake becomes isolated due to changes in the 

stream network, migratory fish may become trapped in a lake (Hershey et al., 2006). If this 

occurs, least cisco may survive if suitable overwintering habitat is present. In support of this, we 

found least cisco was the most widely distributed of the large-bodied species in our study, and 

occurred in the widest range of habitats, including nine lakes without obvious connections (in 

seven of which we captured young-of-the-year least cisco). 
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During summer, ephemeral connections dry up, and thus we hypothesize a decline in the 

importance of undirected dispersal for lake occupancy (Figure 3.3). As summer progresses and 

lakes warm, deep water refugia may again increase in importance by providing cool water for 

cold stenotherms, such as whitefish (e.g., Jacobson et al., 2011). The increase in importance of 

deep water refugia continues into late summer/early autumn as fish face an increasing risk of 

isolation in unsuitable overwintering habitat before freeze-up. During early autumn, there is 

presumably a pulse of fish movement as migratory species move to the rivers or marine 

overwintering habitat. Because some ephemeral connections are reestablished by autumn rain, 

there is also a brief opportunity for undirected dispersal, especially for ninespine sticklebacks. 

By late autumn lakes, streams and rivers begin to freeze again, restricting fish movement and, 

increasing once more the importance of deep water refugia for overwintering fish. 

Because winter conditions cause local extinction in many lakes, fish occupancy on the 

ACP in the winter may be similar to other systems where extinction or niche partitioning is more 

important than colonization in shaping distributions (e.g. Magnuson et al., 1998, Warfe et al., 

2013). Many lakes may be suitable during the summer but cannot sustain fish populations over 

the winter. Migratory species move out of these habitats before winter and other species which 

dispersed into these habitats and establish populations in the summer are unlikely to survive. For 

example, ninespine sticklebacks were found in four lakes without overwintering habitat (i.e. 0 % 

of the lake area is over 2 m in depth). These shallow lakes are probably population sinks for 

rapid dispersers such as ninespine stickleback (Olden et al., 2001). However, if these shallow 

lakes are connected, they may be temporary habitat for migratory species (e.g. least cisco were 

also found in two of these four shallow lakes that had connections). If we were to examine lake 

occupancy during the winter, we would undoubtedly find a more restricted distribution for all 

species. Further, because winter conditions are likely to affect species differently, species 

relative occupancy rates would change. For example, because blackfish have more physiological 

adaptations for winter conditions, they may be more widespread during winter compared with 

ninespine stickleback. Thus, we hypothesize that the importance of local persistence alternates 

with that of colonization potential, the magnitude of that change depending on species. 

We used a knowledge of fish distribution patterns to provide insight into how fish species 

are able to persist in the harsh and dynamic environment of the Arctic Coastal Plain. Given that 

this is a large region, encompassing tens of thousands of lakes, ponds and wetlands, future work 
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should aim to expand and test these hypotheses by using both species distribution and life history 

studies. Additionally, examination of fish distributions at the assemblage level is needed to 

determine which of the factors we have identified (or may have missed) are driving patterns in 

species richness. Given the strong effects of variables such as connectivity (during the growing 

season) and deep water refugia (during winter), species richness may be primarily shaped by 

these factors (e.g. Olden et al. 2001) which could result in two or three distinct fish assemblages 

(e.g. Mehner et al., 2005). Lastly, the environmental variables identified here as organizing 

factors of fish distribution can serve as hypotheses to be tested by molecular markers. Have 

widespread lake connectivity and frequent dispersal led to homogenous patterns of genetic 

variation across the ACP for some species?  Genetic assessments would also permit inference of 

how past populations of Arctic fish have responded to historical climate perturbations, thus 

yielding insights into how their distributions may respond to future change (e.g. Hope et al., 

2013). 
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Table 3.1: Description of environmental covariates considered in the analysis of occupancy 

probabilities for fish species on the Arctic Coastal Plain, Alaska. 

Covariate Scale Abbreviation Ecological Relevancea Rangeb 

Lake Area Local L_LakeArea Local Patch Size 0.2-14.9 km2 

Regional R_LakeArea Directional migration 5.0-27.9 km2 

Hydrologic Connectivity Local L_Connect Directional migration 0-1 (binary) 

Regional R_Connect Directional migration 2.9-66.1 km 

Distance to River Regional R_DistRiver Directional migration 0.3-13.0 km 

Distance to Coast Regional R_DistCoast Directional migration 5.5 - 83.0 km 

Altitudinal Gradient Local L_Grad Undirected dispersal -0.4-1.7 m 

Regional R_Grad Undirected dispersal 0.3-1.3 m 

Lake Distance Local L_DistLake Undirected dispersal 16-657 m 

Regional R_ DistLake Undirected dispersal 47-263 m 

Winter Refugia Local L_RefArea Persistence 0-96 % 

Regional R_RefArea Persistence 0-61,623 km2 

aEcological Relevance - the perceived ecological influence of covariates on fish occupancy. 

bWe standardized all continuous variables into z-scores (mean = 0, SD = 1) before analysis.



58 

Table 3.2: Model averaged estimates of the untransformed β parameters (± SE) for occupancy 

models of five fish species occurring in lakes on the Arctic Coastal Plain, Alaska. The ninespine 

stickleback was omitted because its high occupancy across the study area precluded investigation 

of relationships between occupancy and covariates. 

Small-bodied species Large-bodied species 

Alaska blackfish Slimy sculpin Least cisco Broad whitefish Arctic grayling 

Variable logit β logit β logit β logit β logit β 

R_ DistLake -0.93 ± 0.35 -0.26 ± 0.42 -0.81 ± 0.81 -1.30 ± 1.50 0.32 ± 0.51 

L_RefArea 0.72 ± 0.32 0.60 ± 0.97 0.54 ± 0.34 0.23 ± 0.70 0.26 ± 0.45 

L_Connect 0.94 ± 0.86 1.04 ± 1.29 1.51 ± 0.62 2.69 ± 1.38 2.77 ± 1.26 

L_LakeArea 0.19 ± 0.37 0.95 ± 1.13 0.99 ± 0.53 -0.91 ± 1.47 0.10 ± 0.38 

R_Grad -0.41 ± 0.50 0.21 ± 0.47 0.39 ± 0.39 -0.27 ± 0.81 -1.18 ± 1.05 

L_Grad -0.33 ± 0.45 0.06 ± 0.37 -0.17 ± 0.36 -0.94 ± 1.16 NA 

R_RefArea 0.47 ± 0.57 0.35 ± 0.59 -0.83 ± 0.88 -0.93 ± 0.95 NA 

L_ DistLake -0.30 ± 0.40 0.17 ± 0.35 -0.81 ± 0.81 -0.78 ± 0.57 NA 

R_DistCoast NA -0.86 ± 0.68 -1.26 ± 0.37 -1.24 ± 0.69 -0.12 ± 0.44 

R_DistRiver NA -0.38 ± 0.50 -0.05 ± 0.29 -0.01 ± 0.40 0.07 ± 0.44 

Note: Models included in the model averaging procedure had an AICc weight of 0.01 or greater. 

“NA” represents variables that were not included in the models used for averaging. 
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Figures: 

Figure 3.1: Study area on the Arctic Coastal Plain, with inset map of Alaska showing the study 

region (black box). White squares represent 7 x 7 km sample plots, and study lakes are shown in 

black. 
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C 

D 

Figure 3.2: An example of how lake occupancy probability of two fish species [least cisco, a) 

and b); broad whitefish, c) and d)] varied in relation to environmental covariates. Covariates 

important for one or both of these species included distance to the coast (R_DistCoast), percent 

of lake that remains unfrozen during winter (L_RefArea) and lake surface area (L_LakeArea), 

distance to next nearest lake (L_LakeDist) for lakes with (a, c) or without a stream connection (b, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4

O
cc

u
p

a
n

cy
 P

ro
b

a
b

il
it

y

z-value

R_DistCoast

L_LakeDist

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4

O
cc

u
p

a
n

cy
 P

ro
b

a
b

il
it

y

z-value

R_DistCoast

L_LakeDist



62 

d). Curves represent the occupancy probability over the standardized (z-value) of the covariates 

while holding the other covariates at their mean values. The y-axis intercept represents the 

occupancy probability for a site with a connection (a,c) or without a connection (b,d) for the 

mean values of all continuous covariates. 
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Figure 3.3: A conceptual model summarizing hypotheses on the environmental drivers of fish 

occupancy in lakes on the Arctic Coastal Plain, Alaska. During winter, deep water refugia (in 

grey) are the primary driver of fish distributions, with ice (black fill) preventing lake 

connectivity. In spring, rapid thawing increases flooding and lake connectivity (lakes with 

hashed fill) due to the presence of ephemeral connections (dashed connecting lines) - increasing 

the importance of undirected dispersal. Permanent connections (solid connecting lines) are 

important for both dispersal and directed migration, because migrants arrive after spring flooding 

has receded and ephemeral connections disappear. A pulse of fish movement during late 

summer/early autumn accompanies the migration of species to river or marine overwintering 

habitat. In early autumn, ephemeral connections have reformed due to precipitation, increasing 

the importance of undirected dispersal for lake occupancy prior to winter freeze-up.
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Appendix 

Table A3.1: Model ranking based on Akaike's information criterion adjusted for sample size and 

overdispersion (QAICc), differences in QAICc (∆QAICc), model weight, model likelihood, and 

number of parameters (K) for the single-season model of occupancy for Alaska blackfish in lakes 

on the Arctic Coastal Plain, Alaska. 

Modela, b QAICc ∆QAICc 
QAICc 
weightc 

Model 
Likelihood K Likelihood 

psi(R_ DistLake, L_RefArea) 981.27 0.00 0.28 1.00 13 1518.43 

psi(L_Connect, R_ DistLake, L_RefArea) 981.76 0.49 0.22 0.78 14 1515.95 

psi(R_ DistLake, L_RefArea, L_LakeArea) 983.04 1.77 0.12 0.41 14 1517.98 

psi(L_Connect, R_ DistLake, L_RefArea, L_LakeArea) 983.62 2.35 0.09 0.31 15 1515.65 

psi(R_ DistLake) 984.27 3.00 0.06 0.22 12 1526.44 

psi( R_Grad, R_ DistLake) 985.80 4.53 0.03 0.10 13 1525.62 

psi(L_RefArea) 985.91 4.64 0.03 0.10 12 1529.04 

psi(R_ DistLake, L_LakeArea) 986.02 4.75 0.03 0.09 13 1525.97 

psi(L_Connect, R_ DistLake, L_LakeArea) 986.33 5.06 0.02 0.08 14 1523.22 

psi(L_RefArea, R_RefArea) 986.43 5.16 0.02 0.08 13 1526.63 

psi(L_Connect, L_RefArea) 986.58 5.31 0.02 0.07 13 1526.86 

psi(L_ DistLake, L_Grad, R_Grad, R_ DistLake) 987.37 6.10 0.01 0.05 15 1521.61 

psi(L_RefArea, L_LakeArea) 987.82 6.55 0.01 0.04 13 1528.84 

a See Table 1 for variable definitions. 

b Detection probability varied by method and was modelled with four site covariates: 

L_LakeArea, L_RefArea, Day, and Year, where Day was the number of days from the beginning 

of sampling and Year was binary (representing 2009 or 2010). 

c Models with weights < 0.01 are not shown. 
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Table A3.2: Model ranking based on Akaike's information criterion adjusted for sample size 

(AICc), differences in AICc (∆AICc), model weight, model likelihood, and number of 

parameters (K) for the single-season model of occupancy for slimy sculpin in lakes on the Arctic 

Coastal Plain, Alaska. 

Modela, b AICc ∆AICc

AICc 
weightc 

Model 
Likelihood K Likelihood 

psi( R_DistCoast) 272.24 0.00 0.13 1.00 12 247.99 

psi(R_DistCoast, L_LakeArea) 273.25 1.01 0.08 0.60 13 246.96 

psi( R_DistRiv, R_DistCoast) 273.42 1.18 0.07 0.55 13 247.13 

psi(R_DistCoast, R_ DistLake) 273.81 1.57 0.06 0.46 13 247.52 

psi(.) 273.91 1.67 0.06 0.43 11 251.70 

psi(R_DistCoast, L_RefArea) 274.10 1.86 0.05 0.39 13 247.81 

psi(L_Connect) 274.10 1.86 0.05 0.39 12 249.85 

psi(L_Connect, R_DistRiv, R_DistCoast) 274.13 1.89 0.05 0.39 14 245.80 

psi(L_LakeArea) 274.20 1.96 0.05 0.38 12 249.95 

psi( R_DistRiv) 274.67 2.43 0.04 0.30 12 250.42 

psi(L_RefArea) 274.78 2.54 0.04 0.28 12 250.53 

psi(R_DistCoast, R_ DistLake, L_LakeArea) 274.86 2.62 0.04 0.27 14 246.53 

psi(R_DistCoast, L_RefArea, L_LakeArea) 275.20 2.96 0.03 0.23 14 246.87 

psi(R_RefArea) 275.38 3.14 0.03 0.21 12 251.13 

psi(R_ DistLake) 275.43 3.19 0.03 0.20 12 251.18 

psi(R_DistCoast, R_ DistLake, L_RefArea) 275.57 3.33 0.02 0.19 14 247.24 

psi(L_RefArea, L_LakeArea) 275.58 3.34 0.02 0.19 13 249.29 

psi(L_ DistLake) 275.65 3.41 0.02 0.18 12 251.40 

psi(R_Grad) 275.67 3.43 0.02 0.18 12 251.42 

psi(R_ DistLake, L_LakeArea) 275.74 3.50 0.02 0.17 13 249.45 

psi(L_Grad) 275.92 3.68 0.02 0.16 12 251.67 

psi(R_ DistLake, L_RefArea) 275.97 3.73 0.02 0.15 13 249.68 

psi(L_RefArea, R_RefArea) 276.38 4.14 0.02 0.13 13 250.09 
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Table A3.2 Continued 

psi(R_DistCoast, R_ DistLake, L_RefArea, 
L_LakeArea) 276.74 4.50 0.01 0.11 15 246.36 

psi(R_ DistLake, L_RefArea, L_LakeArea) 276.84 4.60 0.01 0.10 14 248.51 

 a See Table 1 for variable definitions. 

b Detection probability varied by method and was modelled with four site covariates: 

L_LakeArea, L_RefArea, Day, and Year, where Day was the number of days from the beginning 

of sampling and Year was binary (representing 2009 or 2010). 

c Models with weights < 0.01 are not shown. 
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Table A3.3: Model ranking based on Akaike's information criterion adjusted for sample size 

(AICc), differences in AICc (∆AICc), model weight, model likelihood, and number of 

parameters (K) for the single-season model of occupancy for least cisco in lakes on the Arctic 

Coastal Plain, Alaska. 

a See Table 1 for variable definitions. 

b Detection probability varied by method and was modelled with four site covariates: 

L_LakeArea, L_RefArea, Day, and Year, where Day was the number of days from the beginning 

of sampling and Year was binary (representing 2009 or 2010). 

c Models with weights < 0.01 are not shown. 

