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Abstract 
 

Palynological assemblages from Integrated Ocean Drilling Program (IODP) 

Expedition 323 (Bering Sea Expedition) site U1343, on the edge of the Bering Sea Shelf, 

permit reconstruction of the terrestrial vegetation of the southern margin of central 

Beringia. Previous research indicates that central Beringia was a glacial refugium for 

boreal vegetation, which expanded into eastern and western Beringia as glaciers 

retreated. This hypothesis has been difficult to test because sampling has been largely 

restricted to eastern and western Beringia and islands in the Bering Sea. Pollen grains and 

spores preserved in core samples from site U1343 provide a record of central Beringian 

vegetation over the past 152.2 kyr at a resolution of ~10 kyr. Grass (Poaceae ≥ 17.4%) 

and sedge (Cyperaceae ≥ 17.1%) pollen dominate the assemblages, indicating the 

presence of graminoid tundra. Lower abundances of spruce (Picea ≤ 8.5%), birch (Betula 

≤ 19.9%), and alder (Alnus ≤ 27.7%) pollen are consistently present throughout 

glacial/interglacial cycles, suggesting that trees and shrubs remained in central Beringia 

during glacial maxima. Sphagnum spores (3.4-10.9%) in all samples indicate locally or 

regionally mesic conditions during marine oxygen isotope stages (MIS) 1-6. Minimum 

site paludification during MIS 2, indicated by high ratios of angiosperm pollen to 

Sphagnum spores, coincides with the lowest shrub/herb ratios in our record, suggesting 

that conditions were drier and woody plants were sparse during the last glacial maximum.   
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Chapter 1: Introduction and Background 

1.1 Statement of problem, research questions and hypotheses 
In 2010, the Integrated Ocean Drilling Program (IODP) Expedition 323 drilled 

seven sites in the Bering Sea. Of these seven sites, site U1339 and U1343 were proposed 

for palynological analysis by Dr. Sarah Fowell and Dr. Nancy Bigelow in order to 

reconstruct the vegetation and climate of the emergent Bering Land Bridge. Expedition 

323's scientific objectives applicable to this palynological research include: 

1) To elucidate a detailed evolutionary history of climate and surface ocean 

conditions since the earliest Pliocene in the Bering Sea, where amplified 

high-resolution changes of climatic signals are recorded. 

2) To characterize the history of continental glaciations, river discharge, and 

sea ice formation in order to investigate the link between continental and 

oceanic conditions in the Bering Sea and on adjacent land areas 

(Expedition 323 Scientists, 2010). 

Sites U1343 and U1339 are located at the edge of the Bering Sea shelf (Figure 1). 

This area was adjacent to the emergent Bering Land Bridge (BLB) during glacial stages 

and may have received terrestrial material from estuarine and deltaic systems that 

delivered sediments to the continental shelf (Expedition 323 Scientists, 2010; Heusser 

and Balsam, 1977; Faegri and Iverson, 1989). Site U1343 is currently ~700 km from 

shore, but it was approximately 100-200 km offshore during glacial maxima, whereas site 

U1339 is ~900 km from shore and was ~100 km offshore during glacial stages. Due to 

the inaccessibility of sites U1339 and U1343 (i.e. their submersion in the Bering Sea), 

palynological and paleoclimatic research has not previously been conducted in this area. 

It is probable that the majority of the spores, pollen, and terrestrial sediment delivered to 

these sites during low sea level stands (i.e. glacial stages) were derived from the adjacent 

continental margin. Oceanic currents transport terrestrial materials from the coast across 

the continental shelf to sites of deposition in marine basins (Heusser and Balsam, 1977). 

Pollen taxa from sites U1339 and U1343 provide a 152.2 thousand year (kyr) record of  



  

 

   Primary Sites 
   DSDP Sites 
   Sites U1343 and U1339 
   Ager (2003) 
   Elias et al. (1996) 
 
 

Figure 1. Location map showing sites mentioned in text. Red circles indicate IODP sites; purple 
circles highlight sites U1343 and U1339. Triangles indicate previously studied sites: Blue= Ager 
(2003), Green= Elias et al. (1996) (Modified from: Expedition 323 Scientists, 2010).
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the terrestrial vegetation of south-central Beringia, permitting me to address the following 

questions: 1) Was the climate of the emergent BLB more humid than that of eastern and 

western Beringia? 2) How did the vegetation respond to local climatic changes near the 

continental margin? 3) Did the lowlands of central Beringia provide an ice age refugium 

(Guthrie, 200l; Brubaker et al., 2005) for boreal trees and shrubs? 

1.2 Background  

1.2.1 Climate, Vegetation, and Palynomorphs 
Plant species distribution is primarily controlled by climatic factors (Thompson et 

al., 2006). For instance, the ranges of trees and shrubs in Alaska, such as Picea (spruce), 

Alnus (alder), Betula (birch) and Salix (willow), are limited by temperature and 

precipitation. Picea grows in conditions where the mean July temperature is warmer than 

9.2°C and the annual precipitation is between 195mm and 3,615mm. Alnus survives in 

mean July temperatures warmer than 6.7°C with an annual precipitation of 195mm to 

3,615mm. Betula is present in environments with an annual precipitation of 145mm to 

2,635mm. Tree birch (Betula papyrifera) grows where the mean July temperature is more 

than 9.2°C while shrub birch (Betula nana) grows in areas where the mean July 

temperature is greater than 4.5°C. Finally, Salix (willow) is found where the mean July 

temperature is greater than 3.1°C and the annual precipitation is 130mm to 3,715mm. It is 

evident that tree birch and spruce require warmer summer temperatures compared to 

shrub birch, willow and alder (Thompson et al., 2006). Therefore, changes in vegetation 

composition through time can be used to infer changes in temperature and/or 

precipitation. The concentrations and relative abundances of pollen taxa from the 

Expedition 323 core sites provide a proxy for terrestrial climate of south-central Beringia.   

If pollen samples are collected from a variety of sites in a modern setting, the 

composition of pollen assemblages can be compared to the vegetation classification. 

Assuming that Holocene and Pleistocene relationships between palynomorph 

assemblages and vegetation classes are similar to modern relationships (Jackson and 

Williams, 2004), then fossil palynomorph assemblages can be used to infer vegetation 
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classifications based on modern analogs (Jackson and Williams, 2004). The same 

reasoning can be applied to the relationship between vegetation and climate. However, in 

order to interpret the relationship between modern pollen and vegetation, it is important 

to recognize under- and over-represented pollen taxa. Taxa that are under-represented in 

the pollen record include plants that pollinate underwater (i.e. seagrass and horned 

pondweed), plants that are self-pollinating (i.e. garden tomatoes and  miner’s lettuce) and 

plants that are pollinated by birds, bats and insects (i.e. fireweed, blackberries and clover) 

(Faegri and Iverson, 1989). Over-represented taxa are wind-pollinated plants such as 

gymnosperms (i.e. Pinus (Pine) and Picea) and spore-producing plants (Faegri and 

Iverson, 1989). Therefore, percentages of pollen and spores from under- and over-

represented taxa may not be good indicators of the frequency of the plants in the 

vegetation cover. Pollen assemblages within sediments are biased towards vegetation 

with high pollen productivity and pollen transported by wind (Jackson and Williams, 

2004). Despite the pitfalls, pollen diagrams based on over-represented taxa can be 

compared in order to identify relative changes in vegetation and climate across time and 

space (Faegri and Iverson, 1989).   

Pollen and spores are used as proxies of climate and vegetation because of their 

pervasiveness, durability, and abundance. Palynomorphs can be found in sedimentary 

rocks of  late Precambrian to modern age and occur in both terrestrial and aquatic 

(freshwater and marine) environments. Pollen is the reproductive product of a seed 

plant’s life cycle (i.e. the male gametophyte) while spores are haploid reproductive cells 

of seedless plants (Moore et al., 1991). Both are products of brief life cycles; usually 

weeks or months elapse between development within the anther or sporangium and 

production of a new sporophyte (Faegri and Iversen, 1989). The resistant outer wall 

(exine) of a pollen grain or spore is composed of sporopollenin, a naturally occurring, 

inert chemical compound. Fossil pollen and spores are destroyed when the exine 

degrades. Exine can be destroyed by oxidation, high temperatures and pressures, high 

alkalinity and formation of mineral crystals. Therefore, palynomorphs are not well 

preserved in clean limestone, weathered rocks, evaporate deposits, re-crystallized rocks 
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(like dolomite) or red bed deposits, and diagenetic environments with extremely high 

temperatures and pressures destroy the exine of pollen grains more quickly than shallow 

burial in a marine setting. When present in sediment, spores and pollen are typically more 

abundant than other microfossils (Faegri and Iversen, 1989).  

Some spores and pollen grains can only be identified to the family or genus level 

(Traverse, 2007). This is unfortunate because various pollen species from the same genus 

can have different ecological implications. For instance, within the family Poaceae, Poa 

arctica is adapted for moist-mesic environments while Poa glauca grows in relatively dry 

conditions (Swanson, 2005). Therefore, Poaceae pollen can be an indicator of either 

mesic or arid environments. 

1.2.2 Marine Oxygen Isotope Stage (MIS) notation 
Marine isotope stages (MIS) are used as a timescale for the IODP samples. MIS 

are based on oxygen isotope data (i.e. the ratio of stable isotopes 18O and 16O), which 

record warm and cold periods within Earth’s Plio-Pleistocene oceans. Odd-numbered 

stages (e.g. MIS 1, 3, and 5) have low levels of δ18O values and represent periods of 

relative warmth, while even-numbered stages (e.g. MIS 2 and 6) have relatively high 

δ18O values indicative of cooler periods during which glaciers and ice sheets expanded  

(Martinson et al., 1987).  

1.2.3 Beringia 
Beringia was a thousand-mile-wide landmass that intermittently joined present-

day Alaska and eastern Siberia during the Pleistocene (Figure 2). Sea level repeatedly 

transgressed and regressed throughout MIS 1-6, periodically exposing the lowlands of 

central Beringia. For instance, sea level was 125m below modern sea level during MIS 

6. During MIS 5, sea level rose 6-8m above modern sea level and then dropped to 110-

105m below modern level during MIS 4 and 3. During MIS 2, sea level in the Bering Sea 

dropped approximately 130m below modern levels during the last glacial maximum 

(LGM, ~20 kya) (Martinson et al., 1987; Chappell et al., 1996). The southern margin of 

central Beringia was emergent during ice ages when ice sheets covered most of the 
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northern United States and Canada. While glaciers formed in the Brooks Range and 

Alaska Range, the interior of Alaska and lowlands of central Beringia, located on the 

modern Bering Sea shelf, remained ice free (Hamilton., 1994; Hamilton et al., 1986; 

Manley and Kaufman, 2002). Sites U1343 and U1339 are adjacent to this continental 

shelf and therefore proximal to the central Beringian lowlands. The Bering Strait last 

opened between 11.3-12.4 kya, indicated by flooding of Hope Valley (north of the Bering 

Strait). According to Keigwin et al. (2006), sea level was 55m below modern and the 

Bering Land Bridge (BLB) was submerged at this time. By 10.7-9.8 kya, the Bering 

Strait was completely open (England et al. 2009). 

1.3 Significance of offshore pollen records 
Heusser and Balsam (1977) analyzed palynomorphs from core tops from the 

continental shelf of the northeast Pacific Ocean to examine the taphonomy of pollen in 

modern marine sediments. They conclude that pollen from coastal areas is transported 

into marine environments largely by rivers and then transported across the shelf along 

with fine sediment. It is reasonable to assume that similar transport processes occurred in 

the past (Smith and Pun, 2006). Heusser and Balsam (1977) also found that the pollen 

frequency in marine sediments reflects the vegetation distribution on the adjacent coast 

and hydraulic sedimentation on the shelf. For example, boreal taxa such as Alnus and 

Picea are common in temperate conifer forests of western Washington, while Compositae 

stands are located off southern California. In marine surface samples, Alnus and Picea 

pollen are more prevalent north of 45°N while Compositae pollen are dominant south of 

40°N. Percentages of Alnus, Picea, and Compositae all decrease with distance from 

shore, but  Pinus pollen percentages increase from 10% on the shelf to over 50% on the 

abyssal plain, indicating long-distance transport by submarine currents. Like Pinus, fern 

spores (Polypodiaceae) are also subject to long-distance submarine transport and are 

concentrated in more distal settings.  

