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Abstract 

Pile‐guided floats can be a desirable alternative to stationary berthing structures. 

Both floats and guide piles are subjected to time varying (dynamic) forces such as wind‐

generated waves and impacts from vessels. There is little design information available 

concerning the dynamic load environment to which the floats will be subjected. So far, 

the most widely acceptable method used in offshore structure design is the Kinetic 

Energy Method (KEM). It is a simplified method that is based on the conservation of 

energy. This approach is straightforward and easy to implement. However, in spite of its 

simplicity and straightforwardness, the method lacks accuracy. 

The intent of this project is to develop a rational basis for estimating the dynamic 

response of floating pile‐guided structures, providing necessary insight into design 

requirements of the guide‐piles. In this study, the Dynamic Analysis Method (DAM) will 

be used to model the dynamic responses of the system. MATLAB codes are written to 

help calculate the analytic and numerical values obtained from the dynamic models. 

For the purpose of validation, results from the two systems should be compared to 

a comprehensive dynamic analysis model created with the ANSYS AQWA Software. 
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Chapter 1 Introduction 

1.1 Problem Statement 

 Alaska Department of Transportation & Public Facilities (AKDOT&PF) has used 

pile-guided floats at certain ferry terminals and is considering the future use of floating 

piers at a number of other Alaska Marine Highway System (AMHS) terminals. The floats 

are supported laterally by guide-piles, but are allowed to translate vertically to 

accommodate the extreme tidal characteristic of Alaska. These floats will be subjected to 

dynamic (time-varying) forces from both vessels and wave action. The design loads for 

guide-piles that support these floats are not apparent in current practice or associated 

literature. Besides, given the dynamic nature of the system, static analyses may not be 

appropriate. Because of this, AMHS Engineers seek the means to reasonably estimate the 

forces in the guide piles under service conditions. 

1.2 Problem Background 

 The major advantage of pile-guided floats is that vessels may be left unattended 

during the extreme tidal changes that occur commonly in Alaska. Due to the extreme 

tidal gap in Alaska, moored ships held by fixed docks, which is the case for most of the 

facilities in service right now in Alaska, require continuous monitoring which results in a 

significant labor cost. However, since the guide-piles support the float laterally but allow 

free vertical movement, the float will move freely as the tide changes. In such case, 

monitoring is no longer needed; consequently, considerable labor cost will be spared. 



2 

 

 Pile-guided floats are constantly subjected to time-varying loads, such as impact 

loads from vessels and dynamic loads from waves. Quasi-static analysis can be used to 

calculate the responses of pile-guided floats; the Kinetic Energy Method (KEM) falls into 

quasi-static analysis, and it is easy to implement. However, quasi-static analysis does not 

take into account the effects of inertial and damping forces, which, in pile-guided floats, 

can be quite significant. Besides, it cannot capture the dynamic nature of time-dependent 

system responses, such as displacements or reaction forces. Therefore, using the Dynamic 

Analysis Method (DAM) is more appropriate for pile-guided floats. 

 The following provides a summary of the basic concepts involved in this study. 

Simple Structures 

 Simple structures are called simple because they can be idealized as a 

concentrated lumped mass m supported by a massless structure with stiffness k in the 

lateral direction (Chopra, 2006). Figure 1.1 is a simple structure with mass m and 

stiffness k. The structure can be considered as a lumped mass m mounted on top of a 

column with stiffness k, with the mass translating only in the horizontal direction. 
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x(t)

m

 

Fig. 1.1 Simple Structure 

Degree of Freedom (DOF) 

 The number of independent displacements required to define the displaced 

positions of all the masses relative to their original position is called the number of 

degrees of freedom (DOF) for dynamic analysis (Chopra, 2006). Therefore, a system with 

only one DOF is called a single degree of freedom (SDF) system. Fig. 1.2 is an example 

of SDF system. A system with more than one DOF is called a multi-degree of freedom 

(MDF) system. Fig. 1.3 shows a system with two DOFs. 
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x1(t)

k1

m1

 

Fig. 1.2 Single Degree of Freedom (SDF) System 

x1(t)

k1

m1

x2(t)

k2

m2

 

Fig. 1.3 Multi-degree of Freedom (MDF) System 

Mass or Inertia Elements 

 The mass or inertia element is assumed to be a rigid body; it can gain or lose 

kinetic energy whenever the velocity of the body changes. From Newton’s second law of 
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motion, the product of the mass and its acceleration is equal to the force applied to the 

mass. Work is equal to the force multiplied by the displacement in the direction of the 

force, and the work done on a mass is stored in the form of the mass’s kinetic energy 

(Rao, 2004). Fig. 1.4 shows a MDF system with three mass elements connected with 

springs. 

x1(t)

k1

m1

x2(t)

k2

m2

x3(t)

k3

m3

 

Fig. 1.4 MDF System with Three Mass Elements 

Spring Elements 

 A linear spring is a type of mechanical link that is generally assumed to have 

negligible mass and damping. A force is developed in the spring whenever there is 

relative motion between the two ends of the spring (Rao, 2004). The spring force is 

proportional to the amount of deformation and is given by 

     F kx      (1-1) 
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Where F is the spring force, x is the deformation (displacement of one end with respect to 

the other), and k is the spring stiffness coefficient or stiffness constant. The work done, U, 

in deforming a spring is stored as strain or potential energy in the spring, and it is given 

by 

     
21

2
U kx      (1-2) 

Actual spring elements may act nonlinearly or only act linearly within a certain point. For 

a system where the relationship between force F and deformation x is linear, the system is 

said to be elastic; we call this type of system linear elastic system (Chopra, 2006). If the 

relationship between F and x is nonlinear, the system is considered as inelastic. 

Damping Elements 

 In practical systems, the vibrational energy is gradually converted to heat or 

sound (Rao, 2004). Due to the reduction in the energy, the response, such as the 

displacement of the system, gradually decreases. The mechanism by which the 

vibrational energy is gradually converted into heat or sound is known as damping. In 

damping, the energy of the vibrating system is dissipated by various mechanisms, and 

often more than one mechanism may be present at the same time. It seems impossible to 

mathematically identify or describe all the energy-dissipating mechanisms in an actual 

system. 

 As a result, the damping in actual systems is usually represented in a highly 

idealized manner. For many purposes the actual damping in a system can be idealized 
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satisfactorily by a linear viscous damper or dashpot (Rao, 2004). This idealization is 

therefore called equivalent viscous damping. The damping force F is related to the 

velocity x  for a linear viscous damper by 

     F cx      (1-3)  

where c is the damping coefficient or damping constant. 

Governing Equations of Motion 

 For dynamic systems, the governing equations of motion can be derived with the 

principles of dynamics. In the study, the project undertaken involves pile guided floats 

subjected to dynamic loading, and it can be treated as a dynamic system with time 

varying loading. The responses are time-dependent, due to the nature of the system. From 

the perspective of principles of dynamics, the system can be modeled as a MDF system. 

The governing equations of motion are expressed as follows: 

  [ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )}m x t c x t k x t F t      (1-4) 

where: 

[ ]m  = mass matrix of the dynamic system 

[ ]c  = damping coefficient matrix of the dynamic system 

[ ]k  = stiffness coefficient matrix of the dynamic system 

{ ( )}x t  = displacement vector of the dynamic system 
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{ ( )}F t  = external forcing vector of the dynamic system 

Added mass and added mass coefficient 

 When an object is moving in the water, some water is entrained with the object; 

the mass of the water is called added mass or virtual mass. Added mass can be 

represented by added mass coefficient for an object, Cm, which equals the ratio of the 

added mass plus the actual mass of the object to the actual mass of the object. 

 A lot of work has been done on added mass due to hydrodynamic effect. 

Expressions for Cm are given by explicit equations in Unified Facilities Criteria: Design 

Piers and Wharves (Basham, P.E. et al., 2005), as well as Korotkin (2007) and Brennen 

(1982), have pioneered the work on such topics. A more detailed explanation will be 

given in the literature review section. 

Hydrodynamic damping and damping from structure components 

 The dynamic system will be subjected to damping during motion. In the study, the 

damping consists of hydrodynamic damping and damping from structure components 

such as fenders and piling systems. It is important to investigate the responses of the 

dynamic system-the forces and displacements imparted on the system by a berthing 

vessel. Unfortunately, very few studies have investigated the determination of damping 

effects, particularly hydrodynamic damping. In the study, different damping coefficients 

will be chosen to calculate the response of the dynamic system. Subsequently, the results 
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will be compared in order to determine the effects of different damping values on the 

system. A more elaborate explanation will be given in the literature review section. 

Dynamic Loading from Wave Action 

 It is generally understood that wind-generated waves can heavily influence the 

design of marine structures (Merritt, 1983). Strictly speaking, wave action is a very 

complex phenomena and difficult, if not impossible, to precisely model. However, a 

number of approaches are in use by AMHS that appear to produce credible results 

(Miller, 1998). A commonly used approach has been to model waves as static forces on a 

structure, while neglecting the temporal aspects of wave-action. 

 The response of a structural system to harmonic loading, as wave-action is often 

modeled is heavily dependent on the ratio of the natural period of the structure to the 

period of the forcing function;
w

n

T

T
 (Clough & Penzien, 1993). The natural period of the 

structure is calculated with the relationship: 

     
k

m
Tn 2      (1-2) 

where: 

m = the mass of the structure 

k = the stiffness of the structure 
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 For a relatively (laterally) rigid structure (i.e., k is relatively large), like pile-

supported structures that incorporate battered piles (traditionally used by AMHS), the 

ratio of 
w

n

T

T
becomes small. When this ratio becomes small, the dynamic amplification 

(the increase in load applied to a structure due to dynamics of the system) approaches 1.0, 

essentially a static condition. This is the traditional approach when designing structures to 

resist wave forces. 

 Guide piles used to provide lateral support to floating docks are inherently 

flexible as compared to traditional construction, relying on beam action for support as 

opposed to axial forces generated in battered piles. Increasing the stiffness of the guide-

piles to that of a battered piling system is either economical or necessary given the 

appropriate analysis. A decrease in stiffness results in an increase in Tn. As the natural 

frequency of the structure approaches that of the forcing function (the wave period) the 

dynamic amplification increases to a point of resonance when the ratio is unity. Dynamic 

amplification can be significant as the ratio approaches unity. For this reason, it is 

important that the effects of dynamic loads be accounted for in the proposed ferry landing 

designs. 

 Conversely, if the structure is designed to be soft by allowing the stiffness to 

become small and 
w

n

T

T
to be well above 1.0, the dynamic amplification can decrease 

dramatically resulting in the loads applied to the structures that are less than the static 

condition. The consequence of this condition is significantly increased deflection. 
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Vessel Impulse Loads 

 Fixed mooring structures (docks) are traditionally designed under the assumption 

that an impacting vessel imparts a quasi-static load on the structure. The analysis model 

resolves vessel impulse into kinetic energy (Gaythwaite, 2004). This is often justified 

when the structure is relatively rigid. It is often necessary to consider dynamic effects in 

fixed structures that exhibit a higher degree of lateral flexibility (Barltrop & Adams, 

1991). The pile-guided floats above more closely emulate the latter condition. 

 The systems will be subjected to vessel impulse loads. As with wave-action, these 

time-varying loads can also induce dynamic lateral responses in the pile-guided floats. 

Relatively rigid guide piles will result in larger loads from berthing. Designing the guide-

piles to be more flexible will decrease the load supported by the structure but will 

increase the deflection. Excessive deflections can negatively affect or damage means of 

egress to the shoreline (bridges, walkways, etc.). The condition is very similar to that 

encountered with wave-action. The result is that the guide-piles must be designed for two 

very different dynamic load environments, the response of which shall be dictated by, 

among other parameters (like damping), the stiffness of the guide-piles. A basis or set of 

guidelines that account for both types of loads is necessary for the successful design of 

pile guided floats. 

