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Abstract 

Understanding mechanisms behind variability in early life survival of marine fishes can 

improve predictive capabilities for recruitment success under changing climate 

conditions. Ecosystem changes in response to climate variability in the eastern Bering 

Sea affect commercial species including walleye pollock (Theragra chalcogramma), 

which represent an ecologically important component of the ecosystem and support the 

largest commercial fishery in the United States. The goal of my dissertation was to better 

understand spatial and temporal dynamics in the ecology of early life stages of walleye 

pollock in the eastern Bering Sea through: (1) an examination of shifts in larval fish 

community composition in response to environmental variability across both warm and 

cold conditions; (2) a quantification of the seasonal progression in energy content of age- 

0 walleye pollock which provides critical information for predicting overwinter survival 

and recruitment to age-1 because age-0 walleye pollock rely on sufficient energy reserves 

to survive their first winter; and (3) a modeling approach to better understand the role of 

prey quality, prey composition, and water temperature on spatial and temporal patterns of 

juvenile walleye pollock growth with implications for year-class survival and recruitment 

success. In the community analysis, I identified a strong cross-shelf gradient delineating 

slope and shelf assemblages, an influence of water masses from the Gulf of Alaska on 

species composition, and the importance of nearshore areas for larval fish. Species 

assemblages differed between warm and cold periods, and larval abundances, including 

that of walleye pollock, were generally greater in warm years. I identified different 

energy allocation strategies indicating that distinct ontogenetic stages face different 
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survival constraints. Larval walleye pollock favored allocation to somatic growth, 

presumably to escape size-dependent predation, while juveniles allocated energy to lipid 

storage in late summer. Finally, I provide evidence that a spatial mismatch between 

juvenile walleye pollock and growth ‘hot spots’ in 2005 contributed to poor recruitment 

while a higher degree of overlap in 2010 resulted in improved recruitment. I highlight the 

importance of climate-driven spatial patterns in community structure, prey dynamics, and 

environmental conditions that influence the growth and survival of an important gadoid 

population in a sub-arctic marine ecosystem. 
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General Introduction 

Walleye pollock (Theragra chalcogramma) is a gadoid species widely distributed 

throughout the sub-arctic North Pacific and its marginal seas, including a Japanese 

Pacific stock centered in coastal areas of southern Hokkaido Island (Ciannelli et al. 2007, 

Kooka et al. 2007). The centers of distribution for walleye pollock are in the southeastern 

Bering Sea and Gulf of Alaska.  The eastern Bering Sea (EBS) fishery averaged 1.31 

million tons annually during 2000-2009 (Ianelli et al. 2009), supporting the largest 

commercial fishery in the U.S. by weight. Range expansion of walleye pollock through 

Bering Strait was documented in 1976 (Wolotira et al. 1977) with larval walleye pollock 

observed in the Chukchi Sea in 1988 (Wyllie Echeverria & McRoy 1992). Whether the 

observation of walleye pollock north of Bering Strait may represent seasonally migrating 

portions of the Bering Sea population or resident populations of successfully reproducing 

walleye pollock in the Chukchi Sea has not been resolved to date. 

 Fluctuations in the abundance of walleye pollock throughout their range have 

been linked to large-scale climate forces (i.e., Pacific Decadal Oscillation). One 

manifestation of shifts in climate conditions was demonstrated by the switch from a 

benthic- to a pelagic-dominated ecosystem in the EBS following the regime shift of 

1976/77 (Hare & Mantua 2000). Groundfish, including walleye pollock, showed strong 

recruitment following the regime shift, correlated with a general warming of the system 

due to a positive phase of the Aleutian Low Pressure System (ALPS) (Wyllie Echeverria 

& Wooster 1998).  
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The EBS is characterized by a broad continental shelf (> 500 km) with an average 

depth of only about 70 m and supports a highly productive ecosystem owing to on-shelf 

flow of nutrient-rich waters. From spring to early fall, persistent oceanographic fronts 

(Hunt & Stabeno 2002) separate the shelf into three domains: the inner shelf domain 

(inside of the 50 m depth contour), the middle domain (between 50 and 100 m), and the 

outer domain (between 100 and 200 m) (Iverson et al. 1979, Coachman 1986). 

Alternating climate states have resulted in periods of both warm and cold conditions in 

recent years. The most extensive ice cover and coldest water column temperatures since 

the early 1970s were observed beginning in 2007 and continued through at least the 

winter of 2010/11 (Stabeno et al. 2012). 

Predominant currents onto the EBS shelf include the Alaska Coastal Current 

(ACC) that transports lower salinity waters from the Gulf of Alaska through Unimak 

Pass, and the Aleutian North Slope Current that brings higher salinity oceanic waters to 

the slope (Schumacher & Stabeno 1998, Stabeno et al. 2006). Current trajectories over 

the shelf are generally northwestward with the Bering Slope Current flowing along the 

shelf break and ACC waters following either the 50 m or 100 m isobath (Stabeno et al. 

2001). 

The Oscillating Control Hypothesis (OCH), initially proposed by Hunt et al. 

(2002), was revised (Hunt et al. 2011) based in part on new findings regarding the 

importance of energetic status to fish survival (Heintz et al. in press). The OCH provides 

a theoretical framework within which to predict ecosystem responses to warm and cold 

regimes in the EBS. In warm regimes with early ice retreat, stratified waters maintain 
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production within the pelagic system (Walsh & McRoy 1986, Mueter et al. 2006), which 

was predicted to result in enhanced survival of species such as walleye pollock (Hunt & 

Stabeno 2002, Mueter et al. 2006, Moss et al. 2009). However, recent data indicate that 

changes in prey composition and abundance during a warm regime may be detrimental to 

walleye pollock survival. Specifically, larger zooplankton taxa, such as lipid-rich 

Calanus spp., were less abundant during recent warm years, which resulted in reduced 

growth rates and lipid reserves of age-0 walleye pollock and may have increased their 

predation risk and decreased their overwinter survival (Coyle et al. 2011, Stabeno et al. 

2012). In contrast, higher abundances of larger, lipid-rich zooplankton taxa during cold 

years, combined with lower metabolic demands, allows age-0 walleye pollock to acquire 

greater lipid reserves by late summer, resulting in increased overwinter survival (Hunt et 

al. 2011). 

The main prey resources for walleye pollock are similar across their distribution 

range, but prey composition varies based on ontogeny and shifts in available prey due to 

climate conditions. Early life stages of walleye pollock are gape-limited and feed mainly 

on copepod nauplii (Hillgruber et al. 1995, Strasburger et al. in press). With increasing 

size, the diversity of prey increases to include later stages of copepod species (i.e., 

Calanus spp., Pseudocalanus spp.), amphipods (Themisto libellula), and euphausiids 

(i.e., Thysanoessa raschii) (Farley1, unpubl. data). Fall condition of walleye pollock is 

increasingly recognized as a predictor of overwinter success and is hypothesized to be 

dependent on prey availability early in the growing season to fuel larval development

                                                
1 Farley, EV. NOAA Fisheries, Alaska Fisheries Science Center, Juneau, AK 99801 
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combined with lipid-rich prey available during fall to allow walleye pollock to store 

energy reserves for overwintering (Heintz et al. in press).  

Under continued warming conditions, walleye pollock populations in sub-arctic 

ecosystems are hypothesized to face the combined challenges of reduced habitat and prey 

availability. Northward shifts in species’ distributions in response to temperature 

increases have been observed on the Bering Sea shelf (Mueter et al. 2007, Mueter & 

Litzow 2008, Spencer 2008). However, available habitat and prey resources may not be 

able to support extensive northward shifts. Some prey populations may be able to evolve 

and/or shift their distributions concurrent with walleye pollock populations, but shortened 

day lengths (and subsequent growing seasons) combined with more persistent ice cover 

may restrict the northward distribution of walleye pollock, ultimately limiting their 

abundance under a warming scenario. The reproductive contribution of northern 

segments of the walleye pollock population will affect the ability of walleye pollock to 

respond to climate warming. 

Forecasted summer sea surface temperatures in the Bering Sea are predicted to 

rise by 2°C by 2050 (Hollowed et al. 2009) while declines in recruitment to age-1 of 

walleye pollock of 32-58% are also predicted by 2050 (Mueter et al. 2011). Warm 

temperature conditions result in reduced prey quality and low energy density of juvenile 

walleye pollock in late summer (Hunt et al. 2011), lowering year class survival and 

recruitment success. Climate-driven changes in prey dynamics may have ecosystem-level 

consequences via bottom-up control of fish populations in sub-arctic marine ecosystems. 

Understanding mechanisms behind recruitment variability, and underlying spatial 
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patterns in the relationships, may inform the discussion of climate effects on predator-

prey interactions and recruitment success of marine fishes.  

This dissertation examines spatial and temporal dynamics in the ecology of early 

life stages of walleye pollock in the EBS to better evaluate potential consequences of 

climate change on walleye pollock and the broader ecosystem. The goal of my first 

chapter was to quantify how spring larval fish assemblages respond to environmental 

variability, in particular temperature variability, and to examine what delineates 

community composition in the EBS. Characterizing patterns in larval fish community 

composition for the waters north of the Alaska Peninsula is of particular interest because 

this region includes known spawning and nursery areas for a variety of ecologically and 

economically important groundfish species, including walleye pollock (Lanksbury et al. 

2007, Bacheler et al. 2010). In addition, the influx of larvae advected through Unimak 

Pass from the Gulf of Alaska (e.g., northern rock sole, Lepidopsetta polyxystra; 

Lanksbury et al. 2007) may have important ecological consequences due to their potential 

impacts on local populations.  

Despite the important role of walleye pollock in the EBS pelagic ecosystem, and 

the relationship between age-0 energy density in late summer and overwinter survival 

(Heintz et al. in press), the energy allocation patterns during age-0 remain poorly 

understood. The second chapter describes larval and juvenile strategies for growth and 

energy storage in age-0 walleye pollock. By maximizing growth and transitioning 

through the larval period rapidly, larvae minimize exposure to size-dependent predation 

during this stage. However, overwinter survival is higher in fish that are both larger and 
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have increased lipid reserves, indicating that energy allocation during the juvenile stage 

will not only favor lipid storage but also support increasing fish size (i.e., critical size and 

period hypothesis; Beamish & Mahnken 2001, Heintz & Vollenweider 2010). I 

hypothesized that the age-0 walleye pollock energy allocation strategy (i.e., favoring 

growth vs. storage) will differ seasonally among life stages and I tested this by 

contrasting body compositions of larval and juvenile fish. Specifically, the goals of this 

study were to (1) describe cohort-specific patterns in energy density for walleye pollock 

from age-0 to age-1, and (2) describe seasonal patterns in energy allocation during larval 

and juvenile (age-0) development leading to estimates of energy levels prior to their first 

winter. 

Finally, the objectives of the third chapter were to (1) estimate spatial differences 

in maximum growth potential of juvenile walleye pollock on the EBS shelf using a 

bioenergetics modeling approach, (2) quantify the impact of temperature and prey quality 

on spatial variability in growth potential, (3) compare maximum growth potential to 

predicted growth from an individual-based model (IBM), and (4) compare observed and 

predicted (from IBM) prey preferences in order to better understand mechanistic prey 

selection leading to differences in modeled growth. I hypothesized that differences in 

prey species composition and quality lead to bottom-up control of juvenile walleye 

pollock growth and survival in representative warm and cold years in the EBS. 

 

 

 



 

 

7 

Chapter 1: Community-level response of larval fish 

to environmental variability in the southeastern Bering Sea2 

Abstract 

Oceanographic conditions in the southeastern Bering Sea are affected by large-scale 

climatic drivers (e.g., Pacific Decadal Oscillation, Aleutian Low Pressure System). 

Ecosystem changes in response to climate variability should be monitored, as the Bering 

Sea supports the largest commercial fishery in the USA (walleye pollock Theragra 

chalcogramma). This analysis examined shifts in larval fish community composition in 

the southeastern Bering Sea in response to environmental variability across both warm 

and cold periods. Larvae were sampled in spring (May) during 5 cruises between 2002 

and 2008 using oblique 60 cm bongo tows. Non-metric multidimensional scaling 

(NMDS) was used to quantify variability and reduce multi-species abundance data to 

major modes of species composition. Generalized additive models (GAMs) characterized 

spatial and temporal differences in assemblage structure as a function of environmental 

covariates. We identified a strong cross-shelf gradient delineating slope and shelf 

assemblages, an influence of water masses from the Gulf of Alaska on species 

composition, and the importance of nearshore areas for larval fish. Species assemblages 

differed between warm and cold periods, and larval abundances were generally greater in 

warm years. High abundances of walleye pollock in warm years contributed most to 

differences in Unimak Pass, outer domain, and shelf areas (geographic areas in the study 
                                                
2 Siddon, E.C., Duffy-Anderson, J.T., Mueter, F.J. 2011. Community-level response of 
larval fish to environmental variability in the southeastern Bering Sea. Marine Ecology 
Progress Series 426: 225-239. 
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region defined based on bathymetry). Sebastes spp. contributed to differences over the 

slope with increased abundances in cold years. We propose that community-level patterns 

in larval fish composition may reflect species-specific responses to climate change and 

that early life stages may be primary indicators of environmental change.  
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1.1 Introduction 

Climate variability affects marine ecosystems through direct effects on ocean 

temperatures; an underlying warming trend (IPCC 2007) is therefore likely to affect 

commercial, recreational, and subsistence fisheries. Community-level consequences of 

environmental variability arise because species have different temperature tolerances 

(physiological optima and limits) and mobility to stay within their preferred thermal 

range (Pörtner et al. 2001). Populations or species with higher temperature optima will 

have a competitive advantage in warm conditions, resulting in species turnover and 

changes in community composition (e.g., Chavez & Messie 2009). In addition to direct 

responses of fish and other organisms, temperature changes are modulated by 

simultaneous changes in food availability and predation pressure, which are more 

difficult to predict because they interact in non-linear ways (Ciannelli et al. 2004).  

 Most previous studies have focused on temperature effects to adult demersal fish 

and shellfish communities (Brander et al. 2003, Perry et al. 2005, Mueter et al. 2007, 

Mueter & Litzow 2008, Spencer 2008). Less work has been done to investigate changes 

in the pelagic community structure or early life stages of fishes (Duffy-Anderson et al. 

2006, Brodeur et al. 2008, Doyle et al. 2009). The pelagic distribution of ichthyoplankton 

is related to the spawning locations of adult fish (Doyle et al. 2002). After spawning, 

larval drift is subject to advection of water masses (Lanksbury et al. 2005), which is 

strongly influenced by wind stress and varies interannually as a result of basin-scale 

climate variability. Transport pathways can lead to differential survival of larvae based 

on life history characteristics (Doyle et al. 2009), predator abundances (Hunt et al. 2002), 
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or availability of suitable juvenile habitat (Wilderbuer et al. 2002). Understanding 

variability in ichthyoplankton assemblage structure may indicate ecosystem-level and/or 

species-specific responses to climate change. 

 The southeastern Bering Sea has experienced both warm and cold conditions (as 

defined in Hunt et al. 2002, 2011) in recent years, offering an opportunity to examine 

changes in larval fish community compositions. Underlying this variability is a long-term 

warming trend of approximately 0.1°C per decade, with the most pronounced increases 

occurring during summer months (F. Mueter unpubl. data). Historically, sea surface 

temperatures (SSTs) in the Bering Sea were cool in the early 20th century followed by a 

relatively warm period from 1925 to the mid- to late 1940s. Temperatures in the 1950s to 

early 1970s were also cool, but increased after the 1976–77 regime shift (Hare & Mantua 

2000). The Bering Sea has been generally warmer following this regime shift, and the 

highest summer temperatures since the beginning of the last century were observed 

between 2002 and 2005. However, the most extensive ice cover and coldest water 

column temperatures since the early 1970s were observed from 2006 to at least the end of 

2010. While water-column temperatures have been much lower recently, average SSTs 

over the shelf during late summer have stayed relatively high (Mueter et al. 2009).  

 The goal of this work is to quantify how spring larval fish assemblages respond to 

environmental variability, in particular temperature variability, and to examine what 

delineates community composition in the southeastern Bering Sea. Characterizing 

patterns in larval fish community composition for the waters north of the Alaska 

Peninsula is of particular interest because this region includes known spawning and 
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nursery areas for a variety of ecologically and economically important groundfish species 

(Lanksbury et al. 2007, Bacheler et al. 2010). In addition, the influx of larvae advected 

through Unimak Pass from the Gulf of Alaska (e.g., northern rock sole Lepidopsetta 

polyxystra) (Lanksbury et al. 2007) may have important ecological consequences as these 

species interact with local populations. 

	
  
1.2 Study Region 

The southeastern Bering Sea is characterized by a broad continental shelf (>500 km 

wide) with an average depth of only about 70 m and supports a highly productive 

ecosystem owing to on-shelf flow of nutrient-rich waters. From spring to early fall, 

persistent oceanographic fronts (Hunt & Stabeno 2002) separate the shelf into 3 domains: 

the inner shelf domain (inside of the 50 m isobath), the middle domain (between 50 and 

100 m isobaths), and the outer domain (between 100 and 200 m isobaths) (Iverson et al. 

1979, Coachman 1986).  

Predominant currents onto the southeastern Bering Sea shelf include the Alaska 

Coastal Current (ACC) that transports lower salinity waters from the Gulf of Alaska 

through Unimak Pass, and the Aleutian North Slope Current that brings higher salinity 

oceanic waters to the slope (Schumacher & Stabeno 1998, Stabeno et al. 2006). Current 

trajectories over the shelf are generally northwestward with the Bering Slope Current 

flowing along the shelf break and ACC waters following either the 50 or 100 m isobath 

(Stabeno et al. 2001).  

The ACC flows counterclockwise around the Gulf of Alaska and southwestward 

along the Alaskan Peninsula; it branches through Unimak Pass, which represents the 
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major conduit of flow between the Gulf of Alaska and the Bering Sea shelf (Ladd et al. 

2005). The volume of ACC water advected through Unimak Pass varies seasonally and 

interannually (Stabeno et al. 2002). Freshwater discharge into the Gulf of Alaska can be 

used as a proxy for the strength of the ACC and, presumably, flow through Unimak Pass 

(Weingartner et al. 2005). Average discharge in March for 2002 to 2005 was 9764 m
3 
s

–1 

versus 1872 m
3 
s

–1 
for 2006 to 2008 (T. Royer unpubl. data based on formulae in Royer 

1982) suggesting greater flow through Unimak Pass in warm years. The direction of ACC 

waters entering the Bering Sea varies based on differences in forcing mechanisms (e.g. 

wind speed and direction) that affect water column structure and front formation. The 

onset and location of fronts affect water current trajectories (Kachel et al. 2002) and, 

therefore, transport pathways of larvae (Duffy-Anderson et al. 2006).  

	
  
1.3 Materials and methods 

1.3.1 Biological sampling 

Data on spring larval fish assemblage structure were collected during 5 research cruises 

in the southeastern Bering Sea (Fig. 1.1) between 2002 and 2008 using 60 cm bongo nets 

fitted with either 335 µm (2008) or 505 µm (2002, 2003, 2005, 2006) mesh; previous 

research determined that abundances of collected larvae are comparable between the 2 

mesh sizes (Shima & Bailey 1994, Boeing & Duffy-Anderson 2008, Duffy-Anderson et 

al. 2010). Cruises occurred in May of each year (Table 1.1). During all cruises, 

quantitative oblique tows were made to a maximum depth of 300 m (or to within 10 m of 

the substratum), allowing for vertically integrated estimates of larval fish abundance. The 
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ship speed was monitored and adjusted (1.5 to 2.5 knots) throughout each tow to maintain 

a wire angle of 45° from the ship to the bongo net. The nets were equipped with a 

calibrated 40 m flow meter; therefore, catch rates were standardized to catch per unit 

effort (CPUE; number · 10 m
–2

). Sampling occurred 24-hours a day and it was assumed 

that vertically integrated abundance estimates were not affected by diel vertical 

migrations. The geographic coverage of the sampling grid varied each year; to investigate 

changes in larval fish assemblage structure over time, only those stations sampled in at 

least two years were included in the analyses (‘common stations’; Table 1.1; Fig. 1.1). 

After retrieval of the bongo nets, all fish larvae were removed from the codends 

and a volume displacement measurement of remaining zooplankton (including small 

gelatinous zooplankton; large jellyfish were removed so as not to bias the displacement 

volume) was taken as a coarse measure of zooplankton wet weight biomass and an index 

of overall production at each station (Napp et al. 2002, Coyle et al. 2008, 2011). All 

samples were preserved at sea in 5% buffered formalin seawater solution. Fish larvae 

were sorted, identified to the lowest possible taxonomic level, measured (mm standard 

length [SL]), and enumerated at the Plankton Sorting and Identification Center in 

Szczecin, Poland. Identifications were verified at the Alaska Fisheries Science Center, 

NOAA (National Oceanic and Atmospheric Administration) in Seattle, Washington, 

USA.  

1.3.2 Physical environment sampling 

A Sea-Bird SBE 19 CTD was attached in-line between the bongo nets and the wire 

terminus to provide real-time estimates of temperature, conductivity, and pressure over 
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the towed path. An estimate of the water temperature within the study area each year was 

calculated by averaging the sampled water column temperature across all stations in a 

given year. Temperature and salinity measurements were averaged throughout the 

sampled water column at each station for comparison with the vertically integrated larval 

fish abundances to determine the characteristics of the water column when larvae were 

present. Larvae likely resulted from different water masses (e.g., above and below the 

pycnocline), but any effect of averaging was consistent across the study region (Duffy-

Anderson et al. 2006). Temperature and salinity were also averaged within the top 20 m 

(surface layer) to visualize and identify water mass characteristics by geographic areas 

(see below). Water column profiles varied from well-mixed nearshore stations to more 

stratified offshore stations. Surface water characteristics best captured broad differences 

by area and provided a reasonable metric to track the less-saline (i.e., less dense) ACC 

water through Unimak Pass and subsequent mixing on the shelf. 

Four distinct geographic areas were examined for the analyses, and stations were 

grouped as follows: Unimak Pass, slope (outside of 200 m isobath), outer domain 

(between 100 and 200 m isobaths), and shelf (within 100 m isobath). Very few stations 

were sampled within the inner domain (inside of 50 m) therefore these were combined 

with the middle domain (between 50 and 100 m) stations and comprised the shelf area. 

Surface (top 20 m) measurements of temperature and salinity distinguished unique water 

masses within each geographic area. Unimak Pass and the outer domain water masses 

had intermediate salinities, with Unimak Pass stations having relatively colder 

temperatures. Slope waters had the highest salinities and warmest temperatures while 
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shelf waters had lower salinities and colder water temperatures (Fig. 1.2).  

1.3.3 Community analyses 

To quantify variability in species composition over time and space, we used non-metric 

multidimensional scaling (NMDS) to reduce multi-species abundance data to their major 

modes of variability (PRIMER 6, v6.1.11) (Clarke & Gorley 2006). NMDS allowed us to 

detect patterns in the biological data first and then interpret those patterns in relation to 

the environmental data (Field et al. 1982) using generalized additive models (GAMs). 

NMDS is also more robust to violations of assumptions than other methods (e.g. 

detrended correspondence analysis or principle components analysis) (Minchin 1987). 