1.4 Beringian pollen studies 
Previous pollen studies relevant to my findings (sites shown on Figure 3) were 

conducted along the modern coastline of Alaska (i.e. Seward Peninsula, Togiak Bay,  
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Chuckchi Sea) (Colinvaux, 1964; Shackleton, 1982; Schweger and Matthews, 1985; 

Kaufman et al., 2001; Elias et al., 1996), on St. Paul and St. Lawrence islands in the 

Bering Sea (Colinvaux, 1981;  Colinvaux, 1967), in Norton Sound (Elias et al., 1996) and 

in eastern Russia (Anderson and Lozhkin, 2001). St. Paul Island, St. Lawrence Island and 

Zagoskin Lake are the only sites located within the Beringian lowlands (Colinvaux, 1981; 

Colinvaux, 1967). Few of the eastern Beringian records extend beyond the late 

Pleistocene (ca. 16-14 kya) because these records are from lakes which formed after the 

LGM. However, there are exceptions, such as the Zagoskin Lake record which spans MIS 

1-3 (Ager, 2003), a record from St. Paul Island that spans MIS 1-2 (Colinvaux, 1981), the 

Imuruk Lake record from MIS 1-6 (Colinvaux, 1964; Shackleton, 1982; Schweger and 

Matthews, 1985), the Ky-11 record that spans MIS 1-6 (Bigelow et al., 2014; Schweger 

and Matthews, 1985) and the Squirrel Lake record which spans MIS 1-5 (Anderson, 

1985). Zagoskin Lake, Imuruk Lake and a lake on St. Paul Island contain assemblages 

indicative of steppe tundra vegetation, suggesting that conditions were drier during 

glacial stages. On the other hand, ice age assemblages from Squirrel Lake indicate mesic 

vegetation and thus wetter conditions (Elias and Crocker, 2008).  

1.4.1 Palynology of MIS 6 
 MIS 6, a glacial stage, occurred between 191-130 kya (Lisiecki and Raymo, 

2005). The Birch Creek site 200 km northeast of Fairbanks (Figure 3, site 12),  Ky-11, 

approximately 280 km northwest of Fairbanks on the Koyukuk River (Figure 3, site 11), 

Imuruk Lake on the Seward Peninsula (65°21’36”N, 163°12’W; Figure 3, site 7), and the 

Holitna Lowland site (61°20’N, 157°10’W; Figure 3, site 4) contain pollen assemblages 

from late MIS 6. Temperature reconstructions based on insect data from Ky-11 indicate 

summer temperatures 4-5°C cooler than modern (Bigelow et al., 2014). Ky-11 

palynomorph assemblages contain Cyperaceae (sedge) and Poaceae (grass) with lesser 

percentages of Salix (willow) and ericaceous shrubs (Schweger and Matthews, 1985), 

while Birch Creek assemblages are dominated by herbs with minor percentages of Betula 

and Salix (Edwards and McDowell, 1991). Both sites record vegetation characterized as 

steppe-tundra or herb-dominated meadow (Bigelow et al., 2014). In addition, invertebrate 
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and plant macrofossil assemblages from Ky-11 suggest that the landscape was shrubby 

and treeless.  

 Imuruk Lake, located more than 300m above modern sea level on the Seward 

Peninsula, contains one of the longest lacustrine records from eastern Beringia 

(Colinvaux, 1964). However, it is important to note that there are problems with the 

Imuruk Lake chronology, which was based on bulk dates and includes some puzzling 

reversals. Traces of graphite found in Imuruk Lake mud indicates the presence of old 14C 

depleted carbon that would have been taken in by organisms such as algae. This could 

skew bulk dates, making pollen assemblages seem older than they really are. Additional 

problems could be the result of slumping sediment and turbidity currents. If the sediment 

was reworked, it would affect the radiocarbon dates and contaminate pollen samples. 

Assemblages assigned to MIS 6 by Colinvaux (1964) contain high levels of Cyperaceae 

(5-40%), Poaceae (>20%) and Artemisia (0-28%) with minor percentages of Betula 

(20%), Alnus (10%) and Picea (15%), indicating arctic tundra and cold temperatures.  

 A sample recovered above the Old Crow tephra (OCt) in an exposed bluff along 

the Holitna River contains large percentages of Poaceae (58.5%) and Filicales (fern) 

(20.7%) with minor percentages of Salix (1%), Sphagnum (4%) and Alnus (3%) 

(Waythomas et al., 1993). This pollen assemblage is indicative of mesic graminoid 

tundra. According to Bigelow et al. (2014), the OCt is 134,000-130,000 years old and 

marks the end of MIS 6. However, this is contrary to Preece et al. (2010) who suggest the 

OCt dates to 124 ± 10 kya.  

1.4.2 Palynology of MIS 5 
MIS 5, the last full interglacial (Sangamonian), occurred between 130 and 71  

kya. MIS 5.5, an interval of maximum warmth, occurred at 123 kya (Lisiecki and Raymo, 

2005). Further warm intervals within MIS 5 include: 5.4 (109 kya), 5.3 (96 kya), 5.2 (87 

kya) and 5.1 (82 kya) (Lisiecki and Raymo, 2005). Summer insolation is the measure of 

solar radiation impacting the top of the Earth’s atmosphere (Berger, 1978). During MIS 

5, summer insolation (for the months of May, June and July) was approximately 11% 
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higher in northern latitudes than it is today (CAPE, 2006). CAPE (Circum-Arctic Paleo 

Environments) Last Interglacial Project Members reconstructed MIS 5 temperatures from 

biotic proxies in marine, alluvial, lacustrine and peat deposits as well as isotopic records 

from ice cores and carbonates. They conclude that, between 130-127 kya, peak Alaskan 

summer temperatures were 0-2°C warmer than modern temperatures while winters were 

1-3°C cooler than modern. They also found evidence of greater moisture in Alaska early 

in the last interglacial compared to coeval arctic sites in Canada, Europe and Russia 

(CAPE, 2006). 

Assemblages from Ky-11 (Figure 3, site 11) record dominance of Betula, Picea, 

Salix (willow), and Alnus, with lesser amounts of Cyperaceae and forbs (Bigelow et al., 

2014; Schweger and Matthews, 1985). These results suggest the presence of boreal 

forests similar to modern interior Alaskan forests. Birch Creek pollen assemblages from 

MIS 5 record high percentages of spruce, suggesting that it was more common in forests 

than today (Edwards and McDowell, 1991; Bigelow et al., 2014). Bigelow et al. (2014) 

propose that MIS 5 was relatively mesic compared to today based on the abundance of 

fern spores (Miller et al., 2010; Bigelow et al., 2014). Pollen analysis of MIS 5 samples 

from the Holitna Lowlands reveals a sedge-grass-birch-dominated mesic tundra. 

Waythomas et al. (1993) notes that some samples contain high percentages of Picea (up 

to 22%) compared to MIS 6. Waythomas et al. (1993) do not report pollen analyses from 

MIS 4-1.   

Colinvaux (1964) identified pollen assemblages from MIS 5 in samples from 

Imuruk Lake (Figure 3, site 7). With the above mentioned chronological uncertainties in 

mind, pollen assemblages from MIS 5 (or zone i1) indicate that Betula, Alnus and Picea 

increased while Cyperaceae and Poaceae decreased compared to MIS 6 (or zone H). 

Colinvaux (1964) suggests that the climate was similar to the modern climate of the 

Seward Peninsula. Based on alder abundances, he also proposes that the climate was 

wetter than the arctic climate of his zone H. His pollen analysis is corroborated by 

Shackleton (1982) who also analyzed Imuruk Lake and noted an increase in abundances 
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of Picea (>15%), Betula (>15%) and Alnus (>10%) compared to MIS 6, while 

Cyperaceae (20%), Poaceae (30%) and Artemisia (10%) percentages decrease. 

Pollen records from Squirrel Lake, north of Kotzebue, Alaska (Figure 3, site 8), 

display greater abundances of Betula, Picea and Alnus compared to percentages from 

MIS 4, signaling the presence of the boreal forest (Berger and Anderson, 2000) which 

extended north and west of the modern forest boundary. Pollen assemblages from a 

coastal bluff at Togiak Bay, on the northwest end of Bristol Bay (Figure 3, site 3), 

contain Alnus (0-50%), Betula (about 20%) and Picea (0-10%) with lesser amounts of  

Cyperaceae (approximately >10%) and Poaceae (about 24%). This site also suggests an 

expansion of the boreal forest relative to today. 

1.4.3 Palynology of MIS 4 
MIS 4 occurred between 71-57 kya and is an interstadial event (Lisiecki and 

Raymo, 2005). Due to dating issues noted above, it is difficult to identify MIS 4 sediment 

from Imuruk Lake (Figure 3, site 7) based on Colinvaux’s (1964) dates. Shackleton 

(1982) has a better chronology for this site. He noted that zone i2 (just after MIS 5) 

contains lower percentages of Betula (10%), Alnus (trace levels) and Picea (trace 

levels), while Cyperaceae (10-40%), Poaceae (>20%) and Artemisia (15%) 

percentages increase compared to MIS 5. MIS 4 records from Squirrel Lake (Figure 3, 

site 8) reveal lesser percentages of Betula (15%), Picea (5%) and Alnus (5%) 

compared to MIS 5 spikes in the abundances of these taxa (Betula >60%, Picea >55%, 

Alnus about >70%). These data suggest that the extent of boreal forests diminished from 

MIS 5 to 4 (Berger and Anderson, 2000). Assemblages from Togiak Bay (Figure 3, site 

3) contain roughly 20% Betula, 5% Picea and 10% Alnus with higher percentages of  

Cyperaceae  (70%) and Poaceae  (60%) (Kaufman et al., 2001).  Percentages of 

Cyperaceae and Poaceae increase while Betula decreases from MIS 5 to MIS 4.  

1.4.4 Palynology of MIS 3 
MIS 3 occurred from 57 to 29 kya and is an interstadial event (Lisiecki and 

Raymo, 2005). It is a complicated interval both in terms of vegetation and climate. 
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According to paleobotanical data, conditions were drier and cooler than modern (Ager, 

2003; Anderson and Lozhkin, 2001). According to Anderson and Lozhkin (2001), the 

dominant vegetation in most of eastern Beringia consisted of tundra, while Larix forests 

were prevalent throughout western Beringia. During warm intervals of MIS 3, western 

Beringia was more heavily forested than eastern Beringia. Based on regional changes in 

vegetation, the greatest warming occurred in far western and eastern areas of Beringia 

(Anderson and Lozhkin, 2001).   

 The Zagoskin Lake record spans the last 30,000 14C yr BP (Ager, 2003). This 

site is located on an island in Norton Sound, 7m above modern sea level, and is one of the 

few sites located within central Beringia (Figure 3, site 5). The record shows abundant 

Cyperaceae (>25%), Poaceae (>30%), and Artemisia (sage >5%) with smaller quantities 

of Salix and Betula. MIS 3 assemblages from Kaiyak Lake also contain abundant 

Cyperaceae and Poaceae, with Thalictrum (a mesic indicator) with some Salix (Anderson, 

1985). Assemblages from both Kaiyak (Anderson, 1985) and Zagoskin (Ager, 2003) 

lakes indicate that the vegetation was primarily grassy tundra with sporadic shrub 

populations.  

1.4.5 Palynology of MIS 2 
MIS 2 occurred between 29 and 14 kya (Lisiecki and Raymo, 2005). This interval 

records vegetation associations for which there are no modern analogs. Reconstructing 

the climate based on no-analog pollen assemblages requires pollen-vegetation-climate 

modeling, synthesizing available paleoecological data, and reliance upon ecological 

theories (Jackson and Williams, 2004). Based on the results of previous pollen analyses, 

Beringia experienced drier conditions during MIS 2 compared to today. However, a 

subtle regional moisture gradient extended from drier conditions in the east (i.e. Bluefish 

basin in Canada, Figure 3, site 13) to a more mesic environment in the west (i.e. Elikchan 

in Russia, Figure 3, site 1). For instance, pollen records from Elikchan, located north of 

the Okhotsk Sea, record an influx of Artemisia with Thalictrum and mosses during the 

LGM (Anderson and Lozhkin, 2001), suggesting relatively mesic conditions compared to 

sites like Bluefish basin. Bluefish basin, located east of the Alaska/Canada border in the 
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northern Yukon Territory, is dominated by Poaceae (40%), Cyperaceae (>20%) and 

Artemisia frigida (a dry indicator, present on open slopes and disturbed areas) (Zazula et 

al., 2006). The combination of grass, sedge and Artemisia indicates the presence of 

steppe tundra. Steppe tundra is found in small patches on south-facing slopes at mid-to-

high latitudes in Eastern and Western Beringia today. However, during the LGM, steppe 

tundra was thought to be widespread across Beringia and was associated with cold, dry 

climatic conditions (Elias and Crocker, 2008).  

