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Abstract 

 

An embedded system for GPS-based attitude determination (AD) using signal-to-noise 

(SNR) measurements was developed for CubeSat applications.  The design serves as 

an evaluation testbed for conducting ground based experiments using various 

computational methods and antenna types to determine the optimum AD accuracy.  

Raw GPS data is also stored to non-volatile memory for downloading and post 

analysis. Two low-power microcontrollers are used for processing and to display 

information on a graphic screen for real-time performance evaluations.  A new parallel 

inter-processor communication protocol was developed that is faster and uses less 

power than existing standard protocols.  A shorted annular patch (SAP) antenna was 

fabricated for the initial ground-based AD experiments with the testbed.  Static AD 

estimations with RMS errors in the range of 2.5º to 4.8º were achieved over a range of 

off-zenith attitudes.   
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Chapter 1: Introduction 

1.1 Overview 

 A relatively new class of small satellites is emerging for conducting orbital 

research and science.  The smallest of these are the Pico satellites, which have a mass 

less than 1 kg, and also Nano satellites which have a mass less than 10 kg.  A 

standardized type of Pico satellite is referred to as a cube satellite, or CubeSat, 

measuring only 10 cm per side for a one unit (1U) cube.  Sometimes multiple 

CubeSats are joined to make a small Nano satellite.  For example, a Nano satellite 

consisting of three cubes would be designated as a three unit (3U) CubeSat.  The 

modest dimensions and standardized deployment method from the launch vehicle 

make the design an extremely cost-effective way to conduct orbital science, often with 

a budget of under $100,000.  Emerging but unproven technologies can be 

implemented with minimal risk. 

The challenge for designing small satellites is to keep the hardware size, mass 

and power consumption to an absolute minimum while simultaneously keeping the 

cost down.  Commercial-off-the-shelf (COTS) products are used in place of specialty 

hardware designed by costly aerospace contractors.  A lot of development is 

happening in this rapidly growing niche, especially at universities where student teams 

often design and build the satellites. 

  This thesis details the hardware development and testing of an attitude 

determination system (ADS) specifically designed for small satellite applications 

using GPS signal-to-noise ratio (SNR).  Compared to other ADSs commonly used, the 

SNR ADS is well suited for small satellite applications because of its low complexity 

and robustness.  However, a limitation of SNR ADS designs is relatively low 

accuracy.  The design presented in this thesis aims to improve upon the accuracy 

performance previously attained.  A low power, dual-processor testbed platform using 

a real time operating system (RTOS) is developed which allows various types of GPS 

receivers, algorithms, and antenna types to be easily evaluated for accuracy 
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performance.  A custom antenna is designed for optimal accuracy, and the results are 

compared to previous works.   

1.2 Motivation  

 Magnetometers combined with Sun sensors are currently used for some 

CubeSat designs [1], [2], mainly because of their low cost, simplicity, small size and 

low power consumption.  A GPS system may also be used to provide the positional 

information required for the magnetometer attitude solution.  If a small satellite is 

already equipped with a GPS, then a SNR ADS can be adapted with very little 

overhead in terms of space and power consumption.  The GPS ADS in this scenario 

negates the need for a Sun sensor when a magnetometer is also used.  A GPS / 

magnetometer ADS can provide a 3-axis attitude solution with only one GPS antenna.  

A two antenna SNR ADS could also be used to obtain a 3-axis solution, but in this 

case either a GPS receiver with multiple antenna inputs or two GPS receivers are 

required. 

1.3 Previous Works 

 At the time of this writing, the most accurate non-simulated single antenna 

results have been obtained by the GPS Attitude/Navigation Experiment (GANE) in 

[3], where root mean square (RMS) errors of 3.2º were achieved in orbit using a 

choke-ring patch antenna pointing in the zenith direction.  The same experiment had 

RMS errors of 5.2º when the antenna was pointed 45º off-zenith.  In another study 

with the Federation Satellite (FedSat), attitude estimations were largely affected by a 

non-optimal antenna direction and distortions in the radiation pattern caused by an 

offset ground plane [4].  A conventional patch antenna was used, yielding an accuracy 

limited to 14º RMS error.   

 Hardware-in-the-loop orbital simulations in [5] have demonstrated better 

results.  RMS errors of 2.5º were achieved using a software-defined antenna radiation 

pattern and Kalman filtering.  Using a software-defined antenna radiation pattern is 

highly beneficial for the simulation, because the non-ideal characteristics of a real 
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antenna are removed.  The simulated radiation pattern was modeled with a maximum 

signal strength along the boresight vector and a zero signal strength below the local 

horizon of the antenna.  The modeled antenna radiation pattern is optimum, such that 

there is a maximum distinguishable off-boresight angle per varying SNR.   

 Some distinctions should be made about the results of the comparison studies 

in [3-5].  The experiments and simulations were performed under orbital conditions, 

since the intended application is for satellites.  The dynamics are much different than 

ground based environments.  The higher carrier Doppler variation experienced in an 

orbital environment will affect how the GPS tracking loops operate, and may 

subsequently degrade the accuracy compared to ground measurements where there is 

less Doppler shift.  On the other hand, the space environment has less potential for 

multipath and a higher potential for GPS satellite visibility.  This should improve the 

accuracy compared to ground measurements where obstacles and multipath are 

prevalent.  Some areas of the Earth have better GPS satellite vehicle (SV) coverage 

than others and the results will vary somewhat by the geographical location due to the 

GPS constellation.  Conversely, an orbiting spacecraft will have a more diverse SV 

view during the course of the orbit.  Even with all the differences between 

environments, comparisons in [6] between ground measurements and orbital 

simulations revealed similar results for orbital and ground accuracy performance.  In 

another study of the GANE experiment [7], zenith pointing antenna measurements 

revealed orbital performance was about 30% better compared to ground measurements 

using the same kind of antenna.  The best ground based performance was achieved in 

[7] with 4.2º RMS error when a zenith pointing choke-ring antenna was used. 

 This thesis aims to develop a GPS SNR based ADS specifically for use on a 

CubeSat.  The design goals of the hardware are primarily about developing a working 

prototype that can be evaluated for its performance to determine if the design should 

be developed further for a future CubeSat mission.   

 In Chapter 2 there is a brief overview of seven methods commonly used for 

ADS on satellite systems including magnetometers, inertial sensors, star trackers, Sun 
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sensors, horizon sensors, GPS carrier wave, and GPS SNR.  The merits of each type of 

ADS pertaining to CubeSats are summarized.   

 GPS related ADSs using SNR are described in more detail in Chapter 3 where 

algorithms are presented for acquiring attitude estimations based on GPS data.  Factors 

affecting the SNR are studied to isolate the elements not related to the antenna 

attitude.  Several GPS receiver module candidates are evaluated for possible use in a 

space environment.   

 Chapter 4 explores the different types of antennas used in GPS systems.  The 

strengths and weaknesses of each are evaluated as they pertain to GPS SNR attitude 

determination.  A specialized shorted annular patch (SAP) antenna is examined and 

measurements of a fabricated prototype antenna are presented.   

 Chapter 5 contains the hardware details of a dual processor embedded testbed 

that was designed and constructed.  Design iterations during the development of the 

testbed are presented. A newly developed inter-processor communication protocol is 

explained and evaluated for transfer performance and power consumption.   

 Software development on the testbed hardware is discussed in Chapter 6.  A 

summary of real time operating systems is presented with an overview of the testbed 

software implementation.  The user operation of the testbed is also explained. 

  In Chapter 7, the GPS measurements collected by the testbed hardware are 

presented with analysis of the attitude performance accuracy.  Data from 5 static 

attitude measurement sessions is assessed where elements of SNR signal influences 

are incrementally included in calculations to observe the effect on accuracy.  The 

attitude estimation results are compared to previous works of GPS SNR based ADS. 
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Chapter 2: Attitude Determination Systems Overview 

2.1 Methods of Attitude Determination 

 Seven commonly used ADS methods [1], [2], [6], [7] are compared in this 

chapter.  The methods examined are used on satellites in general, including those 

costing millions of dollars and having mass in excess of 1000 kg.  Such large satellites 

have systems and redundancies that emphasize accuracy and reliability.  In contrast, 

the design criterion for a CubeSat is very restrictive in terms of complexity, size, cost, 

and power consumption.  Each type of ADS is examined in terms of the suitability for 

use on a CubeSat.  

2.2 Inertial Measurement  

 One simple and traditional approach to attitude determination (AD) is to use an 

inertial measurement unit (IMU) which works by measuring the outputs of 

accelerometers and gyroscopes.  Advances in micro electro-mechanical systems 

(MEMS) technology has allowed inexpensive IMU sensors to become widely 

available.  MEMS sensors are miniature and low power compared to their mechanical 

counterparts, thus making their use ideal in small low cost satellites.  IMU sensors 

directly measure the derivatives of attitude and position, with the solution being 

computed by integrating the output of the sensors.  The attitude solution will begin to 

drift relative to the actual attitude and accrue significant error over a period of days, 

since even the smallest bias errors in the rate measurements accumulate over time with 

integration.  In the short term, IMU sensors easily achieve a sub-degree level of 

accuracy based on accurate initial conditions. 

 An IMU must be used in conjunction with another form of attitude 

determination for two reasons:  the initial conditions are usually not known, and the 

accumulated error must be corrected.  For CubeSat deployments, the initial attitude is 

often not known and difficult to accurately predict.   
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2.3 Magnetometers 

  COTS magnetometers have about 1º accuracy if the field vector is accurately 

known.  By measuring the Earth’s magnetosphere using magnetometers, satellites in 

orbit are able to measure the field orientation and deduce their attitude.  However, the 

Earth’s magnetic field is not uniform and has varying characteristics depending on the 

geographic position.  For instance, the field is mostly parallel to the Earth’s surface 

near the equator, but the field is nearly perpendicular to the Earth’s surface near the 

poles.  These variances make it necessary to know the satellite’s position within the 

magnetic field, and compare the readings to a field model before making an attitude 

calculation.  Magnetic interference caused by satellite electronics and unpredictable 

ionospheric currents, and on-board satellite electronics contribute to errors of the 

measurements.  Since the orbit of the satellite is generally known a-priori, the ADS 

can use an estimated position and compute the attitude based on a field model.  

Alternatively, a GPS can provide the positional information for the calculation.  The 

magnetometer-based ADS is currently one of the preferred methods for CubeSat 

applications. 

2.4 Star Trackers 

 Star trackers use optical sensors to compare the known location of star 

constellations with an onboard database.  Significant processing and power 

consumption is required to obtain an attitude solution.  Interference from other light 

sources such as the Sun, Moon and Earth can inhibit the star sensor from computing 

an attitude solution.  Although this imaging technique can be a very accurate method 

of attitude determination (<0.1º), the hardware is on the same order of magnitude in 

mass as a cube satellite, and not suitable for CubeSat applications. 

2.5 Sun Sensors 

 Simple sensors or even solar panels can be used to obtain a vector angle from 

the sensor to the Sun.  Only a single reference is obtainable, as the sensor cannot 

distinguish any rotation along the axis of the vector, and so a full 3-axis solution is not 
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possible.  Sun sensors are commonly used on CubeSat designs, but a major 

disadvantage to Sun sensors is that when the satellite falls within the Earth’s shadow 

during a portion of its orbit, no attitude information can be measured.  Sun sensors can 

provide accuracies ranging from several degrees to less than 0.1 degrees.  

2.6 Horizon Sensors 

 Horizon sensors operate on the same premise as Sun sensors and have similar 

limitations in terms of outages while in the Earth's shadow.  The Earth Horizon is the 

reference that replaces the Sun vector.  Accuracy is generally less than Sun sensors 

because of the atmosphere creates a gradient that is poorly defined along the horizon 

resulting in accuracies of about 1.0 degree.  

2.7 GPS Based ADS 

 While GPS was initially intended to provide position and velocity information, 

other uses have been developed, such as precise timing and AD.  GPS based AD can 

be accomplished in two ways; Carrier Wave Interferometry or Signal-to-Noise Ratio 

(SNR).  Both methods have some limitations when used in the orbital environment:  

All COTS GPS modules have software limits so that the device will not operate if it 

exceeds speed and altitude thresholds of 515 m/s and 18,300 m – parameters that are 

far surpassed by satellites.  The limitation was imposed by the Coordinating 

Committee for Multilateral Export Controls (COCOM) for security reasons [8].  This 

presents a major problem for budget sensitive missions attempting to use COTS 

components.  To overcome the problem, custom GPS hardware not subject to 

COCOM constraints has been used in a small satellite mission [9].  Also, some COTS 

GPS modules have been found to still provide useful raw data information, even when 

the COCOM limits are exceeded [10]. 

 Even if a COTS GPS module is useable beyond the COCOM limits, the 

operating environment of an orbiting satellite is much different than the typical land-

based use of a GPS module.  The GPS frequency tracking loops must be able to cope 

with the higher carrier wave Doppler shifts encountered due to the extreme velocity of 



8   

  

ê 

 ϕ 

ê 

SV 

GPS Antennas 

r 

Figure 1: GPS Carrier Phase Vector Relationship 

the satellite.  The antenna may not be able to receive signals from enough GPS SVs if 

the attitude is unfavorable.  Such an attitude might be when the antenna is pointed 

towards the horizon, or in the worst case, directly at the Earth.  

 The major advantage of using a GPS-based ADS arises when a GPS is already 

being used in the payload for positioning or precise timing purposes.  If this is the 

case, there is only a small computational overhead to implement the ADS, especially 

for SNR ADS.  

 2.7.1 GPS Carrier Wave Phase Difference 

 If three or more GPS antennas are used and the carrier phase of GPS signals 

are measured simultaneously, the baseline vectors between antennas can be 

determined and the attitude orientation 

defined by these vectors can be 

calculated.  Figure 1 depicts the 

relationship between the incident carrier 

wave ê vector originating from a SV, the 

baseline vector of two antennas r, and the 

difference of phase ϕ of the signal received 

between two antennas.  A third antenna may be 

mounted orthogonally to the first two to 

compute a 3-axis solution. 

 

 

 Sub-degree accuracy is possible for baselines of about 1 m.  Although carrier 

phase achieves precise sub degree accuracy, there are some drawbacks when 

considering this method for implementation in a CubeSat.  The accuracy is 

proportional to the antenna baseline length, and thus the GPS antennas need to be 

separated by relatively large distances. This presents a problem on a CubeSat because 

it requires the extension of antenna booms once the satellite has been deployed from 

the launch vehicle.  Precisely deploying such booms from a small satellite adds 
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complexity and a certain risk of deployment failure.  Alternatively, the three antennas 

could be separated by a very short baseline, but the RMS accuracy would be degraded 

to about 5º for a sub-10 cm baseline [11].  Complicating the task is that a specialized 

GPS receiver capable of multiple antenna input channels is needed to make the precise 

phase measurements.  There are certain GPS receivers designed for AD such as the 

Trimble Tans Vector, which is capable of processing signals from multiple antennas 

simultaneously.  Unfortunately, excessive mass and power consumption prohibit their 

use for CubeSats.   

 2.7.2 GPS SNR  

 GPS signal strength is highly correlated to the angle at which the signals arrive 

to the antenna according to the receiving antenna gain pattern.  Other factors also 

affect the signal strength and will be discussed in Chapter 3.  Higher signal strengths 

will be observed when the antenna is pointing directly towards the transmitting GPS 

satellite vehicle, and decreasing as the angle is increased.  This relationship is a 

function defined by the particular antenna radiation pattern.  The line-of-sight (LOS) 

vector for each tracked satellite, along with signal strength in terms of SNR is 

available from the GPS receiver module output data packet.  The measurement is 

usually given normalized to a 1 Hz bandwidth as carrier-to-noise-zero (C/N0) with the 

units of dB-Hz.  Some GPS receivers also use Amplitude Measurement Units (AMU) 

for the C/N0 measurements.  The C/N0 ratio and SNR will be considered 

interchangeable for the purpose of this study.  The SNR and vector information can be 

used to calculate an attitude vector of the receiver antenna if the receiver antenna 

radiation pattern is known.  If a single antenna is used, only a 2-axis attitude solution 

is attainable, but a full 3-axis solution is possible when two or more non-aligned 

antennas are used.   The disadvantage of using multiple receivers is higher power 

consumption and payload occupancy.  A single GPS receiver with multiple antenna 

inputs would be ideal, but is much more expensive and not readily available as a 

COTS component.  Previous studies using single-antenna SNR GPS ADS’s have 
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shown accuracy errors in the range of 3º RMS in orbit and about 4º RMS on the 

ground [7]. 
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Chapter 3: SNR ADS Theory and Design 

3.1 GPS Overview 

 The Global Positioning System, known ubiquitously as GPS, was developed 

by the U.S. Department of Defense for military purposes and was later made available 

for the general public [12], [13].  Its main purpose is to allow users to obtain their 

coordinates anywhere on Earth using a GPS receiver.  Many other uses have since 

been developed, such as time synchronization, surveying and attitude determination. 

 The principle behind the operation of the GPS is that a GPS receiver is able to 

calculate its own position and velocity using radio signals that are simultaneously 

received from multiple GPS SVs.  The GPS constellation consists of at least 24 

operational SVs but may contain up to 32 SVs at any given time.  Each SV has an 

atomic clock capable of keeping an extremely accurate and stable time reference.  The 

SV sends a continuous radio signal encoded with many parameters including the 

precise time and orbit parameters of the SV.  The GPS receiver requires signals from 

at least 4 SVs to calculate its 3D position on the Earth in terms of longitude, latitude 

and altitude.  The position is then calculated by trilateration, where the elapsed time 

for a signal to reach the receiver from a SV at the speed of light is equated to a 

distance.  Normally only 3 SV signals would be required to obtain a 3D solution, but a 

forth signal is needed because the GPS receiver clock is not precise— thus the clock 

error of the receiver becomes the forth variable in the system of equations. The inner 

workings and the algorithms used by the GPS receiver to perform this process is quite 

complex and not within the scope of this thesis.  

 3.1.1 GPS Signals 

 The GPS SVs broadcast data towards the Earth on the frequencies 1575.42 

MHz and 1227.60 MHz, named L1 and L2 respectively.  Data is transmitted using 

binary phase shift key (BPSK) as the carrier wave modulation technique and code 

division multiple access (CDMA) to distinguish the SV signals using the same 

frequency.  L1 carries both the civilian coarse-acquisition (C/A) code and the military 
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encrypted precision (P) code.  L2 carries only the P code.  COTS GPS modules are 

generally limited to using the C/A code on the L1 frequency. 

  The C/A code consists of 32 different pseudorandom numbers (PRN) at a rate 

of 1.023 million chips per second, and the P code PRN is 10.23 million chips per 

second.  The C/A PRNs repeat once per millisecond, while the P PRNs are much 

longer and repeat once per week. 

