
PHYLOGENETIC TREES AND EUCLIDEAN EMBEDDINGS

By

Mark Layer

RECOMMENDED: 8~~ S f\f(~
Dr. Elizabeth Allman

-&:«~ --

John Rhodes
hair , Department of Mathematics and Statistics

APPROVED:

cience and Mathematics

r. John Eichelberger

Dean 972-7//:/
Date

PHYLOGENETIC TREES AND EUCLIDEAN EMBEDDINGS

A

THESIS

Presented to the Faculty

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

By

Mark Layer, B.A.

Fairbanks, Alaska

May 2014

v

Abstract

In this thesis we develop an intuitive process of encoding any phylogenetic tree

and its associated tree-distance matrix as a collection of points in Euclidean space.

Using this encoding, we find that information about the structure of the tree can

easily be recovered by applying the inner product operation to vector combinations

of the Euclidean points. By applying Classical Scaling to the tree-distance matrix,

we are able to find the Euclidean points even when the phylogenetic tree is not

known. We use the insight gained by encoding the tree as a collection of Euclidean

points to modify the Neighbor Joining Algorithm, a method to recover an unknown

phylogenetic tree from its tree-distance matrix, to be more resistant to tree-distance

proportional errors.

vii

Table of Contents

Page

Signature Page . i

Title Page . iii

Abstract . v

Table of Contents . vii

List of Figures . ix

Chapter 1: Introduction . 1

1.1 Background . 1

1.2 Euclidean Nature of Phylogenetic Distance Matrices 2

1.3 Chapter Overview . 2

Chapter 2: Metric Trees and the Squareroot Map 5

2.1 Metric Trees . 5

2.2 The Squareroot Map . 8

Chapter 3: Finding Euclidean Points From the Tree Distance Matrix 21

3.1 Classical Scaling . 21

3.2 Classical Scaling Applied to the Tree 24

Chapter 4: The ENJ Algorithm . 29

4.1 The Neighbor Joining Algorithm . 29

4.2 Weights From the Squareroot Embedding 36

4.3 Finding p and q . 37

4.4 Using p and q to Calculate Distances. 40

4.5 The ENJ Algorithm . 41

4.6 R code for the ENJ Algorithm . 41

viii

Chapter 5: Conclusions . 49

References . 51

ix

List of Figures

Page

2.1 A 5-taxon tree and the splits induced by edges e1 and e2. 7

2.2 A 4-vertex tree (left) and the resulting squareroot map in R3 (right). 9

2.3 A 4-vertex tree T1 (top left) and its image under the squareroot em-

bedding (top right), and a 4 vertex path T2 (bottom left) and its image

under the squareroot embedding (bottom right). 14

2.4 The three cases of T ′ with X1, X2, Y 1, Y 2 leaves. 17

2.5 A 4-taxon tree (left) and the image of the 4 taxa image under the

squareroot embedding (right). 18

4.1 A 3 taxa tree (left) and a graphical interpretation of equations (4.1)

(right). 31

4.2 The resolved tree from Example 19. 35

4.3 The (n − 3) dimension affine space spanned by Ψ(vr), r 6= i, j (left),

and the 1-dimension affine space spanned by Ψ(vi), and Ψ(vj) (right). 37

1

Chapter 1

Introduction

1.1 Background

Phylogenetics is the study of evolutionary relationships among groups of organisms.

A useful way to express evolutionary relationships is through the use of phylogenetic

trees, a visualization of the timeline over which different groups of organisms diverged

from their common ancestor to become distinct species.

One of the challenges in phylogenetics is to infer the structure of these trees using

only information from extant organisms, which are located at the leaves of the tree.

Such a measure might indicate how different, or in other words, distant, any given

species is from any other. Many tools have been developed to build phylogenetic trees

using only the matrix of pairwise-distances of the collection of organisms. One such

method is the Neighbor Joining Algorithm, which quickly and recursively constructs

a tree by estimating the tree structure based on the distance matrix. When given

perfect tree-distance data the Neighbor Joining algorithm will perfectly construct the

tree. However in phylogenetics the difference data is found by applying a probabilistic

model to sequence data, so there is error in the data due to poor model fit and the

finite length of sequences. As the relative distance between different organisms grows,

the accuracy of the distance measurement typically diminishes. These sources of error

reduce the ability of the Neighbor Joining algorithm to produce the correct tree and

impair the ability of phylogeneticists and biologists to draw accurate conclusions

about the evolutionary history of life on this Earth.

All sections of this thesis are authored by Mark Layer with coauthor Dr. John A.

Rhodes. In this thesis we propose a modification to the Neighbor Joining Algorithm

2

which, it is hoped, will more accurately handle relative distance based errors in the

data. Much of the work here is to develop the necessary mathematical framework

behind this method, a framework which is of interest on its own. The modified algo-

rithm is presented in detail and implemented in R, but it has not yet been extensively

tested on phylogenetic data.

1.2 Euclidean Nature of Phylogenetic Distance Matrices

The main insight used to improve the Neighbor Joining algorithm is motivated by a

work “Euclidean Nature of Phylogenetic Distance Matrices,” which was published in

2011 by Damien de Vinne, Gabriela Aguileta and Sébastien Ollier [dVAO11]. They

proposed that if T is a n-taxon metric tree with associated n × n matrix D giving

pairwise tree distances between the leaves, then it is possible to find a collection of n

points in Euclidean space whose pairwise distances are given by the entrywise square

roots ofD. However they did not offer a strong mathematical proof of this new insight,

or explore what benefit this insight can produce for the field of phylogenetics. Their

argument was rather indirect, and based on relating D to the variance-covariance

matrix of a Brownian motion process along T . For such a simple conclusion, it seems

highly desirable to find a less elaborate proof.

1.3 Chapter Overview

In chapter 2 we produce an elementary, constructive proof of the observation in

[dVAO11], by directly producing, from a given metric tree T , a collection of Euclidean

points whose pairwise distances are the square root of the tree distances. That many

properties of the original tree are recoverable from the points then follows. Thus the

construction adds additional insights to those of [dVAO11].

In chapter 3 we briefly explain how through multidimensional scaling we can find

the Euclidean points corresponding directly to the tree distance matrix D without

first knowing the tree.

In chapter 4 we explain how we can use the insights of chapter 2 and the ideas

presented in chapter 3 to reveal tree structure information presented in the Euclidean

points without ever needing to explicitly find the points. Then we use the revealed

3

tree structure to develop a new variant of the Neighbor Joining Algorithm which

will possibly perform better on inexact data sets than other versions of the Neighbor

Joining Algorithm.

5

Chapter 2

Metric Trees and the Squareroot Map

2.1 Metric Trees

To set terminology we recall some basic notions of graph theory as used in phyloge-

netics [SS03].

A (undirected simple) graph G is an ordered pair (V,E) consisting of a nonempty

set of vertices or nodes V = V (G) and a set of edges E = E(G). Each edge is a two

element set {x, y}, with x, y ∈ V . We assume V , and hence E, are finite. We note

that this definition precludes edges of the form {v, v} because the set {v, v} is the

same as the set {v} which is not a two element set and thus not an element of E(G).

Two vertices x and y are adjacent in the graph if there is an edge e = {x, y} ∈ E;

in this circumstance the edge e and the vertices x and y are said to be incident. Two

edges are also considered adjacent if they are both incident to the same vertex. A

graph is called simple if there is at most one edge incident to each pair of vertices.

The degree of a vertex is the number of edges incident to that vertex.

A path in G is a sequence of distinct vertices (v0, v1, . . . , vn) such that for all

i ∈ (0, 1, . . . , n − 1), vertex vi is adjacent to vertex vi+1. If G is a graph such that

for each pair of distinct vertices x, y ∈ V (G) there exists exactly one path whose first

vertex is x and whose last vertex is y then G is called a topological tree, denoted by

T. In such a tree the unique path starting at x and ending at y is denoted by Px,y. In

a topological tree, each path (v0, v1, . . . , vn) determines a sequence of distinct edges

(e1, e2, . . . , en) such that ei = {vi−1, vi}. The set of edges on a path Px,y is denoted

by E(Px,y). We note that if E(Px,y) = E(Pu,v) then either x = u and y = v or x = v

and y = u.

6

In a tree the vertices of degree one are known as leaf nodes or simply the leaves of

the tree. Vertices of degree larger than one are internal vertices. A pair of leaf nodes

which are both adjacent to the same internal vertex is known as a cherry. If every

internal vertex is of degree exactly 3 then the tree is a binary tree.

Let L = L(T) denote an arbitrary subset of the nodes of T including all leaves,

called the labeled nodes. In the field of phylogenetics, L represents the nodes on which

we have data, and is almost always the set of leaf nodes of the tree. In phylogenetics

L is called the set of taxa on the tree T. If |L| = n then we call the tree T an n-taxon

tree.