1.3 Objectives 

 The primary objective of this study is to develop a rational method for estimating 

the design demands placed on guide-piles used in the construction of floating concrete 
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piers. It is the intent of this study to develop and perform dynamic analysis for both the 

SDF systems and MDF systems. Development of the dynamic equations will require the 

estimation of mass, stiffness and damping parameters. 

 Damping coefficients are not trivial to define. This study shall include a thorough 

literature search, including resources related to defining damping characteristics of 

floating structures. Damping coefficients shall be included in the analyses to the greatest 

extent possible. Analyses shall be performed for the damped and undamped condition: 

the undamped case representing a conservative, upper bound of response. 

Summary of Objectives: 

 Literature search on topics related to the study 

 Estimation of practical mass, stiffness and damping coefficients based on 

available literature. A SDF analysis of the system subjected to a steady-state forcing 

function representing wave-action and an impulse forcing function representing vessel 

loading. This analysis shall be executed for both damped and undamped systems. The 

result shall produce an estimated response in the system, subsequently allowing for the 

calculation of guide-pile forces. 

 A similar MDF analysis shall also be performed, also resulting in system response 

 Dissemination of results in a format readily implemented by AMHS Engineers 
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1.4 Limitation and Scope 

The primary limitation of the study is the assumption of linearity within the 

dynamic model. The mass, damping, and stiffness coefficients are considered constant 

during the whole berthing process in order to simplify the analysis. In addition, the wave 

forcing function is simplified into a sinusoidal function based on the linear wave theory. 

Moreover, the system is simplified into a discrete SDF and MDF system. Therefore, 

while the model is not geometrically exact, it can still produce accurate results. Berthing 

vessels are only considered when they are berthing in surge direction towards the float. 
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Chapter 2 Literature Review 

2.1 Study Review 

 Many floating docks, piers and wharves are used around the world. For example, 

the 124m by 109m floating dock in Texas Shipyard built by Bethlehem Marine 

Construction Group in 1985. Floating structures are ideal for piers and wharves as the 

ships can come alongside them and their positions are constant with respect to the 

waterline. An example of a floating pier is the one located in Hiroshima, Japan. 

Vancouver also has a floating pier designed for car ferries. Car ferry piers must allow 

smooth loading and unloading of cars and the equal tidal rise and fall of the pier. Ferries 

are indeed advantageous for this purpose. A floating type pier was also designed for 

berthing the 50000ton container ships inValdez, Alaska. The floating structure was 

adopted due to the great water depth (Watanable & Wang, 2004). 

 There are design criteria for floating berthing structures such as piers and 

wharves, the detailed design analysis is written in Unified Facilities Criteria (UFC). 

 Selection of floating berthing structures over fixed berthing structures is 

determined by the water level fluctuation of the site. Floating structures are preferred 

where the tidal range or seasonal water level range is 3 feet or more (Basham, P.E. et al., 

2005). Considering the extreme tidal fluctuations in Alaska, which could be as large as 30 

feet, floating berthing structures are indeed advantageous.  
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 For analyzing the responses of floating structures under dynamic loading, several 

methods can be applied (Dalton, P.E. et al., 2009). In general, there are three different 

methods: 

1. Empirical method or statistical method, based on the data that has already been 

collected and through direct field measurements to predict the responses of the float. 

2. Scaled model or similitude method is to use a small scaled model to approximate the 

real physical phenomenon. The tests are conducted in a well-equipped lab, simulating the 

physical scenario by satisfying both the geometric similitude, which means the ratio of 

the model to the prototype is the same everywhere and dynamic similitude, which means 

the ratio of all forces acting on the model to the prototype is the same. 

3. Analytical method, building governing differential equations to capture the motions of 

the maritime structure that is under concern (Basham, P.E. et al., 2005). 

 There are both advantages and disadvantages associated with the three methods 

mentioned above. However, in the literature review, only studies that are related to the 

analytical method will be discussed due to lack of data on model tests. 

 The classical analytical method often used to calculate the response of maritime 

structures under dynamic loading, such as the loading from berthing vessels or 

progressive waves, is the Kinetic Energy Method (KEM), which uses the kinetic energy 

from a berthing vessel to calculate the response of the system. During a vessel berthing, 

the kinetic energy is transferred into elastic, or potential energy, primarily by the 

displacement of the berthing structure. The method is written in detail in Unified 



17 

 

Facilities Criteria: Design Piers and Wharves (Basham, P.E. et al., 2005). It has been a 

widely accepted method for the design of piers and wharves for naval facilities. Explicit 

equations are given to calculate the kinetic energy from the vessel, and the energy will be 

absorbed completely by the fender or piling system during berthing. Several coefficients 

are given to account for different factors, such as contact angle, geometric configuration 

of the berthing vessel, deformation of the vessel and configuration of the piers or wharves 

(Basham, P.E. et al., 2005). This method depends largely on the velocity and mass of the 

berthing vessel, even though it accounts for some other factors that are given above. The 

Kinetic Energy Method is a very simplified approach to a very complex dynamic process, 

and therefore does not always produce accurate results. However, it is still one of the 

most widely utilized methods due to its simplicity.  

 The energy equation can be written as:  

    
21

2
vessel

m
E v

g
       (2-1) 

where 

vesselE  = berthing energy of vessels 

m = mass of vessels (in pound mass) 

g = acceleration due to gravity (32.2ft/s) 

v = berthing velocity normal to the berth (ft/s) 
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However, they are several factors that modify the actual energy to be absorbed by the 

fender system; the expression can be written as: 

    
fender b m vesselE C C E      (2-2) 

where 

fenderE = energy to be absorbed by the fender system  

bC = Berthing coefficient, equal to the product of: Eccentricity ( eC ), geometric (
gC ), 

deformation ( dC ), and configuration ( cC ) coefficients  

    1 2m

D
C

B
       (2-3) 

where 

D = maximum draft of vessels 

B = width of vessels 

The above expressions are listed in the Unified Facilities Criteria, Design: Piers and 

Wharves (Basham, P.E. et al., 2005). As berthing conditions become more and more 

complicated, the traditional method becomes less satisfactory (Chen & Huang, 2003). 

This is especially the case when one or more of the following conditions exist: shallow 

water, large ship, and floating pier. The Dynamic Analysis Method focuses on the 

dynamic motion of both the berthing vessels and the maritime structures under concern; 
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the motion of the entire system, including both the vessel and the structure, is of great 

importance. When describing complex dynamic berthing events, such as vessels berthing 

to offshore piers and wharves, the dynamic analysis method can produce significantly 

more accurate results than the Kinetic Energy Method. However, due to the inherent 

complexity of the Dynamic Analysis Method, it is not easy to implement. The Dynamic 

Analysis Method captures the oscillatory motion of the system during berthing. The 

motion is represented by a series of governing differential equations.  

 The earliest known study on oscillating vessel motion dates back to the 1950s. 

Weinblum and St. Denis presented a comprehensive review of the state of knowledge at 

the end of what we may call the “classical” period in research on sea keeping. However, 

the earliest work should be attributed to Cummins (1962). He developed the Impulse 

Response Function to calculate the vessel motion when the system is subjected to 

external forces, which can then be applied to describe the interaction between a berthing 

vessel and the associated offshore structure. In his study, he used convolution integral to 

capturing the exciting force with what is called Impulse Response Function appearing as 

the kernel (Cummins, 1962). He also applied the convolution integral to hydrodynamic 

studies in order to calculate complex hydrodynamic effects, such as added mass and 

damping. In his study, he assumed linear equations of motion and the coefficients for 

both the added mass and damping are constant, i.e. the system is under steady state 

motion. He also decoupled the factors separately in order to simplify the problem. 

Therefore, the equation of motions is an approximation rather than a real physical 

reflection, since both the added mass and damping effects are coupled in reality. 
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 The displacement function due to an external forcing function is given as: 

   

6

0
6

( ) ( ) ( )
t

i j ij

j

x t F R t d  


      (2-4)  

where 

( )ix t  = displacements in the one of the six degree of freedom, (i = 1, 2, 3, 4, 5, 6) 

1x  = displacement in surge direction 

2x  = displacement in sway direction 

3x  = displacement in heave direction 

4x  = displacement in roll direction 

5x  = displacement in pitch direction 

6x  = displacement in yaw direction 

( )iF  = external forcing function in i direction 

( )ijR t = the response in direction i to a unit impulse at t = 0 in direction j, or Impulse 

Response Function 

 The expression uses the classic Convolution Integral Method to solve the time-

dependent transient responses due to external forces. 
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 In the study, Cummins also pointed out that ( )ijR t  can be determined 

experimentally. 

 The governing equation of motions can be expressed as: 

  
6

6

( ) ( ) ( ) ( )i ij j i ij i ij i i

j

m a m x t b x t c x t F t


    
     (2-5) 

where 

im  = mass of the vessel in i direction 

ija  = hydrodynamic or added mass from water 

ijb  = hydrodynamic damping coefficient 

ijc  = hydrodynamic and structure stiffness coefficient 

 Until the era of modern digital computers, when more knowledge on numerical 

methods such as Finite Element Method became known, most of the literature published 

was based on Cummins’ Impulse Response Function method and linearization system 

assumption. 

 Woodruff (1962) was able to give explicit equations to calculate both the kinetic 

energy of the berthing vessel being absorbed and the response of the piling system during 

berthing and wave forcing. The equations were based on empirical observation and direct 

response measurements. He pointed out that the induced moments caused by eccentricity 
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from the wave forcing with the angle of attack of 0 and 90 degree were negligible. The 

moments reach their maximum when this angle is approximately 45 degrees. However, 

the equations were “ship and site specific”. 

 Li (1962) was able to describe the response of a moored vessel based on the 

energy method. He used the kinetic energy of the moored vessel caused by the 

progressive waves to calculate the mooring forces, given the properties of the system. 

The kinetic energy is converted into the strain energy of the system. However, no 

experimental data was given to validate the empirical equations. 

 The kinetic energy (K. E.) is expressed as: 

    
21

. . ' '
2

K E M V      (2-6) 

where 

    ' (1 )
16

B
M M

D
      (2-7) 

  
sinh( ) sinh( ) sin( )

' sin( )
cosh( )

2

Ag kd ks kB
V

kBD kd





   (2-8) 

where 

. .K E  = kinetic energy of the vessel 

'M  = combined mass of the vessel (actual mass and added mass) 
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'V  = variable velocity in sway direction (ft/s) 

B  = width of the vessel 

D  = draft of the vessel 

A  = projected area in the current direction 

g  = acceleration due to gravity (32.2ft/s) 

  = angular frequency of the wave 

s  = clearance under the keel 

  = the incoming angle formed by the wave with respect to the sway direction 

 The kinetic energy must be converted to a force acting on the berthing structure 

(Li, 1962). 

 Fontijn (1980) was an early researcher to investigate the berthing motion of a ship 

to a jetty. He used the Cummins’ Impulse Response Function method and linearization 

system assumption. Although he pointed out that the linear system assumption was not 

perfect, it is still a good approximation for real ships with small to moderate velocities. 

He gave analytically calculated added mass and damping effects in sway and yaw 

directions for a chosen model ship under different berthing conditions. He also compared 

the results with experimentally determined values, and confirmed their consistency. 
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 Vasco Costa (1965) studied the mechanics of berthing vessels. He used the same 

equation as the one given from the Unified Facilities Criteria: Piers and Wharves Design 

(Basham, P.E. et al., 2005). He used the energy method with high added mass values in 

an early period. The high added mass values were acceptable, considering the overly 

conservative design at the time.  He also addressed that keel clearance, currents, ship 

rotation, and approaching velocities all contribute to the berthing effect. 

 Saurin (1965) conducted a series of tests in his laboratory, with scaled model 

observation; he used the energy equation for an approaching ship. He was also able to 

produce numerical values for complex birthing parameters. Brolsma, Hirs and Langeveld 

(1977) evaluated added mass coefficients; they found the added mass coefficients are 

affected by the submersed geometry of the ship, the stiffness of the fender system and its 

natural frequency, under keel clearance, and the shape of the berthing structure. A single 

value for the added mass coefficient that produces accurate results for all conditions 

seems infeasible.  