Stations at which no larval fish were caught (n = 8) and rare species, defined as those 

present at less than 5% of the stations across all years, were removed from the analyses. 

Rare species likely do not contribute to broad-scale temporal and spatial patterns (Duffy-

Anderson et al. 2006), therefore our approach allowed for detection of substantial shifts 

in species composition between years.  

Larval fish abundance data were highly right-skewed, therefore a 4th root 

transformation (CPUE
0.25

) was used to reduce the influence of samples with very high 

abundances. Transformed data were standardized to species maxima (i.e. each value was 

divided by the maximum CPUE
0.25 

value for the corresponding species) to give equal 

weight to all species, regardless of their average numerical abundance (Field et al. 1982). 

Bray-Curtis similarity matrices were then computed to examine differences in 

assemblage structure among (1) individual stations and (2) by geographic area based on 

larval fish composition, followed by ordinations using NMDS to visualize similarities in 



 

 

16 

species composition among stations or areas. The NMDS algorithm attempts to arrange 

samples (either stations or areas) such that pairwise distances in the ordination plot match 

Bray-Curtis similarities as closely as possible; thus, samples closer together in the 

ordination plot have a more similar species composition than samples farther apart. The 

final configuration of stations (areas) was determined by minimizing Kruskal’s stress 

statistic (Kruskal 1964), and the number of dimensions for the final ordinations was 

chosen as the smallest number of dimensions that achieved a stress of no more than 0.2. 

A stress of 0.1 or lower is considered a good fit (Kruskal 1964) and we defined a stress of 

less than 0.2 as acceptable. 

1.3.4 NMDS by station 

The final station-by-species matrix included 318 stations (Table 1.1) and 31 prevalent 

species (or species complexes) (see Table 1.2). The ordination axes in the NMDS plot, 

consisting of dimensionless values or scores for each station, were used as the response 

variable for modeling differences in assemblage structure in space and as a function of 

environmental covariates using GAMs. Spearman rank correlations were used to identify 

those species whose abundances were most strongly correlated (positively or negatively) 

with the axis scores and which therefore contributed most to the observed patterns of 

species composition. Only species for which the absolute correlation with a given 

ordination axis was equal to or larger than 0.4 were further examined.  

A GAM approach was used for modeling species composition to avoid pre-

specifying a functional relationship between the response and predictor variables. GAMs 

quantify the relationship between a set of predictors and the response through non-
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parametric smooth functions of the predictor variables (e.g. a smooth spatial surface can 

be fit as a function of latitude and longitude). The optimum amount of smoothing was 

chosen through a cross-validation approach as implemented in the R package ‘mgcv’ 

(Wood 2006). Appropriate (biologically meaningful) covariates (year, temperature, 

salinity, zooplankton displacement volume, latitude, and longitude) were selected to 

explain variability in larval fish assemblage structure. Station depth (bathymetry) is 

strongly confounded with the spatial term (latitude and longitude), and the estimated 

spatial surface captures any effects of location whether related to bathymetry, distance 

from shore, or other variables. Therefore, we did not include station depth as a covariate 

in the model.  

The full model included a categorical year term to allow for differences in the 

average response between years (subscript t denotes different years), a smooth function 

(ƒ) of temperature and salinity to allow for possible interactions, a smooth function of 

zooplankton displacement volume, and a smooth spatial surface (interaction term for 

latitude and longitude):  

Axis 1 = Yeart + f1(temperature, salinity) + f2(zooplankton displacement volume) + 

f3(latitude, longitude) + ε               (Eq. 1) 

Alternative models were considered that included separate smooth terms for 

temperature and salinity or eliminated one or more variables from the model (e.g., no 

zooplankton displacement volume term). Based on Akaike’s Information Criterion (AIC) 

(Akaike 1973, Burnham & Anderson 2002) and the amount of variability explained by 
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each model (adjusted R2 values), a best fit model was selected for characterizing the 

estimated effects of environmental variability on species composition for each axis. 

1.3.5 NMDS by geographic area 

We compared species composition by geographic area by averaging the CPUE for each 

species across all stations within a given area, which resulted in an area-by-species matrix 

that included 20 year-area combinations (n = 5 years; n = 4 areas) and 31 species. The 

PRIMER routine MVDISP, which measured the relative dispersion of yearly values 

within each area, was used to compare the variability in species composition by area 

across the study period. To examine differences in species composition between the 

warm period (years 2002, 2003, and 2005) and cold period (years 2006 and 2008), a 1-

way analysis of similarity (ANOSIM) tested for pairwise differences between each area-

period combination. Separate ANOSIM tests were performed for each area to further test 

whether species compositions were significantly different between warm and cold 

periods. A SIMPER (similarity percentages) analysis was then performed using the full 

station-by-species matrix to determine the contribution of individual species responsible 

for the dissimilarity between areas and periods.  

	
  
1.4 Results 

1.4.1 Biological sampling 

A total of 31 species or species complexes (e.g. Sebastes spp.) representing 14 different 

families were collected during 5 cruises over the 7 yr sampling period and were included 

in the community analyses. Walleye pollock Theragra chalcogramma was numerically 

the most abundant species in the assemblage (66% of total catch), followed by Pacific 
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sand lance Ammodytes hexapterus, rockfishes Sebastes spp., northern rock sole, and 

Pacific cod Gadus macrocephalus (Table 1.2). Individual species abundances varied 

interannually; for example, walleye pollock comprised a maximum of 85% of the total 

catch in 2002 to a minimum of 29% in 2006 (Fig. 1.3). Fish larvae were generally more 

abundant in the warm years than in the cold years, especially flathead sole 

Hippoglossoides elassodon, northern rock sole, and Pacific sand lance. Rare species, 

though not included in the analyses, were sampled in either warm years (e.g. high cocks-

comb Anoplarchus purpurescens and Greenland halibut Reinhardtius hippoglossoides) or 

cold years (e.g. Arctic cod Boreogadus saida).  

1.4.2 Physical environment sampling 

The average water column temperature varied considerably between the warmer years of 

2002, 2003, and 2005 (3.86, 4.75, and 4.16°C, respectively) and the colder years of 2006 

and 2008 (3.39 and 2.0°C, respectively). This provided an environmental continuum 

against which to investigate changes in larval fish species composition. Water mass 

characteristics were unique at slope, outer domain, and shelf stations in cold years (Fig. 

1.2D), but the outer domain and shelf waters were not as clearly separated in warm years 

(Fig. 1.2C). Unimak Pass stations generally displayed similar characteristics to outer 

domain waters; however, in 2002 and 2005, stations on the east side of Unimak Pass dis-

played characteristics of shelf waters, whereas stations on the west side of Unimak Pass 

were more similar to slope waters based on differences in salinity, indicating flow in both 

directions through Unimak Pass.  

1.4.3 Community analyses 
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1.4.3.1 NMDS by station 

The ordination of individual stations (Fig. 1.4) condensed information on the abundance 

of each species and afforded both community-level and species-specific gradients to be 

described across the study area. GAMs illustrated 3 patterns in species composition that 

captured important habitat attributes for larval fish distributions as described below. 

Spearman rank correlations with the NMDS axis scores showed which individual species 

contributed most to the observed gradients. The first axis captured the greatest amount of 

variability in species composition, which was corroborated by strong species’ 

correlations, both positive and negative. Several species were strongly positively 

correlated with the second and third axes; however, no species were strongly negatively 

correlated with these axes (Table 1.3). 

1.4.3.2 Generalized Additive Models 

1.4.3.2.1 Axis 1 

The first axis described a gradient between a slope assemblage (species positively 

correlated with Axis 1) and a shelf assemblage (negatively correlated with Axis 1) that 

was resilient to interannual differences in species abundances (Fig. 1.5A). The slope 

assemblage was characterized by Sebastes spp. and Atheresthes spp., as well as deeper-

water species such as Pacific blacksmelt (Bathylagus pacificus). In contrast, the shelf 

assemblage was characterized by Alaska plaice (Pleuronectes quadrituberculatus), 

Pacific sand lance, walleye pollock, and northern rock sole (Table 1.3).   

The best model for Axis 1 scores was described as: 

Axis 1 ~ Yeart + f(Temperature, Salinity) + f(Latitude,  Longitude)                  (Eq. 2) 
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and included a significant categorical year term denoting a difference in the average 

value of the response among years, a significant smooth term of temperature and salinity, 

and a smooth spatial term (latitude and longitude) (Table 1.4). Although temperature and 

salinity were confounded with the spatial term, the latter largely captured residual 

variability not explained by either temperature or salinity. Zooplankton displacement 

volume was not significant in the full model described by Eq. (1) and was dropped from 

the best model. The model explained a significant proportion of the variability in species 

composition along the first axis (adjusted R
2 
= 0.865; n = 318).  

Both temperature and salinity had a strong influence on species composition (Fig. 

1.5B). The slope assemblage (positive correlations) was more common at higher 

temperatures and at higher salinities, while the shelf assemblage (negative correlations) 

was found at lower temperatures and salinities, corroborating the cross-shelf spatial 

pattern described above. In addition, we found significant variability in species compo-

sition among years (Fig. 1.5C) that was not explained by local water mass characteristics 

or spatial patterns. Species abundances were generally higher in warm years, driven by 

shelf species such as Pacific sand lance, flathead sole, and northern rock sole 

1.4.3.2.2 Axis 2 

The second axis identified a plume of similar species composition originating in Unimak 

Pass and extending onto the shelf. Fig. 1.6A shows the average spatial pattern across all 

years, though the spatial extent of the plume varied between years. Species strongly 

correlated with this plume of water included flathead sole, Pacific cod, and northern rock 

sole (Table 1.3).  
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The best model for Axis 2 was described as:  

Axis 2 ~ f(Temperature, Salinity) + f(Latitude,  Longitude)                                    (Eq. 3) 

and included a significant smooth term of temperature and salinity and a smooth spatial 

term (Table 1.4), however the year and zooplankton displacement volume terms were not 

significant. The model explained additional variability in species composition along the 

second axis of the NMDS ordination (adjusted R
2 
= 0.423; n = 318).  

The water mass associated with the plume of species originating from the Unimak 

Pass region had warmer temperatures and lower salinities than surrounding waters (Fig. 

1.6B). The ACC carries lower salinity waters from the Gulf of Alaska through Unimak 

Pass (Stabeno et al. 2002) and may have influenced the spatial distribution (i.e. plume) of 

species assemblages. After accounting for the effects of temperature and salinity, as well 

as the spatial pattern, there was no significant effect of year in Axis 2 scores, suggesting 

that interannual variability in species compositions was fully accounted for by 

interannual differences in water mass characteristics.  

1.4.3.2.3 Axis 3 

The third axis delineated species that were associated with nearshore habitats in waters 

north of the Alaska Peninsula (Fig. 1.7A). Species strongly positively correlated with 

Axis 3 included Pacific cod, Pacific sand lance, and sturgeon poacher Podothecus 

acipenserinus (Table 1.3).  

The best model for Axis 3 was described as:  

Axis 3 ~ f(Temperature, Salinity) + f(Latitude,  Longitude)                           (Eq. 4) 
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and included a significant smooth term of temperature and salinity and a smooth spatial 

term (latitude and longitude) (Table 1.4), whereas the year and zooplankton displacement 

volume terms were not significant. The model explained additional variability in species 

composition along the third axis (adjusted R
2 
= 0.458; n = 318).  

Temperature and salinity helped to distinguish the spatial pattern. Nearshore 

waters had warmer temperatures and lower salinities, whereas offshore waters had cooler 

temperatures and higher salinities (Fig. 1.7B). The nearshore species assemblage may 

reflect spawning habitat preferences of the adult stages.  

1.4.3.3 NMDS by geographic area 

The ordination by area (Fig. 1.8) allowed detection of changes in species composition 

across broader geographic areas by year. The ordination showed a clear gradient in 

species assemblages from the slope to the shelf. Unimak Pass assemblages were more 

similar to outer domain assemblages in warm years, but less so in cold years. Species 

compositions were more variable between warm and cold periods for Unimak Pass, the 

outer domain, and shelf areas. In contrast, the slope assemblage was less variable across 

the study period based on average rank dissimilarity (MVDISP; Unimak Pass = 1.44; 

slope = 0.63; outer domain = 0.8; shelf = 1.13). Pairwise comparisons showed the highest 

dissimilarity among years for Unimak Pass and the lowest dissimilarity slope stations 

(Index of Multivariate Dispersion [IMD] = -0.76, where -1 would indicate maximum 

difference). 

 All unique area-by-period combinations showed significant differences in species 

assemblages (ANOSIM; p < 0.05), except slope assemblages between warm and cold 
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periods (p = 0.08) and between Unimak Pass and outer domain assemblages in warm (p = 

0.19) and cold (p = 0.1) periods. Within each area, species compositions were 

significantly different between warm and cold periods (p < 0.05 for all), though the 

difference on the slope was only weakly significant (p = 0.041). SIMPER then identified 

which individual species contributed most to assemblage differences between the warm 

and cold periods for each area. The average abundance of Sebastes spp. contributed most 

to differences in the slope assemblage, with more Sebastes spp. in cold years. The 

abundance of walleye pollock contributed most to assemblage differences in Unimak 

Pass, outer domain, and shelf areas with greater abundances of walleye pollock during 

the warm period (Table 1.5).  

 

1.5 Discussion 

Larval fish community composition in the southeastern Bering Sea was delineated by 

strong spatial patterns related to differences in water column temperature and/or salinity. 

Interannual differences in assemblage composition were attributed to species-specific 

responses to warm or cold conditions. Larval abundances were generally higher in warm 

years with high abundances of walleye pollock contributing most to differences in 

Unimak Pass, outer domain, and shelf areas between warm and cold periods. 

Assemblages over the slope were less variable between years and may be somewhat 

insulated from interannual variability. The slope assemblage was consistently dominated 

by Sebastes spp. with increased abundances in cold years. Therefore, community-level 

patterns in larval fish composition may reflect species-specific responses to envi-



 

 

25 

ronmental variability.  

Cross-shelf assemblage structure was primarily associated with a geographic 

and/or salinity gradient that distinguished slope and shelf communities. Salinities are 

higher over the slope due to the oceanic influence of the Aleutian North Slope Current 

and lower on the shelf due to increased freshwater from the mainland and from the ACC 

flowing through Unimak Pass. The advection of slope waters onto the shelf can be seen 

in the spatial pattern of predicted species composition according to Axis 1 (Fig. 1.5A). A 

finger of slope-derived species extended onto the shelf indicating larval transport through 

Bering Canyon. The cross-shelf gradient, largely driven by differences in spawning 

habitat for slope and shelf species, appears resilient to environmental variability between 

warm and cold years.  

The observation of unique slope and shelf assemblages corroborates previous 

patterns (Doyle et al. 2002) and provides information on spawning habitats of adult fish. 

Although larval Sebastes spp. (slope assemblage) cannot easily be identified to species, 

many adult distributions follow the shelf break and slope habitats in the southeastern 

Bering Sea (e.g. Pacific ocean perch Sebastes alutus; Brodeur 2001). Juvenile 

Atheresthes spp., comprising arrowtooth flounder A. stomias and Kamchatka flounder A. 

evermanni, are widely distributed on the continental shelf and begin recruiting to the 

slope habitat after about age-4 (Wilderbuer et al. 2009). In recent years, their abundance 

has increased, leading to a greater trophic impact; adult arrowtooth flounder are known to 

be voracious predators on juvenile walleye pollock (Livingston & Jurado-Molina 2000, 

Knoth & Foy 2008, Ianelli et al. 2009). Larval pollock, however, were predominant in the 
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shelf assemblage in our study, indicating spatial separation from adult arrowtooth 

flounder and from larval aggregations of Atheresthes spp. over the slope. Alaska plaice 

spawn along the north side of the Alaska Peninsula in April and May, and eggs and 

larvae drift north and northeast over the shelf (Duffy-Anderson et al. 2010). While the 

drift trajectories vary interannually, the general current flow retains Alaska plaice within 

the shelf habitat.  

The advection of ACC waters through Unimak Pass (Ladd et al. 2005) may affect 

the distribution of larval fish on the southeastern Bering Sea shelf. Water in Unimak Pass 

is similar to the outer domain water mass, especially in cold years, indicating directional 

flow of ACC water onto the outer Bering Sea shelf. Warm years with greater inflow of 

ACC water (T. Royer unpubl. data) may result in increased mixing and subsequent 

blending of water mass characteristics over the shelf (Fig. 1.2C). In cold years, inflow of 

ACC water is reduced, resulting in a clearer distinction of water masses (Fig. 1.2D).  

Species entrained in, or advected by, ACC waters within Unimak Pass and the 

Bering Sea shelf included Pacific cod and northern rock sole, with higher overall 

abundances of these species in warm years. The trawling grounds around Unimak Pass 

are some of the most productive fishing areas for Pacific cod in the Bering Sea (Conners 

& Munro 2008), and just northeast of Unimak Pass is a major spawning area (Shimada & 

Kimura 1994). Pacific cod larvae caught in and near Unimak Pass in this study may 

reflect these well-known spawning areas and/or reflect the contribution of Pacific cod 

spawned in the Gulf of Alaska to Bering Sea populations. Previous research on northern 

rock sole has identified spawning areas west of Unimak Pass along the Aleutian Islands 
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and in the Gulf of Alaska with advection through Unimak Pass. Transport pathways 

follow the middle and outer shelf or flow eastward along the Alaska Peninsula 

(Lanksbury et al. 2007). Differential survival of northern rock sole depends on transport 

to adequate nursery grounds in the coastal domain (Wilderbuer et al. 2002, Lanksbury et 

al. 2007). Unfortunately, our sampling design cannot resolve whether these larvae 

originated in the Gulf of Alaska or were entrained in ACC waters within Unimak Pass 

and nearby spawning grounds. The impact of Gulf of Alaska larvae on Bering Sea 

populations, and the degree to which the populations are connected, are important 

ecological (i.e. competition, predation) and fisheries management (number of sub-

populations) questions. To address the connectedness of these populations, future work 

tracking larvae from different spawning grounds using genetic markers, otolith 

microchemistry, or differential growth rates could improve the resolution of Gulf of 

Alaska larval contributions to Bering Sea populations.  

The importance of nearshore habitats to Pacific cod, Bathymaster spp., and 

Pacific sand lance could reflect preferred spawning grounds of adult fish (e.g. Pacific 

cod; Shimada & Kimura 1994). The onshore-offshore gradient in species composition 

was more difficult to interpret because correlations with individual species’ CPUEs were 

weaker than for the other axes. In addition, the third NMDS axis captured residual 

variability not already accounted for in the first or second axes. However, the importance 

of nearshore habitat and an onshore-offshore gradient in species composition are 

biologically reasonable; therefore, we believe our interpretation of this axis is realistic.  
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The 3 spatial patterns of larval fish assemblages identified from the NMDS 

ordination axes are not exclusive; individual species can be correlated with more than one 

gradient, thereby capturing different influences on larval distribution. For example, 

Pacific sand lance was strongly correlated with the first and third axes. The first axis 

described Pacific sand lance as a shelf species, while the third axis further associated 

larval sand lance with the nearshore environment of the shelf habitat. Pacific cod was 

correlated with the second and third axes. The second axis highlighted the importance of 

ACC waters in the distribution of larval Pacific cod while the third axis identified the 

nearshore environment as important, likely due to the spawning preferences of adult fish.  

The analytical approach of multivariate ordination followed by GAMs as an 

exploratory regression technique successfully highlighted the main delineations of 

species compositions and modeled the response of the assemblage to environmental 

covariates. However, caution should be used when interpreting such results, as spurious 

(i.e. non-biologically relevant) outcomes are possible due to the flexible nature of GAMs. 

We are confident in our interpretations of the model results based on current knowledge 

of the Bering Sea ecosystem and believe our approach captured underlying mechanisms 

that determine larval fish species compositions in the southeastern Bering Sea.  

While the timing of surveys used for this study was consistent across years, 

differential temperature effects on early life history events (e.g. spawning) could affect 

our interpretations. If colder temperatures result in delayed adult spawning activities or 

reduced rates of ichthyoplankton development, the fixed timing of our surveys could 

have been mismatched to the variable timing of larval production. Further, the timing of 
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front formation in the region can also affect the distribution of larvae. For example, the 

Bering Sea Inner Front is a seasonally established hydrographic front that sets up in the 

vicinity of the 40 m isobath in spring and persists through late autumn (Schumacher & 

Stabeno 1998, Kachel et al. 2002). We hypothesize that if cold conditions persist over the 

shelf into late spring, the timing of the set up of the Inner Front would be delayed, 

resulting in continued retention of larvae in northward moving currents along the 100 and 

200 m isobaths and potentially out of our east-west survey area (Lanksbury et al. 2007).  

The Oscillating Control Hypothesis (Hunt et al. 2002; revised in Hunt et al. 2011) 

provides a theoretical framework within which to predict ecosystem responses to warm 

and cold regimes in the southeastern Bering Sea. In warm regimes with early ice retreat, 

stratified waters maintain production within the pelagic system (Mueter et al. 2006), 

resulting in enhanced survival of species such as walleye pollock (Hunt & Stabeno 2002, 

Mueter et al. 2006, Moss et al. 2009). This is supported by the observation in the current 

study of high larval walleye pollock abundances in the warm years of 2002, 2003, and 

2005. However, recent data show that in warm regimes, larger zooplankton taxa (e.g. 

large calanoid copepods and euphausiids) are less abundant, thus reducing growth rates 

and lipid reserves of young-of-year walleye pollock and thereby increasing predation risk 

and decreasing overwinter survival (Hunt et al. 2011). Therefore, a discontinuity exists 

between early spring conditions  (i.e. water column temperature and prey availability), 

larval abundance, and the abundance of age-1 walleye pollock observed following the 

first winter. Although higher abundances of larval walleye pollock may not be indicative 

of eventual year-class strength, community-level analyses may provide information on 
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ecological interactions affecting specific populations.  