A metric tree T is a topological tree T together with a function

w : E(T)→ R≥0.

For each edge e ∈ E(T) the value w(e) is called the weight of the edge. In phyloge-

netics it is common to refer to the weight of an edge as its length. The length of a

path Px,y, also known as the tree distance between vertices x and y, is given by the

function

d : V (T)× V (T)→ R≥0

defined by

d(x, y) =
∑

e∈E(Px,y)

w(e).

We note that by this definition d is not necessarily a metric because edge lengths

may be 0 and thus length zero paths may exist. This can cause a situation where

x and y are different vertices but d(x, y) = 0. If we add the further restriction that

w(e) > 0 for all e ∈ E then d does define a metric. We allow length zero edges in our

definition because it is sometimes useful in the field of phylogenetics.

For any set L, an L-split is a partition of L into two nonempty sets A and B,

L = A t B, the disjoint union of A and B, and is denoted A|B. The position of

A and B in this notation is arbitrary and we make no distinction between A|B and

B|A. If A|B is a split with x ∈ A and y ∈ B then the split A|B is said to separate

the vertices x and y [SS03].

7

A

B

C

DE
e1 e2

split(e1)={A,B}|{E,D,C}

split(e2)={A,B,E}|{D,C}

Figure 2.1: A 5-taxon tree and the splits induced by edges e1 and e2.

If T is a topological tree on a set of taxa L = L(T) then each edge e of T induces a

bipartition of L, defined so that if e ∈ E(Px,y) then x and y lie in different sets of the

bipartition and if e /∈ E(Px,y) then x and y lie in the same set of the bipartition. We

denote the split of L induced by e ∈ E(T) as split(e). See figure 2.1 for an example

on the subset L = {A,B,C,D,E}.

The following definition is not standard so we will specifically label it for future

reference.

Definition 1. For L′ ⊂ L(T) we define the induced subtree T′ on L′ as follows. First

we consider the minimal spanning tree in T on L′. That is we take the collection of

edges E ′ ⊆ E and vertices V ′ ⊆ V with v ∈ V ′ if, and only if, v lies on a path Px,y

for x, y ∈ L′, and e ∈ E ′ if, and only if, e = {v1, v2} ∈ E with v1, v2 ∈ V ′. Then, if

v ∈ V ′\L′ is of degree 2 with edges e1 = {v1, v} and e2 = {v, v2} incident to v, we

delete v from V ′, delete e1 and e2 from E ′, and add a new edge e3 = {v1, v2} to E ′.

Thus we join e1 and e2 into a single edge. Applying this step repeatedly if necessary,

V ′ will have no unlabeled vertices of degree 2. .

If T = (T, w) is a metric tree, then on the induced tree T′ on L′ we define a metric

8

w′ by

w′(e) =
∑

w(ei), if e was found by joining edges {ei},

w′(e) = w(e) otherwise.

Thus T ′ = (T′, w′) will have the same tree distance between elements of L′ as does

T .

For a given pair of taxa v1, v2 ∈ L on a metric n-taxon tree T , the associated tree

distance of the pair is given by d(v1, v2). Arbitrarily ordering the taxa then defines

an n × n matrix D = (dij), where dij = d(vi, vj). We call D the distance matrix for

T .

As d(vi, vi) = 0 and d(vi, vj) = d(vj, vi) for any vi, vj ∈ V , then D is a symmetric

matrix of nonnegative entries, which has zeros down the diagonal.

It is usually the case in phylogenetic applications that the pairwise distances

between taxa can be determined experimentally, up to some error, whereas the metric

tree which relates the collection remains unknown. Then D can be estimated by data,

but is usually not known exactly. For this chapter however, we treat the phylogenetic

tree T as fixed, and D as known and exact.

2.2 The Squareroot Map

Typically tree distances do not have a Euclidean basis. However there is a natural

way to relate them to points in Euclidean space. Although this fact was first pointed

out by De Vienne, et al. [dVAO11], here we develop a novel elementary approach to

this fact which will lead to additional insights.

We define the squareroot map of an m-vertex metric tree T as follows.

Definition 2. Given an m-vertex metric tree T with its associated tree distance

d, choose some ordering of E(T) so that each edge is uniquely denoted ei for i ∈
{1, 2, . . . ,m− 1}. Then for any arbitrary chosen v ∈ V (T) the squareroot map

Ψv : V (T)→ Rm−1

9

T R
3

A B

C

V
a b

c

Ψv(V)

Ψv(A)

Ψv(B)

Ψv(C)

√a

√b

√cΨv

Figure 2.2: A 4-vertex tree (left) and the resulting squareroot map in R3 (right).

is such that Ψv(v) = 0, and for all y 6= v, y ∈ V (T),

Ψv(y) = (α1, α2, . . . , αm−1),

where

αi =


√
w(ei), if ei ∈ Pv,y,

0, otherwise.

We refer to the ith coordinate in Rm−1 as the ei-coordinate. If w(e) > 0 for all e

then Ψv is injective, and we refer to Ψv as the squareroot embedding.

Example 3. Figure 2.2 explicitly demonstrates how the squareroot map takes a 4-

vertex tree into R3. The metric tree T contains vertices {A,B,C, V } such that the

edge incident to A has weight a, the edge incident to B has weight b and the edge

incident to C has weight c. Note that the Euclidean distance between Ψv(A) and

Ψv(B) is √
(
√
b− 0)2 + (0−

√
a)2 =

√√
b

2
+
√
a

2
=
√
b+ a

where b + a is the tree distance between the vertices A and B. In other words the

Euclidean distance between the images of a pair of vertices is the square root of the

tree distances between the original vertices. This fact generalizes for all vertices in

10

the tree as Theorem 5 below will show, and is the primary motivation behind the

squareroot map. To prove this we will use the following.

Lemma 4. For any nonempty tree T and any choice of v ∈ V (T), for all vertices v1

and v2 ∈ V (T),

Ψv(v1)−Ψv(v2) = (γ1, γ2, . . . , γm−1)

where γi =


√
w(ei) when ei ∈ E(Pv,v1) and ei /∈ E(Pv,v2),

−
√
w(ei) when ei ∈ E(Pv,v2) and ei /∈ E(Pv,v1),

0 otherwise.

In particular, γi 6= 0 only when

ei ∈ E(Pv1,v2) and w(ei) > 0.

Proof. To see this, we note that by the design of the squareroot map that the e-

coordinate of Ψv(v1) is
√
w(e) only when e ∈ E(Pv,v1) and zero otherwise. Similarly

the e-coordinate of Ψv(v2) is
√
w(e) only when e ∈ E(Pv,v2) and zero otherwise. Then

it immediately follows that the ei-coordinate of Ψv(v1)−Ψv(v2) is given by the above

formula for γi.

On the tree T , the edges on the path Pv1,v2 are those which lie in exactly one of

Pv,v1 and Pv,v2 . Therefore the nonzero coordinates of Ψv(v1) − Ψv(v2) correspond to

the edges on the path Pv1,v2 of positive length.

Let

ρ(a, b) : Rm−1 × Rm−1 → R≥0

denote the standard Euclidean metric. We now relate the tree distance function and

the Euclidean metric through the squareroot map.

Theorem 5. For any nonempty tree T and for v1, v2 ∈ V (T),

ρ(Ψv(v1),Ψv(v2)) =
√
d(v1, v2).

11

Proof. Let T be an m-vertex tree. We can apply Lemma 4 to note that

ρ(Ψv(v1),Ψv(v2)) = ||Ψv(v1)−Ψv(v2)|| =
√ ∑

1≤i≤m−1

γ2
i .

As γ2
i = w(ei) when ei ∈ E(Pv1,v2) and 0 otherwise, then∑

1≤i≤m−1

γ2
i = d(v1, v2).

Therefore

ρ(Ψv(v1),Ψv(v2)) =
√
d(v1, v2).

We note that the choice of v to define Ψv is unimportant by the following lemma,

which directly follows from Lemma 4.

Proposition 6. Given a labeling of E(T), and a pair of vertices v1 6= v2, the maps

Ψv1 and Ψv2 differ by coordinate reflections and translation. More specifically there

is a reflection R in some coordinates of Rm−1 and some vector a ∈ Rm−1 such that

Ψv1(v) = RΨv2(v) + a for all v in V (T).

Proof. From Lemma 4 we note

Ψv1(v)−Ψv1(v1) = R(Ψv2(v)−Ψv2(v1))

where R is the reflection that changes sign in e-coordinates with e ∈ E(Pv1,v2).

So

Ψv1(x) = RΨv2(x) + av1,v2

where av1,v2 = −RΨv2(v1).