 Shashikala, Sundaravadiveln and Canapathy (1995) investigated the response of a 

barge elastically moored to a fixed support using the three dimensional Finite Element 

Method. He then compared the result with the model tests carried out in a wave flume for 

regular and random waves in a head sea condition. The influence of the mooring point’s 

location and the mooring line’s flexibility was also addressed. He used a linearized 

Bernoulli equation to solve the wave diffraction problem in order to calculate the added 

mass and damping effects in 6 directions (surge, sway, heave, roll, pitch and yaw) with a 

frequency range of 0.35Hz to 1.0Hz in steps of 0.05Hz. When compared against 



25 

 

experimental values, the results derived using the linearized Bernoulli equation matched 

very well. The barge used was 400mm wide, 2000mm long and 300mm tall. The barge 

was chosen to approximate normal shaped vessels. Both the added mass and damping 

coefficients were very low when the vessel was in surge direction compared with the 

values in heave and pitch direction, which makes perfect sense given the streamlined 

shape of the barge used in the experiments. His research demonstrated that the added 

mass and damping effects in the surge direction are almost negligible. 

 Schellin and Ostergaard (1993) discussed mooring vessel modeling in the surge 

direction. They assumed the added mass is 15% of the actual mass of the vessel and 

damping is 1-2% of the critical damping based on hydrodynamic simulation, linear wave 

theory and potential flow theory (Schellin & Ostergaard, 1993). Their assumptions were 

reasonable due to the streamline shape of the vessels and they coincide with the study 

done by Shashikala (1995). They also used the linearization system and time-invariant 

added mass and damping coefficients. The computed results they obtained were very 

close to the ones measured in the field. 

 Seelig, P.E. and his colleagues (2010) conducted studies on added mass 

coefficients in the sway direction for mooring vessels, in accordance with the Unified 

Facilities Criteria (Basham, P.E. et al., 2005). Their results were intended for use with the 

Kinetic Energy Method. However, they pointed out some important physical phenomena 

that were not covered in other studies. When the vessel is oscillating in the water, due to 

hydrodynamic effects, there are added mass or virtual mass effects from the water. The 

effect can be calculated and it is affected by different factors, such as the velocity of the 
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vessel under keel clearance, etc. However, when the ship is berthing to the piers, some of 

the water will continue to move even after the vessel has stopped. Therefore, the real 

added mass during vessel berthing is smaller than it is when the vessels are oscillating in 

the water. Seelig and his colleagues were also able to plot added mass coefficients based 

on different vessel parameters and keel clearance. They compared their results with the 

experimental values, and the results matched well. 

 The equations to determine added mass coefficients are: 

   
3.5

0 1 0( )( )m m m m

T
C c C C

d
       (2-9) 

   0 1.3 1.5( )m

T
C

B
       (2-10) 

   
0.3

1 [12.4( ) 50( )]m

T T
C F

B L
      (2-11) 

where 

mC = the oscillating added mass coefficient 

0mC = added mass coefficient for T/d = 0, shallow water limit 

1mC = added mass coefficient for T/d = 1, deep water limit 

T = vessel draft 
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d = water depth 

F is a multiplier. It has different values due to different vessel geometries in the same 

year (2010), Seelig, P.E. and his colleagues conducted another study on the dynamic 

modeling of ferry berthing. They used commercial software ANSYS AQWA to model 

the dynamic analysis. They were able to give both linearized hydrodynamic effects 

coefficients and frequency-dependent hydrodynamic effects. The added mass coefficients 

in the surge and sway directions differ greatly, with the added mass in the surge direction 

only about 10% of the actual mass of the vessel, while the added mass in sway direction 

can be several times larger than the actual mass of the vessel. The damping coefficients 

are given as frequency-dependent, and according to Seelig and his colleagues, they were 

very small in the surge direction. All of these results coincide with the studies done by 

previous researchers. 

 Pauw, Huijsmans and Voogt (2007) used diffraction computations on side-by side 

moored carriers. They used the lid method in diffraction code formulated by Chen 

(2005). They plotted both the calculated results based on the above method and the 

measured ones in the field, which were satisfactorily close. 

 Chen and Huang (2003) conducted two separate studies on ship berthing at 

floating piers. In both their studies, the Reynolds-Averaged Navier-Stokes (RANS) 

simulation model was used, which was also formulated by Chen (1998, 2000 and 2002). 

The governing differential equations were the same as the ones developed by Cummins 

(1962). The only difference is that they were transient state equations of motion; 
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therefore, all the coefficients were time-dependent, and thus more accurate. Chen and 

Huang plotted their results without any comparison to the experimental values. 

Nevertheless, their results were reasonably accurate. 

2.2 Summary and Comments 

 While the classical Kinetic Energy Method is probably the easiest method for the 

design but it tends to oversimplify the problem. It is not accurate enough and most of the 

time it is overly conservative. The method is still being used for small facility 

construction with simple berthing conditions, but it is not suitable for large projects. 

 Analytical analysis with the linearization system assumption can be used as a 

reasonably good approximation for the response of the system. It is often a challenge to 

determine the hydrodynamic coefficients, such as added mass coefficients and damping 

effects. The coefficients are best determined by either commercial software or 

experiments. Literature related to identifying coefficients is also available. 

 Numerical analysis of the transient (time-dependent) state of motion is technically 

more accurate. However, due to its inherent complexity, both mathematically and 

computationally, its usefulness is typically limited with using advanced commercial 

software, such as AWQA.  

 In this study, the linearization system assumption will be used, and selection of 

berthing coefficients will be based on results from the existing literature reviewed above.  
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Chapter 3 Response to Vessel Impact 

3.1 Quasi-Static Analysis 

 The Kinetic Energy Method (KEM) is a well-accepted design method that utilizes 

the conservation of energy and is commonly used in practice. The KEM will be 

considered in this study. The approach used here will use varied key parameters of the 

berthing system: impact velocity, mass of the vessel and stiffness of the piling system and 

fender. 

 Figure 3.1 represents a simple pile-guided float structure and will serve as the 

basis for analysis. The system consists of a vessel which is moving towards the float, a 

fender element, a float which functions as a dock, and a piling system (also represented 

by a spring) which is used to provide lateral support to the dock.  
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Fig. 3.1 Schematic of Pile-guided Float for Analysis 

 Given the schematic description of the berthing system, the quasi-static model is 

needed to investigate the berthing responses of the fender and the piling system. Figure 

3.2 shows a quasi-static model of the berthing system. In the figure, both the fender and 

the piling system are represented by spring elements, the float acts as a massless rigid 

connection between the fender and the piling system, and the vessel is berthing towards 
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the fender connected with the float and the piling system. The float is considered 

massless because this is consistent with the generally accepted Kinetic Energy Method. 

 

Fig. 3.2 Pile-guided Float model for a Quasi-static Analysis 

 A certain portion of the total kinetic energy of the vessel is converted to elastic 

strain energy of the structural system. The displacements of the spring elements are 

deformation and deflection of the fender and the piling system respectively. Therefore, by 

the principle of conservation of energy, the portion of the kinetic energy transferred to the 

dock should be equal to the sum of the elastic energy of the spring elements representing 

the fender and the piling system. The various berthing factors described previously 

account for energy loss and added mass,  modifying the total (assumed) energy to 

represent the energy actually absorbed by the structure (Basham, 2005). An equation 

representing the conservation of energy transferred to the structural system is represented 

by Eq. (3-1): 
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b m vessel fender pileC C K U U      (3-1) 

where: 

Kvessel = kinetic energy of the vessel 

Cb = berthing coefficient, used to account for the different berthing conditions 

Ufender = elastic energy of the fender 

Upile = elastic energy of the piling system 

Cm = added mass coefficient for the vessel 

A practical range of values for the berthing coefficient is from 0.5 to 1.5. 

 The added mass coefficient is related to the projected area of the ship at the right 

angle to the direction of motion. Other factors, such as the form of the ship, water depth, 

berthing velocity and acceleration and deceleration of the ship will have some effect on 

the added mass coefficient (Basham, 2005).  

 In the study, the vessel is always berthing in the surge direction towards the float. 

The value of the added mass coefficient will be chosen as 1.1 in accordance with the 

work done by Seelig and Lang (2010).  

 From statics: 

    
fender pileF F      (3-2) 
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where Ffender is the reaction force of the fender, Fpile is the reaction force of the piling 

system. 

 Assuming the reaction forces of the spring elements are linearly related to the 

displacements of the elements, the elastic energies of both spring elements can be 

represented by: 

    
21

2
fender fender fenderU k x     (3-3) 

    
21

2
pile pile pileU k x      (3-4) 

    

2

2
vessel

mV
K       (3-5) 

where 
fenderk  is the stiffness of the fender, 

pilek  is the stiffness of the piling system, 

fenderx  is the displacement of the fender and 
pilex  is the lateral displacement of the piling 

system. m  is the mass of the vessel and  V is the approaching velocity of the vessel. 

 The responses under concern are displacements and reaction forces of the fender 

and the piling system with given stiffness of both spring elements and given vessel mass 

and velocity; therefore, combine Eq. (3-1) – Eq. (3-5), two equations can be obtained 

with substitution: 

   
2 2 21 1 1

2 2 2
b m fender fender pile pileC C mV k x k x    (3-6) 
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fender fender pile pilek x k x     (3-7) 

Since 

    
fender fender fenderF k x     (3-8) 

    
fender fender fenderF k x     (3-9) 

Solving Eq. (3-6) and Eq. (3-7), the displacements of the piling system and the fender can 

be expressed as: 

   
2

2

fender

pile b m

pile pile fender

k
x mV C C

k k k



   (3-10) 

   
2

2

pile

fender b m

fender pile fender

k
x mV C C

k k k



   (3-11) 

The reaction forces can be expressed as: 

   
2 fender pile

b m

pile fender

k k
F mV C C

k k



     (3-12) 

where F is the reaction force for both the fender and the piling system under the quasi-

static assumption. 

 Given the different parameters, V, Cb, Cm, kfender and kpile, the quasi-static 

responses can be found. From Eq. (3-10), Eq. (3-11) and Eq. (3-12), it can be observed 
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that both the displacements and reaction forces are proportional to the square root of the 

energy transferred to the structure, KvesselCbCm, which is to be absorbed by the spring 

elements. It is interesting to note that the combination of the stiffness of the spring 

elements may cause the responses to vary.  

 For quasi-static analysis, berthing coefficients are assigned as 0.5, 1 or 1.5, and 

the added mass coefficient is assigned as 1.1 for vessel berthing in the surge direction. 

(Seelig. P.E. and Lang 2010). 

 Figure 3.3 and Figure 3.4 give values of energy transferred to the structure, 

KvesselCbCm., for a range of values for both m and V, respectively. 
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Fig. 3.3 Transferred Energy-1 
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Fig. 3.4 Transferred Energy-2 
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Figure 3.5 to Figure 3.7 present the responses for given KvesselCbCm and kfender. 

 

Fig. 3.5 Displacement of the Fender-1 
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Fig. 3.6 Displacement of the Piling System-1 
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Fig. 3.7 Reaction Forces for both the Fender and Piling System-1 
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 Figure 3.8 and figure 3.10 present the responses with same Kvessel, Cb and Cm but 

larger kfender. 

 

Fig. 3.8 Displacement of the Fender-2 
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Fig. 3.9 Displacement of the Piling System-2 
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Fig. 3.10 Reaction Forces for both the Fender and Piling System-2 
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 Figure 3.5 presents the displacements of the fender, with given kinetic energy and 

stiffness of the fender which is 5kips/in, and varying stiffness of the piling system. The 

displacements don’t increase significantly with increasing kpile, and when kpile reaches to 

large values, the displacement is almost constant even though kpile is still increasing. 