 Since all the GPS SVs transmit on the same frequency, the GPS receiver 

distinguishes one signal from another by correlating the PRN of the received signal 

with its own copy of the PRNs.  Once the receiver has locked onto a signal by phase 

shifting its own PRN sequence to match the incoming signal, it is able to decode the 

GPS information.  The information is modulo-2 added at 50 bits/s onto the PRN, such 

that the low bit rate of the information will have little effect on the overall correlation 

of the much higher chips per second PRN.  Each operational SV is assigned one of the 

32 PRNs, but these assignments are not fixed.  New SVs are launched to replace aging 

SVs, and often the GPS constellation consists of spare SVs that are only activated with 

an assigned a PRN when another operating SV fails. 

 The information transmitted by each SV consists of two primary segments: the 

ephemeris and the almanac.  The ephemeris contains information only about the SV 

that the signal was received from, so each SV transmits a unique ephemeris.  It repeats 

every 30 seconds, and contains precise orbit parameters of the SV.  The almanac 

contains coarse orbit information about all operating SVs, with all SVs transmitting 

the same segment.  Ionospheric parameters are also included, requiring 12.5 minutes 

to complete the transmission segment. 

 The signal levels from the GPS SV on or near the Earth are very weak— as 

low as -160 dBW [14].  This is well below the thermal noise floor and would 

otherwise not be detectable if it were not for the processing gain of about 50 dB that is 

achieved by correlation of the PRN sequences.  The low signal level is because of 

significant path losses from approximately 20,000 km of propagation.  Path loss is 

discussed in more detail later in the chapter. 
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3.2 SNR ADS 

 There are two ways to estimate a two-axis attitude vector using SNR 

measurements from a single antenna.  The first method involves a simple vector sum 

calculation, and requires only a SNR measurement from one SV to obtain the attitude 

estimation. The second method equates the measured SNR of each received signal to 

an off-boresight angle based on the receiving antenna radiation pattern.   

 3.2.1 Vector Sum SNR ADS 

The Vector Sum attitude estimation is calculated by summing the visible SV LOS 

vectors, each with a magnitude equal to the SNR value.  The solution is simply 

 



n

1i

ii L̂SNR  B


, (1) 

where B is the antenna boresight vector, L is the LOS unit vector to the i
th

 GPS SV, 

SNR is the signal to noise ratio of the i
th

 GPS SV signal, and n is the number of SV 

signals visible to the GPS receiver.  The accuracy is generally low, on the order of 15º 

[5], and is highly dependent on the SV constellation geometry.  This method will not 

be further explored because of its inferior performance compared to the Antenna 

Pattern method. 

 3.2.2 Antenna Pattern SNR ADS Theory 

 The second method relies on the dot product property    

  zzyyxx  L B  L B  L B LB  cos


 , (2) 

where B is the antenna boresight unit vector and L is the LOS unit vector to the GPS 

SV referenced to a coordinate frame, and α is the angle between B and L  [5].  Figure 

2 depicts a zenith pointing antenna boresight vector B and LOS vector L for a 

particular SV.  The boresight vector B is defined as the attitude vector of the antenna, 

and when the antenna is attached to a CubeSat it becomes the unknown attitude vector 

we are interested in determining.  L is an output vector provided by the GPS receiver 

for each SV from which it is receiving data.   
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Figure 2: Antenna Off-boresight 

Angle Relative to SV LOS Vector 

In order to solve for the boresight (attitude) vector 

B, both α and L are required, but α cannot be 

obtained directly as it is not a value that is provide 

by GPS receivers.  However, GPS receivers do 

provide a SNR measurement for each SV as an 

output that can be correlated to the angle α.  The 

relationship between the SNR and α depends 

largely on the radiation pattern of the GPS receiver 

antenna.  A SNR-to-α conversion mapping is 

performed for the GPS receiver antenna to get the desired angle α: 

  SNRf . (3) 

The SNR-to-α conversion is not perfect because of the inherently noisy and fluctuating 

SNR readings, but despite these fluctuations, an attitude vector estimation is possible 

from the available data.  When L and α measurements from three separate SVs are 

available, the linear equation to solve for the attitude is 
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, (4) 

where A is the coefficient matrix of the L vectors, B is the unknown attitude vector, S 

is the cos(α) measurements derived from the receiving antenna SNR-to-α mapping 

function, and the subscripts denote the index of the SV.  L in Equation 4 is expressed 

in Cartesian coordinates, though the vector is provided by the GPS receiver in Polar 

coordinates with Elevation and Azimuth components.  The conversion of the unit 

vector L from Polar to Cartesian is  
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, (5) 

where ϕ is the SV elevation and β is the SV azimuth, the positive    direction points 

North, and the positive    direction points West, and the positive    direction points up.  

 

SV 
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Equation 4 can be visualized in Figure 3 where there are three SV LOS L vectors 

represented by colors blue, green and red.  Each LOS vector has an associated plane, 

normal to the vector.  The distance of each plane from the origin is equal to cos(α).  

The solution of attitude B points to the location where all three planes intersect. 

 

 When there are more than three SV signals available, the over-determined 

system of equations will not have an exact solution because of the inherently noisy 

SNR data.  For example, a forth vector might yield three solutions of three intersecting 

planes, but no solution where four planes exactly intersect.  For cases when the 

number of available SV signals is greater than three, a best fit solution, i.e., a solution 

that is the closest the algebraic least squares equation [12] is used  

 

























































































n

n

n

n

nnn

n

n

n

zLzLzL

yLyLyL

xLxLxL

zB

yB

xB

zLyLxL

zLyLxL

zLyLxL

zLzLzL

yLyLyL

xLxLxL







cos

cos

cos

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆ

ˆ

ˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆˆˆ

SABAA

2

1

21

21

21

222

111

21

21

21

TT

















,  (6) 

where n denotes the number of available SV signals.   

Figure 3: Geometric Representation Example of Equation 4 
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 A weighting factor of each SV signal can be applied to reflect the general 

quality of measurement based on certain parameters.  Expanding Equation 6 to include 

the weighted least squares solution [7], [12] gives 
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where W is a weighting matrix of the measurements.  Each Wn is optimized so that 

signals that are more reliable are more heavily weighted.  For most antennas, signals 

near the boresight are more consistent, while signals towards 90º off-boresight 

experience more edge diffraction and have more variance due to side lobes in the 

radiation pattern.  In addition, SVs with higher elevation referenced to Earth are less 

susceptible to multipath signals.  From these empirical observations, the weighting 

matrix is set to: 
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0

sincos 22

, (8) 

where n represents the SV PRN number, α is the off-boresight angle of SV LOS vector 

L, α
t
 is a threshold angle and ϕ is the SV elevation.  The α

 
angle must be less than 

some set threshold so that only signals towards the front of the antenna are included in 

the calculation.  Signals originating from behind the receive antenna are more likely to 

arrive at an angle where the actual radiation pattern has sharp lobes that diverge from 

the radiation pattern mapping function.  For the SAP antenna, the threshold angle is 

set to 90° so signals arriving from the rear of the antenna are excluded from the 

calculation by setting the weight to zero. 



 17 

 3.3 Signal Strength Factors 

 Equation 3 relates the receiving antenna off-boresight angle solely on the 

receiving antenna radiation pattern characteristics.  This is only a coarse first 

approximation, as there are other factors that affect to the received signal strength.  SV 

transmitting output power, SV transmitting antenna gain, path loss and attenuation 

losses also affect the signal strength received from each SV.  The general transmission 

equation [13] when expressed in dB is 

 
 LaLpGrGtPt Pr , (9) 

where Pr is the received power, Pt is the transmitter output power, Gt is the 

transmitting antenna gain, Gr is the receiving antenna gain, Lp is the path loss and La 

is attenuation loss.  The α subscript refers to the term dependence on the incident angle 

of the signal to the receive antenna, θ refers to the dependence of the signal angle to 

the transmitting SV antenna, and ϕ refers to the dependence on the elevation angle of 

the receive signal.  Rearranging Equation 9 results in 

 
 LaLpGtPtGr  Pr . (10) 

Assuming the receiving antenna has a radiation pattern that is monotonic, i.e., there is 

a one-to-one relationship between the gain and the off-boresight angle α, the radiation 

pattern function can be inverted to express α in terms of the other variables  

   )(Pr,,Pr,  LaLpGtPtfPt  . (11) 

Using a GPS receiver, the received power Pr is not measured directly as an absolute 

value.  Instead, the SNR is reported.  Pr expressed in terms of SNR gives  

   )(,,,  LaLpGtPtSNRfPtSNR  . (12) 

When the SNR is measured in linear units as it is with the Trimble Copernicus GPS 

receiver module, Equation 12 is expressed as 

   



















LaLpGtPt

SNR
fPtSNR ,,, , (13) 

where SNR is in linear AMU units and the remaining variables are multiplication 

factors.  The α in Equation 13 used in Equation 6 or 7 accounts for all the factors that 



18   

will be included in the attitude determination calculations later in Chapter 7.  In [5], 

Lightsey assumes the effects other than SNR are smaller in magnitude than the noise 

seen in the SNR measurement, with no significant improvement to be expected from 

incorporating them into the measurement model.  This assumption will be tested in 

Chapter 7 with the acquired measurement data.  There are other factors affecting the 

signal strength including SV yaw attitude, scintillation and signal multipath which are 

difficult to model in real time and thus considered as noise.   These factors will be 

discussed later in the chapter, but will be ignored in the calculations.   

 3.3.1 SV Power Levels 

 Each of the GPS SVs have slightly different output power levels.  Figure 4 

shows the measured power levels in terms of SNR of the SVs when the signal was at 

its maximum.  This occured with the receiving antenna pointing directly at the SV so 

that α = 0, with corrections applied for space loss and transmitter radiation pattern.  

The measurements are recorded from the test sessions in Chapter 7.  Table 1 shows the 

SV Pt values in terms of dB relative to the power output of the SV using PRN 1.   It is 

important to note that if a PRN assignment changes, the new SV that transmits on the 

PRN code will almost certainly have a different transmission power level than the SV 

that was previously using the PRN code.  This would necessitate an update to the 

referenced power levels that are shown in Table 1.  No SV was assigned to PRN 5 at 

the time of the measurements as it was not an active code. 
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Table 1: SV Output Power 

PRN Relative Power Pt 

(dBPRN1) 

1 0.00 

2 -0.26 

3 -0.45 

4 -0.92 

5 Not Available 

6 -0.82 

7 -0.35 

8 -1.11 

9 -0.26 

10 -1.01 

11 0.67 

12 -0.18 

13 -0.26 

14 -1.21 

15 -0.09 

16 -0.26 

17 -0.72 

18 -0.63 

19 -0.45 

20 -0.63 

21 -0.45 

22 0.00 

23 0.59 

24 0.00 

25 -0.26 

26 -0.92 

27 -1.41 

28 -1.11 

29 -0.35 

30 0.26 

31 0.09 

32 -0.63 

 3.3.2 Path Loss 

 Electromagnetic signals originating from a point and propagating outwards 

will have a reduced power spatial density with increasing distance according to  

 
24 r

Prad


 , (14) 

where Ф is the power flux density, Prad is the radiated power, and r is the distance 

from the source.  Figure 5 illustrates how varying distances pertain to GPS users on 

Earth.  From the perspective of the SV, there is a 13.88º span from the boresight to the 

Figure 4: SV Received Power Levels measured as SNR in 

AMU units. 
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limb of the Earth based on a nominal GPS SV orbit radius of 26,560 km.  The SV off-

boresight angle is represented by θ.  For a user on the Earth, the SV elevation 

represented by ϕ, ranges from 0º if the SV is at the horizon, and 90º if the SV is 

directly overhead.  The SV is significantly closer if it is directly overhead compared to 

being at the horizon. 

 

Figure 5: Varying Signal Distances for Users on the Earth 

  

The distance from the SV to a user can be expressed as a function of the SV off-

boresight angle 

    222
sincos rarr SUESr  , (15) 

where r is the distance from the SV to the user, Sr is the SV orbit radius, θ is the SV 

off-boresight angle, Er is the Earth radius, and Ua is the user altitude.  Equation 15 

only applies when the LOS vector from the user to the SV is above the horizon and is 

otherwise undefined.  Figure 6 depicts how the ratio of the maximum to minimum 

distances from the user to a SV slightly increases when the GPS receiver is in LEO.   
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Figure 6: Varying Signal Distances for a Satellite in LEO 

 

The path loss in Equation 15 is expressed in terms of the SV off-boresight angle θ.  

However, from the perspective of the GPS user, the SV elevation ϕ is measured as a 

component of L, referenced to the horizon.  The conversion of ϕ to θ is 
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where Er is the Earth radius, Sr is the SV orbit radius, and Ua is the user altitude in km.  

For example, a CubeSat orbiting at 200 km would result in θ = 14.32°.  With θ from 

(16) substituted into (15), and using r from (15) in (14) the path loss is calculated. The 

absolute value of Ф in (14) is not of interest, but rather the ratio of flux density 

variance over the range of angles θ.  The most convenient reference for the flux 

density is when θ is zero.  The Lpθ term in (12) thus simplifies to  
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Using a nominal GPS SV orbit radius of 26,560 km and a mean Earth radius of 6,370 

km, the space path loss relative to θ=0 is shown in Figure 7 for users on the surface of 

the Earth using Equation 17. 
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Figure 7: Path Loss of GPS signals relative to θ=0 

 3.3.3 SV Gain Patterns 

 The gain pattern of the SVs are designed to compensate for the effects of path 

loss, such that there is more gain towards the limb of the Earth to give a more uniform 

power over the surface.  Ideally, a pencil beam radiation pattern would provide a 

uniform power distribution over the Earth’s surface, but this is difficult to achieve in 

practice.  Rather, a dimpled lobe is realized with a helical antenna array that does not 

result in a uniform power distribution over the Earth’s surface.  Figure 8 depicts the 

ideal pattern and the approximate actual main lobe pattern of a SV antenna. 

 

 

Figure 8: GPS SV Radiation Pattern 
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 Over the years, improvements have been made to the design of the antenna 

array panel, resulting in differing radiation patterns for various SV generations called 

blocks.  Table 2 summarizes the SV members belonging to each SV design generation.  

There are many differences in the features and capabilities of the SVs from one block 

group to the next, but the design component of interest affecting SNR levels is the 

radiating L-Band antenna array panel.  

 

Table 2: SV Block Members 

Block SV Numbers Antenna  Active* Description 

I 1-11 I 0 Original concept validation satellites 

II 13-21 II 0 First full scale operation satellites 

IIA 22-40 II 12 Improved autonomy satellites 

IIR 

IIR 

41-46,51,54,56 

47,59,60,61 

IIR Legacy 

IIR Improved 

8 

4 
Replenishment satellites for Block IIA 

IIR-M 48,49,50,52,53,55,57,58 IIR Improved 7 
Modernized replenishment satellites for 

Block II 

IIF Unknown Unknown 0 
Follow On Satellites to Block IIR 

(planned) 

* As of July, 2009 

 

 The initial block I members all shared the same validation design.  Blocks II 

and IIA have a similar design and radiation pattern to block I, which was studied in 

[14].  Block IIR has two types of designs, referred to as the legacy and improved 

panels.  Ground based radiation pattern measurements were performed on Block IIR 

satellites in [15] and [16], while on-orbit measurements for Block IIR satellites have 

been performed in [17] and [18].  The measurements in [17] and [18] differentiated the 

antenna types only by block members, when in fact not all members of block IIR share 

the same design.  Therefore the data from [16] is taken as more accurate for Block IIR 

patterns because the correct distinction is made.  Figure 9 shows the radiation patterns 

for the three different SV antenna designs.   
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Figure 9: SV Transmit Antenna Radiation Patterns 

 

Fifth order approximations of the patterns are provided in Table 3.  To determine the 

effect of the transmitting GPS SV gain pattern on the received signal strength, 

Equation 16 is used to convert the measured SV elevation ϕ to the SV off-boresight 

angle θ.  The polynomial coefficients in Table 3 are then used to determine the Gtθ 

term in Equation 12 for the appropriate type of SV from which the measurement 

originated.  

 

Table 3: SV Antenna Radiation Pattern Coefficients (dB) 

 
θ

 5
 θ

 4
 θ

 3
 θ

 2
 θ

 1
 θ

0
 

II/IIA -3.165e-19 5.748e-006 -0.0040676 0.061662 -0.019623 -0.0066788 

IIR Legacy 2.5085e-5 -0.0011136 0.010073 0.0044916 0.035453 -0.051893 

IIR Improved 5.8997e-5 -0.0028536 0.040936 -0.18848 0.14967 1.1324 

  

 Table 4 shows all the active SVs with the corresponding antenna type.  The 

most up-to-date constellation status is available on the U.S. Naval Observatory 

website ftp://tycho.usno.navy.mil/pub/gps/gpstd.txt.  It should be noted that the PRN 

assignments occasionally change, and so the U.S. Naval website should be consulted 

to determine the antenna type in Table 4 for the particular SV using a PRN.    
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Table 4: GPS Satellite Constellation 

SV Block Antenna Design SV Number PRN Launch Date 

IIA II 23 32 Nov 26, 1990 

IIA II 24 24 July 4, 1991 

IIA II 25 25 Feb 23, 1992 

IIA II 26 26 July 7, 1992 

IIA II 27 27 Sept 9, 1992 

IIA II 39 09 June 26, 1993 

IIA II 34 04 Oct 26, 1993 

IIA II 36 06 Mar 10, 1994 

IIA II 33 03 Mar 28, 1996 

IIA II 40 10 July 16, 1996 

IIA II 30 30 Sept 12, 1996 

IIA II 38 08 Nov 6, 1997 

IIR IIR Legacy 43 13 July 23, 1997 

IIR IIR Legacy 46 11 Oct 7, 1999 

IIR IIR Legacy 51 20 May 11, 2000 

IIR IIR Legacy 44 28 July 16, 2000 

IIR IIR Legacy 41 14 Nov 10, 2000 

IIR IIR Legacy 54 18 Jan 30, 2001 

IIR IIR Legacy 56 16 Jan 29, 2003 

IIR IIR Legacy 45 21 Mar 31, 2003 

IIR IIR Improved 47 22 Dec 21, 2003 

IIR IIR Improved 59 19 Mar 20, 2004 

IIR IIR Improved 60 23 June 23, 2004 

IIR IIR Improved 61 02 Nov 6, 2004 

IIR-M IIR Improved 53 17 Sep 26, 2005 

IIR-M IIR Improved 52 31 Sep 25, 2006 

IIR-M IIR Improved 58 12 Nov 17, 2006 

IIR-M IIR Improved 55 15 Oct 17, 2007 

IIR-M IIR Improved 57 29 Dec 20, 2007 

IIR-M IIR Improved 48 07 Mar 15, 2008 

IIR-M IIR Improved 49 01 Mar 24, 2009 

IIR-M IIR Improved 50 05 Aug 17, 2009 

(August, 2009, ftp://tycho.usno.navy.mil/pub/gps/gpssat.txt) 

 3.3.4 Atmosphere 

 Although not very significant, there is some attenuation of the GPS signals by 

the atmosphere.  Atmospheric attenuation is not a concern for a GPS receiver in space, 

but for the purpose of making ground measurements the effect is examined.  Signals 

arriving from the zenith will encounter almost no attenuation, while signals arriving 

near the horizon will travel through a greater distance of the atmosphere and be 

attenuated more.  The effect on the ground is approximated by the equation [14] 
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, (18) 

where a = Hm/RE ; Hm is the equivalent height for oxygen, Hm = 6 km, and RE is the 

Earth radius,  where RE ≈ 6370 km. Figure 10 shows the attenuation from Equation 18, 

with only very low elevations having any significant attenuation.  The atmospheric 

attenuation correction La in Equation 12 is applied to the measured SNR value 

according to Equation 18. 