Thus the choice of v for Ψv is irrelevant up to an isometry of Euclidean space.

From now on we will often suppress the v in the notation so that Ψv = Ψ.

12

We make note that the squareroot map can be applied to all of the vertices of the

tree, not just the leaves. Also the tree need not be a binary tree. This leads to the

following lemma that will allow us to only consider trees with positive edge lengths.

Lemma 7. Suppose for a given metric tree T = (T, w) there is some edge e = {v1, v2}
with w(e) = 0. Define the metric tree T ′ = (T′, w′) where T′ is the tree T in which

we delete e, identify v1 with v2, and let w′ = w|E′, where E ′ is the edge set of T ′.

In other words T ′ is the tree T in which edge e has been contracted. Then with P

denoting the projection into all coordinates except the e-coordinate

P (Ψ(V)) = Ψ(V ′).

Proof. If w(e) = 0 then the e-coordinate of Ψ(v) will be zero for all v ∈ V (T).

Therefore we can safely drop the e-coordinate from Ψ(v).

Applying the above lemma repeatedly, we may assume T has no edge of length

zero and thus refer to the squareroot map as the squareroot embedding.

We note that by repeatedly applying the above lemma, we may lose any initial

assumption we may have had about working with binary trees, or about the labeled

vertices L being only leaf nodes of T . We may also reduce the size of L if two of its

elements are identified. However, as long as one keeps these conditions in mind, this

causes no problems.

As a first step to exploring the relationship of a tree and its image under the

squareroot embedding we obtain the following Proposition.

Proposition 8. If all edge lengths of T are positive and v1, v2, v3 ∈ V are distinct

then Ψ(v1),Ψ(v2),Ψ(v3) are not collinear.

Proof. Suppose there exist three vertices v1, v2, v3 ∈ V (T) such that p1 = Ψ(v1), p2 =

Ψ(v2), p3 = Ψ(v3) are collinear in Rm−1. Without loss of generality assume p3 lies

between p1 and p2.

Then p1, p2, p3 must satisfy the condition

ρ(p1, p2) = ρ(p1, p3) + ρ(p2, p3)

13

where ρ is the standard Euclidean metric.

We note that ρ(pi, pj) =
√
d(vi, vj) which means√

d(v1, v2) =
√
d(v1, v3) +

√
d(v2, v3).

Thus, squaring both sides of the equality, it must be the case that

d(v1, v2) = d(v1, v3) + 2
√
d(v1, v3)

√
d(v2, v3) + d(v2, v3). (2.1)

But as v1, v2, v3 lie on T , a metric tree with no length zero edges, it is also true

that

d(v1, v2) ≤ d(v1, v3) + d(v2, v3) (2.2)

with equality if, and only if, v3 lies on the path from v1 to v2.

Now the equality (2.1) and inequality (2.2) imply that 2
√
d(v1, v3)

√
d(v2, v3) must

be zero. Therefore at least one of d(v1, v3) or d(v2, v3) is zero. Now as T has no length

zero edges, then d(vi, vj) = 0 if, and only if, vi = vj. Thus if any three points in Ψ(V)

are collinear, then at least two of them are the same point.

Example 9. We note that Proposition 8 implies that even trees which one can naively

embed in Euclidean space so that every point is collinear, such as a path with no edges

of length zero, “crumple” when embedded under the squareroot embedding. Paths

that could nicely embed in 1-dimensional space become contorted as each vertex in

the path is forced into a different spacial dimension. This is demonstrated in Figure

2.3.

Although the squareroot embedding places every vertex of the tree into Euclidean

space, we can choose only to consider the affine subspace spanned by the squareroot

embedding applied to the taxa of the tree, i.e., Ψ(L), where L is the labeled vertices

of the tree. This is more relevant to phylogenetic applications, as one generally has

data only relating a subset of the vertices in a metric tree.

Theorem 10. Let T be a tree with positive edge lengths. Let |L| = n. Then Ψ(L)

spans an affine space of dimension exactly n− 1.

14

T1 R
3

A B

C

V
a b

c

Ψv(V)

Ψv(A)

Ψv(B)

Ψv(C)

√a

√b

√cΨv

T2 R
3

A

B

C

V
a

b

c

Ψv(V)

Ψv(A) Ψv(B)

Ψv(C)

√a
√b

√cΨv

Figure 2.3: A 4-vertex tree T1 (top left) and its image under the squareroot embedding
(top right), and a 4 vertex path T2 (bottom left) and its image under the squareroot
embedding (bottom right).

15

The Euclidean distances between the points corresponding to the taxa of T under

the embedding are given by the entry-wise square roots of the distance matrix D, which

we denote
√
D.

Proof. The set Ψ(L) is a collection of n distinct points in Euclidean space. To show

that the dimension of the affine span of that set can not be less than n − 1 we will

proceed by induction on n.

Suppose n = 1. Then Ψ(L) is a single point which defines a zero dimension affine

space.

Now suppose that for any subset L′ of V with 1 ≤ |L′| < n that the dimension of

the affine space spanned by Ψ(L′) is |L′| − 1. Consider L a set of labeled nodes

such that |L| = n. If L does not contain a leaf then we can prune leaves and

terminal branches of the tree T , until L does contain a leaf, without changing how L

is embedded under the squareroot embedding. Thus we may assume that L contains

at least one leaf w and we may also assume the squareroot embedding on L is given

by Ψv for v 6= w.

We note that as |L\{w}| = n − 1 then by the induction hypothesis Ψ(L\{w}))
spans a n − 2 dimension space. As w is a leaf then, if e is the edge incident to w,

the e-coordinate of all points in Ψv(L\{w})) is 0. However the e-coordinate of Ψv(w)

is not zero, and so Ψv(w) is not in the affine span of Ψv(L\{w})). Therefore the

dimension of the span Ψv(L) is 1 greater than the dimension of Ψv(L\{w})). In other

words the dimension of the span of Ψv(L) is n− 2 + 1 = n− 1.

Remark. Our notation
√
D for the entry-wise square roots of D should not be confused

with other standard uses of this notation to denote a matrix whose square is D.

The squareroot embedding leads to some interesting parallels between the geo-

metric properties of Ψ(V) and the properties of T .

For the following lemma, let ΨT
v refer to the squareroot embedding Ψv associated

to the tree T .

Lemma 11. If V ′ ⊂ V , T ′ is the induced subtree, as defined in Definition 1, on V ′,

and v ∈ V ′ then there is a unique Euclidean isometry i : R|V ′|−1 → R|V |−1 such that

i(ΨT ′

v (x)) = ΨT
v (x)

16

for all x ∈ V ′.

Proof. We may assume T and then T ′ have positive edge lengths. By Theorems 5

and 10, the affine span of both ΨT ′
v (V ′) and ΨT

v (V ′) produce |V ′| − 1 dimensional

affine spaces.

As passing to the induced subtree on V ′ preserves path distances between any

v1, v2 ∈ V ′ then, if D is the distance matrix for V ′ in T and D′ is the distance matrix

for V ′ in T ′, D = D′. Thus Euclidean distances between points in ΨT ′
v (V ′) agree with

those for ΨT
v (V), as both are given by

√
D =

√
D′.

Then there is an isometry i determined by mapping ΨT ′
v (w) to ΨT

v (w) for all

w ∈ V ′, and extending the mapping to the affine spaces spanned by ΨT ′
v (w) and

ΨT
v (w).

Proposition 12. Suppose T has all positive edge lengths. Given distinct x1, x2, y1, y2 ∈
V (T), let a = Ψ(x1)−Ψ(x2) and b = Ψ(y1)−Ψ(y2). Then

a · b = ±
∑
ei∈M

w(ei) where M = E(Px2,x1) ∩ E(Py2,y1).

That is, a · b is, up to sign, the length of the subpath common to Px2,x1 and Py2,y1 .

The sign is positive if the subpath is oriented in the same direction in both paths and

is negative if oppositely oriented.

Proof. By Lemma 11 it is enough to prove this for the induced subtree on {x1, x2, y1, y2}.
Recall that in general the inner product of a and b, is defined by

a · b =
∑

aibi.

Note from Lemma 4 that the e-coordinate of a is nonzero only when e lies on the

path Px1,x2 , in which case the e-coordinate is ±
√
w(ei). This is similarly true for

e-coordinate of b. Thus when ei lies on both Px1,x2 and Py1,y2

aibi = ±(
√
w(ei)

2
) = ±w(ei).

17

X1 X2

Y1 Y2

X1 X2

Y1Y2

X1

X2

Y1

Y2

V VV
e ee

Figure 2.4: The three cases of T ′ with X1, X2, Y 1, Y 2 leaves.