Our study was the first to look at changes in larval fish community composition 

within the southeastern Bering Sea over a time period that included both warm and cold 

periods. Significant differences in assemblage structure were detected, supporting the 

hypothesis that early life stages may be primary indicators of environmental change. The 

biological shifts between warm and cold regimes are difficult to predict due to direct and 

indirect species responses; a better understanding of non-linear environmental effects will 

increase predictive and management capabilities. The eastern Bering Sea walleye pollock 

fishery averaged 1.31 million tons annually between 2000 and 2009 (Ianelli et al. 2009), 

representing the largest commercial fishery in the USA by weight. Therefore, it is 

important to understand the mechanisms underlying interannual variability in this stock.  
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Table 1.1. Cruise name, year, temperature regime, and dates of cruises. The total number 

of stations sampled (‘bongo tows’) and the number of stations used in the analysis 

(‘common stations’) by year are shown 

 
Cruise Year Temperature 

regime 

Dates Bongo 

tows 

Common 

stations 

3MF02 2002 Warm May 13- May 21 81 65 

4MF03 2003 Warm May 18- May 24 60 58 

5MF05 2005 Warm May 10- May 20 91 68 

3MF06 2006 Cold May 9- May 18 90 75 

3DY08 2008 Cold May 13- May 21 65 52 

   TOTALS 387 318 
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Table 1.2. Percent of total catch (based on number per 10m2) for species (or species complex) observed in greater than  

5% of stations across the study period 2002 to 2008 

Family Taxon Common name % Total catch 
Gadidae Theragra chalcogramma Walleye pollock 66.44 
Ammodytidae Ammodytes hexapterus  Pacific sand lance 10.72 
Scorpaenidae Sebastes spp. Rockfishes 8.86 
Pleuronectidae Lepidopsetta polyxystra Northern rock sole 4.55 
Gadidae Gadus macrocephalus Pacific cod 1.86 
Pleuronectidae Hippoglossoides elassodon Flathead sole 1.53 
Pleuronectidae Platichthys stellatus Starry flounder 1.32 
Bathymasteridae Bathymaster spp.  0.95 
Gadidae Unidentified Gadidae  0.86 
Pleuronectidae Pleuronectes quadrituberculatus Alaska plaice 0.72 
Pleuronectidae Atheresthes spp.  0.29 
Stichaeidae Poroclinus rothrocki Whitebarred prickleback 0.26 
Bathylagidae Bathylagus pacificus Pacific blacksmelt 0.17 
Cottidae Icelus spp.  0.17 
Liparidae Liparis spp.  0.13 
Cottidae Myoxocephalus spp.  0.13 
Stichaeidae Anoplarchus insignis Slender cockscomb 0.11 
Cryptacanthodidae Cryptacanthodes aleutensis Dwarf wrymouth 0.10 
Pleuronectidae Hippoglossus stenolepis Pacific halibut 0.10 
Bathylagidae Leuroglossus schmidti Northern smoothtongue 0.10 
Stichaeidae Anoplarchus spp.  0.09 
Pleuronectidae Lepidopsetta bilineata Southern rock sole 0.09 
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Table 1.2. Continued 

Myctophidae Stenobrachius leucopsarus Northern lampfish 0.08 
Cottidae Icelinus spp.  0.07 
Cottidae Hemilepidotus hemilepidotus Red Irish lord 0.05 
Hexagrammidae Hexagrammos decagrammus Kelp greenling 0.05 
Agonidae Bathyagonus alascanus Gray starsnout 0.04 
Agonidae Bathyagonus infraspinatus Spinycheek starsnout 0.04 
Agonidae Podothecus acipenserinus Sturgeon poacher 0.04 
Cottidae Artedius harringtoni Scalyhead sculpin 0.03 
Psychrolutidae Psychrolutes paradoxus Tadpole sculpin 0.03 
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Table 1.3. Spearman rank correlations for the 3 axes (dimensions) interpreted from the non-metric multidimensional  

scaling (NMDS) ordination by station. Only those species with correlations ≥0.4 are shown 

Axis 1 Axis 2 Axis 3 
Species Correlation Species Correlation Species Correlation 

Sebastes spp. 0.82 
Hippoglossoides 
elassodon 0.70 

Gadus 
macrocephalus 0.48 

Atheresthes spp. 0.66 
Gadus 
macrocephalus 0.51 

Bathymaster 
spp. 0.46 

Bathymaster spp. 0.57 
Lepidopsetta 
polyxystra 0.41 

Ammodytes 
hexapterus 0.41 

Bathylagus pacificus 0.55 
  Podothecus 

acipenserinus 0.40 
Leuroglossus schmidti 0.53     
Pleuronectes quadrituberculatus -0.58     
Ammodytes hexapterus -0.57     
Theragra chalcogramma -0.48     
Lepidopsetta polyxystra -0.40     
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Table 1.4. Model terms with corresponding significance values for each axis in the 

generalized additive model (GAM) analyses. Temp: temperature; Sal: salinity; Lat: 

latitude; Long: longitude; Yeart: year 

Axis Term df F-value p-value Adjusted R2 

1     0.865 

 Yeart  4 6.952 <0.001   

 Temp x Sal 16.16 8.851 <0.001  

 Lat x Long 6.59 5.778 <0.001  

2     0.423 

 Temp x Sal 11.79 8.280 <0.001  

 Lat x Long 13.92 4.531 <0.001  

3     0.458 

 Temp x Sal 10.94 2.815 0.002  

 Lat x Long 17.27 8.281 <0.001  
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Table 1.5. Results from the PRIMER routine SIMPER used to identify differences in relative species composition  

based on geographic area and period using the full station-by-species matrix. The average abundance (catch per unit  

effort, CPUE, number per 10 m2) is shown for species that account for a significant amount of observed dissimilarity  

between periods; species’ abundances in bold account for approximately 60% of dissimilarity for the given area. For  

each geographic area separately, a 1-way analysis of similarity (ANOSIM) was used to test for significant differences  

in species composition between warm and cold periods using the Bray-Curtis resemblance matrix; the ANOSIM test  

statistic (R) and significance (p-value) are shown 

Geographic 
Area 

Period Theragra 
chalcogramma 

Sebastes 
spp. 

Ammodytes 
hexapterus 

Bathymaster 
spp. 

Gadus 
macro-

cephalus 

ANOSIM 
 (R) 

ANOSIM 
(p-value) 

Unimak 
Pass 

Warm 270.8 46.9 66.5 49.1 218.8 0.45 0.001 

 Cold 8.1 73.1 19.6 2.1 24.5   
Slope Warm 67.4 495.3 33.9 37.7 16.2 
 Cold 48.5 717.5 1.3 41.8 4.2 

0.04 0.041 

Outer 
domain 

Warm 259.6 32.6 28.8 26.6 51.8 

 Cold 87.1 62.2 9.1 0.8 14.9 

0.13 0.003 

Shelf Warm 3079.6 0.3 308.9 1.4 19.7 
 Cold 463.2 0 343.7 0 5.6 

0.22 0.001 



 

 

42 

 
 

Figure 1.1. (A) Study region showing the location of sampling stations (♦). To 

investigate changes in larval fish assemblage structure over time, only those stations 

sampled in at least two years were included in the analyses (‘common stations’; Table 

1.1). Depth contours are shown for the 40, 100, 200, and 1000 m isobaths. (B) 

Predominant currents in the study region include the Aleutian North Slope Current 

(ANSC), the Bering Slope Current (BSC), and the Alaska Coastal Current (ACC)
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    A                                                         B 

 
                C                                                         D 

 
 

Figure 1.2. Stations sampled in (A) 2002 and (B) 2008, and corresponding temperature 

and salinity plots (averaged across the top 20 m) for (C) 2002 and (D) 2008. Samples 

were collected in 4 geographic areas based on bathymetry: Unimak Pass (), slope (; 

outside of 200 m isobath), outer domain (+; between 100 m - 200 m isobaths), and shelf 

(; out to 100 m). 2002 was a warm year showing increased mixing of water masses 

from Unimak Pass to the shelf; 2008 was a cold year with greater distinction of water 

masses. Note the difference in the x-axis scale in C and D 
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Figure 1.3. Percent contribution to total catch (based on catch per unit effort) of the 5 

overall most abundant species by year. The most abundant species were walleye pollock 

(Theragra chalcogramma), Pacific sand lance (Ammodytes hexapterus), Sebastes spp., 

northern rock sole (Lepidopsetta polyxystra), and Pacific cod (Gadus macrocephalus) 
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Figure 1.4. Non-metric multidimensional scaling (NMDS) ordination, based on a Bray-

Curtis similarity matrix, depicting the relative similarity in species composition among 

individual stations sampled across 5 years. Data were 4th root transformed and 

standardized to species maximum 
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          (A) 

 

Figure 1.5. (A) Predicted spatial gradient of species composition as indicated by Axis 1 

scores from non-metric multidimensional scaling (NMDS) ordination of species-by-

station matrix, based on the generalized additive model (GAM) described by Eq. (2). The 

spatial surface was estimated as a smooth term of latitude and longitude; other covariates 

were fixed at their mean values. Species composition is predicted to be similar along 

contours; changes in species composition occur when moving across contours (color 

gradient). Spearman rank correlations of species positively or negatively correlated with 

these values were used to determine the main species of the slope versus shelf 

assemblage, respectively. Depth contours are shown for the 100 and 200 m isobaths 
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          (B) 

 

Figure 1.5. (B) Predicted measure of species composition (Axis 1 scores from NMDS 

ordination) as a smooth function of temperature and salinity based on the GAM described 

by Eq. (2). Stations with salinities less than 29 (n = 3) were removed for better 

visualization of the relative effects of temperature and salinity. Cool colors correspond to 

the shelf habitat and negative species correlations; warm colors correspond to the slope 

habitat and positive species correlations (see A). Years are distinguished as follows: 2002 

= red, 2003 = brown, 2005 = orange, 2006 = light blue, 2008 = purple 
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          (C) 

 

Figure 1.5. (C) Estimated differences in species composition among years (Axis 1 scores 

from NMDS ordination) based on the GAM described by Eq. (2). Solid lines reflect the 

partial response of Axis 1 scores, on a normalized scale, when all other covariates are 

fixed at their mean values. Dashed lines denote 95% confidence intervals 
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          (A) 

 

Figure 1.6. (A) Predicted spatial gradient of species composition as indicated by Axis 2 

scores from non-metric multidimensional scaling (NMDS) ordination of species-by-

station matrix, based on the generalized additive model (GAM) described by Eq. (3). 

Spearman rank correlations of species positively correlated with these values were used 

to determine the main species of the Alaska Coastal Current assemblage 
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          (B) 

 

Figure 1.6. (B) Predicted measure of species composition (Axis 2 scores from NMDS 

ordination) as a smooth function of temperature and salinity based on the GAM described 

by Eq. (3). Warm colors correspond to the Alaska Coastal Current waters and positive 

species correlations (see A). See Fig. 1.5 for additional description 
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          (A) 

 

Figure 1.7. (A) Predicted spatial gradient of species composition as indicated by Axis 3 

scores from non-metric multidimensional scaling (NMDS) ordination of species-by-

station matrix, based on the generalized additive model (GAM) described by Eq. (4). 

Spearman rank correlations of species positively correlated with these values were used 

to determine the main species of the nearshore assemblage 
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          (B) 

 

Figure 1.7. (B) Predicted measure of species composition (Axis 3 scores from NMDS 

ordination) as a smooth function of temperature and salinity based on the GAM described 

by Eq. (4). Warm colors correspond to the nearshore habitat and positive species 

correlations (see A). See Fig. 1.5 for additional description 
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Figure 1.8. Non-metric multidimensional scaling (NMDS) ordination, based on a Bray-

Curtis similarity matrix, depicting the relative similarity in species composition among 

geographic areas by year. Outer domain: between 100 and 200 m isobaths; Shelf: within 

100 m isobath; Slope: outside of 200 m isobath; Unimak Pass (see Fig. 1.1). Data were 

4th root transformed and standardized to species maximum 
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Chapter 2: Conceptual model of energy allocation in walleye pollock 

(Theragra chalcogramma) from age-0 to age-1 in the southeastern Bering Sea3 

Abstract 

Walleye pollock (Theragra chalcogramma) support the largest commercial fishery in the 

United States and are an ecologically important component of the southeastern Bering 

Sea (SEBS) pelagic ecosystem. Alternating climate states influence the survival of 

walleye pollock through bottom-up control of zooplankton communities and possible top-

down control of predator abundance. Quantifying the seasonal progression and spatial 

trends in energy content of walleye pollock provides critical information for predicting 

overwinter survival and recruitment to age-1 because age-0 walleye pollock rely on 

energy reserves to survive their first winter. Age-0 and age-1 walleye pollock were 

collected in the SEBS from May to September 2008-2010. Energetic status was 

determined through quantification of energy density (kJ/g) and proximate composition 

(i.e., % lipid, % moisture) with variation in energy density primarily driven by variability 

in % lipid. Energy densities remained relatively low during the larval phase in spring, 

consistent with energy allocation to somatic growth and development. Lipid acquisition 

rates increased rapidly after transformation to the juvenile form (25-40 mm standard 

length), with energy allocation to lipid storage leading to higher energy densities in late 

summer. This transition in energy allocation strategies is a physiological manifestation of 

                                                
3 Siddon, E.C., Heintz, R.A., and Mueter, F.J. 2013. Conceptual model of energy 
allocation in walleye pollock (Theragra chalcogramma) from age-0 to age-1 in the 
southeastern Bering Sea. Deep-Sea Res. II. http://dx.doi.org/10.1016/j.dsr2.2012.12.007. 
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survival constraints associated with distinct ontogenetic stages; a strategy favoring 

growth to escape size-dependent predation appears limited to larval development while 

juvenile fish allocate proportionally more mass to lipid storage in late summer. We 

propose that the time after the end of larval development and before the onset of winter 

represents a short critical period for energy storage in age-0 walleye pollock, and that 

overwinter survival depends on accumulating sufficient stores the previous growing 

season and consequently may be an important determinant of recruitment success.  
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2.1 Introduction 

Multiple factors during the early life stages of fishes result in variable recruitment 

success, including prey availability and environmental conditions (Cushing 1982). 

Variability in the spatial and temporal overlap of predator and prey (match/mismatch 

hypothesis; Cushing, 1969, 1990), as well as differences in prey quality (Sogard and Olla, 

2000; Litzow et al., 2006), affect fish growth and energy storage, which may directly 

affect differences in year-class success of many marine fish species, such as walleye 

pollock, Theragra chalcogramma (Hunt et al., 2011). In addition, cold water 

temperatures generally delay ontogenetic development of walleye pollock (Blood 2002; 

Smart et al., in press) while also lowering routine metabolic demands (Ciannelli et al., 

1998). Such constraints affect larval fishes’ ability to achieve sufficient size and energy 

reserves prior to their first winter (Sogard and Olla, 2000; Heintz and Vollenweider, 

2010).  

In high latitude systems, winter is a period of low light, cold temperatures, and 

reduced prey availability, and is therefore a significant source of mortality and 

determinant of recruitment success of marine fishes (Hurst, 2007). Overwintering 

survival is likely size-dependent because most sources of mortality tend to select against 

the smallest individuals (Houde 1987; Bailey and Houde, 1989; Paul and Paul, 1999; 

Sogard and Olla, 2000). The ‘critical size and period hypothesis’ (Beamish and Mahnken, 

2001) emphasizes the importance of increased body size in late summer and fall as 

indicative of winter survival (e.g., Moss et al., 2005). Lab studies have experimentally 

corroborated the effects of size on rates of energy depletion (Schultz et al., 1998), which 
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are proportionally greater in smaller individuals (e.g., Atlantic silverside, Menidia 

menidia; Schultz and Conover, 1999 and walleye pollock; Kooka et al., 2007) due to 

higher weight-specific metabolism. Given the shorter growing season in high latitudes, 

marine fishes in these systems may have adapted to grow particularly fast in response to 

size-selective winter mortality (Conover 1990). 

Energy allocation strategies in larval and juvenile fish reflect competing 

physiological demands of somatic growth versus lipid storage (Post and Parkinson, 2001) 

and are a response to differing survival constraints. Somatic growth is important during 

the larval phase, as small fish are more susceptible to size-dependent predation.  In 

contrast, lipid storage is important when fish face periods of food scarcity. By comparing 

the energy density and proximate composition (i.e., % lipid) of fish during early life 

stages, differing allocation strategies as well as the relative importance of these survival 

constraints can be identified. Fish with low energy density and % lipid values are 

allocating energy to growth and development; those with relatively high energy density 

and % lipid values are allocating proportionally more energy to storage.  

Understanding variability of survival during the early life stages of commercially 

important species is pivotal to fisheries management in predicting year-class success 

(Megrey et al., 1996) and subsequent recruitment to the fishery. Numerous studies have 

established empirical links between recruitment and environmental variability (see 

Beamish and McFarland, 1989), but incorporating the impacts of climate variability on 

survival into stock assessments requires knowledge of the mechanistic responses to 

alternate climate states (Hollowed et al., 2009). The energetic status of age-0 walleye 
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pollock in late summer is increasingly recognized as a predictor of age-1 abundance 

during the following summer in the southeastern Bering Sea (SEBS; Heintz et al., in 

press). 

The Oscillating Control Hypothesis (OCH), initially proposed by Hunt et al. 

(2002), was revised (Hunt et al., 2011) based in part on new findings regarding the 

importance of energetic status to fish survival (Heintz et al., in press). The OCH provides 

a theoretical framework within which to predict ecosystem responses to warm and cold 

regimes in the SEBS. In warm regimes with early ice retreat, stratified waters maintain 

production within the pelagic system (Walsh and McRoy, 1986), which was predicted to 

result in enhanced survival of species such as walleye pollock (Hunt and Stabeno, 2002; 

Mueter et al., 2006; Moss et al., 2009). However, recent data indicate that changes in 

prey composition and abundance during a warm regime may be detrimental to walleye 

pollock survival. Specifically, larger zooplankton taxa, such as lipid-rich Calanus spp., 

were less abundant during recent warm years, which resulted in reduced growth rates and 

lipid reserves of age-0 walleye pollock and may have increased their predation risk and 

decreased their overwinter survival (Coyle et al., 2011; Stabeno et al., 2012). In contrast, 

higher abundances of larger, lipid-rich zooplankton taxa during cold years, combined 

with lower metabolic demands, allowed age-0 walleye pollock to acquire greater lipid 

reserves by late summer, resulting in increased overwinter survival (Hunt et al., 2011). 

Walleye pollock are major consumers of zooplankton at all life history stages 

(Aydin et al., 2007) with pronounced changes in prey preference throughout their early 

life (Kendall and Nakatani, 1992; Hillgruber et al., 1995; Ciannelli et al., 2004). Larvae 
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begin diel vertical migration at approximately 10 mm standard length (SL; Kendall et al., 

1994; Smart et al., in press) with more pronounced vertical behavior and nocturnal 

feeding occurring at approximately 50 mm SL (Brodeur et al., 2000), coinciding with 

increased gape size and shifts to larger prey (i.e., euphausiids; Ciannelli et al., 1998). 

Ontogenetic changes in habitat preference (Brodeur et al., 2000) as well as visual acuity 

(Copp and Kovac, 1996) affect the vertical behavior of larval and juvenile fish. Walleye 

pollock are also an important forage species for other predators, including arrowtooth 

flounder, Atheresthes stomias, Pacific cod, Gadus macrocephalus, skates, flathead sole, 

Hippoglossoides elassodon, Pacific halibut, Hippoglossus stenolepis, seabirds, and 

marine mammals (Aydin and Mueter, 2007). In addition, older age classes exhibit strong 

cannibalism on age-0 walleye pollock (Wespestad and Quinn, 1996), especially in 

warmer climate regimes (Hunt et al., 2011). 

Despite the important role of walleye pollock in the SEBS pelagic ecosystem, and 

the relationship between age-0 energy density in late-summer and overwinter survival 

(Heintz et al., in press), the energy allocation patterns during age-0 remain poorly 

understood. This paper describes larval and juvenile strategies for growth and energy 

storage in age-0 walleye pollock. By maximizing growth and transitioning through the 

larval period rapidly, larvae minimize exposure to size-dependent predation during this 

stage. However, overwinter survival is higher in fish that are both larger and have 

increased lipid reserves, indicating that energy allocation during the juvenile stage will 

favor lipid storage while also increasing fish size (i.e., critical size and period hypothesis; 

Beamish and Mahnken, 2001; Heintz and Vollenweider, 2010). We hypothesize that 
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energy allocation strategies (i.e., favoring growth vs. storage) will differ seasonally 

among life stages and we tested this by contrasting body compositions of larval and 

juvenile fish. The goals of this study were to: (1) describe cohort-specific patterns in 

energy density for walleye pollock from age-0 to age-1, and (2) describe seasonal 

patterns in energy allocation during larval and juvenile (age-0) development leading to 

estimates of energy levels prior to their first winter. 

2.1.1 Study region 

The SEBS is characterized by a broad (>500 km) and shallow continental shelf that 

supports a highly productive ecosystem owing to on-shelf flow of nutrient-rich waters 

(Stabeno et al., 1999; 2001). Alternating climate states have resulted in periods of both 

warm and cold conditions in recent years. The most extensive ice cover and coldest water 

column temperatures since the early 1970s were observed beginning in 2007 and 

continued through at least the winter of 2010/2011 (Stabeno et al., 2012). 

Current trajectories over the shelf are generally northwestward with the Bering 

Slope Current flowing along the shelf break and Alaska Coastal Current waters following 

either the 50 m or 100 m isobaths (Stabeno et al., 2001). The onset and location of fronts 

affect current trajectories (Kachel et al., 2002) and, therefore, transport pathways of 

larvae (Duffy-Anderson et al., 2006). The main spawning areas for walleye pollock over 

the SEBS shelf include north of Unimak Island and along the Alaska Peninsula and 

around the Pribilof Islands (Hinckley 1987; Bacheler et al., 2010). Larvae are generally 

advected northward over the shelf with slope-spawned larvae advected onto the shelf via 
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the Bering Slope Current, as inferred from their spawning locations and summer 

distributions (Bacheler et al., 2010). 

 

2.2 Materials and methods 

2.2.1 Biological sampling 

Age-0 and age-1 walleye pollock were collected from 13 research surveys conducted in 

the SEBS between May and September 2008-2010 (Table 2.1; Fig. 2.1). The geographic 

coverage varied across cruises. Sampling for age-0 fish is assumed to encompass the bulk 

of their distribution based on historical data (Bacheler et al., 2010), while age-1 fish were 

predominantly sampled from the outer shelf domain (between 100 and 200 m isobaths; 

Fig. 2.1). Gear type, mesh size, and sampling depth also varied across cruises to target the 

life stages occurring at the time of sampling (Table 2.1; Shima and Bailey, 1994).  

Vertically integrated oblique bongo tows were made during spring cruises to a 

maximum depth of 300 m (or to within 10 m of the seafloor) to sample larval walleye 

pollock. During mid-summer, larval walleye pollock were sampled from the drogue net 

of the MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System), 

which was open during deployment, thereby providing vertically integrated samples to a 

maximum depth of 100 m (or to within 10 m of the seafloor). Bongo and MOCNESS 

sampling occurred 24 hours a day, therefore it was assumed that vertically integrated 

sampling was not affected by diel vertical migrations of walleye pollock. The ship speed 

was monitored and adjusted (1.5-2.5 knots) throughout all bongo and MOCNESS tows to 

maintain a wire angle of 45°. Surface and midwater rope trawls were used to sample age-
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0 and age-1 walleye pollock during late summer. Sampling was conducted during 

daytime only with the surface and midwater rope trawl sampling above and below the 

pycnocline, respectively, as determined by water column profiles of temperature and 

salinity obtained using a Sea-Bird SBE-911 CTD. Fish were predominantly observed and 

collected from surface waters in 2008 and from the surface and midwater in 2009; in 

2010, only walleye pollock collected from surface rope trawls were used in the analyses 

in order to facilitate interannual comparisons across 2008-2010. In addition to the surface 

and midwater trawls, the beam trawl sampled near-bottom fishes during late summer as 

walleye pollock begin to descend in the water column. Methot trawls were used to target 

midwater walleye pollock from observed acoustics layers (Table 2.1). Beam and Methot 

trawl sampling occurred 24 hours a day. For this study, we combined walleye pollock 

from different vertical layers, assuming that vertical differences in energy content are 

negligible.  