Elias et al. (1996) analyzed pollen, plant microfossils, and beetles from cores of 

the Chuckchi Sea (between 69°57’N, 165°21’W and 71°06’N, 167°36’W, Figure 3, site 

6). During the LGM, the dominant vegetation consisted of Poaceae (28-44%), 

Cyperaceae (13-30%), Betula (19-28%) and Sphagnum (26-58%) with smaller 

percentages of Salix (1-5%) and no evidence of Artemisia. Elias et al. (1996) interpret the 

MIS 2 landscape as birch-graminoid tundra “with small ponds choked with aquatic 

plants” and found no evidence for a steppe tundra environment (Elias et al., 1996).  

Elias’s et al. (1996) data is comparable to Anderson (1985), as both suggest the 

vegetation of MIS 2 consisted of relatively mesic tundra instead of dry steppe tundra. 

Anderson (1985) analyzed pollen from Squirrel Lake (Figure 3, site 8) and Kaiyak Lake 

(Figure 3, site 9). Assemblages are dominated by Poaceae (20-50%) and Cyperaceae (10-

35%) with Artemisia (20%) and smaller percentages of Betula and Alnus (10%) during 

the LGM. Anderson (1985) suggests herbaceous tundra was present during the LGM with 

willow and dwarf shrub birch in more mesic localities. 

Comparatively arid conditions are recorded by assemblages from a 14m sediment 

core recovered from Cagaloq Lake on St. Paul Island in the Beringian lowlands (Figure 3, 

site 2). Colinvaux (1981) observed abundant Cyperaceae, Poaceae and Artemisia, 

suggesting that St. Paul Island was dominated by herb tundra without trees or shrubs 

during the LGM. Percentages of trees, shrubs, and Sphagnum (10% each of Betula, 

Alnus, Picea, and Sphagnum), are distinctly different from those reported by Elias et al. 

(1996) (Betula 19-28%, Sphagnum 26-58%) and Anderson (1985) (10% each of Alnus 
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and Betula). According to Colinvaux (1981), dwarf birch was extremely rare and tussock 

vegetation was lacking; the absence of both indicate a relatively dry environment. 

Despite Colinvaux’s (1981) persuasive data, the ages of the assemblages are based on 

bulk dates, which are ambiguous because the amount of old carbon in the sample is 

unknown. Ultimately, the dates might be younger than Colinvaux (1981) reported. There 

is also uncertainty regarding the elevation of the site. Colinvaux (1981) mentions that St. 

Paul Island was 150-300m above the BLB during the LGM but does not provide the 

specific elevation at which the sediment core was taken. Differences in elevation could 

influence the type of vegetation present (i.e. higher elevations might sustain more dry-

adapted species while lower elevation areas might contain more mesic-adapted 

vegetation).  

1.4.6 Palynology of MIS 1 
MIS 1 occurred between 14-0 kya (Lisiecki and Raymo, 2005) and includes the 

cold Younger Dryas (13-11.5 kyr) and the Holocene Thermal Maximum (HTM) between 

11.5 kya and 9.1 kya (Kaufman, 2004; Abbott et al., 2000). The Younger Dryas was an 

abrupt return to near-LGM conditions with high winds and increased aridity (Abbott et 

al., 2000). The strongest signal for the Younger Dryas occurs in Greenland; it is much 

weaker in Beringia, as characterized by minor, short-term shifts in vegetation in most 

locations (Peteet and Mann, 1994). The Younger Dryas, was followed by a period of 

warming (the HTM). Based on proxy data of 16 terrestrial sites from the western Arctic 

(i.e. Alaska, Canada, Greenland, Iceland), Kaufman et al. (2004) suggest that HTM 

temperatures were 1.6 ±0.8°C higher than modern summer temperatures.       

 Pollen analysis from Zagoskin Lake (Figure 3, site 5) records an increase in 

Betula (62%) and Alnus (65%) and a minor increase in Picea (2-5%) during MIS 1, 

along with decreases in Poaceae (30%), Cyperaceae (30%) and Artemisia compared to 

the same site during MIS 2 (Ager, 2003). From MIS 2 to 1, Poaceae decreased by 15% 

and Cyperaceae decreased 10%, while Betula increased by 30%, Alnus by 50% and 

Picea by 2%. Increases in Picea, Betula and Alnus together indicate boreal forest 
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conditions. A spike in Betula from the end of MIS 2 to the beginning of MIS 1 indicates 

it was growing at that site (Ager, 2003).  

Based on a compilation of 49 pollen records from the Paleoenvironmental Arctic 

Sciences (PARCS) database from the LGM to the mid-Holocene, Brubaker et al. (2005) 

report rapid increases in tree and shrub pollen at sites across Beringia early in MIS 1. 

Picea pollen increases throughout eastern Beringia (EB - modern day Alaska) from 2% 

in MIS 2 to >20% during MIS 1. In western Beringia (WB - modern day Russia) Picea 

pollen increases only slightly, from nearly absent during MIS 2 to up to 2% in sporadic 

locations during MIS 1. In WB, Pinus pollen increased from 2% at many MIS 2 sites to 

>2% during MIS 1, whereas in EB it increased from nearly absent to trace amounts. In 

EB, the abundance of Betula pollen increases from >10% during MIS 2, reaching >60%  

at a quarter of the sites during MIS 1. Percentages of Betula pollen in WB during MIS 2 

are >10%; MIS 1 abundances are variable, exceeding 50% at a few sites.  Finally, Alnus 

pollen increases from 5-30% in WB and from 5% in EB during MIS 2 to >30% in EB 

and WB during MIS 1. These changes represent the spread of boreal forest vegetation 

across much of EB during the Holocene. 

1.5 Refugium hypothesis 
Brubaker et al. (2005) suggest that rapid increases in pollen from boreal forest 

taxa, including Betula, Alnus, Picea and Pinus, during MIS 1 indicates that these plants 

survived MIS 2 in refuge populations within Beringia rather than migrating long-

distances from south of the ice sheets. If trees and shrubs migrated from locations further 

south (i.e. modern Washington) into Beringia, pollen production would lag behind 

climate change. The concurrent increases of tree and shrub pollen with the onset of MIS 1 

suggest they did not migrate from southern regions; instead, local populations began to 

flourish as soon as conditions became more favorable (Ager, 2003). If trees and shrubs 

did not migrate back into Beringia from regions south of the ice sheets, they must have 

survived in small populations throughout MIS 2 (Brubaker et al., 2005). It is 

hypothesized that seed dispersal between these isolated populations of trees and shrubs 
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would have contributed to long-term survival (Brubaker et al., 2005). Despite extreme 

LGM conditions, Beringia likely experienced varying moisture and temperature 

conditions which are evident in the disparate pollen presence/absence and percentage 

data from sites in EB and WB (Brubaker et al., 2005; Guthrie, 2001).  

Due to differences in climate and vegetation cover, the exposed BLB could have 

presented a barrier to migrating flora and fauna during Pleistocene glacial stages. Guthrie 

(2001), who cites Colinvaux (1964), Anderson and Brubaker (1994) and Elias et al. 

(1996), hypothesizes that maritime cloud cover over Beringia created a “mesic buckle” 

within a belt of arid steppe vegetation. He suggests that conditions were more humid in 

low topographic regions of central Beringia and that a S-N moisture gradient spanned the 

emergent Bering Strait during the LGM. Southern regions were more mesic while 

northern regions were more arid. Lower-humidity environments of eastern Russia and 

western Alaska resulted in different vegetation compared to central Beringia and limited 

the dispersal of megafauna such as short-faced bears (Arctodus), badgers (Taxus), camels 

(Camelops), Kiang (Equus) and Muskoxen (Bootherium) into central and western 

Beringia. In the Holocene, mesic-adapted species within the refugium radiated from 

central Beringia into Western and/or Eastern Beringia (Guthrie, 2001).   

Elias and Crocker (2008) compiled and analyzed palynological data from 13 sites 

in WB and EB. Elias and Crocker (2008) also find evidence of a west-east moisture 

gradient during the LGM. They hypothesize that the lowlands of the BLB were 

dominated by shrub tundra indicative of a more mesic environment while EB sites 

contained steppe-tundra indicating a relatively dry environment.    

To test whether small populations of spruce trees existed in Alaska during the 

LGM, Anderson et al. (2006) examined white spruce chloroplast genomes from 24 forest 

stands along an assumed interior migration route between Alaska and south-central 

Canada. They found that DNA haplotyes were unique and diversity was high in Alaska 

compared to Canadian stands. This suggests that white spruce did not migrate into Alaska 
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from southern areas when the Laurentide ice sheet retreated but remained in isolated 

refuge populations of Alaska during the LGM.   

1.6 Site descriptions of U1339 and U1343 
Site U1339 is located 54.40°N and 169.58°W on the northwest flank of Umnak 

Plateau. The plateau is detached from the Bering shelf by an incised canyon. During low 

sea level stands, this site was presumed to contain more pelagic biogenics compared to 

terrigenous sediments transported from the adjacent shelf into the canyon below. Three 

holes drilled at site U1339 reached a maximum age of ~0.74 Ma. Sedimentation rates, 

determined by an age model based on biostratigraphic datum points, range from 22 to 50 

cm/kyr (Expedition 323 Scientists, 2010).  

Site U1339 sediment is comprised primarily of biogenic (diatoms), volcaniclastic 

and siliciclastic sediment with minor amounts of dolomite, pyrite, benthic and planktonic 

foraminifera (Figure 4). Radiolarians, sponge spicules and calcareous nannofossils are 

rare. Sediments composed of diatom-rich silt/ashy silt are dark greenish gray while 

diatom ooze is an olive color. Terrigenous sediments are common and comprised of clay, 

mica, quartz, feldspar and rock fragments. Dropstones are also apparent, consisting of 

gravel- to pebble-sized grains. Volcanic ash layers throughout the unit range from ~2mm 

to ~10cm thick (Expedition 323 Scientists, 2010). My oldest U1339 sample was obtained 

35m CCSF-A (core composite depth below seafloor, appended). IODP scientists use the 

mudline, or the topmost sediment, as the “anchor” for correlating lithologies from 

different holes. The acronym CCSF-A refers to the stratigraphic correlation between 

drilled holes (Expedition 323 Scientists, 2010).    

Site U1343 is located 57.33°N and 175.49°W on a topographic high, detached 

from the main Bering Sea shelf, at a depth of 1,953m (Takahashi et al., 2011). Expedition 

323 scientists assumed the site would collect less reworked terrigenous material from the 

submerged or emergent continental shelf during interglacial or glacial periods, 

respectively, compared to locations further down slope (Expedition 323 Scientists, 2010). 

A composite age model from all five holes drilled at site U1343 shows that sediments  
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span the last ~2.2m.y. (Takahashi et al., 2011). In general, high sedimentation rates 

characterize site U1343. Sedimentation rates are 26cm/kyr within the uppermost 400m 

CCSF-A (Takahashi et al., 2011). My oldest IODP sample was collected from U1343E at 

42.2m CCSF-A. 

Site U1343 consists largely of silt with variable amounts of clay and diatoms and 

minor concentrations of ash, foraminifers, sand, sponge spicules (common throughout the 

core) and calcareous nannofossils (Figure 4) (Takahashi et al., 2011). Sediment appears 

to be primarily dark greenish gray to dark gray (Takahashi et al., 2011). Sediments are 

characterized by a high proportion of siliciclastic grains compared to biogenic grains. 

Clay content tends to be high compared to sites on Bowers Ridge (i.e. U1342, U1341 and 

U1340). Fine layers of volcanic ash are present due to proximity to the Aleutian arc but 

are less abundant than in cores from U1339. The degree of bioturbation ranges from 

slight to average throughout the core, excluding laminated intervals that show no visible 

bioturbation.  

1.7 Age Models 
 The age model for site U1339 is provided by Mea Cook and Alan Mix (Figure 5). 

It is based on the δ18O (‰) values from analyses of benthic foraminifera, which is 

correlated to a composite record compiled and dated by Lisiecki and Raymo (2005). Five 

species, including Uvigerina peregina, U. senticosa, Elphidium cf. batialis, Nonionella 

labradorica, and Globobulimina affinis, were measured for δ18O (‰). Two tephra layers 

(11.1 and 14.6 k cal BP respectively) provide additional age control (Cook, pers. comm., 

2013).  