 

 

Figure 10: Atmospheric Attenuation at the Earth's Surface 

 3.3.5 SV Yaw Attitude 

 The GPS SV has two attitude constraints:  the antenna boresight must remain 

pointing at the center of the Earth, and the SV solar panels need to remain 

perpendicular to the Sun.  The SV yaw attitude therefore must change to maintain 

these constraints.  In other words, the SV remains pointing directly at the Earth while 

rotating to optimize the solar panel orientation.  This is illustrated in Figure 11. 
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 This yaw rotation would not affect the SNR measurements if the SV radiation 

pattern were perfectly symmetrical, but this is not the case.  Asymmetries in the 

azimuth direction slightly changes the power distribution on the Earth as the yaw is 

changed.  The yaw attitude changes relatively slowly during most of its orbit, except 

for the so called noon turn and midnight turn maneuvers where a much higher yaw 

rate occurs to maintain the optimal yaw attitude [19]. 

 The SV yaw attitude can be modeled for each SV, but this involves significant 

additional complexity and more information is needed about the SV transmitting 

antenna array than is available in the public knowledge domain.  Therefore, a 

correction is not applied to the measured SNR value relating to the SV yaw attitude.  

Instead, the mean radiation pattern in the azimuth direction is used.  Asymmetries in 

the radiation pattern contribute to error of the SNR measurement.   

 3.3.6 Ionospheric Scintillation 

 As with the atmospheric attenuation, ionospheric scintillation is not a concern 

for a GPS receiver in space, but because it potentially affects the ground tests, it 

deserves examination.  Ionospheric scintillation is defined as amplitude and phase 

signal fluctuations caused by irregularities of the electron density in the ionosphere 

[13].  The effects of scintillation are sufficient enough to cause a GPS receiver to 

completely lose a GPS signal for short periods of time, but generally all of the visible 

SV signals are not affected simultaneously.  The ionospheric irregularities are most 

Earth 

GPS SV 

 

Figure 11: SV Yaw Attitude Changes to Optimize Solar Panel Orientation in Orbit 
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pronounced during the peak of the 11-year solar cycle, with the equatorial regions 

normally experiencing the phenomenon shortly after sunset, and higher latitude 

regions generally experiencing weaker but more prolonged periods of scintillation 

[13].  Modeling the effects of scintillation is difficult, and not practical for real time 

embedded applications.  Some information about the occurrence of scintillation is 

however possible if a dual frequency GPS is used.  The degree to which a signal is 

affected by scintillation is dependent upon frequency, and thus the effects can be 

extracted by comparing the signal phase and amplitude at the different L1 and L2 

frequencies.  Dual frequency low cost COTS are however not available at the time of 

this writing.  The effects of scintillation are not factored into the calculations in this 

study, thus contributing to the overall error of the SNR measurements. 

 3.3.7 Multipath 

 Signal multipath occurs when an antenna receives signals from the same 

source via multiple paths, usually because of reflections.  Reflections are caused by 

the Earth or any other objects near the receiver and is a significant error contributor to 

GPS measurements on the ground, both for position and attitude determination.  

Reflections cause the SNR value to fluctuate and is more likely to occur for signals 

arriving at lower elevations for ground-based measurements.  An orbiting CubeSat has 

low multipath susceptibility, unless it has protruding objects such as deployable solar 

panels that could reflect GPS signals to the antenna under various conditions. 

 The effect of multipath for GPS signals is reduced by using circular 

polarization of the signals.  The GPS signals use right hand circular polarization 

(RHCP).  A reflected signal changes polarization direction, meaning signals that are 

reflected any odd number of times are left hand circular polarized (LHCP).  Most GPS 

antennas have some degree of LHCP signal rejection.  The effects of multipath are not 

calculated in this study, and so contribute to the noise and error of the SNR 

measurements. 
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3.4 Antenna Characterization 

 The angle at which a GPS signal arrives at the receiving antenna affects the 

signal strength (and hence SNR) of the signal at the input of the GPS receiver.  The 

radiation pattern of the antenna influences the relationship of SNR versus the angle α.  

A hardware calibration mapping is performed to characterize the SNR-to-α 

relationship. 

 There are three basic ways to characterize an antenna so that it is calibrated for 

the SNR-to-α mapping.  If the antenna is a commercial item, the radiation pattern may 

be extracted from a datasheet.  An anechoic chamber may also be used, where 

measurements can be taken at whatever detail is desired.  Otherwise, GPS signal 

measurements can be taken using a precisely known static attitude and LOS SV 

vectors. A good quality antenna characterization is possible if the measurements are 

averaged over many hours and include data points from wide range of elevations.  

3.5 GPS Receivers 

 The choice of which COTS GPS receiver to use is separated into two groups:  

Ground based testing and space application.  The criteria for each purpose are mostly 

the same, with the space application receiver having the additional and all important 

requirement to be able to function in orbit.  The remaining criteria will be considered 

equivalent for both ground and space applications.  Some of the criteria are impossible 

to fulfill simultaneously, and so design trade-offs must be made. 

 3.5.1 Space Capability 

 Under the COCOM agreement between various nations (now succeeded by the 

Wassenaar Arrangement), GPS manufacturers place operational limits on COTS 

products for security reasons.  The GPS receiver will stop working when both 515 m/s 

velocity and 18,300 m altitude are exceeded [8].  This presents a major obstacle for 

budget conscious CubeSat missions attempting to use a COTS GPS product. 

 Another consideration for space applications is the physical environment.  

Certain electronic devices such as aluminum electrolytic capacitors are prone to failure 
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in vacuum conditions.  Being aware of such environmental limitations is important 

when using COTS components. 

 3.5.2 Low Power 

 The power budget for small satellites is very restrictive.  The small size of the 

satellite solar panels limits average power consumption to a few watts at best for the 

entire system.  Intelligent duty cycling of the satellite subsystems is normally required 

to conserve energy.  Since there is always some overhead associated with a GPS 

receiver establishing a signal lock when it is powered up before it becomes 

operational, the GPS system is somewhat limited by how much duty cycling is 

possible.  For ground testing, low power is also a requirement since the testbed is 

deployed for many hours at a time for performance evaluation and data logging. 

 3.5.3 SNR Measurement Resolution 

 The National Marine Electronics Association (NMEA) defines a 

communication protocol that is widely used amongst GPS receiver manufacturers.  A 

typical NMEA GPS data packet contains reports of SV SNR values in the units dB-

Hz.  Some manufacturers also use their own protocol such as Trimble Standard 

Interface Protocol (TSIP) with the SNR reported in alternate units.  The SNR value is 

normally given as an integer data type, because very accurate measurements are not 

needed for typical GPS applications.  A very weak GPS signal is in the range of 30 

dB-Hz, while a very strong signal is in the range of 55 dB-Hz.  This type of coarse 

measurement is not ideal for SNR attitude determination, as there are only about 25 

unique quantization levels to distinguish the full range of off-boresight angles.   

 GPS products manufactured by Trimble are all capable of using the TSIP 

Protocol.  This protocol allows for the SNR units to be provided in either dB-Hz units 

as integers, or AMUs as floating point numbers.  The resolution of the AMU units is 

not consistent for all Trimble products, but the resolution has been found to be better 

than the dB-Hz units for the Trimble Copernicus GPS receiver listed in Table 5.  The 

relationship of the SNR between dB-Hz and AMUs is [20] 
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  2
10log10 AMUBWHzdB  , (19) 

where BW is the measurement bandwidth , which is 1 kHz in Trimble products. 

 3.5.4 Update Rate  

 The standard update rate for most COTS GPS receivers is 1 Hz.  Recently a 

number of GPS receivers have become available that can now provide update rates of 

5 Hz or even 10 Hz.  The attitude of a small satellite is not normally changing so 

quickly that such that a high update rate is required, but the additional samples could 

be beneficial for improving the quantization level via oversampling. 

 3.5.5 GPS Receiver Choices 

 Four GPS receivers are considered for use with the testbed and future 

implementation on a CubeSat.  Table 5 summarizes the features of each module 

relating to the most important selection criteria. 

 

Table 5: GPS Receiver Features 

GPS Space Capable SNR Units Update 

Rate 

Power 

Consumption 

Mass 

Trimble Copernicus No dB-Hz / AMU 1 Hz 120 mW 1.7 g 

SkyTraq Venus634FLPx No dB-Hz 10 Hz 100 mW 1.0 g 

DLR Phoenix  Yes dB-Hz 1 Hz 850 mW 20 g 

Navman Jupiter 12 
Tested Beyond 

COCOM Limits 
dB-Hz 1 Hz 280 mW 25 g 

 

 The Trimble Copernicus GPS receiver is chosen for ground based testing of 

the SNR ADS because it is able to provide a higher resolution SNR measurement in 

AMU units rather than dB-Hz units.  This allows for more equal performance 

comparisons to the previous results which also used Trimble products.  Although the 

Copernicus receiver is not a space capable module, it serves as a good module for 

ground measurement testing. 

 The SkyTraq Venus634FLPx  is considered because of its low power 

consumption, high update rate of 10 Hz, and extremely small size of 1 cm
2
.  To 
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perform ground measurements, the SkyTraq is probably the best candidate for 

modules with dB-Hz SNR measurement units. 

 The German Space Agency (DLR) has developed the Phoenix space borne 

GPS based on the Orion architecture.  This model of GPS has been implemented in the 

Compass-1 CubeSat design [2] which was successfully launched on April 28, 2008.  

The flight tested design in a CubeSat application make this GPS receiver a very good 

candidate.  Obtaining such a specialized receiver may be difficult. 

 The Navman Jupiter 12 GPS was used on the payload of the sounding rocket 

SRP-5 mission at the University of Alaska in January, 2009.  The GPS provided raw 

data packets during the flight, which encountered conditions far exceeding the 

COCOM limits.  Further testing of this GPS module may reveal satisfactory 

performance for orbital environments. 
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Chapter 4: Antenna Design 

4.1 Conventional GPS Antennas 

 One of the most widely used antenna for GPS applications are microstrip patch 

antennas.  Helical antennas are also sometimes used for applications such as smart 

phones.  Other specialty antennas such as choke-ring patch antennas are used for 

precision geodetic surveying applications. 

 Because the measurements of SNR attitude determination depend directly on 

the gain pattern of the receiving antenna, it is the characteristic that is most important 

for SNR attitude determination.  The reasons are as follows:  Consider an isotropic 

antenna.  The gain is equal in all directions.  There would be no variation in signal 

strength regardless of the antenna attitude.  This type of antenna would not reveal any 

information about the angle of the arriving signal.  On the other extreme we have a 

parabolic antenna.  The gain is very high, but must be precisely aimed at the 

transmitting signal.  Adjusting the antenna attitude slightly would result in a large 

change in receive signal SNR.  This is good for accuracy, but the receive signal will be 

too weak for detection in all cases except for the unlikely event that the antenna is 

pointed directly at the transmitting SV.  In GPS applications, signals are used from 

multiple SVs simultaneously, originating from multiple directions.  Thus, a 

compromise is needed between accuracy and field of view.  The goal is to have a 

significant signal strength variation from the boresight to 90º, but still have sufficient 

signal strength at 90º for the GPS receiver to detect the signal.  An initial estimated 

target is for the pattern amplitude roll-off to be about 20 dB from the boresight to 90º.  

This estimation comes from the observation that GPS receivers are able to decode 

signals reliably at about 35 dB-Hz, while the highest observed signals are in the range 

of about 55 dB-Hz.  If the gain pattern amplitude roll-off is steeper than 20 dB / 90º, it 

is more likely that GPS signals will be out of the antenna’s field of view, and accuracy 

will be diminished with fewer GPS SV signal locks.  On the other hand, if the roll-off 

is too shallow, there will not be a significant difference in SNR when the off-boresight 

angle is changed, thus reducing the resolution of the antenna mapping function.  
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 The pattern amplitude roll-off should also ideally be monotonic with 

minimized ripple.  If there is ripple in the radiation pattern, or if there are side lobes, 

then there will be non-unique off-boresight angles for any given received signal 

strength.  The radiation pattern should also be symmetrical about the azimuth 

direction.  This is because the attitude algorithm is based on the dot product of the 

antenna boresight vector and SV LOS vector.  It makes no distinction for an azimuth 

variation.  

 The following four antenna types will be examined to determine the best 

candidate for SNR attitude determination:  conventional microstrip patch, choke-ring 

patch, pinwheel, and shorted annular patch. 

 4.1.1 Conventional Microstrip Patch Antenna 

 The conventional microstrip antenna is often used for automotive and aviation 

applications.  Both rectangular and circular radiating elements are common.  The 

theoretical gain pattern of the conventional patch resembles a hemispherical lobe, 

assuming an infinite ground plane.  This is ideal for normal GPS applications, because 

the entire sky is within a zenith pointing antenna’s field of view.  The antenna is able 

to receive signals from all areas of the sky at about the same signal strength. 

 The theoretical gain pattern is not realized however because real antennas do 

not have infinite ground planes.  The radiation pattern is significantly affected because 

of E-field diffraction at the edge of the ground plane [21].  Figure 12a illustrates the 

difference in the E-field radiation patterns between the theoretical and measured 

pattern of a conventional patch antenna. The ripple in the pattern is of no consequence 

for the typical GPS user as long as the SNR is high enough to detect the signal.  For 

GPS SNR attitude determination measurements however, the radiation pattern ripple is 

problematic.  The mapping of off-boresight angles to signal strength becomes non-

unique.  Also, the gain roll-off is shallow, resulting in little appreciable signal strength 

difference from the boresight to 90º. 
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 (a) (b) 

Figure 12: Conventional Patch Antenna (a) Example of Theoretical and Actual Radiation Pattern 

Comparison, and (b) Miniaturized High Permittivity Dielectric Square Patch 

 

 4.1.2 Choke-Ring Patch Antenna 

 The choke-ring antenna consists of a normal patch antenna residing on a 

concentric corrugated ground structure and is categorized as a Reduced Surface Wave 

(RSW) antenna.  The primary function of the choke-ring, shown in Figure 13 is to 

minimize accuracy-reducing multipath signals.  A side effect of the choke ring is a 

gain pattern amplitude roll-off that is steeper and smoother than the conventional 

patch, which are a desirable characteristic. 

 

 

 

 

 

 

 

 

 

 

 Multipath signals are rejected because the antenna gain near and below the 

horizon is suppressed by the choke-ring.  The majority of multipath signals arrive 

from these regions, either from ground reflections or by reflections off objects on the 

Figure 13: Choke-Ring Antenna. 

Source: www.ngs.noaa.gov/ANTCAL/ 
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ground.  High precision applications such as surveying or carrier wave interferometry 

benefit from using a choke-ring antenna.  Despite the desired electrical characteristics, 

size and mass exclude a choke-ring antenna for small satellites.   

 4.1.3 Pinwheel Antenna  

 The pinwheel antenna is a microstrip RSW design.  A carefully crafted spiral 

pattern with outer concentric rings is etched as the radiator.  Substrate air gaps line the 

perimeter of the circular antenna as shown in Figure 14.  The characteristics of the 

pinwheel were measured in [22] and found to be similar to the choke-ring.  The gain 

amplitude roll-off is about 15 dB from the boresight to 90º.  The light weight and 

radiation pattern characteristics of the design are favorable, however the complexity 

involved in manufacturing the antenna prevented its use in this study. 

  

  

Figure 14: Spiral Pinwheel Antenna Structure 

(Source: Kunysz, NovAtel Inc.) 
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 4.1.4 Shorted Annular Patch Antenna 

 The SAP antenna is also a RSW antenna like the choke-ring, but its mass and 

size is similar to a conventional patch antenna.  Because the surface waves of the 

antenna are reduced, the ground plane edge diffraction is also reduced.  The result is a 

better agreement between the theoretical and measured radiation pattern [23].  An 

example is illustrated in Figure 15.  The gain pattern roll-off is also significantly 

steeper than the conventional patch— a desired characteristic for both multipath 

reduction and SNR mapping function resolution.  The SAP antenna was shown in [22] 

to provide similar or better performance than the choke-ring design while being at 

least an order o magnitude smaller in 

terms of volume, and being smaller 

and easier to manufacture than the 

pinwheel design.  The improved 

performance and low mass make the 

SAP antenna a strong candidate for 

use with SNR attitude determination. 

4.2 Shorted Annular Patch Antenna Theory 

 The principle of the SAP antenna is that surface waves and lateral radiation is 

minimized if the outer radius is set to meet the condition [24] 

 


11'x
a  , (20) 

where x11 is the first root of the derivative of the first-order Bessel function, and β is 

the free-space propagation constant and a is the outer radius.  The reduction of lateral 

radiation consequently reduces ground plane edge diffraction which contributes to the 

non-monotonic radiation pattern of conventional patch antennas.  The condition in 

Equation 20 results in a larger radius compared to a conventional patch antenna, and 

the antenna is no longer resonant for the desired frequency without further adjustment.  

To make the antenna resonant, a short circuited annular ring is introduced at the center 

Figure 15: Theoretical and Actual Radiation 

Pattern for a SAP Antenna 
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of patch with radius b.  The frequency of the SAP antenna operating in the TM11 mode 

relating to the outer and inner patch radii is given by [24] 

  0)()()()( 1111 
ee kaYkbJkbYkaJ , (21) 

where the prime notation denotes the first derivative, the subscript denotes the order of 

the function, J is the Bessel function of the first kind, Y is the Bessel function of the 

second kind,  ae is the effective outer radius, b is the inner radius, and k is the substrate 

wave number. Figure 16 illustrates the antenna geometry.   

 

 

 

A correction is applied to the outer physical radius a to account for field fringing [24], 

resulting in an effective radius ae given by 
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where h is the substrate thickness.   

 Unlike the conventional patch, the gain pattern amplitude roll-off is adjustable 

for a SAP antenna.  The maximum gain and maximum surface wave reduction is 

achieved by the outer radius condition in Equation 20, but the outer radius may be 

decreased so long as the inner radius is also adjusted to satisfy Equation 21.  As the 

Figure 16: SAP Antenna Geometry: Top and Lateral Views 



 39 

inner radius in Equation 21 approaches zero, the antenna characteristics will approach 

that of a conventional circular patch antenna.  For the GPS L1 frequency of 1.57542 

GHz, the outer radius a is 55.7 mm for maximum gain. 