After retrieval of the gear, walleye pollock were selected from the catch to 

represent the size range observed in each haul. Fish were flash frozen (-80 °C) for later 

chemical analysis at the Alaska Fisheries Science Center, NOAA (National Oceanic and 

Atmospheric Administration) in Juneau, Alaska, USA. Larvae were measured to the 

nearest 0.01 mm length (standard, fork, or total) while juvenile and age-1 fish were 

measured to the nearest mm fork length (FL). All lengths were converted to SL using 

established conversions for walleye pollock preserved by freezing (Buchheister and 

Wilson, 2005). Fish were classified as age-0 (larvae <30 mm SL; juvenile >30 mm and 
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<100 mm SL; Matarese et al., 1989) or age-1 (>100 mm SL and <200 mm SL) based on 

length-frequency distributions.  

2.2.2 Chemical analysis 

Stomach contents of fish >8 mm SL were removed prior to chemical analysis so as not to 

affect estimates of energy density or % lipid.  

2.2.2.1 Energy density 

Energy density (ED; kJ/g dry mass) was estimated directly using bomb calorimetry or 

indirectly from estimates of % lipid (see 2.2.2 Proximate composition). Larvae were 

dried in a drying oven (60 °C) to a constant weight and all data are presented on a dry 

mass basis. Homogenized tissue was pressed into a pellet form and a Parr Instrument 

6725 Semimicro Calorimeter with 6772 Precision Thermometer and 1109A Oxygen 

Bomb was used to measure the energy released from combustion of the sample pellets. 

The minimum pellet weight was set at 0.025 g of dry material based on the limits of 

instrument detection; samples were composited within stations as needed to attain 

sufficient dry masses for larvae collected in spring and mid-summer. Juvenile and age-1 

fish were dried to a constant weight at 135 °C using a LECO Thermogravimetric 

Analyzer (TGA) 601 or 701 which provided % moisture values used to convert wet mass 

to dry mass equivalents. The dried tissue was homogenized and processed using the 

bomb calorimeter as described above.  Moisture analysis for juvenile and age-1 fish was 

replicated when sufficient sample mass was available to ensure the coefficient of 

variation (CV) for % moisture was less than 1 standard deviation (SD). When sufficient 

sample mass was not available, we relied on the CV for a reference material (dried adult 
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walleye pollock homogenate) to obtain duplicate estimates of energy density or % 

moisture processed with each batch of fish (n = 17 for energy density; n = 15 for % 

moisture).  

 Quality assurance (QA) procedures for the bomb calorimeter included (1) 

duplicate tissue estimates (sample or walleye pollock reference material) to evaluate 

precision and (2) duplicate reference material (benzoic acid standard) to evaluate 

precision and accuracy. Predetermined limits for variation observed in QA samples were 

set, where precision estimates from duplicate tissue and reference samples must not vary 

by more than 1.5 SD or 15% CV and reference samples must not vary by more than 15% 

CV for accuracy. QA samples did not exceed these limits for any batch of samples used 

in this study. 

2.2.2.2 Proximate composition 

For larvae, a sulfo-phospho-vanillin (SPV) colorimetric analysis (Van Handel 1985) was 

performed to determine % lipid composition, which is presented on a dry mass basis.  

Dried material was sonicated in 2:1 (by volume) chloroform:methanol solvent in glass 

centrifuge tubes for 60 minutes.  Washes of 0.88% KCl and 1:1 (by volume) 

methanol:water were performed on the extracts as in the modified Folch extraction 

method (Vollenweider et al., 2011).  Resulting chloroform extracts were evaporated in a 

LabConco RapidVap for 30 minutes at 40 °C and 250 mbar until reduced to 

approximately 1 ml in volume.  Extracts were evaporated to dryness in 12 mm test tubes 

on a heating block at 75 °C and then allowed to cool.  Concentrated sulfuric acid was 

added to the tubes prior to incubation at 100 °C for 10 minutes with subsequent cooling.  
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The SPV reagent (1.2 mg/ml vanillin in 80% phosphoric acid) was added to each tube 

and allowed to develop for 10 minutes.  Absorption was measured on an Agilent 8453 

Spectrophotometer at 490 nm and extrapolated from species-specific calibration curves 

determined prior to analysis. For juvenile and age-1 fish, proximate composition analysis 

was performed as previously described (Vollenweider et al., 2011), with lipid extractions 

utilizing a Dionex ASE (accelerated solvent extractor) 200 and a modified Folch 

extraction procedure using a 2:1 (by volume) chloroform:methanol solvent mixture. 

Measurements of % lipid for juvenile and age-1 fish were converted to dry mass 

equivalents using estimates of % moisture obtained from the TGA (see above).  

QA procedures for the SPV data included two blank runs to estimate background 

absorption, two method blank samples containing all analysis reagents but no lipid 

extract to evaluate contamination and reagent absorption, and two reference samples 

(adult walleye pollock homogenate) to examine precision and accuracy for each batch of 

15 samples.  Mean background absorbance was subtracted from sample absorbance 

values. Method blank samples had to be < 10 mg of lipid and walleye pollock reference 

samples had to vary by < 1 SD and be accurate within 15% of the established lipid value. 

ASE samples used similar QA criteria except that the method blank samples were 

allowed to be as high as 0.1 mg of lipid (due to much higher analyzed lipid masses). 

 To compare energy densities of walleye pollock from age-0 to age-1 for the 

cohort analysis, a linear regression was used to predict energy density estimates from % 

lipid values for age-1 fish collected during two cruises (summer 2009 Methot trawl and 

late-summer 2009 rope trawl surveys; Table 2.1). All age-1 fish processed for both 
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energy density and % lipid (n = 83) were used to develop a regression relationship, ED = 

20.1 + 0.76*% lipid (R2 = 0.79), that was used to predict energy density. The size of the 

fish used in the regression ranged from 109 to 194 mm SL. Direct estimates of energy 

density from the bomb calorimeter were used when available. 

2.2.3 Statistical analysis 

2.2.3.1 Cohort-specific patterns from age-0 to age-1 

Cohort-specific patterns in energy density from age-0 to age-1 were examined to 

determine the extent of interannual variation in the seasonal patterns using two complete 

cohorts. The 2008 cohort was sampled as age-0 fish in mid- and late-summer 2008, and 

as age-1 fish in summer and late-summer 2009. The 2009 cohort was sampled as age-0 

fish in mid- and late-summer 2009, and as age-1 fish in summer 2010. Energy densities 

were compared between age-0 fish in mid-summer, age-0 fish in late-summer, and age-1 

fish using separate one-way ANOVAs (analysis of variance). 

2.2.3.2 Seasonal patterns in energy allocation of age-0 fish 

Seasonal patterns in energy allocation during age-0 larval and juvenile development were 

analyzed using generalized additive mixed models (GAMMs) to identify the seasonal 

timing and size (i.e., length) at which walleye pollock shift energy allocation strategies 

from growth to lipid storage. These models do not specify a fixed functional form, but 

rather quantify the relationship between a set of predictors and the response variable 

through non-parametric smooth functions of the predictor variables. The optimum 

amount of smoothing was chosen by generalized cross-validation as implemented in the 

R package ‘mgcv’ (Wood 2006).  
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 Variability in energy density and % lipid during the larval and juvenile stages 

were modeled as a function of SL to estimate changes in energy allocation with fish size. 

Fish for which SL measurements were not available were removed from models (n = 5 

and 6 for energy density and % lipid, respectively). Models for energy density, % lipid, 

and SL included sampling date (date) to estimate seasonal trends, a year term to account 

for differences in the mean response among years, and a spatial smooth term (thin-plate 

regression spline fit to latitude and longitude) to describe and account for differences in 

the mean energy density, % lipid, or SL across stations and to reduce spatial 

autocorrelation. Based on residual diagnostics, estimates of energy density and % lipid 

identified as influential outliers (n = 5 and 8, respectively) were removed from further 

analyses; removing these outliers did not affect our conclusions. The sampling area 

differed among cruises as did the number of fish processed per station, therefore 

modeling approaches that accounted for spatial patterns and/or included a random station 

effect were compared using Akaike Information Criterion (AIC) (Akaike 1973; Burnham 

and Anderson, 2002). The full models included station as a random effect to account for 

variability among stations (ai), in addition to within-station residual variability (εik):  

y = α+ f1(SL) + f2(date) + f3(latitude, longitude)k + Yk + ai + εik  

SL = α+ f4(date) + f5(latitude, longitude)k + Yk + ai + εik     

ai ~N(0, ) 

εik~N(0, ) 

where y is energy density or % lipid, f1, f2, and f4 are smooth functions of the predictor 

variables, f3 and f5 are smooth spatial surfaces for a given year k (with degrees of freedom 
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limited to five to restrict flexibility in the fitted surface), and Yk is the year-specific 

intercept for year k. The random effects ai and residuals εik are assumed to be independent 

and normally distributed with mean 0 and variances  and , respectively.  

Random effects and residuals from the models were examined for normality, 

homoscedasticity, and independence by plotting them against all relevant covariates and 

by examining spatial patterns in the random station effects by year. Each term in the full 

model was evaluated for significance and dropped from the model if it was not 

significant. Differences in spatial variability across years were evaluated by comparing 

the full model to a model that fit a single smooth spatial surface across years using AIC. 

Residual diagnostics for all resulting best models showed no unusual trends and no 

evidence of remaining spatial autocorrelation; diagnostic plots are not presented. 

 

2.3 Results 

2.3.1 Biological sampling 

A total of 1501 age-0 and age-1 walleye pollock collected from 13 cruises over the 3-year 

sampling period were measured for standard length with 341 estimates of energy density 

(kJ/g) from bomb calorimetry (n = 257 age-0 including 13 composite samples, n = 84 

age-1) and 423 estimates of % lipid (n = 285 age-0 including 41 composite samples, n = 

135 age-1) (Table 2.1). The overall mean energy density (± SE) of age-0 and age-1 

walleye pollock was 22.43 ± 0.11 and 23.67 ± 0.12 (kJ/g dry mass), respectively, and 

overall mean % lipid (± SE) for age-0 and age-1 fish was 10.58 ± 0.40 and 20.53 ± 0.49 

(on dry mass basis), respectively. 
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2.3.2 Cohort-specific patterns from age-0 to age-1 

The 2008 and 2009 cohorts had similar seasonal patterns of energy density overall. Age-0 

fish from both cohorts had low mean energy densities in mid-summer with no significant 

difference between cohorts (1-way ANOVA: F(1,9) = 1.07, P = 0.33). There was a short 

period from mid-July to mid-September during which energy density rapidly increased 

by approximately 25% in late-summer 2008 and 2009 (Table 2.1, Fig. 2.2). Energy 

density of age-0 fish during late-summer 2008 was significantly higher during the rope 

trawl survey (mean sampling date = September 27) than the beam trawl survey (mean 

sampling date = September 9), with late-summer 2009 having an intermediate energy 

density (1-way ANOVA: F(2,120) = 7.04, P < 0.01). Age-1 fish of both the 2008 and 2009 

cohorts had energy densities similar to those of age-0 fish the previous year in late 

summer. However, the 2009 cohort had significantly greater energy density at age-1 than 

the 2008 cohort (1-way ANOVA: F(2, 85) = 13.68, P < 0.001; Fig. 2.2).  

2.3.3 Seasonal patterns in energy allocation of age-0 fish 

Patterns in energy density, % lipid, and SL were described using unique combinations of 

explanatory variables. Variability in energy density was best explained by SL, a spatial 

smooth term, a random station effect, and year (adjusted R2 = 0.688; n = 247). Patterns in 

% lipid were best explained by SL, sampling date, a random station effect, and year 

(adjusted R2 = 0.847; n = 271) while patterns in SL were best explained by sampling 

date, a spatial smooth term, a random station effect, and year (adjusted R2 = 0.955; n = 

1365) (Table 2.2). The effect of fish length is difficult to separate from the seasonal 

pattern because SL is strongly correlated with sampling date in larvae that were measured 
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for energy density (r = 0.56) and for % lipid (r = 0.91), although largely uncorrelated for 

juveniles (energy density r = 0.086; % lipid r = -0.35). Therefore, for juveniles, we can 

statistically separate the apparent effects of size from the seasonal pattern of fish 

condition.  

Patterns in energy density for larval walleye pollock had large uncertainty 

because samples had to be composited to acquire sufficient dry mass for analytical 

processing.  Sampling date was not significant in the full model indicating that changes in 

energy density are primarily driven by changes in fish length rather than seasonal 

changes. For a given location and year, energy density was below average at small sizes, 

increased to above-average energy densities at around 55 mm, and reached an asymptote 

at approximately 75 mm SL (Fig. 2.3a). The spatial patterns in energy density varied 

significantly among years, although the relative effect of sampling location was small 

compared to the importance of SL in explaining patterns of variability (e.g., small range 

of predicted values in Fig. 2.3b). Average energy density was highest in 2008, lowest in 

2009, and intermediate in 2010 (Fig. 2.3c).  

Percent lipid in larvae seems to decrease with increasing length up to 20 mm SL; 

patterns are uncertain for fish 20-40 mm SL due to lack of samples. In fish >40 mm SL, 

% lipid increases linearly with increasing size (Fig. 2.4a). Lipid content increased linearly 

over time, although variability in these estimates was high (Fig. 2.4b). The magnitude of 

the effect of SL on lipid content was comparable to that of the seasonal effect, as 

indicated by the range in % lipid anomalies between Figures 4a and 4b. The average % 

lipid of age-0 walleye pollock differed significantly from 2008 to 2010 (Fig. 2.4c), but 
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we did not see a consistent trend in average energy density over the same time period 

(Fig. 2.3c). However, we do not have estimates of % lipid for all sampling periods in all 

years of the study, therefore we cannot fully address interannual differences in % lipid.  

  Walleye pollock lengths increased slowly during spring, but rapidly after 

approximately July 15. Fish lengths reached an asymptote in late summer, between 

approximately August 20 and September 15, before showing an increasing trend again 

over the remaining sampling period. Fish lengths were more variable in late summer than 

in spring and mid-summer (Fig. 2.5a). The spatial patterns in SL were inconsistent across 

years (plots not shown), but the seasonal changes in fish length were robust across years. 

The average SL of fish was lowest in 2008, highest in 2009, and intermediate in 2010 

(Fig. 2.5b).  

Patterns in average energy density and % lipid differed among years. Although 

changes in energy density are primarily driven by changes in % lipid, fish size (i.e., 

length) also contributes to total energy content.  For example, fish in 2008 had high 

energy density and % lipid, but were smaller relative to fish in 2009 that had intermediate 

% lipid leading to lower overall energy density (Figs. 2.3c, 2.4c, and 2.5b). 

 

2.4 Discussion 

This study provides estimates of energy density and % lipid for age-0 and age-1 walleye 

pollock and proposes a conceptual model of how energy allocation strategies shift in age-

0 walleye pollock during the larval and juvenile phases. This shift represents adaptations 

to survival constraints associated with distinct ontogenetic stages; a strategy favoring 



 

 

73 

allocation to growth in order to escape size-dependent predation appears limited to larval 

development while juvenile fish (> 30mm) adopt a strategy to increase lipid storage in 

late summer (Fig. 2.4a). This allocation strategy has potentially important consequences 

for overwinter survival (Post and Parkinson, 2001). For example, age-0 Pacific herring, 

Clupea pallasii, in Prince William Sound, Alaska, rely on energy stores for overwinter 

survival (Norcross et al., 2001), impacting year-class success (Paul and Paul, 1998). In 

the SEBS, the energy density of walleye pollock in late summer is directly correlated 

with observed differences in year-class strength between alternating climate states (Hunt 

et al., 2011; Heintz et al., in press). We propose that late summer (July-September) 

represents a critical period for energy storage in age-0 walleye pollock, and that 

overwinter survival is dependent on sufficient storage in the previous growing season and 

may be an important determinant of recruitment success.  

Differences in energy storage result from differences in the quantity and quality of 

prey during the age-0 period (Heintz et al., in press). Higher abundances of larger, lipid-

rich zooplankton taxa during cold years, combined with lower metabolic demands, allow 

age-0 walleye pollock to acquire greater lipid reserves by late summer, resulting in 

increased overwinter survival (Hunt et al., 2011). In the cold years of 2006-2010, the 

zooplankton community over the Bering Sea shelf was dominated by large copepods 

(e.g., Calanus marshallae) and euphausiids (e.g., Thysanoessa raschii). Under warmer 

conditions (2002-2005), smaller zooplankton taxa were dominant (e.g., Pseudocalanus 

spp., Acartia spp., Coyle et al., 2011; Stabeno et al., 2012) and the lack of larger prey 

appeared to have limited growth and energy storage, leading to poor energy levels and 
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reduced year-class recruitment. The limited availability of large zooplankton coincided 

with increased rates of cannibalism by older age classes of walleye pollock, as well as 

high predation rates by juvenile salmon, further reducing age-0 survival in warm years 

(Coyle et al., 2011). Hence, prey quality may be as important as the thermal regime for 

determining overwinter survival (Hurst 2007), although prey availability and prey quality 

were closely linked to temperature conditions in recent years (Coyle et al., 2011).  

 The 2008 and 2009 cohorts showed similar seasonal patterns of energy density 

overall, with observed differences in late-summer age-0 fish likely reflecting the 

difference in mean sampling date between cruises; this highlights late summer as a period 

of rapidly increasing energy density in walleye pollock. Differences between the late-

summer 2008 age-0 fish sampled during the rope trawl and beam trawl surveys could also 

be due to surface fishes (sampled by the rope trawl survey) having higher energy density 

than bottom-associated fishes (beam trawl survey). Energy densities are presumed to 

decrease during late winter when water column temperatures, prey availability, and 

feeding rates decrease, although patterns in energy density after late-summer sampling 

are unknown. Energy density of walleye pollock collected in southeastern Alaska 

continued to increase between September and December sampling intervals, but declined 

between December and March (Heintz and Vollenweider, 2010). Age-1 fish in the 

current study appear to achieve energy densities the following summer that are 

comparable to the preceding late-summer period. The 2009 cohort had significantly 

higher energy densities by age-1, which could be due to differential overwinter survival, 

reduced winter energy loss for the 2009 cohort leading to less of an energy deficit in 
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spring 2010, and/or differences in prey availability for age-1 fish during their second 

summer. The 2009 cohort also likely experienced less intra-species competition as the 

size of the 2009 year-class estimate remains well below the 2008 estimate (Ianelli et al., 

2011).  

During spring through mid-summer, low energy density and % lipid values 

indicate fish preferentially allocate energy to development with little increase in overall 

fish growth during the larval stage. The decrease in lipid content with length as larvae 

increase from ~5 – 15 mm (Fig. 2.4a) likely reflects decreasing energy stores as larvae 

adapt to capturing prey and allocate energy to completion of larval development. During 

summer, walleye pollock appear to be growing in length while also increasing lipid 

stores, although patterns are poorly defined due to lack of samples during this period. 

That said, late July – August may be a period when energetic demands are highest based 

on metabolic demands in warmer water temperatures (Ciannelli et al., 1998). The length 

at transformation from larval to juvenile form occurs at 25-40 mm SL (Matarese et al., 

1989; Brown et al., 2001) and marks a threshold after which % lipid acquisition rates 

increased linearly with size, leading to higher energy density in late summer as energy is 

allocated to storage for overwinter survival. Our samples fall on either side of this size 

range, supporting the inference that fish below this length range (i.e., larvae) are 

allocating energy to development and fish above this length range (i.e., juveniles) favor 

energy storage relative to accumulation during the larval phase.   

This study was conducted during three cold years in the SEBS (Stabeno et al., 

2012), therefore delayed development times likely resulted in smaller fish sizes relative 
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to warmer years (Smart et al., in press). Age-0 juvenile walleye pollock reached an 

asymptotic length at approximately 60 mm SL in late summer, which may correspond to 

a shift in prey preferences with increasing gape size (i.e., switch to euphausiids; Brodeur 

1998; Sturdevant et al., 2001) and associated foraging capability (e.g., Ciannelli et al., 

2002). However, there is potential confounding between sampling date, year, and gear 

type that could account for the observed patterns in fish length due to differences in 

sampling dates among years and the use of different gears with potentially different size 

selectivity. An asymptotic energy density occurred when fish reached approximately 75 

mm SL, similar to that observed for walleye pollock near the Pribilof Islands (asymptotic 

energy density at 80 mm SL) during 1994-1996 and 1999, with 1995 and 1999 also being 

cold years (Ciannelli et al., 2002). 

While our study focused on seasonal patterns in energy allocation, spatial patterns 

in the distribution and energetic condition of fish relative to prey may be equally 

important in determining recruitment success. Significant spatial patterns were observed 

among years in the best models for energy density and fish length; due to confounding 

between sampling location and date, we cannot statistically differentiate the relative 

effect of sampling location. However, the relative importance of the spatial smooth terms 

was minimal compared to the effect of other covariates in the best models. Therefore, we 

believe that the patterns observed in energy density as a function of standard length, and 

in length as a function of sampling date, are robust. 

Age-0 walleye pollock in the Gulf of Alaska during late-summer experience 

spatially variable habitat conditions for growth due to differences in water temperature 
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and prey (Mazur et al., 2007). Once larvae are capable of diel vertical migration, their 

position in the water column (i.e., above or below the pycnocline) also affects 

temperature-dependent metabolic rates, as well as trade-offs in foraging times versus 

predation risk (Sogard and Olla, 1996). As such, both the horizontal and vertical 

distributions of larvae affect their growth and energetic condition. Juvenile walleye 

pollock are capable of selecting habitat based on temperature, prey availability, and 

predator abundance (Kooka et al., 2007). Consequently, we plan to incorporate both 

local-scale environmental conditions and estimates of prey availability into a 

bioenergetics model to quantify fine-scale spatial variability in growth potential and to 

support the development of predictive models for recruitment success of walleye pollock 

in the SEBS. 

 

2.5 Conclusions 

Larval and juvenile walleye pollock face competing demands for available energy 

resources. We identified differing energy allocation strategies indicating that distinct 

ontogenetic stages face different survival constraints. Larval fish favored allocation to 

somatic growth, presumably in order to escape size-dependent predation, while juvenile 

fish allocated energy to lipid storage in late summer. We propose that late summer (July-

September) represents a critical period for energy storage in age-0 walleye pollock and 

that subsequent energy levels provide an early metric for the prediction of overwinter 

survival and recruitment success to age-1. 
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Table 2.1. Year, season, sampling dates, and gear used to collect age-0 and age-1 walleye pollock (Theragra  

chalcogramma). The mean (± standard error, n) energy density, % lipid, and standard length (mm) are shown for each  

cruise by age class. 