The age model (Figure 6) for site U1343 is based on δ18O (‰) data provided by 

Hiro Asahi (Asahi et al., 2014). The average sample resolution for this age model is ~1.5 

kyr from the core top to MIS 5. Down-core sediment ages were determined by linear 

interpolation between dated horizons based on the δ18O (‰) record. Table 1 identifies 

boundaries of MIS 1-6 as described by (Asahi, pers. comm., 2012).  
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MIS               
Boundary  

Age      
(Ma)

Age        
(kyr)

Depth                           (m CCSF-A)

0.0076 7.62 0.010
1/2 0.014 14 3.191
2/3 0.029 29 7.523
3/4 0.057 57 13.158
4/5 0.071 71 18.415
5.1(peak) 0.082 82 22.236
5.2(peak) 0.087 87 25.078
5.3(peak) 0.096 96 28.488
5.4(peak) 0.109 109 32.933
5.5(peak)    0.123 123 35.611
5/6 0.13 130 38.550
6/7 0.191 191 48.766

Table 1. Age boundaries determined by δ18O (‰) data provided by Hiro Asahi 
(Asahi, pers. comm., 2012).
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Chapter 2: Methods 

2.1 Processing: IODP Samples  
 Samples from Expedition 323 sites U1343 and U1339 were requested from IODP 

and received from the Kochi Core Center. I followed a modified version of the methods 

described in Heusser and Stock (1984) for laboratory processing of marine sediment 

(Figure 7). Whereas Heusser and Stock (1984) processed 5cc samples, the samples I 

received from IODP had volumes ≤2cc as determined by water displacement. Low pollen 

concentrations are typical of marine sediment compared to terrestrial samples because 

grains are transported far from source material. A larger sample is ideal if pollen 

concentrations are low; small sample size increases the probability of low pollen 

recovery.  

 I added a Lycopodium tablet (15,500 spores per tablet) to each sample in a 15 mL 

glass test tube in order to calculate the total number of fossil polymorphs present in the 

sample, following the methods of Stockmarr (1971). Carbonates were removed using a 

10% hydrochloric acid (HCl) wash. Samples were washed three times in water and 

centrifuged for five minutes after each wash to eliminate remaining 10% HCl. Prior to 

any centrifugation, samples were stirred manually to ensure the material was well mixed. 

After the washes, samples were heated in 10% potassium hydroxide (KOH) solution for 2 

minutes to remove humic acids. The color of the liquid in which the sample was 

suspended indicates the quantity of humates in the sample (i.e. dark brown or black 

supernatant indicates high humate content). Two water washes followed the 10% KOH 

bath.  

To remove clay and macrofossils, I added a 5% sodium pyrophosphate (Na4P2O7) 

dispersant, which kept material from clumping. I then poured the samples through a 250 

μm sieve. Material >250 µm was rinsed off from the sieves into Whirlpack bags and 

refrigerated for possible later analysis. Due to the high clay content in my IODP samples, 

the sieving procedure differed from that employed by Heusser and Stock (1984). 

Although they also used sodium pyrophosphate (Na4P2O7) as a dispersant, Heusser and  
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Dehydrate w/TBA, mount in silicone oil

10 % HCl + Lycopodium
1 Lycopodium tablet per cc sample.

Measure volume
H2O displacement in graduated 15 mL test tubes. 
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Figure 7. Flow chart of labratory procedure sequence. 
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Stock (1984) sieved samples through a 150 µm sieve and then 7 µm nylon mesh screen. 

My IODP samples contained so much clay that fine sieves rapidly became clogged. 

Instead, I employed the short centrifugation technique described by Traverse (1988). The 

portion passing the 250 µm sieve (which included the pollen) was poured back into 15 

mL test tubes, manually stirred, centrifuged for 1 minute at 1,500-1,750 rpm and then 

decanted. Centrifuging the sample allows the pollen to sink to the bottom of the test tube, 

while excess clay remains in suspension and is removed when the liquid is decanted. I 

continued centrifuging samples for one minute in water until the supernatant was clear. A 

drop of decanted material was placed on a slide and checked for palynomorphs under a 

laboratory Olympus CX41RF microscope prior to disposal. In 80% of samples no 

palynomorphs were found. In the remaining samples, I found isolated grains of exotic 

Lycopodium. If more than three pollen grains were present on the slide, I poured the 

decanted material into the 15 mL test tube and resumed the short centrifugation process.  

Gravity separation employed sodium polytungstate (Na6[H2W12O40]) mixed to a 

specific gravity of 2.1. I mixed the samples with the heavy liquid and poured them 

through a 1.5 μm glass fiber mesh twice using a Buchner funnel. To eliminate silicate 

minerals, diatoms, and glass fibers, I folded the filter into 15 mL tubes and immersed 

each sample twice in hydrofluoric acid (HF), adding ~10 mL of HF and leaving the 

samples overnight at room temperature. Due to the presence of numerous diatoms in 

addition to the glass from the filters, I found that a second HF treatment was necessary in 

order to remove all the silica. Heusser and Stock (1984) treated their samples with HF 

just once, placed them in a hot water-bath for an hour, left them to cool overnight, and 

reheated them the next day.   

After the second HF treatment, I decanted the HF, filled the sample tubes with a 

10% HCl wash, placed the samples in a boiling water bath for approximately 30 minutes, 

and manually stirred them to dissolve any calcium fluoride crystals. Three water washes 

eliminated remaining 10% HCl. I added three drops of 10% KOH to the final wash to 

neutralize the pH. I then added 5 mL of water and one drop of 2.5% safranin O stain to 
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help identify reworked grains. Next I dehydrated the samples with a tertiary buytl alcohol 

(TBA) wash and decanted the residues into 5 mL vials. I placed sample vials, without 

caps, into a warm drying oven for 24 hours to evaporate excess TBA. Finally, I mounted 

pollen grains in silicon oil so that they could be rotated and flipped over, making 

identifications easier.   

Heusser and Stock (1984) employed several techniques, including acetolysis, 

oxidation and a second sieving step that were not necessary in the preparation of my 

samples. Acetolysis dissolves cellulose material in recent samples, while oxidation was 

used if "large amounts of amorphous organic matter or charcoal-like particles [were] 

present" (Heusser and Stock, 1984). Their second and final sieving step uses a 7 μm 

screen to remove undigested fine particles before dehydrating samples with TBA. My 

samples did not require these procedures because they were not highly organic, did not 

contain fine cellulose material, and fine clay particles were eliminated through the short 

centrifugation procedure.  

2.2 Microscopy 
Palynomorphs were counted using an Olympus CX41RF microscope at 400-

1000X magnification. Pollen grains and spores were compared with type slides in 

collections housed at the University of Alaska Fairbanks palynology lab, photographic 

plates in Traverse (1988), and plates and keys in Faegri and Iverson (1989), Hultén 

(1968), Kapp (1969), McAndrews et al. (1973), Moore et al. (1991), and Moriya (1976). 

Taxa were identified to family or genus. In addition, I categorized Alnus (alder) pollen by 

the number of pores on each grain (i.e. 4 -pores, 5 -pores or 6 -pores), because this may 

have stratigraphic or climatic significance. Reinink-Smith (2010) noticed a transition 

from 4-pored Alnus within the Miocene Beluga Formation and Pliocene lower Sterling 

Formation to 5-, 6-, 7-, and 8-pored Alnus within the upper Sterling Formation along 

Cook Inlet. Reinink-Smith (2010) speculates that this change was caused by a floristic 

shift in subgenus from Alnus incana (4-pored) to cold-adapted Alnus alnobetula (>5-

pored).  
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I did not differentiate between species of spruce such as Picea glauca (white 

spruce) and Picea mariana (black spruce) because many grains of this genus appeared as 

a single bladder. To determine the number of spruce pollen grains, I counted the total 

number of bladders and divided by two. Similarly, Betula (birch) pollen from shrub 

birches was not distinguished from that of tree birches, because it is difficult to 

differentiate birch subgenera or species based on pollen grains (Edwards et al., 1991). 

Accurate measurements of grain diameter and pore depth are critical for correctly 

distinguishing the two types of birch (Clegg et al., 2005); many of the birch grains in my 

sample were crumpled, making such measurements difficult or impossible. Cyperaceae 

and Poaceae pollen grains were classified to the family level because the same pollen 

morphology is produced by many genera.  

Spores were categorized as monolete, trilete, or Sphagnum but were not 

subdivided further into genera or species based on wall structure and ornamentation; 

many were too degraded to make a positive identification. Indeterminate spores and 

pollen grains were described and photographed with an Olympus DP20-5 camera. 

 Stain is absorbed by the outer wall, or exine, of a grain. Older, reworked grains 

have degraded exines and do not absorb stains as readily when compared to younger, 

non-reworked grains (Faegri and Iversen, 1989). I noted the number of brown or dark 

yellow grains in each sample an indicator of reworked material relative to pink/red color 

of the majority of the grains.  

2.3 Calculating pollen percentages  
Pollen concentrations were calculated by the following equation (from Traverse, 

1988): 

Total	Fossil	Pollen
Fossil	Pollen	Counted	 Total	Number	Markers

Markers	Counted
Sample	Volume 

Due to limited pollen concentrations in U1339, located on Unmak Plateau, my research 

focuses on site U1343A and E. A total of 26 samples comprises the scope of research. 

Pollen diagrams are based on identification of at least 300 grains per sample at site 

U1343. Samples at site U1339 are based on the identification of at least 200 grains per 
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sample. The pollen sum includes all identified pollen grains and spores excluding 

Pediastrum (i.e. green alga). The basic pollen sum is calculated by adding the total 

number of tree and shrub pollen to herb pollen and spores. Unknown and Indeterminable 

categories are not included in the basic pollen sum. A paludification index Pest 

(angiosperm pollen / Sphagnum spores) constitutes a proxy for saturated organic matter. 

Values less than 10 correspond to wet conditions and saturation of sedimentary organic 

matter according to definitions by White et al. (1997). 

2.4 PCA of modern and fossil samples  
Cores from IODP sites U1339 and U1343 were sampled for palynomorphs at 

approximately 10 kyr intervals, focusing on the last 150 kyr. The youngest core samples 

from site U1343 are dated to 10.7 kya. To identify modern analogs, I compared my 

samples with modern surface samples from various locations in Alaska. Surface sample 

datasets were provided by palynologists Thomas Ager, Patricia Anderson, and Linda 

Brubaker. Ager analyzed palynomorphs from 120 sites in western and southern Alaska 

(59.6°N to 69.25°N and -144.65°W to -166.17°W) while Brubaker and Anderson 

collected and analyzed pollen percentages from a total of 278 sites throughout mainland 

Alaska (59.1°N to 71.23°N and -141.07°W to -166.47°W) (Anderson and Brubaker, 

1996; Bigelow et al., 2003). The original datasets from Ager, Anderson and Brubaker 

varied in their descriptions of the local vegetation at the sample sites. In order to 

standardize the vegetation descriptions, I plotted their site localities onto a modern 

vegetation distribution map of Alaska developed by Michael Fleming (Figure 8), which 

employs 23 vegetation classifications (Fleming, 1998). The vegetation distribution map 

was constructed from a phenology index of the 1991 growing season using Advanced 

Very High Resolution Radiometer (AVHRR) satellite data (Markon et al., 1995). 

Vegetation classifications provided by Ager, Anderson and Brubaker were consistent 

with vegetation descriptions on the distribution map. Table 2 outlines the relevant 

vegetation types from Fleming’s modern vegetation distribution map of Alaska and 

provides a description of each type. Viereck and Little's (1972) vegetation map from 

Alaska Trees and Shrubs provided the description of vegetation represented by each type  
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Vegetation Type Vegetation Description Grouped Vegetation

Alpine Tundra and barrens
Consisting of white mountain-avens, low heath 
shrubs, prostrate willows, and dwarf herbs. 
Predominantly barren.

Herbaceous Tundra                          
(i.e. alpine tundra and barrens, wet 

sedge tundra)

Dwarf shrub tundra Consisting of Dryas, willow, sedge, birch, 
crowberrys, forbs, moss, lichen.

Shrub Tundra                                    
(i.e. dwarf shrub tundra, tussock sedge/ 

dwarf shrub tundra, low shrub/lichen  
tundra, tall shrub, tall and low shrub)

Tussock sedge/dwarf shrub tundra
Consisting of cottongrass (Eriophorum) sedge, 
grasses, labrador tea, dwarf birch, moss, 
willow, forbs (lousewort, heartleaf saxifrage).

Shrub Tundra

Moist herbaceous/shrub tundra Consisting of sedge and grass; typically wet 
coastal tundra and marsh land.

Herbaceous shrub Tundra                
(i.e. moist herbaceous/shrub tundra)

Wet sedge tundra Consisting of dwarf birch, labrador tea, sedge, 
moss, alpine blueberry. Herbaceous Tundra

Low shrub/lichen tundra Consisting of sedge, lichen, moss and erect 
dwarf shrub (i.e. lingonberry, cloudberry).

Shrub Tundra

Tall shrub
Consisting of sedges, especially in tussocks; 
scattered willows and dwarf birch. Resemble 
tundra meadows.