Given a very rigid piling system, the deflection, and therefore energy, is nearly entirely 

transferred to the relatively elastic fender system.  

 Figure 3.7 shows that the reaction forces for both spring elements are almost 

constant when the stiffness of the piling system becomes large or very rigid. This plot 

demonstrates the influence of pile stiffness on the force experienced by the structure. 

 Comparing Figures 3.8, 3.9 and 3.10 to Figures 3.5 3.6 and 3.7 demonstrates the 

influence of fender stiffness on the quasi-static response of the pile-guided float structure. 

3.2 Dynamic Analysis 

 The DAM (Dynamic Analysis Method) is a method that captures the response of 

a dynamic system in the time domain, and it is technically more accurate than the KEM. 

 For comparison to the quasi-static analysis, the berthing system will be treated as 

a MDF system in this section. To simplify the analysis, both spring and damping 

elements will be treated as linear components. In this section, the system will be 

investigated in both one-dimension and two-dimensions and the section is divided into 

two subsections to cover each analysis. For one dimensional analysis, the responses of 

the system will be considered only in the surge direction. The analysis will be covered in 

the first subsection. For two dimensional analysis, the responses of the system will be 
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considered in the surge, sway and yaw direction, and it will be covered in the second 

subsection. 

3.2.1 One Dimensional Analysis 

 The berthing system will be treated as a two DOFs system in this section, and 

both the vessel and the float will be treated as discrete lumped mass systems. The 

schematic of the two DOFs dynamic system is shown in Fig. 3.11. The dynamic model of 

the system is shown in Fig. 3.12. 
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Fig. 3.11 Schematic of Two DOFs System 
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Fig. 3.12 Dynamic Model of Two DOFs System 

The free body diagram of the system is shown in Figure 3.13. 

Float Vessel Surge

xvessel, xvessel

..
xfloat, xfloat

..

kfender(xvessel-xfloat)k
pile

(xfloat)

Fig. 3.13 Free Body Diagram for Two DOFs System (undamped) 

floatx = displacement of the float 

floatx = acceleration of the float 
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vesselx = displacement of the vessel 

vesselx = acceleration of the vessel 

( )pile floatk x = reaction force from the pile 

( )fender vessel floatk x x = reaction force from the fender 

The governing equations of motion for the berthing system can be expressed as: 

   ( )vessel vessel fender vessel floatm x k x x      (3-13) 

   ( )float float fender vessel float pile fenderm x k x x k x    (3-14)  

After arranging the left side of the equation to the right side, the equations can be 

expressed as: 

  0vessel vessel fender vessel fender floatm x k x k x      (3-15) 

  0float float fender vessel fender float pile fenderm x k x k x k x     (3-16) 

 

The equations can also be put in matrix form: 

0 0

0 0

vessel vessel fender fender vessel

float float fender fender pile float

m x k k x

m x k k k x

         
         

          
 (3-17) 
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where: 

mvessel = mass of the vessel 

xvessel = displacement of the vessel 

mfloat = mass of the float 

xfloat = displacement of the float 

kfender = stiffness of the fender 

kpile = stiffness of the piling system 

The equations of motion can be condensed as: 

    
[ ]{ ( )} [ ]{ ( )} {0}m x t k x t     (3-18) 

which is the classical form of equations of motion without damping and external forces.  

Damping Effects 

 The governing equations of motion derived in the last section represent the 

responses for an undamped system. However, as stated earlier, berthing responses will be 

affected by damping effects in reality. For simplicity, linear viscous damping will be used 

in the analysis. Because of the lack of information regarding damping in a structure such 

as pile-guided floats, a relatively wide range of damping values will be considered in this 

study. For this study, the damping matrix can be expressed as: 

         c a m b k       (3-19) 
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where a  and b  are constants. This type of damping is known as proportional damping 

because [ ]c  is proportional to a linear combination of [ ]m  and [ ]k  (Rao, 2004). By 

inserting Eq. (3-18) into Eq. (3-19), the equations of motion for the berthing system can 

be expressed as: 

     [ ]{ ( )} { ( )} [ ]{ ( )} {0}m x t a m b k x t k x t       (3-20) 

Eigen Value Problems 

 For undamped MDF system without external forces, the governing equations of 

motion can be expressed as: 

   [ ]{ ( )} [ ]{ ( )} {0}m x t k x t      (3-20) 

the solution of the equations of motion can be assumed to have the form 

   ( ) ( ), 1,2, ... ,i ix t X T t i n     (3-22) 

where Xi is a constant and T is a function of time. T can be expressed as a linear 

sinusoidal function as: 

    ( ) cos( )T t C t       (3-23) 

where C and ϕ are constants, known as the amplitude and the phase angle, respectively. 

 The configuration of the system does not change its shape during motion, but its 

amplitude does. The configuration of the system, given by the vector 
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X      (3-24) 

Eq. (3-24) is known as the mode shapes of the system. Substituting Eq. (3-24) and Eq. (3-

23) into Eq. (3-21), the equations obtained can be expressed as: 

       2 0k m   X     (3-25) 

Since the mode shape of the system cannot be zero, the part of the equation that contains 

the stiffness matrix, mass matrix and frequencies must equal zero, such as: 

       2 0k m       (3-26) 

Eq. (3-25) represents what is known as the eigenvalue or characteristic value problem, 

Eq. (3-26) is called the characteristic equation, ω
2
 is known as the eigenvalue or the 

characteristic value, and ω is called the natural frequency of the system. 

 The expansion of Eq. (3-26) leads to an nth order polynomial equation in ω
2
. The 

solution (roots) of this polynomial or characteristic equation gives n values of ω
2 

(Rao, 

2004). 
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Orthogonality of Mode Shapes 

 The mode shapes X
(i)

 satisfy an important property called orthogonality (Rao, 

2004). The property can be expressed as: 

   
( ) ( )[ ] 0,j im i j X X     (3-27) 

   
( ) ( )[ ] 0,j ik i j X X     (3-28) 

 Therefore, the mode shapes satisfy the following relations: 

        
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  (3-29) 
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 
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  (3-30) 

 The mode shapes can be normalized, and the diagonal mass and stiffness matrices 

have the following forms if the normalized mode shapes are used, and that is: 

           
T

M X m X I      (3-31) 
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        

2

1

2

2

2

0

0

T

n

K X k X







 
 
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   (3-32) 

Modal Analysis 

 The governing equations of motion of an undamped MDF system are expressed as 

Eq. (3-21), and the equations are a set of ordinary differential equations. Solution of the 

equations of motion of an MDF system can be found by modal analysis. It is necessary to 

solve the eigenvalue problem first, which is given below: 

       2 m k X X      (3-33) 

in order to find the natural frequencies ω1, ω2, … , ωn and the corresponding mode 

shapes X
(1)

, X
(2)

, … , X
(n)

. The solution vector of Eq. (3-21) can be expressed as a linear 

combination of the mode shapes. 

  
(1) (2) ( )

1 2{ ( )} ( ) ( ) ( ) n

nx t q t q t q t    X X X   (3-34) 

where 1 2( ), ( ), ... , ( )nq t q t q t  are time-dependent generalized coordinates, also known 

as the principle coordinates or modal participation coefficients. By defining a modal 

matrix [ ]X  in which the jth column is the vector X
(j)

, Eq. (3-34) can be rewritten as: 

      { ( )} ( )x t X q t     (3-35) 
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where: 

     

1

2

( )

( )

( )

( )n

q t

q t

t

q t

 
 
 
 

  
 

 
 
 

q     (3-36) 

Since [ ]X  is not a function of time, from Eq. (3-35), the second derivative of the 

solution with respect to time can be expressed as: 

      { ( )} ( )x t X q t     (3-37) 

Using Eq. (3-29) and Eq. (3-30), Eq. (3-21) can be expressed as: 

      [ ] { ( )} [ ] { ( )} {0}m X q t k X q t     (3-38) 

Premultiplying Eq. (3-38) by [ ]TX , Eq. (3-39) can be obtained: 

         [ ] { ( )} [ ] { ( )} {0}
T T

X m X q t X k X q t    (3-39) 

If the mode shapes are normalized, Eq. (3-40) can be obtained: 

   
2{ ( )} { ( )} {0}q t q t   ω     (3-40) 

Eq. (3-40) denotes a set of n uncoupled differential equations of second order 
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2( ) ω ( ) 0i i iq t q t      (3-41) 

The solution of Eq. (3-41) can be expressed as: 

   
(0)

( ) (0)cos sini i i i

i

q
q t q t t 



 
   

 
   (3-42) 

 The initial generalized displacements (0)iq  and the initial generalized velocities 

(0)q  can be obtained from the initial values of the physical displacements (0)ix and 

physical velocities (0)ix as 

    { (0)} [ ] [ ]{ (0)}Tq X m x    (3-43) 

    { (0)} [ ] [ ]{ (0)}Tq X m x    (3-44) 

where { (0)}x  is the initial displacement vector, and{ (0)}x  is the initial velocity 

vector. 

 If the MDF system has proportional damping, such as the one shown in Eq. (5-7), 

by expressing the solution vector { ( )}x t  as a linear combination of the mode shapes of 

the undamped system, which is given in Eq. (3-35), Eq. (3-21) can be rewritten as: 

         [ ] { ( )} { ( )} [ ] { ( )} {0}m X q t a m b k X q t k X q t       (3-45) 
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Premultiplication of Eq. (3-45) by [ ]TX  leads to: 

               [ ] { ( )} { ( )} [ ] { ( )} {0}
T T T

X m X q t X a m b k X q t X k X q t     
(3-46) 

If the mode shapes are normalized, Eq. (3-46) reduces to 

     2 2{ ( )} { ( )} { ( )} {0}I q t a I b q t q t           
ω ω   (3-47) 

which is: 

   
2 2( ) ( ) ( ) ( ) 0i i i i iq t a b q t q t        (3-48) 

where ωi is the ith natural frequency of the undamped system. 

By writing 

    
2 2i i ia b         (3-49) 

where ζi is called the modal damping ratio for the ith normal mode, Eq. (3-48) can be 

rewritten as: 

   
2( ) 2 ( ) ( ) 0i i i i i iq t q t q t        (3-50) 

It can be seen that each of the n equations represented by this expression is uncoupled 

from all of the others. The solution of Eq. (3-50), when ζi< 1, can be expressed as: 
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(3-51) 

where: 

    
21di i i         (3-52) 

 Therefore, with initial conditions and mass, stiffness matrices and modal damping 

ratio the solution of the governing equations of motion can be obtained. 

 However, although the damping matrix can be handily represented by a linear 

combination of mass and stiffness matrices, the modal damping ratio ζi is still unknown 

for each mode shape due to lack of data. Besides, the linearized damping effects are 

idealized conditions. Therefore, modal damping ratios will be chosen as from 0% to 20% 

in the study. 0% damping physically means there is no damping at all, and the system 

doesn’t lose any energy during berthing. 20% damping is a considerable energy loss 

during berthing. According to the calculation by Schellin and Ostergaard (1993) based on 

hydrodynamic simulation, linear wave theory and potential flow theory, the damping 

ratio accounting for hydrodynamic effects for fixed mooring systems could be chosen as 

1-2%, which is quite small. In a dynamic analysis for ferry berthing report by Seelig. P.E. 

and Lang, E.I.T. (2010), the hydrodynamic damping effects simulated with numerical 

analysis also turned out to be very little, given deep water condition. 
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Added Mass Effects 

 The added mass effects were introduced in the first chapter of this study. The 

mass components in the berthing system are the vessel and the float. When they are 

moving in the water, some water will be entrained with the components. However, unlike 

the vessel, which moves some of the water as it approaches with a considerable velocity, 

the float under investigation does not move until the vessel has impacted the float. In 

addition, the movement of the float is very small, and the amount of water that will be 

entrained by the float is almost negligible. Therefore, the added mass of the float will be 

ignored in the governing equations of motion. The added mass of the vessel can be 

numerically represented by the added mass coefficient Cm, which will be chosen as 1.1 

(Seelig. P.E. and Lang, E.I.T. 2010) in this study. 