Modela, b AICc ∆AICc

AICc 
weightc 

Model 
Likelihood K Likelihood 

psi(L_Connect, R_DistRiver, R_DistCoast, 
L_RefArea, L_LakeArea) 726.63 0.00 0.26 1.00 14 698.00 

psi(L_Connect, R_DistRiver, R_DistCoast, 
R_Grad, L_RefArea, L_LakeArea) 726.85 0.22 0.23 0.90 15 696.13 

psi(L_Connect, R_DistRiver, R_DistCoast, 
L_LakeArea) 727.8 1.17 0.14 0.56 13 701.26 

psi(L_Connect, R_DistRiver, R_DistCoast, 
R_Grad, L_LakeArea) 728.38 1.75 0.11 0.42 14 699.75 

psi(saturated) 728.46 1.83 0.10 0.40 19 689.31 

psi(L_Connect, R_DistRiver, R_DistCoast, 
L_RefArea) 729.35 2.72 0.07 0.26 13 702.81 

psi(L_Connect, R_DistRiv, R_DistCoast) 730.40 3.77 0.04 0.15 12 705.93 

psi(L_Connect, R_DistRiver, R_DistCoast, 
R_Grad, L_RefArea) 730.94 4.31 0.03 0.12 14 702.31 

psi(L_Connect, R_DistRiver, R_DistCoast, 
R_Grad) 732.10 5.47 0.02 0.06 13 705.56 
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Table A3.4: Model ranking based on Akaike's information criterion adjusted for sample size 

(AICc), differences in AICc (∆AICc), model weight, model likelihood, and number of 

parameters (K) for the single-season model of occupancy for broad whitefish in lakes on the 

Arctic Coastal Plain, Alaska. 

Modela, b AICc ∆AICc 
AICc 

weightc 
Model 

Likelihood K Likelihood 

psi(L_Connect, R_DistRiv, R_DistCoast, L_ DistLake, 
R_RefArea) 318.96 0.00 0.25 1.00 13 292.15 

psi(L_Connect, R_DistRiv, R_DistCoast, L_ DistLake, 
R_RefArea, L_LakeArea) 320.04 1.08 0.14 0.58 14 291.10 

psi(L_Connect, R_DistRiv, R_DistCoast, L_ DistLake 320.20 1.24 0.13 0.54 12 295.51 

psi(L_Connect, R_DistRiv, R_DistCoast, L_ DistLake, 
L_LakeArea) 320.54 1.58 0.11 0.45 13 293.73 

psi(L_Connect, R_DistRiv, R_DistCoast, R_RefArea) 320.68 1.72 0.10 0.42 12 295.99 

psi(L_Connect, R_DistRiv, R_DistCoast) 321.10 2.14 0.08 0.34 11 298.51 

psi(L_Connect, R_DistRiv, R_DistCoast, L_LakeArea) 321.82 2.86 0.06 0.24 12 297.13 

psi(L_Connect, R_DistRiv, R_DistCoast, R_RefArea, 
L_LakeArea) 322.14 3.18 0.05 0.20 13 295.33 

psi(Saturated) 322.47 3.51 0.04 0.17 18 284.93 

psi(L_Connect) 324.65 5.69 0.01 0.06 9 306.25 

 a See Table 1 for variable definitions. 

b Detection probability varied by method and was modelled with four site covariates: 

L_LakeArea, L_RefArea, Day, and Year, where Day was the number of days from the beginning 

of sampling and Year was binary (representing 2009 or 2010). 

c Models with weights < 0.01 are not shown. 
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Table A3.5: Model ranking based on Akaike's information criterion adjusted for sample size 

(AICc), differences in AICc (∆AICc), model weight, model likelihood, and number of 

parameters (K) for the single-season model of occupancy for arctic grayling in lakes on the 

Arctic Coastal Plain, Alaska. 

Modela, b AICc ∆AICc

AICc 
weightc 

Model 
Likelihood K Likelihood 

psi(L_Connect, R_Grad, L_LakeArea) 177.25 0.00 0.30 1.00 12 152.78 

psi(L_Connect) 177.59 0.34 0.25 0.84 10 157.26 

psi(L_Connect, L_LakeArea) 179.00 1.75 0.13 0.42 11 156.61 

psi(L_Connect, L_RefArea) 179.21 1.96 0.11 0.38 11 156.82 

psi(L_Connect, L_RefArea, L_LakeArea) 180.67 3.42 0.05 0.18 12 156.20 

psi(L_Connect, R_DistRiv, R_DistCoast) 181.64 4.39 0.03 0.11 12 157.17 

psi(R_Grad) 181.90 4.65 0.03 0.10 10 161.57 

psi( R_Grad, R_ DistLake) 183.27 6.02 0.01 0.05 11 160.88 

psi( R_Grad, L_RefArea) 183.61 6.36 0.01 0.04 11 161.22 

psi( R_Grad, L_LakeArea) 183.75 6.50 0.01 0.04 11 161.36 

a See Table 1 for variable definitions. 

b Detection probability varied by method and was modelled with four site covariates: 

L_LakeArea, L_RefArea, Day, and Year, where Day was the number of days from the beginning 

of sampling and Year was binary (representing 2009 or 2010). 

c Models with weights < 0.01 are not shown. 
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Chapter 4: Diet of yellow-billed loons in Arctic lakes during the nesting season inferred 

from fatty acid analysis 

Abstract 

Understanding the dietary habits of yellow-billed loons (Gavia adamsii) can give important 

insights into their ecology, particularly for nesting birds. We investigate the diet of yellow-billed 

loons nesting on the Arctic Coastal Plain using quantitative fatty acid signature analysis 

(QFASA). Tissue analysis from 26 yellow-billed loons and eleven prey groups (nine fish species 

and two invertebrate groups) from Arctic lakes suggest that yellow-billed loons are eating high 

proportions of Alaska blackfish (Dallia pectoralis), broad whitefish (Coregonus nasus) and 

three-spined stickleback (Gasterosteus aculeatus) during late spring and early summer. The 

prominence of blackfish in diets highlights the importance of this species’ tolerance to winter 

conditions that permits its widespread availability during the early stages of loon nesting soon 

after spring thaw. The high proportions of broad whitefish and three-spined stickleback may 

reflect a residual signal from the coastal staging period prior to establishing nesting territories on 

lakes, when loons are more likely to encounter these species. Our analyses were sensitive to the 

choice of calibration coefficient based on data from three different species, indicating the need 

for development of loon-specific coefficients for future study and confirmation of our results. 

Regardless, coastally distributed species and species that successfully overwinter in lakes are 

likely key food items for yellow-billed loons early in the nesting season, before lakes become 

ice-free and colonized by fish species dispersing from winter refugia outside of the nesting lake. 
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Introduction 

The yellow-billed loon (Gavia adamsii) is a large waterbird that winters in the marine 

coastal waters of North America and Eurasia and nests on Arctic lakes in Alaska, Canada and 

Russia. Unlike other loon species, such as the common loon (G. immer), relatively little is known 

about the ecology of yellow-billed loons, including diet (North 1994). Food limitation can 

produce strong bottom-up effects on a population’s distribution and abundance (White 1978), 

and is therefore key in understanding many aspects of a species’ ecology including distribution, 

population dynamics and ecological niche (Wiens and Rottenberry 1979, Sih and Christensen 

2001). 

The limited information available on the diet of yellow-billed loons is based on a few 

anecdotal records of stomach contents collected from loons in marine waters. Based on these 

collections (summarized by North 1994), yellow-billed loons forage on marine fish and 

invertebrates. Stomach contents from birds collected off the Alaskan coast contained tomcod 

(Microgadus proximus), sculpin species (family Cottidae; Cottam and Knappen 1939), rockfish 

(likely Sebastes sp., Bailey 1922) and a small amount of invertebrate prey (amphipods, isopods, 

shrimp and crab; Cottam and Knappen 1939). Other diet items included Pacific sanddabs 

(Citharichthys sordidus) from birds near Baja, California (Jehl 1970), and sculpin from birds 

near Norway (Collett 1894). Stickleback and salmonids were found in a bird in Russia, but it was 

unclear whether this loon was captured in a marine or freshwater system (Uspenskii 1969, cited 

in North 1994).  

To our knowledge, no published information documents the diet of yellow-billed loons 

during the nesting season. Yellow-billed loons that are either nesting or rearing chicks (hereafter, 

breeding loons) require adequate prey to fulfill their reproductive requirements, including 

defending a territory, brooding eggs, and feeding and caring for chicks. Loons migrate from 

marine wintering areas to the Chukchi and Beaufort Sea coasts of Alaska in late May/early June 

and stage in coastal waters until ice on inland freshwater lakes begin to break up. Loons move 

onto lakes and begin nesting soon after open water is available. During this season, yellow-billed 

loons forage primarily on their nesting lake (North 1994, North 2008, J.A. Schmutz unpublished 

data), therefore nesting pairs must select lakes that meet habitat requirements and contain 

adequate food resources for successful reproduction. The availability of suitable prey is likely a 
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major constraint on the reproductive success for a predator like yellow-billed loons (White 

1978), given that loons must meet the extra energetic demands of the breeding season (Barr 

1996). 

It is difficult to infer diet of yellow-billed loons based on our current understanding of 

other loon species. The common loon (G. immer) forages primarily on fishes and also on a 

variety of crustaceans and other aquatic animals (Barr 1996). However, common and yellow-

billed loon distributions generally do not overlap during breeding season; each species inhabits 

environments with different available prey, limiting the parallels that can be drawn regarding 

diet. On the Arctic Coastal Plain, the distribution of yellow-billed loons is sympatric with red-

throated (G. stellata) and Pacific (G. pacifica) loons; however, these two species are much 

smaller in body size and have different ecological niches. Although diet information for other 

loon species on the Arctic Coastal Plain is similarly lacking, limited evidence suggests that 

Pacific loons (which can occasionally nest on the same lakes as yellow-billed loons; Haynes et 

al. 2014b) may feed prominently on invertebrate prey (reviewed in Russell 2002). 

Loons are visual pursuit divers that capture and, most often, consume prey underwater. 

This behavior makes direct observation of prey taken by adult yellow-billed loons logistically 

infeasible. Observation of parents feeding their young is also difficult because adults and chicks 

avoid human presence and are highly mobile on large lakes. Given these limitations, indirect 

methods provide the most tractable way to estimate loon diet given the infeasibility of collecting  

the entire animal. Recent advances in molecular methods have made it possible for researchers to 

investigate the diet of species for which direct observation of feeding or lethal collection of 

stomach contents is impractical (Barrett et al. 2007). Indirect molecular methods may require 

capture of individual predators and potential prey for collection of tissue samples, but are 

generally non-lethal (Dunshea 2009). Here, we estimate the diet of yellow-billed loons breeding 

on the Arctic Coastal Plain using quantitative fatty acid signature analysis (QFASA; Iverson et 

al. 2004). QFASA models estimate the proportion of potential prey items in an individual 

predator’s diet using the fatty acid (FA) signatures from the predator and the potential prey 

tissues, while accounting for FA metabolism by the predator (e.g., Iverson et al. 2004, Beck et al. 

2007, Wang et al. 2010, Bromaghin et al. 2013). By estimating the diet of yellow-billed loons, 

this study provides context for yellow-billed loon breeding ecology, including how the spatial 
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distributions of nesting yellow-billed loons may be influenced by prey distribution on the 

landscape.  

Methods  

Prey Tissue Collection 

We collected potential prey (fish and invertebrates) at 32 lakes over an area of the Arctic 

Coastal Plain covering 9,000 km2 (Figure 4.1) over two summer seasons (2009-2010) using 

multiple sampling techniques, including fyke nets, minnow traps, gill nets, dip nets and beach 

seines (see Haynes et al. 2013 for details). We euthanized fish by placing them in about 2 L of 

lake water with sodium bicarbonate tablets for approximately 10 minutes, and then pithing 

individuals to ensure they would not revive (Institutional Animal Care and Use Committee 

permit 149807-2). We wrapped prey in aluminum foil, placed the samples in vacuum pump 

plastic bags (Ziploc® brand Vacuum Freezer System), and used the vacuum pump to reduce the 

air volume in the sample bag. We placed samples in a cooler and transported them from the 

remote field location to a -20 °C freezer (within 24 hr). 

Loon tissue collection 

We captured 26 loons from 23 lakes for tissue collection (Figure 1). Twenty-two loons 

were captured with a bow-net (Salyer 1962) while a loon incubated eggs. Four loons during the 

nesting period were captured with a lift-net (Kenow et al. 2009) set away from the nest. A decoy 

loon and broadcasted recordings of loon calls lured the loon to the lift-net area. For 19 of these 

captured loons, we used a local anesthetic, scalpel, and forceps to remove a subcutaneous fat 

sample near and lateral from the uropygial gland, a common approach for avian species (Owen et 

al. 2010). The other 7 samples were from loons that underwent a surgery to implant a satellite 

transmitter (Korschgen et al. 1996). For these 7 loons, a sample of subcutaneous fat was obtained 

from the abdominal area after the abdominal wall was cut open in preparation for implanting the 

transmitter. All fat samples were placed in vials containing chloroform, in accordance with 

Budge et al. (2006), transported to a laboratory, and stored at -80 °C until analysis.  