Shrub Tundra

Tall and low shrub Consisting of dwarf birch, willow, myrica, herbs 
and forbs (i.e. Rosaceae).

Shrub Tundra

Mixed Forest Consisting of paper birch, quaking aspen-
balsam poplar, shrubs.

Mixed Forest
                                       (i.e. closed broadleaf and mixed forest, 

closed mixed forest)

Spruce Forest Consisting of white spruce, paper brich, black 
spruce, quaking aspen, balsam poplar, shrubs.

Spruce Forest                                     
(i.e. closed spruce forest, spruce 

woodland/shrub, open spruce 
forest/shrub/bog mosaic, spruce and 

broadleaf forest, open and closed 
spruce forest, open spruce forest and 

hemlock forest)

Table 2. Description and grouping of pertinent vegetation classifications constructed from satellite and 
ground-truthed data (Viereck and Little, 1972; Fleming, 1998). Vegetation descriptions represented by 
each vegetation type are provided by Viereck and Little (1972) Alaska Trees and Shrubs. Vegetation types 
are described by Felming (1998). 

Vegetation Type                 
(Flemming, 1998)

Vegetation Description                       
(Viereck and Little, 1972)

Grouped Vegetation                  
(this study)

Alpine Tundra and barrens
Consisting of white mountain-avens, low heath 
shrubs, prostrate willows, and dwarf herbs. 
Predominantly barren.

Herbaceous Tundra                          
(i.e. alpine tundra and barrens, wet 

sedge tundra)

Dwarf shrub tundra Consisting of Dryas, willow, sedge, birch, 
crowberrys, forbs, moss, lichen.

Shrub Tundra
(i.e. dwarf shrub tundra, tussock sedge/ 

dwarf/shrub tundra, low shrub/lichen 
tundra, tall shrub, tall and low shrub)

Tussock sedge/dwarf shrub tundra
Consisting of cottongrass (Eriophorum) sedge, 
grasses, labrador tea, dwarf birch, moss, 
willow, forbs (lousewort, heartleaf saxifrage).

Shrub Tundra

Moist herbaceous/shrub tundra Consisting of sedge and grass; typically wet 
coastal tundra and marsh land.

Herbaceous shrub Tundra                
(i.e. moist herbaceous/shrub tundra)

Wet sedge tundra Consisting of dwarf birch, labrador tea, sedge, 
moss, alpine blueberry. Herbaceous Tundra

Low shrub/lichen tundra Consisting of sedge, lichen, moss and erect 
dwarf shrub (i.e. lingonberry, cloudberry).

Shrub Tundra

Tall shrub
Consisting of sedges, especially in tussocks; 
scattered willows, dwarf birch and alder. 
Resemble tundra meadows.

Shrub Tundra

Tall and low shrub Consisting of dwarf birch, alder, willow, myrica, 
herbs and forbs (i.e. Rosaceae).

Shrub Tundra

Mixed Forest Consisting of paper birch, quaking aspen-
balsam poplar, shrubs.

Mixed Forest
(i.e. closed broadleaf and mixed forest, 

closed mixed forest)

Spruce Forest Consisting of white spruce, paper brich, black 
spruce, quaking aspen, balsam poplar, shrubs.

Spruce Forest                                     
(i.e. closed spruce forest, spruce 

woodland/shrub, open spruce 
forest/shrub/bog mosaic, spruce and 

broadleaf forest, open and closed 
spruce forest, open spruce forest and 

hemlock forest)
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(i.e. specified the taxa within vegetation types) on Table 2. Several of the modern surface 

samples from Ager, Anderson and Brubaker were not included in subsequent analyses 

due to overlapping locations or redundant vegetation classifications.  

Raw pollen counts of selected surface samples and IODP samples were converted 

to percentage data using Tilia version 1.7.16. The data was exported as an excel file. If a 

taxon occurred less than three times in a sample and/or the percent of that taxon was 

2%, then I excluded the taxon from the sample dataset. 

I compared 220 surface pollen spectra to my IODP samples using Canonical 

Community Ordination (CANOCO) version 4.5. Initially, a Detrended Correspondence 

Analysis (DCA) determined the gradient lengths of the first axis. If the gradient length is 

less than 4 standard deviations, then a linear response model such as PCA is an 

appropriate technique (Ter Braak and Smilauer, 2002). The first axis gradient length of 

my dataset was 1.868 standard deviations, therefore a Principal Component Analysis 

(PCA) characterized by a linear response model with an indirect gradient analysis was 

applied. I followed typical PCA methodology by basing results on species (taxa) only and 

implementing a square-root transformation that reduces the range in the dataset and 

generates a more compact plot. I did not weight dominant taxa relative to minor taxa. 

This means that the dominant taxa are plotted far from the center of the diagram. 

Ordination plots were generated in CanoDraw to showcase correlations between IODP 

samples and surface samples highlighting various aspects of the modern samples, 

including lake vs. peat, tundra vs. forest, and tundra biome vs. forest biome. 
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Chapter 3: Results 

3.1 Pollen in MIS 1-6 
Fossil pollen concentrations range from 5,574 to 11,476 per cc at site U1339, 

while concentrations at site U1343 vary from 3,232 to 25,805 per cc (Table 3). Due to 

lower average concentrations in samples from U1339, my research focuses on site 

U1343. I successfully identified at least 300 pollen grains and spores in each of 26 

samples (Figure 9) ranging in age from 10.7 to 152.2 kya at approximately 10 kya 

intervals. Results from site U1343 reveal high percentages of sedge (Cyperaceae ≥ 

17.1%) and grass (Poaceae ≥ 17.4%) in glacial and interglacial assemblages. Boreal 

forest taxa including birch (Betula ≤ 19.9%), alder (Alnus ≤ 27.7%) and spruce (Picea ≤ 

8.5%) are consistently present. Spores of Sphagnum and ferns also consistently present 

and commonly abundant (3.4-10.9%). Large differences in the relative abundances of 

these taxa are not apparent between glacial and interglacial samples; percentages of grass 

and sedge are always higher than birch, alder and spruce from MIS 6 to MIS 1. The 

paludification index (Pest), which indicates wet versus dry environmental conditions, falls 

between 6 and 15 for samples from MIS 1, 3, 4, and 5. Pest for glacial stages MIS 2 and 6 

are higher, ranging from 11-22. MIS 2 records the lowest shrub/herb ratio in the samples.  

3.1.1 MIS 6 (191-130 kya) 
Three samples from MIS 6 were analyzed (Figure 9), with estimated ages ranging 

from 152.2-137.2 kya. Grass (Poaceae 22.2-20.4%) and sedge (Cyperaceae 33.3-50.6%) 

percentages are greater than birch (Betula 9.5-12.7%), alder (Alnus 8.9-16.7%) and 

spruce (Picea 3.6-6.2%). Willow (Salix 3.6-4.7%) is also present. Sphagnum abundances 

are 6.6%, 5.5%, and 4.7% at 152.2 kya, 146.2 kya and 137.2 kya, respectively. MIS 6 Pest 

values range from 11-17, indicating relatively dry conditions. Total pollen concentrations 

were generally high: 25,805.85 grains per cm3 at 152.2 kya, 14,154.96 grains per cm3 at 

146.2 kya, and 20,472.60 per cm3 at 137.2 kya (Figure 10), whereas influx values are 
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Age 
(kyr)

Core Name 
U1343

Pollen 
Concentrations 

(per cc)
10.7 1343E_1H02 15399.39
13.7 1343E_1H03 19551.67
18.7 1343E_1H04 10657.85
23.8 1343E_1H05 8611.11
47.4 1343E_2H03 8346.95
54.8 1343E_2H04 13327.76
59.8 1343E_2H05 19359.44
69.2 1343E_3H01 17541.46
73.9 1343A_3H04 3471.89
77.7 1343E_3H03 24153.86
78.1 1343A_3H05 5553.72
82 1343E_3H04 9937.41
82.2 1343A_3H06 3518.72
89.3 1343A_4H02 3247.60
92.9 1343A_4H03 4389.46
96.6 1343E_4H02 21214.65
96.7 1343A_4H04 7025.92
101 1343A_4H05 3325.27
105 1343A_4H06 5245.57
109 1343E_4H05 6319.68
117 1343E_4H06 9784.83
124 1343E_4H07 13341.70
129 1343E_5H02 18738.26
137 1343E_5H03 20472.60
146 1343E_5H04 14154.96
152 1343E_5H05 25805.85

U1339
21 1339C_1H05 6234.88
28 1339D_2H02 5574.65
58 1339D_3H03 11476.48
89 1339C_4H05 8727.61

Table 3. Pollen concentrations for sites U1339 and 
U1343. 
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 relatively moderate, ranging from 434,399 grains/cm2/yr at 152.2 kya to 236,860 

grains/cm2/yr at 146.2 kya (Figure 11).   

3.1.2 MIS 5 (130-71 kya)  
Fifteen samples were analyzed from MIS 5. Estimated ages of the samples range 

from 129.3 kya to 73.9 kya with an average 4 kya between sampled horizons. Grass 

(Poaceae 17.4-41.1%) and sedge (Cyperaceae 17.1-41.9%) abundances are more variable 

than those for samples from MIS 6.  Percentages of birch (Betula 9.4-19.9%), alder 

(Alnus 6.1-27.7%) and spruce (Picea 1.4-8.5%) are somewhat higher compared to MIS 6. 

Willow (Salix 1.5-4.6%) is also present in small amounts. Sphagnum abundances ranged 

from 4.6% to 10.9%. Low Pest values (7, 6, and 9) correspond to peak warming periods 

within MIS 5, including stages 5.4, 5.3 and 5.1 (Figure 9). Such low values indicate 

relatively wet conditions, but stage 5.5 appears to have been relatively dry. With the 

exception of the samples at 96.6 and 77.7 kya, total pollen concentrations are low 

compared to MIS 6, decreasing to 3,471.89 grains per cm3 at the end of MIS 5 (73.9 kya). 

The lowest concentrations within MIS 5 occur at 89.3 kya with 3,247.60 grains per cm3. 

Two peaks in concentrations occur at 96.6 kya (21,214.65 grains per cm3) and 77.7 kya 

(24,153.86 grains per cm3) (Figure 10). The peak at 96.6 kya corresponds to substage 5.3. 

Influx data resembles concentrations in that values are lower than those for MIS 6, with a 

peak of 775,451 grains/cm2/yr at 96.6 kya and another of 840,209 grains/cm2/yr at 

77.7kya (Figure 11).       

3.1.3 MIS 4 (71-57 kya) 
Two samples were examined from MIS 4. Estimated ages are 69.2 kya and 59.8 

kya. Percentages of grass (Poaceae 27.7%, 29.1%) and sedge (Cyperaceae 35%, 31.4%) 

are less variable than those from MIS 5. Percentages of birch (Betula 15.5%, 15.5%) are 

higher within MIS 4 than in ten of the fifteen samples from MIS 5, but eight samples 

from MIS 5 have higher percentages of alder than the MIS 4 samples (Alnus 10.6%, 

8.9%). Percentages of spruce (Picea 2.4%, 2.7%) are lower in MIS 4 than in eleven 

samples from MIS 5. Small quantities of willow (Salix 4.9%, 4.9%) are again present.  
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Sphagnum percentages are 8.2% and 5.6%, and Pest values vary from 9 at 69.2 kya to 13 

at 59.8 kya. Total pollen concentrations were generally high compared to most of MIS 5, 

ranging from 17,541.46 grains per cm3 at 69.2 kya and 19,359.44 grains per cm3 at 59.8 

kya (Figure 10). Influx values remain relatively high within MIS 4: 651.398 

grains/cm2/yr at 69.2 kya and 678.656 grains/cm2/yr at 59.8 kya (Figure 11).       

3.1.4 MIS 3 (57-29 kya) 

Two samples fall within MIS 3. The estimated ages are 54.8 kya and 47.4 kya. 

Grass (Poaceae 22.2%, 27.9%) and sedge (Cyperaceae 32.4%, 29.7%) abundances are 

relatively low compared to MIS 4. Birch (Betula 16.4%, 15.3%), alder (Alnus 11.4%, 

11.3%) and spruce (Picea 4.2%, 2.3%) are generally more abundant than they are in the 

MIS 4 samples. Minor percentages of willow (Salix 3.8%, 7.5%) are again present. 

Sphagnum percentages are 7.4% and 6.7%. Pest values range from 9 at 54.8 kya to 12 at 

47.4 kya. Total pollen concentrations are low compared to MIS 4: 13,327.76 grains per 

cm3 at 54.8 kya and 8,346.95 grains per cm3 at 47.4 kya (Figure 10). Influx values also 

remain relatively low within MIS 3, with 320,189 grains/cm2/yr at 54.8 kya and 179,702 

grains/cm2/yr at 47.4 kya (Figure 11).          