Solution of the Governing Equations of Motion 

 The solution of the equations of motion for the berthing system can be found by 

modal analysis as introduced above. The Fig. 3.14 and Fig. 3.15 are responses of the 

piling system in the time domain for a berthing system with a vessel weight of 800long 

tons, a float weight of 1000long tons, a fender stiffness of 5kips/in, a piling system 

stiffness of 10kips/in and 5% damping for all the mode shapes (the system has two mode 

shapes since it has two DOFs). The mechanism of the whole berthing process works as 

such: assume the vessel and the float are uncoupled before the vessel has impacted the 

float. As soon as the vessel makes contact with the float, the system is assumed to 

become a coupled dynamic system with two mass components: the vessel and the float. 
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Therefore, the initial condition will be: the displacements for both the vessel and the float 

are zero, the velocity of the vessel is 1ft/s, and the velocity of the float is zero. 

 

Fig. 3.14 Displacement of the Piling System in Time Domain 
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Fig. 3.15 Reaction Forces of the Piling System in Time Domain 

 The responses of the piling system shown above are the responses of the dynamic 

model representing the berthing system. However, since after the vessel impacts the float, 

the vessel will separate from the float; therefore, the vessel and the float are coupled for 

only half of the first cycle. Only the peak load and displacement will be encountered in 

the real berthing scenario, all the responses after the first half cycle have no physical 

meaning. The peak displacement and load are marked in Fig. 3.16 and Fig. 3.17, 

respectively. 
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Fig. 3.16 Displacement of the Piling System 
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Fig. 3.17 Reaction Forces of the Piling System 

 In the results section of the chapter, peak responses will be calculated with 

different parameters, such as different masses of the vessel and the float, and different 

stiffness of the fender and the piling system. Peak responses will be plotted with varying 

parameters and will be graphically shown in figures.  

Results for One Dimensional Analysis 

 The solutions of the governing equations of motion for the berthing system with 

proportional damping in one dimension are obtained by modal analysis. The solutions are 

the transient displacements of the float, which will cause the piling system to move with 

0 5 10 15 20 25 30 35 40 45 50
-40

-20

0

20

40

60

80
m(vessel)=800LT;m(float)=1000LT;5%damping;K(fender)=5kips/in;K(pile)=10kips/in

Time (Seconds)

R
ea

ct
io

n
 F

o
rc

e 
(K

ip
s)

Peak Load



63 

 

it. The responses of the piling system are the displacements and reaction forces of the 

piling system. 

 The responses of the piling system in one dimensional analysis are numerically 

calculated given the mass of the vessel and the float, the stiffness of the fender and the 

stiffness of the piling system fixed on the float. The float is scaled up or down according 

to the original float, which is chosen as 60ft by 60ft by 10ft with 8ft draft floating on sea 

water. In the analysis, the ratio of the mass of the vessel to the float is chosen from 0.1 to 

100. The mass of the vessel is chosen as a specific value, from 800LT to 10,000LT, for a 

certain mass ratio. The stiffness of the fender is chosen as 10kips/in; the stiffness of a 

single pile ranges from 10kips/in to 1000kips/in. Therefore the stiffness of the piling 

system that consists of three piles ranges from 30kips/in to 3000kips/in. In the diagrams 

given below, the x-axis is chosen as the stiffness of each single pile of the piling system 

and the responses on the y-axis are for the single piles as well. The damping ratios are 

chosen from 2% to 20% of critical damping. In comparison with the KEM, the 

corresponding responses calculated by the KEM will be shown on the plots as well. Some 

of the response diagrams of one dimensional analysis will be provided below. The more 

detailed results will be provided in the reference section of the study. 
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Fig. 3.18 Displacement of the Piling System 1D-a1 
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Fig. 3.19 Displacement of the Piling System 1D-a2 
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Fig. 3.20 Reaction Force of the Piling System 1D-a1 
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Fig. 3.21 Reaction Force of the Piling System 1D-a2 
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Fig. 3.22 Displacement of the Piling System 1D-b1 
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Fig. 3.23 Displacement of the Piling System 1D-b2 
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Fig. 3.24 Reaction Force of the Piling System 1D-b1 
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Fig. 3.25 Reaction Force of the Piling System 1D-b2 
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Fig. 3.26 Displacement of the Piling System 1D-c1 
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Fig. 3.27 Displacement of the Piling System 1D-c2 
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Fig. 3.28 Reaction Force of the Piling System 1D-c1 



75 

 

 

Fig. 3.29 Reaction Force of the Piling System 1D-c2 
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Fig. 3.30 Displacement of the Piling System 1D-d1 
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Fig. 3.31 Displacement of the Piling System 1D-d2 
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Fig. 3.32 Reaction Force of the Piling System 1D-d1 
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Fig. 3.33 Reaction Force of the Piling System 1D-d2 

3.2.2 Two Dimensional Analysis 

 In this section, the system will be investigated in two dimensions, i.e. the 

translational responses of the system will be considered in surge and sway directions, and 

the system will still be treated as a MDF system. Torsional responses will also be 

investigated later in this section. This will include response in the yaw direction.  

 The system for two dimensional analysis will have 4 DOFs in the study. This 

includes one degree of freedom for the approaching vessel in the surge direction, because 
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the fenders only provide support in the surge direction. The float will have three degree 

of freedom. Two of them are for translational responses, i.e. the surge and sway 

directions. The last one is for rotational responses, which is the yaw direction. The 

schematic of the 4 DOFs dynamic system is shown in Fig. 3.34. 

Sea Level

Side View

Fender

Float

VesselPiles

Plan View

Fender

Piles

Vessel

x1(t)x2(t)

x3(t)

x4(t)

Piles

 

Fig. 3.34 Schematic of 4 DOFs System 
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 The system may have eccentricity due to its inherent configuration, i.e. the center 

of mass (C.M) is not coincident with the center of rigidity (C.R). The concepts of both 

terms are given as following. 

Center of Mass (C.M) 

 C.M is the weighted average location of all the mass in a system. For lumped 

mass components, C.M is treated as the concentrated mass point, usually for rigid bodies. 

Center of Rigidity (C.R) 

 C.R is the stiffness centroid within a system. When C.R is subjected to lateral 

loading, the system will experience only translational displacement. 

 If C.M and C.R of a system are coincident, such as in Fig. 3.35, displacements in 

different directions are uncoupled, which will result in the simplicity of the dynamic 

analysis. On the other hand, if eccentricity exists in a system, i.e. C.M and C.R of the 

system are not coincident, then displacements will be coupled, that is to say, the 

excitation of one direction will not only cause responses in that direction, but also in 

other directions. That is quite different from a system that has coincident C.M and C.R. 

Therefore, it also complicates the dynamic analysis of the system. 
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C. R. C. M.

K K KC. R.: center of rigidity of the member

C. M.: center of mass of the member

K: stiffness of the spring element

 

Fig. 3.35 System with Eccentricity 

 If C.M and C.R of a pile-guided float system are coincident, the system can be 

treated as a two DOFs system, and the schematic of the system is given in Fig. 3.1. The 

dynamic model of the two DOFs system for the pile-guided float is shown in Fig. 3.12. 

Fig. 3.12 uses lumped mass components to represent the vessel and the float; both of 

them can translate only in horizontal direction that is the surge direction of the 

approaching vessel. The instant the vessel impacts the float, the vessel and the float are 

treated as two lumped mass components for one dynamic system, the dynamic system has 

two DOFs, and they are for the two lumped mass components in the surge direction of 

the incoming vessel. 

 If C.M and C.R of a pile-guided float system are not coincident, eccentricity will 

occur. The existence of eccentricity could be due to an unsymmetrical configuration of 

the float or an unsymmetrical arrangement of the piling system. In the study, the pile-

guided float is chosen as a square barge. However, unlike the two DOFs system just 
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discussed above, the arrangement of the piling system is unsymmetrical, with three piles 

fixed at each corner of the float except the one on the upper right. The schematic of the 

system is given in Fig. 3.36. Due to eccentricity, the dynamic system will have a coupling 

effect under dynamic responses. Therefore, the system has 4 DOFs, with only one for the 

vessel in the surge direction since there are no spring elements in other directions. The 

other three DOFs are all for the float, with one in surge, one in sway, and one in yaw 

direction; i.e. the float will undergo both translational and torsional displacements. 

 The schematic of the berthing system in two dimensions is presented in Fig. 3.34. 

The system has 4 DOFs with one for the vessel in the surge direction, and three for the 

float: one in the surge direction, one in the sway direction and one in the yaw direction. 

In the study, the berthing system under investigation will have inherent eccentricity due 

to an unsymmetrical configuration of the piling system. The schematic of the berthing 

system with eccentricity to be analyzed in two dimensions is provided in Fig. 3.36, and 

the dynamic model of the system is given Fig. 3.37. 
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Fig. 3.36 Schematic of 4 DOFs System with Eccentricity 
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Fig. 3.37 Dynamic Model of 4 DOFs System with Eccentricity 

 The derivation of the governing equations of motion could be determined by 

Newton’s second law of motion. However, the system has 4 DOFs, unlike the dynamic 
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model in one dimension, which only has two DOFs. The increased number of DOFs 

makes it easier to analyze the berthing system by the influence coefficients method. 

Stiffness Influence Coefficients 

 For a linear spring, the force necessary to cause a unit elongation is called the 

stiffness of the spring. In more complex systems, the relation between the displacement at 

a point and the forces acting at various other points of the system can be expressed by 

means of stiffness influence coefficients (Rao, 2004). The stiffness influence coefficient, 

denoted as kij, is defined as the force at point i due to a unit displacement at point j when 

all the points other than the point j are fixed. Using this definition for the spring-mass 

system shown in Fig. 3.38, the total force at point i, Fi, can be found by summing up the 

forces due to all displacements xj (j = 1, 2, . . . , n) as: 

   

1

, 1,2,...,
n

i ij j

j

F k x i n


     (3-53) 

Equation (3-49) can be stated in matrix form as: 

      kF x      (3-54) 

where x and F are the displacement and force vectors, and [ ]k  is the stiffness matrix 

given by: 



86 

 

    

11 12 1

21 22 2

1 2

n

n

n n nn

k k k

k k k
k

k k k

 
 
 
 
 
 

    (3-55) 

xi(t), xi(t)

ki(xi-xi-1)

Fi(t)

..

mi ki+1(xi+1-xi)

m1 m2 mi m
j

mn

k1 k2 ki k
j

kn kn+1

Fig. 3.38 MDF System 

 The stiffness influence coefficients can be calculated by applying the principles of 

statics and solid mechanics; stiffness matrix is symmetrical, which means, kij = kji. 

Inertia Influence Coefficients 

 The elements of the mass matrix, mij, are known as the inertia influence 

coefficients. The coefficients can be computed using the impulse-momentum relations. 

The inertia influence coefficients m1j, m2j, . . . ,mnj are defined as the set of impulses 

applied at points 1, 2, . . . , n, respectively, to produce a unit velocity at point j and zero 

velocity at every other point (Rao, 2004). Thus, for a MDF system, the total impulse at 
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point i, Fi, can be found by summing up the impulses causing the velocities xj (j = 1, 2, . . 

. ,n) as: 

     

1

n

i ij j

j

F m x


     (3-56) 

Eq. (3-56) can be stated in matrix form as: 

      mF x      (3-57) 

And [m] is the mass matrix given by: 

     

11 11 11

11 11 11

11 11 11

m m m

m m m
m

m m m

 
 
 
 
 
 

   (3-58) 

It can be verified easily that the inertia influence coefficients are symmetrical for a linear 

system, that is, mij = mji. 