When ei does not lie in both Px1,x2 and Py1,y2 then

aibi = 0.

Thus the only non-zero summands in a · b are ±w(ei) for

ei ∈M = E(Px2,x1) ∩ E(Py2,y1).

Now using Lemma 11, if T ′ is the induced subtree on V ′ = {x1, x2, y1, y2} then

ΨT ′
v (V ′) is isometric to ΨT

v (V ′). Thus if a′ = ΨT ′
v (x1) − ΨT ′

v (x2) and b′ = ΨT ′
v (y1) −

ΨT ′
v (y2), then

a′ · b′ = a · b.

The arrangement of the four vertices x1, x2, y1, y2 in the induced subtree T ′ are

important for determining the value of a′ · b′, we will provide a detailed proof only

of the cases shown in Figure 2.4 where x1, x2, y1, y2 are four leaves on T ′. The cases

where one or more of the labeled vertices are not leaves of T ′, or where the tree is not

binary, are handled similarly.

In the leftmost case where x1, y1 form a cherry, edge e is on both paths Pv,x2 and

Pv,y2 and does not lie on either path Pv,x1 nor Pv,y1 . Then the e-coordinate of a′ ·b′ is

−
√
w′(e) ∗ −

√
w′(e) = +w′(e).

In the middle case, x1 and y2 form a cherry. Then edge e lies on the paths Pv,x2

and Pv,y1 and does not lie on either path Pv,x1 nor Pv,y2 . Then the e-coordinate of

18

A

B

C

D

Ψ(D)
Ψ(C)

Ψ(B)

Ψ(A)

Figure 2.5: A 4-taxon tree (left) and the image of the 4 taxa image under the square-
root embedding (right).

a′ · b′ is

−
√
w′(e) ∗

√
w′(e) = −w′(e).

In the rightmost case,, Px1,x2 and Py1,y2 have no edges in common and so a′ ·b′ = 0.

Because of how w′(e) is defined in the formation of the induced subtree T ′, w′(e)

is the length of the sub-path common to both Px1,x2 and Py1,y2 . Thus a · b is up to

sign, the length of the subpath common to Px2,x1 and Py2,y1 . The sign is positive if the

subpath is oriented in the same direction in both paths and is negative if oppositely

oriented.

Example 13. One of the motivating images for many of the proofs in this chapter,

Figure 2.5 shows a 4-taxon tree and the tetrahedron formed by the image of the

taxa under the squareroot embedding. The edge Ψ(A) − Ψ(B) is orthogonal to the

edge Ψ(C) − Ψ(D), according to Proposition 12. Additionally all triangles of the

tetrahedron are acute, as Corollary 14 below states.

This example motivates the following Corollary.

Corollary 14. For a tree with nonzero edge lengths, any three points in Ψ(L) form

either an acute or a right triangle.

19

Proof. With a = Ψ(v1) − Ψ(v3),b = Ψ(v2) − Ψ(v3) the common subpath to Pv1,v3

and Pv2,v3 is either empty or oriented in the same direction, so a · b ≥ 0.

The following Corollaries are very important for using the squareroot map to

reconstruct the tree. We will use these extensively in Chapter 4.

Corollary 15. Suppose T is a binary tree with no length zero edges, then distinct v1

and v2 ∈ V form a cherry in T if, and only if

(Ψ(v1)−Ψ(v2)) · (Ψ(wi)−Ψ(wj)) = 0

for all leaves wi, wj ∈ V \{v1, v2}.

Proof. Suppose v1, v2 form a cherry. Then the path Pv1,v2 consists of two edges e1

and e2, where e1 is incident to v1 and e2 is incident to v2. But then E(Pwi,wj
) will

not contain e1 nor e2. By Proposition 12

(Ψ(v1)−Ψ(v2)) · (Ψ(wi)−Ψ(wj)) = 0

for all wi, wj ∈ V \{v1, v2}
Now suppose (Ψ(v1) − Ψ(v2)) · (Ψ(w1) − Ψ(w2)) = 0 for all leaves w1, w2 ∈

V \{v1, v2}. Then by Proposition 12

E(Pv1,v2) ∩ E(Pw1,w2) = ∅.

Thus the only paths between two leaves on which any edge e ∈ E(Pv1,v2) lies has

either v1 or v2 as an endpoint. As T is a binary tree then this implies v1 and v2 form

a cherry in T .

Corollary 16. Suppose T has no length zero edges and suppose T is a binary metric

tree. Let v1, v2, w1, w2 ∈ L. Then

(Ψ(v1)−Ψ(v2)) · (Ψ(w1)−Ψ(w2)) = 0

if, and only if there exists an edge e ∈ E with split(e) separating v1, v2 from w1, w2.

20

Proof. To prove the forward implication, first note that by Proposition 12 the above

inner product is ± the sum of the edge weights of the edges which lie on the path

common to both paths Pv1,v2 and Pw1,w2 . If the sum of the edge weights is zero and

if every edge weight on the tree is positive then Pv1,v2 and Pw1,w2 must have no edges

in common. As v1, v2, w1, w2 are in the vertex set of T and as T is a binary tree then

there must exist an edge e in E(T) such that cutting the edge e from T will form two

trees, one of which contains v1 and v2 and the other of which contains w1 and w2. By

definition this is a split separating v1, v2 from w1, w2.

The converse holds since if an edge e separating the taxa exists, the paths Pv1,v2

and Pw1,w2 cannot have any edge in common.

So far each of these insights are based on the squareroot map which requires

knowledge of the original tree T and so is not directly useful for learning the tree’s

structure. However as we shall see in the following chapter, there are ways to find

a collection of Euclidean points, using only the tree-distance matrix D, which are

isometric to the points found with the squareroot embedding. This will allow us to

use the insights of chapter 2 even when the original tree is not known.

21

Chapter 3

Finding Euclidean Points From the Tree Distance Matrix

In chapter 2 we proved that
√
D is a Euclidean distance matrix, so now we can use

standard techniques of multidimensional scaling to find Euclidean coordinates from

the tree-distance matrix D directly. What follows will be a brief tangent into classical

scaling as described in [CC94].

3.1 Classical Scaling

Classical scaling originated in the 1930’s from the work of Eckart and Young (1936),

and Young and Householder (1938). The technique is designed so that starting with

a matrix of precise Euclidean distances, one may find the coordinates for points such

that distances between them match those given in the matrix.

The process for finding the coordinates given an Euclidean distance matrix E is

motivated as follows.

Let the coordinates of n points in a p dimensional Euclidean space be given by

the rows of the n × p matrix X where the ith point, xi, is the ith row of X. Then

the squared Euclidean distance between the ith and jth points is given by E = (eij)

where

e2
ij = ρ(xi,xj)

2 = (xi − xj)(xi − xj)
T . (3.1)

Let the inner product matrix be H = (hij) where

hij = xix
T
j = xi · xj.

Our plan is to use E to find H and then from H find X.

22

First, as the desired Euclidean points specified by X are only determined up to

isometries of Euclidean space, we choose to make it so that the center of mass for the

points specified by X is at the origin. That is, we require∑
xi = 0.

This still allows for arbitrary rotations and reflection about the origin, but that am-

biguity will not impact the following calculations.

To find H we note from equation (3.1)

e2
ij = xi · xi + xj · xj − 2xi · xj,

and so

hij = −1

2
(e2

ij − xi · xi − xj · xj). (3.2)

But

1

n

n∑
i=1

e2
ij =

1

n

n∑
i=1

(xi · xi) +
n

n
(xj · xj)−

2

n

n∑
i=1

xi · xj

=
1

n

n∑
i=1

(xi · xi) +
n

n
(xj · xj)−

2

n
(

n∑
i=1

xi) · xj

=
1

n

n∑
i=1

(xi · xi) + (xj · xj)−
2

n
0 · xj

=
1

n

n∑
i=1

(xi · xi) + (xj · xj),

so

xj · xj =
1

n

n∑
i=1

e2
ij −

1

n

n∑
i=1

xi · xi. (3.3)

Similarly

xi · xi =
1

n

n∑
j=1

e2
ij −

1

n

n∑
j=1

xj · xj. (3.4)

Summing equation (3.3) over j = 1, . . . , n shows

23

1

n2

n∑
i=1

n∑
j=1

e2
ij =

2

n

n∑
i=1

xi · xi. (3.5)

Substituting equation (3.3), (3.4), and (3.5) into (3.2) gives

hij = −1

2

(
e2
ij −

1

n

n∑
i=1

e2
ij −

1

n

n∑
j=1

e2
ij +

1

n2

n∑
j=1

n∑
i=1

e2
ij

)
. (3.6)

Defining A = (−1
2
e2
ij), then equation (3.6) can be expressed as

H = FAF

where F is the centering matrix

F = I − n−111T ,

with 1 = (1, 1, . . . , 1), a column vector of n ones.