3.1.5 MIS 2 (29-14 kya) 
Two pollen assemblages were evaluated from MIS 2, with estimated ages of 23.8 

kya and 18.7 kya. Grass (Poaceae 30.9%, 28.8%) and sedge (Cyperaceae 38.7%, 43.9%) 

percentages increase relative to MIS 3. However, birch (Betula 7.5%, 7.6%), alder (Alnus 

6.3%, 6.7%) and spruce (Picea 3.6%, 3.3%) abundances decline. Small quantities of 

willow (Salix 3.8%, 3.3%) were again present. Sphagnum abundances were 3.7% and 

3.4%, and Pest values peak, reaching 22 at both 23.8 kya and 18.7 kya. Total pollen 

concentrations are generally low compared to MIS 3: 8,611.11 grains per cm3 at 23.8 kya 

and 10,657.85 grains per cm3 at 18.7 kya (Figure 10). Influx values also remain relatively 

low, with 200,576 grains/cm2/yr at 23.8 kya and 315,409 grains/cm2/yr at 18.7 kya 

(Figure 11).       
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3.1.6 MIS 1(14-0 kya) 
Two samples represent pollen assemblages from MIS 1. The estimated ages are 

13.7 kya and 10.7 kya. Grass (Poaceae 37.8%, 22.5%) and sedge (Cyperaceae 22.5%, 

35.4%) proportions are low compared to the samples from MIS 2. Meanwhile, 

percentages of birch (Betula 13.8%, 14.7%), alder (Alnus 13.8%, 11%) and spruce (Picea 

0.9%, 4.2%) increase relative to MIS 2. Minor percentages of willow (Salix 5.3%, 7.5%) 

were again present. Sphagnum abundances were 5.8% at 13.7 kya and 7.4% at 10.7 kya, 

corresponding to Pest values of 13 and 9, respectively. Pollen concentrations are high 

relative to MIS 2: 19,551.67 grains per cm3 at 13.7 kya and 15,399.39 grains per cm3 at 

10.7 kya (Figure 10). Influx values are also high, with 730,499 grains/cm2/yr at 13.7 kya 

and 767,403 grains/cm2/yr at 10.7 kya (Figure 11).        

3.2 Pollen in U1339  
Four samples from U1339 were examined, with estimated ages of 21.2 kya, 27.7 

kya, 58.4 kya and 89.2 kya (Figure 12). Two samples representing MIS 2 (21.2 kya, 27.7 

kya) have high grass (Poaceae 19.9%, 27.3%) and sedge (Cyperaceae 30.4%, 33.9%) 

percentages relative to birch (Betula 7.3%, 4.7%), alder (Alnus 5.9%, 5.2%) and spruce 

(Picea 4.2%, 1.8%). MIS 2 samples from site U1339 record 1% differences in alder and 

spruce  and 9% differences in sedge compared to MIS 2 samples from site U1343. One 

sample represents MIS 4 (58.4 kya). Percentages of grass (Poaceae 14.7%) and sedge 

(Cyperaceae 26.2%) are higher than birch (Betula 8.5%) alder (Alnus 6.5%) and spruce 

(Picea 2.1%). Site U1339 shows consistently lower percentage values of grass (14%) 

than U1343 samples during MIS 4. One sample represents MIS 5 (89.2 kya). Grass 

(Poaceae 22.3%) and sedge (Cyperaceae 32.2%) proportions are consistently higher than 

birch (Betula 7.1%) alder (Alnus 7.1%) and spruce (Picea 1.2%). These abundances fall 

within the ranges recorded for these taxa from site U1343 during MIS 5. However, this 

correspondence is not surprising, given that I am comparing one sample from U1339 to 

15 samples from U1343. Slight differences between abundances of taxa from roughly 

coeval samples from sites U1339 and U1343 could be due to the number of grains 

counted for each site (300 pollen grains per sample for U1343 and 200 pollen grains  
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per sample for U1339), differences in the ages of the samples, or differences in pollen 

influx at the sites (Table 3). In general, both sites record high percentages of sedge and 

grass and small but persistent frequencies of birch, alder and spruce (Figure 12).   

3.3 PCA of modern and fossil samples  

I generated four PCA ordination diagrams (Figures 13, 14, 15, and 16) to 

demonstrate similarities and differences between modern surface assemblages and my 

IODP samples. The dominant taxa plot far from the center of the diagram; these include 

Poaceae, Cyperaceae, Betula, Picea, Alnus and monolete spores. For Figures 13-15, Axis 

1 is driven by high percentages of Picea or Cyperaceae while Axis 2 is influenced 

heavily by Alnus, Picea and monolete spores. Figure 13 classifies the modern data by 

sample site, including lacustrine, peat, moss polster and unclassified sample sites. These 

categories are indicators of local (i.e. peat and moss polster) versus regional (i.e. 

lacustrine) sources of pollen and spores. Lacustrine and peat samples do not cluster 

together, but appear throughout quadrants I, II, III, and IV.  

Figure 14 displays modern surface samples classified as forest or tundra 

according to the biome surrounding the collection site. Samples from forest and tundra 

biomes are highlighted with envelopes. Forest samples cluster within quadrants II and III. 

Four outliers, TA021, S176, TA026, and S116, are evident among the forest samples. 

Samples from the tundra biome can be found in all quadrants, contain high values of 

Poaceae, Cyperaceae and monolete spores, are influenced to a lesser degree by Alnus and 

Picea, and do not include obvious outliers.  

Figure 15 categorizes the biome surrounding the modern surface sample sites 

more precisely as herbaceous tundra, herbaceous shrub tundra, shrub tundra, spruce 

forest, and mixed forest (i.e. both deciduous and coniferous forest types). Table 2 lists 

each vegetation classification relevant to my study, provides a brief description of typical 

taxa found within each, and identifies the biome represented by each vegetation type. 

Mixed forest and spruce forest samples cluster mainly in quadrant III, indicating high 

percentages of both Picea and Betula. Samples from herbaceous tundra fall within 

quadrants I and IV and are dominated by Cyperaceae and Poaceae, while herbaceous  
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shrub tundra is located primarily within quadrants I, II and IV, corresponding to high 

values of Poaceae, Alnus, and Cyperaceae, respectively. Samples from shrub tundra span 

all quadrants, indicating a range of dominant taxa including Poaceae, Cyperaceae, Betula, 

Picea, Alnus and monolete spores.  

Figure 16 plots the surface sample dataset with the U1343 samples. The range of 

Axis 1 is governed by Picea and Cyperaceae while Axis 2 is determined by monolete 

spores. Cyperaceae and Betula are driving the distribution of surface samples categorized 

as alpine tundra and barrens in quadrants III and IV. Dwarf shrub tundra sites plot near 

the Cyperaceae, Alnus and Picea vectors, while tussock sedge/dwarf shrub tundra sites 

typically have higher percentages of Alnus and Betula. Cyperaceae, Poaceae and 

monolete spores dominate surface samples classified as moist herbaceous/shrub tundra. 

The majority of wet sedge tundra sites contain abundant Cyperaceae and plot in quadrant 

IV, while samples classified as low shrub/lichen tundra have high percentages of 

Poaceae, Cyperaceae, monolete, and Alnus and plot in quadrants I and II. The distribution 

of tall shrub tundra sites are determined by high percentages of Alnus, monolete spores, 

Picea, and Betula and plot primarily in quadrants II and III. Finally, surface samples of 

tall and low shrub tundra sites have high percentages of both Cyperaceae and Alnus and 

plot in quadrants II, III and IV. U1343 samples cluster within quadrant I due to high 

percentages of Poaceae and monolete spores. Surface assemblages clustering around 

U1343 are classified as moist herbaceous/shrub tundra vegetation. 
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Chapter 4: Discussion 

4.1 Possible biases in pollen analysis 
This analysis is subject to several limitations, the most significant of which is the 

presence of reworked grains. All pollen and spores are potentially subject to reworking 

(Traverse, 2007). Reworked grains with different thermal histories were identified and 

highlighted through the addition of safranin O stain. Reworked grains did not absorb the 

safranin O stain and appeared brown or dark yellow, whereas most of the grains were 

visibly pink and/or red. However, such reworked grains were relatively rare, 20 out of 

>300 total grains. Brubaker et al. (2005) cited several lines of evidence for limited 

abundances of reworked pollen, including differences in glacial vs. interglacial 

assemblages and synchronous pollen production. Samples from site U1343 reveal 

consistent differences between glacial and interglacial stages. For example, samples from 

MIS 1 and 5 have different abundances of dominant taxa; they contain more Betula, 

Alnus and Picea and less Cyperaceae and Poaceae than samples from MIS 2. 

Furthermore, preservation of both herbaceous pollen and tree and shrub pollen indicates 

simultaneous pollen production. Therefore, I conclude that the majority of grains in my 

IODP samples are not reworked, and hence the assemblages do not represent mere 

averages of the Pleistocene vegetation.  

Another limitation is the fact that, during unfavorable conditions, vegetation has a 

propensity not to pollinate (Faegri and Iversen, 1989), reproducing vegetatively instead. 

For instance, when temperature and/or precipitation conditions become marginal, spruce 

can reproduce vegetatively and not produce pollen. Therefore, low abundances of spruce 

pollen can indicate either that spruce is reproducing vegetatively or that spruce trees are 

not abundant on the landscape (Nienstaedt et al., 1990; Viereck et al., 1990). According 

to Brubaker et al. (2005), Beringia contained “cryptic refugia” where individual tree and 

shrub taxa survived marginal conditions in small populations rather than migrating 

together as forest biomes.  
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A third limitation is data resolution. The U1343 samples presented herein only 

capture general vegetation trends at ~10 kyr intervals. A higher resolution data set is 

necessary to address questions of temporal variability and rates of vegetation change. 

Brief variations in vegetation could occur between sample sets.  

The final limitation of pollen analysis centers on potential operator error. Analyst 

error will affect the overall count of pollen grains within each sample. I counted all the 

samples myself, and  I was consistent in my counting and identification protocols, thus 

minimizing the margin of error. Pollen grains that were crumpled, crushed or damaged 

beyond identification (<50 grains per sample) were tallied separately (see Unknown 

column in Figure 9). These grains were photographed and later viewed by Dr. Fowell, 

who was occasionally able to identify a grain, but generally agreed that the grains could 

not be accurately identified.  

4.2 Vegetation reconstruction from MIS 1-6 
My samples indicate that graminoid-herb tundra, comprised mainly of grass and 

sedge, was the dominant vegetation cover on coastal, south-central Beringia during MIS 

1-6. Minor but consistent abundances of Betula, Alnus and Picea in all samples suggest 

that these boreal taxa survived Pleistocene glacial stages in cryptic coastal refugia. 

Locally or regionally mesic conditions are indicated by the presence of Sphagnum (3.4-

10.9%), resulting in Pest values between 6 and 10 during MIS 1, 3, 4, and 5 (Figure 9). 

According to White et al. (1997), there is a correlation between site paludification and 

temperature, with less saturation during colder times. My IODP samples display a similar 

temperature and paludification relationship; Pest values peak during glacial stages (MIS 2 

and 6) indicating minimal paludification at these times. Such differences may be the 

result of changes in the extent of regional sea-ice cover. Sea-ice cover expands as 

temperatures decrease, limiting regional evaporation (Guthrie, 2001) and decreasing 

paludification during cold intervals. 
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4.2.1 MIS 6 
My IODP samples indicate the presence of sedge and grass in greater percentages 

compared to birch, alder and spruce in MIS 6. Also, Pest values suggest that south-central 

Beringia experienced relatively dry conditions during MIS 6, though not as dry as MIS 2 

(Figure 9). Evidence for graminoid-tundra vegetation on the BLB differs from the steppe 

tundra vegetation present around Birch Creek and Ky-11 in interior Alaska. These sites 

record herb-dominated taxa such as willow, sedge, grass and ericaceous shrubs with trace 

amounts of trees (Bigelow et al., 2014). These differences may indicate an absence of 

trees and shrubs in interior Alaska relative to coastal locations on the BLB during this 

glacial stage.      

4.2.2 MIS 5 
Compared to MIS 6, abundances of birch, alder and spruce increase during MIS 5 

while percentages of grass and sedge are more variable. Pest values indicate wetter 

conditions during peak warming events, particularly 5.4, 5.3 and 5.1 (Figure 9). MIS 5 

samples from Squirrel Lake, Imuruk Lake and Ky-11 reveal significant differences 

(Bigelow et al., 2014; Schweger and Matthews, 1985; Berger and Anderson, 2000). 