Tissue Preparation 

Prey were allowed to partially thaw and homogenized using a Kinematica GmbH tissue 

homogenizer (Brinkmann Instruments, Switzerland) for small fish (< 250 mm fork length) and a 
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blender with a glass jar (Oster, Sunbeam Products, Boca Raton, FL, USA) for large fish (>250 

mm). We did not remove stomach contents of individuals because we aimed to characterize their 

FA signatures as prey for loons (Budge et al. 2002), which eat fish whole. When an individual’s 

mass was <1 g, prey of the same species from the same lake were homogenized together to form 

composite samples. We measured out ~1 g of homogenized prey tissue into a glass vial with 4.5 

mL of chloroform and stored vials in a -80°C freezer. 

FA Analysis 

FA methyl esters were prepared using an acidic transesterication (Budge et al. 2006, 

Wang et al. 2010). Thin layer chromatography indicated the presence of fatty alcohols in diet 

items resulting from the transesterication of wax esters. Wax ester alcohols were converted to 

their respective FAs (Budge et al. 2006) to account for wax esters in diets (Budge and Iverson 

2003). FA methyl esters were quantified using temperature-programmed gas liquid 

chromatography on a Varian Autosystem II Capillary FID gas chromatograph fitted with a 30 m 

£ 0.25 mm id column coated with 50% cyanopropyl-methylpolysiloxane (DB-23) and linked to a 

computerized integration system (Varian Galaxie software; Iverson et al. 2002). Each 

chromatogram was manually assessed for correct peak identification. 

We analyzed the diet of yellow-billed loons based on fatty acids using a QFASA package 

in program R (Iverson et al. 2004). We used three sets of calibration coefficients determined 

from feeding trials of captive common murres (Uria aalge; Iverson et al. 2007), spectacled eiders 

(Somateria fischeri) and Steller’s eiders (Polysticta stelleri; Wang et al. 2010) and used the 

extended dietary subset of fatty acids, which includes 33 fatty acids that must be acquired 

through diet and eight fatty acids that can be biosynthesize by predators, but whose levels in 

predator tissues are influenced by diet (Iverson et al. 2004). We used a prey-on-prey simulation 

to determine the degree to which each prey species can be identified based on their FA signature 

(Iverson et al. 2004). If a prey item has a similar FA signature to different prey item types (i.e., 

different species), then QFASA will incorrectly or unpredictably assign dietary proportions of 

those prey species in the predator’s diet. The prey-on-prey analysis is an iterative process (in our 

case, performed 100 times; Wang et al. 2010), whereas the prey data are randomly split into two 

sets for each prey item type – a set that acts as the prey data and a set that is modeled as the 

predator data without calibration coefficients (Iverson et al. 2004). Because calibration 
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coefficients are not used, the FA signature of the prey item subset used as the predator diet 

should most closely reflect the subset of the same prey item type. With overlap in the FA 

signatures of prey items, the prey-on-prey analysis can reveal the prey item types among which 

QFASA has difficulty discriminating. Because prey samples require splitting to run the 

simulation, we removed prey item types that had sample sizes that were too low (N < 3 samples) 

to create useful splits.  

Results 

We collected samples from eleven fish species: Alaska blackfish (Dallia pectoralis), 

arctic flounder (Liopsetta glacialis), arctic grayling (Thymallus arcticus), broad whitefish 

(Coregonus nasus), burbot (Lota lota), least cisco (Coregonus sardinella), ninespine stickleback 

(Pungitius pungitius), northern pike (Esox lucius), rainbow smelt (Osmerus mordax), slimy 

sculpin (Cottus cognatus), and three-spined stickleback (Gasterosteus aculeatus). We also 

collected samples from two invertebrate orders: amphipods (order Amphipoda) and fairy shrimp 

(order Anostraca; Table 4.1). 

FA Analysis 

We removed burbot (N = 2 samples) and northern pike (N = 1 sample) from the prey-on-

prey simulations due to low sample size. Prey-on-prey simulation results suggested that the FA 

signatures of prey items could be reasonably well classified with QFASA (mean classification 

accuracy ± SD = 85 ± 17 %). However, classification accuracy was low for least cisco (mean ± 

SD = 61 ± 20%) and slimy sculpin (mean ± SD = 65 ± 9%; Table 4.2, Figure A4.1). The low 

classification accuracy for these two species suggests that the QFASA model had difficulty 

discriminating least cisco and slimy sculpin from other diet items with similar FA signatures. 

 Results differed substantially between models using the calibration coefficients from 

common murres as compared to either eider species, which were similar to each other (Meynier 

et al. 2010, Budge et al. 2012; Figure 4.2). Specifically, diet estimates that used the common 

murre calibration coefficients differed substantially from models using the eider species 

coefficients. Ideally, we would have used calibration coefficients specific to yellow-billed loons 

but loon-specific coefficients do not exist. Because species-specific coefficients require captive 
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feeding studies to generate (Iverson et al. 2004, 2007), limited availability of species-specific 

calibration coefficients is common. Given this, we chose the common murre calibration 

coefficient model to interpret results because of evolutionary and ecological similarities - loons 

are more taxonomically related to murres than eiders and both yellow-billed loons and murres 

are piscivores.  

The estimate of diet based on fatty acid analysis included 129 prey samples from the 13 

prey types (mean ± SD = 9.9 ± 6.3 samples per type). The model that used the common murre 

calibration coefficients estimated that Alaska blackfish, broad whitefish and three-spined 

stickleback made up the majority of the yellow-billed loon diet (Figure 4.2), although analysis 

indicated variation among individuals (Table 4.3). Yellow-billed loons show high diversity in 

diet at a sample population level, but much less diversity at an individual level. The diet patterns 

of individual loons showed many individuals fed primarily on a single species such as Alaska 

blackfish or broad whitefish.  

Discussion 

Based on the FA model that used the common murre calibration coefficients, the most 

prominent prey items in yellow-billed loon diet were Alaska blackfish, three-spined stickleback, 

and broad whitefish. Alaska blackfish is one of the most common freshwater species on the 

Arctic Coastal Plain, occupying about 75% of lakes > 7 ha in surface area (Haynes et al. 2014a). 

Also, blackfish are tolerant to harsh overwintering conditions (Scholander et al. 1953) and persist 

over winter months (Haynes et al. 2014a). Thus, blackfish are likely available at the beginning of 

the season when other species are either still moving into summering lakes (e.g., least cisco) or 

recovering from winter die-offs (e.g., ninespine stickleback; Haynes et al. 2014a). Although 

blackfish are generally not locally abundant, their availability soon after breakup may make them 

an important food source during the early stages of breeding for yellow-billed loons, when other 

prey species are less available. The sensitivity of our analysis to calibration coefficients used 

indicates the need for loon-specific calibration coefficients for future study and confirmation of 

our results. 

We initially found it surprising that broad whitefish and three-spined stickleback were 

dominant prey items given they are not very common in lakes on the Arctic Coastal Plain; broad 

whitefish have a relatively low occupancy probability in lakes (found in about a third of lakes 
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large enough for breeding yellow-billed loons), and three-spined stickleback have a distribution 

restricted to brackish lakes and coastal waters, with an extremely low occupancy probability 

further inland (Craig 1984, Haynes et al. 2014a). However, because we collected tissues from 

yellow-billed loons two to four weeks after they first arrived on the breeding lakes, the 

dominance of broad whitefish and three-spined stickleback in the diet may reflect a residual 

signal in the loon tissue from marine or brackish waters before they moved inland to choose nest 

sites. During spring, before ice cover has melted and inland lakes are available for nesting, loons 

may feed along the Chukchi coast or on coastal brackish lakes and ponds. Both broad whitefish 

and three-spined stickleback inhabit coastal waters, are likely found in lakes closer to the 

coastline (Haynes at el. 2014a), and are likely present in estuarine or brackish pond habitat 

occupied by staging loons prior to breeding (Craig 1984, Reist and Bond 1988). When lakes 

have thawed to the point that they are accessible to loons (when a ring of unfrozen water forms 

around the lake perimeter; North 1994) loons will migrate from staging areas to breeding lakes, 

behaviorally establish ownership of a lake, and commence mating and nest-building. Because of 

the gradual turnover of tissues (Wang et al. 2010), the FA signature during this late staging 

period in coastal areas may persist in fat samples gathered a few weeks later during mid-

incubation. 

We were also surprised that ninespine stickleback and least cisco were not important prey 

items based on the FA diet estimates. Ninespine stickleback is the most widespread fish species 

in the region (94% lake occupancy rate, Haynes et al. 2014a) and yellow-billed loons have been 

noted to feed stickleback to their young (J.A. Schmutz, unpublished data). However, during 

spring freshet, shortly after breakup, ninespine stickleback may be less available to loons 

compared to later in the season. During early spring, ninespine stickleback may have restricted 

distributions due to winter die-off, be more dispersed because of increased movement into 

flooded waterways, and less abundant early in the season because the first cohort of young-of-

the-year stickleback is not present (Haynes et al. 2014a).  

Least cisco is the most widely distributed large-bodied fish species in the region 

(occupancy probability > 50% of lakes greater than 7 ha; Haynes et al. 2014a) and are abundant 

in various size classes. Despite its apparent suitability as a prey item, least cisco were only 

important for two individual loons (Table 4.3). Least cisco had the highest misclassification rate 
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based on the prey-on-prey simulations, so it is possible that the proportion of least cisco in 

yellow-billed loon diet may be underestimated. Alternatively, a low prevalence in diet may again 

be explained by the timing of the loon sampling. Early in the season, least cisco are migrating 

from overwintering habitat to summer feeding lakes (Haynes et al. 2014a) and thus likely have 

not arrived en masse before we sampled the loon tissues. Because of their high energy content 

(Ball et al. 2007) and high occupancy probability and abundance in lakes after June, we expect 

that least cisco plays a more important role in diet of breeding loons later in the season. 

Individual specialization in populations of generalists is common and is often related to 

the sex or age of the individual (e.g., Bolnick et al. 2003, Woo et al. 2008, Bromaghin et al. 

2013). For yellow-billed loons, this apparent specialization may actually reflect prey occupancy 

or availability at the breeding or staging site. For example, if yellow-billed loons nest on a lake 

with only Alaska blackfish in high availability, these breeders would be required to specialize on 

blackfish. Loons in lakes with a diversity of prey items available may be less likely to specialize 

but there may also be some benefits of specialization such as an increase in foraging efficiency 

(e.g., Watanuki 1992). 

We found that a strong understanding of the prey ecology is important when investigating 

the diet of a predator. Knowledge of seasonal and spatial variation in both loon (Schmutz et al. 

2014) and fish distributions (Haynes et al. 2014b) was key for interpretation of diet estimates. 

This information allowed us not only to determine what species are important, but also why they 

are important. Alaska blackfish may not be as abundant or calorie rich as other fish prey 

throughout the season; however, its widespread distribution in spring is likely what makes it a 

main prey item for loons arriving on lakes. Broad whitefish and three-spined stickleback are 

geographically restricted and have a low occupancy; however, these species are likely targeted in 

coastal staging areas before lake territories are formed. This finding highlights that 

understanding diet not only requires dietary models, but also an understanding of prey ecology 

and distributional patterns. 
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Table 4.1: Prey samples collected from lakes on the Arctic Coastal Plain for dietary study of 

yellow-billed loons. 

Common Name Scientific Name Abbreviation Sample Size 
Alaska Blackfish  Dallia pectoralis ALBL 20 
Arctic Flounder Liopsetta glacialis ARFL 5 
Arctic Grayling Thymallus arcticus ARGR 15 
Broad Whitefish Coregonus nasus BRWH 5 
Burbot  Lota lota BURB 2 
Least Cisco Coregonus sardinella LECI 17 
Ninespine Stickleback Pungitius pungitius NIST 15 
Northern Pike Esox lucius NOPI 1 
Rainbow Smelt Osmerus mordax RASM 14 
Slimy Sculpin Cottus cognatus SLSC 7 
Three-spined Stickleback Gasterosteus aculeatus THST 3 
Amphipods Order Amphipoda AMPH 20 
Fairy Shrimp Order Anostraca FAIR 5 
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Table 4.2: Results from prey-on-prey simulations using Quantitative Fatty Acid Statistical 

Analysis methods. The prey-on-prey analysis is an iterative process (performed 100 times in our 

case), where the prey data are randomly split into two sets for each prey type – a set that acts as 

the prey data and a set that is modeled as the predator data without calibration coefficients 

(Iverson et al. 2004). The simulation output can be used to determine how well QFASA can 

distinguish among prey item types based on how well QFASA correctly classifies the FA 

signatures of each prey type. The diagonal of the table represent the probability of correctly 

classifying a species.  

Species* ALBL AMPH ARFL ARGR BRWH FAIR LECI NIST RASM SLSC THST
ALBL 85.7 0.1 0.7 1.8 3.4 2.1 1.6 1.4 2.7 0.3 0.2 
AMPH 0.2 81.7 1.9 0.1 2.9 9.1 0.0 0.1 0.6 3.4 0.0 
ARFL 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ARGR 0.3 0.3 0.0 82.6 0.7 4.0 7.1 0.8 1.7 2.3 0.0 
BRWH 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 
FAIR 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 
LECI 6.7 0.2 0.0 9.6 0.6 1.3 60.6 1.1 19.9 0.1 0.0 
NIST 6.4 1.9 0.4 2.2 1.1 2.9 1.3 79.1 1.7 2.9 0.1 

RASM 0.1 0.3 0.3 0.1 0.1 0.3 4.6 0.3 93.7 0.2 0.2 
SLSC 3.2 8.9 2.7 3.1 1.6 8.4 0.0 2.7 4.2 64.9 0.2 
THST 0.1 0.3 1.9 0.0 1.3 0.1 0.1 0.0 8.8 0.1 87.3 

*ALBL – Alaska blackfish (Dallia pectoralis), AMPH – amphipod species, ARFL – Arctic

flounder (Liopsetta glacialis), ARGR – Arctic grayling (Thymallus arcticus), BRWH – broad 

whitefish (C. nasus), FAIR – fairy shrimp species,  LECI – least cisco (Coregonus sardinella), 

NIST – ninespine stickleback (Pungitius pungitius), RASM – rainbow smelt (Osmerus mordax), 

SLSC – slimy sculpin (Cottus cognatus), and THST – three-spined stickleback (Gasterosteus

aculeatus).
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Table 4.3: Diet estimates of individual yellow-billed loons based on a quantitative fatty acid 

statistical analysis using calibration coefficients from common murres (Iverson 2007).  