Derivation of Stiffness Influence Coefficients 

 The stiffness influence coefficients, kij, is the force at point i due to a unit 

displacement at point j when all the other points are fixed. The force kij can be found by 

static equilibrium. Therefore, given the dynamic model of the four degree of freedom 

system in Fig. 3.36, let x1 denote the displacement of the vessel in surge direction, x2, x3 

denote the displacements of the float in the surge and sway directions, and θ denote the 
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displacement of the float in the yaw direction. The schematic of the derivation is shown 

in Fig. 3.39 (a), (b), (c) and (d). 

 In Fig. 3.39 (a), x1 is set to be one (x1 = 1) and all the other three displacements 

are zero (x2 = x3 = θ), the forces ki1 (i = 1, 2, 3, 4) are assumed to maintain the system in 

this configuration. Therefore, according to the principle of static equilibrium, the total 

forces and moments acting on the system must cancel each other. The relations can be 

expressed as follows: 

     

0;

0;

0

x

y

F

F

M













     (3-59) 

Therefore, after solving the simultaneous static equilibrium equations, the stiffness 

influence coefficients can be expressed as: 
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    (3-60) 

The same procedure is applied to x2, x3, and θ; the stiffness influence coefficients are 

expressed as:      
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Where kfender is the stiffness of the fender, kpile is the stiffness of the piling system and l is 

the width of the float. 
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Fig. 3.39 Derivation of Stiffness Influence Coefficients (1D-a) 
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Fig. 3.40 Derivation of Stiffness Influence Coefficients (1D-b) 
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Fig. 3.41 Derivation of Stiffness Influence Coefficients (1D-c) 
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Fig. 3.42 Derivation of Stiffness Influence Coefficients (1D-d) 

The stiffness influence coefficients can be written in matrix form as: 
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 (3-64) 

Derivation of Inertia Influence Coefficients 

 The elements of the mass matrix, mij, also known as the inertia influence 

coefficients are defined as the impulse applied at point j that causes an unit velocity at 

that point while all the other points have zero velocity due to impulses at other points. 

The derivation of inertia influence coefficients is given in Fig. 3.40 (a), (b), (c) and (d). 

  The inertia influence coefficient 44m  is the moment of inertia of the float with 

respect to the centroid of the float and, with given mass and width of the float, can be 

expressed as 

2 2( )

2

floatm l l
. 
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Fig. 3.43 Derivation of Inertia Influence Coefficients (1D-a) 
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Fig. 3.44 Derivation of Inertia Influence Coefficients (1D-b) 
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Fig. 3.45 Derivation of Inertia Influence Coefficients (1D-c) 
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Fig. 3.46 Derivation of Inertia Influence Coefficients (1D-d) 

The inertia influence coefficients can be expressed in matrix form as: 
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Governing Equations of Motion 

 After deriving the mass and stiffness matrices, the equations of motion for the 

berthing system without damping can be expressed as: 

         ( ) ( ) 0m x t k x t     (3-66) 

in which the mass matrix and stiffness matrix are given in the previous section, 

respectively. The damping effects can also be incorporated in the equations of motion by 

proportional damping. The equations of motion with proportional damping can be 

expressed as: 

         [ ] { ( )} { ( )} [ ] { ( )} {0}m X q t a m b k X q t k X q t       (3-67) 

 The 4 DOFs system will have the same mechanism as the two DOFs system 

despite the eccentricity that exists between the C.M and C.R. However, since the analysis 

is in two dimensions, and eccentricity exists in the berthing system, the peak responses 

will be different in different piles. The schematic of the configuration of the piling system 

is given in Fig. 3.41. The piles are marked as pile1, pile2 and pile3. The peak responses 

of each pile will be calculated by using the superposition principle to combine the 
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responses from the surge, sway and yaw directions of the float. The demonstration is 

shown in Fig.3.42. The maximum responses among the three piles will be recorded as the 

peak responses. The maximum peak responses of the piling system will be plotted with 

different varying parameters, such as masses of the vessel and the float, stiffness of the 

fender and the piling system. 

Pile1

C. M.

C. R.

Pile2 Pile3

Fender

 

Fig. 3.47 Configuration of the Piling System Fixing the Float 
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Fig. 3.48 Superposition of the Responses Combining all Directions 

floatx  = displacement of the float in surge direction 

floaty  = displacement of the float in sway direction 

float  = displacement of the float in yaw direction 

l  = length of the float (same in both directions) 

Results for Two Dimensional Analysis 

 The solutions of the governing equations of motion for the berthing system with 

proportional damping in two dimensions are obtained by modal analysis as well. In two 

dimensional analysis, the float is fixed by three different piles with eccentricity, 

therefore, only the maximum responses among the three piles will be chosen as the peak 

responses for the berthing system. 
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 The responses of the piling system in two dimensional analysis are numerically 

calculated given the mass of the vessel and the float, the stiffness of the fender and the 

stiffness of the piling system fixed on the float. The float is scaled up or down according 

to the original float, which is chosen as 60ft by 60ft by 10ft with 8ft draft floating on sea 

water. In the analysis, the ratio of the mass of the vessel to the float is chosen from 0.1 to 

100. The mass of the vessel is chosen as a specific value, from 800LT to 10,000LT, for a 

certain mass ratio. The stiffness of the fender is chosen as 10kips/in, the stiffness of a 

single pile ranges from 10kips/in to 1000kips/in, therefore the stiffness of the piling 

system that consists of three piles ranges from 30kips/in to 3000kips/in. In the diagrams 

given below, the x-axis is chosen as the stiffness of each single pile of the piling system, 

and the responses on the y-axis are chosen as the maximum responses among all three 

piles. The damping ratios are chosen from 2% to 20% of critical damping. As it is for one 

dimensional analysis, part of the results for two dimensional analysis will be given in the 

following section. The more detailed results will be given in the reference section. 
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Fig. 3.49 Displacement of the Piling System 2D-a1 
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Fig. 3.50 Displacement of the Piling System 2D-a2 
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Fig. 3.51 Reaction Force of the Piling System 2D-a1 
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Fig. 3.52 Reaction Force of the Piling System 2D-a2 
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Fig. 3.53 Displacement of the Piling System 2D-b1 
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Fig. 3.54 Displacement of the Piling System 2D-b2 
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Fig. 3.55 Reaction Force of the Piling System 2D-b1 
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Fig. 3.56 Reaction Force of the Piling System 2D-b2 
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Fig. 3.57 Displacement of the Piling System 2D-c1 
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Fig. 3.58 Displacement of the Piling System 2D-c2 
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Fig. 3.59 Reaction Force of the Piling System 2D-c1 
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Fig. 3.60 Reaction Force of the Piling System 2D-c2 
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Fig. 3.61 Displacement of the Piling System 2D-c1 
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Fig. 3.62 Displacement of the Piling System 2D-c2 
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Fig. 3.63 Reaction Force of the Piling System 2D-c1 
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Fig. 3.64 Reaction Force of the Piling System 2D-c2 

3.3 Discussion 

 It can be observed that the responses of the piling system vary significantly given 

different parameters, such as the mass of the vessel, the approaching velocity of the 

vessel, and the mass ratio of the vessel to the float, etc. One dimensional analysis shows 

that the response of the piling system, consisting of displacements and the reaction forces 

resulting from impact of the approaching vessel, is directly proportional to the velocity of 

the approaching vessel, given a constant vessel mass and the same damping ratio. The 

response also becomes larger when the mass of the vessel becomes larger, given a 
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constant approach velocity and the same damping ratio. The same trends were also 

observed when using the KEM to analyze the response of the piling system, except there 

is no damping involved in the KEM. Given a constant vessel mass and constant approach 

velocity, the peak response becomes smaller as the damping ratio becomes larger. There 

is another interesting characteristic about the response of the piling system that cannot be 

incorporated by the KEM. The graphs obtained by the DAM present responses resulting 

from a varying mass ratio of the vessel to the float, whereas the KEM merely treats the 

float as a massless link between the piling system and the fender. It is clear that for a 

constant vessel mass, when the mass ratio of the vessel to the float is small, which 

indicates the float is quite massive compared to the vessel, the responses are larger than if 

the mass ratio is large, which indicates a relatively massive vessel. It can also be observed 

when the mass ratio is very large, which indicates that the mass of the float is almost 

negligible compared with the vessel, the response of the piling system tends to converge 

to a constant despite decreasing the mass ratio even further with constant damping ratio, 

mass of the vessel and approaching velocity. This is due to the nature of a dynamic 

system, as explained below.  

 A dynamic system consists of different elements: they are mass elements, spring 

elements and damping elements. The dynamic system can be considered as a closed 

system, and the total energy of a closed system is a constant. For the berthing system that 

is being studied, the total energy before the vessel lands on the float is the kinetic energy 

of the vessel. After the vessel lands on the float, the whole berthing system starts 

vibrating, and the energy of the system will still equal the kinetic energy of the vessel 
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before it landed on the float. The elements of the berthing system will all carry part of the 

energy from the kinetic energy of the vessel at the beginning. However, different 

elements carry energy in different ways. The mass elements carry kinetic energy as they 

are moving back and forth, or they can rotate about their C.M if eccentricity exists. The 

kinetic energy of the mass elements is equal to the sum of half of the mass of the element 

times the velocity of the mass elements squared and half of the moment of inertia of the 

element times the angular velocity of the element squared. The expression can be written 

as follows: 

    
2 21 1

2 2
kE mv I      (3-68) 

where: 

kE  = total kinetic energy of the mass element 

m  = mass of the mass element 

I  = moment of inertia of the mass element 

v  = translational velocity of the mass element 

  = rotational velocity of the mass element 

The kinetic energy of the mass elements, which are the vessel and the float in this study, 

is the sum of the kinetic energy of the vessel and the float. In one dimensional analysis, 

the kinetic energy is the sum of the translational kinetic energy of the vessel and the float, 
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whereas in two dimensional analysis, the kinetic energy is the sum of the translational 

kinetic energy of the vessel and the total kinetic energy of the float that consists of the 

translational and rotational energy due to the existence of the eccentricity. The spring 

elements will also carry some amount of the energy, but in the form of potential energy 

as the energy is being stored in the deflected elements. In the study, the potential energy 

of the spring elements is the strain energy of the fender and the piling system. Besides 

mass elements and spring elements, the berthing system also has damping elements. The 

damping elements represent the energy loss during the vibration of the system, and are 

linearized for simplistic purposes. Unlike mass elements and spring elements, the energy 

is not being stored in the damping elements; the energy is being dissipated as heat by the 

damping elements. Therefore, the combined energy of the berthing system consists of the 

kinetic energy of the mass elements and the potential energy of the spring elements. 

However, the combined energy of the mass and spring elements is somehow smaller than 

the kinetic energy of the vessel before it landed on the float at the beginning, due to the 

dissipated energy by the damping elements. The kinetic energy of the vessel at the 

beginning is equal to the sum of the combined energy of the mass and spring elements 

and the energy dissipated by the damping elements. 

 The displacements of the piling system are due to the conversion of kinetic energy 

of the vessel at the beginning to the strain energy being stored in the piling system. It has 

been observed that the displacements and the reaction forces of the piling system become 

larger when the mass ratio of the vessel to the float becomes small. It is because the 

energy distributions are different when the mass ratios are different. If the mass ratio is 
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small, which means the float is massive compared with the vessel; more energy will be 

converted to the kinetic energy of the float than the vessel due to the large mass of the 

float. The float is directly connected to the piling system. The moving float will displace 

the piling system, causing large displacements and consequently large reaction forces of 

the piling system. On the other hand, if the vessel is massive compared with the float, the 

vessel is directly connected with the fender, but not the piling system. This results in 

most of the energy remaining with the vessel. The piling system will not deflect as much 

because it is not connected with the vessel. Therefore, the more massive the float is 

compared with the vessel, the larger the responses will be for the piling system. 