With a single formula for H found, we turn to recovering X.

Since the inner product matrix H, can be expressed as

H = XXT ,

and is thus symmetric, applying the singular value decomposition to H gives

H = UΣUT ,

where Σ is a n×n diagonal matrix with all real entries and U is an n×n orthogonal

matrix. In fact H must be positive semi-definite as for any column vector c

cTHc = cTXXT c

= (cTX)(cTX)T

= ||cX||2 ≥ 0.

24

Thus the entries of Σ are nonnegative and

H =
(
U
√

Σ
)(

U
√

Σ
)T

.

(Note the “
√

” notation here is consistent both with the standard usage for matrices,

and with our usage in Chapter 2.)

Thus to find X from H, we may take

X = U
√

Σ,

[CC94]. The ambiguity in X up to rotation and reflection is now apparent, as X =

U
√

ΣQ for any orthogonal matrix Q would also give us a solution to H = XXT .

Remark. Note that since
∑

xi = 0 we have 1TX = 0 so 1TH1 = 0. Thus

0 = 1TH1 = 1TUΣUT1 = (1TU)Σ(1TU)T ,

where 1TU 6= 0, because U has orthogonal rows. Since Σ has non-negative diagonal

entries, this implies at least one diagonal entry of Σ is 0. Thus we can always assume

Σ is (n− 1)× (n− 1), and U is n× (n− 1), so X is n× (n− 1). Thus the points xi

specified by the rows of X live in Rn−1.

3.2 Classical Scaling Applied to the Tree

When the above approach is applied to the distances from a tree metric, these are

given in a matrix D where
√
D is Euclidean. Then the matrix A in the above expla-

nation is simply

A = −1

2
D.

To apply classical scaling to D we first find H where

H = −1

2
FDF.

As F is the centering matrix, then the process of multiplying D on both sides by F

is called “double centering” D. Then to explicitly find coordinates of n Euclidean

25

points we apply the singular value decomposition to H to get

H = UΣUT .

Thus we can find a collection of Euclidean points as the rows of Y by

Y = U
√

Σ.

One of the motivations for this thesis is to find a way to infer the tree structure

of T based on a known associated tree distance matrix D. For this reason we would

like to be able to apply our observations from Chapter 2 to the collection of points

given by Y gained through classical scaling.

In Chapter 2 we proved there exists a collection Ψ(L) of points in a (n − 1)

dimensional affine space whose pairwise distances are given by
√
D. If X is the

matrix whose rows are the points of Ψ(L) translated to be centered at the origin,

then we have already shown that XXT = H. In order to apply all the observations

from Chapter 2 to the n×n−1 matrix Y recovered from the SVD procedure, we will

prove the following theorem.

Theorem 17. X = Y Q for some (n− 1)× (n− 1) orthogonal matrix Q.

Proof. To begin, we know the rows of X span an n− 1 dimensional affine space, and

so X has rank (n− 1) which implies XXT also is of rank (n− 1).

Then as

XXT = H = UΣUT

where U is an n × n orthogonal matrix, this implies Σ has exactly n − 1 nonzero

diagonal entries and one zero diagonal entry. Thus

Σ =



σ1

σ2 0
. . .

0 σn−1

0


n×n

26

and we can define Σ̃ as the invertible (n− 1)× (n− 1) matrix

Σ̃ =


σ1

σ2 0
. . .

0 σn−1


(n−1)×(n−1)

.

In a similar way, the nth column of U can be deleted to define Ũ by

U =

Ũ un


n×n

where Ũ is an n× (n− 1) matrix and un is a column vector.

Now as

H = UΣUT = ŨΣ̃ŨT

we have that XXT = UΣUT and Y = Ũ
√

Σ̃.

Now because U is an orthogonal matrix then U−1 = UT and so

XXT = UΣUT

implies

UTXXTU = Σ.

Then, with I(n−1) denoting the identity matrix of dimension (n− 1)× (n− 1) ,

(√
Σ̃ 0

0 1

)−1

UTXXTUT

(√
Σ̃ 0

0 1

)−1

=

(√
Σ̃ 0

0 1

)−1

Σ

(√
Σ̃ 0

0 1

)−1

=

(
I(n−1) 0

0 0

)
.

(3.7)

Let

Z =

(√
Σ̃ 0

0 1

)−1

UTX, (3.8)

27

we note Z is a n× (n− 1) matrix. Then

ZT = XTUT

(√
Σ̃ 0

0 1

)−1

,

and so by equation (3.7)

ZZT =

(
I(n−1) 0

0 0

)
.

That the bottom right entry of the matrix ZZT is zero implies the bottom row of

the matrix Z is a vector with zero norm, thus the bottom row of Z is the zero vector.

That the first n − 1 rows and first n − 1 columns of ZZT form the identity matrix

implies the first n− 1 rows of the n× (n− 1) dimension matrix Z form an orthogonal

matrix Q, i.e. QQT = I(n−1).

So equation (3.8) becomes (
Q

0 . . . 0

)
=

(√
Σ̃ 0

0 1

)−1

UTX,

U

(√
Σ̃ 0

0 1

)(
Q

0 . . . 0

)
= X.

As the bottom row of the matrix Z is all zeros then

U

(√
Σ̃ 0

0 1

)(
Q

0 . . . 0

)
= Ũ

√
Σ̃Q = Y Q.

Therefore

Y Q = X.

Thus all observations from chapter 2 can be applied to the points found by Clas-

sical Scaling.

As an aside a natural corollary neatly summarizes some of the results from this

chapter.

28

Corollary 18. If D is an exact tree distance matrix, then H is symmetric positive

semidefinite with exactly one eigenvalue of 0.

29

Chapter 4

The ENJ Algorithm

In chapter 2 we proved that if D is a matrix of exact tree distances then
√
D is

a Euclidean distance matrix, and the collection of Euclidean points whose distance

matrix is
√
D exhibits several properties of the original tree. In chapter 3 we provided

a method for finding a collection of Euclidean points whose distance matrix is
√
D.

In this chapter we use this earlier work to produce a new variant of the neighbor

joining algorithm which aims to be more reliable in the face of proportional errors in

distance data. A surprising feature of this method is that we can actually avoid the

SVD calculation of chapter 3, so that the entire procedure should be computationally

fast.

4.1 The Neighbor Joining Algorithm

Throughout this paper we have referred to a metric tree T and its associated tree

distance matrix D. The Neighbor Joining Algorithm, referred to as the NJ algorithm,

is designed to recover T from a given D, even if D has some error in its entries. The

NJ algorithm is a recursive algorithm whose inductive step is to find a cherry in the

tree and replace it with the vertex adjacent to both vertices of the cherry [SS03].

Briefly we outline its operation in Algorithm 1.

The Neighbor Joining Criterion is as follows. It can be shown that picking i and

j so that the quantity defined by∑
r

dri +
∑
r

drj − (n− 2)dij, (4.2)

30

Algorithm 1 The Neighbor Joining Algorithm.

0. The NJ algorithm acts on a collection of leaves L and their pairwise distance
matrix D. Set n = |L|, then D is a n× n matrix.

1. If |L| > 3 go to step 2. Otherwise L = {1, 2, 3} and a new vertex c is defined such
that

d(1, c) = (d(1, 2) + d(1, 3)− d(2, 3))/2

d(2, c) = (d(1, 2)− d(1, 3) + d(2, 3))/2

d(3, c) = (−d(1, 2) + d(1, 3) + d(2, 3))/2. (4.1)

Then the tree is completely resolved. Stop.

2. Using the NJ criterion, choose a pair of taxa vi and vj to be joined as a cherry
with both vi and vj adjacent to a new vertex v.

3. Produce estimates of d(v, vi), d(v, vj) and for all vr ∈ L with r 6= i, j, estimates of
d(v, vr), using equations (4.3).

4. The distances d(v, vi), d(v, vj) are lengths of resolved edges in the final tree T ,
and can be stored for later presentation. Append an n + 1st row and column to
the matrix D so that dr,n+1 = dn+1,r = d(v, vr), dn+1,n+1 = d(v, v) = 0. Then
remove from D the rows and columns corresponding to vi and vj, so now D is
a (n − 1) × (n − 1) dimension matrix. Then v is added to L and vi and vj are
removed from L, so now |L| = n− 1.

5. Loop to step 1.

31

A

B

C

V A

V

A

BV

A

C

V B

C

V
= + -

A

V

Figure 4.1: A 3 taxa tree (left) and a graphical interpretation of equations (4.1)
(right).

is maximized will identify two vertices vi,vj in a cherry. Note that these sums are

over all r including i and j. Although it is not obvious that this will correctly

identify cherries given perfect tree data, it can be proved [SK88]. Methods have

been developed to confront the problem of distance based errors in choosing cherries

to make the algorithm more robust [BSH00], however we will not be modifying the

Neighbor Joining Criterion in our forthcoming algorithm.