*ALBL – Alaska blackfish (Dallia pectoralis), AMPH – amphipod species, ARFL – Arctic

flounder (Liopsetta glacialis), ARGR – Arctic grayling (Thymallus arcticus), BRWH – broad 

whitefish (C. nasus), BURB – burbot (Lota lota), FAIR – fairy shrimp species, LECI – least 

cisco (Coregonus sardinella), NIST – ninespine stickleback (Pungitius pungitius), NOPI – 

northern pike (Esox lucius), RASM – rainbow smelt (Osmerus mordax), SLSC – slimy sculpin 

(Cottus cognatus), and THST – three-spined stickleback (Gasterosteus aculeatus). 

Prey Species* 
Loon ALBL AMPH ARFL ARGR BRWH BURB FAIR LECI NIST NOPI RASM SLSC THST 

1 0.03 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 
2 0.00 0.29 0.00 0.00 0.39 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.30 
3 0.53 0.07 0.02 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 
4 0.40 0.17 0.02 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 
5 0.00 0.00 0.01 0.35 0.03 0.00 0.20 0.38 0.04 0.00 0.00 0.00 0.00 
6 0.00 0.01 0.00 0.34 0.10 0.00 0.32 0.00 0.00 0.00 0.00 0.23 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.77 0.00 0.00 0.12 0.00 0.00 
8 0.00 0.00 0.00 0.28 0.00 0.00 0.19 0.00 0.41 0.00 0.00 0.00 0.12 
9 0.59 0.36 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 

10 0.50 0.00 0.00 0.00 0.00 0.08 0.00 0.03 0.13 0.19 0.03 0.00 0.04 
11 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 
12 0.40 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.03 0.00 0.03 
13 0.14 0.07 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 
14 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 
15 0.36 0.22 0.01 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 
16 0.72 0.08 0.00 0.05 0.10 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 
17 0.34 0.00 0.00 0.04 0.07 0.00 0.01 0.00 0.32 0.00 0.00 0.07 0.15 
18 0.47 0.00 0.00 0.00 0.05 0.16 0.00 0.00 0.07 0.00 0.24 0.00 0.00 
19 0.37 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.38 0.12 0.00 0.06 
20 0.41 0.08 0.05 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 
21 0.00 0.00 0.09 0.00 0.02 0.19 0.13 0.00 0.25 0.00 0.00 0.31 0.00 
22 0.19 0.33 0.01 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 
23 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 
24 0.68 0.08 0.03 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.14 
25 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
26 0.38 0.07 0.00 0.00 0.46 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure 4.1: Locations where yellow-billed loons were captured for tissue sampling (white 

circles) and lakes sampled for prey (black polygons) on the Arctic Coastal Plain. Inset shows the 

study region (black square) relative to the state of Alaska. 
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Appendix Figure A4.1a - Alaska Blackfish (ALBL) 
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Appendix Figure A4.1b - Amphipod (AMPH) 
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Appendix Figure A4.1c - Arctic Flounder (ARFL) 
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Appendix Figure A4.1d - Arctic Grayling (ARGR) 
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Appendix Figure A4.1e - Broad Whitefish (BRWH) 
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Appendix Figure A4.1f - Fairy Shrimp (FAIR) 



97 

Appendix Figure A4.1g - Least Cisco (LECI) 
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Appendix Figure A4.1h - Ninespine Stickleback (NIST) 
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Appendix Figure A4.1i - Rainbow Smelt (RASM) 
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Appendix Figure A4.1j - Slimy Sculpin (SLSC) 
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Appendix Figure A4.1k - Threes-spined Stickleback (THST) 

Appendix Figure A4.1: Results from prey-on-prey simulations using Quantitative Fatty Acid 

Statistical Analysis methods. The prey-on-prey analysis is an iterative process (in our case 

performed 100 times) where the prey data are randomly split into two sets for each prey type – a 

set that acts as the prey data and a set that is modeled as the predator data without calibration 

coefficients (Iverson et al. 2004). The simulation output can be used to determine how well 

QFASA can distinguish among prey item types based on how well QFASA correctly classifies 

the FA signatures of each prey type. Prey codes include: ALBL – Alaska blackfish (Dallia

pectoralis), AMPH – amphipod species, ARFL – Arctic flounder (Liopsetta glacialis), ARGR – 

Arctic grayling (Thymallus arcticus), BRWH – broad whitefish (C. nasus), FAIR – fairy shrimp 

species,  LECI – least cisco (Coregonus sardinella), NIST – ninespine stickleback (Pungitius

pungitius), RASM – rainbow smelt (Osmerus mordax), SLSC – slimy sculpin (Cottus cognatus), 

and THST – three-spined stickleback (Gasterosteus aculeatus).
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Chapter 5: Occupancy of nesting yellow-billed loons: evidence of habitat saturation and a 

stable breeding population? 

Abstract 

Yellow-billed loons (Gavia adamsii), a recent candidate for listing under the U.S. Endangered 

Species Act, have some of its highest known nesting densities on the Arctic Coastal Plain. The 

breeding dynamics of this population segment is relevant to the overall conservation of the 

species. We investigate the occupancy dynamics of nesting yellow-billed loons (late June) and 

yellow-billed loon chicks (late August) in lakes greater than 7 hectares from four years of data 

collected over a period of nine years for nests and seven years for chicks. We examined how 

environmental drivers affected loon distribution on ACP lakes and hypothesized the importance 

of fish prey availability. Yellow-billed loons exhibited a relatively low nesting lake occupancy 

over the years examined (2003-2011), ranging from 20-29%. Occupancy was relatively stable to 

increasing, with an average annual rate of change in occupancy (λ) among years estimated to be 

1.06 ± 0.08 (mean ± SE). For lakes with nesting loons, local extinction (probability of an 

occupied lake becoming unoccupied in the subsequent year) and colonization probabilities 

(probability of an unoccupied lake becoming occupied in the subsequent year) were also 

relatively stable, suggesting that the nesting population is at or near equilibrium. Stable to 

increasing nest occupancy was accompanied by a decrease in the annualized rate of chick 

occupancy (λchick 2005-2008 = 0.988 ± 0.194, λchick 2008-2009 = 0.836 ± 0.235, λchick 2009-2011 = 0.784 ± 

0.100). The increase in nesting occupancy may have intensified intraspecific competition, which, 

in turn, may have negatively influenced chick production over time. The occupancy probability 

of least cisco, a potential prey item, corresponded with an increased probability of colonization 

of unoccupied lakes. We confirm that lake size and lake depth were not only positively 

associated with nesting occupancy but also related to chick production. The largest lakes had 

occupancy probabilities near one for nesting and chicks; however the saturation point (when 

occupancy approaches 1) for nest occupancy occurred at smaller lake sizes than for chick 

occupancy. This disparity between saturation points for nesting and chicks, together with 

apparent population equilibrium and the relative rarity of large lakes, suggests high quality 

habitat for yellow-billed loons may be near saturation and limiting population size. 
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Introduction 

Identifying ecological relationships and dynamic processes that affect a species 

distribution provides a basis for species management into the future (Young and Hutto 2002, 

MacKenzie et al. 2006). Species distributions can be related to environmental features to 

characterize mechanistic species-environment relationships (Hochachka et al. 2007), which, in 

turn, can be used to manage activities that could impact the species (e.g., land use or harvest 

practices). Such information is particularly useful for species of conservation concern or species 

with poorly described distributions. 

The yellow-billed loon (Gavia adamsii) is the rarest and least studied of the five loon 

species (North 1994). Yellow-billed loons breed on Arctic lakes in the low-lying tundra regions 

of Canada, Russia and Alaska. In early spring, loons migrate from marine wintering areas to 

Arctic breeding regions. Shortly after lake ice recedes, breeding loons move from coastal staging 

areas to nesting lakes, while the majority of non-breeding loons arrive on the breeding grounds 

after nest initiation by breeders (Earnst et al. 2005, Schmutz et al. 2014). Upon arrival at the 

breeding lake, loon pairs establish territories and commence nesting activities. Yellow-billed 

loons are highly territorial and defend their nesting lake from smaller loon species and 

conspecifics (Sjölander and Ǻgren 1976, North 1994, Haynes et al. 2014c).  

About 6,000 yellow-billed loons occur in Alaska during the summer, greater than 70% of 

which occur within the National Petroleum Reserve on the Arctic Coastal Plain (hereafter 

“ACP”, Earnst et al. 2005). Breeding yellow-billed loons on the ACP (< 1,000 pairs, Earnst et al. 

2005) occur in relatively low densities across a large landscape, with some of the highest 

densities in areas available for oil and gas development (U.S. Fish and Wildlife Service 2009). 

Potential conflict with development on the breeding grounds, along with concerns about effects 

of climate change, overfishing, pollution, and subsistence harvest and bycatch in its wintering 

range, prompted a petition to list the yellow-billed loon as a threatened or endangered species 

under the U.S. Endangered Species Act (Center for Biological Diversity 2004). 

Given that the ACP is vast, remote, and difficult to survey, species distribution models 

have potential to describe lake-scale spatial distribution and temporal trends of yellow-billed 

loons. Two studies (Stehn et al. 2005, Earnst et al. 2006) have provided information on the 

habitat use of yellow-billed loons on the ACP, both finding that yellow-billed loons prefer large, 
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deep, and hydrologically connected lakes with complex shorelines and emergent vegetation. 

These studies also reported a lower probability of loons on lakes occupied by Pacific loons (G.

pacifica), most likely due to exclusion of Pacific loons by larger yellow-billed loons (Haynes et 

al. 2014b). Additionally, Stehn et al. (2005) found that yellow-billed loons were less likely to be 

found on lakes with relatively higher elevation or lakes surrounded by upland-tundra landcover. 

Although these studies have identified important landscape features corresponding with the 

distribution of yellow-billed loons, models were based entirely on remotely sensed data, did not 

discriminate between non-breeding and breeding loons (i.e., loons establishing territories, 

nesting, and rearing chicks) and included only a single breeding season. 

In this study, we investigate the occupancy dynamics (changes in occupancy over time) 

of yellow-billed loons with discontinuous data collected over 9 years. We examine the habitat 

use of nesting loons and successful breeders (i.e., loons that produce chicks) with the goal of 

identifying influences on their distribution. Measures of prey were likely one of the most 

important missing variables in past models (Earnst et al. 2006). We therefore build on previous 

efforts by incorporating prey occupancy dynamics (Haynes et al. 2014a) into loon occupancy 

models. We predict that, based on an expected spatial concordance between avian predators and 

their prey (Fauchald 2009), the distribution of prey species will influence yellow-billed loon 

occupancy. Also, in contrast with previous work, we focus entirely on nesting loons and loon 

chicks in a region with some of the highest known densities – a population segment that is 

important for loon conservation. We define breeding loons (breeders) as loons that attempted to 

nest in late June/early July. Many non-breeders occur on the ACP (Stehn et al. 2013), most of 

which may be younger individuals (3-5 year olds), assuming a similar ecology to the closely 

related common loon (G. immer; Evers et al. 2010). Nesting birds likely have stronger habitat 

associations compared with non-breeders because they are more spatially restricted (Campioni et 

al. 2010), and habitat associations for nesting loons should be relatively static because they 

remain on the lake throughout the nesting season (Schmutz et al. 2014). By examining nesting 

and chick occupancy over multiple seasons, we can better understand the temporal dynamics of 

occupancy at lake territories and can estimate occupancy vital rates such as local extinction (the 

probability an occupied lake is unoccupied in the subsequent season) and colonization (the 

probability that an unoccupied lake becomes occupied in the subsequent season) (Hammond et 

al. 2012), production of chicks, and the annual rate of change in occupancy for the nests and 
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chicks. Also, by examining nesting and chick occupancy, we can begin to understand habitat use 

in relation to fitness, and can thus gauge habitat quality (VanHorne 1981). Our results provide 

insight into the processes that govern these patterns and offer a broader understanding of yellow-

billed loon occupancy dynamics, including dynamics of population growth and how it may be 

linked to habitat. 

Methods 

The ACP is a 98,200 km2 region of low relief tundra across the entire northern coast of 

Alaska, of which 61,681 km2 have been surveyed annually by aircraft since 1985. Stehn et al. 

(2005) used an objective analysis of these long-term transect data and categorized the 

distribution of yellow-billed loons into two density strata – a high density stratum of 20,546 km2 

and a lower density stratum of 41,135 km2. We then randomly selected 16 7 x 7 km plots within 

the high density stratum, with the constraint that no plots fell within 2 km of another plot. Our 

study area is bounded to the south by the Brooks Mountain Range and bounded longitudinally by 

the Meade and Ikpikpuk Rivers (Figure 5.1). This low relief landscape is dominated by shallow 

lakes, (Arp and Jones 2009) and, depending on lake depth, lake volumes can freeze partially or 

entirely during the winter months (1.5-2.0 m over a winter season, Jefferies et al. 1996, Arp et al. 

2011).  

The sampling focused on two breeding stages: early spring nesting and late summer 

brood rearing. Lakes were sampled for yellow-billed loon nests from late June to early July by 

ground or aerial surveys over four seasons: 2003/2004, 2009, 2010 and 2011. The 2003/2004 

survey data were from Stehn et al. (2005), and we treated these data as one season due to no 

between-season replication. Lakes were surveyed for yellow-billed loon chicks using aerial 

surveys in late August (all sampling occurred between 23-Aug and 1-Sep) in 2005, 2008, 2009 

and 2011. For all years except 2008, a subset of lakes was surveyed within 16 plots measuring 7 

× 7 km (342 lakes available) randomly distributed within the study region (Stehn et al. 2005). In 

2008, lakes were sampled from 6 × 6 km plots randomly placed across our study area, with some 

spatial overlap with the other years. Within each plot, we surveyed every lake > 7 ha in surface 

area, omitting smaller lakes because yellow-billed loons tend to select larger lakes for nesting 

(Earnst et al. 2006). For both nest and chick surveys, crews conducted repeat sampling within the 

same season over a short time span in a subset of lakes (generally less than 48 hrs). Nest surveys 
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at the lakes were replicated either with two aerial surveys, one aerial and one ground survey, or 

two aerial and one ground survey (Haynes et al. 2014c), while chick surveys were replicated 

with two aerial surveys.  