Whereas my assemblages record the presence of Picea, Betula and Alnus in similar 

percentages throughout MIS 6 and 5, the abundances of these taxa increase from MIS 6 

to 5 at Ky-11 (Schweger and Matthews, 1985). This could be the result of differing site 

geography. U1343 is a lowland coastal site, while Ky-11 is located at higher elevation in 

eastern Beringia. It is conceivable that the boreal forest biome was located further inland 

during MIS 5, just as it is today. Squirrel Lake and Imuruk Lake are also located at higher 

elevations in eastern Beringia; pollen records from both sites note an increase in Betula, 

Picea and Alnus during MIS 5 compared to MIS 6 (Berger and Anderson, 2000). At 

Imuruk Lake, an increase in Sphagnum compared to Artemisia is also recorded during 

MIS 5 (Shackleton, 1982). My IODP samples show the same: higher percentages of 

Sphagnum compared to Artemisia during MIS 5 indicate relatively mesic conditions.     
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4.2.3 MIS 4 
Grass and sedge increase during MIS 4 compared to MIS 5. Although Sphagnum (8 

and 10.9%) is more abundant than Artemisia (1 and 2%) in both MIS 4 samples, Pest 

values indicate mesic conditions at 47.4 kya and relatively dry conditions at 54.8 kya 

(Figure 9). Assemblages from Imuruk Lake also record an increase in Cyperaceae and 

Poaceae, with decreasing Alnus, Picea and Betula, between 71 and 57 kya (zone i2 of 

Schakleton, 1982). However, Shackleton (1982) noted an increased presence of Artemisia 

and little evidence of Sphagnum. This disparity can be attributed to differences in 

elevation. Shackleton (1982) was sampling a lake site 300m above modern sea level in 

mainland central Beringia, whereas site U1343 is located off the coast of south-central 

Beringia, which lay below modern sea level. Guthrie (2001) hypothesized that low cloud 

cover over the central Beringian lowlands led to more mesic conditions. As a result of 

higher elevation, Imuruk Lake lay outside the “mesic buckle” and was subject to drier 

conditions.  

4.2.4 MIS 3 
Percentages of sedge and grass decrease while proportions of birch, alder and spruce 

increase during MIS 3 compared to MIS 4 (Figure 9). In their analyses of cores from the 

margins of the Bering and Chukchi seas, Elias et al. (1996) report similar results. During 

MIS 3 (40,000 yr BP) they found abundant Cyperaceae (5-13%) and Poaceae (20-46%), 

along with substantial percentages of Betula (15-20%) and Sphagnum (5-20%). The 

abundance of Sphagnum in the interior of central Beringia thus exceeds that recovered at 

U1343 (3.4-7.4%), off the coast of south-central Beringia. However, the results support 

more mesic conditions on the emergent BLB, as Sphagnum is rare or absent in glacial 

assemblages from eastern and western Beringia (Ager, 2003; Anderson, 1985; Colinvaux, 

1964; Shackleton, 1982), further indicating that differences in humidity are correlated to 

differences in site elevation. Ager’s (2003) findings from pollen analysis of Zagoskin 

Lake on St. Michael’s Island (Figure 3) are of particular interest in this regard. Ager 

(2003) also records assemblages dominated by grass and sedge, but he reports significant 
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percentages of Artemisia with little evidence of Sphagnum during the late-middle 

Wisconsin interstadial (MIS 3). Whereas Zagoskin Lake is located in central Beringia, 

proximal to sites described in Elias et al. (1996), its higher elevation island location may 

account for the lower humidity suggested by the relative lack of Sphagnum.  

4.2.5 MIS 2 
 Relative abundances of sedge and grass increased during MIS 2 compared to MIS 3, 

while percentages of birch, alder and spruce decreased. Maximum Pest values and the 

minimum ratios of trees/shrubs to herbs/forbs indicate that the environment was 

relatively dry (Figure 9). Elias et al. (1996) also found evidence of greater aridity on the  

glacial landscape of central Beringia. 20 kya beetle fossils indicate the presence of 

relatively dry tundra heaths or dry meadows (Elias et al., 1996).  

MIS 2 assemblages from St. Paul Island, near the southern coast of the BLB, differ 

from the site U1343 samples by having more Artemisia and less Sphagnum. Based on the 

presence of grass, sedge and sage, Colinvaux (1981) suggests that the glacial vegetation 

of St. Paul Island was herb tundra, which is also indicative of a relatively dry 

environment. As with Imuruk and Zagoskin lakes, the elevation of Cagaloq Lake could 

account for differences in vegetation cover compared to site U1343. In addition, Cagaloq 

Lake is located further inland, while site U1343 probably reflects the vegetation of the 

adjacent coast. Difference in vegetation between site U1343 and Cagaloq Lake may 

indicate that the west-east moisture gradient (i.e. mesic in the west and arid in the east), 

as described by Guthrie (2001) and Elias and Crocker (2008), was discontinuous, 

consisting of a patchwork of mesic and arid habitats, or that small differences in elevation 

had a significant impact on vegetation cover, or both.   

Samples from site U1343 record minor percentages of birch (8%), alder (7%) and 

spruce (4%) during MIS 2. In a survey of pollen spectra from EB (modern Russia) and 

WB (modern Alaska), Brubaker et al. (2005) noted similar results with respect to the 

presence of boreal trees and shrubs during MIS 2 (21-19 kya). Betula is consistently 

present in EB and WB (exceeding 10% at some sites) from 21-20 kya. Alnus pollen is 
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also present during the LGM (5%) throughout EB. Finally, low percentages (<2%) of 

Picea are present in EB between 21 and 13 kya, but this taxon is absent in WB (Brubaker 

et al., 2005). Results from site U1343 are thus consistent with other sites across EB with 

respect to the abundance of these boreal taxa.    

Other results from EB reveal that Populus (0-2%) is exceedingly rare and Pinus and 

Larix are absent. Populus is present in minute amounts (1%) along the Brooks Range 

but absent in WB. Populus grains are fragile, do not preserve well, and degrade with 

increased distance from parent sources. If grains are present within the sample, Populus 

likely grew close by and the grains are not reworked (Edwards and Dunwiddie, 1985; 

Faegri and Iversen, 1989). Because site U1343 is located offshore, it is understandable 

that Populus does not appear in my IODP samples. Like Populus, Larix is also difficult to 

identify and may be under-represented in the pollen record, but it is present in a few 

LGM sites in WB. Pinus is also extremely rare in EB during MIS 2 while present in small 

amounts (2%) within WB. It is, therefore, not surprising that Pinus and Larix pollen are 

also absent from site U1343. 

4.2.6 MIS 1 
Percentages of birch, alder, and spruce increased from MIS 2 to 1, while sedge and 

grass abundances decreased. Increases in Betula (from 7.6% to 13.8%) and Alnus (from 

6.7% to 13.8%) from the LGM to the early Holocene are consistent with results from 

other EB sites (Figure 9). According to Ager (2003), Betula, Alnus and Picea percentages 

increased dramatically during the Holocene. An abrupt increase in Betula indicates that it 

was already growing at the site when conditions became more favorable and the climate 

warmed (Ager, 2003). My data does not indicate a similar abrupt change in Betula 

because the sample resolution is too coarse.  

Brubaker et al. (2005) observe that Betula, Picea and Alnus percentages increase 

during MIS 1 while Pinus and Larix remain relatively rare in EB. Betula exceeded 40% 

around 13 kya. Alnus increases to >30% by 8 kya throughout EB. Larix is rare in EB at 
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10 kya but increases across WB. From 11-7 kya Pinus remained scarce (1-2%) in EB, 

where it is found primarily in southeast Alaska, while increasing throughout WB. These 

findings support my hypothesis that pollen deposited at U1343 is derived from south-

central Alaska rather than Russia or southeast Alaska due to the absence of Pinus and 

Larix. On the other hand, Brubaker et al. (2005) records Populus increasing (2-5%) in EB 

while site U1343 samples do not record any Populus. This could indicate that Populus 

was absent from south-central Beringia or that transport to site U1343 destroyed the 

exine of fragile Populus grains.  

4.3 Pollen Concentrations from MIS 1-6 
In general, pollen concentrations are high within MIS 1, 4, 6 and parts of MIS 5 and 

low within MIS 2, 3 and most of MIS 5 (Figure 10). Influx values reflect the general 

trends evident from the concentration data. Relatively high pollen concentrations within 

MIS 6, 4, and the LGM could be due to low sea levels. During glacial stages, sea level 

was as much as 125m below modern levels, meaning that site U1343 was closer to the 

coast, allowing more pollen to reach the site. Low pollen concentrations within MIS 2 

relative to MIS 6 may also be the result of harsh environmental conditions, which can 

cause trees and shrubs to produce less pollen. On the other hand, minimum 

concentrations within MIS 5 could be a result of higher sea level and greater transport 

distances. It is not likely that MIS 5 concentrations are indicative of the density of the 

coastal vegetation due to the variability between samples; MIS 5 records from various 

regions in Alaska suggest abundant vegetation at this time (c.f. Squirrel, Imuruk, Ky-11, 

Birch Creek) (Anderson, 1985; Colinvaux, 1964; Shackleton, 1982; Schweger and 

Matthews, 1985; Bigelow et al., 2014; Edwards and McDowell, 1991). The pollen 

concentration peak at 96.6 kya corresponds to substage 5.3. However, there is no 

correlation between concentration values and the paludification index, suggesting that 

pollen concentrations are not driven by changes in humidity. The high influx at 96.6 kya 

may represent a combination of greater plant density and transport mechanisms that 

concentrated the pollen at this level. Finally, MIS 1 samples show an increase in pollen 
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concentrations at 13.7 kya and 10.7 kya. This suggests that conditions became more 

favorable for pollen production of trees and shrubs. 

Pollen concentrations in samples from U1343A are consistently higher than those 

from U1343E. Samples with higher pollen concentrations have less additional material 

(i.e. diatoms, radiolarians, sponge spicules) while samples with lower pollen 

concentrations contain more additional material. Therefore, the differences between 

U1343A and U1343E could be due to differences in the sedimentation rates.    

4.4 Pollen transport to U1343 
Heusser and Balsam (1977) examined pollen spectra from marine surface 

sediment samples collected on the continental slope and rise (between 41°13′N and 

59°14′N and between 124°42′W and 144°43′W) of the Northeastern Pacific Ocean. They 

concluded that pollen from coastal vegetation is primarily transported to marine settings 

by rivers. Pollen concentrations from the continental slope and abyssal plain are inversely 

proportional to the distance from shoreline for most taxa, and a strong correlation is 

apparent between vegetation of the nearby coast and pollen abundances for taxa such as 

Pinus, Tsuga heterophylla (western hemlock), Picea, Alnus, Quercus (oak), Sequoia 

(redwood) and Compositae (daisy and dandelion family). However, percentages of Pinus 

and fern spores (Polypodiaceae) were found to increase with distance from shoreline, 

perhaps due to the buoyancy of these grains (Heusser and Balsam, 1977). Although Picea 

and Pinus are morphologically similar in that both are bisaccate (i.e. consist of a body 

and two lateral bladders), Picea grains are only found proximal to source areas and do not 

increase in relative abundance with distance from shore. Heusser and Balsam (1977) 

suggest that Picea is not as hydrodynamic as Pinus, thus it provides a more reliable 

record of the coastal vegetation. Because pollen concentrations are highest in areas where 

fine-grained terrigenous sediment is delivered to the site by rivers, the authors conclude 

that pollen distribution in marine environments is affected by fluvial transport as well as 

bottom topography, surface and subsurface currents, oxidation, and the density and 

composition of vegetation on the adjacent continent (Heusser and Balsam, 1977).  
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According to Heusser and Balsam’s (1977) findings, Picea pollen is not 

preferentially transported long distances in marine settings. The consistent presence of 

Picea in U1343 samples suggests that it was growing on the adjacent coast of Beringia. 

Furthermore, the lack of exotic taxa such as pine, which is notoriously susceptible to 

long-distance transport, suggests that the majority of pollen in my IODP samples was 

locally derived (Anderson and Brubaker, 1986; Campbell et al., 1999). Today pine is 

present in southeast Alaska but absent from sites further north. Based on the results of 

Heusser and Balsam’s (1977) research and the absence of pine pollen in samples from 

site U1343, I think it is reasonable to assume that most of the pollen and spores deposited 

at the site originated from the proximal southern coast of Beringia and not from more 

distant locations.   

4.5 Comparison between modern and fossil samples using PCA   
I compared modern surface samples with my IODP samples using PCA to 

identify modern analogs. Surface samples from Ager, Anderson and Brubaker were 

collected from different environments, including lacustrine and peat deposits (Bigelow et 

al., 2003). Peat deposits typically contain autochthonous matter (from within the peat 

deposit), while lake sediments are derived from both allochthonous (outside the 

boundaries of the lake) and autochthonous material (Moore et al., 1991). Lake deposits 

thus record a more regional pollen signal while peat deposits contain a more local signal. 