 SAP antennas with outer radii 35, 45 and 55.7 mm were configured in [22] to 

determine the multipath signal rejection performance relative to other antennas.  The 

gain pattern amplitude roll-off values were 15, 20 and 25 dB respectively. The 45 mm 

outer radius antenna was the best performer, even against a commercial high precision 

surveying antenna.  The effect of the polarization axial ratio on multipath rejection 

was also studied in [25] for various configurations of SAP designs.  The result showed 

that the highest surface wave reduction according to Equation 20 is not the best 

performer for multipath reduction.  Instead, a SAP antenna with a slightly smaller 

outer radius than 55.7 mm has a better axial ratio and overall multipath performance.  

This finding is consistent with the results presented in [26]. 

4.3 SAP Antenna Design 

 The electrical design specifications for a GPS L1 antenna are as follows: 

 L1 frequency of 1575.42 MHz. 

 50 Ω Impedance. 

 Right Hand Circular Polarization (RHCP). 

 Bandwidth at least equal to the GPS L1 spread spectrum: 2 MHz for C/A code, 

measured to sinc first nulls. 

 

 The SAP antenna depicted in Figure 17 is fabricated on a milling machine 

using Rogers RT/Duroid 5870 substrate.  Table 6 shows the design parameters.  Two 

probe feed points are placed at a distance ρ separated by 90º to achieve right hand 

circular polarization and a 50 Ω impedance match.  The feedpoints on the antenna are 

two U.FL type surface mount connectors mounted on the underside groundplane.  A 

feed probe is soldered to the center conductor of the connector and protrudes through 

the dielectric to the top radiator where it is also soldered.   A Mini-Circuits QCN-19 

surface mount quadrature hybrid is used to sum the feed points.   
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Table 6: SAP Design Parameters 

 

     Figure 17: SAP Antenna 

 

 

 

4.4 SAP Antenna Measurements 

 A Hewlett Packard E8803A PNA Vector Network Analyzer was used to 

perform the antenna electrical measurements.  The calibration of the instrument was 

performed by a custom calibration board.  The board had open, shorted and 50 Ω loads 

terminated directly on the same type of U.FL connector as the antenna, using the same 

type of substrate.  This created a calibration reference to the antenna ground plane.   

 4.4.1 SAP Electrical Measurements 

 The electrical parameters were virtually identical for each feed probe, so the 

results are presented as representing each of the feed points.  The first measured 

parameter is the VSWR shown in Figure 18.  The antenna match looks very good at 

the GPS L1 frequency of 1.57542 GHz, with a VSWR of 1.067.  The antenna 

bandwidth, defined as SWR < 2, is from 1.56 GHz to 1.59 GHz, or 30 MHz.  The 

bandwidth satisfies the minimum 2 MHz requirement.  The same marker locations are 

used from Figure 18 through Figure 20.  

  

Parameter SAP Design 

Groundplane 

 
150

2
 mm 

Inner Radius         

b 
17 mm 

Feedpoint            

ρ 
14 mm 

Outer Radius            

a 
45 mm 

Substrate Dielectric           

εr 
2.33 

Substrate Thickness            

 h 
3.2 mm 
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Figure 18: SAP Network Analyzer VSWR S11 Measurements 

 

Figure 19: SAP Network Analyzer S11 Insertion Loss Measurements  
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The smith chart in Figure 20 confirms a well tuned antenna.  The impedance is slightly 

capacitive at the target L1 frequency, and is closely matched to the target 50 Ω 

impedance at 51.67 Ω. 

  

Figure 20: SAP S11 Smith Chart Measurement 

   4.4.2 SAP Radiation Pattern Measurements  

 The radiation pattern was not measured directly in an anechoic chamber, but 

was rather inferred by measuring the SNR of GPS SVs over a period of time, similar 

to the procedures used in [3], [4], [5], [6], [7].  The SAP antenna was statically set up 

in an open field in the zenith direction for approximately 20 hours.  Over this time, a 

good range of elevation and azimuth data points were collected in order to construct 

the antenna radiation pattern. 

 The SNR measurements in Figure 21 were collected as linear AMU units using 

a Trimble Copernicus GPS.  A best-fit curve is modeled from the SNR which 

represents the SNR-to-α mapping function.   
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Figure 21: SNR-to-α Mapping: Measured AMU Samples (Blue) and Best Fit (Red) 

 

The coefficients of a third order polynomial mapping function are listed in Table 7 

where the SNR values are in AMU units, normalized to the maximum AMU level so 

that 

 
k

SNR
SNRN  , (23) 

where  0 < SNRN < 1 and the maximum measured SNR is k. 

 

Table 7: SAP Antenna Mapping Function Coefficients 

SNRN
3
 SNRN

2
 SNRN

1
 SNRN

0
 

-42.3644 68.6685 -118.4877 99.7649 

  

The function is converted to dB-Hz units using Equation 19 and plotted in Figure 22, 

and is then used to generate the standard polar radiation pattern in Figure 23.  The 

radiation pattern and SNR-to-α mapping are inverse functions of each other. There is 

no distinction for any variations in the azimuth direction that may exist in the pattern. 
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Figure 22: SNR-to-α Mapping Best Fit from Figure 21 in dB-Hz Units  

 

 

Figure 23: SAP Antenna Radiation Pattern from Best-Fit in Figure 22 

 

 The axial ratio was not measured for the antenna, but should be measured in 

any future work.  The measurements in [25] are a good comparative reference for a 

SAP antenna with the same dimensions as described in Table 6.  Anechoic chamber 

measurements should also be performed to confirm the radiation pattern in Figure 23 

and test for any azimuth variations. 
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Chapter 5: Testbed Design 

5.1 Design Overview 

 The testbed is an embedded system that serves as a development and validation 

platform that can be used as a reference design for a SNR satellite attitude 

determination subsystem.  A simplified block diagram of the testbed hardware design 

is shown in Figure 24. 

 

Figure 24: Testbed Block Diagram 

 

 The processing hardware is comprised of two Texas Instruments MSP430 

microcontroller Units (MCUs).  Two MCUs are used in the design for maximum 

flexibility and capability of the testbed system.  The alternative approach is to use a 

more capable processor such as an ARM Cortex-M series MCU, however such 

processors have fewer low power modes and flexibility compared to the MSP430 

series.  For example, in order to use certain peripherals such as UARTs, the Cortex-M 

series processors must remain in a high power mode even while the processor is idle.  

By contrast, the MSP430 series MCUs have more fine-grained power control that 

allows peripherals to be operational while the MCU operates in deep power down 

modes.  Using two processors allows the power consumption of the overall system to 

scale proportionally to the processing requirements.  The power consumption stays 
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low when the processing demands are low.  As the processing demands increases 

beyond the capability of a single processor, the additional processor is capable of 

meeting the added processing requirement.  The dual processor approach also 

increases the available memory and total number of peripherals, allowing more input 

devices to be attached to the system.   A newly developed protocol is used for inter-

processor communication.  More detail about the protocol is discussed in more detail 

later in the chapter. 

 The input devices include at least one GPS Receiver, but a second GPS 

Receiver may also be used.  The optional second GPS Receiver allows the testbed to: 

 Simultaneously compare different antenna types. 

 Simultaneously compare different GPS Receivers. 

 Use two non-aligned antennas to calculate a 3-axis attitude estimation. 

A reference may also be connected as an input device.  It serves as a truth attitude 

estimation comparison and can be any type of device such as a magnetometer or 

carrier wave attitude GPS system. 

 A removable micro SD Card serves as the storage medium that logs GPS data 

for analysis and post processing the data at a later time.  This allows for the testbed to 

be a stand-alone embedded system— not requiring any computer connection while 

measurements are being made. 

 The user interface consists of push buttons and an Organic Light Emitting 

Diode (OLED) graphical screen.  The screen displays the control menu and other 

selectable parameters.  The user interface allows the user to easily configure and 

operate the testbed according to the desire of the user. 

 Power is supplied either by a 3.7 V Polymer Lithium Ion battery or an external 

5V supply via a barrel connector.  The external supply provides power when 

connected, but if the external supply is not available the power is supplied by the 

battery.  A step-up switching regulator is used to boost the input voltage to 15V for the 

OLED screen, and a 3.3V linear regulator with low quiescent current is used for all the 

IC supplies.  A Supply Voltage Supervisor (SVS) peripheral on the MSP430 MCU 
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serves as an under voltage lockout comparator to avoid over discharging the lithium 

battery. 

 Several revisions of the testbed were designed and manufactured during the 

course of hardware development:  Rev. 1.2, Rev. 2.0 and Rev. 2.1.  Table 8 

summarizes the main design differences between board revisions.  Figure 25 shows 

the circuit boards of the different design revisions. 

 

Table 8: Testbed Hardware Revision Differences 

Hardware 

Revision 

Clock Inter-Processor 

Communication 

GPS Flash Storage MSP430 

MCUs 

1.2 DCO 8 bit I/O On board On board 

Flash 
2 x F249 

2.0 Crystal 8 bit DMA External Removable 

SD Card 

1 x F5419 

1 x F2617 

2.1 Crystal 16 bit DMA External Removable 

SD Card 
2 x F2617 

 

 

 (a) (b) (c) 

Figure 25: Testbed PCBs of (a) Revision 1.2, (b) Revision 2.0 and (c) Revision 2.1 

5.2 Hardware Revision 1.2 Design 

 Revision 1.2 was the first PCB that was manufactured.  The board performed 

well for the initial design, and software was developed to successfully compute a real-

time attitude solution.  Nevertheless, the board did have some shortcomings that 

needed attention.  The board did not have an external crystal and used only the Digital 

Controlled Oscillator (DCO) for a clock source.  The internal DCO has a much lower 

temperature stability compared to a crystal, and this became problematic during very 

low temperature testing when the system became unreliable because of serial 

communication port clock skews. 
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 The Rev 1.2 PCB design had another constraint which was to have the GPS 

receiver module connector header directly on the PCB.  This limited the design to be 

capable of using only one kind of GPS receiver module.  A more versatile design 

adopted in later hardware revisions was to have the GPS module on a small separate 

PCB with a ribbon cable connection to the testbed.  This allows any GPS module to be 

used with the testbed. 

 Lastly, the storage solution for Rev 1.2 was to have two SPI flash memory ICs.  

Data stored to flash would need to be download via a serial cable to a host computer to 

be analyzed.  Although this was a workable system, removable SD Card flash media 

was used in later revisions for more convenience and much higher storage capacities.  

5.3 Hardware Revision 2.0 Design 

 Some of the shortcomings of Rev 1.2 were addressed with the design of Rev 

2.0 hardware.  A crystal oscillator was used to solve the communication problems at 

extreme temperatures.  A new Inter-Processor Communication (IPC) protocol was 

developed for faster communication using Direct Memory Access (DMA) controllers 

and timer peripherals.  The GPS receiver modules were no longer connected directly 

to the testbed to allow more flexibility of using various types of receivers.  The newest 

available MSP430 variant 54xx series MPU was also used for the higher available 

clock speed, more communication ports and memory capabilities.  However, the 

decision to use the newest hardware available proved to be troublesome due to some 

compatibility issues with the software development tools. 

 5.3.1  MSP430 54xx Series Issues 

 Compatibility issues became apparent when development began with the 

newly added 54xx series MCU.  Considerable time was spent troubleshooting 

erroneous program results before the following problems were discovered:  The 

watchdog timer and hardware multiplier memory address definitions were incorrect in 

the software tools, and a hardware bug caused incorrect program flow while using the 

Joint Test Action Group (JTAG) debugger. 
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 Normally when a MPU peripheral address such as a watchdog is not the same 

from one MPU variant to the next, it is transparent to the programmer because 

symbolic references are used in a header file of the program.  The problem in the case 

of the 54xx arose because all previous variants of the MSP430 used a common address 

for both the watchdog timer and the hardware multiplier.  The programmers of the 

Pumpkin RTOS took this for granted and hard-coded the addresses in the RTOS 

library.  Thus, when the code from the library was executed on the 54xx MPU, 

sporadic resets would occur when the watchdog timer peripheral was accessed from 

within the RTOS library code.  After consulting with the RTOS vendor, the problem 

was confirmed and the vendor agreed to provide a new library that did not use the 

watchdog timer.  While this solved the sporadic reset problems, unexpected program 

results persisted during code development.  It was later found that the Imagecraft 

compiler also used an incorrect peripheral address for the hardware multiplier.  The 

hardware multiplier peripheral was disabled within the software tools as a work-

around, but this also reduced processing performance. 

 While running the 54xx hardware in the debug mode in an attempt to discover 

a software bug, the program executed in an unexpected fashion.  When the MCU 

errata sheet was closely examined, it was discovered that a hardware bug causes the 

MCU execute code at the incorrect address while using the JTAG debugger (errata 

item EEM6).  The errata workaround was to manually set the program execution 

address if continuing to executing code after reaching a debugging breakpoint. 

 Fearing even more time-consuming obstacles would arise that could prevent 

timely progression of software development, the 54xx series MCU was abandoned and 

a subsequent PCB was designed to use the 26xx series MCU which was known to be 

compatible with all the software tools.  The compiler tools were also changed from 

Imagecraft ICC to Texas Instruments Code Composer Studio.  The lesson learned here 

is to be familiar with all silicon errata pertaining to the design early in the design 

phase. 
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5.4  Hardware Revision 2.1 Design 

 The overall design of Rev 2.1 was kept nearly the same as Rev 2.0 with the 

exception of eliminating the 54xx series MPU in favor of the proven 26xx series.  The 

IPC protocol was also changed to a 16-bit data bus from 8-bit.  Some other minor 

enhancements included adding more status LEDs for debugging, a header for power 

measurements, ground pads for oscilloscope probes, and configuring the power 

management for soft shutdown control.  A detailed block diagram is shown in Figure 

26 for the final design of the testbed. 

 

Figure 26: Testbed PCB Revision 2.1 Block Diagram 
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MOSFET Q1.  When the external source is connected, Q1 is off and unloads the 

battery so it can be properly charged.  There is some efficiency loss through the diode, 

but high efficiency is not a concern when using the external power source.  Q1 is on 

when the external power source is not connected, providing a low-loss power path for 

the battery.  This simple power control mechanism is more battery efficient than the 

traditional two-diode ORing approach. 

 The power distribution of the testbed is controlled through software as both 

MCUs have continuous power when a power source is connected.  The MCUs remain 

in Low Power Mode (LPM) 4, the lowest power MSP430 sleep mode, until the power 

switch is activated.  When the power switch is turned on, the MCUs enable power to 

the remaining circuits.  This software controlled power scheme is implemented 

because it allows for a graceful shutdown of external devices.  The devices requiring a 

graceful shutdown are the GPS modules, the OLED screen, and the SD Card.  After 

the power switch is turned off, the following actions are taken prior to shutdown and 

entering LPM4: 

 A message is sent to the GPS modules to save ephemeris information to non-

volatile memory.  This reduces startup time for the next power up. 

 The OLED screen 15 V power is disabled for at least 100 ms prior to logic 

power off according to datasheet specification. 

 Any data queued to be written to the SD Card is completed. 

 When the graceful shutdown actions are completed, the power to the rest of the 

circuit is removed.  The MCUs are also able to monitor the battery voltage, and force a 

graceful shutdown when the battery is nearing the under voltage lockout of 2.8 V.  

While the testbed is shutdown, 11 µA of current is still consumed by the MCUs and 

by the LDO quiescent current.  If a battery is nearly depleted, it should not remain 

connected for an extended time of several months or years to avoid slowly over-

discharging the battery. 
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 5.4.2 Clock Generation 

 Both MSP430 processors and peripherals are primarily sourced by the internal 

DCO oscillator.  MCU0 additionally has a 32768 Hz crystal for RTOS tick generation, 

and to serve as a software Frequency Locked Loop (FLL) base for the DCO.  The 

stable characteristics of the crystal is required for reliable serial port communication as 

the DCO has considerable frequency drift over wide temperature ranges.  The software 

FLL works by periodically comparing the DCO clock count with the crystal, and 

adjusting the DCO settings to maintain the desired frequency as closely as possible.  

The advantage to the software FLL is the capability of having lower power 

consumption by avoiding a high frequency crystal to drive the UART peripherals.  By 

using the DCO instead of a high frequency crystal, the UART is able to receive 

characters while the MCU is operating in LPM3 thanks to the very fast startup time of 

the DCO.  If a high speed crystal is used as a clock source for the UART, the MCU 

cannot operate in a mode lower than LPM0 because of the crystal slow startup 

characteristics.  This would significantly increasing power consumption while the 

processor is idle. 

 The clock module of the 2xx series MSP430 has a feature whereby if the 

configured clock source is stops, it automatically reverts to the internal DCO as the 

clock source.  This feature is exploited by MCU1, as it is configured to be sourced 

externally from the MCU0 clock output for IPC synchronization.  When the transfer is 

complete and the clock output from MCU0 is disabled, MCU1 continues to operate 

using the internal DCO. 

 5.4.3 Memory Storage 

 The interface to the SD Card removable memory is capable of being connected 

in two ways for development flexibility, but only one can be used at a time.  The first 

is for MCU0 to communicate directly with the SD Card via a SPI link.  In this case, 

MCU0 must conduct all the low level file structure operations of the File Allocation 

Table (FAT).  The second involves an extra IC called DOSONCHIP.  This circuit 

handles all the low level FAT file operations and writes files to the SD Card, 
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simplifying development.  In this configuration, MCU1 handles the data storage 

operations.  For the first case where MCU0 handles the SD Card communication 

directly, the DOSONCHIP IC is either not populated on the PCB or is placed in a reset 

state to avoid contention of the SD Card SPI signals.  

5.5  IPC Protocol 

 The MSP430 does not have an external memory bus, so all communication 

must happen via one of the serial peripherals, or through the general digital parallel 

I/O ports for an IPC protocol.  The three available serial peripheral choices are the 

Serial Peripheral Interface (SPI), Universal Asynchronous Receiver Transmitter 

(UART), or Inter-Integrated Circuit (I
2
C).  SPI has the fastest transfer rate of 4 Mbps 

(limited by slave device) for a 2xx series MSP430.  Rather than using one of the serial 

peripherals, the digital parallel IO ports with a Direct Memory Access (DMA) 

controller is explored for a faster and more energy efficient protocol [27].  This 

protocol, called the Parallel Inter-Processor Communication (PIPC), is applicable to 

the general case of multiple processors, although the embedded system for this thesis 

uses only two processors.  For the case where more than two processors are used, the 

PICP protocol allows for a processor to send a data packet as one-to-one, one-to-

many, or one-to-all types of transfers.  This capability is highly beneficial for 

broadcast messages. 

 Using a parallel data bus goes against the trend of modern computer systems, 

where a migration has happened from parallel to serial buses for hard drives and 

graphics cards.  For such systems, maintaining signal integrity becomes increasingly 

difficult beyond about 100 MHz. For the frequency domain of low power embedded 

systems however, signal integrity is generally not a constraint for a parallel bus with 

signal lengths less than 10 cm.  

 5.5.1 PIPC Protocol Operation 

 For the MSP430 microcontroller, digital IO normally requires 6 clock cycles 

for read/write operations of the port.  By contrast, the DMA controller can read/write 
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Figure 27: PIPC Synchronization Signals 

data from/to the ports every two clock cycles, so it is highly advantageous to make use 

of the DMA controller.  When two 8-bit ports are combined on the MSP430 to make a 

16-bit data bus, two bytes are transferred per cycle.  Thus for a 16 MHz processor, a 

maximum throughput of 16 MB/s is possible.   