Loon specific aerial surveys were conducted in a Cessna 206 (2003/2004, 2008, 2009) or 

a Kodiak (2011) amphibious fixed-wing plane with two observers (left side pilot and right side 

passenger). The plane circled shorelines to locate loons on the water and loon nests on shore, and 

for larger lakes, flew transects across the lake (Stehn et al. 2005). Loons sitting immobile on land 

were considered to be nesting, even if a nest scrape or eggs were not evident. Loons on the water 

were recorded but not used in analysis. All observations were made by US Fish and Wildlife 

Service pilots and biologists with a decade or more of experience conducting aerial surveys for 

birds on the ACP (Larned et al. 2006, Mallek et al. 2007). 

We conducted ground surveys for nests in late June to early July in 2009 (82 lakes), 2010 

(136 lakes), and 2011 (145 lakes; Haynes et al. 2014c). Observers accessed plots with an 

amphibious fixed-wing plane or a helicopter and accessed lakes within a plot on foot. One or two 

observers surveyed for nests by walking the perimeter of each lake, about 1 m from the water’s 

edge (about the mean distance of a loon nest from the water, Haynes et al. 2014b). In the case of 

two observers, each walked a portion of the lake with no overlap such that the whole lakeshore 

was surveyed, including islands. Nest locations were recorded on GPS units and loon species 

associated with the nest by identifying adults or from species-specific egg size (Bowman 2008). 

We used an occupancy modeling approach (MacKenzie et al. 2002, 2006) to examine 

factors affecting nesting loon or chick distribution and provide estimates of the probability of 

lake occupancy, local extinction, colonization, and rate of change in occupancy between seasons 

(colonization divided by extinction). Given that yellow-billed loons are not detected perfectly 

during surveys (Stehn et al. 2005, Haynes et al. 2014c), we also modeled detection probability 

(the probability of detecting loon nests or chicks with a single survey, given a lake is occupied) 

to avoid underestimation of occupancy and bias in colonization and extinction estimates 

(MacKenzie et al. 2003). We considered a lake occupied by nesting loons if it contained one pair 

of loons defending a territory with an active nest, and we considered a lake occupied by chicks if 

at least one loon chick was present. 

Because incomplete site coverage among years resulted in missing survey data, we used 

different subsets of data to conduct three analyses related to loon breeding occupancy: 1) multi-
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season nest occupancy, 2) single-season chick occupancy and, 3) multi-season chick occupancy. 

We examined chick occupancy in two separate analyses because chick occupancy was generally 

low and we had a smaller sample size, which inhibited simultaneous examination of 

environmental covariates and across-year dynamics (i.e., colonization and extinction). There was 

enough data, however, to examine environmental covariates (single season) and dynamics 

(multi-season) separately. We used an information-theoretic approach to evaluate models in 

multi-season nest occupancy and single-season chick occupancy analyses, but not for the third 

analysis because we only ran a single model to obtain multi-season estimates for occupancy 

parameters. For the first two analyses, we fitted a priori models, which we competed against 

each other by ranking the models using Akaike’s Information Criterion, corrected for sample size 

(AICc; Burnham and Anderson, 2002). Determining sample size for occupancy models is still a 

topic of debate (MacKenzie et al. 2006) and thus we adjusted the sample size by using the mean 

value between the number of sites and the number of surveys (multi-season nest occupancy =  

965, single-season chick occupancy = 518; MacKenzie et al. 2012). In the case of substantial 

model selection uncertainty, we adjusted parameter estimates by presenting model averaged 

estimates based on models within 90% of the AIC weight (Burnham and Anderson 2002). For 

analysis, we standardized all continuous covariates by calculating z-scores and fit all models in 

the program PRESENCE (version 6.4; Hines 2006) using the logit link function. Parameter 

estimates are presented in results ± standard error unless otherwise indicated. 

Multi-season nest occupancy 

We used a multi-season occupancy approach to estimate the annual proportion of lakes 

occupied by nesting yellow-billed loons and the dynamics of loon territory occupancy including 

the probability of local extinction (ɛ) and colonization (ɣ; MacKenzie et al. 2003). To allow for a 

manageable set of a priori models, we examined occupancy model parameters in three steps: 1) 

detection probability (p), 2) initial occupancy in first year (ѱ1) and 3) local extinction (ɛ) and 

colonization (ɣ). We considered detection probability models using a saturated initial occupancy 

model that incorporates all landscape variables (but not fish occupancy probabilities; see below) 

and no covariates for ɛ and ɣ. We were primarily interested in examining difference in ɛ and ɣ 

probabilities for the 2003/2004 to 2009 timestep and the 2009-2011 timesteps because we 

predicted that the differences in ɛ and ɣ would occur for the largest timestep. Thus, we allowed ɛ 
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and ɣ to differ between the 2003/04 to 2009 and the 2009 to 2011 timesteps, but not between the 

2009 to 2010 and 2010 to 2011 timesteps. We scaled all intervals to be annualized.  

Models of detection probability included survey platform (Cessna 206, Kodiak, ground 

surveys) due to its known effect on the observability of breeding loons (Haynes et al. 2014c). We 

also included models with combinations of the covariates “LakeArea” – the surface area of the 

lake, and “Shore” – a measure of shoreline convolution calculated as the ratio of the perimeter of 

the lake to the circumference of a circle of equal area (Stehn et al. 2005). We included detection 

models for which the influences of LakeArea and Shore varied by aerial and ground surveys and 

models for which covariate influence was constant among survey platforms (total of 6 detection 

models). 

Using the best detection model from the first step, we examined ѱ1 (loon nesting 

occupancy in 2003/2004) using two groups of variables – landscape level environmental 

variables important for loons (Stehn et al. 2005, Earnst et al. 2006) and occupancy probabilities 

of potential prey fishes (Haynes et al. 2014a). We did not include variables from both groups in 

the same model because fish occupancy probabilities were based on many (but not all) of the 

landscape variables. Landscape variables considered for nest occupancy included LakeArea, 

Shore, lake elevation above sea level (“Elev”; Stehn et al. 2005), the proportion of the lake area 

that has liquid water below the ice in spring (“Unfroz”; Grunblatt and Atwood 2014), hydrologic 

connectivity (“Connect”) and an interaction between lake surface area and hydrologic 

connectivity (LakeArea*Connect, Earnst et al. 2006). The Unfroz variable was based on a 

Synthetic Aperture Radar imagery model that estimates the proportion of a lake’s surface area 

that is deep and does not freeze to the bottom by the end of winter (Grunblatt and Atwood 2014). 

We defined Connect as the existence of a surface waterway (generally a stream) connecting a 

lake to another water body (stream, river, lake, pond or wetland). We determined whether a lake 

had a connection by a combination of digital map (i.e. National Hydrography Dataset), aerial 

photograph, and ground-observation. Combinations of landscape level environmental variables 

resulted in 33 models for ѱ1.  

We also modeled ѱ1 using the occupancy probability of fish prey species as covariates 

(Haynes et al. 2014a), including the occupancy probability of Alaska blackfish (Dallia

pectoralis, “ALBL”), least cisco (Coregonus sardinella, “LECI”) and at least one large-bodied 
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(“LB”) species (least cisco, arctic grayling- Thymallus arcticus or broad whitefish - Coregonus 

nasus). This model set included combinations of ALBL and either LB or LECI, but not a 

combination of LB and LECI (5 models in total). To determine whether fish distributions might 

have a more direct relationship with loon occupancy than landscape characteristics, we competed 

ѱ
1 models that used landscape covariates against the models that used fish occupancy 

probabilities as covariates. 

We estimated occupancy probabilities for ALBL, LECI, and LB by applying models 

from Haynes et al. (2014a). We used the same occupancy models from Haynes et al. (2014a) to 

estimate the occupancy probabilities for ALBL and LECI at the sample lakes. Haynes et al. 

(2014a) created models for individual large bodied species; however, we were interested in an 

occupancy model for large bodied species as a group (i.e., lake occupancy by at least one large 

bodied species). We used data from Haynes et al. (2014a) to create a model for LB using 

parameters that were generally important for large-bodied species. Covariates that were 

important for at least one large-bodied species and had the same direction of relationship for all 

large-bodied species included Unfroz, Connect, regional distance of the lake to the Beaufort Sea, 

and the distance of the lake to the next closest lake (Haynes et al. 2014a). For the large-bodied 

model, we used the detection probability structure from Haynes et al. (2013); we let detection 

probability vary by sampling method and four site covariates: LakeArea, Unfroz, Day and Year, 

where Day was the number of days from the beginning of sampling and Year was binary 

(representing 2009 or 2010).  

In the third step, we examined ɛ and ɣ using the best detection probability model 

structure from the first step and the best ѱ1 model structure from the second step. Rather than test 

models of ɛ and ɣ with a large set of covariates, as we did for ѱ1, we selected four covariates that 

we thought would most likely influence each parameter. We modeled ɛ and ɣ with only one 

covariate at a time because local extinction and colonization were relatively rare. We modeled ɛ 

with the variables we hypothesized may be related to extinction including Unfroz, Shore, 

LakeArea and ALBL. Unfroz is related to local extinction of fish populations (Haynes et al. 

2014a) which may in turn affect local extinction of loons. Shore is related to available nesting 

habitat and territoriality, with an increase in shoreline convolution providing a more defensible 

territory and better nest sites and potentially decreasing local extinction probability (Haynes et al. 

2014c). LakeArea is positively related to fish occupancy and available nesting habitat (Haynes et 
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al. 2014a, c) and large lakes may be less likely to have local extinction of fish species and can 

provide larger territory size, thus potentially decreasing local extinction probability. Alaska 

Blackfish is a species which may be an important food source during nest initiation, before the 

arrival of migratory fishes to the nesting lake, (Chapter 4) and an increase in ALBL may be 

related to a decrease extinction probability. We modeled ɣ with of Connect, LB, LECI and 

Shore. Connect, LB and LECI are all related to the colonization potential of migratory species 

(Haynes et al. 2014a), which may be an important cue for late-season prospecting loons that the 

lake has sufficient prey resources. Shore is important for common loon colonization (Hammond 

et al. 2012). After determining the best covariate structure for both ɛ and ɣ, we ran a final model 

that included the best model for ɛ and ɣ, ѱ1 and p. 

Single-Season Chick occupancy 

Although we obtained data from multiple years, our data were too sparse to run multi-

season models with covariates while simultaneously estimating ѱ1, ɛ and ɣ. Local extinction and 

colonization of broods are relatively rare events and preliminary analysis using a multi-season 

approach had difficulty estimating ɣ when covariates were included. We therefore examined how 

covariates affected chick occupancy via a single-season chick occupancy model (MacKenzie et 

al. 2002) and using data from all years but not specifying individual years (i.e., treated all data as 

one season of data).  

We combined multiple seasons into a single season analysis by including only one 

season’s data for each site. When a lake had data from more than one season, we included data 

from the season with the most survey replicates. For lakes with an equal number of surveys, we 

randomly selected the season for which data were used. We included 409 lakes that were 

surveyed at least once for chicks in 2008, 2009 or 2011. Of these, 141 lakes had only one survey 

replicate within a season and the rest were surveyed twice a season. We used a similar stepwise 

approach as with the multi-season nest occupancy except we did not model ɛ and ɣ. We tested 

the goodness-of-fit of the saturated model using a bootstrap approach (MacKenzie and Bailey 

2004). 

Multi-Season Chick Occupancy 

To obtain estimates for multi-season parameters, we used the seasonal data to run a 

multi-season chick occupancy model without covariates for ѱ1, ɛ and ɣ. Using the best detection 
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model covariates from the single-season chick occupancy analysis, we ran a null model for ѱ1, ɛ 

and ɣ (i.e., no covariates). We used chick occupancy data from 2005, 2008, 2009, and 2011 (413 

lakes). We allowed ɛ, but not ɣ, to vary annually because preliminary analysis suggested that ɣ 

was close to zero; thus, estimating one overall value for ɣ, rather than estimates of ɣ for each 

year, reduced the number of parameters in the model.  

Results 

Multi-season nest occupancy 

 The top two models for multi-season nest occupancy had 99% of the AIC model weight. 

These two models differed only by one parameter – the top model had no covariate for 

extinction, while Unfroz was a covariate for extinction in the second ranked model. Due to 

minimal model selection uncertainty, we focused on estimates from the top two models but also 

gained insights from model selection at each step (p, ѱ1, ɛ and ɣ) 

The top ranked detection (p) model included Shore and platform specific detection 

probabilities (Table 5.1). Shore had a positive influence on nest detection probability, with an 

increasing probability of detecting breeding loons as the shoreline became more complex (logit 

βShore = 0.56 ± 0.16). Ground surveys had the highest detection probability for nests (pGround = 

0.620 ± 0.071) with a similar detection probability to the Cessna aerial surveys (pCessna = 0.557 ± 

0.056), both of which were about twice as high as the Kodiak aerial surveys (pKodiak = 0.303 ± 

0.064).  

The top ranked model for ѱ1 included the covariates LakeArea and Unfroz, both of which 

positively corresponded with the probability of initial occupancy by nesting loons (βLakeArea = 

3.26 ± 0.80; βUnfroz= 0.76 ± 0.26; Figure 5.2). The probability of lake occupancy for nesting 

yellow-billed loons was generally low relative to available habitat, with breeders occupying less 

than a third of lakes >7 ha, and increased through the study duration (ѱnest 2003/2004 = 0.204 ± 

0.029, ѱnest 2009 = 0.260 ± 0.033, ѱnest 2010 = 0.278 ± 0.033, ѱnest 2011 = 0.29 ± 0.046).  

LECI was the most important variable related to loon colonization probability (ɣ) with 

the probability of least cisco occupancy having a positive influence on colonization of a lake by 

nesting loons (βLECI = 1.31 ± 0.37; Figure 5.3). In the second ranked model, Shore was weakly 

related to the probability of extinction (βShore = -0.31 ± 0.50), such that an increasing complexity 
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of lake shoreline decreases the probability of extinction of nesting loons at the lake. Local 

extinction probabilities (ɛ2003/2004- 2009 = 0.23 ± 0.09; ɛ 2009-2011 = 0.14 ± 0.07) were almost double 

the colonization probabilities (ɣ 2003/2004-2009 = 0.13 ± 0.03; ɣ2009-2011 = 0.07 ± 0.02); however, 

these parameters were estimated with relatively low precision. Estimates of lambda (λ = the rate 

of change in occupancy) for the individual years were all greater than one (λnest 2003/2004-2009 = 

1.05 ± 0.08, λnest 2009-2010 = 1.07 ± 0.10, λnest 2010-2011 = 1.05 ± 0.07), but estimates had large 95% 

confidence intervals that included one. 