 Another interesting characteristic is with the different stiffness ratios of the piling 

system to the fender given the constant stiffness of the fender. The peak responses of the 

piling system can be different even for a constant mass ratio of the vessel to the float. The 

reason for this is that the spring elements will carry a certain amount of the energy and 

the amount of energy being carried highly depends on the stiffness ratio of the spring 

elements. The spring elements in the study are the fender and the piling system. Only the 

fender is directly connected to the vessel. On the other hand, both the fender and the 

piling system are directly connected to the float, meaning the energy distribution among 

the mass elements and the spring elements is very complicated. Even though the general 

trend follows that when the float is massive compared with the vessel the responses of the 

piling system tend to be large, different stiffness ratios between the piling system and the 

fender can cause responses to vary. It is entirely possible that the responses of the piling 

system can be smaller when the float is massive than if the float is relatively light, given 
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different stiffness ratios. The trend is demonstrated in all the diagrams given above. The 

stiffness of the fender is chosen as 10kips/in and the stiffness of a single pile ranges from 

10kips/in to 1000kips/in. The responses of the piling system are influenced by all the 

parameters, which can be summarized into four factors: the kinetic energy of the vessel 

before it lands on the float, the mass ratio of the vessel to the float, the stiffness ratio of 

the piling system to the fender and the damping ratio. 

 The responses with different parameters can also be seen in two dimensional 

analysis, and the responses follow exactly the same trends for two dimensional analysis 

as they do for one dimensional analysis. However, it can be observed that the responses 

of piling system in two dimensional analysis is larger than the corresponding one 

dimensional analysis, due to the eccentricity between the C.M and C.R of the float when 

analyzing the berthing system in two dimensions. The eccentricity is dependent on the 

configuration of the piling system and the geometric configuration of the float. The 

configuration of the piling system stays the same as it is shown in Fig. 3.41 despite the 

change of the float when the mass ratio of the vessel to the float changes. The float will 

be scaled up or down due to the change of the mass ratio, but the shape of the float 

remains as a square barge. That means that the larger and more massive the float is, the 

larger the eccentricity will be. The larger eccentricity will cause a considerable rotational 

response for the float, causing more energy to transfer on the float. Since the float is 

directly connected to the piling system. The responses of the piling system are influenced 

by 5 factors: the kinetic energy of the vessel before it lands on the float, the mass ratio of 
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the vessel to the float, the stiffness of the piling system to the fender, the damping ratio 

and the eccentricity. Eccentricity is not considered in one dimensional analysis. 

 Berthing system can be modeled as a vibrational dynamic system with MDF, if 

the system has no inherent eccentricity. The system can simply be analyzed in one 

dimension, or otherwise the system can be analyzed in two dimensions if there is 

eccentricity between the C.M and C.R of the float. The governing equations of motion 

can be built to capture the motion of the berthing system after the vessel lands on the 

float. The equation can also be derived either from Newton’s second law of motion, 

which is a better usage for one dimensional analysis since the berthing system has only 

two DOFs, or the influence coefficients method which is more suitable for two 

dimensional analysis due to the increased number of DOFs. After the governing 

equations of motion are derived, the equations can be solved with modal analysis. Modal 

analysis can also incorporate linearized damping to the berthing system. The solutions of 

the governing equations of motion are the displacements of the mass elements, which are 

the vessel and the float. Only the first half cycle of the responses are kept in record 

because after the first half cycle, the vessel will bounce back and subsequently separate 

from the berthing system. The demonstration of the responses is given in Fig. 3.16 and 

Fig. 3.17. The diagrams show the peak responses, which are the maximum displacement 

and reaction force for the piling system during the first half cycle. 
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3.4 Conclusion 

 The responses of the piling system are plotted for one dimensional and two 

dimensional analysis given different parameters, including the mass of the vessel, the 

mass of the float, the approaching velocity, the damping ratio, the stiffness of the fender 

and the stiffness of the piling system. In two dimensional analysis, eccentricity is also 

accounted for. The diagrams given in this section present several general trends regarding 

the response of the piling system. The responses are highly dependent upon different 

parameters of the berthing system. The parameters can be summarized as: the kinetic 

energy of the vessel before it lands on the float, the mass ratio of the vessel to the float, 

the stiffness ratio of the piling system to the fender, and the damping ratio and 

eccentricity which is for two dimensional analysis only as just mentioned. The larger the 

kinetic energy of the vessel at the beginning, the larger the responses will be provided 

other parameters are the same, due to more energy being transferred to the piling system. 

The larger the damping ratio, the smaller the responses will be provided other parameters 

are the same, due to less energy being transferred to the piling system because of more 

energy being dissipated. However, the response due to different combinations of the mass 

ratio and stiffness ratio can be quite complicated because different mass ratios and 

stiffness ratios can redistribute the energy from the approaching vessel. The responses 

will look unique for different combinations of the mass ratio and stiffness ratio. Though, 

in general, the more massive the float is, the larger the response of the piling system will 

be. Furthermore, in two dimensional analysis, the eccentricity effect is considered, and it 

can be seen that large floats will result in considerable amount of eccentricity, and 
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substantial eccentricity will cause larger response. The response for substantial 

eccentricities in two dimensional analysis is due to more energy being distributed to the 

float via rotational displacement. 
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Chapter 4 Responses of Floats under Wave Loading 

4.1 Introduction 

 Besides dynamic loading coming from the vessel, the float is also subjected to 

dynamic (time varying) loading from wind generated waves. The float under dynamic 

wave loading can be viewed as an MDF system under external forcing functions, which 

represent wave loading. The responses of the MDF system can be captured by the 

governing equations of motion of the system. The governing equations of motion can be 

written in matrix form as: 

  
[ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )}m x t c x t k x t F t      (1-4) 

These equations were introduced in Chapter 1. 

 In the study, the berthing float will be treated as an MDF system as stated above, 

and the responses of the system will be analyzed in two dimensions. That is, the 

responses in both surge and sway directions will be considered, and in addition to 

translational responses, rotational response in yaw direction will also be considered. This 

response was analyzed in the previous chapter for the berthing system under dynamic 

loading from the vessel. The schematic diagram of the float under wave loading is given 

in Fig. 4.1. It can be easily observed that the whole configuration is part of the berthing 

system without impact from the vessel; instead, the berthing system is under dynamic 

loading from the waves. In the analysis of wave loading, the floating system is chosen 

such that there is no eccentricity. The configuration of the piling system is given in Fig. 
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4.2. The dynamic model of the float under wave loading is given in Fig. 4.3. Again, the 

model is only part of the berthing system without the vessel’s impact. 
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Fig. 4.1 Schematic Diagram of Float under Wave Loading 
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Fig. 4.2 Configuration of the Piling System 
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Fig. 4.3 Dynamic Model of Float under Wave Loading 
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 To further simplify the analysis, the floating system is chosen such that no 

eccentricity exists, and damping will be neglected due to the small displacement of the 

float. Therefore, the governing equations of motion of the system can be rewritten as: 

   
[ ]{ ( )} [ ]{ ( )} { ( )}m x t k x t F t      (4-1) 

 In Dynamic Analysis of Chapter 3, modal analysis was used to solve governing 

equations of motion for an MDF system without external forces. Fortunately, only a little 

change can incorporate the effects of external forces. The governing equations of motion 

for an MDF system without external forces can be written in another form as: 

      [ ] { ( )} [ ] { ( )} {0}m X q t k X q t     (3-34) 

Therefore, Eq. (4-1) can be rewritten as: 

      [ ] { ( )} [ ] { ( )} { ( )}m X q t k X q t F t    (4-2) 

Again, premultiplying Eq. (4-2) throughout by  X , Eq. (4-3) can be obtained: 

          [ ] { ( )} [ ] { ( )} { ( )}
T T T

X m X q t X k X q t X F t    (4-3) 

If the mode shapes are normalized, Eq. (4-4) can be rewritten as: 

     2{ ( )} { ( )} { ( )}I q t q t Q t   ω    (4-4) 

where 
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     { ( )} { ( )}
T

Q t X F t     (4-5) 

Eq. (4-4) denotes a set of n uncoupled differential equations of the second order, which 

describe the undamped motion of n SDF systems under external forces. 

 The generalized displacements ( )iq t  can be found by solving Eq. (4-4), and the 

responses of the float under wave loading can be found with Eq. (3-31) 

    
  { ( )} ( )x t X q t     (3-31) 

Wave Forcing Functions 

 Naturally occurring waves are very complicated and often difficult to model 

accurately. Eq. (4-1) is the matrix form of the governing equations of motion for the float 

under external forces representing the wave loading.  ( )F t  is the vector form of the 

external forces. The float will be analyzed in two dimensions: responses in surge, sway 

and yaw directions of the float. The float has three DOFs, one in each direction 

considered. Wave forcing functions representing wave loading for surge, sway and yaw 

directions acting on the float must be determined before the equations of motion can be 

solved. Fortunately, the wave forcing functions have already been derived for a squared 

barge structure like the float under investigation (Hutchinson, Metzger, 2010). Fig. 4.3, 

4.4 and 4.5 are diagrams that illustrate the wave profile on the water surface and 

schematic demonstration of the wave loading acting on the barge.  
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Fig. 4.4 Schematic Diagram of Simple, Harmonic Wave 
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Fig. 4.5 Schematic Diagram of a Rectangular Barge under Wave Loading 
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Fig. 4.6 Schematic Diagram of a Rectangular Barge under Wave Loading 
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 The wave forcing functions in surge, sway and yaw directions acting on a 

rectangular barge are given as follows: 

 
    

 
 2

2 gH sinh sinh k h D
  sin sin sin

k sinθcosh kh 2 2
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kh X Y
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Where: 

D  = draft of the structure (measured from the SWL) 

g  = acceleration due to gravity, taken to be 9.80665 m/s
2
 (32.1440 ft/s

2
) 

h  = water depth 

H  = wave height 
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k  = wave number 

cosxk k   

sinyk k   

t  = time variable 

T  = wave period 

x  = distance in the x direction from the origin of the orthogonal system to the C. R 

y  = distance in the y direction from the origin of the orthogonal system to the C. R 

z  = distance in the z direction from the origin of the orthogonal system to the C. R 

X = “x” dimension of structure  

Y = “y” dimension of structure  

Z = “z” dimension of structure  

𝜃 = direction of wave propagation with respect the x-axis 

  = wavelength 

  = density of water 

  = angular frequency of a wave 

C. R = center of rigidity 
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 Therefore, the resultant wave forcing functions can be expressed in matrix form 

as: 

     

( )

( ) ( )

( )

x

y

w

F t

F t F t

M t

 
 

  
 
 

    (4-9) 

 With external forcing functions prepared, it remains to derive the stiffness 

influence coefficients and inertia influence coefficients that make up the stiffness and 

mass matrices. 

Derivation of Stiffness Influence Coefficients 

 The stiffness influence coefficients, kij, are to be derived in the same manner as 

for the berthing system in Chapter 3, except that the vessel is no longer in the dynamic 

model. 

 The stiffness influence coefficients, kij, are found with the principle of static 

equilibrium. In Fig. 4.6 (a), x1 is set to be one (x1 = 1) and the other two displacements 

are zero (x2 = θ = 0), the forces ki1 (i = 1, 2, 3) are intended to maintain the system in this 

configuration. Therefore, according to the principle of static equilibrium, the total forces 

and moments acting on the system must cancel one another. The relations can be 

expressed as follows: 
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Therefore, after solving the simultaneous static equilibrium equations, the stiffness 

influence coefficients can be expressed as: 
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The same procedure is applied to x2 and θ, wherein the stiffness influence coefficients are 

expressed as:      
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where kpile is the stiffness of the piling system, l is the width of the float. 
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Fig. 4.7 Derivation of Stiffness Influence Coefficients (2D-a) 
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Fig. 4.8 Derivation of Stiffness Influence Coefficients (2D-b) 
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Fig. 4.9 Derivation of Stiffness Influence Coefficients (2D-c) 

The stiffness influence coefficients can be written in matrix form as: 

   

2

4 0 0

[ ] 0 4 0

0 0 2

pile

pile

pile

k

k k

l k

 
 

  
 
 

    (4-14) 

 

Derivation of Inertia Influence Coefficients 

 The elements of the mass matrix, mij, also known as the inertia influence 

coefficients are defined as the impulse applied at point j, which causes unit velocity at 

that point while all the other points have zero velocity due to impulses at other points. 