Age-0 
Year Season Dates Gear Mesh size  Energy 

density  
(kJ/g) 

%  
lipid 

Standard 
Length 
(mm) 

2008 Spring May 12 – 
21 

Bongo 505 (µm)  8.51 
(0.94, 
13) 

5.67 
(0.07, 274) 

2008 Mid-
summer 

July 3 - 17 MOCNESS 505 (µm) 17.99 
(0.68, 6) 

11.36 
(0.45, 
18) 

10.61 
(0.14, 168) 

2008 Late-
summer 

September 
7 - 30 

Rope trawl 1.2 cm codend 
liner 

23.35 
(0.22, 37) 

21.49 
(0.82, 
31) 

62.7 
(1.25, 102) 

2008 Late-
summer 

September 
9 - 20 

Beam trawl 7 mm; 3 mm 
codend liner 

22.36 
(0.18, 34) 

 66.82 
(1.34, 33) 

2009 Mid-
summer 

June 14 - 
July 12  

MOCNESS 505 (µm) 16.95 
(0.68, 4) 

8.34 
(0.26, 
89) 

8.79 
(0.14, 251) 

2009 Late-
summer 

September 
2 - 30 

Rope trawl 1.2 cm codend 
liner 

22.81 
(0.14, 50) 

17.98 
(0.84, 
46) 

67.1 
(1.08, 100) 
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Table 2.1. Continued 
 

2010 Spring May 6 - 18 Bongo 505 (µm)  2.15 
(0.30, 
22) 

5.67 
(0.05, 164) 

2010 Mid-
summer 

June 16 - 
July 14 

MOCNESS 505 (µm) 15.39 
(0.88, 3) 

6.0 
(0.23, 66 

8.88 
(0.14, 135) 

2010 Late-
summer 

August 16 - 
September 

26 

Rope trawl 1.2 cm codend 
liner 

22.64 
(0.11, 89) 

 59.8 
(0.76, 104) 

2010 Late-
summer 

September 
2 - 15 

Beam trawl 7 mm; 3 mm 
codend liner 

22.43 
(0.25, 34) 

 62.38 
(1.9, 34) 

Age-1 
2008 Summer June 2 - 

July 31  
Methot 
Trawl 

2x3 mm; 1 mm 
codend liner 

23.13 
(0.12, 49) 

19.44 
(0.52, 
49) 

132.46 
(1.67, 49) 

2009 Summer June 9 - 
August 7  

Methot 
Trawl 

2x3 mm; 1 mm 
codend liner 

22.99a 
(0.18, 34) 

17.97 
(1.0, 34) 

138.45 
(3.46, 34) 

2009 Late-
summer 

September 
2 - 30 

Rope trawl 1.2 cm codend 
liner 

23.51a 
(0.34, 18) 

18.8 
(1.66, 
18) 

155.04 
(6.23, 19) 

2010 Summer June 5 - 
August 7 

Methot 
trawl 

2x3 mm; 1 mm 
codend liner 

24.41 
(0.17, 34) 

25.58 
(0.72, 
34) 

148.25 
(2.98, 34) 

aEnergy density values were predicted from % lipid values based on the regression relationship:  

energy density = 20.1 + 0.76*% lipid
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Table 2.2. Summary of generalized additive mixed model (GAMM) fits for energy 

density, % lipid, and standard length showing terms, coefficient estimates, standard error 

(SE) for fixed coefficients, degrees of freedom (d.f.; number of parameters for each term 

in the model, estimated for smooth terms), and P-values. P-values for parametric terms 

(intercept, year coefficients) based on t-test of the null hypothesis that the coefficient is 

equal to zero; for smooth terms (fi) based on an approximate F-test (Wood, 2006); for 

random effects term (σa) based on likelihood ratio test. The intercept (α) corresponds to 

the 2008 means and the subsequent year effects (Yk) correspond to the difference 

between that year's mean and the intercept; f1, f2, and f4 are smooth terms (SL = standard 

length; date = sampling date); f3 and f5 are smooth spatial surfaces (lat=latitude; 

long=longitude) by year k, and εik is within-station residual variability.  

Model 
(Adjusted R2) 

Term Estimate SE d.f. P-value 

Energy density 
(0.688) 

     

 Intercept (α) 22.93 0.15 1 <0.001 
 Y2009 -1.09 0.26 1 <0.001 
 Y2010 -0.52 0.19 1 0.007 
 f1(SL)   3.7 <0.001 
 f3(lat, long)2008   2.9 <0.001 
 f3(lat, long)2009   2 <0.001 
 f3(lat, long)2010   2 0.16 
 σ(ai) 0.49  1 <0.001 
 σ(εik) 0.71  1  
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Table 2.2 Continued 

% Lipid 
(0.847) 

     

 Intercept (α) 13.22 0.50 1 <0.001 
 Y2009 -2.65 0.59 1 <0.001 
 Y2010 -5.50 0.69 1 <0.001 
 f1(SL)   3.9 <0.001 
 f2(date)   1 <0.001 
 σ(ai) 1.58  1 <0.001 
 σ(εik) 2.06  1  
Standard length 

(0.955) 
     

 Intercept (α) 20.53 1.22 1 <0.001 
 Y2009 6.84 1.89 1 <0.001 
 Y2010 2.1 1.65 1 0.2 
 f4(date)   6.36 <0.001 
 f5(lat, long)2008   2 <0.001 
 f5(lat, long)2009   2.89 <0.001 
 f5(lat, long)2010   2 0.46 
 σ(ai) 5.68  1 <0.001 
 σ(εik) 3.79  1  
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Figure 2.1. (A) Map showing the location of the Bering Sea. (B) Map of the southeastern 

Bering Sea showing the location of sample collections by age class and year. Sampling 

for age-0 fish is assumed to encompass the bulk of their distribution based on historical 

data, while age-1 fish were predominantly sampled from the outer shelf domain (between 

100 and 200 m isobaths). Depth contours are shown for the 50 m, 100 m, and 200 m 

isobaths. 
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Figure 2.2. Plot of energy density (kJ/g dry mass) for the 2008 and 2009 cohorts of 

walleye pollock (Theragra chalcogramma). Errors bars are plotted as ±1 standard 

deviation to show the variability in energy density estimates for each sampling interval. 

Different letters indicate significant differences in energy density within season. Note x-

axis is mean sampling date across the age-0 and age-1 seasons. 
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          (A) 

 

Figure 2.3. Results from generalized additive mixed model (GAMM) regression analyses 

showing the estimated effects on energy density (kJ/g dry mass) of (A) standard length 

(SL; mm), (B) spatial location (by year), and (C) year for age-0 walleye pollock 

(Theragra chalcogramma). Dashed lines denote 95% confidence intervals in (A) and (C). 

Energy densities in (A) are plotted as anomalies because actual values depend on location 

and year. Spatial contours in (B) correspond to the estimated energy density for a fish of 

60 mm SL on September 1. Depth contours are shown for the 50 m, 100 m, and 200 m 

isobaths. The partial fits by year (C) show the average energy density by year with other 

covariates fixed at their mean values. 
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Figure 2.3. Continued 
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Figure 2.3. Continued 
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          (A) 

 

Figure 2.4. Results from generalized additive mixed model (GAMM) regression analyses 

showing the estimated effects on % lipid (on a dry mass basis) of (A) standard length 

(SL; mm), (B) sampling date, and (C) year for age-0 walleye pollock (Theragra 

chalcogramma). Dashed lines denote 95% confidence intervals. % Lipid values in (A) 

and (B) are plotted as anomalies because actual values depend on sampling date and year. 

The range of y-axis values are comparable between (A) and (B), indicating SL and 

sampling date are similarly important in explaining variability in % lipid. The partial fits 

by year (C) show the average % lipid by year with other covariates fixed at their mean 

values. 
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Figure 2.4. Continued 
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Figure 2.4. Continued 
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          (A) 

 

Figure 2.5. Results from generalized additive mixed model (GAMM) regression analyses 

showing the estimated effects on standard length (SL; mm) of (A) sampling date and (B) 

year for age-0 walleye pollock (Theragra chalcogramma). Dashed lines denote 95% 

confidence intervals. The partial fits by year (B) show the average SL by year with other 

covariates fixed at their mean values. 
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Figure 2.5. Continued 
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Chapter 3: Spatial match-mismatch between juvenile fish and prey 

explains recruitment variability across contrasting climate conditions  

in the eastern Bering Sea4 

Abstract 

Understanding mechanisms behind variability in early life survival of marine fishes 

through modeling efforts can improve predictive capabilities for recruitment success 

under changing climate conditions. Walleye pollock (Theragra chalcogramma) support 

the largest single-species commercial fishery in the United States and represent an 

ecologically important component of the Bering Sea ecosystem. Variability in walleye 

pollock growth and survival is structured in part by climate-driven bottom-up control of 

zooplankton composition. We used two modeling approaches, informed by observations, 

to understand the roles of prey quality, prey composition, and water temperature on 

juvenile walleye pollock growth: (1) a bioenergetics model that included local predator 

and prey energy densities, and (2) an individual-based model that included a mechanistic 

feeding component dependent on larval development and behavior, local prey densities 

and size, and physical oceanographic conditions. Prey composition in late-summer 

shifted from predominantly smaller copepod species in the warmer 2005 season to larger 

species in the cooler 2010 season, resulting in different growth conditions and year-class 

survival. Observed diets reflected temporal variability in zooplankton composition, 

                                                
4 Siddon, E.C., Kristiansen, T., Mueter, F.J., Holsman, K., Heintz, R.A., and Farley, E.V. 
In preparation for journal submission. Spatial match-mismatch between juvenile fish and 
prey explains recruitment variability across contrasting climate conditions in the eastern 
Bering Sea. In preparation to be submitted to PLoS ONE. 
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corroborating hypothesized bottom-up control of survival. In 2010, the main prey of 

juvenile walleye pollock were more abundant (37%), had greater biomass (64%), and had 

higher mean energy density (12%), resulting in greater recruitment to age-1 (42%) 

compared to 2005. Spatial patterns in prey composition and water temperature lead to 

areas of enhanced growth, or growth ‘hot spots’, for juvenile walleye pollock and 

survival may depend on the overlap between fish and these areas. This study provides 

evidence that a spatial mismatch between juvenile walleye pollock and growth ‘hot spots’ 

in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted 

in improved recruitment. Our results indicate that climate-driven changes in prey 

composition and quality can impact growth of juvenile walleye pollock, severely 

affecting recruitment variability. 
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3.1 Introduction  

The match-mismatch hypothesis [1] proposes that predator survival is dependent on the 

temporal and spatial overlap with prey resources [2]. Factors affecting temporal overlap, 

such as climate variability through altered phenology, can lead to changes in survival at 

critical life stages [3]. Temporal variation in spatial patterns of physical or biological 

conditions may concurrently affect survival. For example, in temperate and sub-arctic 

marine ecosystems, the timing of the spring bloom varies between years, driven by 

physical oceanographic conditions that change due to climate variability (e.g. [4]). These 

conditions, such as the onset of stratification, turbulence, and light availability, also affect 

the spatial patterns of zooplankton abundance, which further influences the feeding 

success of planktivorous fish species. Hence, variability in the spatial overlap of predator 

and prey, as well as differences in prey quality [5,6], may directly affect differences in 

year-class success of many marine fish species [7,8]. 

Variability in year-class strength of gadids is often associated with changing 

physical conditions [9,10]. In the North Sea, temperature increases since the mid-1980s 

have led to a mismatch of Atlantic cod (Gadus morhua) and their prey; under warmer 

conditions, a shift in species composition decreased the prey size and energy content, 

which reduced recruitment success of Atlantic cod [9]. The eastern Bering Sea (EBS) has 

experienced multi-year periods of both warm and cold conditions since the turn of the 

21st century [11], with cold years having much higher walleye pollock (Theragra 

chalcogramma) recruitment on average [12]. In the EBS, changes in zooplankton 

composition between these periods have been identified as an important driver of 
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recruitment success for walleye pollock [8,13], but the mechanistic links remain poorly 

understood.  

Walleye pollock is an ecologically important component of the Bering Sea 

ecosystem, and the focus of the largest commercial fishery in the U.S. Interannual 

changes in ocean temperatures [11] and shifts in the spatio-temporal distribution of prey 

[13] make walleye pollock an ideal case study to better understand drivers of recruitment 

success in sub-arctic marine fish. Larger zooplankton taxa, such as lipid-rich Calanus 

spp., were less abundant during recent warm years in the EBS, possibly causing reduced 

growth rates and subsequent year-class strength of juvenile walleye pollock (hereafter 

juvenile pollock). In contrast, higher abundances of lipid-rich prey, combined with lower 

metabolic demands in cold years, may have allowed pollock to acquire greater lipid 

reserves by late summer and experience increased overwinter survival [8]. Although the 

energetic condition of juvenile pollock in late summer is recognized as a predictor of age-

1 abundance during the following summer in the EBS [12], the causal mechanism linking 

differences in prey abundance and quality to walleye pollock survival remains untested.  

We utilized two modeling approaches, informed by observations of the prey field 

and environmental conditions, to better understand the roles of prey composition, prey 

quality, and temperature on juvenile pollock growth. Variability in these habitat 

characteristics contributes to bottom-up control of fish growth and survival. Comparing 

alternative model-based predictions of growth allows a better understanding of the 

mechanisms behind variability in growth patterns and an evaluation of the importance of 

different parameters in the models.  
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The objectives of this study were to (1) estimate spatial differences in maximum 

growth potential of juvenile pollock on the EBS shelf using a bioenergetics modeling 

approach, (2) quantify the impact of temperature and prey quality on spatial variability in 

growth potential, (3) compare maximum growth potential to predicted growth from an 

individual-based model (IBM), and (4) compare observed and predicted (from IBM) prey 

preferences in order to better understand mechanistic prey selection leading to differences 

in modeled growth. We hypothesize that differences in prey species composition and 

quality lead to bottom-up control of juvenile pollock growth and survival in 

representative warm and cold years in the EBS. 

 

3.2 Materials and methods  

3.2.1 Ethics statement 

Collection of physical and biological oceanographic data and fish samples during the US 

Bering-Aleutian Salmon International Surveys (BASIS) conducted on the EBS shelf was 

approved through the National Marine Fisheries Service, Scientific Research Permit 

numbers 2005-9 and 2010-B1. Collection of biological data in the US Exclusive 

Economic Zone by federal scientists to support fishery research is granted by the 

Magnuson - Stevens Fishery Conservation and Management Act. 

3.2.2 Modeling approaches  

Two alternative modeling approaches allowed for a comparison of maximum growth 

potential from a Wisconsin-type bioenergetics model parameterized for juvenile pollock 

(modified from [14]) and predicted growth from a mechanistic individual-based model 
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(IBM; [15]). Growth (g•g body wet weight-1•day-1) was estimated for 65 mm standard 

length (SL; 2.5 g) juvenile pollock, corresponding to the average size of age-0 fish 

observed in late summer (2005: 64.1 ± 6.7 mm SL [mean ± SD] and 1.97 ± 0.93 g; 2010: 

64.3 ± 9.2 mm SL and 2.39 ± 0.94 g). The IBM also provided estimates of average 

predicted fish depth (m) in the water column as well as station-specific prey preferences 

(i.e., Chesson’s index; [16]) that were compared with observed prey preferences from 

stomach contents of juvenile pollock in late summer.  

Models were parameterized based on samples of juvenile pollock and 

oceanographic data collected during the US Bering-Aleutian Salmon International 

Surveys (BASIS) conducted on the EBS shelf from mid-August to October 2005 and 

2010 ([17]; Fig. 3.1). Model inputs included water column temperature, zooplankton 

abundance and biomass, energy density estimates of selected zooplankton taxa and of 

juvenile pollock for the bioenergetics model, and vertical distribution of zooplankton taxa 

for the IBM.  

We selected 2005 (warm) and 2010 (cold) for our analyses based on data 

availability and on the pronounced contrast in ocean conditions between these years (e.g., 

depth-averaged temperature anomalies over the middle shelf; [11]). Extensive spatial 

coverage of the surveys, combined with varying climate conditions between years, 

provided ample data with which to inform the models and compare differences in 

predicted growth between a representative warm year and a representative cold year in 

the EBS.  

3.2.3 Field observations  
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3.2.3.1 Juvenile pollock abundance  

Juvenile pollock were collected using a midwater rope trawl that was 198 m long, had 

hexagonal mesh in wings and body, and had a 1.2 cm mesh liner in the codend. The rope 

trawl was towed at 6.5 to 9.3 km•hr-1, at or near the surface, and had a typical spread of 

55 m horizontally and 25 m vertically. Trawl stations were generally sampled during 

daytime and tow duration generally lasted 30 minutes and covered 2.8 to 4.6 km.  

 Catch per unit effort (CPUE; #•m-2) of juvenile pollock was calculated as: 

€ 

CPUEi =
ni
di ⋅ h

                                                 Eq. 1 

where ni is the number of fish collected in a given haul i, di is the trawl distance (m) 

calculated from starting and ending ship position, and h is the horizontal spread of the 

trawl net (m). Haul-specific average fish weights were calculated as the total weight of 

juvenile pollock divided by the number caught in each haul. Only surface tows at pre-

defined stations were used to compute CPUE because midwater tows specifically 

targeted acoustic sign of walleye pollock. 

3.2.3.2 Water temperature  

Vertical profiles of water temperature were collected at each station sampled for 

oceanography using a Sea-Bird Electronics (SBE) conductivity-temperature-depth (CTD) 

profiler SBE-25 (2005) or SBE-911 (2010). The average temperature in the upper 30 m 

of the water column was used in the bioenergetics model, assuming juvenile pollock 

collected from surface trawls were concentrated within the upper 30 m [17]. For the IBM, 

the water column was divided into 1-m discrete depth bins. For all IBM simulations, the 

depth of the water column was set to the upper 100 m of all deeper stations (n=9 of 116 
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in 2005, n=27 of 160 in 2010) because MOCNESS data used to develop vertical profiles 

of zooplankton distribution (see ‘Zooplankton vertical profiles’ below) was limited to 

100 m. For stations with missing temperature data (n=1 for 2005), data from the nearest 

station with similar depth was used. For stations with incomplete temperature profiles 

(n=1 for 2005), temperatures were linearly interpolated between depths. 

3.2.3.3 Zooplankton data  

3.2.3.3.1 Determination of main prey taxa  

Juvenile pollock (<100 mm FL) collected from both surface (2005 and 2010) and 

midwater (2010 only) tows were used in the analysis to characterize diets across the EBS 

shelf in two contrasting years (n=26 stations in 2005, n=47 stations in 2010 [n=16 surface 

tows, n=31 midwater tows]). Stomach content analyses followed standard methods as 

described in [18]. Briefly, fish stomach contents were examined onboard the ship by 

removing and pooling the contents of the entire food bolus from up to 20 randomly 

selected individuals of similar size per trawl. Stomach contents were sorted and identified 

to the lowest feasible taxonomic group. Individual prey taxa were allocated a 

proportional contribution to total stomach contents, as % volume, of each prey taxon to 

the diet. To compute overall average diet composition, contributions were weighted by 

the CPUE of juvenile pollock at each station and averaged across stations. All prey taxa 

of juvenile pollock that cumulatively accounted for at least 90% of the diet by volume 

and individually accounted for at least 2% of the diet by volume were included in the 

bioenergetics and IBM models (Table 3.1). Main prey taxa from either year were 

included in models for both years for comparing growth across years.  
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3.2.3.3.2 Zooplankton size  

The length and width of each species/stage of zooplankton comprising the main prey taxa 

in each year were used in the mechanistic feeding component of the IBM. Literature 

values of stage-specific length and width were used when available; voucher collections 

from the EBS were used for length and width measurements when literature values were 

not available (Table 3.A.1). 

3.2.3.3.3 Zooplankton abundance  

Water-column estimates of abundance for small and large zooplankton taxa were 

collected using a Juday [19] and bongo net, respectively, in both years. Zooplankton tows 

were generally conducted during daylight hours. The Juday net (0.1 m2 with 168-µm 

mesh) was towed vertically from near-bottom (or to a maximum depth of 200 m) to the 

surface at approximately 1 m•s-1. Double oblique tows from the surface to near-bottom 

(or to a maximum depth of 200 m) were made with a bongo net (60-cm with 505-µm 

mesh); volume filtered was measured with General Oceanics flowmeters. Samples were 

quantified under a microscope and abundance (#•m-3) of each species/stage was 

determined. Catch coefficients (corrections for net avoidance) were applied to Juday data 

(see [19]). Zooplankton abundance was allocated into 1-m discrete depth bins according 

to vertical profiles of zooplankton distribution (see ‘Zooplankton vertical profiles’ 

below), scaled to station depth, and used as input to the IBM. Small zooplankton 

representing main prey taxa sampled using the Juday net included Acartia clausi, Acartia 

spp. (2010 only), Centropages abdominalis, and Pseudocalanus sp. Large zooplankton 

sampled using the bongo net included Calanus marshallae, Eucalanus bungii, Limacina 
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helicina, Neocalanus cristatus, N. plumchrus (2005 only), Oikopleura sp., Thysanoessa 

inermis, T. inspinata, and T. raschii.  

3.2.3.3.4 Zooplankton biomass  

Total sample wet weights (g, WW) of taxa collected from the Juday net were computed 

from wet weight tables [19]. Wet weights (g•m-3) of taxa collected from the bongo net 

were measured during sample processing at the University of Alaska Fairbanks (2005; 

[20]) and NOAA/NMFS/Alaska Fisheries Science Center (2010). A biomass-weighted 

mean prey energy density was calculated for each station based on Juday and bongo data 

and used as input to the bioenergetics model. At each station, the biomass of individual 

taxa was divided by the total prey biomass, multiplied by the taxa-specific energy density 

(see ‘Zooplankton energy density’ below) for each year, and summed across all taxa 

present at a given station. The year-specific average biomass of individuals of a given 

taxon was calculated by dividing the sum of the biomass of all specimens weighed (i.e., 

subsample) by the total number of specimens subsampled in a given year (Table 3.A.1).  

3.2.3.3.5 Zooplankton energy density  

Taxa-specific energy density (ED; kJ•g-1 WW) values obtained from available 

zooplankton collections from the EBS during 2004 (warm; no ED data available from 

2005) and 2010 (cold) were used to estimate average ED values during warm and cold 

conditions for the main prey taxa as input to the bioenergetics model (Table 3.A.1). For 

taxa lacking sufficient information to estimate separate ED values, a single estimate was 

used in both years. In these cases, only differences in abundance and biomass contributed 

to differences in average prey energy between years in the models.  
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 Estimates of ED and % lipid were available for several copepod species (C. 

marshallae, N. cristatus, and N. plumchrus/flemingeri) from 2010 (see [21] for details on 

the biochemical processing). A linear regression was developed to predict species 

specific ED (

€ 

ω i) from % lipid values for other copepod species and/or climate conditions 

(Table 3.A.1), such that: 

  

€ 

ω i = α + βLi +ε i,  where                           Eq. 2 

where α and β represent the intercept and slope of the regression, respectively, Li is the 

lipid composition (%) of the individual copepod sample i and εi is a residual. The 

residuals, εi, are assumed to be independent and normally distributed with mean 0 and 

variance σ2 (α = 19.3, p = 0.02; β = 0.41, p = 0.07; R2=0.98). 

3.2.3.3.6 Zooplankton vertical profiles  

To account for diel vertical migrations, taxa-specific vertical profiles for day and night 

were developed for all main prey taxa as input for the IBM. Vertical profiles were based 

on summer MOCNESS surveys that provided depth-stratified abundance estimates. 

MOCNESS data were available for 2004 (warm) and 2009 (cold); these vertical profiles 

were applied to late-summer model runs for 2005 and 2010, respectively, assuming that 

the vertical behavior of zooplankton taxa is conserved seasonally and across years within 

similar oceanographic conditions. To assess this assumption, a sensitivity analysis was 

conducted using constant abundances by depth (see ‘IBM sensitivity analyses’ below). 