Single-Season Chick Occupancy 

We did not find evidence of overdispersion from the goodness-of-fit test (ĉ = 0.797). The 

top models had similar AIC scores (top 6 models had 89.5% of AIC weight). We therefore 

accounted for model selection uncertainty in parameter estimates by model averaging across 

these six models (Burnham and Anderson 2002). Although we used model averaging for 

estimation, we discuss model rankings in the context of our stepwise approach.  

The best model for detection included LakeArea and survey platform (Table 5.2). As lake 

surface area increased, the probability of detecting a yellow-billed loon chick decreased (βLakeArea

=-0.346 ± 0.155), and chicks had a higher detection probability in the survey by the Kodiak 

aircraft in 2011 (βPlatform =-0.671 ± 0.460) than in the Cessna 206 in 2008 or 2009, (however, 

platform is confounded by year). The Kodiak aircraft had a detection probability for chicks of 

0.639 ± 0.107 on an average sized lake. 

The best model for occupancy included LakeArea and Unfroz with the probability of a 

yellow-billed loon chick occupying a lake increasing with lake size (βLakeArea = 2.329 ± 0.593) 

and the proportion of the lake unfrozen through winter (βUnfroz = 1.618 ± 0.415). Other occupancy 

covariates from the top models had beta estimates near zero and with low precision (βElev= -

0.037 ± 0.054, βShore= 0.061 ± 0.085, βConnect= 0.164 ± 0.191). The occupancy probability for 

chicks (ѱchick = 0.191 ± 0.053) was slightly lower than the nesting occupancy probability. Based 

on overall chick occupancy probability (late Aug./early Sept.) and mean annual nest occupancy 

probability (late June/early July), about three quarters of the nests present in the early season 

produced chicks (ѱchick/ѱnest  = 0.191/0.259 = 0.74 ± 0.32). 
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Both nest and chick occupancy were positively influenced by LakeArea and Unfroz 

(Figure 5.2). Based on the shape of the curves, lakes that have a high probability of producing 

chicks are generally larger and deeper (more area unfrozen in the spring) than the lakes that have 

a high probability of nests, suggesting that nests that fail to produce chicks are more commonly 

found on smaller, shallower lakes. For the largest lake sizes, occupancy approaches one (i.e., 

approaches saturation). For example, lakes with surface areas greater than 258 ha (z-value = 1.2) 

had a nesting occupancy probability > 0.95 and lakes greater than 410 ha (z-value = 2.2) had a 

>0.95 probability of producing a chick. 

Multi-Season Chick Occupancy 

Annual chick occupancy probability decreased over time (ѱchick 2005 = 0.229 ± 0.078, 

ѱchick 2008 = 0.221 ± 0.065, ѱchick 2009 = 0.185 ± 0.039, ѱnest 2011 = 0.113 ± 0.022), which was 

reflected in the rate of change in chick occupancy (λchick 2005-2008 = 0.988 ± 0.194, λchick 2008-2009 = 

0.836 ± 0.235, λchick 2009-2011 = 0.784 ± 0.100). Colonization probability for chicks in August were 

very close to zero (ɣ = 0.030 ± 0.020) while extinction probabilities varied considerably by year; 

estimates of extinction probability between 2009 and 2011(ɛ2009- 2011 = 0.517 ± 0.104) was over 

twice that of other timesteps (ɛ2005- 2008 = 0.136 ± 0.296, ɛ2008- 2009 = 0.268 ± 0.218).  

Discussion 

Occupancy of territorial species, such as the yellow-billed loon, is a result of combining 

social, behavioral and habitat factors. Without controlled experiments (e.g., Sjöberg et al. 2000), 

it is difficult to confirm mechanistic relationships suggested by empirically derived models. 

However, our approach was based on a priori hypotheses, derived from previous study and 

current understanding of loon ecology. Our study had a different scope than previous work on 

yellow-billed loons (Stehn et al. 2005, Earnst et al. 2006), but habitat associations for occupancy 

were similar – yellow-billed loons prefer to nest on large, deep lakes (i.e., lakes with large areas 

> 2 m in depth). Further, our models indicate that these large, deep lakes are most likely to 

produce chicks; however, these lakes are relatively rare on the landscape (Figure 5.4). Lake 

elevation, connectivity, or the interaction between lake area and connectivity were not associated 

with occupancy, as previous studies suggest (Stehn et al. 2005, Earnst et al. 2006). However, 

differences in modeling results are likely due to differences in scale (our study extent was 

smaller, precluded to the core breeding region) and focus (specific to breeding loons).  
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Despite our focus on the high density stratum for breeding yellow-billed loons, nesting 

loon occupancy was low relative to the available lake habitat. In late June, nesting yellow-billed 

loons occupied 20-30% of the available lakes >7 ha and only about 19% of available lakes 

produce chicks. This occupancy is much higher than that for the broader ACP (occupancy of 

about 15% for breeding and non-breeding yellow-billed loons combined, Earnst et al. 2006) but 

is still low relative to the number of potential nesting lakes based on lake size alone (i.e. >7 ha). 

The apparent low occupancy of nesting yellow-billed loons on the ACP raises the question – 

Why are loons not breeding on a higher proportion of available lakes (Stehn et al. 2005, Earnst et 

al. 2006)?  

We provide two main explanations as to why nesting yellow-billed loons do not occupy 

more lakes: 1) loons may not be at a population level such that all suitable habitat is occupied 

because factors outside of the nesting season limit their population, or 2) suitable habitat is 

saturated and the remaining lakes are unsuitable for breeding. Understanding which of these two 

explanations produced the observed occupancy patterns has clear conservation implications; if 

habitat is not saturated, the population of yellow-billed loons breeding on the ACP may be 

limited during another stage of the life cycle (e.g., on the wintering grounds or during migration). 

Conversely, if yellow-billed loons saturate the high-quality nesting habitat, their population is 

likely close to equilibrium and the availability of breeding habitat may limit population growth. 

It is difficult to answer this question based on previous single-season work because information 

on reproductive success or habitat use over time was lacking.  

This study adds to the growing evidence that quality nesting habitat for yellow-billed 

loons may be saturated in various parts of their range (North 1986, Schmidt et al. 2014 Schmutz 

et al. 2014). Although our evidence is indirect, our results suggest that the high quality habitat in 

this core area may be close to saturation. Large, deep lakes are high quality breeding habitat 

because they are not only more likely to be occupied by nesting loons, but also have the highest 

probability of producing chicks. Lake size was the most influential variable on occupancy 

probability, large lakes are saturated by nesting loons, and the largest lakes are saturated by loon 

chicks. The differences between nesting and chick occupancy probabilities across values of 

LakeArea and Unfroz also suggest that the highest quality habitat is close to saturation. Across 

the range of values of LakeArea and Unfroz, chick occupancy increases at higher values relative 

to nest occupancy. Many lakes with lower values of LakeArea and Unfroz support nests but they 
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do not have a high probability of producing chicks. For example, lakes with an area of 240 ha 

have >0.95 probability of occupancy for nests with only a 0.68 probability of producing a chick. 

Although the fish covariates were not strongly supported for nesting occupancy, the positive 

relationship between nesting occupancy and lake size may be related to the availability of fish 

prey, as larger lakes generally have a higher occupancy probabilities for fish species (Haynes et 

al. 2014a). The selection of the largest lakes by yellow-billed loons may also be in response to 

the availability of nesting habitat, with large lakes having proportionally more shoreline and thus 

potentially more suitable nesting locations (Haynes et al. 2014b). Large lakes may also have a 

higher likelihood of support more than one yellow-billed loon nest, although this is generally 

rare on the ACP (Haynes et al. 2014b).  

The hypothesis that high quality habitat is saturated within the core area of density in the 

ACP is supported by other lines of evidence: observations that large, deep lakes are able to 

support multiple loon nests (Haynes et al. 2014b, Haynes et al. 2014c); the presence of large 

numbers (a third of the total population) of “floating” non-breeders on the ACP breeding grounds 

(Earnst et al. 2005, Schmutz et al. 2014); and a stable to increasing occupancy for nesting loons 

over a nine year period (this study). Hammond et al. (2012) found similar dynamics (loon 

occupancy at equilibrium in time) for annual territorial occupancy of common loons.  

Yellow-billed loons have high territory retention between breeding seasons. In a study on 

the ACP, Schmutz et al. (2014) found that 12 of 16 (75%) breeding yellow-billed loons that were 

fixed with satellite tags reused the same nesting lake in the next season. Schmidt et al. (2014) 

found the probability of nest lake reuse was 0.72 for breeding yellow-billed loons on the Seward 

Peninsula. These values are similar to our estimate of probability of reuse (1- ɛ) at the population 

level of 0.83 between 2003/2004 and 2009, and 0.84 from 2009-2011. Although we allowed ɛ to 

vary between the two timesteps, local extinction probabilities were similar, indicating that 

extinction rates varied little over the study period. The relatively stable local extinction 

probabilities, along with the stable colonization probabilities and occupancy rates suggest the 

breeding population of yellow-billed loons were near equilibrium over the past nine years. 

Increases in yellow-billed loon nesting occupancy over time corresponded with a 

substantial decrease in chick occupancy; each timestep had a lambda value for chick occupancy 

less than one, and the 2011 season had about half the chick occupancy probability of 2005. 

Although our analysis does not provide any causal linkage between the increase in nesting 
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density and the decrease in chick production, increasing breeding densities can cause decreased 

reproductive success in birds (e.g., Page et al. 1983, Vickery et al. 1992) and increased breeding 

territory abandonment in loons (Hammond et al. 2012). Similar dynamics on the ACP could be 

taking place, where densities of nesting yellow-billed loons may be negatively affecting breeding 

success. Yellow-billed loons on the ACP must also compete with abundant nesting Pacific loons 

(Haynes et al. 2014c). Higher densities of loons would increase potential for territorial conflicts, 

especially considering that loons prospecting for nesting habitat target territories that produced 

chicks in the previous season (Piper et al. 2006). Increases in territorial conflicts would lead to 

increased exposure to conspecific chick mortality (Evers et al. 2010) and more time spent 

defending a territory rather than performing other breeding duties such as guarding a nest from 

predators or caring for chicks. 

The occupancy probabilities of chosen fish were not important for initial nesting or chick 

occupancy. We chose fish species that we knew (Chapter 4) or suspected (i.e., common inland 

species; Chapter 3) as being important for diet. Although not important for initial occupancy, the 

occupancy probability of least cisco was an important covariate for territory acquisition 

(colonization) by nesting loons. Least cisco are a high energy prey item (Ball et al. 2007) and 

generally locally abundant when present in a lake (Haynes et al. 2014a). Lakes with high 

occupancy probabilities for least cisco may have the prey reserves necessary to support breeding 

through to fledging. Thus, the presence of least cisco may be an indication of the quality of a 

nesting lake to prospecting loons. However, understanding how prey distributions influence 

loons is difficult. Loons are likely responding to the local fish communities in aggregate and to 

abundance of key species in complex ways. Beyond the expected spatial concordance between 

piscivorous birds and prey fish (Paszkowski and Tonn 2006), some fish species may have 

negative associations with birds because fish may compete for similar prey (Wagner and 

Hansson 1998, Haas et al. 2007), alter the trophic characteristics of the lake (Scheffer et al. 2006, 

Elmberg et al. 2010, McParland et al. 2010), or even depredate chicks (Gunnarsson et al. 2006). 

In addition, fish and aquatic birds may show a high spatial concordance because they are 

responding to similar environmental factors (Paszkowski and Tonn 2000). In our case, it is 

difficult to determine whether loons are responding to the presence of least cisco or whether the 

two species have similar habitat associations. Regardless, because of their body size, abundance 



 

118 

 

and energy content, it is likely that when least cisco are present at a nesting lake, they are an 

important food source for breeding loons. 

Our analysis also revealed an interesting dynamic in the aerial surveys; the Cessna 

surveys had a higher detection probability during nesting surveys, whereas the Kodiak had a 

higher detection probability during chick rearing. Differences in aircraft performance during the 

surveys are likely responsible for the contrasting detection results. The Kodiak is designed for 

good visibility, but does not turn as quickly as the Cessna. Thus, the Kodiak performs better 

when surveying for chicks, as most chicks in late August are out in the middle of the lake. The 

Cessna can follow shorelines more closely which likely gives it an advantage for surveying 

nests. It is worthy to point out that this comparison is confounded by year (no seasons when both 

Cessna and Kodiak used); however, we are unaware of any major annual differences that would 

otherwise lead to such contrasting results in detection.  

If habitat is saturated and the availability of quality breeding habitat is limiting the 

population of yellow-billed loons on the ACP in the core area, managing potential breeding lakes 

may be one of the most effective ways to conserve the species (US Fish and Wildlife Service 

2006). Focusing on areas of the ACP that have the highest loon densities (i.e., our study extent 

and the Colville River Delta; North 1986, Earnst et al. 2005) would be an efficient management 

strategy considering these regions constitute important population segments, and encompass 

regions open to oil and gas development. We confirm prior research (Stehn et al. 2005, Earnst et 

al. 2006); deep lakes with large surface area and adequate fish prey represent high quality habitat 

for yellow-billed loons. Managers should be aware that an increase in nesting occupancy is not 

necessarily a good indicator of increasing reproductive output. Rather, our estimates suggest that 

a recent decline in total productivity despite the increase in nesting occupancy. Because one and 

two year old loons likely do not return to the ACP in summer, low chick production would not 

manifest in observed population trend data until several years after ecological conditions have 

changed to affect chick success. Thus, our results may portend a near-future reduction in 

population growth unless an increase in nesting occupancy offsets a reduction in per-capita chick 

survival. 
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Table 5.1: Ranking of candidate models of multi-year occupancy of nesting yellow-billed loons 

on Arctic Coastal Plain lakes in late June. Inference about best fitting models was based on 

ranking of Akaike’s Information Criterion adjusted for sample size (AICc), differences in AICc 

(∆AICc), model weight (w), and model likelihood, given the number of estimated parameters 

(K).  