 To ensure successful data transfer, the read/write operations need a 

synchronization mechanism between 

the sending and receiving MCU(s), 

both for initiating the transfer and 

maintaining synchronization.  This is 

accomplished by using the timer B 

peripheral to initiate the transfer, and 

by using a common clock to maintain 

read/write synchronization, as shown in 

Figure 27.   

 The clock is provided by MCU0 

to all other MCUs for the duration of 

the transfer.  The gating of the clock 

signal is discussed later in the chapter.  

Each MCU is configured to use the 

external clock signal by default but 

reverts to using the internal DCO when 

there is no PIPC transfer occurring.  

The transition of using the external 

clock sourced from MCU0, or the 

internal DCO happens automatically 

within the clock module.  This clock scheme allows each MCU to operate in any low 

power state and still be capable of receiving a PIPC transfer at any time. 

 The sending MCU uses a DMA channel to write data from a block of memory 

to a single output port.  The receiving MCU uses two DMA channels to read data from 
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a single input port and fill a block of memory. The transfer is initiated by a trigger 

signal going to both the sending and receiving MCU DMA controllers.  The sending 

DMA controller is configured to acquire a trigger signal internally from the Timer B 

peripheral, while the receiving MCU receives the trigger signal via a hardware pin that 

is also controlled by the Timer B Output Unit.  The Timer B peripheral is set up with 

the following configuration: 

 Timer B is set to Up Mode. 

 Capture/Compare Register 0 (CCR0) is set to the value of three.  CCR0 triggers the 

sending DMA controller internally.   

 Capture/Compare Registers 1 to 6 (CCR1-6) are set to the value of one.  CCR1-6 

triggers the receiving DMA controller via an output pin controlled by the Timer B 

OUT signal of the sending MCU.  The OUT signal is configured for Set Mode 001, 

which asserts the pin when the CCR register value is reached in the Timer B 

counter.  The protocol software driver enables only the pins for the intended 

destination MCUs for each transfer instance. 

  The receiving MCU has two DMA peripheral channels involved in the receive 

operation.  CH0 is configured to receive a single word on the data bus and transfer it 

to the size configuration register of another separate DMA channel, CH1.  The transfer 

size word is placed on the data bus by the sending MCU before initiating the trigger.  

Both CH0 and CH1 receive channels are triggered simultaneously via the hardware 

pin, but CH0 has a higher priority and activates first, readying CH1 with the block size 

of the ensuing block transfer. CH1 begins immediately after the CH0 is complete and 

transfers the number of words configured by CH0.  Figure 28 shows the PIPC trigger 

timing diagram.   
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The 

PIPC transfer sequence is as follows: 

1. Transfer size is placed on the data bus by sending MCU 

2. The trigger output of the intended receiving MCU(s) is de-asserted.  Subscript d 

denotes the receiving MCU ID(s). 

3. Timer B counter is started. 

4. Trigger output(s) d are asserted automatically by Timer B of sending MCU 

when CCRd count of one is reached.  This causes the receiving MCU(s) DMA 

CH0 to be triggered, denoted by marker A. 

5. DMA CH0 copies data size from data bus to size register of CH1 of receiving 

MCU(s) d. 

6. The DMA of Sending MCU is triggered internally by CCR0 when Timer B 

counter reaches 3, denoted by marker B. 

7. Receiving MCU(s) d  begin transferring data from bus to block of memory when 

CH0 is complete, denoted by marker C.  The CH0 transfer takes two clock 

cycles, plus an additional wait cycle is needed by the DMA controller before 

CH1 begins. 
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Figure 29 shows how once the transfer is initiated, each data word remains on the bus 

for two clock cycles with the sending write cycles interleaving the receiving read 

cycles.  

 

 5.5.2 PIPC Protocol Media Access 

 Whenever multiple entities are using a common bus system, there must be a 

mechanism for sharing the bus to avoid signals contentions.  In other words, there 

must never be more than one MCU attempting to drive the data lines at any time.  All 

MCUs must place the data port into a high impedance state unless there is exclusive 

access to the data lines.  This is accomplished in the PIPC protocol via arbitration.  

MCU0 is the arbiter for the PIPC protocol as it is responsible for handling the request 

and grant signals.  Whenever a MCU wants to send data to another MCU, a bus 

request is first made to the arbiter.  When the arbiter determines the bus is free to be 

used, a bus grant assertion is given back to the requesting MCU.  The requesting MCU 

is now the bus owner and may drive the data lines.  Once the data transfer is complete, 

the requesting MCU releases its request line, signaling to the arbiter that it is no longer 

the bus owner.  The arbiter is now free to grant the bus to another requesting MCU.  

For the case when there are more than one MCU requesting the bus simultaneously, 

the arbiter uses a priority based scheme, where the lowest numbered MCU has the 

highest priority.  A lower priority MCU that is requesting the bus will not be given 

access to the bus until all higher priority MCUs have been given prior access. 
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 In addition to the bus request and grant signals, each MCU also has busy 

output signal.  This signal is used to prevent buffer overruns.  This busy signal of the 

receiving MCU must be checked by the sending MCU prior to initiating a data 

transfer.  Figure 30 shows the arbitration signals of the PIPC protocol. 
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Busy 

 

The arbitration sequence in Figure 31 is as follows: 

1. The sending MCU asserts the Bus Request line. 

2. When the bus is available, the arbiter asserts the Bus Grant line and provides the 

external synchronization clock. 

3. The sending MCU initiates the synchronized DMA transfer. 

4. As soon as the transfer is complete, the sending MCU de-asserts the Bus 

Request line. 

5. When the Arbiter senses the Bus Request line has been de-asserted, the Bus 

Grant line is de-asserted and the clock output is disabled. 

6. The receiving MCU asserts its Busy line until the receiving buffer is cleared. 

 

 

Figure 31: PIPC Arbitration Timing Diagram 
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default, unless it has obtained control of the bus from the arbiter and becomes a master 

for a data transfer.  Once one of the MCUs has control of the bus, the system SPIIPC 

behaves the same as a typical SPI protocol.  To make the data transfer as efficient as 

possible in terms of throughput and current consumption, DMA controllers are used 

for both the sending and receiving MCUs.  No external signals are required to trigger 

the DMA controllers, as the SPI peripheral provides internal triggers directly to the 

DMA controller.  Figure 32 shows the connections for the SPIIPC signals. 
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 5.5.4 Inter-Processor Communication Performance Measurements 

 The maximum throughput of the SPIIPC and PIPC protocols is compared in 

Figure 33 for various MPU clock speeds.  The PIPC protocol has the clear advantage, 

with a maximum throughput of 16 MB/s for a 16-Bit data bus which scales linearly up 

to the maximum clock speed.  The SPIIPC protocol has a maximum throughput of 0.5 

MB/s which is reached at a MPU clock speed of 4 MHz.  MPU clock speeds beyond 4 

MHz have no effect on SPIIPC throughput as it is constrained by the MSP430 slave 

peripheral electrical timing specifications.   

 

   

Figure 33: IPC Protocol Maximum Throughput 
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disabled would prolong gaining access to the bus.  A sending MCU may also 

encounter a busy signal on an intended receiving MCU and be required to wait before 

requesting access to the bus.  The effective throughput was calculated based on the 

maximum transfer speed and media access overhead for various data packet sizes for 

both protocols.  The maximum MPU clock speed of 16 MHz was used for the 

calculations. The results are shown in Figure 34. 

   

 

Figure 34: IPC Protocol Effective Throughput 
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 The energy efficiency is also compared for the PIPC and SPIIPC protocols.  

The total current consumption of two MCUs involved in a IPC data transfer was 

measured with all other PCB ICs and inputs disabled or disconnected.  For the PIPC 

protocol, both the sending and receiving MPUs DMA controllers are continuously 

active for the duration of the transfer.  For the SPIIPC protocol, the sending MCU 

operates in LPM0 with the DMA controller intermittently active as bytes are sent, and 

the receiving MCU is in LPM3, with the DMA controller intermittently active as bytes 

are received.  The data pattern for the SPIIPC protocol was set up with repeating 

'0x55' bytes, while the data pattern for the PICP protocol was set up with alternating 

'0x5555' and '0xAAAA' words in order to maintain the highest possible odd-mode 

switching currents.  As seen in Figure 35, the current of both IPC protocols increase 

linearly with throughput. 

 

   

Figure 35: IPC Protocol Current Consumption 
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 Figure 36 shows the energy efficiency in terms of the transfer rate ratio.  Here 

it is clear the current efficiency of the PIPC protocol is significantly better than 

SPIIPC, with the SPIIPC protocol consuming approximately three times the current as 

the PIPC protocol.   

 

Figure 36: IPC Protocol Current Ratio 

 

 The line switching current of the protocols was also measured. The 

measurements were performed by measuring the current consumption of a single MPU 

during the protocol transfer with and without the output pins enabled.  The line 

switching consumption is the difference between the two measurements.  Figure 37 

shows the switching current ratio at varying transfer speeds.   

 

Figure 37: IPC Protocol Switching Current Ratio 
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 The PICP protocol has a slight efficiency advantage regarding switching 

currents. This is as expected because for the SPIIPC protocol, the synchronous clock 

has a transition for every bit of data transferred, while the PIPC protocol has a 

synchronous clock transition for every 16 bits transferred.  The communication 

physical trace lengths are on the order of 5 cm on the testbed hardware.  A system 

with many processors with much longer trace lengths could significantly add to the 

switching current figures.  Even so, the switching current is small compared to the 

overall current consumed by the processors during the transfer.   

 The PIPC protocol is superior to SPIIPC in regards to speed performance and 

energy consumption, both which are important design considerations.  However, there 

are drawbacks to the PICP protocol.  It has a higher pin count than SPIIPC, and 

requires the use of the Timer B peripheral.  The clock configuration is also 

constrained, with less flexibility than SPIIPC as all MCUs must operate at the same 

frequency. 

 5.5.5 Inter-Processor Communication Pin Requirements 

 The pin count of both protocols is compared in Table 9.  For both protocols, 

the media access control pin requirements are the same.  There are 3N signals required 

where N is the number of processors.  For PIPC, 1N trigger signals are needed, 16 

signals for data, and one for clock.  For SPIIPC, 3 SPI (CLK, SIMO, SOMI) and 1N 

Chip Select signals are required.   

 

Table 9: IPC Protocol Pin Requirements 

Protocol Media Access Data Trigger / CS Clock Total 

PIPC 3N 16 1N 1 4N + 17 

SPIICP 3N 2 1N 1 4N+ 3 

 

 5.5.6 Inter-Processor Communication Applications 

 The PIPC protocol has applications beyond the testbed developed for this 

thesis.  The use of parallel processing is especially suited for wireless sensor networks 

because a sensor node is in an idle state for the vast majority of the time, with a need 
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for high performance processing only when some sporadic event happens.  The 

requirement for extremely low power consumption during idle sleep modes and also 

high performance capabilities exists for many applications.  The difficulty is that there 

are few processors that meet both criteria.  Many high performance processors have 

relatively high idle power consumption, while many low power processors do not have 

exceptional processing capabilities.  An approach to the problem is to use multiple low 

power processors in a performance scalable architecture.  The idle power of the 

multiple MSP430 MPUs combined could be lower than a high performance processor, 

and high performance computing is achievable if the application is able to make use of 

parallelism.  The PIPC protocol allows for highly efficient and high performance inter-

processor protocol that minimizes communication overhead and maximizes the 

achievable performance of a multi-processor design.   

5.6 Testbed Power Measurements 

 Table 10  shows the current consumption of the testbed PCB with individual 

components enabled or disabled.  When no input devices are connected and the power 

switch is off, the PCB consumes 11 µA of quiescent current.  When the power switch 

is turned on, the two MCUs and all fixed PCB components consume 533 µA of idle 

current.  This value is with the OLED display removed.  When the OLED display is 

connected, it consumes an additional quiescent current of 547 µA, and 27.5 mA when 

switched on.  Attaching a Trimble Copernicus GPS module adds 34.7 mA.  Inserting a 

SD Card adds 19.7 mA when the system is logging input data. 

 

Table 10: Testbed Current Consumption  

Mode Current (mA) 

Off 0.011 

Idle 0.533 

GPS 34.7 

SD Logging 19.7 

OLED IC Iq 0.547 

OLED ON 27.5 
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5.7 Testbed Hardware Summary 

 Three PCB revisions were designed and built during the development of the 

ADS testbed hardware. The progression of the design included improvements to the 

clock system, IPC design, power management, storage and better flexibility of GPS 

input devices. Other design changes intended to be improvements were not successful, 

such as upgrading the MPU to the newest available hardware.  Software tool 

compatibility issues forced abandonment of the MPU design changes and revert to a 

previous design iteration. 

 A new IPC protocol was designed and successfully implemented for multi-

processor systems.  Performance measurements of the PIPC protocol demonstrated it 

is up to 32 times faster and consume three times less current than the alternate SPI-

based IPC protocol.  This new protocol allows for scalable multi-processor 

applications that are not hindered by large overhead that could negate any 

performance improvements of a multi-processor over a single processor design. 
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Chapter 6: Software Development 

6.1 Software Development Introduction 

 At the onset of software development, Imagecraft’s ICCV7430 was one of the 

only Integrated Development Environments (IDE) capable of programming the 16 

MHz 26xx series MSP430 MPUs.  In addition, ICCV7430 included a binary library 

for the Tiny version 3.2.3 of Pumpkin Salvo RTOS.  For these reasons, the Imagecraft 

IDE tools were initially chosen for software development.  A change of software tools 

was made near the completion of software development for compatibility reasons 

discussed in Chapter 5.  Additionally the Imagecraft ICCV7430 tools became 

categorized as End-of-life without license renewal, necessitating alternate tools.  The 

Texas Instruments Code Composer Studio v5 (CCSv5) was chosen as a replacement.  

By the time the new CCSv5 IDE tools were chosen, it was fully compatible with the 

MSP430 26xx series and included a full-featured RTOS called SYSBIOS.   

6.2 Real-Time Operating System Overview 

 An RTOS provides scheduling algorithms in order to guarantee process 

deadlines will be met, with a process being a collection of code, memory, and data in 

an execution environment.  All RTOSs have a kernel, which is the part of RTOS that is 

responsible for thread management, inter-thread communication and synchronization.  

A thread is the basic sequence of code to which the RTOS allocates processor time 

within the scope of the process.  The Scheduler is the part of the RTOS kernel that is 

responsible for deciding which thread should be executing at any given time. 
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6.3 SYSBIOS Real-Time Operating System 

 The SYSBIOS RTOS is designed to be used by applications that require real-

time scheduling and synchronization. Some features of SYSBIOS include preemptive 

multi-threading, hardware abstraction, and tick suppression. SYSBIOS is designed to 

minimize memory and processing requirements on the CPU target.  

 SYSBIOS provides support for several types of program threads with different 

priorities. Each thread type has different execution and preemption characteristics. The 

thread types, from highest to lowest priority are: 

• Hardware interrupt (HWI) threads.  HWIs are the threads with the highest priority 

in a SYSBIOS application and are the equivalent to Interrupt Service Routines 

(ISRs).  HWI threads are used to perform time critical tasks that are subject to hard 

deadlines. They are triggered in response to external asynchronous events 

(interrupts).  HWI threads cannot normally be preempted on the MSP430, and thus 

run to completion once invoked even if a higher priority HWI is pending.        

• Software interrupt (SWI) threads. SWI threads provide additional priority levels 

between HWI threads and Task threads. SWIs are similar to HWIs, but are 

triggered by software calls as opposed to HWIs which are triggered by hardware 

interrupts. SWIs are useful for threads that are subject to tight time constraints, but 

whose deadlines are not as firm as those of HWIs.  SWIs allow HWIs to defer less 

critical processing to a lower-priority thread.  This minimizes the time the processer 

spends inside a HWI thread, where preemption by all other HWIs are disabled.  

SWIs may be preempted by another SWI thread with higher priority, or by any 

HWI. 

• Task threads. Task threads have higher priority than the background (Idle) thread 

and lower priority than SWIs. Tasks differ from SWIs in that they can wait (block) 

during execution until necessary resources are available.  Active tasks exist in one 

of three states:  running, ready, or blocked.  Only one task can be running at any 

time, as it is the task being executed.  A task that is in the ready state will execute 

when the scheduler determines it is the highest priority task.  A task that is in the 
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blocked state cannot execute until a particular event occurs within the system such 

as a resource becoming free or a timer expiring.  SYSBIOS provides a number of 

mechanisms that can be used for inter-task communication and synchronization. 

These include Semaphores, Events, Message queues, and Mailboxes. Tasks may be 

preempted by another task thread with higher priority, or by any SWI or HWI. 

• Idle thread. Idle threads execute at the lowest priority in a SYSBIOS application 

and are executed one after another in a continuous loop. The Idle Loop runs 

continuously except when it is preempted by any other thread.  For the MPS430 

processor, the idle thread usually consists of operating in one of the low power 

modes where the processor is halted. 

6.4 Testbed Programs 

 The testbed programs are comprised of various tasks, HWIs, SWIs and 

message queues as depicted in Figure 38 and Figure 39.  The SYSBIOS kernel 

scheduler determines which task should run based on each task's state and priority.  

Data is passed from one task to another via events and circular buffer message queues. 
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Figure 38: Testbed MCU0 Program Data Flow 
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 6.4.1  Circular Buffer Message Queues 

 The circular buffer message queues follow a producer - consumer model.  

There may be more than one producer for each queue, but only one consumer.  A 

producer task requests a memory block from the queue heap memory.  After the 

memory block is allocated, the producer task places a message on the queue, then 

sends an event to the consumer task of the queue.  The consumer task of each queue 

Figure 39: Testbed MCU1 Program Data Flow 
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processes messages as execution time is allocated by the kernel.  Once the message is 

processed, the memory is released back to the queue to be reused. 

 6.4.1 Program Tasks 

 The Comm Tasks of both MCUs is the same.  The purpose of the Comm task 

is to gather data packets from the attached hardware and present messages to the 

System Task in a unified way, regardless of the type of communication protocol or 

type of hardware is attached to the serial port. 

 The IPC Task is also the same for both MCUs.  The IPC Task is responsible 

for exchanging data between MCUs.  Data received by the task from the opposing 

MCU is presented to the System Task, and data sent to the task will be delivered to the 

opposing MCU's IPC Task.    

 The Storage Task exists only on MCU0.  It receives messages from the System 

Task and uses the FATFS routines to write logs to the SD Card. 

 The Display Task exists only on MCU1.  Display driver routines are used to 

create text or graphics based on messages received from the System Task. 

 For the System Task, significant differences exist between each MCU.  The 

only similarity is that for both MCUs the System Task gathers data from the Comm 

and IPC Tasks and also sends messages to the IPC Task.  For MCU0, the System Task 

delivers messages to the Storage Task.  This includes data received from the opposing 

MCU via the IPC Task.  Data acquired locally from the Comm Task is also sent to the 

opposing MCU via the IPC Task.  For MCU1, the System Task consists of a state 

machine representing the operating mode testbed.  Based on the operating mode, 

calculations are performed, data is formatted and messages are sent to the Display 

Task.  Messages from the local Comm Task or the opposing MCU via the IPC Task 

are processed and formatted for the Display Task. 