In 2004, MOCNESS data were available at 47 stations over the EBS shelf [20]; 5 

stations were sampled during daytime and 42 stations were sampled during nighttime. In 

2009, MOCNESS data were available at 29 stations over the EBS shelf (A. Pinchuk, 
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unpubl. data); 7 stations were sampled during daytime and 22 stations were sampled 

during nighttime. Daytime extended from approximately 07:00 (sunrise) to 23:30 (sunset) 

Alaska Daylight Savings Time during the sampling periods; stations sampled during 

crepuscular periods were excluded from the analysis. The depth increments of the 

MOCNESS varied depending on water depth; therefore, data were binned to the finest 

resolution available (i.e., 5-20 m). Zooplankton abundance was assumed to be uniform 

within sampling depths and averaged across all daytime and nighttime tows within a 

given year to obtain four vertical profiles for each taxon (day vs. night, 2004 vs. 2009).   

3.2.4 Bioenergetics model  

A bioenergetics model was used to estimate spatially explicit maximum growth potential 

of juvenile pollock by station. We used the broadly applied Wisconsin bioenergetics 

modeling approach [22,23] that has been adapted for walleye pollock including 

appropriate model validation ([14, 24]; Table 3.A.2). The model estimates temperature- 

and weight-specific maximum daily (d) consumption for an individual fish at station k in 

year t ( ; g•g-1•d-1 in terms of grams wet body weight) as:   

     Eq. 3 

where  is parameterized from independent laboratory observations of 

consumption rates for the species, absent competitor or predator interference, and is 

assumed to scale exponentially with fish weight (W) according to α and β (the allometric 

intercept and slope of consumption) and thermal experience according to the temperature 

scaling function f(T) (Table 3.A.2). 
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Realized individual daily consumption rates (

€ 

Cd ,kt ; g•g-1•d-1) based on in situ fish 

are typically much lower than  because inter- and intra-species competition, 

mismatched prey phenology or distributions, and predator avoidance behaviors by prey 

species often limit capture and consumption rates [14,25]. The ratio of realized 

consumption to maximum consumption (i.e., ), or the mean relative 

foraging rate, is a measure of in situ foraging efficiency.  can be estimated using field 

observations of growth or it can be set to a specific value and used to predict daily growth 

( ) using the mass balance equation where growth is the difference between energy 

consumed (

€ 

Cd ,kt ) and energy lost to metabolism and waste (

€ 

[δ |Cd ,kt ,Wd −1,Td ,kt ]), such 

that: 

€ 

Gd ,kt = (Cd ,kt − [δ |Cd ,kt ,Wd −1,Td ,kt ])⋅ ζ kt                                Eq. 4 

where is the estimated daily specific growth (g•g-1•d-1),  is realized consumption 

( ),

€ 

Wd −1 is the weight of an individual fish at the start of the simulation 

day d,  is the water temperature on simulation day d, and  is the ratio of annual 

mean predator ( ) energy density for year t to station (k) specific prey energy densities 

( ) and is used to convert consumed biomass of prey into predator biomass (for more 

information see [25]).  

Empirically derived or inferred values for the energy density of different prey 

species (see Zooplankton energy density above) were used to derive mean station-specific 

(k) available prey energy density for both years ( ); diet composition was assumed to 

be proportional to the relative biomass of zooplankton prey at each station. Individual 
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fish energy density (vi) was determined using biochemical processing (see [21]). At 

stations where sufficient numbers of juvenile pollock were collected (n=91 in 2005 and 

n=12 in 2010), 2-8 fish were selected to represent the size range of juvenile pollock at 

each station. Station-specific mean energy density in a given year ( ) was weighted by 

CPUE and the number of fish processed at each station to calculate the average fish 

energy density by year ( ). 

 We ran the model for a single simulation day (i.e., d=1) using base scenario input 

parameter values (Table 3.2; see also [14] Tables I and II) that were kept constant across 

stations and years (i.e., W =2.5 and 

€ 

η =1), were constant across stations but varied by 

year (i.e.,

€ 

v t ), or varied by station and year (i.e., Tkt and

€ 

ω kt ). Because the model is size-

specific, running the model for a single simulation day minimized compound errors that 

can accumulate over multiple simulation days when predicting growth and allowed for a 

comparative index of growth across stations. Keeping starting weights (W) constant 

allowed us to evaluate spatial effects of changes in the other parameters; setting η=1 

implies that growth was constrained by physiological processes, but not by prey 

consumption, hence we evaluated variability in maximum growth potential. Annual 

average fish energy density was applied across stations in each year (

€ 

v 2005= 3.916 kJ•g-1 

WW; 

€ 

v 2010= 5.292 kJ•g-1 WW). The average water temperature in the upper 30 m (Tkt) 

and the biomass-weighted mean prey energy density (

€ 

ω kt ) varied by station (k) and year 

(t). 

3.2.4.1 Bioenergetics sensitivity analyses  
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To test the sensitivity of the model to variability in the inputs, individual input parameters 

were increased and decreased by 1 standard deviation (SD) and the change in growth 

relative to maximum predicted growth under the base scenario was recorded. A pooled 

SD was calculated across stations after removing the annual means. Relative foraging 

rate (

€ 

η ) was held at 1 for all sensitivity model runs in order to compare the relative effect 

of other parameters on maximum growth potential.   

Station-specific parameters (i.e., Tkt and 

€ 

ω kt ) were increased and decreased by 1 

SD at each station to evaluate the relative effect of different inputs on predicted growth 

and to examine resulting changes in spatially explicit growth patterns in each year. To 

evaluate the effect of variability in fish start weight and energy density (

€ 

Wd −1and 

€ 

v t , 

respectively) on estimated growth in 2005 and 2010, we used Monte Carlo simulations at 

a representative station (see Fig. 3.1). A single station was used because mean fish weight 

and energy density did not vary across stations in the model; hence the spatial pattern in 

estimated growth is not affected by increasing or decreasing these values by a constant 

amount. The model was run 1000 times using parameter values drawn at random from a 

normal distribution with the observed mean and SD for each parameter. The resulting 

distribution of predicted maximum growth potential (g•g-1•d-1) was visually examined.  

3.2.5 Mechanistic individual-based model  

A mechanistic, depth-stratified individual-based model (IBM) was used to predict 

average growth (g•g-1•d-1) and depth (m) of 100 simulated juvenile pollock by station. 

The details of the IBM and model validation are described in [15,26], who modeled 

growth and foraging of larval Atlantic cod and compared results to observational data 
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from a macrocosm study in Norway and Georges Bank. For this study, the IBM was 

reparameterized for juvenile pollock and forced with input data for water column 

temperatures and prey availability in 1 m discrete depth bins. 

The IBM predicted average growth and depth using a mechanistic prey selection 

component that simulated the feeding behavior of juvenile pollock on zooplankton. The 

size and species composition of zooplankton available to the fish were based on 

observations. The simulated feeding ecology depended on juvenile pollock development 

(e.g., swimming speed, gape width, eye sensitivity) and vertical migratory behavior, prey 

densities and size, as well as light and physical oceanographic conditions (for details see 

[15]). Gape width was calculated as a function of fish size; conversion between length 

and weight followed [27]. Juvenile feeding processes were modeled with light-dependent 

prey encounter rates and prey-capture success (see [28]). Optimal prey size was estimated 

to be 5-8% of fish length based on research on larval Atlantic cod [28,29]; juvenile 

pollock are predicted to have nearly 100% capture success of prey smaller than 5% of 

fish length, while the probability of capture success decreases with larger prey [15].  

Vertical migratory behavior was modeled assuming that juvenile pollock would 

seek deeper depths to avoid predation risk as long as ingestion rates would sustain 

metabolism and growth. If not, juvenile fish would seek the euphotic zone where light 

enhances feeding success, but also increases predation risk. Prey distributions switched 

between daytime to nighttime profiles when the light level (i.e., irradiance) reached 1 

µmol•m-2•s-1 [26]. The cost of vertical migration was included as a maximum of 10% of 

standard metabolic rates if the fish swims up or down at its maximum velocity, and 
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scaled proportionally for shorter vertical displacements. Swimming velocity was a 

function of juvenile fish size [30].  

Gut fullness was estimated based on the amount of prey that was ingested and 

digested per time step (1 hour) according to the feeding module. Prey biomass flowing 

through the alimentary system supplied growth up to a maximum growth potential (Cmax; 

[24]), and standard metabolic cost, egestion, excretion, and specific dynamic action [14] 

were subtracted. Both maximum growth and metabolic costs were functions of fish 

weight and water temperature.  

For all base model scenarios, the initial weight of the fish was held constant 

across stations, while zooplankton abundance and vertical distribution varied according 

to observations. Initial fish weight was 2.5 g ± 30% assuming a random uniform 

distribution around the mean. Year-specific vertical profiles (day and night) for the main 

prey taxa and station-specific temperature and prey abundance profiles were applied. The 

model scenarios were run for 72 hours, but only the last 24 hours of the simulations were 

used for the analysis to avoid the early part of the simulations that may be unduly 

influenced by random initial conditions. 

3.2.5.1 IBM sensitivity analyses  

To test the sensitivity of the model, we varied starting fish weights and the vertical prey 

profiles; resulting growth and average depth predictions were compared to predicted 

values under the base model scenario (see [26] for sensitivity of the IBM model to 

variability in other parameters). To evaluate the effect of fish size separately from the 

effects of environmental controls, estimated growth based on starting weights of 2.0 g ± 
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30% was compared to the base scenario (2.5 g ± 30%), encompassing the mean weight of 

juvenile pollock from the BASIS surveys in 2005 (1.97 ± 0.93 g, mean ± SD) and 2010 

(2.39 ± 0.94 g, mean ± SD). To test the effect of vertical distributions and diel migrations 

of prey taxa, model runs assuming a uniform distribution of prey with depth were 

compared to the base scenario, highlighting the effects of non-uniform zooplankton 

distribution and diel vertical migrations on juvenile pollock prey selection. 

3.2.6 Comparison of observed and predicted prey preferences  

Stomach contents of juvenile pollock (<100 mm SL) were identified from selected 

stations across the EBS shelf to compare observed diet composition, model-predicted 

diets, and available prey. Chesson’s prey preference index [16] was calculated for the 

main prey taxa in each year and compared to IBM-based estimates of prey preference at 

corresponding stations. Chesson’s index (αi) for a given prey taxon i is the ratio between 

ingested prey items (ri) and the frequency of their occurrence in the environment (ni), 

standardized by the sum of the ratios over all m prey types:  

                                                      Eq. 5 

The standardization implies that neutral selection (αneu) corresponds to 1/m and a specific 

prey item or group was actively selected if the index is , as they appear more 

frequently in the diet than their abundance in the environment would suggest. To 

calculate Chesson’s index for observed diets, % volume in the diet was used as a proxy 

for biomass consumed (ri) relative to prey biomass in the environment (ni). 
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Chesson’s prey preference indices for main prey taxa in each year, based on 

observed and predicted diets, were compared at each station for which observed diet, 

predicted diet, and zooplankton composition was available and where at least 90% of the 

observed prey taxa (by % volume) were accounted for in the zooplankton data (n=7 in 

2005; n=9 in 2010). Zooplankton samples that did not include a known prey item were 

not considered for this analysis because the lack of a known prey item in zooplankton 

samples collected at the same station suggests that the sample is not representative of 

prey availability due to small-scale patchiness, or indicates a spatial and/or temporal 

mismatch between where captured juvenile pollock were foraging and where samples 

were collected. To compare observed (

€ 

α obs) and predicted (

€ 

α pre ) prey preferences, we 

computed differences between these prey preferences relative to neutral selection: 

                                                                                                    Eq. 6 

and averaged them across all stations within each year, as well as by domain (i.e., inner: 

0-50 m isobath, middle: 50-100 m isobath, and outer: 100-200 m isobath).  

 

3.3 Results  

3.3.1 Field observations  

3.3.1.1 Juvenile pollock abundance  

Juvenile pollock abundance and distribution had distinct spatial patterns in the surface 

layer between warm and cold years, with a more northerly distribution in warm years. 

Specifically, during warm late-summer conditions juvenile pollock were distributed over 

a broad extent of the middle and outer domain, while in the cooler late summer of 2010 
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fish were concentrated over small regions of the southern shelf and outer domain (Fig. 

3.2). Abundance also varied between years with higher mean CPUE observed in 2005 as 

compared to 2010 (CPUE = 0.08 fish•m-2 vs. 0.001 fish•m-2, respectively) at positive 

catch stations.  

3.3.1.2 Water temperature  

The average water temperature in the upper 30 m of the water column during the BASIS 

survey was 8.8ºC in 2005 and 7.6ºC in 2010, while the average temperature between 40 

m and the substratum was 4.5ºC in 2005 and 2.9ºC in 2010. The warmest surface 

temperatures occurred in nearshore waters, while 2005 had warm temperatures over 

much of the southern shelf (Fig. 3.3, top panel). Bottom temperatures show the extent of 

the cold pool (waters <2ºC), which was limited to the northern portion of the study area 

in 2005 and covered much of the shelf in 2010 (Fig. 3.3, bottom panel).  

3.3.1.3 Zooplankton 

3.3.1.3.1 Prey taxa  

Diets of juvenile pollock shifted from smaller copepod species in the warmer 2005 

summer season (e.g., Pseudocalanus sp., C. abdominalis, and A. clausi), to larger species 

in the cooler 2010 summer season (e.g., N. cristatus, N. plumchrus, and E. bungii). 

Several zooplankton species were present in the diets across years, including L. helicina, 

which was the predominant prey item in both years, as well as C. marshallae and T. 

raschii (Table 3.1). In 2010, the main prey taxa of juvenile pollock collected in surface 

tows was similar to those from midwater tows, with the exception of E. bungii accounting 

for 0% and 3% of surface and midwater tows, respectively. Eucalanus bungii was 
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included in further analyses because it represented approximately 3% of combined diets 

by volume (Table 3.1).  

3.3.1.3.2 Zooplankton abundance  

Changes in juvenile pollock diet composition reflect spatial and temporal variability in 

zooplankton species composition and availability. In 2005, the abundance of available 

prey was highest in the inner domain and decreased towards the outer domain and 

northern Bering Sea. The abundance of prey in 2010 was greater in the inner domain in 

the southern region of the shelf, but shifted to the middle and outer domains farther north 

(Fig. 3.4, a and c). The lowest abundance of zooplankton in 2010 occurred in the 

southern region of the outer domain (Fig. 3.4c), corresponding to higher concentrations 

of juvenile pollock predators (Fig. 3.2). The total abundance of zooplankton within the 

optimal prey size range for 65 mm SL juvenile pollock (species with mean length within 

5-8% of fish length) revealed that optimal prey was more abundant in the northwest 

region of the study area and over the southern shelf in the outer domain in 2005, with 

lesser overlap with juvenile pollock (Fig. 3.4e). In 2010, optimal prey was located across 

the middle and outer domains with highest abundances in the southern region, mirroring 

the distribution of juvenile pollock (Fig. 3.4g). Spatial patterns of zooplankton abundance 

accounting for all taxa <8% of fish length (not shown) reflected total abundance patterns 

in both years, indicating that areas of highest zooplankton abundance are driven by small 

(<5% of fish length) zooplankton taxa (comparison of total abundance plots [Fig. 3.4, a 

and c] and optimal prey size plots [Fig. 3.4, e and g]).  

3.3.1.3.3 Zooplankton biomass  
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The biomass of available prey was highest in the inner domain and generally lower in the 

middle and outer domains in 2005, similar to the spatial patterns in abundance (Fig. 

3.4b). In 2010, the highest concentrations of prey biomass were located in the southern 

region of the shelf (south of 60 °N) due to the high abundance of large zooplankton 

species in this region and overall biomass was higher (Fig. 3.4d). 

3.3.1.3.4 Zooplankton energy density  

In 2005, available prey energy (i.e., biomass-weighted mean 

€ 

ω kt ) was highest in the 

northwest region of the shelf, with low prey energy over most of the shelf south of 60 °N 

where juvenile pollock abundances were greater (Fig 3.4f). In 2010, concentrations of 

very high available prey energy were found across much of the southern shelf, 

particularly within the cold pool, where juvenile pollock were more abundant (Fig. 3.4h). 

Spatial patterns in high available prey energy were similar to spatial patterns of 

abundance for optimal prey size classes because highest energy prey taxa are within 5-

8% of fish length. 

3.3.1.3.5 Zooplankton vertical profiles  

Species-specific vertical profiles of abundance suggest a non-uniform distribution with 

depth and strong diel vertical migrations for some species (Fig. 3.5). Centropages 

abdominalis were not collected by the MOCNESS; because the distribution of C. 

abdominalis during the 2005 and 2010 BASIS surveys was predominantly at shallow, 

well-mixed stations of the inner domain (inside of the 50 m isobath), a uniform 

distribution throughout the water column was applied for both years. Oikopleura sp. did 

not occur in daytime tows in 2004; therefore, the 2009 daytime vertical distribution was 
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applied for both 2005 and 2010 model runs. Thysanoessa inspinata were rarely collected 

by the MOCNESS (n=1 for 2005; n=3 for 2010), therefore an average vertical profile 

based on all Thysanoessa sp. was applied. 

3.3.2 Bioenergetics model  

The bioenergetics model results suggest pronounced differences in the spatial patterns of 

maximum growth potential (g•g-1•d-1) of juvenile pollock between a warm and a cold 

year in the EBS. In the warm year of 2005, growth potential was highest in the northwest 

region of the shelf (north of 60 °N) and lowest in the inner domain with one station 

having negative growth. Gradients in growth potential, from low to high, occurred from 

the inner to outer domains and from southern to northern regions of the shelf (Fig. 3.6a). 

In the cold year of 2010, growth was positive at all stations. Highest growth potential 

occurred over the southern region of the shelf with lower growth predicted in the 

northeast region (Fig. 3.6b). 

3.3.2.1 Bioenergetics sensitivity analyses  

3.3.2.1.1 Effect of water temperature and prey energy density  

In the warm year of 2005, the effect of increasing temperatures by 1 SD varied across the 

region, with areas of decreased growth at shallow inner domain and southern shelf 

stations where water temperatures already approached thermal thresholds. Growth could 

not be estimated at one inner domain station because the increased temperature exceeded 

15ºC, the maximum temperature for consumption (Tcm) in the model (Fig. 3.6c). The 

effect of decreasing water temperature was also greatest at shallow inner domain and 

southern shelf stations (not shown), resulting in increased growth, because temperature-
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dependent control of growth is magnified where temperatures are close to thermal 

thresholds. In 2010, the effect of increasing water temperatures was an order of 

magnitude less than in 2005 (Table 3.3), but the spatial patterns were similar with 

shallow stations in the inner domain being most sensitive, as well as a small area in the 

outer domain (Fig. 3.6d). 

Increasing available prey energy (

€ 

ω kt ) resulted in increases in predicted growth 

rates across the region in 2005 (Fig. 3.6e), with weaker effects in the inner domain and 

northwest region. In 2010, increasing prey energy also resulted in increased growth, but 

effect strengths were much lower than in 2005, and the spatial pattern differed; stronger 

effects occurred in the inner domain and southern region of the outer domain (Fig. 3.6f).  

Predicted maximum growth potential generally increases with temperature and 

prey energy until temperature-dependent controls limit growth. Predicted growth is 

negative when available prey energy cannot meet metabolic demands under increased 

temperatures. Interpolating over the range of observed temperatures and prey energy 

across 2005 and 2010 provided a continuous scale of growth over a broad range of 

possible environmental and biological scenarios (Fig. 3.7). Water temperatures were 

warmer in 2005, therefore juvenile pollock experienced conditions at or near their 

metabolic threshold at some stations. Colder water temperatures and higher available 

prey ED in 2010 resulted in better growing conditions over the shelf. 

3.3.2.1.2 Effect of fish weight and fish energy density  

Increasing fish weight by 1 SD resulted in lower predicted growth rates in both years 

because larger fish have higher metabolic demands (Table 3.3). Increasing fish energy 
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density (

€ 

v t ) by 1 SD had a variable effect across stations in 2005, with some stations 

showing a decrease in growth and other stations showing an increase. In general, the 

effect of varying fish energy is dependent on initial fish energy and the relative available 

prey energy (

€ 

ω kt ) at each station. In 2010, increasing fish energy density resulted in 

lower predicted growth rates across stations when available prey energy was held 

constant (Table 3.3).  

Variability in fish starting weight resulted in a broader distribution of predicted 

growth rates than variability in fish energy for both 2005 and 2010, indicating that the 

model was more sensitive to inputs of fish weight. The simulated mean predicted growth 

rates, when varying fish starting weight or fish energy, were lower and less variable for 

2005 than for 2010 (Fig. 3.8). 

3.3.3 Mechanistic individual-based model  

Predicted mean growth rates from the IBM were 30% (2005) and 46% (2010) lower than 

maximum growth potential from the bioenergetics model (Tables 3.3 and 3.4) as relative 

foraging rates are restricted in the IBM based on stomach fullness and the prey selection 

module (i.e., capture success). The reduction in growth was greater in 2010, resulting in 

similar predicted growth rates from the IBM in 2005 and 2010. In addition, predicted 

growth rates from the IBM have a narrower range than maximum growth potential from 

the bioenergetics model.  

In 2005, growth was positive across the region with moderate growth predicted 

across the southern Bering Sea shelf. In the northern Bering Sea (north of 60 °N), 

predicted growth rates decreased from inner to outer domain (Fig. 3.9a). The average 
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depth (m) of juvenile pollock was 44 m (Table 3.4), with shallower distributions in the 

northeast region and deeper distributions in the southern region of the outer domain (Fig. 

3.9b). In 2010, growth was positive across the region, with highest predicted growth in 

the inner domain and areas of lower growth in the middle domain (Fig. 3.9c). The spatial 

patterns of average depth of juvenile pollock (Fig. 3.9d) mirrored those of 2005 with a 

slightly deeper average depth of 47 m (Table 3.4). 

3.3.3.1 IBM sensitivity analyses  

The effect of smaller starting fish weights on predicted growth was positive across the 

region, with stronger effects in 2005 than 2010 (Table 3.4). Similarly, effect strengths 

varied spatially in both years with areas of higher predicted growth in the middle domain 

(Fig. 3.9, e and g). In 2005, smaller starting fish weights resulted in shallower depth 

distributions across the region (mean=-2.6 m; Table 3.4), with much shallower depths at 

two stations in the middle domain (Fig. 3.9f). The average change in depth distribution 

was similar in 2010 (mean=-2.4 m; Table 3.4), but spatially more variable than in 2005. 

In the outer domain south of 60 °N, changes in fish distribution ranged from 22 m deeper 

to 43 m shallower (Fig. 3.9h). 

Applying uniform vertical distributions to prey taxa had variable effects on 

predicted growth rates in both years, with similarly small effect strengths (Table 3.4). In 

2005, uniform distributions resulted in increased predicted growth rates at several stations 

in the northern-most region of the shelf (Fig. 3.9i). While the average depth of juvenile 

pollock was 2.1 m deeper across the region, fish at some of the northern-most stations 

had shallower depths (Fig. 3.9j). In 2010, strongest effects were observed in the middle 
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domain of the southern shelf, with high spatial variability (Fig. 3.9k). Changes in the 

depth of fish in response to uniform prey distributions mirrored spatial patterns in growth 

effects; stations showing deeper mean depths also resulted in a decrease in growth and 

vice versa (Fig. 3.9l).   