Model1 Step2 AICc ∆AICc w Likelihood K 

ѱ(LakeArea,Unfroz),ɣ(LECI),ɛ(.),p 
(Platform,Shore) ɣ 972.80 0.00 0.693 1 12 
ѱ(LakeArea,Unfroz),ɣ(LECI), 
ɛ(PUnfroz),p(Platform,Shore) Final 974.47 1.67 0.301 0.434 13 
ѱ(LakeArea,Unfroz),ɣ(LB),ɛ(.), 
p(Platform,Shore) ɣ 982.10 9.30 0.007 0.010 12 
ѱ(LakeArea,Unfroz),ɣ(Connect),ɛ(.),
p(Platform,Shore) ɣ 989.07 16.27 0.000 0.000 12 
ѱ(LakeArea,Unfroz),ɣ(Shore),ɛ(.), 
p(Platform,Shore) ɣ 991.32 18.52 0.000 0.000 12 
ѱ(LakeArea,Unfroz),ɣ(.),ɛ(PUnfroz),
p(Platform,Shore) ɛ 993.26 20.46 0.000 0.000 12 
ѱ(LakeArea,Unfroz),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 993.47 20.67 0.000 0.000 11 
ѱ(LakeArea,Unfroz),ɣ(.),ɛ(Shore), 
p(Platform,Shore) ɛ 994.34 21.54 0.000 0.000 12 
ѱ(LakeArea,Unfroz),ɣ(.),ɛ(LakeArea)
,p(Platform,Shore) ɛ 994.72 21.92 0.000 0.000 12 
ѱ(LakeArea,Connect,Unfroz),ɣ(.),ɛ(.)
,p(Platform,Shore) ѱ1 995.03 22.23 0.000 0.000 12 
ѱ(LakeArea,Unfroz),ɣ(.),ɛ(ALBL), 
p(Platform,Shore) ɛ 995.18 22.38 0.000 0.000 12 
ѱ(LakeArea,Elev,Unfroz),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 995.52 22.72 0.000 0.000 12 
ѱ(LakeArea,Shore,Unfroz),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 995.52 22.72 0.000 0.000 12 
ѱ(LakeArea,Elev,Unfroz,Connect), 
ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 997.06 24.26 0.000 0.000 13 
ѱ(LakeArea,Shore,Unfroz,Connect), 
ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 997.07 24.27 0.000 0.000 13 
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Table 5.1 Continued 
ѱ(LakeArea,Elev,Shore,Unfroz),ɣ(.),
ɛ(.),p(Platform,Shore) ѱ1 997.57 24.77 0.000 0.000 13 
ѱ(Saturated - no interaction), 
ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 999.12 26.32 0.000 0.000 14 
ѱ(Saturated),ɣ(.),ɛ(.),p(Platform, 
Shore) p 999.24 26.44 0.000 0.000 15 
ѱ(Saturated),ɣ(.),ɛ(.),p(Platform, 
LakeArea, Shore) p 999.58 26.78 0.000 0.000 16 
ѱ(Saturated),ɣ(.),ɛ(.),p(Platform, 
Shore*Platform) p 1001.25 28.45 0.000 0.000 16 
ѱ(Saturated),ɣ(.),ɛ(.),p(Platform, 
LakeArea) p 1002.95 30.15 0.000 0.000 15 
ѱ(Saturated),ɣ(.),ɛ(.),p(Platform, 
LakeArea*Platform) p 1003.44 30.64 0.000 0.000 16 
ѱ(LakeArea),ɣ(.),ɛ(.),p(Platform, 
Shore) ѱ1 1006.83 34.03 0.000 0.000 10 
ѱ(LakeArea,Connect),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1007.77 34.97 0.000 0.000 11 
ѱ(LakeArea,Elev),ɣ(.),ɛ(.),p(Platform
,Shore) ѱ1 1008.81 36.01 0.000 0.000 11 
ѱ(LakeArea,Shore),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1008.83 36.03 0.000 0.000 11 
ѱ(LakeArea*Connect),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1009.20 36.40 0.000 0.000 12 
ѱ(saturated),ɣ(.),ɛ(.),p(Platform) p 1009.55 36.75 0.000 0.000 14 
ѱ(LakeArea,Shore,Connect),ɣ(.),ɛ(.),
p(Platform,Shore) ѱ1 1009.60 36.80 0.000 0.000 12 
ѱ(LakeArea,Elev,Connect),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1009.82 37.02 0.000 0.000 12 
ѱ(LakeArea,Elev,Shore),ɣ(.),eps(.), 
p(Platform,Shore) ѱ1 1010.75 37.95 0.000 0.000 12 
ѱ(LakeArea,Elev,Shore,Connect),ɣ(.)
,eps(.),p(Platform,Shore) ѱ1 1011.62 38.82 0.000 0.000 13 
ѱ(LECI,ALBL),ɣ(.),ɛ(.),p(Platform, 
Shore) ѱ1 1039.79 66.99 0.000 0.000 11 

ѱ(LECI),ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 1044.82 72.02 0.000 0.000 10 
ѱ(LB,ALBL),ɣ(.),ɛ(.),p(Platform, 
Shore) ѱ1 1045.53 72.73 0.000 0.000 11 
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1“LakeArea” – the surface area of the lake; “Shore” – a measure of shoreline convolution 

calculated as the ratio of the perimeter of the lake to the circumference of a circle of equal area. 

“Elev” – elevation above sea level; “Unfroz” – the area of the lake that has liquid water below 

the ice in spring; “Connect” hydrologic connectivity; “LakeArea*Connect” – interaction between 

lake surface area and hydrologic connectivity; “ALBL” – occupancy probability of Alaska 

blackfish (Dallia pectoralis); “LECI” – occupancy probability of least cisco (Coregonus

sardinella); “LB” – occupancy probability of at least one large-bodied species (least cisco, arctic 

Table 5.1 Continued 
ѱ(ALBL),ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 1046.54 73.74 0.000 0.000 10 

ѱ(LB),ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 1048.28 75.48 0.000 0.000 10 
ѱ(Unfroz,Connect),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1049.31 76.51 0.000 0.000 11 
ѱ(Shore,Unfroz,Connect),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1050.47 77.67 0.000 0.000 12 
ѱ(Elev,Unfroz,Connect),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1051.10 78.30 0.000 0.000 12 
ѱ(Shore,Unfroz),ɣ(.),ɛ(.),p(Platform,
Shore) ѱ1 1051.82 79.02 0.000 0.000 11 

ѱ(Unfroz),ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 1051.82 79.02 0.000 0.000 10 
ѱ(Elev,Shore,Unfroz,Connect),ɣ(.), 
ɛ(.),p(Platform,Shore) ѱ1 1051.89 79.09 0.000 0.000 13 
ѱ(Elev,Shore,Unfroz),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1053.75 80.95 0.000 0.000 12 
ѱ(Elev,Unfroz),ɣ(.),ɛ(.),p(Platform, 
Shore) ѱ1 1053.85 81.05 0.000 0.000 11 
ѱ(Connect),ɣ(.),ɛ(.),p(Platform, 
Shore) ѱ1 1056.17 83.37 0.000 0.000 10 
ѱ(Shore,Connect),ɣ(.),ɛ(.),p(Platform,
Shore) ѱ1 1057.95 85.15 0.000 0.000 11 
ѱ(Elev,Connect),ɣ(.),ɛ(.),p(Platform,
Shore) ѱ1 1058.21 85.41 0.000 0.000 11 

ѱ(.),ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 1058.82 86.02 0.000 0.000 9 

ѱ(Shore),ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 1059.81 87.01 0.000 0.000 10 
ѱ(Elev,Shore,Connect),ɣ(.),ɛ(.), 
p(Platform,Shore) ѱ1 1059.95 87.15 0.000 0.000 12 

ѱ(Elev),ɣ(.),ɛ(.),p(Platform,Shore) ѱ1 1060.58 87.78 0.000 0.000 10 
ѱ(Elev,Shore),ɣ(.),ɛ(.),p(Platform, 
Shore) ѱ1 1061.81 89.01 0.000 0.000 11 



127 

grayling- Thymallus arcticus or broad whitefish - Coregonus nasus); “Platform” – survey type 

(Cessna 206, Kodiak, ground); “Saturated” – all landscape variables, but not fish occupancy 

probabilities; “Shore*Platform” and “LakeArea*Platform” denotes models where the covariate 

(Shore or LakeArea) were allowed to vary by platform. 

2 To allow for a manageable set of a priori models, we examined occupancy model parameters in 

three steps: 1) detection probability (p), 2) initial occupancy in first year (ѱ1) and 3) local 

extinction (ɛ) and colonization (ɣ) with the final step being the highest ranked model structure 

for each step.
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Table 5.2: Rankings of models examining single-season occupancy of yellow-billed loon chicks 

on Arctic Coastal Plain lakes in late August. Inference about best fitting models was based on 

ranking of Akaike’s Information Criterion adjusted for sample size (AICc), differences in AICc 

(∆AICc), model weight (w), and model likelihood, given the number of estimated parameters 

(K). 

Model1 Step2 AICc ∆AICc w Likelihood K 

ѱ(Unfroz,LakeArea),p(LakeArea,Platform) ѱ 309.38 0 0.284 1 6 
ѱ(Unfroz,Connect,LakeArea),p(LakeArea,
Platform) 

ѱ 310.23 0.85 0.186 0.654 7 

ѱ(Unfroz,Elev,LakeArea),p(LakeArea, 
Platform) 

ѱ 310.65 1.27 0.151 0.53 7 

ѱ(Shore,Unfroz,LakeArea),p(LakeArea, 
Platform) 

ѱ 310.68 1.3 0.148 0.522 7 

ѱ(Unfroz,Connect,LakeArea,Shore), 
p(LakeArea,Platform) 

ѱ 311.76 2.38 0.086 0.304 8 

ѱ(Saturated),p(LakeArea,Platform) p, ѱ 313.32 3.94 0.04 0.14 9 
ѱ(Saturated),p(LakeArea) p 313.44 4.06 0.037 0.131 8 
ѱ(Saturated,Interaction),p(LakeArea, 
Platform) 

ѱ 315.26 5.88 0.015 0.053 10 

ѱ(Saturated),p(LakeArea,Shore) p 315.49 6.11 0.013 0.047 9 
ѱ(Saturated),p(.) p 315.94 6.56 0.011 0.038 7 
ѱ(Saturated),p(Shore) p 316.67 7.29 0.007 0.026 8 
ѱ(Saturated),p(Platform) p 316.75 7.37 0.007 0.025 8 
ѱ(Saturated),p(Shore,Platform) p 317.7 8.32 0.004 0.016 9 
ѱ(ALBL,LB),p(LakeArea,Platform) ѱ 318.91 9.53 0.002 0.009 6 
ѱ(Unfroz,Connect),p(LakeArea,Platform) ѱ 320.59 11.21 0.001 0.004 6 
ѱ(ALBL),p(LakeArea,Platform) ѱ 321.78 12.4 0.001 0.002 5 
ѱ(LB),p(LakeArea,Platform) ѱ 322.1 12.72 0 0.002 5 
ѱ(Connect,Unfroz,Shore),p(LakeArea, 
Platform) 

ѱ 322.24 12.86 0 0.002 7 

ѱ(Elev,Connect,Unfroz),p(LakeArea, 
Platform) 

ѱ 322.41 13.03 0 0.002 7 

ѱ(Saturated),p(LakeArea,Shore,Platform) p 322.91 13.53 0 0.001 10 
ѱ(Unfroz),p(LakeArea,Platform) ѱ 323.03 13.65 0 0.001 5 
ѱ(Elev,Unfroz,Shore,Connect),p(LakeArea
,Platform) 

ѱ 324.11 14.73 0 0.001 8 

ѱ(Shore,Unfroz)p(LakeArea,Platform) ѱ 324.21 14.83 0 0.001 6 
ѱ(Elev,Unfroz),p(LakeArea,Platform) ѱ 324.61 15.23 0 0.001 6 
ѱ(Elev,Unfroz,Shore),p(LakeArea, 
Platform) 

ѱ 325.91 16.53 0 0 7 
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Table 5.2 Continued 
ѱ(LECI),p(LakeArea,Platform) ѱ 326.41 17.03 0 0 5 
ѱ(Connect,Elev,LakeArea),p(LakeArea, 
Platform) 

ѱ 334.76 25.38 0 0 7 

ѱ(LakeArea,Elev,Connect),p(LakeArea, 
Platform) 

ѱ 334.76 25.38 0 0 7 

ѱ(Connect),p(LakeArea,Platform) 
ѱ(Interaction),p(LakeArea,Platform) ѱ 335.73 26.35 0 0 7 
ѱ(Shore,Connect,LakeArea),p(LakeArea, 
Platform) 

ѱ 335.74 26.36 0 0 7 

ѱ(LakeArea),p(LakeArea,Platform) ѱ 335.74 26.36 0 0 5 
ѱ(Elev,Connect),p(LakeArea,Platform) ѱ 336.04 26.66 0 0 6 
ѱ(LakeArea,Elev),p(LakeArea,Platform) ѱ 336.04 26.66 0 0 6 
ѱ(Shore,Elev,LakeArea,Connect), 
p(LakeArea,Platform) 

ѱ 336.6 27.22 0 0 8 

ѱ(Shore,Connect)p(LakeArea,Platform) ѱ 336.88 27.5 0 0 6 
ѱ(LakeArea,Connect),p(LakeArea, 
Platform) 

ѱ 336.89 27.51 0 0 6 

ѱ(Shore,Elev,LakeArea),p(LakeArea, 
Platform) 

ѱ 338.04 28.66 0 0 7 

ѱ(Elev,Connect,Shore),p(LakeArea, 
Platform) 

ѱ 338.07 28.69 0 0 7 

ѱ(Elev),p(LakeArea,Platform) ѱ 338.68 29.3 0 0 5 
ѱ(Shore,p(LakeArea,Platform) ѱ 339.72 30.34 0 0 5 
ѱ(Elev,Shore),p(LakeArea,Platform) ѱ 340.56 31.18 0 0 6 

1“LakeArea” – the surface area of the lake; “Shore” – a measure of shoreline convolution 
calculated as the ratio of the perimeter of the lake to the circumference of a circle of equal area. 
“Elev” – elevation above sea level; “Unfroz” – the area of the lake that has liquid water below 
the ice in spring; “Connect” hydrologic connectivity; “LakeArea*Connect” – interaction between 
lake surface area and hydrologic connectivity; “ALBL” – occupancy probability of Alaska 
blackfish (Dallia pectoralis); “LECI” – occupancy probability of least cisco (Coregonus

sardinella); “LB” – occupancy probability of at least one large-bodied species (least cisco, arctic 
grayling- Thymallus arcticus or broad whitefish - Coregonus nasus); “Platform” – survey type 
(Cessna 206, Kodiak, ground); “Saturated” – all landscape variables, but not fish occupancy 
probabilities. 