However, peat deposits receive pollen from various sources, including long-distance 

wind transport, air currents below the canopy, pollen nucleating around rain droplets, and 

groundwater. Lakes receive pollen from the same sources as peat deposits, but a greater 

proportion of material is transported by water either from rivers or surface runoff (Moore 

et al., 1991). Figure 13 explores possible differences due to site type and area by 

distinguishing samples from lacustrine and peat deposits. Samples from both types of 

sites appear in all quadrants, suggesting that the type of site is not a primary influence on 

these pollen spectra. 

Distinguishing modern surface samples from tundra and forest sites (Figure 14) 

reveals five distinct outliers. These outliers are all found in or near the forest/tundra 
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ecotone, the transitional area where two plant communities converge and integrate. Sites 

TA021, TA026 and S176 (Figure 14) are all classified as spruce woodland/shrubs on the 

modern vegetation distribution map (Figure 17) (Fleming, 1998). Although placed within 

the forest biome, woodlands are more complex systems consisting of low-density forests 

with an understory of shrubs and herbaceous plants. TA026, located in the Copper River 

Basin, is the only outlier classified as spruce woodland/shrubs that is enveloped by a 

forest biome (i.e. open and closed spruce forest). Despite this general classification, 

TA026 contains abundant Cyperaceae, Picea and Poaceae.   

TA021 (spruce woodland/shrub) and TA095 (closed spruce forest), from sites on 

the Kenai Peninsula, can be merged into a broader category of spruce forests. However, 

TA021 is in proximity to tall shrub stands while TA095 is along the coast of Cook Inlet. 

Pollen spectra from these two sites are dominated by Alnus and monolete spores. These 

taxa grow in relatively mesic and warm environments. Site S116, located on the northeast 

edge of the Seward Peninsula, is within open spruce forest/shrub/bog vegetation next to 

tall and low shrubs. Site S116 thus occupies a transitional zone between dominance of 

birch and alder vs. grass and sedge.  

S176 is a lake site, located along the lower Kuskokwim River (60.58°N and -

162.63°W), adjacent to a spruce woodland stand but enveloped by tundra-dominated 

biomes including moist herbaceous shrub tundra and low shrub/lichen tundra. The pollen 

spectra from site S176 is very similar to many of the U1343 spectra (Figure 18). 

Therefore, site U1343 may have received pollen from coastal vegetation consisting of 

isolated stands of birch, alder and spruce surrounded by grass and sedge tundra during 

glacial and interglacial stages. 

Surface samples from the tundra biome are highly variable, plotting in all 

quadrants (Figure 15). In order to understand this distribution, I grouped surface samples 

into five specific biomes that included (1) herbaceous tundra, (2) herbaceous shrub 

tundra, (3) shrub tundra, (4) mixed forest and (5) spruce forest. The ordination diagram  
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indicates that shrub tundra is a highly variable biome with an assortment of dominant 

taxa including Cyperaceae, Poaceae, Alnus and monolete spores. More tightly clustered 

samples, from biomes such as mixed forest and spruce forest, are dominated by Picea and 

Betula and contain few tundra taxa such as Poaceae and Cyperaceae.          

The modern surface samples capture the variability of the Alaskan vegetation. 

The best modern analogs for site U1343 samples are from moist herbaceous/shrub tundra 

(Figures 16 and 18). My IODP samples contain very low percentages of Picea and 

Betula. Thus these taxa do not greatly influence the distribution of my samples on the 

ordination graph. Dominant taxa are Poaceae and Cyperaceae. The U1343 samples all 

cluster within quadrant I, indicating low variability through time (152.2-10.7 kyr) (Figure 

18). This suggests that the vegetation of the southern margin of Beringia during glacial 

intervals was similar to that of the modern southwestern coast of Alaska during 

interglacial stages. In addition, Figure 18 reveals no visible gradational relationship 

between the site paludification index (a proxy for moisture) and dominant taxa. For 

example, MIS 2 samples indicate relatively dry conditions and cluster together. However, 

samples that plot nearby specify a relatively wet environment.     

I used the ordination plots to identify modern analogs of my IODP samples and 

plotted these sites on the modern vegetation map of Alaska (Figure 17). Figure 17 

suggests that the coastal vegetation proximal to site U1343 was similar to that of modern 

western Alaska in the Yukon/Kuskokwim drainage, possibly indicating that the majority 

of palynomorphs were transported to site U1343 by rivers. My IODP samples are thus 

indicative of a strong coastal signal and fluvial-dominated transport.  

4.5.1 Modern climate of the Yukon/Kuskokwim delta 
It is possible to make inferences concerning the climate at site U1343 based on 

the climate of the region where the closest modern analogs are found. The villages of 

Bethel, Quinhagak, Eek, and Chevak are proximal to modern surface sample sites plotted 

on Figure 17. Bethel maintains a 30-year climate record (from 1981 to 2010) on the 

Yukon-Kuskokwim delta. Records indicate a mean annual temperature for Bethel of -
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0.7°C, a mean July temperature of 13.4°C and a mean January temperature of -14.11°C. 

The mean annual precipitation is 470.9mm.  Most of the rain falls during the months of 

July, August and September (59.9mm, 82.5mm and 69.9mm respectively) (The Alaska 

Climate Research Center, 2013). In Alaska, the distribution of boreal forest taxa (i.e. 

spruce, birch and alder) appears to be determined primarily by temperature. Shrub birch 

(Betula nana) survives in areas where the mean July temperature is more than 4.5°C  

(typical of coastal locations), alder appears where the mean July temperature is warmer 

than 6.7°C and tree birch (Betula papyrifera) and spruce grow where the mean July 

temperature is warmer than 9.2°C (typical of more interior locations of Alaska). Based on 

the modern climate and vegetation data, it is possible that coastal vegetation proximal to 

site U1343 contained more alder and shrub birch compared to tree birch and experienced 

warmer summers and cooler winters compared to other sites along the west coast of 

Alaska (i.e. St Paul and Cold Bay). The vegetation that contributed palynomorphs to site 

U1343 also received more annual precipitation than modern sites in interior Alaska (i.e. 

Fairbanks), consistent with a coastal location.  Although there are small but consistent 

differences between glacial and interglacial samples from site U1343, the modern analogs 

are very similar, probably because the site records coastal vegetation cover throughout 

glacial and interglacial cycles.    

4.6 Refugium hypothesis and the moisture gradient  
Site U1343 contains an abundance of Sphagnum (a mesic indicator) along with 

minor abundances of boreal trees and shrubs (i.e. spruce, birch and alder). These data 

suggest that the trees and shrubs remained within Beringia during MIS 2 and 6. This 

result is consistent with the findings of Brubaker et al. (2005) and Elias and Crocker 

(2008) on boreal refugia. According to Brubaker et al. (2005), minor but consistent 

abundances of spruce, birch and alder at sites in EB suggest that these trees and shrubs 

survived MIS 2 within Beringia. Because increases in these taxa during MIS 1 are 

concurrent with climatic changes (Brubaker et al., 2005), they infer that these taxa did not 

migrate long distances (south of 50°N) as the ice retreated. Elias and Crocker (2008) 
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suggest that a west-east moisture gradient (more moisture on the lowlands of the BLB 

and less moisture near interior Alaska) existed across central Beringia during the LGM. 

Site U1343, located along the southern coast of Beringia, contains Sphagnum spores and 

pollen of boreal trees and shrubs, indicating locally mesic conditions compared to sites in 

eastern Beringia and sites at higher elevation in central Beringia. These inferences have 

implications for human migration into North America, DNA evidence suggests that there 

was a pause in the migration between Siberia and regions south of the ice sheet in North 

America (Tamm et al., 2007). The pause may have occurred in Beringia, possibly in the 

region now submerged by the Bering Sea (Hoffecker et al. 2014). If that is the case, the 

data presented here suggests that southern Beringia, with its mesic and probably woody 

vegetation, could have supported a long-term human population prior to further 

southward migration.  
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Chapter 5: Conclusions 

5.1 Key Points 
Palynological assemblages from IODP Expedition 323 site U1343 indicate a 

glacial refugium existed during MIS 2. Pollen and spore analyses suggest:  

(1) Trees and shrubs including birch, alder and spruce were probably present on 

the land bridge throughout glacial stages. However, they were not present in large 

numbers on the adjacent coast.  

(2) During glacial stages, the dominant vegetation along the south central 

Beringian coast consisted of grass, sedge and spore-producing plants such as Sphagnum 

and ferns.  

(3) Significant abundances of ferns in conjunction with minor percentages of tree 

and shrub pollen are indicative of relatively mesic conditions compared to localities in 

eastern Beringia.  

(4) Minimum site paludification ratios and the lowest shrub/herb ratios indicate 

that the LGM (MIS 2) was drier, and woody plants were less common.  

(5) By comparing surface sample data to U1343 data, it is evident that my IODP 

samples are similar to samples from modern moist herbaceous/shrub tundra located in the 

vicinity of the Yukon/Kuskokwim delta (western Alaska).  

(6) The lack of exotic taxa subject to long-distance transport by wind (e.g. Pinus) 

indicates that pollen and spores were transported to site U1343 primarily by Alaskan 

rivers. 

 (7) Throughout glacial and interglacial stages, the southern margin of central 

Beringia remained a relatively wet environment with isolated stands of trees and shrubs 

surrounded by herbs and forbs.  
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(8) The overall environment of the BLB was a mosaic of mesic and arid adapted 

vegetation. In the words of Elias and Crocker (2008), “None of us should take the view 

that the BLB, or any other large geographic region, was completely dominated by a 

single type of biological community. All ecosystems, past and present, are made up of 

patches of varied communities”. 

5.2 Avenues for future research  
Samples from site U1343 presented herein represent snapshots of the vegetation 

at a resolution of ~10 kyr. A higher resolution dataset with samples from transitional 

times (i.e. stage boundaries) is needed to increase understanding of the pace and nature of 

vegetation changes. In addition, there is a gap in the MIS 3 data. Further analysis of this 

stage could illuminate the Beringian vegetation cover during one of the less understood 

interstadials (Anderson and Lozhkin, 2001). Furthermore, the youngest sample analyzed 

from U1343 currently is 10.7 kya. Younger MIS 1 samples could help clarify the 

relationship between modern vegetation and palynomorphs deposited at site U1343. 

Unfortunately, surface samples from these sites were sieved, rendering them useless for 

palynological analyses (C. Zarikian, pers. comm., 2013). 

In 2010, IODP cored five sites in addition to U1343 and U1339. It would be 

particularly beneficial to analyze samples from sites U1345 and U1344, which are 

located north of site U1343 at the edge of the Bering Sea Shelf, to search for evidence of 

contributions from WB rivers and vegetation.  
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Appendices 

A.1 Confirmation letter from Anderson and Brubaker 

Request sent by Nancy Bigelow (August 8, 2013) 
Dear Linda and Pat, 
..… I'm writing to see if it is okay if a student I'm advising (she is cc'ed above) could use 
your AK surface sample dataset to compare it with her pollen data coming from a Bering 
Sea core (from just south of the Bering platform, hence the seds are marine).  The 
student's record goes back to early MIS 5, but unfortunately doesn't have anything 
younger than about 7.5k yr cal.  We would like her to compare the Holocene and MIS5e 
data with the modern AK data, especially from SW Alaska.   
I actually have your surface sample dataset on my computer (from the pollen biomising 
days), so I can just give her the appropriate samples if it is okay with you.   
I've attached a pdf of her GSA poster from last Fall.  Since then she has filled in some of 
the gaps and I think the chronology has changed some since then as well.   
Cheers, 
Nancy 

Response sent by Pat Anderson (August 14, 2013) 
Hi Nancy: 
Sounds fine to me, but of course we will need Linda's input.  A lot of work went into that 
data set so I am happy to see it put to some use.   . . . . . 
Cheers, Pat 

Response sent by Linda Brubaker (August 23, 2013) 
Nancy, 
I agree. I hope that you and Rachel can make good use of the surface sample data. 
 

A.2 Confirmation letter from Ager 

 Response sent by Thomas Ager (August 8, 2013) 
Hi Nancy, 
  . . . . . 
Of course Rachel Westbrook can use my Alaska surface pollen sample data set for her 
study, and anyone else is welcome to use it as well.  I assumed that once it was used for 
the biome study, that the entire data set from all sources would be made generally 
available. But thank you for asking about using the data.  . . . . 
Best regards, 
Tom Ager 
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