The derivation of inertia influence coefficients is given in Fig. 4.8 (a), (b), and (c). The 

inertia influence coefficients are expressed as: 
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 The inertia influence coefficient 33m  is the moment of inertia of the float with 

respect to the centroid of the float, and the expression is the same as the one shown 

before in Chapter 3. 
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Fig. 4.10 Derivation of Inertia Influence Coefficients (2D-a) 
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Fig. 4.11 Derivation of Inertia Influence Coefficients (2D-b) 
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Fig. 4.12 Derivation of Inertia Influence Coefficients (2D-c) 

The inertia influence coefficients can be expressed in matrix form as: 
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Governing Equations of Motion 

 After deriving the mass and stiffness matrices, the equations of motion for the 

berthing system without damping can be expressed as: 

   [ ]{ ( )} [ ]{ ( )} { ( )}m x t k x t F t      (4-19) 
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in which the mass matrix and stiffness matrix are given in the previous section. The 

damping effects are neglected due to the small displacement of the float. The equations 

can be solved with modal analysis. The procedures are the same as were shown in 

Chapter 3, except that the berthing system is under external forces from the wave loading 

and the wave forcing functions, which have been derived previously in the chapter. The 

solutions of the governing differential equations represent the displacement of the float 

under wave motion. The results are given in the following results section. 

4.2 Results 

 The results of the floating system under wave forcing functions are given in Fig. 

4.15 and Fig. 4.16. The angle of the direction of the wave with respect to the surge 

direction of the float   is chosen as zero in the analysis. Due to the characteristic of the 

wave forcing functions, the responses of the floating system are proportional to the 

magnitude of the wave height. In addition, the forces generated by the waves in sway and 

yaw directions both disappear when   is zero. In the analysis, the mass of the float is 

chosen as 820.3long tons, and the dimension of the float is 60ft by 60ft by 10ft with 8ft 

draft. In Fig. 4.15 and Fig. 4.16, the y-axis is chosen as the ratio of the maximum 

responses of the translational displacement of the piling system to the wave height and 

the x-axis is chosen as the ratio of the natural period of the wave forcing function wT  to 

the natural period of the floating system in the surge direction nT . In Fig. 5.15, the ratio of 

wT / nT  is from 0 to 3, and the ratio is from 3 to 10. wT  is chosen as 2s, 4s, 6s, 8s, 10s, 12s, 

14s and 50s. The piling system consists of 4 identical piles acting as spring elements of 
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the floating system and the maximum responses are chosen as the maximum 

displacements among the 4 piles under wave forcing functions. The natural period of the 

floating system in the surge direction can be calculated as
pile

float

K

m
. The configuration of 

the floating system is given in Fig. 4.1. The results are given as follows: 

 

Fig. 4.13 Responses of the Floating System under Wave Forcing Function (a) 
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Fig. 4.14 Responses of the Floating System under Wave Forcing Function (b) 

 In addition to   being zero, where the results were just presented, the angle could 

vary from 0 to 90 degrees (for angles greater than 90 degree angles, the analysis can 

always be conducted by switching the original surge and sway direction of the float). In 

the analysis,   is chosen as 0, 10, 20, 30 and 45 degrees. The maximum responses of the 

piling system are still considered as the largest responses among the 4 identical piles. 

However, when   is no longer zero, the wave forcing functions in sway and yaw 

directions are not zero either. Therefore the responses of the piles will be superimposed 

from the responses resulting from the movement of the floating system under wave 
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loading in all three directions: surge, sway and yaw. The result is given in Fig. 4.17 to 

Fig. 4.21. In the diagrams presented below, the y-axis is chosen as the maximum 

responses of 4 piles; the x-axis is chosen as the ratio of wT to nT ; wT is chosen as 5s in all 

the diagrams. The diagrams are given below: 

 

Fig. 4.15 Responses of the Floating System under Wave Forcing Functions (a) 
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Fig. 4.16 Responses of the Floating System under Wave Forcing Functions (b) 
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Fig. 4.17 Responses of the Floating System under Wave Forcing Functions (c) 
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Fig. 4.18 Responses of the Floating System under Wave Forcing Functions (d) 
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Fig. 4.19 Responses of the Floating System under Wave Forcing Functions (e) 

4.3 Discussion 

 The responses of the floating system were presented in the last section, and 

several characteristics of the responses of the floating system under wave forcing 

functions can be observed. Assuming a deep water situation and given the dimension of 

the floating system from Fig. 4.15 and Fig. 4.16, the maximum responses of the piling 

system are proportional to the amplitude of the wave and the responses also increase as 

wT  increases. However, the responses increase very slowly after wT  has reached a certain 

point, which is 8s in the analysis. In addition, the analysis has shown that the responses 
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increase dramatically when the ratio of wT  to nT  approaches unity. This physical 

phenomenon is known as resonance: when the period of the external force is equal or 

very close to the natural period of the dynamic system. Consequently the responses of the 

system are extremely large or even infinite. The further the ratio of wT  to nT  deviates 

from 1, the smaller responses the floating system will have under wave forcing function. 

 From Fig. 4.17 to Fig. 4.21, for the same float and water depth but different , the 

maximum responses of the floating system are plotted with varying ratio of wT  to nT . It 

can be observed that the maximum responses of the floating system are very close to each 

other when   varies, and the responses follow the same trend as when   is zero. The 

further the system deviates from resonance, the smaller the responses are. However, 

when   equals 10, 20 or 30 degrees, there is a small peak response at some point when 

the ratio of wT  to nT  is between 0 and 1. The small peak response is due to the wave 

forcing function being not 0 in the yaw direction when   is not 0 or 45 degrees. It should 

be noted that the configuration of the piling system in the study is symmetrical in both the 

surge and sway directions. Therefore the natural periods are the same in both directions, 

and thus the responses reach very large values only when the ratio of wT  to nT  is close to 

1. If the floating system has different natural periods in all three directions, the maximum 

responses of the system will have three peaks at three different locations of wT / nT , where 

resonance happens. 

 The responses of the floating system are analyzed when neglecting the damping 

effects from the structure or the water. However, there will always be damping inherent 
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in the system. Subsequently, the responses will be smaller due to the energy loss from 

damping, and the resonance will still happen, though at slightly different locations of wT /

nT . 

4.4 Conclusion 

 It can be concluded that for a given floating system and deep water condition, the 

maximum responses of the piling system will increase as the period of the wave 

increases. However, the rate of the increase is becoming smaller as the period increases. 

Eventually the responses will be near constancy, even when the period of the wave is 

very long (and very long period waves are rare in nature). If the period of the wave is 

close or equal to any natural period of the floating system, in any direction, resonance 

will occur. The wave forcing functions only have values in the surge direction when   is 

equal to 0 or 45 degrees. Therefore, the system can be monitored more easily and have 

smaller responses if located with respect to the direction of the wave. 

 There will be inherent damping effects in the system, which are neglected in the 

analysis. The responses will be smaller and the resonance will take place at slightly 

different period ratios. 
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Chapter 5 Conclusions and Recommendations 

5.1 Overview 

 Pile-guided floats represent promising alternatives to the traditional, stationary 

berthing system, as the pile-guided floats do not require constant monitoring and can 

consequently reduce costs. It is crucial to predict the design loads of the guide piles that 

are fixed on the floats. The floats will be subjected to time-varying loading from wind 

generated waves and vessel impacts.  

 In this study, the responses of the berthing system under dynamic loading have 

been analyzed. Previous works from other authors regarding floating structures have been 

reviewed. However, little design information is available and empirical data is often 

highly site specific. The responses of the floating system under the impact of the vessel 

are analyzed by two different methods: the KEM and the DAM. The KEM is a quasi-

static analysis and uses the principle of conservation of energy. DAM is based on 

dynamic models that represent the key features of the dynamic system, thus deriving the 

governing differential equations that describe the motion of the system. The responses of 

the berthing system can be obtained by solving the governing differential equations. The 

procedures to obtain responses of the berthing system are given in detail in the study and 

the results from the two methods obtained are interpreted and compared. 

 In addition to dynamic loading from the vessel, wave loading can generate 

responses from the berthing system. The responses of the system under wave loading are 

analyzed only by the DAM, and the results are interpreted. 
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5.2 Summary 

 The following list is a summary of conclusions of the study. 

 For the responses of the berthing system under vessel impact analyzed by the 

KEM: 

• The response of the berthing system is directly proportional to the kinetic energy 

of the approaching vessel. 

• The responses of the spring elements heavily depend upon the stiffness of the 

elements. Softer elements will lead to smaller reaction forces but larger displacements. 

• The stiffness ratio of the spring elements (the fender and the piling system) 

determines the distribution of the kinetic energy from the vessel. If the stiffness of one 

element is large compared with the other, the displacement of the more rigid element will 

tend to be small and the reaction forces will be large but ultimately reach a constant if the 

element is very rigid. However, the kinetic energy absorbed by the more rigid element is 

smaller compared to the softer element. 

• The mass of the float and the damping effects from the structures are neglected in 

the KEM. 

 For the responses of the berthing system under vessel impact analyzed by the 

DAM: 

• The characteristics of the responses share the same first three trends as in the 

KEM. 
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• The DAM incorporates the damping effects and the mass of the float. 

• Higher damping ratios may considerably reduce the responses of the berthing 

system. 

• The mass ratio of the vessel to the float and the stiffness ratio of the fender to the 

piling system have significant effects on the responses of the system under vessel impact. 

• The general trend is for the float to be massive compared to the vessel. The 

responses tend to be larger than if the float is light. 

• The right combination of the mass ratio and the stiffness ratio can significantly 

complicate the responses of the piling system provided the kinetic energy of the vessel 

and damping ratios are constants for each combination. 

• If the mass of the float is negligible, the responses of the system almost converge 

with the responses obtained from KEM, given a small damping ratio. A high damping 

ratio will reduce the response. 

• If the piling system is very rigid compared to the fender, the responses of the 

piling system will tend to converge with the results obtained from the KEM regardless of 

the mass of the float. 

• Comparing the results obtained from two methods, it can be concluded that the 

responses of the piling system by the DAM can be greater than the responses by the KEM 

for the same berthing condition, even if the berthing coefficient is chosen as 1.5 which is 
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the maximum value in design practice. The difference is magnified when the float is 

massive, the damping is small or negligible, or eccentricity exists. 

 For the responses of the floating system under wave loading analyzed by the 

DAM: 

• The responses of the piling system will increase as the period of the wave 

increases. However, the rate of increase will approach zero if the period of the wave is 

very long (and very long period waves are rare in nature). 

• If the period of the wave is very close to the natural period of the floating system 

in any direction, resonance will occur; the responses of the piling system will grow 

significantly. Therefore, resonance should be avoided as much as possible. 

• If the incoming angle of the wave is 0 or 45 degrees with respect to the surge 

direction of the floating system, the wave loading only has effects in the surge direction. 

Therefore, the floating system should be placed accordingly, to avoid coupled effects. 

5.3 Further Study 

 This study uses the KEM and the DAM to analyze the responses of the berthing 

system under dynamic loading from vessels and wind generated waves. The analysis is 

purely theoretical. Therefore, field experiments should be conducted to validate the 

results obtained. The results should also be compared with the results obtained from other 

analytical methods, such as the Finite Element Method (FEM). In addition, more field 

data should be collected in order to obtain the corresponding information relating to the 
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analysis. The following should be gathered for more accurate analysis: damping ratios, 

the information about the waves (such as wave height, period of the wave, and water 

depth), the properties of all the elements of the berthing system, such as the mass of the 

vessel and the float as well as the stiffness of the fender and the piling system, along with 

its specific configuration). 
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