 The Power Task for MCU0 monitors the power switch and supply voltage.  A 

change in the power switch state or a low voltage condition will trigger an event to be 

sent to the IPC Task to alert MCU1.  The Power Task of  MCU1 receives the event, 
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and performs sequenced power up/down actions to the rest of the circuit.  Circuits 

requiring specific power sequencing include the GPS receivers, OLED display and SD 

Card.  

 The idle task is managed by the SYSBIOS configuration and simply enters a 

LPM until a wakeup condition occurs.  MCU1 is able to use LPM3 in the idle task, 

while MCU0 uses either LPM0 or LPM3 depending on the state of the PIPC 

arbitration driver.  If MCU0 is providing the external clock for an IPC transfer, then 

LPM0 is the lowest mode available.  Otherwise, LPM3 is used in the idle task. 

 6.4.2 Program HWIs 

 The Timer HWI in both MCUs generates 10 ms period tick events for 

SYSBIOS.  These events are used by SYSBIOS for sleep, timer and timeout features 

of the RTOS. 

 The UART HWI is simply the ISR for sending and receiving single characters 

via the peripheral and the data buffers.  The protocol drivers take care of moving 

larger data segments on and off the buffers. 

  6.4.3 Program SWIs 

 The Button SWI is called periodically to poll the state of the user buttons.  

Normally a HWI would be used to detect a button press, but hardware ports capable of 

interrupts were already used by other circuits in the design.  A detected button press 

results in an event being sent to the System Task state machine. 

6.5  File Formats 

 The testbed stores information to a removable media SD Card.  The data is 

saved in a FAT file format to be accessible on a PC.  The files are stored under the 

GPSLOG folder of the SD Card.  The naming convention for the files is as follows: 

wwwwmmmm.gps, where w is the 4-digit GPS week number, and m is the minute of 

the week of when the file was created.   



76   

 The *.GPS file packets consist of the GPS time, then the elevation, azimuth, 

and SNR level for each of the 32 GPS SV PRNs as shown in Figure 40.  The packets 

are wrapped with header and footer words for delineation.  The brackets indicate the 

number of bytes for each field. 

 

Header (2) Data (196) Footer (2) 

 

 

GPS Time (4) SV 1 (6) SV 2 (6) ... SV 32 (6) 

 

 

SNR (2) Elevation (2) Azimuth (2) 

Figure 40: GPS File Formatting 

  

 The SNR, elevation and Azimuth initially are all floating point numbers on the 

testbed before they are written to the SD Card.  To save space, they are converted to 

fixed point integers by multiplying the values according to Table 11.  When the files 

are later processed, the numbers need to be divided by the correct values and 

converted back to floating point data types. 

 

Table 11: GPS File Data Types 

Field Date Type Description 

Header Integer 0x5555 

GPS Time Long Time in seconds since start of current GPS week 

SNR Integer = SNR × 10 (dB-Hz or AMU) 

Elevation Integer = Elevation × 1000 (radians) 

Azimuth Integer = Azimuth × 1000 (radians) 

Footer Integer 0xAAAA 
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6.6  Testbed Operation 

 The testbed is turned on and off by an illuminated switch adjacent to the power 

connector.  The switch is illuminated orange when external power is connected and 

the battery is charging.  Once the battery charge is complete, the switch illuminates 

green.  The OLED screen also has a power switch so that it may be powered on to 

configure the testbed, then powered off to conserve power while data logging.  

Whenever the screen is powered by the boosted 15V supply, the OLED power switch 

is illuminated in red. 

 Whenever a SD Card is present during power up, the testbed will begin 

logging data as soon as GPS module packets become available.  The data logging 

occurs regardless of the operating mode of the testbed to a file with the naming 

convention described previously in this chapter.  

 There are five modes of operation on the testbed, shown in Figure 41, as it 

appears on the OLED display main menu.  The UP / DOWN buttons highlight the 

various modes, and is indicated when the mode illuminates white.  The SELECT 

button chooses the highlighted mode.  The MENU button returns the screen to the 

main menu from whatever mode the testbed had active. 

 

 

 Figure 41: Testbed Menu 

  



78   

 6.6.1 GPS SV Skyplot 

 The skyplot mode displays graphical information about the SV constellation 

and the signal strength of each tracked SV.  The skyplot is represented by a polar 

coordinate plot, where the outer periphery of the circle represents the horizon, and the 

center of the plot represents the zenith direction.  Concentric circles from the center 

show 60, 30, and 0 degrees elevation.  The azimuth is labeled in 45 degree increments, 

with zero being North, and ninety being East.  When a SV orbit is known by the GPS, 

the SV PRN number appears in green.  When the SV signal is acquired, the SV 

number appears in red, accompanied by a signal strength bar above the number.   

 6.6.2 GPS SNR Levels 

 The SNR Levels mode shows a bar graph of up to eight SV signal levels.  A 

peak marker also shows the maximum SNR value used for normalization.  When two 

GPS receiver modules are connected to the testbed, the SNR values are shown as red 

and blue bar graphs to differentiate the modules. 

 6.6.3 Attitude Display 

 The attitude display shows the calculated attitude reference using the same 

polar plot as the SV Skyplot mode.  The attitude vector is displayed by a dot 

representing the endpoint of a unit vector.  The attitude is only displayed if three or 

more SV signals are available. 

 6.6.4 DMA Transfers 

 The DMA Transfer mode displays packet information about the inter-MCU 

high speed communication protocol transfers.  It is a testing mode to validate timings 

and reliability of the data transfers, including any transfers with errors or lost packets.  

 6.6.5 Battery Status 

 The Lithium Polymer cell voltage is displayed in the battery status mode.  An 

estimated battery percentage is also displayed.  The battery life is calculated using a 

linear function, and is less accurate when the cell is fully charged or nearly discharged.  
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6.7 Software Development Summary  

 Software development began with the Imagecraft ICC development tools, but a 

migration to the Texas Instruments Code Composer Studio tools was made late in the 

development stage because of compatibility and support issues.  This change also 

involved changing the RTOS from Pumpkin Salvo to Texas Instruments SYSBIOS.   

 The final software implementation has a common template for both MCUs in 

terms of how the tasks are structured.  The tasks use RTOS synchronization 

mechanisms and message queues for inter-task communication.  The tasks are 

compartmentalized to more easily manage the complexity of the overall program.  The 

software is modular, where additional tasks can be added without requiring alterations 

to the existing parts of the program. 
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Chapter 7: Test Setup and Results 

7.1 Test Setup 

 The measurement truth reference of the SNR ADS was a Septentrio PolaRx2 

carrier phase GPS receiver, configured with two antennas separated by a 1 m baseline.  

The two Septentrio reference antennas were fixed to the ends of a wooden base atop a 

tripod, while the experimental SAP antenna was mounded in the middle of the two 

reference antennas. For this configuration, the reference attitude accuracy is 0.3º for 

heading and 0.6º pitch [28].  Figure 42 illustrates the test setup. 

 

 The Septentrio was used as a reference for all non-zenith pointing 

measurement sessions.  For the zenith pointing sessions, a spirit level with 0.5º 

accuracy was used. 

7.2 Test Measurement Sessions 

 Five measurement sessions were performed in the Fairbanks area and analyzed 

for accuracy.  The first session was conducted at Creamers Field where the SAP 

antenna was set to a zenith attitude.  The second session was on an urban rooftop, 

pointing 19º off-zenith in a North-Westerly direction.  The third was conducted at the 

top of Ester Dome, with the SAP antenna pointed at 45º off-zenith in a South-Westerly 

direction.  The forth session was conducted near Hez Ray baseball field, again 

Figure 42: Measurement Test Apparatus Setup 

SAP Antenna 

 

TOP VIEW  LATERAL VIEW 

1 m 
 Septentrio Reference Antennas 
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configured to a zenith attitude. The fifth session was also at Hez Ray Field, but with 

the attitude set to 22.5º off-zenith in a southerly direction.  Most of the measurement 

session had an un-obscured view of the sky apart from terrain up to about five degrees 

above the horizon.  The exception was the Urban Rooftop session which had 

considerable pine tree obstructions of the sky. The five static measurement session 

details are shown in Table 12.  The sessions pointing in the zenith direction generally 

had more SV signals within view compared to those sessions where the attitude was 

more off-zenith.  The reference attitude vector is defined with the positive    direction 

pointing North, and the positive    direction pointing West, and the positive    direction 

pointing up.  The data collected during the measurement sessions was stored on a SD 

Card as described in Chapter 5.  The analysis was then performed using MATLAB to 

open the files, compute the attitude solution, and graph the data.   

 

Table 12: Measurement Sessions 

Location Date Duration 
Reference Attitude 

[x,y,z] 

Off-Zenith 

Angle 

Mean Visible 

SVs 

Creamers Field 
June 3, 

2009 
9.5 hours [  0.00, 0.00, 1.00 ] 0º 10.32 

Urban Rooftop 
June 13, 

2009 
6.3 hours [  0.22,-0.25, 0.94 ] 19º 8.15 

Ester Dome 
June 14, 

2009 
3.6 hours [ -0.68, 0.19, 0.71 ] 45º 8.63 

Hez Ray Field 
June 28, 

2009 
20.0 hours [  0.00, 0.00, 1.00 ] 0º 10.30 

Hez Ray Field 
July 17, 

2009 
18.9 hours [ -0.38, 0.00, 0.92 ] 22.5º 9.70 

 

7.3 Attitude Calculations 

  There is a step of pre-processing that is performed on the raw measurements 

where a condition is placed on the SV data before it is included in the calculations:  A 

90 second expiry condition is implemented for each SV.  This is because the Trimble 

GPS receiver reports the last known SV SNR value and LOS vector even during times 

when the GPS receiver temporarily loses a signal.  Other times the receiver continues 

to report the last known SNR and LOS values after the SV has traversed below the 
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horizon with no actual signal being received.  Therefore if either the SNR or LOS 

vector does not change for a particular SV during any 90 second window, the SV 

measurement is considered outdated and is excluded.  The expiry condition is reset 

whenever the SNR or the LOS vector changes for each SV.   

 From Equation 13 in chapter 3, the receiving antenna off-boresight angle for 

each received SV signal is 

   



















LaLpGtPt

SNR
fPtSNR ,,, , (24) 

which accounts for SV to SV output power variations Pt, SV transmitting antenna gain 

pattern Gt, path loss Lp, and atmospheric losses La.  To separately examine the effect 

on accuracy of each parameter included in Equation 24, the equation is redefined as a 

generalized expression  

 )(Pf , (25 ) 

where P represents any combination of elements of Equation 24.  Whatever 

parameters are included for each calculation set are applied to the specific SAP 

antenna SNR-to-α mapping function from Table 7 in chapter 4 

 99.8 118.5- 68.7 -42.4)( 23  PPPPf . (26) 

 Five separate calculation sets are presented using the data from the five 

measurement sessions outlined in Table 12.  Only the raw normalized SNR values are 

used as parameters in the least squares equation for the first calculation set.  The 

weighted least squares solution is used next, again using the raw normalized SNR 

values.  SV radiation pattern and path loss parameters are included in the third 

calculation set.  The forth calculation set includes SV output power variation, and the 

fifth includes atmospheric loss parameters.  The attitude estimation results of each 

calculation set are expressed in terms of RMS error, 90th percentile error and 

maximum error. 
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 7.3.1 Normalized SNR Calculation Set 

 The first attitude estimation calculation uses only the normalized SNR values 

to determine the off-boresight angle of each SV visible to the receiver so that 

 NSNRP  . (27) 

The attitude is calculated using the least squares solution from Chapter 3 to solve for B 

for each update interval, which occurs at a 1 Hz rate 
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, (28) 

with the α values of each SV coming from the normalized raw SNR measurements as 

the parameter in Equation 26.  Table 13 shows the estimation accuracy of each 

measurement session.  The zenith pointing sessions have the best accuracy, with 

progressively worse accuracy as the attitude deviate from the zenith direction.  The 

exception is the Urban rooftop, which despite nearly pointing in the zenith direction 

has the worst RMS error because of considerable signal blockages. 

 

Table 13: Attitude Estimation Results based on Normalized SNR Calculation Set 

Session 

RMS Error 90% Error Maximum Error 

(Deg) (Deg) (Deg) 

Creamers 0º 2.25 3.97 8.61 

Rooftop 19º 14.10 19.75 27.23 

Ester Dome 45º 12.39 20.10 33.76 

Hez Ray 0º 3.05 4.92 10.27 

Hez Ray 22º 8.42 11.87 17.28 

Mean of all Sessions 8.04 12.12 19.43 
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 7.3.2 Weighting Matrix Calculation Set 

 The next calculation includes the weighting matrix of Equation 7 described in 

Chapter 3: 
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 (29) 

As before, the α values are derived from the normalized raw SNR measurements using 

Equation 26.  Table 14 shows the attitude estimation results.  The values in parenthesis 

denote the change from the previous calculation set.  Most sessions show significant 

improvement with the exception of slight degradations of the Hez Ray session.  The 

RMS error and 90% error of the Urban Rooftop showed the greatest improvement, but 

the maximum error of the Urban Rooftop session also had the worst decline.   

 

Table 14: Attitude Estimation Results based on Weighting Matrix Calculation Set 

Session 

RMS Error 90% Error Maximum Error 

(Deg) (Deg) (Deg) 

Creamers 0º 2.05 (-0.20) 3.50 (-.047) 7.39 (-1.22) 

Rooftop 19º 5.96 (-8.14) 11.00 (-8.75) 49.88 (+22.65) 

Ester Dome 45º 7.68 (-4.71) 12.70 (-7.40) 26.95 (-6.81) 

Hez Ray 0º 3.46 (+0.41) 5.93 (+1.01) 10.97 (+0.70) 

Hez Ray 22º 5.30 (-3.12) 9.26 (-2.61) 16.91 (-0.37) 

Mean of all Sessions 4.89 (-3.15) 8.48 (-3.64) 22.42 (+2.99) 

 

The large increase in maximum error is reasonably expected for the Urban Rooftop 

session with obstacles blocking SV signals.  When the SV signals are obscured, the 

SNR significantly decreases resulting in an erroneous calculated off-boresight angle of 
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the SV.  When there are many other good quality SV signals available in an 

overdetermined equation, the effect on the attitude calculation is minimal.  However, 

in the rare scenario where there are relatively few available SV signals and the 

erroneous SV measurement is highly weighted (being at a high elevation) the attitude 

estimation has a large error.  

 7.3.3 SV Radiation Pattern and Path Loss Correction Calculation Set 

  The next calculation set includes the effects of the transmitting SV radiation 

pattern coefficients of Table 3 and path loss of Equation 17 as parameters 

 
 LpGt

SNR
P N


 . (30) 

The off-boresight angle α of Equation 26 is then used in Equation 29 as the previous 

calculation.  

 

Table 15 shows the estimation results, where the RMS error is modestly improved for 

all sessions except for a slight degradation of the Creamers session.  The estimation 

accuracy still follows the trend of worse accuracy with attitudes farther away from 

zenith. 

 

Table 15: Attitude Estimation Results based on SV Radiation Pattern and Path Loss Correction 

Calculation Set 

Session 

RMS Error 90% Error Maximum Error 

(Deg) (Deg) (Deg) 

Creamers 0º 2.48 (+0.43) 4.11 (+0.61) 9.27 (+1.88) 

Rooftop 19º 5.06 (-0.90) 9.36 (-1.64) 39.98 (-9.90) 

Ester Dome 45º 6.04 (-1.64) 9.10 (-3.60) 28.72 (+1.77) 

Hez Ray 0º 2.94 (-0.52) 4.98 (-0.95) 9.44 (-1.53) 

Hez Ray 22º 4.48 (-0.82) 7.74 (-1.52) 15.97 (-0.94) 

Mean of all Sessions 4.20 (-0.69) 7.06 (-1.42) 20.68 (-1.74) 
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 7.3.4 SV Output Power Correction Calculation Set 

 The SV to SV output power variation is compensated in the next calculation 

set according to Table 1.  The Pt values were determined using data from the Hez Ray 

0º session.  The transmitting SV radiation pattern and path loss parameters are also 

included in Equation 26 as in the previous calculation using 

 
PtLpGt

SNR
P N






. (31) 

Table 16 shows the estimation results.  The biggest improvement is with the maximum 

error, with little difference of the RMS and 90% errors. 

 

Table 16: Attitude Estimation Results based on SV Output Power Correction Calculation Set 

Session 

RMS Error 90% Error Maximum Error 

(Deg) (Deg) (Deg) 

Creamers 0º 2.40 (-0.08) 4.19 (+0.08) 8.87 (-0.40) 

Rooftop 19 º 5.37 (+0.31) 10.08 (+0.72) 32.69 (-7.29) 

Ester Dome 45º 4.90 (-1.14) 7.81 (-1.29) 19.56 (-9.16) 

Hez Ray 0º 2.80 (-0.14) 5.09 (+0.11) 10.56 (+1.12) 

Hez Ray 22º 4.40 (-0.08) 7.35 (-0.42) 13.74 (-2.19) 

Mean of all Sessions 3.97 (-0.23) 6.90 (-0.16) 17.08 (-3.60) 

 

 7.3.5 Atmospheric Loss Correction Calculation Set 

Atmospheric loss, occurring predominately at the lower elevation extremes, is 

included in the next calculation set according to Equation 18.  As in the previous 

calculation, the transmitting SV radiation pattern, path loss and output power 

parameters are also included in Equation 26 using 

 
 LaPtLpGt

SNR
P N


 . (32) 

Most sessions exhibit a slight improvement in attitude estimation, but the overall 

effect is almost negligible as shown in Table 17.  The weighting matrix, which places 
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less weight to signals at lower elevations, diminishes the importance of the 

atmospheric loss parameter. 

 

Table 17: Attitude Estimation Results based on Atmospheric Loss Correction Calculation Set 

Session 

RMS Error 90% Error Maximum Error 

(Deg) (Deg) (Deg) 

Creamers 0º 2.49 (+0.09) 4.35 (-0.16) 9.15 (+0.27) 

Rooftop 19º 5.32 (-0.05) 9.98 (-0.10) 31.69 (-1.00) 

Ester Dome 45º 4.81 (-0.09) 7.73 (-0.08) 19.75 (+0.19) 

Hez Ray 0º 2.76 (-0.04) 5.03 (-0.06) 10.74 (+0.18) 

Hez Ray 22º 4.34 (-0.06) 7.27 (-0.08) 13.73 (-0.01) 

Mean of all Sessions 3.94 (-0.03) 6.87 (-0.03) 17.01 (-0.07) 

 

7.4 Calculation Set Summary 

Table 18 summarizes the effect the inclusion of the individual calculation 

factors have on the accuracy of the attitude estimation.  The error values are the mean 

of all the measurement sessions.  Starting with the raw normalized SNR, the accuracy 

improves with each subsequent calculation.  The weighted matrix inclusion had the 

largest effect on the attitude estimation accuracy with almost a 40% improvement of 

the RMS error.  The weighted matrix solution degraded the maximum error largely 

because of signal blockages with the Urban Rooftop session.  The remaining 

calculation sets which incrementally included more signal parameters also improved 

the attitude estimation accuracy, though not to the degree as the weighted matrix. 