The NJ-algorithm also repeatedly uses the resolution of the 3-taxon tree as given

by the equations (4.1). The graphical interpretation of these equations is given in

Figure 4.1. In addition to using these equations in step 1 of the algorithm, they are

used in step 3. There the NJ algorithm calculates the new distances by the following

formulas

d(v, vi) =
1

2
d(vi, vj) +

1

2(n− 2)

[∑
r 6=i,j

d(vi, vr)−
∑
r 6=i,j

d(vj, vr)

]
,

d(v, vj) =
1

2
d(vi, vj) +

1

2(n− 2)

[∑
r 6=i,j

d(vj, vr)−
∑
r 6=i,j

d(vi, vr)

]
,

d(v, vr) =
1

2
[d(vi, vr) + d(vj, vr)− d(vi, vj)]. (4.3)

The first two of these are simply the 3-taxon formulas averaged over all r 6= i, j.

For those unfamiliar with how the NJ algorithm functions, please refer to the

following example.

32

Example 19. We will apply the NJ algorithm to the given distance matrix

D =



a b c d e

a 0 2 3 4 4

b 2 0 3 4 4

c 3 3 0 3 3

d 4 4 3 0 2

e 4 4 3 2 0


.

Begin Algorithm Step 1: |L| = 5 > 3 so we proceed to step 2.

Step 2: The typical way to do the this step of the algorithm is to calculate a

matrix Q = (qij) such that the entries of Q are given by equation (4.2), i.e.

qij =
∑
r

dri +
∑
r

drj − (n− 2)dij.

Then the Q matrix is

Q =



a b c d e

a 0 20 16 14 14

b 20 0 16 14 14

c 16 16 0 16 16

d 14 14 16 0 20

e 14 14 16 20 0


.

As a, b and c, d are pairs of taxa tied for highest Q score of 20 we can pick either

one of them. We will select a, b as the pair to be joined in a cherry.

Step 3: We label the new vertex to replace the cherry formed by a and b as vertex

ab. Then we produce estimates of d(a, ab) and d(b, ab) using the first two equations

of (4.3).

33

d(ab, a) =
1

2
d(a, b) +

1

2(n− 2)

[∑
r 6=a,b

d(a, vr)−
∑
r 6=i,j

d(b, vr)

]
,

=
1

2
2 +

1

2(3)
[3 + 4 + 4− (3 + 4 + 4)] ,

= 1 +
1

6
[0] ,

= 1.

d(ab, b) =
1

2
d(a, b) +

1

2(n− 2)

[∑
r 6=a,b

d(b, vr)−
∑
r 6=i,j

d(a, vr)

]
,

=
1

2
2 +

1

2(3)
[3 + 4 + 4− (3 + 4 + 4)] ,

= 1 +
1

6
[0] ,

= 1.

Then using the third equation of (4.3) we calculate

d(ab, c) =
1

2
[d(a, c) + d(b, c)− d(a, b)] =

1

2
(3 + 3− 2) = 2,

d(ab, d) =
1

2
[d(a, d) + d(b, d)− d(a, b)] =

1

2
(4 + 4− 2) = 3,

d(ab, e) =
1

2
[d(a, e) + d(b, e)− d(a, b)] =

1

2
(4 + 4− 2) = 3.

Step 4: The calculation of step 3 are compiled into a new distance matrix

D1 =


c d e ab

c 0 3 3 2

d 3 0 2 3

e 3 2 0 3

ab 2 3 3 0

 .

34

Loop to step 1.

Step 1: |L| = 4 > 3 so go to step 2:

Step 2: New Q matrix is

Q1 =


c d e ab

c 0 10 10 12

d 10 0 12 10

e 10 12 0 10

ab 12 10 10 0

 .

We choose ab, c as the pair to be joined in a cherry.

Step 3: New vertex will be named abc. Then

d(abc, ab) =
1

2
d(ab, c) +

1

2(n− 2)

[∑
r 6=a,b

d(ab, vr)−
∑
r 6=a,b

d(c, vr)

]
,

=
1

2
2 +

1

2(2)
[3 + 3− (3 + 3)] ,

= 1.

Similarly

d(abc, c) = 1.

Then

d(abc, d) =
1

2
[d(ab, d) + d(c, d)− d(ab, c)] =

1

2
(3 + 3− 2) = 2,

d(abc, e) =
1

2
[d(ab, e) + d(c, e)− d(ab, c)] =

1

2
(3 + 3− 2) = 2.

Step 4: New matrix:

D2 =


d e abc

d 0 2 2

e 2 0 2

abc 2 2 0

 .
Loop to step 1.

35

a b

c

d

e

ab

abc

f

d(a,ab) d(b,ab)

d(ab,abc) d(abc,c)

d(abc,f)

d(e,f)

d(d,f)

a b

c

d

e

ab

abc

f

1

1 1

1

1

1

1

Figure 4.2: The resolved tree from Example 19.

Step 1: |L| = 3, so for the new vertex which we will label f :

d(abc, f) = (d(abc, d) + d(abc, e)− d(d, e))/2 = (2 + 2− 2)/2 = 1

d(d, f) = (d(abc, d)− d(abc, e) + d(d, e))/2 = (2− 2 + 2)/2 = 1

d(e, f) = (−d(abc, d) + d(abc, e) + d(d, e))/2 = (−2 + 2 + 2)/2 = 1.

Then the tree is resolved and given in Figure 4.2.

Essentially in each iteration the NJ algorithm finds the placement of the new

vertex v in the tree by considering each induced 3-leaf tree using taxa vi, vj, vr and

averaging the edge-lengths from them. This method assumes that all these known

estimates are equally accurate and weights them equally in determining the position of

v in the tree. It is theorized that in an experimental setting the error of measured tree

distances is proportional to the size of the distance. In other words one can assume

that smaller tree distances are more accurate than larger tree distances. Ideally we

want an algorithm which will give more weight to nearby vertices and less to distant

ones when placing the new vertex v. However there are also unknown correlations in

this distances due to the underlying tree structure, so ways of weighting to improve

general performance are not clear.

In 1997 Gascuel et.al. developed the BIONJ algorithm as an attempt to address

36

the issue of distance based error. The BIONJ algorithm works by adopting weights

on vi and vj where the weights are chosen to minimize the sampling variance of the

new distance matrix of estimates. This serves to minimize the topological variance of

the resulting tree and produce a more accurate metric tree than basic NJ on specific

types of trees with distance based error. The BIONJ algorithm very specifically does

not change the weights of the vertices that are not to be joined in the cherry and so

suffers undue influence from exceptionally erroneous distant taxa [Gas97].

Using the squareroot embedding, we propose a method for implicitly assigning

weights to the n−2 taxa not in the cherry for the purpose of estimating the distances

from the new vertex v to the remaining taxa of L, as well as for estimating the lengths

of edges in a cherry.

4.2 Weights From the Squareroot Embedding

The squareroot embedding for an n-taxon tree defines n points in (n−1)-dimensional

Euclidean space. By Corollary 15 if vi and vj form a cherry in the tree then the vector

Ψ(vi)−Ψ(vj) lies perpendicular to all other vectors Ψ(vr)−Ψ(vs) for any r, s 6= i, j.

In other words, if V is the 1-dimensional affine space spanned by Ψ(vi),Ψ(vj) and W

is the (n− 3)-dimensional affine space spanned by Ψ(vr) for all r 6= i, j, then W and

V are orthogonal. For the following, W,V,p,q,Ψ(vr),Ψ(vj),Ψ(vi) are arranged as in

Figure 4.3.

If p is in V and q is in W such that the Euclidean distance ρ(p,q) is minimized,

then the vector p− q is orthogonal to both V and W . As q is in the affine space W

then q is an affine combination of Ψ(vr), r 6= i, j, and q can be identified with the

(n− 2)-dimensional column vector t = (tr), with
∑

r tr = 1, such that

q =
∑

Ψ(vr)∈W

trΨ(vr).

We propose the vector t as the vector of assigned weights to the n − 2 taxa for the

purpose of estimating the distances from the new vertex v to the remaining taxa of

L.

Similarly p is the affine combination of Ψ(vi) and Ψ(vj) and thus p can be iden-

37

R
n-1

Ψ(vj)

Ψ(vi)

W

Ψ(vr)

pq

V

Figure 4.3: The (n− 3) dimension affine space spanned by Ψ(vr), r 6= i, j (left), and
the 1-dimension affine space spanned by Ψ(vi), and Ψ(vj) (right).

tified with a 2-dimensional column vector s, with
∑
si = 1, and

p = s1Ψ(vi) + s2Ψ(vj).