2To allow for a manageable set of a priori models, we examined occupancy model parameters in 
two steps: 1) detection probability (p), 2) occupancy (ѱ), with the final step being the highest 
ranked model structure for each step. 
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Figure 5.1: Survey plots (white squares) for breeding yellow-billed loons on the Arctic Coastal 

Plain. Data were collected under two survey designs including 7x7 km and 6x6 km plots. Inset 

map shows study extent (black rectangle) relative to Alaska. 
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Figure 5.2: Probability of nesting occupancy (in late June/early July) and chick occupancy (in 

late August/early Sept) at lakes on the Arctic Coastal Plain of Alaska, relative to lake area 

(LakeArea) and the proportion of the lake surface area that is deep enough to contain liquid 

water at the end of winter (Unfroz). LakeArea (range 20-414 ha) and Unfroz (range 0-100%) 

were standardized to have a mean of 0.0 and standard deviation of 1.0. Increasing values 

represent larger lake surface area (LakeArea; logit βLakeArea = 2.329 ± 0.593) or a higher 

proportion of lake area that is deeper than maximum winter ice thickness (Unfroz; logit βUnfroz = 

1.618 ± 0.415). 
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Figure 5.3: Probability of lake colonization for nesting yellow-billed loons relative to least cisco 

occupancy probability (logit βLECI = 1.31 ± 0.37). 
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Figure 5.4: Frequency of lake area across the study region. Arrows indicate points at which lakes 
approach saturation (ѱ ~ 1) for nest and chick occupancy.  
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Chapter 6: Conclusions 

The Arctic Coastal Plain (ACP) is an expansive area, spanning over 98,200 km2 , 

representing important habitat for Arctic flora and fauna (Hobbie 1984, Leibezeit et al. 2009). 

For example, the National Petroleum Reserve-Alaska (NPR-A), which covers a large portion of 

the ACP, including our study region, is one of the most important areas for breeding aquatic 

birds in the holarctic (Bart et al. 2013). The majority of ACP remains undeveloped; however, 

substantial oil and gas extraction remains a part of the current landscape (>2000 wells drilled 

since 1977; Fuller et al. 2008), and much of the ACP region remains open to development with 

the U.S. Bureau of Land Management expecting to offer annual lease sales (Bureau of Land 

Management 2014). The Arctic region also will experience some of the strongest effects of 

climate change (Post et al. 2009), which could have major ecological consequences for 

freshwater ecosystems on the ACP (Reist et al. 2006; Wrona et al. 2006). Given the potential 

impacts from increased development and a warming climate, study of the ACP ecosystems is key 

for detecting and predicting the potential effects of these impacts. However, due to its vast size 

and inaccessibility, the ACP remains poorly studied compared with other regions. The work 

included in this dissertation provides insights into important aspects of the freshwater ecosystem 

of the ACP, including important sampling considerations for the relatively unstudied fish 

communities, the ecological drivers of Arctic fish distributions, information gaps about yellow-

billed loon diet, and occupancy dynamics parameters for breeding yellow-billed loons and loon 

chicks (i.e., productivity). 

In Chapter 2, I examined how detection probability affects fish sampling in Arctic lakes. 

Detection probabilities were always less than one, suggesting that repeated sampling with 

multiple gear types provides the most efficient sampling regime when trying to detect fish 

species with a high level of confidence. Using results from Chapter 2, scientists and managers 

can design sampling schemes to target specific species or the entire fish communities. For 

example, the U.S. Bureau of Land Management and the U.S. Fish and Wildlife Service is 

currently using detection estimates from Chapter 2 to design fish research studies on the ACP. 

The results from this chapter are particularly relevant to the regulations set by the State of Alaska 

for industrial water withdrawal from Arctic lakes. The state sets strict guidelines for water 

withdrawal and withdrawal allowance depend on the fish species present in the lake. Although 

the state requires permit applicants to sample for fish in lakes targeted for water withdrawal, the 
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state currently does not have standardized guidelines for fish sampling efforts. Results from 

Chapter 2 could be used by the State of Alaska to develop such guidelines, or used by permit 

applicants and consultants charged with sampling lakes to ensure there is a scientific basis for 

their sampling design. This will allow permit applicants to demonstrate that an appropriate level 

of sampling has occurred when applying for water withdrawal permits. 

Chapter 3 makes an important addition to the modest amount of ecological information 

available on the freshwater fish communities of the ACP. Fish distributions are generally 

unavailable for thousands of lakes on the ACP and landscape characteristics that influence fish 

distributions are poorly understood. In Chapter 3, I examined the distributions of six of the most 

common fish species. These species had occupancy patterns that reflected their life history 

strategies, and I synthesized known ecological information with modeling results to create a 

conceptual model for fish distributions on the ACP. Models of fish distributions from Chapter 3 

can be used to predict fish distributions in unsampled lakes (see Chapter 5) and should have 

utility for managing fish populations or provide a priori expectations for refining detectability 

models. For example, we have received requests by the U.S. Bureau of Land Management and 

the Arctic Landscape Conservation Cooperative for both sampled and modeled data on fish 

distributions. We expect that these data will be developed into tools that will give managers and 

policy makers the information they need to better manage aquatic resources on the ACP, despite 

the general lack of sampling. The conceptual model provides a broader understanding of the 

factors governing fish populations on the ACP. Lake connectivity and overwintering habitat (i.e., 

water deeper that about 2 m) are key influences on the distribution of Arctic fishes. Preventing 

impasses to fish passage or limiting water withdrawal that eliminates deep water refuges are 

useful management goals for maintaining existing fish community structure. The conceptual 

model also provides a basis for future scientific investigation. The model can generate testable 

hypotheses about fish movements, distributions and occupancy dynamics such as local extinction 

and colonization. Future refinement to this conceptual model will increase our understanding of 

Arctic fish ecology and improve management practices on the ACP. 

The diet of breeding yellow-billed loons represents a major information gap. Results 

from Chapter 4 suggest that Alaska blackfish are an important diet item early in the breeding 

season. The early season importance of blackfish is likely due to their widespread distribution 
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after spring break-up, before other species, such as opportunistic colonizers (e.g., ninespine 

stickleback), or migratory species (e.g., least cisco) can reach maximum mid-summer occupancy 

in lakes. Models suggested that three-spined stickleback and broad whitefish were also major 

prey items. However, these species were likely consumed by loons in staging areas, given that 

three-spined stickleback are not widespread in interior ACP lakes and broad whitefish have 

relatively low occupancy probabilities (Haynes et al. 2014). Chapter 4 takes an important first 

step in understanding the diet of yellow-billed loons; however, future work on yellow-billed loon 

diet should focus on mid- to late-breeding season to contrast with early season results. 

Findings from Chapter 5 suggest that breeding yellow-billed loons may be saturating 

quality habitat (i.e., large, deep lakes), and the presence of least cisco affects occupancy 

dynamics (probability of colonization). Although I examined other fish occupancy variables as 

covariates, they were not supported as important to loon occupancy dynamics. Lake area and 

depth may be serving proximate measures of prey availability because large, deep lakes are also 

most likely to have fish (Haynes et al. 2013). Over the study period, occupancy of nesting loons 

increased while chick occupancy (i.e., chick production) decreased. The negative relationship 

between loon densities and breeding success is the case for common loons (Hammond et al. 

2012) and for loons on the ACP (Schmutz and Uher-Koch, unpublished data). Although the 

reasons for an increase in nesting occupancy are unknown, the large “floater” population – the 

population of non-breeding yellow-billed loons (Earnst et al. 2005) indicates that breeding 

opportunities are limited, likely due to limited high quality territories (Hunt 1998). The 

propensity of floaters to defer breeding involves trade-offs between producing a chick in the 

current year and future reproductive output. Rejection of vacant lakes by floaters suggests that 

nesting attempts on these lakes will not increase their lifetime reproductive fitness. Rather, 

floaters, although able to breed, may avoid the risks of breeding in the current year by deferring 

breeding until a high quality lake can be successfully defended from conspecifics and other loons 

species (Piper et al. 2006). Multiple factors influence whether floaters defer breeding, including 

cues from breeders and current environmental conditions (Zack and Stutchbury 1992). The 

increase in nesting occupancy over the study period suggests that cues reflected a trend in 

favorable conditions for floaters to recruit to the breeding population. Further information on the 

floater population would be necessary to assess these dynamics; however, less information on the 

floater population is available because non-breeding yellow-billed loons are more difficult to 
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study. Floaters may be buffering changes in the breeding population (Hunt 1998), stabilizing 

occupancy of breeding yellow-billed loons on the ACP while simultaneously negatively 

impacting chick production through conspecific mortality of chicks during prospecting (Piper et 

al. 2006, Evers 2010). Thus, it is possible that the floater population was shrinking without any 

corresponding negative trend in the breeding population if the floater population is being reduced 

through increased recruitment to the breeding population (Franklin 1992). The increase in 

breeding loons appears to negatively affect chick survival, and thus, could further reduce 

recruitment to the floater population (Penteriani et al. 2011). Given the likely importance of the 

floaters to yellow-billed loon population and breeding dynamics, future efforts should include 

assessment of the reproductively mature floater population (e.g., floater to breeder ratio, Hunt 

1998) to allow for a more comprehensive assessment of loon population dynamics.  

Arctic ecosystems will continue to be a challenge to manage due to increased 

development pressures and the impacts of climate change. Arctic ecosystems, including the 

freshwater environments, have already experienced substantial change (Post et al. 2009). The 

paucity of ecological information exacerbates this challenge, as managers will be required to act 

without the scientific information necessary for informed management. This dissertation 

provides valuable findings that are directly relevant to current management practices and 

conservation concerns and also provides a basis for future research on Arctic fishes and loons. 

Although results from this study fill in important information gaps, the extensive gaps in the 

understanding of Arctic ecosystems will necessitate innovative research and management 

practices that are adaptive and move beyond a focus on single resource. 

References 

Bart, J., R. M. Platte, B. Andres, S. Brown, J. A. Johnson, and W. Larned. 2013. Importance of 

the National Petroleum Reserve–Alaska for aquatic birds. Conservation Biology 27:1304-

1312. 

U.S. Bureau of Land Management. 2014. Online resource accessed September 8, 2014. 

http://www.blm.gov/ak/st/en/prog/energy/oil_gas/npra.html 

Earnst, S. L., R. A. Stehn, R. M. Platte, W. W. Larned, and E. J. Mallek. 2005. Population size 

and trend of yellow-billed loons in northern Alaska. The Condor 107:289-304. 



139 

Evers, D. C., J. D. Paruk, J. W. Mcintyre, and J. F. Barr. 2010. Common loon (Gavia immer), 

The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; 

Retrieved from the Birds of North America Online: 

http://bna.birds.cornell.edu/bna/species/313. 

Franklin, A. B. 1992. Population regulation in northern spotted owls: theoretical implications for 

management. Pages 815-827  Wildlife 2001: populations. Springer. 

Fuller, T., D. P. Morton, and S. Sarkar. 2008. Incorporating uncertainty about species' potential 

distributions under climate change into the selection of conservation areas with a case 

study from the Arctic Coastal Plain of Alaska. Biological Conservation 141:1547-1559. 

Hammond, C. A. M., M. S. Mitchell, and G. N. Bissell. 2012. Territory occupancy by common 

loons in response to disturbance, habitat, and intraspecific relationships. The Journal of 

Wildlife Management 76:645-651. 

Haynes, T. B., A. E. Rosenberger, M. S. Lindberg, M. Whitman, and J. A. Schmutz. 2014. 

Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic 

environment. Freshwater Biology 59:1884-1896. 

Hobbie, J. E. 1984. The ecology of tundra ponds of the Arctic Coastal Plain: a community 

profile. U.S. Fish and Wildlife Service. 65 p. 

Hunt, W. G. 1998. Raptor floaters at Moffat's equilibrium. Oikos 82:191-197. 

Liebezeit, J. R., S. J. Kendall, S. Brown, C. B. Johnson, P. Martin, T. L. McDonald, D. C. Payer, 

C. L. Rea, B. Streever, A. M. Wildman, and S. Zack. 2009. Influence of human 

development and predators on nest survival of tundra birds, Arctic Coastal Plain, Alaska. 

Ecological Applications 19:1628-1644. 

Penteriani, V., M. Ferrer, and M. M. Delgado. 2011. Floater strategies and dynamics in birds, 

and their importance in conservation biology: towards an understanding of nonbreeders 

in avian populations. Animal Conservation 14:233-241. 

Piper, W. H., C. Walcott, J. N. Mager, III, M. Perala, K. B. Tischler, E. Harrington, A. J. 

Turcotte, M. Schwabenlander, and N. Banfield. 2006. Prospecting in a solitary breeder: 

chick production elicits territorial intrusions in common loons. Behavioral Ecology 

17:881-888. 



140 

Post, E., M. C. Forchhammer, M. S. Bret-Harte, T. V. Callaghan, T. R. Christensen, B. Elberling, 

A. D. Fox, O. Gilg, D. S. Hik, and T. T. Høye. 2009. Ecological dynamics across the 

Arctic associated with recent climate change. Science 325:1355-1358. 

Reist, J. D., F. J. Wrona, T. D. Prowse, M. Power, J. B. Dempson, R. J. Beamish, J. R. King, T. 

J. Carmichael, and C. D. Sawatzky. 2006. General effects of climate change on Arctic 

fishes and fish populations. Ambio 35:370-380. 

Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. Lévesque, and W. F. Vincent. 2006. 

Climate impacts on Arctic freshwater ecosystems and fisheries: background, rationale 

and approach of the Arctic Climate Impact Assessment (ACIA). AMBIO: A Journal of 

the Human Environment 35:326-329. 

Zack, S., and B. J. Stutchbury. 1992. Delayed breeding in avian social systems: The role of 

territory quality and "floater" tactics. Behaviour 123:194-219. 