 

Table 18: Mean Estimation Results for Calculation Sets 

Calculation Set 
RMS Error 90% Error Maximum Error 

(Deg) (Deg) (Deg) 

Raw SNR 8.04 12.12 19.43 

Weighted Matrix Raw SNR 4.89 (-3.15) 8.48 (-3.64) 22.42 (+2.99) 

SV Pattern and Path Loss 4.20 (-0.69) 7.06 (-1.42) 20.68 (-1.74) 

SV Output Power 3.97 (-0.23) 6.90 (-0.16) 17.08 (-3.60) 

Atmospheric Loss 3.94 (-0.03) 6.87 (-0.03) 17.01 (-0.07) 
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 In [5], Lightsey assumes the signal parameters are smaller in magnitude than 

the noise seen in the SNR measurement, with no significant improvement to be 

expected from incorporating them into the measurement model.  However the errors of 

the attitude estimation are reduced by about 20% by including the SV gain pattern, 

path loss and SV output power parameters in the calculation compared to using the 

raw SNR values, making their inclusion significant and worthwhile. 

7.5 Comparison to Previous Results 

 The attitude estimation results of this study are compared in  

Table 19 to the results presented by Behre in [7].  Behre provides the only other 

known ground based experiment using a single antenna to compute a two-axis attitude 

solution.  There are 5 ground experiments in [7] which all have zenith pointing 

antennas:  The Ground TANS experiment used a Trimble TANS Vector receiver and a 

standard Trimble patch antenna. The remaining 4 experiments all used a NovAtel 12 

channel receiver.  NovAtel #1 used a NovAtel Patch antenna,  NovAtel #2 used an 

Ashtech choke ring antenna,  NovAtel #3 a standard Trimble patch antenna, and 

NovAtel #4 used the same NovAtel Patch as NovAtel #1. 

 

Table 19: Zenith Pointing Attitude Estimation Results for Ground Based Measurements 

Session 
RMS Error  

(Deg) 

90% Error 

(Deg) 

Maximum Error 

(Deg) 

Mean Visible 

SVs 

TANS 5.0 7.5 22.7 5.8 

NovAtel #1 6.1 9.4 25.1 8.2 

NovAtel #2 4.2 6.4 21.5 8.2 

NovAtel #3 5.7 8.6 33.8 8.2 

NovAtel #4 6.0 9.1 18.5 7.9 

Testbed Creamers 2.5 4.5 9.2 10.3 

Testbed Hez Ray 2.8 5.3 10.7 9.7 

 

 The attitude estimation method in [7] uses a weighted least squares calculation 

similar to this study, except the elements of the weighting matrix are assigned to the 

offboresight angle variance values obtained from the data samples of the SNR-to-α 

mapping function.  The attitude estimations also include SV gain pattern and space 
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loss parameters in the calculations, though the SV gain pattern models differed from 

the ones used in this study. 

 The two zenith pointing measurement sessions in this study have 33% to 59% 

lower estimation RMS errors compared to the experiments in [7].  It is apparent in  

Table 19  that there were significantly more SVs in the GPS constellation in 2009 

when the measurements were taken for this study compared to 1997 for [7], which 

undoubtedly contributes to the more accurate attitude estimation of this study.  The 

improvement may also be partly attributed to a better suited antenna, better SV gain 

pattern modeling, or the type of weighting matrix used in the least squares equation. 

 To gauge the type of performance the testbed hardware might have in orbit, the 

results from the GANE orbital experiment in [3] are compared to the ground TANS 

experiment in [7] where the same GPS hardware was used.  Two GANE measurement 

sessions were performed on board the Space Shuttle Endeavour in 1996.  The first had 

the antenna oriented in the zenith direction, and the second at 45° off-zenith.  The 

trends in the GANE experiments are similar to this study, where the zenith 

measurements are the most accurate and become degraded for other angles as shown 

in Table 20.  



 91 

Table 20: Attitude Estimation Results for TANS Hardware Measurements by Behre 

Session 
RMS Error  

(Deg) 

90% Error 

(Deg) 

Maximum Error 

(Deg) 

Mean Visible 

SVs 

Ground TANS 0º 5.0 7.5 22.7 5.8 

GANE TANS 0º 3.2 4.9 9.9 5.4 

GANE TANS 45º 5.2 8.3 24.0 3.8 

 

Using the same TANS hardware for ground and space based experiments, the 

estimation results for the zenith measurements are more accurate in orbit compared to 

the ground, feasibly due to less occurrence of signal multipath.  The same may also 

hold true for the testbed hardware using the SAP antenna. 
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Chapter 8: Conclusion and Future Work 

 A specialized SAP antenna was designed and built to perform ground based 

GPS SNR measurements for static attitude estimation.  The SAP antenna electrical 

characteristics were measured, with performance as expected within the design 

criteria.  The smaller size and lighter weight of the SAP antenna compared to the 

survey grade choke ring antenna with similar performance makes the SAP antenna 

well suited for small satellite GPS attitude determination.   

 Three PCB revisions were designed and built during the development of the 

embedded testbed hardware.  A new PIPC inter-processor DMA communication 

protocol was developed allowing for energy efficient high performance parallel 

processing.  Performance measurements of the PIPC protocol showed it is up to 32 

times faster and consumes three times less current than the alternate SPI-based IPC 

protocol.  The newly developed protocol is applicable to designs other than this thesis 

where multi-processing is used in embedded hardware.    

 The ADS accuracy results for the ground zenith measurements were 

approximately twice as accurate compared to previous studies where a single antenna 

was used to estimate a two-axis attitude.  Off-zenith angle measurements were also 

improved compared to previous results.  The estimation improvement was due in part 

to more available SV signals than in the previous studies, but may also be partly 

attributed to a better suited antenna, better SV gain pattern modeling, or the type of 

weighting matrix used in the least squares equation.   

 There is ample room for future refinement of the SNR ADS testbed system.  

The SAP antenna radiation pattern should be precisely characterized in an anechoic 

chamber instead of collecting SNR samples from a known attitude.  A precisely 

known antenna radiation pattern used to generate SNR-to-α mapping function would 

allow for specific modeling of the individual SV antenna patterns and output power 

levels, potentially increasing the ADS estimation accuracy further.   
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 Several different types GPS modules could be simultaneously tested to 

compare accuracy using the hardware already developed.  Similarly, other 

configurations of the SAP antenna could be simultaneously compared based on 

specific CubeSat size constraints.  A pinwheel type antenna should also be evaluated 

based on its theoretical performance characteristics.  Dynamic measurements should 

also be evaluated before implementation of the GPS ADS on a CubeSat. This could be 

accomplished by mounting the system on an Unmanned Aerial Vehicle with a precise 

reference AD system.  Finally, a suitable GPS module needs to be verified for orbit 

operation, either through hardware-in-the-loop simulation or by testing beyond 

COCOM speed and altitude limits. 

 A GPS based attitude determination system is recommended for consideration 

on a CubeSat design based on preliminary ground measurements.  For a case where an 

orbit determination GPS system is already an implemented subsystem on a CubeSat 

design, no extra hardware is required for attitude determination― only some 

additional processing resources are required.  The only specialized hardware design 

consideration from the typical GPS implementation is the use of an optimal antenna 

with a monotonic radiation pattern. 
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Appendix A: Testbed Hardware Schematics 

A.1  Testbed Version 2.1 Power Management Circuits 
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A.2  Testbed Version 2.1 MCU0 Circuits 
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A.3  Testbed Version 2.1 MCU1 Circuits 
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Appendix B: Attitude Determination MATLAB Code 

B.1  MATLAB Constant Declarations 

% constants.m 

% Loads constants to workspace for Attitude Estimation Calculations 

  

max_AMU=16.3;       % max recorded SNR value (AMUs) 

max_dBHz = 27 + 20*log10(max_AMU); % max recorded SNR value (dB-Hz)  

orbit_altitude=0; %user orbit (km) 

  

max_snr=zeros(32,1,'single'); 

  

max_snr(:) = max_AMU; 

  

max_snr(1) =max_AMU*1.00; 

max_snr(2) =max_AMU*0.97; 

max_snr(3) =max_AMU*0.95; 

max_snr(4) =max_AMU*0.90; 

max_snr(5) =max_AMU*1.00; %currently the only non-active PRN 

max_snr(6) =max_AMU*0.91; 

max_snr(7) =max_AMU*0.96; 

max_snr(8) =max_AMU*0.88; 

max_snr(9) =max_AMU*0.97; 

max_snr(10)=max_AMU*0.89; 

max_snr(11)=max_AMU*1.08; 

max_snr(12)=max_AMU*0.98; 

max_snr(13)=max_AMU*0.97; 

max_snr(14)=max_AMU*0.87; 

max_snr(15)=max_AMU*0.99; 

max_snr(16)=max_AMU*0.97; 

max_snr(17)=max_AMU*0.92; 

max_snr(18)=max_AMU*0.93; 

max_snr(19)=max_AMU*0.95; 

max_snr(20)=max_AMU*0.93; 

max_snr(21)=max_AMU*0.95; 

max_snr(22)=max_AMU*1.00; 

max_snr(23)=max_AMU*1.07; 

max_snr(24)=max_AMU*1.00; 

max_snr(25)=max_AMU*0.97; 

max_snr(26)=max_AMU*0.96; 

max_snr(27)=max_AMU*0.85; 

max_snr(28)=max_AMU*0.88; 

max_snr(29)=max_AMU*0.96; 

max_snr(30)=max_AMU*1.03; 

max_snr(31)=max_AMU*1.01; 

max_snr(32)=max_AMU*0.93; 

  

SV_Tx_dB(1) =  0.00; 

SV_Tx_dB(2) = -0.25; 

SV_Tx_dB(3) = -0.45; 

SV_Tx_dB(4) = -0.90; 

SV_Tx_dB(5) =  0.00; %currently the only non-active PRN 

SV_Tx_dB(6) = -0.80; 

SV_Tx_dB(7) = -0.35; 

SV_Tx_dB(8) = -1.10; 

SV_Tx_dB(9) = -0.25; 

SV_Tx_dB(10)= -1.10; 

SV_Tx_dB(11)=  0.65; 

SV_Tx_dB(12)= -0.20; 

SV_Tx_dB(13)= -0.25; 

SV_Tx_dB(14)= -1.20; 

SV_Tx_dB(15)= -0.10; 

SV_Tx_dB(16)= -0.25; 

SV_Tx_dB(17)= -0.70; 

SV_Tx_dB(18)= -0.65; 

SV_Tx_dB(19)= -0.45; 

SV_Tx_dB(20)= -0.65; 

SV_Tx_dB(21)=  0.45; 

SV_Tx_dB(22)=  0.00; 

SV_Tx_dB(23)=  0.60; 

SV_Tx_dB(24)=  0.00; 

SV_Tx_dB(25)= -0.25; 
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SV_Tx_dB(26)= -0.35; 

SV_Tx_dB(27)= -1.40; 

SV_Tx_dB(28)= -1.10; 

SV_Tx_dB(29)= -0.35; 

SV_Tx_dB(30)=  0.25; 

SV_Tx_dB(31)=  0.10; 

SV_Tx_dB(32)= -0.65; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%sv block key: 

%1=block II / IIA 

%2=block  IIR Legacy Antenna  

%3=block  IIR / II-M Improved Antenna  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

SV_block=zeros(32,1,'uint8'); 

  

SV_block(32)=1; 

SV_block(24)=1; 

SV_block(25)=1; 

SV_block(26)=1; 

SV_block(27)=1; 

SV_block(09)=1; 

SV_block(05)=1; 

SV_block(04)=1; 

SV_block(06)=1; 

SV_block(03)=1; 

SV_block(10)=1; 

SV_block(30)=1; 

SV_block(08)=1; 

  

SV_block(13)=2; 

SV_block(11)=2; 

SV_block(20)=2; 

SV_block(28)=2; 

SV_block(14)=2; 

SV_block(18)=2; 

SV_block(16)=2; 

SV_block(21)=2; 

  

SV_block(22)=3; 

SV_block(19)=3; 

SV_block(23)=3; 

SV_block(02)=3; 

SV_block(29)=3; 

SV_block(15)=3; 

SV_block(31)=3; 

SV_block(07)=3; 

SV_block(12)=3; 

SV_block(17)=3; 

SV_block(01)=3; 

  

E=6370;  %Earth radius 

S=26560; %SV radius 

O=6;     %equivalent oxygen height 

a=O/E; 

  

phi2theta=asin((cosd(0:0.1:90)*(E+orbit_altitude))/S)*180/pi; 

theta=[max(phi2theta):-max(phi2theta)/900:0]; 

  

d=S*cosd(phi2theta)-(((E+orbit_altitude)^2)-((S^2)*(sind(phi2theta)).^2)).^0.5; 

  

space_loss=1./(4*pi*d.^2); 

space_loss_dB=10*log10(space_loss/max(space_loss)); %convert to normalized dB 

space_loss = 10.^(space_loss_dB/20); %convert normalized dB to AMU 

atm_loss_dB=-0.07*(1+2*a)./(sind(0:0.1:90)+((sind(0:0.1:90)).^2+2*a+a^2).^0.5); 

atm_loss = 10.^(atm_loss_dB/20); %convert normalized dB to AMU 

  

% Pattern Coefficients: 

p1 = -3.1653e-019; 

p2 = 5.748e-006; 

p3 = -0.0040676; 

p4 = 0.061662; 

p5 = -0.019623; 

p6 = -0.0066788; 
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SV_pattern_1_dB = (p1*phi2theta.^5 + p2*phi2theta.^4 + p3*phi2theta.^3 + p4*phi2theta.^2 + 

p5*phi2theta + p6); 

SV_pattern_1 = 10.^(SV_pattern_1_dB/20);    

SV_power_1_dB = -(SV_pattern_1_dB + space_loss_dB ); 

SV_power_1 = 10.^(SV_power_1_dB/20); 

  

% Pattern Coefficients: 

p1 = 2.5085e-005; 

p2 = -0.0011136; 

p3 = 0.010073; 

p4 = 0.0044916; 

p5 = 0.035453; 

p6 = -0.051893;   

   

SV_pattern_2_dB = (p1*phi2theta.^5 + p2*phi2theta.^4 + p3*phi2theta.^3 + p4*phi2theta.^2 + 

p5*phi2theta + p6); 

SV_pattern_2 = 10.^(SV_pattern_2_dB/20);    

SV_power_2_dB=-(SV_pattern_2_dB + space_loss_dB  ); 

SV_power_2=10.^(SV_power_2_dB/20); 

  

% Pattern Coefficients: 

p1 = 5.8997e-005; 

p2 = -0.0028536; 

p3 = 0.040936; 

p4 = -0.18848; 

p5 = 0.14967; 

p6 = 1.1324; 

  

SV_pattern_3_dB = (p1*phi2theta.^5 + p2*phi2theta.^4 + p3*phi2theta.^3 + p4*phi2theta.^2 + 

p5*phi2theta + p6); 

SV_pattern_3 = 10.^(SV_pattern_3_dB/20);    

SV_power_3_dB=-(SV_pattern_3_dB + space_loss_dB ); 

SV_power_3=10.^(SV_power_3_dB/20); 

  

clear p1 p2 p3 p4 p5 p6 O E S a orbit_altitude  

  

B.2  MATLAB Script for Loading Testbed GPS Log File 

% load_testbed.m 

% Loads Testbed GPS SNR data samples to workspace 

  

[FileName,PathName] = uigetfile('*.gps','Open GPS Attitude Determination Testbed Log File'); 

if FileName == 0 

    return; 

end 

  

fid = fopen(fullfile(PathName,FileName)); 

if fid == -1 

    return; 

end 

disp(['Opening ' FileName] ); 

SATPacket=struct('SNR',single(0),'elevation',single(0),'azimuth',single(0)); 

SDPacket=struct('GPSTime',uint32(0),'SATPacket',repmat(SATPacket,32,1)); 

  

fseek(fid,0,'eof'); 

f_length=ftell(fid); 

if f_length == -1 

    return; 

end 

testbed=repmat(SDPacket,floor(f_length/200),1); 

fseek(fid,0,'bof'); 

  

n=1; % index 

m=1; % index 

packetcount=0; 

badpacket=0; 

GPSTIMEPREV=NaN; 

  

h = waitbar(0,'Reading File...'); 

  

while( ftell(fid)<f_length ) 

    if mod(ftell(fid),10000) ==0 
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        waitbar(ftell(fid)/f_length) 

    end 

    STX=0; 

    while (STX~=hex2dec('55') && ftell(fid)<f_length) 

        STX=fread(fid,1,'uint8');  

        if STX==hex2dec('55') 

            STX=fread(fid,1,'uint8'); 

        else 

            badpacket=1; 

        end 

    end 

       GPSTIME=fread(fid,1,'uint32'); 

    if (isnan(GPSTIMEPREV)) 

        GPSTIMEPREV=GPSTIME; 

    end 

    buffer=fread(fid,96,'uint16'); 

    ETX=fread(fid,1,'uint16'); 

    if isempty(ETX) || ETX~=hex2dec('AAAA') || badpacket==1  

         

    else 

        GPSTIMEPREV=GPSTIME; 

        testbed(n).GPSTime=GPSTIME; 

        m=1; 

        for SV=1:32 

            testbed(n).SATPacket(SV).SNR=buffer(m)/10; 

            testbed(n).SATPacket(SV).elevation=(0.001*buffer(m+1)); % #'s were in rad*1000 on 

testbed 

            testbed(n).SATPacket(SV).azimuth=(0.001*buffer(m+2));   

            m=m+3; 

            if testbed(n).SATPacket(SV).SNR>30 || testbed(n).SATPacket(SV).elevation>1.5708  %look 

for invalid data 

               testbed(n).SATPacket(SV).SNR=0;  

               testbed(n).SATPacket(SV).elevation=0; 

            end 

        end 

        n=n+1; 

        packetcount=packetcount+1; 

        badpacket=0; 

    end 

end 

fclose(fid); 

close(h)  

if packetcount >0  

    packetcount %display packetcount in matlab workspace 

else 

    disp('Error: Unrecognized file or no data samples') 

end 

testbed_packets=packetcount; 

clear ans ETX FileName PathName GPSTIME GPSTIMEPREV SATPacket SDPacket STX SV ; 

clear active_SV buffer fid goodpacket m n packetcount f_length h ; 

 

B.3  MATLAB Script for Loading PolaRX Reference GPS Log File 

% load_polaRX.m 

  

% Loads Reference Truth Attitude samples into workspace, and calculates 

% mean attitude from all samples taken. 

  

[FileName,PathName] = uigetfile('*.SBF','Open Septentrio PolaRx2eH Log File for Reference Attitude. 