A great advantage of these weights, as we will see, is they both reflect distances

in the tree and they are easily computable through linear algebra.

4.3 Finding p and q

We will now walk through the process to calculate and use s and t to estimate the

new tree distances for the algorithm.

To calculate s and t we need to minimize the function giving the distance between

a point in W and a point in V . Let X1 =

(
Ψ(vi)

Ψ(vj)

)
and let X2 =

(
Ψ(vr)

...

)
given

r 6= i, j. Reordering our taxa if necessary, we have

X =

(
X1

X2

)
. (4.4)

Now to find s and t is to solve the optimization problem of minimizing the objective

38

function

f(s, t) = ||sX1 − tX2||2

subject to the constraints

s1 + s2 = 1 and t1 + t2 + · · ·+ tn−2 = 1.

Letting J =

(
I2 0

0 −In−2

)
, since

sX1 − tX2 =
(
sT tT

)
JX,

the objective function can be expanded as

f(s, t) =
(
sT tT

)
JXXTJT

(
s

t

)
,

or as XXT = H,

f(s, t) =
(
sT tT

)
JHJT

(
s

t

)
.

Let 1n = (1, 1, 1, . . . , 1) denote the column vector with n entries of 1, the problem

is now to minimize

f(s, t) =
(
sT tT

)
JHJT

(
s

t

)
,

subject to

c1(s,t) = 1T
2 s = 1,

c2(s, t) = 1T
n−2t = 1.

By the method of Lagrange multipliers, the solution must satisfy the system of

39

n+ 2 equations in n+ 2 unknowns

∇s,tf(s, t) = −λ1∇s,tc1(s, t)− λ2∇s,tc2(s, t),

c1(s, t) =
(
1T

2 0T
n−2

)(s

t

)
= 1,

c2(s, t) =
(
0T

2 1T
n−2

)(s

t

)
= 1. (4.5)

Now

∇s,tf(s, t) = 2JHJT

(
s

t

)
,

∇c1(s, t) =

(
12

0n−2

)
,

∇c2(s, t) =

(
02

1n−2

)
.

With K =

(
1T

2 0T
n−2

0T
2 1T

n−2

)
a 2×n matrix, we can express the system of equations (4.5)

in block matrix form as

[
2JHJT KT

K 02×2

]
s

t

λ1

λ2

 =

(
0n

12

)
. (4.6)

Thus s and t can be found by solving this matrix equation by standard techniques.

Note the pleasant surprise here that we do not need to actually find X from H to

solve for s and t; knowing H is sufficient. Thus the SVD computation of chapter 3

need not be performed explicitly.

40

4.4 Using p and q to Calculate Distances.

For ease of notation, let ei denote the n × 1 vector with 1 in the ith position and

zeros in all other positions, i.e. the ith standard basis vector, as a column. Then, for

instance

Ψ(vi) = eT
i X.

Referring again to Figure 4.3,

ρ2(Ψ(vi),q) =
((

0T
2 tT

)
− eT

i

)
XXT

((
02

t

)
− ei

)

=
((

0T
2 tT

)
− eT

i

)
H

((
02

t

)
− ei

)
.

Similarly

ρ2(Ψ(vj),q) =
((

0T
2 tT

)
− eT

j

)
H

((
02

t

)
− ej

)
.

We could estimate d(v, vi) and d(v, vj) using 3-taxon formulas like those in equa-

tion (4.1) applied to d(vr, vi), d(vr, vj) and d(vi, vj) for any r. For perfect data we

would get the same result regardless of our choice of r. For instance, we have

d(v, vi) =
d(vr, vi)− d(vr, vj) + d(vj, vi)

2

=
ρ2(Ψ(vr),Ψ(vi))− ρ2(Ψ(vr),Ψ(vj)) + d(vi, vj)

2
. (4.7)

But for any m ∈ W the Pythagorean Theorem and orthogonality depicted in Figure

4.3 show

ρ2(m,Ψ(vi))− ρ2(m,Ψ(vj)) = ρ2(m,q) + ρ2(q,Ψ(vi))−
(
ρ2(m,q) + ρ2(q,Ψ(vj))

)
.

Thus in equation (4.7) we may replace the two occurrence of Ψ(vr) with any m ∈ W ,

We choose to do this using m = q giving us equations (4.8) and (4.9).

41

d(v, vi) =
ρ2(Ψ(vi),q)− ρ2(Ψ(vj),q) + d(vi, vj)

2
(4.8)

d(v, vj) =
−ρ2(Ψ(vi),q) + ρ2(Ψ(vj),q) + d(vi, vj)

2
. (4.9)

Now to calculate d(v, vr) for all r 6= i, j we note that for perfect tree distances

d(vr, v) = d(vr, vi)− d(v, vi)

= ρ2(Ψ(vr),Ψ(vi))− d(v, vi)

= ρ2(Ψ(vr),q) + ρ2(q,Ψ(vi))− d(v, vi) by Pythagorean Theorem.

= ρ2(Ψ(vr),q) + ρ2(q,Ψ(vi))−
(
ρ2(Ψ(vi),q)− ρ2(Ψ(vj),q) + d(vi, vj)

2

)
using (4.8).

= ρ2(Ψ(vr),q) +
ρ2(Ψ(vi),q) + ρ2(Ψ(vj),q)− d(vi, vj)

2
. (4.10)

We adapt this last formula for our modified NJ algorithm, notice that it is symmetric

in vi and vj.

4.5 The ENJ Algorithm

The ENJ, or Embedded Neighbor Joining algorithm is the regular NJ algorithm as

outlined in Algorithm 1 except for that, in step 3, equations (4.8), (4.9) and (4.10)

are used to produce estimates of d(v, vi), d(v, vj) and, for all vr ∈ L with r 6= i, j,

estimates of d(v, vr). As these involve the use of H, that must be calculated as well

for each iteration of the algorithm. We also must use H to find q, by solving the

system of equations (4.6). The full procedure is given as Algorithm 2

4.6 R code for the ENJ Algorithm

We have implemented the algorithm in R [R C13] to test its performance compared

to various other NJ algorithms. We do this using the APE [PCS04] package for

phylogenetic tree analysis.

The algorithm is implemented as two functions in R, first is the function called

42

Algorithm 2 The Embedded Neighbor Joining Algorithm.

0. The ENJ algorithm acts on a collection of leaves L and their pairwise distance
matrix D. Set n = |L|, then D is a n× n matrix.

1. If |L| > 3 go to step 2. Otherwise L = {1, 2, 3} and a new vertex c is defined such
that

d(1, c) = (d(1, 2) + d(1, 3)− d(2, 3))/2

d(2, c) = (d(1, 2)− d(1, 3) + d(2, 3))/2

d(3, c) = (−d(1, 2) + d(1, 3) + d(2, 3))/2.

Then the tree is completely resolved. Stop.

2. Using the NJ criterion, choose a pair of taxa vi and vj to be joined as a cherry
with both vi and vj adjacent to a new vertex v.

3. Calculate H by

H = −1

2
FDF

where F is the centering matrix described in chapter 3. Then calculate s and t by
solving the matrix equation (4.6).

4. Produce estimates of d(v, vi), d(v, vj) and for all vr ∈ L with r 6= i, j, estimates of
d(v, vr), using equations (4.8), (4.9) and (4.10).

5. The distances d(v, vi), d(v, vj) are lengths of resolved edges in the final tree T ,
and can be stored for later presentation. Append an n + 1st row and column to
the matrix D so that dr,n+1 = dn+1,r = d(v, vr), dn+1,n+1 = d(v, v) = 0. Then
remove from D the rows and columns corresponding to vi and vj, so now D is
a (n − 1) × (n − 1) dimension matrix. Then v is added to L and vi and vj are
removed from L, so now |L| = n− 1.

6. Loop to step 1.

43

otherst, which takes as its argument the tree distance matrix D and returns a list

[s, t,H]

otherst <- function(D){

#returns a list of the form [s,t,H]

#double centering the matrix

temp<-dim(D);

n=temp[1];

n2=temp[2];

F=diag(n)-(1/n)*matrix(c(rep(1,n*n)),nrow=n);

H=-.5*F%*%D%*%F;

#double centering the matrixn

J=-diag(n);

J[1,1]=1;

J[2,2]=1;

A=2*J%*%H%*%J

C=matrix(c(rep(0,4)),nrow=2,ncol=2);

B=matrix(c(rep(1,2),rep(0,n),rep(1,n-2)) ,nrow=2,ncol=n,byrow=TRUE);

W=cbind(A,t(B));

P=cbind(B,C);

M=rbind(W,P);

b=matrix(c(rep(0,n),rep(1,2)) ,nrow=n+2,ncol=1);

position1=solve(M,b);

s=matrix(c(position1[1:2,1],rep(0,n-2)),nrow=n,ncol=1);

t=matrix(c(rep(0,2),position1[3:n,1]),nrow=n,ncol=1);

newlist<- list(s,t,H);

return(newlist);

}

Using the function otherst, the implementation of the ENJ algorithm is below.