3.3.4 Spatial comparison of bioenergetics- and IBM-predicted growth  

While average predicted growth rates from the IBM were within the range of maximum 

growth potential from the bioenergetics model, spatial patterns varied due to differences 

in input parameters of each model. In both years, the bioenergetics model predicted 

higher growth rates than the IBM over the middle and outer domains. The greatest 

difference occurred in the northwest region of the shelf in 2005 (Fig. 3.10a) and over the 

southern region of the middle domain in 2010 (Fig. 3.10b). The IBM predicted 

moderately higher growth in the shallow, well-mixed inner domain in both years. 

3.3.5 Comparison of observed and predicted prey preferences  

Modeled diets from the IBM were comparable to observed diets from the 2005 and 2010 

surveys (Figs. 3.11 and 3.12; most differences overlap zero), indicating that the model 

may adequately capture predator-prey dynamics. Relatively small differences between 

observed and predicted prey preference were consistent across domains in both years. 

Limacina helicina, the predominant component of diets across years, was more prevalent 

in observed diets (except in the inner domain south of 60 ºN in 2005), as was T. raschii. 

Modeled diets, however, consistently overestimated consumption of C. marshallae and E. 

bungii (2010 only) across domains. 
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3.4 Discussion  

This study demonstrates that warm and cold conditions in the EBS are associated with 

spatial differences in zooplankton species composition, energy content, and abundance, 

which subsequently affect the feeding ecology and growth of juvenile pollock. 

Particularly, prey distribution and quality in combination with water temperatures create 

spatial patterns of increased growth potential (‘hot spots’) that vary with climate 

conditions. Spatial heterogeneity in growth conditions results from a combination of prey 

quality and quantity, water temperature, and metabolic costs, which may contribute to 

size-dependent fish survival and subsequent annual variability in recruitment. We provide 

evidence that a spatial mismatch between juvenile pollock and growth ‘hot spots’ in 2005 

contributed to poor recruitment to age-1 while a higher degree of overlap in 2010 resulted 

in 42% greater [31] recruitment to age-1. 

  Multiple factors affect the early life survival of marine fishes and seminal 

hypotheses address the interplay of biological and physical controls (e.g., ‘critical period 

hypothesis’ [32]; ‘stable ocean hypothesis’ [33]). Results from our modeling efforts and 

sensitivity analyses highlight the importance of both prey dynamics and physical 

oceanographic conditions on juvenile pollock growth. The premise of the match-

mismatch hypothesis [1], and the majority of research to date [9,34], is that temporal 

overlap of predator needs and resource availability regulates recruitment [35]; we expand 

this to demonstrate that spatial overlap can also modify survival and recruitment success. 

Additionally, spatial distribution and resource availability can be modified under climate 

variability [2,36,37,this study].   
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 In the EBS, changes in oceanographic conditions can impact juvenile fish 

distributions through front formation [38] and subsequent changes in drift trajectories 

[39]. The resultant variability in larval and early juvenile distributions relative to their 

prey during late summer and fall may be particularly important because the time period 

after the completion of larval development and before the onset of winter has been 

identified as a critical period for energy storage in juvenile pollock [21]. In addition, the 

late-summer energetic status is considered a reliable predictor of overwinter survival 

[12]. Therefore, as the spatial distribution of fish, including spawning locations of adult 

walleye pollock, and zooplankton prey vary under alternate climate conditions, so do 

patterns in juvenile fish growth and subsequent recruitment success (Fig. 3.13). Here, we 

find support for the argument that warm years produce smaller, less energy-rich prey and 

that this reduced prey quality, in combination with higher metabolic demands, results in 

lower growth of juvenile pollock. Conversely, cold years produce larger, more energy-

rich prey which, when combined with lower metabolic demands, are favorable for 

juvenile pollock growth and survival. Thus, mechanisms responsible for controlling 

growing conditions during the critical pre-winter period can be linked to variability in 

recruitment. 

 Varying model parameters in the sensitivity analyses helped to identify when and 

where favorable growth conditions may occur across the EBS shelf under alternate 

climate conditions. Projected declines in walleye pollock recruitment [10] do not account 

for adaptive behaviors or changes to phenology that could enable fish to maintain higher 

growth rates under changing climate conditions. In the bioenergetics model, varying fish 



 

 

128 

size had a stronger effect on growth potential than changes in initial fish energy density. 

Larger fish have greater capacity for growth due to increased gape size, which allows 

them to take advantage of larger, more energy rich prey resources (e.g., euphausiids) 

prior to winter. Increasing water temperatures in the bioenergetics sensitivity runs had a 

weaker effect in the cold year of 2010 because fish under those conditions had a broader 

range of temperatures over which growth potential was relatively high (Fig. 3.7), 

including warmer surface waters and a colder refuge in deeper waters that allows fish to 

conserve energy and avoid predation. Increasing available prey energy also had a 

stronger effect in the warm year of 2005 because metabolic demands were greater and 

mean prey energy density was lower than in 2010. 

The relative foraging rate was held constant at η=1 across all bioenergetics model 

scenarios to estimate maximum growth potential, but lower values would better reflect 

realistic foraging rates and could exacerbate thermal constraints on growth. To maintain 

positive growth rates at half of all the stations required relative foraging rates of η=0.71 

in 2005 and η=0.57 in 2010. These values correspond to a 29% and 43% reduction in 

achieved growth relative to maximum growth potential (i.e., η=1) and are similar to the 

mean differences between growth rates in the bioenergetics and IBM models (i.e., 30% in 

2005 and 46% in 2010), providing support of model agreement. A higher relative 

foraging rate was required in 2005 in order to achieve positive growth at half of all 

stations, similar to results based on larger juvenile and adult walleye pollock [24], 

indicating that juvenile pollock growth was more prey limited and constrained by 

temperature in 2005 than in 2010. Thus, a greater reduction in both achieved growth from 
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the IBM relative to maximum growth potential and relative foraging rates was observed 

in 2010 compared to 2005.  

While the horizontal distribution of larval and early juvenile pollock is largely 

determined by oceanographic conditions, changes in vertical behavior could lead to 

increased growth potential. The IBM allows for complex larval and juvenile behavioral 

responses to changes in the environment. Vertical behavior in the model aims to 

maximize prey ingestion while minimizing predation risk. Predation risk was based on 

the visibility of juvenile pollock to predators at the given light conditions. Smaller (i.e., 

younger) fish were predicted to move shallower in the water column to improve prey 

detection, which is dependent on eye development and light availability. Moving into the 

surface layer also exposed juvenile pollock to higher predation risk because of the 

stronger light intensity and thereby visibility to predators. Applying uniform vertical prey 

distributions instead of observed distributions in the IBM had very weak effects across 

the EBS shelf in both years. Under uniform prey distributions, modeled fish may move 

vertically in response to other cues (i.e., predation risk, thermal boundaries) regardless of 

diel patterns. 

 A comparison of observed and IBM predicted diets provided a better 

understanding of prey preferences and the importance of individual prey taxa under 

varying climate conditions. For example, shifts in C. marshallae abundance between 

warm and cold years in the EBS have been proposed as a major contributor to differences 

in juvenile pollock condition and survival [13]. However, observed diets of juvenile 

pollock (<100 mm SL) in 2005 and 2010 do not reflect its relative importance to growth 
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because C. marshallae was less prevalent than expected. Greater prevalence of specific 

prey items in observed diets (e.g., Centropages abdominalis in 2005) indicates that the 

IBM model underestimates the ability of juvenile pollock to detect, capture, and ingest 

that prey item. Alternatively, the prey could have been more abundant in the areas where 

juvenile pollock were feeding than in the area sampled by the bongo and/or Juday net due 

to patchiness. Differences between observed and predicted diets may also be explained 

by prey escape behaviors or size-selectivity by juvenile pollock that is more complex 

than the prey selection component of the IBM [40]. Juvenile pollock collected in late-

summer (~65 mm SL) likely feed more heavily in surface waters during crepuscular or 

nighttime periods [41], moving deeper during the daytime, while observed diets for this 

study were sampled from daytime surface hauls. However, the spatial and temporal 

disconnect between where juvenile pollock feed and were collected for diet analyses 

likely did not affect our results as previous work has shown that proportional diet 

compositions do not vary between day and night [41,42] and the IBM integrates predicted 

diets over 24 hours, encompassing diel vertical patterns.     

 Our comparative model approach allowed us to evaluate the relative role of prey 

availability and water temperature on juvenile pollock growth. Spatial patterns in growth 

differed between the models; these differences elucidate underlying mechanisms in the 

feeding potential and ultimately possible causes for growth ‘hot spots’ and variability in 

recruitment success between warm and cold climate conditions. The bioenergetics model 

incorporates a biomass-weighted mean energy density of available prey, assuming fish 

feed proportional to what is available in the environment. The IBM is length-based and 
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growth is dependent on prey size selection, gut fullness, and vertical movements to 

minimize predation risk. By comparing spatial patterns in growth between the models, 

similar trends emerged that indicate mechanisms leading to areas of increased growth. In 

the middle and outer domains where the water column is stratified, the bioenergetics 

model predicted higher growth than the IBM; the bioenergetics model allowed fish to 

feed at maximum consumption (η=1) while the IBM indicates fish move deeper in the 

water column to conserve energy or avoid predation. In the inner domain, the IBM 

predicted higher growth; here juvenile pollock may opt to take advantage of available 

prey and warmer water temperatures to maximize growth because predator avoidance in 

deeper waters is not an option. 

 Behavioral responses of modeled juvenile pollock in the IBM moderate predicted 

growth rates leading to differences across domains in the EBS based on stratification. In 

the middle and outer domains, once sufficient growth is attained fish will move deeper to 

seek refuge from predation. While the bioenergetics and IBM models were run at all 

stations in both years, observed juvenile pollock abundances were concentrated over the 

middle and outer domains in 2005 and over small regions of the southern shelf and outer 

domain in 2010. Few fish were observed in the well-mixed inner domain, possibly due to 

reduced growth potential based on available prey energy or lack of stratification and 

predation refuge in deeper waters. Additionally, the inner front, which delineates the 

stratified middle domain from the well-mixed inner domain [38], may act as a barrier to 

juvenile pollock distribution [43].  
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The importance of prey quality, temperature-dependent relationships, and size 

selective predation differ between warm and cold years for the EBS. In 2005 (a warm 

year), predicted growth was more sensitive to increases in temperature than changes in 

prey energy, resulting in greater reductions in growth. Further, both models predicted 

similar spatial patterns in 2005 indicating that prey energy (input to bioenergetics model) 

and size selection (IBM input) have less influence than temperature on estimates of 

growth in that year. The relative effect of increasing temperatures was greater in 2005 

than in 2010 because fish in 2005 were near thermal limits based on temperature-

dependent functions in the bioenergetics model over much of the EBS shelf; hence 

further increases in temperature are predicted to result in negative growth. In addition to 

warmer water temperatures in 2005, the spatial overlap of juvenile pollock and growth 

‘hot spots’ was lower than in 2010, further limiting fish growth. In 2010, the effect of 

increased temperatures was an order of magnitude less than in 2005; therefore, prey 

quality appears more indicative of growth in cold years under maximum consumption 

scenarios.  

Warm temperature conditions are predicted to result in reduced prey quality and 

low energy density of juvenile pollock in late summer [8,12]. Warmer water temperatures 

are associated with decreased growth [this study], resulting in lower overwinter survival 

and recruitment to age-1 [31]. The warm years of 2002-2005 had 67% lower average 

recruitment to age-1 relative to the cold years of 2008-2010 [31]. These findings agree 

with projected declines in recruitment of age-1 walleye pollock [10] under increased 

summer sea surface temperatures of 2°C predicted by 2050 [44]. Our results corroborate 
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these previous studies and suggest that climate-driven increases in water temperature will 

have the largest effect on recruitment during anomalously warm years.  

 

3.5 Conclusions  

This study provides evidence that climate-driven changes in prey dynamics may have 

ecosystem-level consequences via bottom-up control of fish populations in sub-arctic 

marine ecosystems (Fig. 3.13). This work has improved our understanding of the 

mechanisms behind recruitment variability, in particular the underlying spatial patterns 

that drive relationships between prey availability, water temperature, growth, and 

survival. Our findings inform ongoing discussions of climate effects on predator-prey 

interactions and recruitment success of marine fishes.  
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Table 3.1. Dominant prey taxa included in the models for 2005 and 2010. Prey items cumulatively accounting for at  

least 90% of the diet by % volume and individually accounting for at least 2% of the diet by % volume were included.  

Prey taxa common to both years are shown in bold.  

2005 2010 
Taxa Individ 

% Vol 
Cum  

% Vol 
Taxa Individ 

% Vol 
Cum  

% Vol 
Limacina helicina 26.33  Limacina helicina 35.45  
Pseudocalanus sp. 26.04 52.4 Thysanoessa inermis 27.08 62.5 
Oikopleura sp. 11.86 64.2 Calanus marshallae 13.87 76.4 
Centropages abdominalis 8.98 73.2 Neocalanus cristatus 4.84 81.2 
Thysanoessa raschii 8.48 81.7 Thysanoessa inspinata 3.16 84.4 
Thysanoessa sp. 4.63 86.3 Thysanoessa raschii 3.09 87.5 
Acartia clausi 3.40 89.7 Neocalanus plumchrus* 2.98 90.5 
Calanus marshallae 1.71 91.4 Eucalanus bungii 2.95 93.4 

*Neocalanus plumchrus was not identified in the 2010 bongo data, but did occur in the Juday data (small-mesh; not 

quantitative for large zooplankton taxa). Due to the absence in the bongo data, N. plumchrus was excluded from further 

analyses. 
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Table 3.2. Parameter definitions and values used in the bioenergetics model to estimate 

maximum growth potential (g•g-1•d-1) of juvenile walleye pollock. Parameters were used 

as inputs to the bioenergetics model described in [14]. 

Parameter Definition (units) Value Reference 
C Consumption (g•g-1•d-1)   
η Relative foraging rate 0-1 a 
O2 cal Activity multiplier; convert g O2 → g prey 13560 a 
α Intercept of the allometric function for C 0.119 a 
β Slope of the allometric function for C -0.46 a 
Qc Temperature dependent coefficient 2.6 b 
Tco Optimum temperature for consumption 10 b 
Tcm Maximum temperature for consumption 15 b 
R Respiration (g O2•g-1•day-1)   
Ar Intercept of the allometric function for R 0.0075 b 
Br Slope of the allometric function for R -0.251 b 
Qr Temperature dependent coefficient 2.6 b 
Tro Optimum temperature for respiration 13 b 
Trm Maximum temperature for respiration 18 b 
Ds Proportion of assimilated energy lost to 

Specific Dynamic Action 
0.125 b 

Am Multiplier for active metabolism 2 b 
F Egestion   
Fa Proportion of consumed energy 0.15 b 
U Excretion   
Ua Proportion of assimilated energy 0.11 b 

a [24]; b [14] 
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Table 3.3. Summary of sensitivity analyses for the bioenergetics model in 2005 and 2010 showing the minimum, mean,  

and maximum growth potential over all stations. Base values are predicted maximum growth potential (g•g-1•d-1) from  

the base model scenarios (W=2.5 g, Temp=average temperature in upper 30 m, P=1.0, =prey energy density, =  

3.916 kJ•g-1 WW; = 5.292 kJ•g-1 WW). All other values denote the change in growth rate resulting from indicated  

changes in inputs; therefore (-) effects indicate that varied conditions resulted in lower predicted growth and vice versa.  

Pooled standard deviations (SDs) for each parameter were calculated across stations after removing the annual means.  

W and  are constant values applied across all station, so changes (± 1 SD) act as a scalar and results in similar spatial  

patterns across the area. Temperature and vary across stations. 

 2005 2010 
Parameter SD min mean max min mean max 
Base  -0.00557 0.01458 0.02913 0.00687 0.01716 0.0272 
W + 1 SD 0.935 -0.00562 -0.00407 -0.00169 -0.00516 -0.0037 -0.00225 
W – 1 SD 0.935 0.00343 0.00758 0.01025 0.00414 0.0068 0.00939 
Temp + 1 SD 1.75 -0.02269 -0.00527 0.00172 -0.00708 -0.00074 0.00178 
Temp – 1 SD 1.75 -0.00276 0.00178 0.01293 -0.00257 0.00075 0.00301 

€ 

ω k+ 1 SD 497.5 0.00457 0.0061 0.00645 0.00321 0.00436 0.00477 

€ 

ω k– 1 SD 497.5 -0.00645 -0.0061 -0.00457 -0.00477 -0.00436 -0.00321 

€ 

vt+ 1 SD 395.93 -0.00267 -0.00134 0.00051 -0.00189 -0.00119 -0.00048 

€ 

vt– 1 SD 395.93 -0.00062 0.00164 0.00328 0.00056 0.00139 0.0022 
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Table 3.4. Summary of sensitivity analyses for the IBM model in 2005 and 2010 showing the minimum, mean, and  

maximum growth potential and depth over all stations. Base values are predicted growth (g•g-1•d-1) and depth of  

juvenile walleye pollock over 24 hours from the base model scenarios (W=2.5 g, zooplankton prey distributed  

according to vertical profiles). All other values are predicted changes in growth and depth. Negative changes in depth  

indicate a shallower distribution; positive values indicate a deeper distribution. Weight is a constant value applied  

across all station, so varying the parameter acts as a scalar and results in similar spatial patterns across the area. The  

effect of applying a uniform distribution of zooplankton prey with depth varies across stations. 

 2005 2010 
Parameter  min mean max min mean max 

Growth 0.0062 0.0102 0.01213 0.00554 0.00922 0.01227 Base 
Depth 10 44.2 80.9 15 47.4 93 
Growth 0.00401 0.01843 0.05115 0.00196 0.00681 0.02539 W  

(2.0 g) Depth -0.14 2.6 30.5 -21.7 2.4 43.3 
Growth -0.00094 0.005 0.00583 -0.00342 0.00095 0.00635 Prey 

distribution 
(Uniform) 

Depth -15.8 -2.1 21.4 -35.2 1.8 42.9 
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a) 

 
     b) 

 
Figure 3.1. (a) Bering Sea with predominant currents in the study region, including the 

Aleutian North Slope Current (ANSC), the Bering Slope Current (BSC), and the Alaska 

Coastal Current (ACC). (b) Eastern Bering Sea with locations of sampling stations at 

which the bioenergetics model and IBM models were run in 2005 (•) and 2010 (). MC 

Station () is the representative station used for Monte Carlo simulations Depth contours 

are shown for the 50 m, 100 m, and 200 m isobaths. 
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Figure 3.2. Log(CPUE) of juvenile walleye pollock collected in surface trawls in 2005 (a) 

and 2010 (b). Circle size is proportional to catch at each station; stations with zero catch 

(×) are on white background. 
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Figure 3.3. Water temperatures in 2005 and 2010 interpolated across all stations (•) 

sampled by the CTD. Upper row shows the mean temperature in the upper 30 m of the 

water column. Lower row shows the mean temperature below 40 m. 
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                                2005                                                                 2010 
a)                                b)                                c)                                d) 

 
e)                                f)                                g)                                h) 

 
 

Figure 3.4. Zooplankton prey availability in the eastern Bering Sea in 2005 and 2010. 

Upper row shows the log of total abundance (a and c) and log of total biomass (g WW; b 

and d) in each year. Lower row shows the log of total abundance for zooplankton within 

the optimal size range for 65 mm SL juvenile walleye pollock (5-8% of fish length; e and 

g) and the biomass-weighted mean energy density (f and h) of available zooplankton prey 

in each year. The CPUE of juvenile walleye pollock collected in surface trawls is 

overlaid in e-h. Circle size is proportional to catch at each station (×=zero catch). 
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Figure 3.5. Vertical profiles of abundance for representative main prey taxa from a cold 

year. (a) Thysanoessa inermis has a strong diel migration with distribution shifting from 

deeper during day to more shallow at night. (b) Pseudocalanus sp. displays an opposite 

behavior, shallow distribution during the day and deeper at night. (c) Limacina helicina, 

the dominant prey item in 2005 and 2010, does not display strong diel migration, with a 

shallow distribution during day and night. 
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                          2005                                             2010 
a)                                                  b) 

      
c)                                                  d) 

      
e)                                                  f) 

      
 

Figure 3.6. Maximum predicted growth of juvenile walleye pollock (g•g-1•d-1) from the 

bioenergetics model. Top row shows growth under the base scenarios for 2005 and 2010 

(a and b, respectively). Middle row (c-d) shows changes in predicted growth when  
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Figure 3.6. Continued 

temperature is increased by 1 standard deviation (SD). Predicted growth could not be 

estimated at one station (panel c) in the inner domain under increased temperatures 

because the water temperature in the upper 30 m was greater than 15 ºC (Tcm = 15 ºC in 

the model). Lower row shows changes in predicted growth when prey energy density is 

increased by 1 SD in 2005 and 2010 (e and f, respectively). Spatial plots of predicted 

growth when parameters are lowered by 1 SD are not shown, but can be visualized by 

subtracting the anomalies (lower two rows) from the base scenario plots (top row). 
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Figure 3.7. Predicted growth (g•g-1•d-1) of juvenile walleye pollock over the range of 

observed temperatures and prey energy density ( ) across both 2005 and 2010. The 

observed fish energy density (vk) was higher in 2010 (v2010 = 5.292 kJ•g-1 WW; used in 

plot shown), thus higher metabolic demands, therefore this interpolation demonstrates the 

range of predicted growth for fish with high energy density. Temperatures included 0-16 

°C to show possible range under variable climate conditions; observed range of  

across warm and cold years. Black rectangle encompasses the range of temperatures and 

 observed across 2005 and 2010. Points are shown for average temperature and  

conditions in 2005 and 2010. Predicted growth above 15 °C was not possible (black) 

because the bioenergetics model has a temperature threshold of 15 °C. 
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Figure 3.8. Simulated distribution of growth rates (g•g-1•d-1) when fish weight (W) and 

fish energy (vt) at a single representative station (see Fig. 3.1) in 2005 and 2010 is varied 

over the range of observed values (random draws from a normal distribution with 

observed mean and SD). Using the base scenario (W=2.5 g; v2005 = 3.916 kJ•g-1 WW; 

v2010 = 5.292 kJ•g-1 WW) ± 1 standard deviation (SD), the model was run 1000 times to 

estimate the distribution around mean predicted growth. Parameter SDs were calculated 

across stations after removing the annual means. 
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                                2005                                                                 2010 
a)                                b)                                c)                                d) 

 
e)                                f)                                g)                                h) 

 
i)                                j)                                k)                                l) 

 
 

Figure 3.9. Maximum predicted growth (g•g-1•d-1) and average depth of juvenile walleye 

pollock over 24 hours from the IBM. Top row shows growth (a and c) and average depth 

(b and d) under the base scenario for a 2.5 g fish in 2005 and 2010. Middle row shows 

changes in predicted growth (e and g) and average depth (f and h) for 2.0 g fish, 

highlighting the relative importance of fish size and water temperature (between years). 