'); 

if FileName == 0 

    return; 

end 

fid = fopen(fullfile(PathName,FileName)); 

if fid == -1 

    return; 

end 

SBFPacket=struct('GPSTime',uint32(0),'elevation',single(0),'azimuth',single(0)); 

packetcount=0; 

goodpacket=1; 

  

while(goodpacket==1) 

    sync=fread(fid,1,'uint16','ieee-le'); 
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    if isempty(sync) || sync ~= 16420  

        goodpacket=0; 

        break; 

    end 

    crc=fread(fid,1,'uint16','ieee-le'); 

    blockID=fread(fid,1,'uint16','ieee-le'); 

    if isempty(blockID) || blockID ~=5938  

        goodpacket=0;  

        break; 

    end 

    blocksize=fread(fid,1,'uint16','ieee-le'); 

    if isempty(blocksize) || blocksize <8 || blocksize>4096 || mod(blocksize,4)~=0 

        goodpacket=0; 

        break; 

    end 

    dummy=fread(fid,blocksize-8,'uint8'); 

    if goodpacket==1; 

        packetcount=packetcount+1; 

    else 

        goodpacket=0; 

        break; 

    end  

end 

  

fclose(fid); 

if packetcount >0  

    packetcount %display packetcount in matlab workspace 

else 

    error('Error: Unrecognized file or no data ') 

    return; 

end 

SBF=repmat(SBFPacket,packetcount,1); 

fid = fopen(fullfile(PathName,FileName)); 

n=1; % index 

for n=1:packetcount 

    fread(fid,8,'uint8'); %read and discard  

    SBF(n).GPSTime=fread(fid,1,'uint32','ieee-le'); 

    fread(fid,8,'uint8'); %read and discard  

    SBF(n).azimuth=fread(fid,1,'single','ieee-le'); 

    if SBF(n).azimuth > 360 SBF(n).azimuth=0; end  %out of range values 

    SBF(n).elevation=90+fread(fid,1,'single','ieee-le'); 

    if SBF(n).elevation > 90 SBF(n).elevation=0; end    %out of range values 

    fread(fid,16,'uint8'); %read and discard  

end 

fclose(fid); 

  

TRUE_ATT=single(zeros(packetcount,3)); 

[TRUE_ATT(:,1),TRUE_ATT(:,2),TRUE_ATT(:,3)]=sph2cart(([SBF(:).azimuth])*pi/180,([SBF(:).elevation])

*pi/180,1); 

  

global TRUE_MEAN; 

  

TRUE_MEAN(1)=mean(TRUE_ATT(:,1)); 

TRUE_MEAN(2)=mean(TRUE_ATT(:,2)); 

TRUE_MEAN(3)=mean(TRUE_ATT(:,3)); 

  

TRUE_std_az=std([SBF(:).azimuth]); 

TRUE_std_el=std([SBF(:).elevation]); 

polarx_packets=packetcount; 

  

clear n FileName PathName SBFPacket blockID blocksize crc dummy fid goodpacket packetcount sync ans 

packetcount SBF ; 

  

B.4  MATLAB Script for Calculating Attitude and Presenting Statistics 

% static_attitude.m 

% Calculates Antenna Attitude from SV LOS vectors and SNR values 

% Generates statistics and plots 

  

constants;  % Loads SV Groups and SV Radiation Pattern Coefficients 

  

SNR_Mask_AMU = 1.2 / max_AMU ;  %AMU minimum before measurement is used in solution 

SNR_Mask = SNR_Mask_AMU;        %define which units to use 
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%Pre-allocate variable memory 

xax=single(1:testbed_packets);                  % x-axis for plotting 

SNR=zeros(32,testbed_packets,'single');         % SNR values from data samples 

elevation=zeros(32,testbed_packets,'single');   % SV LOS vector elevation  

azimuth=zeros(32,testbed_packets,'single');     % SV LOS vector azimuth  

SVused=zeros(1,testbed_packets,'uint8');        % # of SVs used in Calculation 

expired=zeros(32,1,'uint32');                   % Flag to determine stale SNR measurement of SV 

B=zeros(testbed_packets,3,'single');            % Attitude Solution in Cartesian Coordinates 

error=zeros(testbed_packets,1,'single');        % Attitude Estimation error  

alpha=single(nan(32,testbed_packets));          % Calculated SV off-boresight angle from SNR 

alpha_true=single(nan(32,testbed_packets));     % TRUE SV off-boresight angle 

  

true_att=TRUE_MEAN; 

   

h = waitbar(0,'Processing Data...'); 

  

%antenna pattern mapping function polynomial coefficients 

% Valid for SNR in AMU units, [normalized]. 

p4= 99.7649; 

p3=-118.4877; 

p2=  68.6685; 

p1= -42.3644; 

  

% ignore first 5 samples from GPS startup 

for n=5:testbed_packets 

    if mod(n,1000) ==0 

        waitbar(n/testbed_packets) 

    end 

    L=single(zeros(32,3));    %satellite LOS vectors 

    S=single(zeros(32,1));    %Normalized SNR values 

    for  SV=1:32    

        elevation(SV,n)=testbed(n).SATPacket(SV).elevation; 

        azimuth(SV,n)=testbed(n).SATPacket(SV).azimuth; 

  

        if exist('Include_SV_Power_Compensation','var')  

            SNR(SV,n)=(((testbed(n).SATPacket(SV).SNR)/max_snr(SV))); 

        else 

            SNR(SV,n)=(((testbed(n).SATPacket(SV).SNR)/max_AMU)); 

        end 

         

        if exist('Include_SV_Radiation_Pattern_Compensation','var') 

            if SV_block(SV)==1      %block II/IIA  

                SNR(SV,n)=SNR(SV,n)/SV_pattern_1(floor(elevation(SV,n)*1800/pi)+1);         

            elseif SV_block(SV)==2      %block IIR Legacy 

                SNR(SV,n)=SNR(SV,n)/SV_pattern_2(floor(elevation(SV,n)*1800/pi)+1); 

            elseif SV_block(SV)==3  %block IIR Improved Antenna / IIR-M 

                SNR(SV,n)=SNR(SV,n)/SV_pattern_3(floor(elevation(SV,n)*1800/pi)+1); 

            end 

        end 

         

        if exist('Include_Space_Loss_Compensation','var') 

            SNR(SV,n)=SNR(SV,n)/space_loss(floor(elevation(SV,n)*1800/pi)+1);         

        end 

         

        if exist('Include_Atm_Loss_Compensation','var') 

            SNR(SV,n)=SNR(SV,n)/atm_loss(floor(elevation(SV,n)*1800/pi)+1);         

        end     

        % Increment expired counter for non-changing SV LOS vector or SNR 

        if (( (elevation(SV,n) - elevation(SV,n-1) )==0) && ((azimuth(SV,n) - azimuth(SV,n-1) )==0) 

) 

            expired(SV)=expired(SV)+1; 

        else 

            expired(SV)=0; 

        end 

        % Only use SV data in calculation if data is not stale, above horizon and above SNR 

threshold 

        if expired(SV)<90 && SNR(SV,n)> SNR_Mask && elevation(SV,n) >= 0.02 % 0.02 radians 

            [L(SV,1),L(SV,2),L(SV,3)]=sph2cart(azimuth(SV,n),elevation(SV,n),1); 

            alpha(SV,n) = (p1*SNR(SV,n)^3 + p2*SNR(SV,n)^2 + p3*SNR(SV,n)^1 + p4); 

            S(SV) = cosd(alpha(SV,n)); 

            if S(SV) < 0 || alpha(SV,n) > 90 

                S(SV) = nan; 

                L(SV,:)=[0 0 0]; 

                SNR(SV,n)=nan; 
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            else 

                SVused(n)=SVused(n)+1; 

            end 

        else 

            SNR(SV,n)=nan; 

            alpha(SV,n)=nan; 

        end 

        

alpha_true(SV,n)=(acos((dot(L(SV,1:3),true_att'))/(norm(L(SV,1:3))*norm(true_att')))*180/pi); 

        

    end 

     

    if exist ('Include_Weight_Matrix','var') 

        W=single(diag(ones(1,32)));     

        for  SV=1:32     

            if SNR(SV,n)>SNR_Mask 

                W(SV,SV)= cosd(alpha(SV,n))^2 + sin(elevation(SV,n))^2; 

            else  

                W(SV,SV)=0; 

            end 

        end 

        B(n,:)=(L'*W*L)\(L'*W*S);  % Weighted Matrix attitude calculation 

    else 

        B(n,:)=(L'*L)\(L'*S);      % Least Squares attitude calculation 

    end 

    if max(isnan(B(n,:)))>0 || SVused(n)<3 

        B(n,:)=B(n-1,:); 

    end 

end     

  

for n=1:testbed_packets 

    error(n)=(subspace(B(n,:)',true_att(:)))*180/pi;   

end 

close(h)  

  

figure('Name','Block II/IIA SNR Levels' ); 

plot_n=1; 

hold on; 

for SV=1:32 

   if max(SNR(SV,:))>0.25  && SV_block(SV)==1 

        subplot(4,3,plot_n); 

        plot_n=plot_n+1; 

        hold on; 

        plot(xax,alpha(SV,:),xax,alpha_true(SV,:),'-r','LineWidth',2); 

        set(gca,'YTick',[0 30 60 90],'XTick',[0 

testbed_packets],'xlim',[0,testbed_packets],'XTickLabel',[0 testbed_packets],'ylim',[0,90]); 

        title(['PRN ' int2str(SV)],'fontweight','b'); 

        xlabel('Time (s)'); 

    end     

end 

  

figure('Name','Block IIR Legacy SNR Levels' ); 

plot_n=1; 

hold on; 

for SV=1:32 

   if max(SNR(SV,:))>0.25  && SV_block(SV)==2 

        subplot(4,3,plot_n); 

        plot_n=plot_n+1; 

        hold on; 

        plot(xax,alpha(SV,:),xax,alpha_true(SV,:),'-r','LineWidth',2); 

        set(gca,'YTick',[0 30 60 90],'XTick',[0 

testbed_packets],'xlim',[0,testbed_packets],'XTickLabel',[0 testbed_packets],'ylim',[0,90]); 

        title(['PRN ' int2str(SV)],'fontweight','b'); 

        xlabel('Time (s)'); 

    end     

end 

  

figure('Name','Block IIR(New) / IIR-M SNR Levels' ); 

plot_n=1; 

hold on; 

for SV=1:32 

   if max(SNR(SV,:))>0.25  && SV_block(SV)==3 

        subplot(4,3,plot_n); 

        plot_n=plot_n+1; 

        hold on; 
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        plot(xax,alpha(SV,:),xax,alpha_true(SV,:),'-r','LineWidth',2); 

        set(gca,'YTick',[0 30 60 90],'XTick',[0 

testbed_packets],'xlim',[0,testbed_packets],'XTickLabel',[0 testbed_packets],'ylim',[0,90]); 

        title(['PRN ' int2str(SV)],'fontweight','b'); 

        xlabel('Time (s)'); 

    end     

end 

  

error(1:5)=error(6); %ignore 1st 5 samples from GPS startup 

rms=mean(sqrt(error.^2)); 

[histo,bin]=hist(error,max(error)*100); 

n=1; 

m=1; 

while m<testbed_packets*0.9 

    m=sum(histo(1:n)); 

    n=n+1; 

end 

ninety=bin(n); 

  

max_error=max(error); 

meanSV=mean(SVused); 

AVG_att = mean(B); 

AVG_error = (acos((dot(AVG_att,true_att'))/(norm(AVG_att)*norm(true_att')))*180/pi); 

disp('    RMS       Ninety    Max       Mean SVs   AVG ') 

disp([rms  ninety max_error meanSV AVG_error]) 

figure 

hold on 

hist(error,max(error)*2); 

grid on; 

xlabel('Error (Deg)'); 

ylabel('Sample Quantity'); 

  

figure('Position',[1 1 1280 200]) 

hold on; 

plot(error); 

xlabel('Sample (s)'); 

ylabel('Error (Deg)'); 

  

figure 

hold on 

AX=plot(B(10:end,1),B(10:end,2)); 

plot(TRUE_MEAN(1),TRUE_MEAN(2),'or','MarkerFaceColor','r') 

xlabel('X-Axis'); 

ylabel('Y-Axis'); 

  

clear AX H1 H2 BX histo bin n m 
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B.5  MATLAB Script for Generating User Interface Program 

% Calculate_Attitude.m 

  

% Launches GUI to load reference attitude, load GPS SNR sample data,   

% calculate attitude, and generate plots 

  

function varargout = Calculate_Attitude(varargin) 

% CALCULATE_ATTITUDE M-file for Calculate_Attitude.fig 

%      CALCULATE_ATTITUDE, by itself, creates a new CALCULATE_ATTITUDE or raises the existing 

%      singleton*. 

% 

%      H = CALCULATE_ATTITUDE returns the handle to a new CALCULATE_ATTITUDE or the handle to 

%      the existing singleton*. 

% 

%      CALCULATE_ATTITUDE('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in CALCULATE_ATTITUDE.M with the given input arguments. 

% 

%      CALCULATE_ATTITUDE('Property','Value',...) creates a new CALCULATE_ATTITUDE or raises 

%      the existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before Calculate_Attitude_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to Calculate_Attitude_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help Calculate_Attitude 

  

% Last Modified by GUIDE v2.5 15-Jun-2013 14:36:56 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @Calculate_Attitude_OpeningFcn, ... 

                   'gui_OutputFcn',  @Calculate_Attitude_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

% --- Executes just before Calculate_Attitude is made visible. 

function Calculate_Attitude_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to Calculate_Attitude (see VARARGIN) 

  

% Choose default command line output for Calculate_Attitude 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

initialize_gui(hObject, handles, false); 

  

% UIWAIT makes Calculate_Attitude wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

% --- Outputs from this function are returned to the command line. 

function varargout = Calculate_Attitude_OutputFcn(hObject, eventdata, handles) 

% varargout  cell array for returning output args (see VARARGOUT); 
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% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

% -------------------------------------------------------------------- 

function initialize_gui(fig_handle, handles, isreset) 

% If the metricdata field is present and the reset flag is false, it means 

% we are we are just re-initializing a GUI by calling it from the cmd line 

% while it is up. So, bail out as we dont want to reset the data. 

global TRUE_MEAN; 

TRUE_MEAN(1) = str2double(get(handles.editX,'String')); 

TRUE_MEAN(2) = str2double(get(handles.editY,'String')); 

TRUE_MEAN(3) = str2double(get(handles.editZ,'String')); 

assignin('base', 'TRUE_MEAN', TRUE_MEAN) 

if isfield(handles, 'metricdata') && ~isreset 

    return; 

end 

  

% Update handles structure 

guidata(handles.figure1, handles); 

  

  

% --- Executes on button press in pushbuttonPolaRx. 

function pushbuttonPolaRx_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonPolaRx (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

load_polaRX; 

  

assignin('base', 'TRUE_MEAN', TRUE_MEAN) 

set(handles.editX, 'String', TRUE_MEAN(1)); 

set(handles.editY, 'String', TRUE_MEAN(2)); 

set(handles.editZ, 'String', TRUE_MEAN(3)); 

  

function editX_Callback(hObject, eventdata, handles) 

% hObject    handle to editX (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of editX as text 

%        str2double(get(hObject,'String')) returns contents of editX as a double 

global TRUE_MEAN; 

TRUE_MEAN(1) = str2double(get(hObject, 'String')); 

if isnan(TRUE_MEAN(1)) 

    TRUE_MEAN(1) = 0; 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

assignin('base', 'TRUE_MEAN', TRUE_MEAN) 

  

% --- Executes during object creation, after setting all properties. 

function editX_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to editX (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

function editY_Callback(hObject, eventdata, handles) 

% hObject    handle to editY (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of editY as text 

%        str2double(get(hObject,'String')) returns contents of editY as a double 

  

global TRUE_MEAN; 
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TRUE_MEAN(2) = str2double(get(hObject, 'String')); 

if isnan(TRUE_MEAN(2)) 

     TRUE_MEAN(2) = 0; 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

assignin('base', 'TRUE_MEAN', TRUE_MEAN) 

  

% --- Executes during object creation, after setting all properties. 

function editY_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to editY (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

function editZ_Callback(hObject, eventdata, handles) 

% hObject    handle to editZ (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of editZ as text 

%        str2double(get(hObject,'String')) returns contents of editZ as a double 

global TRUE_MEAN; 

TRUE_MEAN(3) = str2double(get(hObject, 'String')); 

if isnan(TRUE_MEAN(3)) 

    TRUE_MEAN(3) = 0; 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

assignin('base', 'TRUE_MEAN', TRUE_MEAN) 

  

% --- Executes during object creation, after setting all properties. 

function editZ_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to editZ (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on button press in checkboxPt. 

function checkboxPt_Callback(hObject, eventdata, handles) 

% hObject    handle to checkboxPt (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hint: get(hObject,'Value') returns toggle state of checkboxPt 

  

% --- Executes on button press in checkboxGt. 

function checkboxGt_Callback(hObject, eventdata, handles) 

% hObject    handle to checkboxGt (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hint: get(hObject,'Value') returns toggle state of checkboxGt 

  

  

% --- Executes on button press in checkboxLp. 

function checkboxLp_Callback(hObject, eventdata, handles) 

% hObject    handle to checkboxLp (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hint: get(hObject,'Value') returns toggle state of checkboxLp 

  

  

% --- Executes on button press in checkboxLa. 
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function checkboxLa_Callback(hObject, eventdata, handles) 

% hObject    handle to checkboxLa (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hint: get(hObject,'Value') returns toggle state of checkboxLa 

  

% --- Executes on button press in checkboxWeighting. 

function checkboxWeighting_Callback(hObject, eventdata, handles) 

% hObject    handle to checkboxWeighting (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hint: get(hObject,'Value') returns toggle state of checkboxWeighting 

% --- Executes on button press in pushbuttonTestbed. 

function pushbuttonTestbed_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonTestbed (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

clear testbed_packets; 

clear testbed; 

global testbed_packets; 

global testbed; 

load_testbed; 

assignin('base', 'testbed_packets', testbed_packets) 

assignin('base', 'testbed', testbed) 

  

% --- Executes on button press in pushbuttonOK. 

function pushbuttonOK_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonOK (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global TRUE_MEAN; 

global testbed_packets; 

global testbed; 

if get(handles.checkboxGt,'Value') == 1 

   Include_SV_Radiation_Pattern_Compensation = 1; 

end 

if get(handles.checkboxLp,'Value') == 1 

   Include_Space_Loss_Compensation = 1; 

end 

if get(handles.checkboxPt,'Value') == 1 

   Include_SV_Power_Compensation = 1; 

end 

if get(handles.checkboxLa,'Value') == 1 

   Include_Atm_Loss_Compensation = 1; 

end 

if get(handles.checkboxWeighting,'Value') == 1 

   Include_Weight_Matrix = 1; 

end 

  

static_attitude; 

  

% --- Executes on button press in pushbuttonCancel. 

function pushbuttonCancel_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonCancel (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

close(gcf); 