In its current form it builds a Newick format tree as it progresses and at the end

passes it to a native APE function to convert the Newick tree into an APE object of

44

class “phylo”, the APE packages format for phylogenetic trees.

enj<-function(D,varargin){

enj.r

#

usage: enj(Distarray, Names{:})

or: enj(Distarray,’Name1’,’Name2’,...,’Namen’)

or: enj(Distarray)

or: enj(D,rownames(D))

#

Performs neighbor joining on distance data.

#

Distarray should be a square matrix with distances in

upper triangle (all other entries are ignored);

Names should be a cell array with names of taxa.

Otherwise names of taxa can be listed, or omitted.

If Names is omitted, taxa are called S1, S2, etc.

#

8/2/03

#Modified into R with Newick output Mark Layer 3/3/2014

temp=dim(D);

n=temp[1];

if(temp[1]!=temp[2]){

stop("Matrix is not square.")

}else if(n<3){

stop("Must have at least 3 taxa.")

}else{

N=temp[1];

if (missing(varargin)){

for(i in 1:N){

names[i]=paste("S",as.character(i),sep="");

45

}}else{

names=varargin;}

if(length(names)!= N){

stop("Incorrect number of taxon names.");

}

D=upper.tri(D)*D;

D=D+t(D);

while(n>3){

#step 1 %%Choose which two taxa get to be joined%%

R=as.matrix(colSums(D));

M=(n-2)*D-matrix(c(rep(1,n)),nrow=n)%*%t(R)-R%*%matrix(c(rep(1,n)),ncol=n);

M=M+diag(rep(Inf,n));

inds <- arrayInd(which.min(M), dim(M));

rowind=inds[1];

colind=inds[2]; #taxa rowind and colind to be joined

#Swap rows and columns of D so that taxa 1 and 2 now to be joined

D[,c(1,rowind)]<- D[,c(rowind,1)];

D[c(1,rowind),]<- D[c(rowind,1),];

names[c(1,rowind)] <- names[c(rowind,1)] ;

if (colind==1){

colind = rowind;}

D[,c(2,colind)]<- D[,c(colind,2)];

D[c(2,colind),]<- D[c(colind,2),];

names[c(2,colind)] <- names[c(colind,2)] ;

#idea, build new vertex V="(s1:d(s1,v),s2:d(s2,v))"

#then for the final step, concactinate the strings into

a single newick formatted tree

46

K=otherst(D);

s=K[[1]];

t=K[[2]];

H=K[[3]];

A=matrix(c(1,rep(0,n-1)),ncol=n);

B=matrix(c(0,1,rep(0,n-2)),ncol=n);

rhosqAT=(t(t)-A)%*%H%*%t(t(t)-A);

rhosqBT=(t(t)-B)%*%H%*%t(t(t)-B);

rhosqVA=(D[1,2]+rhosqAT-rhosqBT)/2

rhosqVB=(D[1,2]-rhosqAT+rhosqBT)/2;

rhosqVT=(rhosqAT+rhosqBT-D[1,2])/2;

V=paste("(",names[2],":",as.character(rhosqVB),",",names[1],":",as.character(rhosqVA),")",sp="")

names=names[-c(1,2)];

names[n-1]<- V; #at end of algorithm names will have one entry which

#is the newick tree

newD=D[-c(1,2),];

newD=newD[,-c(1,2)];

newColumn=matrix(c(rep(0,n-2)),nrow=n-2);

for(i in 1:n-2){

E=matrix(c(rep(0,i-1+2),1,rep(0,n-2-i)));

newColumn[i]=t(s-E)%*%H%*%(s-E)+rhosqVT;

}

newD=cbind(newD,newColumn);

47

D=rbind(newD,cbind(t(newColumn),0));

n=n-1;

}

#now only 3 taxa remain, names is a list of three objects

d1=(D[1,2]+D[1,3]-D[2,3])/2;

d2=(D[2,1]+D[2,3]-D[1,3])/2;

d3=(D[3,1]+D[3,2]-D[1,2])/2;

Tree=paste("(",names[1],":",as.character(d1),",",names[2],":",as.character(d2),",",names[3],":",as.character(d3),");",sp="")

Tree3<-read.tree(text=Tree);

return(Tree3);

}

}

49

Chapter 5

Conclusions

In this thesis we have only covered a few possibilities for analyzing metric trees using

the squareroot map. In our research we explored many possible avenues to analyze

and visualize the Euclidean points which didn’t progress far enough to include in the

main body of this thesis.

One idea was to consider lower dimensional projections of the Euclidean points,

for instance low dimensional projections, with the hope that pertinent tree structure

information would become visually apparent. The idea behind this is that 1,2, and 3

dimensional projections can be drawn on a piece of paper and directly presented to

readers to see the conclusions for themselves.

Another idea was to create a list of all possible combinations of pairs of points

(Ψ(va),Ψ(vb)) in the image of the squareroot map. Then from this list produce a

matrix whose ij entry corresponds to the inner product of the ith entry of the list

with the jth entry. The resulting matrix contains a lot of structure which can possibly

be analyzed to detect tree splits, cherries, and other features of the data.

A third idea is that it may be possible to devise a new way to compare two trees

using the Euclidean points of their respective squareroot maps. This may be a useful

direction of inquiry as it is currently unclear as to how to resolve topological and

metric differences between pairs of metric trees.

The thesis ultimately focused on developing the ENJ algorithm. However the ENJ

algorithm has not yet been tested for its resilience in the face of distance-proportional

errors. This is partly because it remains unclear how to best test the algorithm. One

idea is to start with a phylogenetic tree T and its associated tree-distance matrix

D, then add to D a symmetric matrix E where the entries of E are the entries of

50

D multiplied by some random number. The hope is that when E is added to D it

simulates measurement error which is proportional to the entries of D. There are

several problems with this approach. For one thing it is unclear as to what range of

random numbers would best simulate experimental phylogenetic error. For another

it is unclear that merely adding proportional error to the distance matrix would

accurately simulate experimental sampling, and tree error in the first place.

Ideally testing the effectiveness of the ENJ algorithm will require producing simu-

lated evolutionary data using some model of evolution. Then we would know the true

tree but have error filled data that may not necessarily reflect it. On this simulated

data we apply various Neighbor Joining algorithms and compare the produced trees

to the known true tree. Then we can judge the effectiveness of the ENJ algorithm by

comparing, on average, if it produced a more accurate tree than the other Neighbor

Joining algorithms. The accuracy of the algorithms can be tested by applying one of

several methods to measure how different two trees are from one another. We believe

that the topology of the resulting trees is more important than the metric of the trees

and so we will want to use a method that counts topological differences in trees.

To construct the simulations will require making several arbitrary decisions such

as which model of evolution to simulate, what parameters should be used in the

simulated evolution, what metric to use to judge differences in trees, what shape

of the true tree should we focus our efforts on, and so on. On top of this there is

the issue of which batch of simulations to include as it is probable that there are

at least some of them which will heavily favor the ENJ algorithm and others which

will heavily punish it. To answer these concerns will require further research and

experimentation.

51

References

[BSH00] William J Bruno, Nicholas D Socci, and Aaron L Halpern. Weighted

neighbor joining: a likelihood-based approach to distance-based phylogeny

reconstruction. Molecular Biology and Evolution, 17(1):189–197, 2000.

[CC94] Trevor F Cox and Michael AA Cox. Multidimensional scaling. Chapman

& Hall, 1994.

[dVAO11] Damien M de Vienne, Gabriela Aguileta, and Sébastien Ollier. Euclidean

nature of phylogenetic distance matrices. Systematic biology, 60(6):826–

832, 2011.

[Gas97] Olivier Gascuel. BIONJ: an improved version of the NJ algorithm based

on a simple model of sequence data. Molecular biology and evolution,

14(7):685–695, 1997.

[PCS04] E. Paradis, J. Claude, and K. Strimmer. APE: analyses of phylogenetics

and evolution in R language. Bioinformatics, 20:289–290, 2004.

[R C13] R Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2013.

[SK88] J. Studier and K. Keppler. A Note on the Neighbor-Joining Algorithm of

Saitou and Nei. 5:729–731, 1988.

[SS03] Charles Semple and Mike A Steel. Phylogenetics, volume 24. Oxford

University Press, 2003.