Lower row shows changes in predicted growth (i and k) and average depth (j and l) when 

uniform vertical distributions of prey are implemented, highlighting the effect of  
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Figure 3.9. Continued 

zooplankton diel vertical distribution and migrations on juvenile walleye pollock prey 

selection. Negative changes in depth indicate a shallower distribution; positive values 

indicate a deeper distribution. 
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Figure 3.10. Difference in predicted growth of juvenile walleye pollock (g•g-1•d-1) 

between the bioenergetics model and the IBM for 2005 (a) and 2010 (b). Areas of 

positive differences indicate where maximum growth potential from the bioenergetics 

model was higher than predicted growth from the IBM. 
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Figure 3.11. Diet comparisons between observed and predicted (IBM) diets of juvenile 

walleye pollock for main prey taxa (see Table 3.1) in 2005. The left-hand panel shows 

the mean Chesson indices (unitless) for each prey taxon for observed and predicted diets. 

Neutral selection varied across stations depending on the number of taxa present. The 

right-hand panel shows the difference (± 1 standard deviation) in the relative preference 

of each prey taxa; Chesson values were divided by neutral selection for each station and 

then predicted values subtracted from observed. Positive values indicate the prey is more 

prevalent in observed diets (e.g., a value of 2 indicate the taxa is twice as prevalent in 

observed diets as predicted). Prey taxa abbreviations are as follows: LH = Limacina 

helicina; PS = Pseudocalanus sp.; OS = Oikopleua sp.; CA = Centropages abdominalis; 

TR = Thysanoessa raschii; TS = Thysanoessa sp.; AC = Acartia clausi; CM = Calanus 

marshallae. 
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Figure 3.12. Diet comparisons between observed and predicted (IBM) diets of juvenile 

walleye pollock for main prey taxa (see Table 3.1) in 2010. See Figure 3.11 legend for 

explanation. Prey taxa abbreviations are as follows: LH = Limacina helicina; CM = 

Calanus marshallae; NC = Neocalanus cristatus; TR = Thysanoessa raschii; EB = 

Eucalanus bungii. 
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Figure 3.13. Conceptual figure of the spatial relationship between juvenile fish 

abundance (yellow) and zooplankton prey availability (blue). Where these areas overlap 

(green), juvenile fish are predicted to have higher growth rates and increased survival. 

Under warm climate conditions, there is reduced spatial overlap between juvenile fish 

and prey availability, resulting in lower overwinter survival and recruitment success to 

age-1. In colder conditions, increased spatial overlap between juvenile fish and prey 

availability results in increased overwinter survival and recruitment to age-1.
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Table 3.A.1. Stage, sampling gear, length range, width, biomass (g wet weight), and energy density (kJ•g-1 wet weight)  

values for the main prey items of juvenile walleye pollock in late summer 2005 and 2010. Biomass estimates were  

obtained during processing of the zooplankton samples from 2005 (warm) and 2010 (cold) (NA=stage was not  

collected); energy density values were obtained from zooplankton collected in the EBS during 2004 (warm) and 2010  

(cold). Single estimates of energy density (shown in bold) were used when year-specific information  

was not available for individual taxa. 

Species Stage Gear Length 
range  
(mm 
TL) 

Width 
(mm) 

Warm 
Biomass 
(g WW) 

Cold 
Biomass 
(g WW) 

Warm 
Energy 
Density  
(kJ•g-1 
WW) 

Cold  
Energy 
Density  
(kJ•g-1 
WW) 

Comments 

Acartia clausi A Juday 0.25 – 
1.4a 

0.22b 3.5 E-05 3.5 E-05 
 3.816c 3.816 c 

 

 AF Juday 0.8 – 
1.4 a 

0.29 b NA 
4.5 E-05   

 

 AM Juday 0.8 – 
1.2 a 

0.27 b NA 
2.5 E-05   

 

Acartia sp. A Juday 0.25 – 
0.93 a 

0.16 b  1.85  
E-05 

1.9 E-05 
   

 

 I Juday 0.25 – 
0.42 a 

0.09 b NA 

4.1 E-06   

Length 
range for  
A. clausi 
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Table 3.A.1. Continued 

 II Juday 0.42 – 
0.51 a 

0.12 b NA 

9.4 E-06   

Length 
range for  
A. clausi 

 III Juday 0.51 – 
0.65 a 

0.16 b NA 

1.7 E-05   

Length 
range for  
A. clausi 

 IV Juday 0.65 – 
0.76 a 

0.19 b 1.0 E-05 

2.5 E-05   

Length 
range for  
A. clausi 

 V Juday 0.76 – 
0.93 a 

0.23 b 2.7 E-05 

4.0E-05   

Length 
range for  
A. clausi 

Calanus 
marshallae 

AF Bongo 3.2 – 
4.2 a 

0.78d 
0.003 0.002 5.325f 5.732g 

 

 AM Bongo 3.5 –  
4 a  

1.0e 
0.0026 0.0017   

 

 I Bongo 0.5 – 
0.7 a 0.16 e 

5.25  
E-05 

5.25  
E-05   

 

 II Bongo 1.2 – 
1.5 a 0.36 e 

9.19  
E-05 

1.33  
E-04   

 

 III Bongo 1.6 – 
2.3 a 

0.68 d 
1.9 E-04 2.7 E-04   

 

 I-III Bongo 0.5 – 
2.3 a 

0.37 e 1.13  
E-04 2.2 E-04   

 

 IV Bongo 2.3 – 
2.6 a 0.69 d 

5.82  
E-04 

5.24  
E-04   
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Table 3.A.1. Continued 

 V Bongo 2.8 – 
3.8 a 0.73 d 0.002 0.0016   

 

Centropages 
abdominalis 

A Juday 0.3 – 
2.1 a 

0.36h 7.49  
E-05 

5.73  
E-05 3.843i 3.843 i 

 

 AF Juday 1.6 – 
2.1 a 

0.53 h 
1.61 E-4 1.36 E-4   

 

 AM Juday 1.5 a 0.5 h 9.14  
E-05 1.16 E-4   

 

 C Juday 1.13 a 0.5 h 2.33  
E-05 

2.33  
E-05   

 

 I Juday 0.3 a 0.16 h 
NA 

2.92  
E-05   

 

 II Juday 0.38 a 0.22 h NA 1.5 E-05    
 III Juday 0.5 a 0.29 h 1.32  

E-05 
2.82  
E-05   

 

 I-III Juday 0.33 a 0.17 h NA 9.1 E-06    
 IV Juday 0.65 a 0.39 h 

NA 
4.25  
E-05   

 

 V Juday 0.85 a 0.5 h 8.55  
E-05 

6.89  
E-05   

 

Eucalanus 
bungii 

A Bongo 4.8 –  
8 a 

1.7e 
0.0023 

8.67  
E-05 3.916j 4.194k 

 

 AF Bongo 6 – 8 a 1.86 e 0.0086 0.0086    
 AM Bongo 4.8 – 

5.5 a 
1.37 e 

0.0031 0.0041   
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Table 3.A.1. Continued 

 I Bongo 1.3 – 
1.6 a 

0.39 e 
4.5 E-05 5.3 E-05   

 

 II Bongo 2 –  
2.2 a 

0.56 e 
1.96 E-4 1.56 E-4   

 

 III Bongo 2.9 –  
3 a 

0.79 e 
4.92 E-4 2.66 E-4   

 

 I-III Bongo 1.3 –  
3 a 

0.57 e 2.44  
E-04 8.41 E-4   

 

 IV Bongo 3.36 – 
3.8 a 

0.95 e 
0.0011 0.0009   

 

 V Bongo 4.5 – 
5.2 a 

1.29 e 
0.0027 0.0034   

 

Limacina 
helicina 

XS Bongo 0.1 – 
0.5l 

0.3 l NA 6.93  
E-05 2.51m 2.766g 

 

 S Bongo 0.5 – 2 l 1.25 l 9.40  
E-05 1.58 E-4   

 

 M Bongo 2 – 4 l 3 l 3.71 E-4 8.29 E-4    
 L Bongo 4 - 10 l 7 l 0.0026 0.0045    
Neocalanus 
cristatus 

AF Bongo 8.5 – 
10.4a 

2.5 e 
NA 0.0137 3.253n 3.39g 

 

 III Bongo 3.2 a 0.85 e 8.83 E-4 0.0013    
 IV Bongo 4.9 – 

5.3 a 
1.36 e 

0.0059 0.0025   
 

 V Bongo 7.1 – 
8.9 a 

2.13 e 
0.019 0.015   

 

 



 

 

163 

Table 3.A.1. Continued 

N. plumchrus V Bongo 4.1 – 
5.2 a 

1.24 e 
0.00395 0.0041 4.207o 4.676g 

 

Oikopleura sp. A Bongo 0.1 – 
0.6p 

0.35 p 
1.73 E-4 1.7 E-4 4.076q 4.025r 

 

Pseudocalanus 
spp. 

A Juday 0.65 – 
1.2s 

0.29 d 
4.44  
E-05 3.6 E-05 3.951t 3.951 t 

Length 
range for  
P. moultoni 

 AF Juday 1.05 – 
2.27 s 

0.42 d 8.27  
E-05 

8.01  
E-05   

 

 AM Juday 0.91 – 
1.74 s 

0.35b 4.13  
E-05 

5.42  
E-05   

 

 I Juday 0.5 – 
0.7 s 

0.16 b 
NA 

5.98  
E-06   

 

 II Juday 0.65 – 
0.8 s 

0.19 b 1.01  
E-05 

1.08  
E-05   

 

 III Juday 0.8 – 1 s 0.24 b 1.26  
E-05 2.0 E-05   

 

 I-III Juday 0.5 – 1 s 0.2 b 
NA 

1.01  
E-05   

 

 IV Juday 1 – 1.2 s 0.3 d 3.06  
E-05 

3.19  
E-05   

 

 V Juday 1.2 – 
1.5 s 

0.37 d 8.89  
E-05 

4.93  
E-05   

 

 II-V Juday 0.65 – 
1.5 s 

0.29 d 3.55  
E-05 2.8 E-05   
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Table 3.A.1. Continued 

Thysanoessa 
inermis 

A Bongo 10.1 – 
29.2u 

2.4 d 
NA 0.083 4.99m 4.99 m 

 

 AF Bongo 10.1 – 
29.2 u 

2.4 d 
 0.10   

 

 AM Bongo 10.1 – 
29.2 u 

2.4 d 
0.069 NA   

 

 J Bongo 8.5 – 
13.8 u 

1.4 d 
NA 0.011   

 

 J (L) Bongo 11.1 – 
13.8 u 

1.5 d 
0.061 0.11   

 

 J (S) Bongo 8.5 – 
11.1 u 

1.2 d 
0.011 0.024   

 

T. inspinata J Bongo 12 – 
17v 

2.2w 
0.0012 0.0128 4.99x 4.99x 

 

T. raschii A Bongo 7 – 
29.1y 

3.3 d 
0.006 NA 4.308aa 5.231g 

 

 AF Bongo 7 – 
29.1 y 

3.3 d 
0.077 0.0903   

 

 AM Bongo 15.3 – 
20.2z 

2.7 d 
0.046 0.088   

 

 J Bongo 7.4 – 
8.4 z 

1.45 d 
0.005 0.0117   

 

 J (L) Bongo 7.9 – 
8.4 z 

1.5 d 
0.0476 0.0936   

 

 J (S) Bongo 7.4 – 
7.9 z 

1.4 d 
0.0089 0.0059   
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Table 3.A.1. Continued 

a [45]; b Estimated width = 26.7% of length (based on Pseudocalanus sp. relationship); c Energy density estimated from  

% lipid (2.25% wet weight assuming 80% moisture [46]) using the regression relationship: ED = (0.4098•% lipid) +  

19.287; d E. Fergusson, NOAA/AFSC, unpublished data; e Estimated width = 26.6% of length (based on C. marshallae 

relationship); f Energy density estimated from % lipid (10.5%; R. Heintz, NOAA/AFSC, unpublished data); g R. Heintz, 

NOAA/AFSC, unpublished data; h [47]; i Energy density estimated from % lipid (2.6% wet weight [48]); j Energy  

density estimated from % lipid (3.55%; R. Heintz, NOAA/AFSC, unpublished data); k Energy density estimated as  

7.1% higher in cold years (based on copepod data; [this study]); l C. Stark, UAF, unpublished data; m 2006 collection  

(R. Heintz, NOAA/AFSC, unpublished data); n Energy density estimated from % lipid (5.85%; R. Heintz,  

NOAA/AFSC, unpublished data); o Energy density estimated from % lipid (6.83%; R. Heintz, NOAA/AFSC,  

unpublished data); p Trunk length/width [49]; q Energy density estimated from % lipid of Chaetognatha (2.67%; R.  

Heintz, NOAA/AFSC, unpublished data); r Energy density estimated from % lipid of Chaetognatha (2.04%; R. Heintz, 

NOAA/AFSC, unpublished data); s [50]; t Energy density estimated from % lipid (4% wet weight [51]); u Carapace  

width from [52]; converted to TL using equations from [53]; v Length range of ‘spineless’ T. longipes [54]; w Estimated  
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Table 3.A.1. Continued 

width as 15% of length; x Used energy density of T. inermis; y Minimum size for T. inermis and maximum size for  

T. spinifera [52]; converted to TL using equations from [53]; z Minimum size for T. inermis and maximum size for T.  

spinifera [55]; converted to TL using equations from [53]; aa Energy density estimated as 17.65% higher in cold years  

(R. Heintz, NOAA/AFSC, unpublished data).
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Table 3.A.2. Component equations of the bioenergetics model used to estimate maximum 

growth potential (g•g-1•d-1) of juvenile walleye pollock.  

Consumption  

       

       

       

       

       

Respiration  

  

  

  

  

  

Egestion  

Excretion 

€ 

U =Ua ⋅ (C − F)  
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General Conclusions 

While most previous studies have focused on climate effects on adult demersal fish and 

shellfish communities (Brander et al. 2003, Perry et al. 2005, Mueter et al. 2007, Mueter 

& Litzow 2008, Spencer 2008), less work has been done to investigate changes in the 

pelagic community structure and ecology of early life stages of fishes (Duffy-Anderson et 

al. 2006, Brodeur et al. 2008, Doyle et al. 2009). The pelagic distribution of 

ichthyoplankton is related to the spawning locations of adult fish (Doyle et al. 2002). 

Therefore as the spatial distribution of spawning populations as well as zooplankton prey 

vary under changing climate conditions, so do patterns in larval and juvenile fish 

condition, growth, and subsequent recruitment success. After spawning, larval drift is 

subject to advection of water masses (Lanksbury et al. 2005), which is strongly 

influenced by wind stress and varies interannually as a result of basin-scale climate 

variability. Transport pathways can lead to differential survival of larvae based on life 

history characteristics (Doyle et al. 2009), predator abundances (Hunt et al. 2002), or 

availability of suitable juvenile habitat (Wilderbuer et al. 2002). Understanding 

variability in larval fish assemblage structure, as well as spatial and temporal patterns in 

fish condition and growth, may indicate ecosystem-level and/or species-specific 

responses to climate change. 

Using a multivariate approach, shifts in larval fish community composition in 

response to environmental variability and delineations based on hydrographic conditions 

were identified in the eastern Bering Sea (EBS). This study was the first to look at such 

transitions over a relatively short time period that included both pronounced warm and 
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cold conditions. Significant differences in assemblage structure were detected, supporting 

the hypothesis that early life stages may be primary indicators of environmental change. 

Larval abundances were generally higher at the time of sampling in warm years with high 

abundances of walleye pollock contributing most to differences between warm and cold 

periods in Unimak Pass, the outer domain, and shelf areas. Assemblages over the slope 

were less variable between years and may be somewhat insulated from interannual 

variability. The slope assemblage was consistently dominated by Sebastes spp. with 

increased abundances in cold years.  

 Cross-shelf assemblage structure was primarily associated with a geographic 

and/or salinity gradient that distinguished slope and shelf communities. Salinities are 

higher over the slope due to the oceanic influence of the Aleutian North Slope Current 

and lower on the shelf due to increased freshwater from the mainland and from the 

Alaska Coastal Current (ACC) flowing through Unimak Pass. The cross-shelf gradient, 

largely driven by differences in spawning habitat for slope and shelf species, appears 

resilient to environmental variability between warm and cold years. 

The advection of ACC waters through Unimak Pass (Ladd et al. 2005) may affect 

the distribution of larval fish on the EBS shelf. Species entrained in, or advected by, ACC 

waters within Unimak Pass and the Bering Sea shelf included Pacific cod (Gadus 

macrocephalus) and northern rock sole (Lepidopsetta polyxystra), with higher overall 

abundances of these species in warm years. Unfortunately, our sampling design could not 

resolve whether these larvae originated in the Gulf of Alaska or were entrained in ACC 

waters within Unimak Pass and nearby spawning grounds. The impact of Gulf of Alaska 
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larvae on Bering Sea populations, and the degree to which the populations are connected, 

are important ecological (i.e., competition, predation) and fisheries management (number 

of sub-populations) questions. However, while some studies have demonstrated larval 

drift from the Gulf of Alaska to the Bering Sea (e.g., Lanksbury et al. 2007), for most 

species the role of advection through Unimak Pass and the resulting connectivity between 

Gulf of Alaska and Bering Sea populations is still largely unknown.  

 Multiple factors during the early life stages of fishes result in variable recruitment 

success, including environmental conditions (Cushing 1982) and prey availability. 

Variability in the spatial and temporal overlap of predator and prey (match/mismatch 

hypothesis; Cushing 1969, 1990), as well as differences in prey quality (Sogard & Olla 

2000, Litzow et al. 2006), affect fish growth and energy storage, which may directly 

affect differences in year-class success of many marine fish species, such as walleye 

pollock (Hunt et al. 2011). In addition, cold water temperatures generally delay 

ontogenetic development of walleye pollock (Blood 2002, Smart et al. in press) while 

also lowering routine metabolic demands (Ciannelli et al. 1998). Such constraints affect 

larval fishes’ ability to achieve sufficient size and energy reserves prior to their first 

winter (Sogard & Olla 2000, Heintz & Vollenweider 2010). 

Differences in energy storage result from differences in the quantity and quality of 

prey during the age-0 period (Heintz et al. in press). Higher abundances of larger, lipid-

rich zooplankton taxa during cold years, combined with lower metabolic demands, allow 

age-0 walleye pollock to acquire greater lipid reserves by late summer, resulting in 

increased overwinter survival (Hunt et al. 2011). In the cold years of 2006-2010, the 
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zooplankton community over the Bering Sea shelf was dominated by large copepods 

(e.g., Calanus marshallae) and euphausiids (e.g., Thysanoessa raschii). Under warmer 

conditions (2002-2005), smaller zooplankton taxa were dominant (e.g., Pseudocalanus 

spp., Acartia spp., Coyle et al. 2011, Stabeno et al. 2012) and the lack of larger prey 

appeared to have had a limiting effect on growth and energy storage of walleye pollock, 

leading to poor energy levels and reduced year-class recruitment. The limited availability 

of large zooplankton coincided with increased rates of cannibalism by older age-classes 

of walleye pollock, as well as high predation rates by juvenile salmon, further reducing 

age-0 survival in warm years (Coyle et al. 2011). Hence, prey quality may be as 

important as the thermal regime for determining overwinter survival (Hurst 2007), 

although prey availability and prey quality were closely linked to temperature conditions 

in recent years (Coyle et al. 2011).  

I quantified the seasonal progression in energy content of age-0 walleye pollock 

during three cold years in the EBS (Stabeno et al. 2012), therefore delayed development 

times likely resulted in smaller fish sizes relative to warmer years (Smart et al. in press). 

Age-0 juvenile walleye pollock reached an asymptotic length at approximately 60 mm SL 

in late summer, which may correspond to a shift in prey preferences with increasing gape 

size (i.e., switch to euphausiids; Brodeur 1998) and associated foraging capability (e.g., 

Ciannelli et al. 2002). An asymptotic energy density occurred when fish reached 

approximately 75 mm SL, similar to that observed for walleye pollock near the Pribilof 

Islands (asymptotic energy density at 80 mm SL) during 1994-1996 and 1999, with 1995 

and 1999 also being cold years (Ciannelli et al. 2002). 
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Larval and juvenile walleye pollock face competing physiological demands of 

somatic growth versus lipid storage (Post & Parkinson 2001) for available energy 

resources. I identified differing energy allocation strategies indicating that distinct 

ontogenetic stages face different survival constraints. Larval fish favored allocation to 

somatic growth, presumably in order to escape size-dependent predation, while juvenile 

fish allocated energy to lipid storage in late summer. My results support the idea that late 

summer (July-September) represents a critical period for energy storage in age-0 walleye 

pollock, and that overwinter survival is dependent on sufficient storage in the previous 

growing season and may be an important determinant of recruitment success.  

Although the energetic condition of juvenile walleye pollock in late summer is 

recognized as a predictor of age-1 abundance during the following summer in the EBS 

(Heintz et al. in press), the causal mechanism linking differences in prey abundance and 

quality to walleye pollock survival remains untested. Comparing alternative model-based 

predictions of growth allows a better understanding of the mechanisms behind variability 

in growth patterns and an evaluation of the importance of different parameters in the 

models. I found that differences in prey species composition and quality lead to bottom-

up control of juvenile walleye pollock growth and survival in representative warm and 

cold years in the EBS. 

Prey distribution and quality in combination with water temperatures create 

spatial patterns of increased growth potential (‘hot spots’) that vary with climate 

conditions. Spatial heterogeneity in growing conditions results from combined prey 

quality and quantity and metabolic costs, which may contribute to size-dependent 
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survival and subsequent annual variability in recruitment success. The premise of the 

match-mismatch hypothesis (Cushing 1990) is that temporal overlap of predator needs 

and resource availability regulates recruitment (Leggett & Deblois 1994). Additionally, 

spatial distribution and resource availability can be modified under climate variability 

(Chick & Van Den Avyle 1999, Durant et al. 2007, Kristiansen et al. 2011).  

The comparative model approach allowed me to evaluate the relative role of prey 

and temperature on juvenile walleye pollock growth. Spatial patterns in growth differed 

between two alternative models; these differences elucidate underlying mechanisms in 

the feeding potential and ultimately possible causes for growth ‘hot spots’ and variability 

in recruitment success between warm and cold climate conditions. The relative effect of 

increasing temperatures was greater in 2005 than in 2010. In 2005, fish were near thermal 

limits based on temperature-dependent functions in the bioenergetics model over much of 

the EBS shelf; further increases in temperature are predicted to result in negative growth. 

In addition to warmer water temperatures in 2005, the spatial overlap of juvenile walleye 

pollock and growth ‘hot spots’ was lower than in 2010, further limiting fish growth.  

This study provided evidence that climate-driven changes in prey dynamics may 

have ecosystem-level consequences via bottom-up control of fish populations in sub-

arctic marine ecosystems. While temporal match-mismatch and the study of changes in 

phenology remain paramount in advancing the discussion of climate effects, I highlight 

the importance of simultaneous spatial match-mismatch affecting the overlap of marine 

fish and prey resources. This work has resulted in an improved understanding of the 

mechanisms behind recruitment variability, in particular the underlying spatial patterns 
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that drive relationships between temperature, prey availability, growth and survival. My 

findings thereby inform ongoing discussions of climate effects on predator-prey 

interactions and recruitment success of marine fishes.  
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